xref: /dragonfly/contrib/gcc-8.0/gcc/final.c (revision 3851e4b8)
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2    Copyright (C) 1987-2018 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 /* This is the final pass of the compiler.
21    It looks at the rtl code for a function and outputs assembler code.
22 
23    Call `final_start_function' to output the assembler code for function entry,
24    `final' to output assembler code for some RTL code,
25    `final_end_function' to output assembler code for function exit.
26    If a function is compiled in several pieces, each piece is
27    output separately with `final'.
28 
29    Some optimizations are also done at this level.
30    Move instructions that were made unnecessary by good register allocation
31    are detected and omitted from the output.  (Though most of these
32    are removed by the last jump pass.)
33 
34    Instructions to set the condition codes are omitted when it can be
35    seen that the condition codes already had the desired values.
36 
37    In some cases it is sufficient if the inherited condition codes
38    have related values, but this may require the following insn
39    (the one that tests the condition codes) to be modified.
40 
41    The code for the function prologue and epilogue are generated
42    directly in assembler by the target functions function_prologue and
43    function_epilogue.  Those instructions never exist as rtl.  */
44 
45 #include "config.h"
46 #define INCLUDE_ALGORITHM /* reverse */
47 #include "system.h"
48 #include "coretypes.h"
49 #include "backend.h"
50 #include "target.h"
51 #include "rtl.h"
52 #include "tree.h"
53 #include "cfghooks.h"
54 #include "df.h"
55 #include "memmodel.h"
56 #include "tm_p.h"
57 #include "insn-config.h"
58 #include "regs.h"
59 #include "emit-rtl.h"
60 #include "recog.h"
61 #include "cgraph.h"
62 #include "tree-pretty-print.h" /* for dump_function_header */
63 #include "varasm.h"
64 #include "insn-attr.h"
65 #include "conditions.h"
66 #include "flags.h"
67 #include "output.h"
68 #include "except.h"
69 #include "rtl-error.h"
70 #include "toplev.h" /* exact_log2, floor_log2 */
71 #include "reload.h"
72 #include "intl.h"
73 #include "cfgrtl.h"
74 #include "debug.h"
75 #include "tree-pass.h"
76 #include "tree-ssa.h"
77 #include "cfgloop.h"
78 #include "params.h"
79 #include "stringpool.h"
80 #include "attribs.h"
81 #include "asan.h"
82 #include "rtl-iter.h"
83 #include "print-rtl.h"
84 
85 #ifdef XCOFF_DEBUGGING_INFO
86 #include "xcoffout.h"		/* Needed for external data declarations.  */
87 #endif
88 
89 #include "dwarf2out.h"
90 
91 #ifdef DBX_DEBUGGING_INFO
92 #include "dbxout.h"
93 #endif
94 
95 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
96    So define a null default for it to save conditionalization later.  */
97 #ifndef CC_STATUS_INIT
98 #define CC_STATUS_INIT
99 #endif
100 
101 /* Is the given character a logical line separator for the assembler?  */
102 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
103 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
104 #endif
105 
106 #ifndef JUMP_TABLES_IN_TEXT_SECTION
107 #define JUMP_TABLES_IN_TEXT_SECTION 0
108 #endif
109 
110 /* Bitflags used by final_scan_insn.  */
111 #define SEEN_NOTE	1
112 #define SEEN_EMITTED	2
113 #define SEEN_NEXT_VIEW	4
114 
115 /* Last insn processed by final_scan_insn.  */
116 static rtx_insn *debug_insn;
117 rtx_insn *current_output_insn;
118 
119 /* Line number of last NOTE.  */
120 static int last_linenum;
121 
122 /* Column number of last NOTE.  */
123 static int last_columnnum;
124 
125 /* Last discriminator written to assembly.  */
126 static int last_discriminator;
127 
128 /* Discriminator of current block.  */
129 static int discriminator;
130 
131 /* Highest line number in current block.  */
132 static int high_block_linenum;
133 
134 /* Likewise for function.  */
135 static int high_function_linenum;
136 
137 /* Filename of last NOTE.  */
138 static const char *last_filename;
139 
140 /* Override filename, line and column number.  */
141 static const char *override_filename;
142 static int override_linenum;
143 static int override_columnnum;
144 
145 /* Whether to force emission of a line note before the next insn.  */
146 static bool force_source_line = false;
147 
148 extern const int length_unit_log; /* This is defined in insn-attrtab.c.  */
149 
150 /* Nonzero while outputting an `asm' with operands.
151    This means that inconsistencies are the user's fault, so don't die.
152    The precise value is the insn being output, to pass to error_for_asm.  */
153 const rtx_insn *this_is_asm_operands;
154 
155 /* Number of operands of this insn, for an `asm' with operands.  */
156 static unsigned int insn_noperands;
157 
158 /* Compare optimization flag.  */
159 
160 static rtx last_ignored_compare = 0;
161 
162 /* Assign a unique number to each insn that is output.
163    This can be used to generate unique local labels.  */
164 
165 static int insn_counter = 0;
166 
167 /* This variable contains machine-dependent flags (defined in tm.h)
168    set and examined by output routines
169    that describe how to interpret the condition codes properly.  */
170 
171 CC_STATUS cc_status;
172 
173 /* During output of an insn, this contains a copy of cc_status
174    from before the insn.  */
175 
176 CC_STATUS cc_prev_status;
177 
178 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen.  */
179 
180 static int block_depth;
181 
182 /* Nonzero if have enabled APP processing of our assembler output.  */
183 
184 static int app_on;
185 
186 /* If we are outputting an insn sequence, this contains the sequence rtx.
187    Zero otherwise.  */
188 
189 rtx_sequence *final_sequence;
190 
191 #ifdef ASSEMBLER_DIALECT
192 
193 /* Number of the assembler dialect to use, starting at 0.  */
194 static int dialect_number;
195 #endif
196 
197 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern.  */
198 rtx current_insn_predicate;
199 
200 /* True if printing into -fdump-final-insns= dump.  */
201 bool final_insns_dump_p;
202 
203 /* True if profile_function should be called, but hasn't been called yet.  */
204 static bool need_profile_function;
205 
206 static int asm_insn_count (rtx);
207 static void profile_function (FILE *);
208 static void profile_after_prologue (FILE *);
209 static bool notice_source_line (rtx_insn *, bool *);
210 static rtx walk_alter_subreg (rtx *, bool *);
211 static void output_asm_name (void);
212 static void output_alternate_entry_point (FILE *, rtx_insn *);
213 static tree get_mem_expr_from_op (rtx, int *);
214 static void output_asm_operand_names (rtx *, int *, int);
215 #ifdef LEAF_REGISTERS
216 static void leaf_renumber_regs (rtx_insn *);
217 #endif
218 #if HAVE_cc0
219 static int alter_cond (rtx);
220 #endif
221 static int align_fuzz (rtx, rtx, int, unsigned);
222 static void collect_fn_hard_reg_usage (void);
223 static tree get_call_fndecl (rtx_insn *);
224 
225 /* Initialize data in final at the beginning of a compilation.  */
226 
227 void
228 init_final (const char *filename ATTRIBUTE_UNUSED)
229 {
230   app_on = 0;
231   final_sequence = 0;
232 
233 #ifdef ASSEMBLER_DIALECT
234   dialect_number = ASSEMBLER_DIALECT;
235 #endif
236 }
237 
238 /* Default target function prologue and epilogue assembler output.
239 
240    If not overridden for epilogue code, then the function body itself
241    contains return instructions wherever needed.  */
242 void
243 default_function_pro_epilogue (FILE *)
244 {
245 }
246 
247 void
248 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED,
249 					 tree decl ATTRIBUTE_UNUSED,
250 					 bool new_is_cold ATTRIBUTE_UNUSED)
251 {
252 }
253 
254 /* Default target hook that outputs nothing to a stream.  */
255 void
256 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
257 {
258 }
259 
260 /* Enable APP processing of subsequent output.
261    Used before the output from an `asm' statement.  */
262 
263 void
264 app_enable (void)
265 {
266   if (! app_on)
267     {
268       fputs (ASM_APP_ON, asm_out_file);
269       app_on = 1;
270     }
271 }
272 
273 /* Disable APP processing of subsequent output.
274    Called from varasm.c before most kinds of output.  */
275 
276 void
277 app_disable (void)
278 {
279   if (app_on)
280     {
281       fputs (ASM_APP_OFF, asm_out_file);
282       app_on = 0;
283     }
284 }
285 
286 /* Return the number of slots filled in the current
287    delayed branch sequence (we don't count the insn needing the
288    delay slot).   Zero if not in a delayed branch sequence.  */
289 
290 int
291 dbr_sequence_length (void)
292 {
293   if (final_sequence != 0)
294     return XVECLEN (final_sequence, 0) - 1;
295   else
296     return 0;
297 }
298 
299 /* The next two pages contain routines used to compute the length of an insn
300    and to shorten branches.  */
301 
302 /* Arrays for insn lengths, and addresses.  The latter is referenced by
303    `insn_current_length'.  */
304 
305 static int *insn_lengths;
306 
307 vec<int> insn_addresses_;
308 
309 /* Max uid for which the above arrays are valid.  */
310 static int insn_lengths_max_uid;
311 
312 /* Address of insn being processed.  Used by `insn_current_length'.  */
313 int insn_current_address;
314 
315 /* Address of insn being processed in previous iteration.  */
316 int insn_last_address;
317 
318 /* known invariant alignment of insn being processed.  */
319 int insn_current_align;
320 
321 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
322    gives the next following alignment insn that increases the known
323    alignment, or NULL_RTX if there is no such insn.
324    For any alignment obtained this way, we can again index uid_align with
325    its uid to obtain the next following align that in turn increases the
326    alignment, till we reach NULL_RTX; the sequence obtained this way
327    for each insn we'll call the alignment chain of this insn in the following
328    comments.  */
329 
330 struct label_alignment
331 {
332   short alignment;
333   short max_skip;
334 };
335 
336 static rtx *uid_align;
337 static int *uid_shuid;
338 static struct label_alignment *label_align;
339 
340 /* Indicate that branch shortening hasn't yet been done.  */
341 
342 void
343 init_insn_lengths (void)
344 {
345   if (uid_shuid)
346     {
347       free (uid_shuid);
348       uid_shuid = 0;
349     }
350   if (insn_lengths)
351     {
352       free (insn_lengths);
353       insn_lengths = 0;
354       insn_lengths_max_uid = 0;
355     }
356   if (HAVE_ATTR_length)
357     INSN_ADDRESSES_FREE ();
358   if (uid_align)
359     {
360       free (uid_align);
361       uid_align = 0;
362     }
363 }
364 
365 /* Obtain the current length of an insn.  If branch shortening has been done,
366    get its actual length.  Otherwise, use FALLBACK_FN to calculate the
367    length.  */
368 static int
369 get_attr_length_1 (rtx_insn *insn, int (*fallback_fn) (rtx_insn *))
370 {
371   rtx body;
372   int i;
373   int length = 0;
374 
375   if (!HAVE_ATTR_length)
376     return 0;
377 
378   if (insn_lengths_max_uid > INSN_UID (insn))
379     return insn_lengths[INSN_UID (insn)];
380   else
381     switch (GET_CODE (insn))
382       {
383       case NOTE:
384       case BARRIER:
385       case CODE_LABEL:
386       case DEBUG_INSN:
387 	return 0;
388 
389       case CALL_INSN:
390       case JUMP_INSN:
391 	length = fallback_fn (insn);
392 	break;
393 
394       case INSN:
395 	body = PATTERN (insn);
396 	if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
397 	  return 0;
398 
399 	else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
400 	  length = asm_insn_count (body) * fallback_fn (insn);
401 	else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
402 	  for (i = 0; i < seq->len (); i++)
403 	    length += get_attr_length_1 (seq->insn (i), fallback_fn);
404 	else
405 	  length = fallback_fn (insn);
406 	break;
407 
408       default:
409 	break;
410       }
411 
412 #ifdef ADJUST_INSN_LENGTH
413   ADJUST_INSN_LENGTH (insn, length);
414 #endif
415   return length;
416 }
417 
418 /* Obtain the current length of an insn.  If branch shortening has been done,
419    get its actual length.  Otherwise, get its maximum length.  */
420 int
421 get_attr_length (rtx_insn *insn)
422 {
423   return get_attr_length_1 (insn, insn_default_length);
424 }
425 
426 /* Obtain the current length of an insn.  If branch shortening has been done,
427    get its actual length.  Otherwise, get its minimum length.  */
428 int
429 get_attr_min_length (rtx_insn *insn)
430 {
431   return get_attr_length_1 (insn, insn_min_length);
432 }
433 
434 /* Code to handle alignment inside shorten_branches.  */
435 
436 /* Here is an explanation how the algorithm in align_fuzz can give
437    proper results:
438 
439    Call a sequence of instructions beginning with alignment point X
440    and continuing until the next alignment point `block X'.  When `X'
441    is used in an expression, it means the alignment value of the
442    alignment point.
443 
444    Call the distance between the start of the first insn of block X, and
445    the end of the last insn of block X `IX', for the `inner size of X'.
446    This is clearly the sum of the instruction lengths.
447 
448    Likewise with the next alignment-delimited block following X, which we
449    shall call block Y.
450 
451    Call the distance between the start of the first insn of block X, and
452    the start of the first insn of block Y `OX', for the `outer size of X'.
453 
454    The estimated padding is then OX - IX.
455 
456    OX can be safely estimated as
457 
458            if (X >= Y)
459                    OX = round_up(IX, Y)
460            else
461                    OX = round_up(IX, X) + Y - X
462 
463    Clearly est(IX) >= real(IX), because that only depends on the
464    instruction lengths, and those being overestimated is a given.
465 
466    Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
467    we needn't worry about that when thinking about OX.
468 
469    When X >= Y, the alignment provided by Y adds no uncertainty factor
470    for branch ranges starting before X, so we can just round what we have.
471    But when X < Y, we don't know anything about the, so to speak,
472    `middle bits', so we have to assume the worst when aligning up from an
473    address mod X to one mod Y, which is Y - X.  */
474 
475 #ifndef LABEL_ALIGN
476 #define LABEL_ALIGN(LABEL) align_labels_log
477 #endif
478 
479 #ifndef LOOP_ALIGN
480 #define LOOP_ALIGN(LABEL) align_loops_log
481 #endif
482 
483 #ifndef LABEL_ALIGN_AFTER_BARRIER
484 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
485 #endif
486 
487 #ifndef JUMP_ALIGN
488 #define JUMP_ALIGN(LABEL) align_jumps_log
489 #endif
490 
491 int
492 default_label_align_after_barrier_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
493 {
494   return 0;
495 }
496 
497 int
498 default_loop_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
499 {
500   return align_loops_max_skip;
501 }
502 
503 int
504 default_label_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
505 {
506   return align_labels_max_skip;
507 }
508 
509 int
510 default_jump_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
511 {
512   return align_jumps_max_skip;
513 }
514 
515 #ifndef ADDR_VEC_ALIGN
516 static int
517 final_addr_vec_align (rtx_jump_table_data *addr_vec)
518 {
519   int align = GET_MODE_SIZE (addr_vec->get_data_mode ());
520 
521   if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
522     align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
523   return exact_log2 (align);
524 
525 }
526 
527 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
528 #endif
529 
530 #ifndef INSN_LENGTH_ALIGNMENT
531 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
532 #endif
533 
534 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
535 
536 static int min_labelno, max_labelno;
537 
538 #define LABEL_TO_ALIGNMENT(LABEL) \
539   (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
540 
541 #define LABEL_TO_MAX_SKIP(LABEL) \
542   (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
543 
544 /* For the benefit of port specific code do this also as a function.  */
545 
546 int
547 label_to_alignment (rtx label)
548 {
549   if (CODE_LABEL_NUMBER (label) <= max_labelno)
550     return LABEL_TO_ALIGNMENT (label);
551   return 0;
552 }
553 
554 int
555 label_to_max_skip (rtx label)
556 {
557   if (CODE_LABEL_NUMBER (label) <= max_labelno)
558     return LABEL_TO_MAX_SKIP (label);
559   return 0;
560 }
561 
562 /* The differences in addresses
563    between a branch and its target might grow or shrink depending on
564    the alignment the start insn of the range (the branch for a forward
565    branch or the label for a backward branch) starts out on; if these
566    differences are used naively, they can even oscillate infinitely.
567    We therefore want to compute a 'worst case' address difference that
568    is independent of the alignment the start insn of the range end
569    up on, and that is at least as large as the actual difference.
570    The function align_fuzz calculates the amount we have to add to the
571    naively computed difference, by traversing the part of the alignment
572    chain of the start insn of the range that is in front of the end insn
573    of the range, and considering for each alignment the maximum amount
574    that it might contribute to a size increase.
575 
576    For casesi tables, we also want to know worst case minimum amounts of
577    address difference, in case a machine description wants to introduce
578    some common offset that is added to all offsets in a table.
579    For this purpose, align_fuzz with a growth argument of 0 computes the
580    appropriate adjustment.  */
581 
582 /* Compute the maximum delta by which the difference of the addresses of
583    START and END might grow / shrink due to a different address for start
584    which changes the size of alignment insns between START and END.
585    KNOWN_ALIGN_LOG is the alignment known for START.
586    GROWTH should be ~0 if the objective is to compute potential code size
587    increase, and 0 if the objective is to compute potential shrink.
588    The return value is undefined for any other value of GROWTH.  */
589 
590 static int
591 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
592 {
593   int uid = INSN_UID (start);
594   rtx align_label;
595   int known_align = 1 << known_align_log;
596   int end_shuid = INSN_SHUID (end);
597   int fuzz = 0;
598 
599   for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
600     {
601       int align_addr, new_align;
602 
603       uid = INSN_UID (align_label);
604       align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
605       if (uid_shuid[uid] > end_shuid)
606 	break;
607       known_align_log = LABEL_TO_ALIGNMENT (align_label);
608       new_align = 1 << known_align_log;
609       if (new_align < known_align)
610 	continue;
611       fuzz += (-align_addr ^ growth) & (new_align - known_align);
612       known_align = new_align;
613     }
614   return fuzz;
615 }
616 
617 /* Compute a worst-case reference address of a branch so that it
618    can be safely used in the presence of aligned labels.  Since the
619    size of the branch itself is unknown, the size of the branch is
620    not included in the range.  I.e. for a forward branch, the reference
621    address is the end address of the branch as known from the previous
622    branch shortening pass, minus a value to account for possible size
623    increase due to alignment.  For a backward branch, it is the start
624    address of the branch as known from the current pass, plus a value
625    to account for possible size increase due to alignment.
626    NB.: Therefore, the maximum offset allowed for backward branches needs
627    to exclude the branch size.  */
628 
629 int
630 insn_current_reference_address (rtx_insn *branch)
631 {
632   rtx dest;
633   int seq_uid;
634 
635   if (! INSN_ADDRESSES_SET_P ())
636     return 0;
637 
638   rtx_insn *seq = NEXT_INSN (PREV_INSN (branch));
639   seq_uid = INSN_UID (seq);
640   if (!JUMP_P (branch))
641     /* This can happen for example on the PA; the objective is to know the
642        offset to address something in front of the start of the function.
643        Thus, we can treat it like a backward branch.
644        We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
645        any alignment we'd encounter, so we skip the call to align_fuzz.  */
646     return insn_current_address;
647   dest = JUMP_LABEL (branch);
648 
649   /* BRANCH has no proper alignment chain set, so use SEQ.
650      BRANCH also has no INSN_SHUID.  */
651   if (INSN_SHUID (seq) < INSN_SHUID (dest))
652     {
653       /* Forward branch.  */
654       return (insn_last_address + insn_lengths[seq_uid]
655 	      - align_fuzz (seq, dest, length_unit_log, ~0));
656     }
657   else
658     {
659       /* Backward branch.  */
660       return (insn_current_address
661 	      + align_fuzz (dest, seq, length_unit_log, ~0));
662     }
663 }
664 
665 /* Compute branch alignments based on CFG profile.  */
666 
667 unsigned int
668 compute_alignments (void)
669 {
670   int log, max_skip, max_log;
671   basic_block bb;
672 
673   if (label_align)
674     {
675       free (label_align);
676       label_align = 0;
677     }
678 
679   max_labelno = max_label_num ();
680   min_labelno = get_first_label_num ();
681   label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
682 
683   /* If not optimizing or optimizing for size, don't assign any alignments.  */
684   if (! optimize || optimize_function_for_size_p (cfun))
685     return 0;
686 
687   if (dump_file)
688     {
689       dump_reg_info (dump_file);
690       dump_flow_info (dump_file, TDF_DETAILS);
691       flow_loops_dump (dump_file, NULL, 1);
692     }
693   loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
694   profile_count count_threshold = cfun->cfg->count_max.apply_scale
695 		 (1, PARAM_VALUE (PARAM_ALIGN_THRESHOLD));
696 
697   if (dump_file)
698     {
699       fprintf (dump_file, "count_max: ");
700       cfun->cfg->count_max.dump (dump_file);
701       fprintf (dump_file, "\n");
702     }
703   FOR_EACH_BB_FN (bb, cfun)
704     {
705       rtx_insn *label = BB_HEAD (bb);
706       bool has_fallthru = 0;
707       edge e;
708       edge_iterator ei;
709 
710       if (!LABEL_P (label)
711 	  || optimize_bb_for_size_p (bb))
712 	{
713 	  if (dump_file)
714 	    fprintf (dump_file,
715 		     "BB %4i loop %2i loop_depth %2i skipped.\n",
716 		     bb->index,
717 		     bb->loop_father->num,
718 		     bb_loop_depth (bb));
719 	  continue;
720 	}
721       max_log = LABEL_ALIGN (label);
722       max_skip = targetm.asm_out.label_align_max_skip (label);
723       profile_count fallthru_count = profile_count::zero ();
724       profile_count branch_count = profile_count::zero ();
725 
726       FOR_EACH_EDGE (e, ei, bb->preds)
727 	{
728 	  if (e->flags & EDGE_FALLTHRU)
729 	    has_fallthru = 1, fallthru_count += e->count ();
730 	  else
731 	    branch_count += e->count ();
732 	}
733       if (dump_file)
734 	{
735 	  fprintf (dump_file, "BB %4i loop %2i loop_depth"
736 		   " %2i fall ",
737 		   bb->index, bb->loop_father->num,
738 		   bb_loop_depth (bb));
739 	  fallthru_count.dump (dump_file);
740 	  fprintf (dump_file, " branch ");
741 	  branch_count.dump (dump_file);
742 	  if (!bb->loop_father->inner && bb->loop_father->num)
743 	    fprintf (dump_file, " inner_loop");
744 	  if (bb->loop_father->header == bb)
745 	    fprintf (dump_file, " loop_header");
746 	  fprintf (dump_file, "\n");
747 	}
748       if (!fallthru_count.initialized_p () || !branch_count.initialized_p ())
749 	continue;
750 
751       /* There are two purposes to align block with no fallthru incoming edge:
752 	 1) to avoid fetch stalls when branch destination is near cache boundary
753 	 2) to improve cache efficiency in case the previous block is not executed
754 	    (so it does not need to be in the cache).
755 
756 	 We to catch first case, we align frequently executed blocks.
757 	 To catch the second, we align blocks that are executed more frequently
758 	 than the predecessor and the predecessor is likely to not be executed
759 	 when function is called.  */
760 
761       if (!has_fallthru
762 	  && (branch_count > count_threshold
763 	      || (bb->count > bb->prev_bb->count.apply_scale (10, 1)
764 		  && (bb->prev_bb->count
765 		      <= ENTRY_BLOCK_PTR_FOR_FN (cfun)
766 			   ->count.apply_scale (1, 2)))))
767 	{
768 	  log = JUMP_ALIGN (label);
769 	  if (dump_file)
770 	    fprintf (dump_file, "  jump alignment added.\n");
771 	  if (max_log < log)
772 	    {
773 	      max_log = log;
774 	      max_skip = targetm.asm_out.jump_align_max_skip (label);
775 	    }
776 	}
777       /* In case block is frequent and reached mostly by non-fallthru edge,
778 	 align it.  It is most likely a first block of loop.  */
779       if (has_fallthru
780 	  && !(single_succ_p (bb)
781 	       && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
782 	  && optimize_bb_for_speed_p (bb)
783 	  && branch_count + fallthru_count > count_threshold
784 	  && (branch_count
785 	      > fallthru_count.apply_scale
786 		    (PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS), 1)))
787 	{
788 	  log = LOOP_ALIGN (label);
789 	  if (dump_file)
790 	    fprintf (dump_file, "  internal loop alignment added.\n");
791 	  if (max_log < log)
792 	    {
793 	      max_log = log;
794 	      max_skip = targetm.asm_out.loop_align_max_skip (label);
795 	    }
796 	}
797       LABEL_TO_ALIGNMENT (label) = max_log;
798       LABEL_TO_MAX_SKIP (label) = max_skip;
799     }
800 
801   loop_optimizer_finalize ();
802   free_dominance_info (CDI_DOMINATORS);
803   return 0;
804 }
805 
806 /* Grow the LABEL_ALIGN array after new labels are created.  */
807 
808 static void
809 grow_label_align (void)
810 {
811   int old = max_labelno;
812   int n_labels;
813   int n_old_labels;
814 
815   max_labelno = max_label_num ();
816 
817   n_labels = max_labelno - min_labelno + 1;
818   n_old_labels = old - min_labelno + 1;
819 
820   label_align = XRESIZEVEC (struct label_alignment, label_align, n_labels);
821 
822   /* Range of labels grows monotonically in the function.  Failing here
823      means that the initialization of array got lost.  */
824   gcc_assert (n_old_labels <= n_labels);
825 
826   memset (label_align + n_old_labels, 0,
827           (n_labels - n_old_labels) * sizeof (struct label_alignment));
828 }
829 
830 /* Update the already computed alignment information.  LABEL_PAIRS is a vector
831    made up of pairs of labels for which the alignment information of the first
832    element will be copied from that of the second element.  */
833 
834 void
835 update_alignments (vec<rtx> &label_pairs)
836 {
837   unsigned int i = 0;
838   rtx iter, label = NULL_RTX;
839 
840   if (max_labelno != max_label_num ())
841     grow_label_align ();
842 
843   FOR_EACH_VEC_ELT (label_pairs, i, iter)
844     if (i & 1)
845       {
846 	LABEL_TO_ALIGNMENT (label) = LABEL_TO_ALIGNMENT (iter);
847 	LABEL_TO_MAX_SKIP (label) = LABEL_TO_MAX_SKIP (iter);
848       }
849     else
850       label = iter;
851 }
852 
853 namespace {
854 
855 const pass_data pass_data_compute_alignments =
856 {
857   RTL_PASS, /* type */
858   "alignments", /* name */
859   OPTGROUP_NONE, /* optinfo_flags */
860   TV_NONE, /* tv_id */
861   0, /* properties_required */
862   0, /* properties_provided */
863   0, /* properties_destroyed */
864   0, /* todo_flags_start */
865   0, /* todo_flags_finish */
866 };
867 
868 class pass_compute_alignments : public rtl_opt_pass
869 {
870 public:
871   pass_compute_alignments (gcc::context *ctxt)
872     : rtl_opt_pass (pass_data_compute_alignments, ctxt)
873   {}
874 
875   /* opt_pass methods: */
876   virtual unsigned int execute (function *) { return compute_alignments (); }
877 
878 }; // class pass_compute_alignments
879 
880 } // anon namespace
881 
882 rtl_opt_pass *
883 make_pass_compute_alignments (gcc::context *ctxt)
884 {
885   return new pass_compute_alignments (ctxt);
886 }
887 
888 
889 /* Make a pass over all insns and compute their actual lengths by shortening
890    any branches of variable length if possible.  */
891 
892 /* shorten_branches might be called multiple times:  for example, the SH
893    port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
894    In order to do this, it needs proper length information, which it obtains
895    by calling shorten_branches.  This cannot be collapsed with
896    shorten_branches itself into a single pass unless we also want to integrate
897    reorg.c, since the branch splitting exposes new instructions with delay
898    slots.  */
899 
900 void
901 shorten_branches (rtx_insn *first)
902 {
903   rtx_insn *insn;
904   int max_uid;
905   int i;
906   int max_log;
907   int max_skip;
908 #define MAX_CODE_ALIGN 16
909   rtx_insn *seq;
910   int something_changed = 1;
911   char *varying_length;
912   rtx body;
913   int uid;
914   rtx align_tab[MAX_CODE_ALIGN + 1];
915 
916   /* Compute maximum UID and allocate label_align / uid_shuid.  */
917   max_uid = get_max_uid ();
918 
919   /* Free uid_shuid before reallocating it.  */
920   free (uid_shuid);
921 
922   uid_shuid = XNEWVEC (int, max_uid);
923 
924   if (max_labelno != max_label_num ())
925     grow_label_align ();
926 
927   /* Initialize label_align and set up uid_shuid to be strictly
928      monotonically rising with insn order.  */
929   /* We use max_log here to keep track of the maximum alignment we want to
930      impose on the next CODE_LABEL (or the current one if we are processing
931      the CODE_LABEL itself).  */
932 
933   max_log = 0;
934   max_skip = 0;
935 
936   for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
937     {
938       int log;
939 
940       INSN_SHUID (insn) = i++;
941       if (INSN_P (insn))
942 	continue;
943 
944       if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
945 	{
946 	  /* Merge in alignments computed by compute_alignments.  */
947 	  log = LABEL_TO_ALIGNMENT (label);
948 	  if (max_log < log)
949 	    {
950 	      max_log = log;
951 	      max_skip = LABEL_TO_MAX_SKIP (label);
952 	    }
953 
954 	  rtx_jump_table_data *table = jump_table_for_label (label);
955 	  if (!table)
956 	    {
957 	      log = LABEL_ALIGN (label);
958 	      if (max_log < log)
959 		{
960 		  max_log = log;
961 		  max_skip = targetm.asm_out.label_align_max_skip (label);
962 		}
963 	    }
964 	  /* ADDR_VECs only take room if read-only data goes into the text
965 	     section.  */
966 	  if ((JUMP_TABLES_IN_TEXT_SECTION
967 	       || readonly_data_section == text_section)
968 	      && table)
969 	    {
970 	      log = ADDR_VEC_ALIGN (table);
971 	      if (max_log < log)
972 		{
973 		  max_log = log;
974 		  max_skip = targetm.asm_out.label_align_max_skip (label);
975 		}
976 	    }
977 	  LABEL_TO_ALIGNMENT (label) = max_log;
978 	  LABEL_TO_MAX_SKIP (label) = max_skip;
979 	  max_log = 0;
980 	  max_skip = 0;
981 	}
982       else if (BARRIER_P (insn))
983 	{
984 	  rtx_insn *label;
985 
986 	  for (label = insn; label && ! INSN_P (label);
987 	       label = NEXT_INSN (label))
988 	    if (LABEL_P (label))
989 	      {
990 		log = LABEL_ALIGN_AFTER_BARRIER (insn);
991 		if (max_log < log)
992 		  {
993 		    max_log = log;
994 		    max_skip = targetm.asm_out.label_align_after_barrier_max_skip (label);
995 		  }
996 		break;
997 	      }
998 	}
999     }
1000   if (!HAVE_ATTR_length)
1001     return;
1002 
1003   /* Allocate the rest of the arrays.  */
1004   insn_lengths = XNEWVEC (int, max_uid);
1005   insn_lengths_max_uid = max_uid;
1006   /* Syntax errors can lead to labels being outside of the main insn stream.
1007      Initialize insn_addresses, so that we get reproducible results.  */
1008   INSN_ADDRESSES_ALLOC (max_uid);
1009 
1010   varying_length = XCNEWVEC (char, max_uid);
1011 
1012   /* Initialize uid_align.  We scan instructions
1013      from end to start, and keep in align_tab[n] the last seen insn
1014      that does an alignment of at least n+1, i.e. the successor
1015      in the alignment chain for an insn that does / has a known
1016      alignment of n.  */
1017   uid_align = XCNEWVEC (rtx, max_uid);
1018 
1019   for (i = MAX_CODE_ALIGN + 1; --i >= 0;)
1020     align_tab[i] = NULL_RTX;
1021   seq = get_last_insn ();
1022   for (; seq; seq = PREV_INSN (seq))
1023     {
1024       int uid = INSN_UID (seq);
1025       int log;
1026       log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
1027       uid_align[uid] = align_tab[0];
1028       if (log)
1029 	{
1030 	  /* Found an alignment label.  */
1031 	  uid_align[uid] = align_tab[log];
1032 	  for (i = log - 1; i >= 0; i--)
1033 	    align_tab[i] = seq;
1034 	}
1035     }
1036 
1037   /* When optimizing, we start assuming minimum length, and keep increasing
1038      lengths as we find the need for this, till nothing changes.
1039      When not optimizing, we start assuming maximum lengths, and
1040      do a single pass to update the lengths.  */
1041   bool increasing = optimize != 0;
1042 
1043 #ifdef CASE_VECTOR_SHORTEN_MODE
1044   if (optimize)
1045     {
1046       /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1047          label fields.  */
1048 
1049       int min_shuid = INSN_SHUID (get_insns ()) - 1;
1050       int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1051       int rel;
1052 
1053       for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1054 	{
1055 	  rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1056 	  int len, i, min, max, insn_shuid;
1057 	  int min_align;
1058 	  addr_diff_vec_flags flags;
1059 
1060 	  if (! JUMP_TABLE_DATA_P (insn)
1061 	      || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1062 	    continue;
1063 	  pat = PATTERN (insn);
1064 	  len = XVECLEN (pat, 1);
1065 	  gcc_assert (len > 0);
1066 	  min_align = MAX_CODE_ALIGN;
1067 	  for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1068 	    {
1069 	      rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1070 	      int shuid = INSN_SHUID (lab);
1071 	      if (shuid < min)
1072 		{
1073 		  min = shuid;
1074 		  min_lab = lab;
1075 		}
1076 	      if (shuid > max)
1077 		{
1078 		  max = shuid;
1079 		  max_lab = lab;
1080 		}
1081 	      if (min_align > LABEL_TO_ALIGNMENT (lab))
1082 		min_align = LABEL_TO_ALIGNMENT (lab);
1083 	    }
1084 	  XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1085 	  XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1086 	  insn_shuid = INSN_SHUID (insn);
1087 	  rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1088 	  memset (&flags, 0, sizeof (flags));
1089 	  flags.min_align = min_align;
1090 	  flags.base_after_vec = rel > insn_shuid;
1091 	  flags.min_after_vec  = min > insn_shuid;
1092 	  flags.max_after_vec  = max > insn_shuid;
1093 	  flags.min_after_base = min > rel;
1094 	  flags.max_after_base = max > rel;
1095 	  ADDR_DIFF_VEC_FLAGS (pat) = flags;
1096 
1097 	  if (increasing)
1098 	    PUT_MODE (pat, CASE_VECTOR_SHORTEN_MODE (0, 0, pat));
1099 	}
1100     }
1101 #endif /* CASE_VECTOR_SHORTEN_MODE */
1102 
1103   /* Compute initial lengths, addresses, and varying flags for each insn.  */
1104   int (*length_fun) (rtx_insn *) = increasing ? insn_min_length : insn_default_length;
1105 
1106   for (insn_current_address = 0, insn = first;
1107        insn != 0;
1108        insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1109     {
1110       uid = INSN_UID (insn);
1111 
1112       insn_lengths[uid] = 0;
1113 
1114       if (LABEL_P (insn))
1115 	{
1116 	  int log = LABEL_TO_ALIGNMENT (insn);
1117 	  if (log)
1118 	    {
1119 	      int align = 1 << log;
1120 	      int new_address = (insn_current_address + align - 1) & -align;
1121 	      insn_lengths[uid] = new_address - insn_current_address;
1122 	    }
1123 	}
1124 
1125       INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1126 
1127       if (NOTE_P (insn) || BARRIER_P (insn)
1128 	  || LABEL_P (insn) || DEBUG_INSN_P (insn))
1129 	continue;
1130       if (insn->deleted ())
1131 	continue;
1132 
1133       body = PATTERN (insn);
1134       if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
1135 	{
1136 	  /* This only takes room if read-only data goes into the text
1137 	     section.  */
1138 	  if (JUMP_TABLES_IN_TEXT_SECTION
1139 	      || readonly_data_section == text_section)
1140 	    insn_lengths[uid] = (XVECLEN (body,
1141 					  GET_CODE (body) == ADDR_DIFF_VEC)
1142 				 * GET_MODE_SIZE (table->get_data_mode ()));
1143 	  /* Alignment is handled by ADDR_VEC_ALIGN.  */
1144 	}
1145       else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1146 	insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1147       else if (rtx_sequence *body_seq = dyn_cast <rtx_sequence *> (body))
1148 	{
1149 	  int i;
1150 	  int const_delay_slots;
1151 	  if (DELAY_SLOTS)
1152 	    const_delay_slots = const_num_delay_slots (body_seq->insn (0));
1153 	  else
1154 	    const_delay_slots = 0;
1155 
1156 	  int (*inner_length_fun) (rtx_insn *)
1157 	    = const_delay_slots ? length_fun : insn_default_length;
1158 	  /* Inside a delay slot sequence, we do not do any branch shortening
1159 	     if the shortening could change the number of delay slots
1160 	     of the branch.  */
1161 	  for (i = 0; i < body_seq->len (); i++)
1162 	    {
1163 	      rtx_insn *inner_insn = body_seq->insn (i);
1164 	      int inner_uid = INSN_UID (inner_insn);
1165 	      int inner_length;
1166 
1167 	      if (GET_CODE (PATTERN (inner_insn)) == ASM_INPUT
1168 		  || asm_noperands (PATTERN (inner_insn)) >= 0)
1169 		inner_length = (asm_insn_count (PATTERN (inner_insn))
1170 				* insn_default_length (inner_insn));
1171 	      else
1172 		inner_length = inner_length_fun (inner_insn);
1173 
1174 	      insn_lengths[inner_uid] = inner_length;
1175 	      if (const_delay_slots)
1176 		{
1177 		  if ((varying_length[inner_uid]
1178 		       = insn_variable_length_p (inner_insn)) != 0)
1179 		    varying_length[uid] = 1;
1180 		  INSN_ADDRESSES (inner_uid) = (insn_current_address
1181 						+ insn_lengths[uid]);
1182 		}
1183 	      else
1184 		varying_length[inner_uid] = 0;
1185 	      insn_lengths[uid] += inner_length;
1186 	    }
1187 	}
1188       else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1189 	{
1190 	  insn_lengths[uid] = length_fun (insn);
1191 	  varying_length[uid] = insn_variable_length_p (insn);
1192 	}
1193 
1194       /* If needed, do any adjustment.  */
1195 #ifdef ADJUST_INSN_LENGTH
1196       ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1197       if (insn_lengths[uid] < 0)
1198 	fatal_insn ("negative insn length", insn);
1199 #endif
1200     }
1201 
1202   /* Now loop over all the insns finding varying length insns.  For each,
1203      get the current insn length.  If it has changed, reflect the change.
1204      When nothing changes for a full pass, we are done.  */
1205 
1206   while (something_changed)
1207     {
1208       something_changed = 0;
1209       insn_current_align = MAX_CODE_ALIGN - 1;
1210       for (insn_current_address = 0, insn = first;
1211 	   insn != 0;
1212 	   insn = NEXT_INSN (insn))
1213 	{
1214 	  int new_length;
1215 #ifdef ADJUST_INSN_LENGTH
1216 	  int tmp_length;
1217 #endif
1218 	  int length_align;
1219 
1220 	  uid = INSN_UID (insn);
1221 
1222 	  if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
1223 	    {
1224 	      int log = LABEL_TO_ALIGNMENT (label);
1225 
1226 #ifdef CASE_VECTOR_SHORTEN_MODE
1227 	      /* If the mode of a following jump table was changed, we
1228 		 may need to update the alignment of this label.  */
1229 
1230 	      if (JUMP_TABLES_IN_TEXT_SECTION
1231 		  || readonly_data_section == text_section)
1232 		{
1233 		  rtx_jump_table_data *table = jump_table_for_label (label);
1234 		  if (table)
1235 		    {
1236 		      int newlog = ADDR_VEC_ALIGN (table);
1237 		      if (newlog != log)
1238 			{
1239 			  log = newlog;
1240 			  LABEL_TO_ALIGNMENT (insn) = log;
1241 			  something_changed = 1;
1242 			}
1243 		    }
1244 		}
1245 #endif
1246 
1247 	      if (log > insn_current_align)
1248 		{
1249 		  int align = 1 << log;
1250 		  int new_address= (insn_current_address + align - 1) & -align;
1251 		  insn_lengths[uid] = new_address - insn_current_address;
1252 		  insn_current_align = log;
1253 		  insn_current_address = new_address;
1254 		}
1255 	      else
1256 		insn_lengths[uid] = 0;
1257 	      INSN_ADDRESSES (uid) = insn_current_address;
1258 	      continue;
1259 	    }
1260 
1261 	  length_align = INSN_LENGTH_ALIGNMENT (insn);
1262 	  if (length_align < insn_current_align)
1263 	    insn_current_align = length_align;
1264 
1265 	  insn_last_address = INSN_ADDRESSES (uid);
1266 	  INSN_ADDRESSES (uid) = insn_current_address;
1267 
1268 #ifdef CASE_VECTOR_SHORTEN_MODE
1269 	  if (optimize
1270 	      && JUMP_TABLE_DATA_P (insn)
1271 	      && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1272 	    {
1273 	      rtx_jump_table_data *table = as_a <rtx_jump_table_data *> (insn);
1274 	      rtx body = PATTERN (insn);
1275 	      int old_length = insn_lengths[uid];
1276 	      rtx_insn *rel_lab =
1277 		safe_as_a <rtx_insn *> (XEXP (XEXP (body, 0), 0));
1278 	      rtx min_lab = XEXP (XEXP (body, 2), 0);
1279 	      rtx max_lab = XEXP (XEXP (body, 3), 0);
1280 	      int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1281 	      int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1282 	      int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1283 	      rtx_insn *prev;
1284 	      int rel_align = 0;
1285 	      addr_diff_vec_flags flags;
1286 	      scalar_int_mode vec_mode;
1287 
1288 	      /* Avoid automatic aggregate initialization.  */
1289 	      flags = ADDR_DIFF_VEC_FLAGS (body);
1290 
1291 	      /* Try to find a known alignment for rel_lab.  */
1292 	      for (prev = rel_lab;
1293 		   prev
1294 		   && ! insn_lengths[INSN_UID (prev)]
1295 		   && ! (varying_length[INSN_UID (prev)] & 1);
1296 		   prev = PREV_INSN (prev))
1297 		if (varying_length[INSN_UID (prev)] & 2)
1298 		  {
1299 		    rel_align = LABEL_TO_ALIGNMENT (prev);
1300 		    break;
1301 		  }
1302 
1303 	      /* See the comment on addr_diff_vec_flags in rtl.h for the
1304 		 meaning of the flags values.  base: REL_LAB   vec: INSN  */
1305 	      /* Anything after INSN has still addresses from the last
1306 		 pass; adjust these so that they reflect our current
1307 		 estimate for this pass.  */
1308 	      if (flags.base_after_vec)
1309 		rel_addr += insn_current_address - insn_last_address;
1310 	      if (flags.min_after_vec)
1311 		min_addr += insn_current_address - insn_last_address;
1312 	      if (flags.max_after_vec)
1313 		max_addr += insn_current_address - insn_last_address;
1314 	      /* We want to know the worst case, i.e. lowest possible value
1315 		 for the offset of MIN_LAB.  If MIN_LAB is after REL_LAB,
1316 		 its offset is positive, and we have to be wary of code shrink;
1317 		 otherwise, it is negative, and we have to be vary of code
1318 		 size increase.  */
1319 	      if (flags.min_after_base)
1320 		{
1321 		  /* If INSN is between REL_LAB and MIN_LAB, the size
1322 		     changes we are about to make can change the alignment
1323 		     within the observed offset, therefore we have to break
1324 		     it up into two parts that are independent.  */
1325 		  if (! flags.base_after_vec && flags.min_after_vec)
1326 		    {
1327 		      min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1328 		      min_addr -= align_fuzz (insn, min_lab, 0, 0);
1329 		    }
1330 		  else
1331 		    min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1332 		}
1333 	      else
1334 		{
1335 		  if (flags.base_after_vec && ! flags.min_after_vec)
1336 		    {
1337 		      min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1338 		      min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1339 		    }
1340 		  else
1341 		    min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1342 		}
1343 	      /* Likewise, determine the highest lowest possible value
1344 		 for the offset of MAX_LAB.  */
1345 	      if (flags.max_after_base)
1346 		{
1347 		  if (! flags.base_after_vec && flags.max_after_vec)
1348 		    {
1349 		      max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1350 		      max_addr += align_fuzz (insn, max_lab, 0, ~0);
1351 		    }
1352 		  else
1353 		    max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1354 		}
1355 	      else
1356 		{
1357 		  if (flags.base_after_vec && ! flags.max_after_vec)
1358 		    {
1359 		      max_addr += align_fuzz (max_lab, insn, 0, 0);
1360 		      max_addr += align_fuzz (insn, rel_lab, 0, 0);
1361 		    }
1362 		  else
1363 		    max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1364 		}
1365 	      vec_mode = CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1366 						   max_addr - rel_addr, body);
1367 	      if (!increasing
1368 		  || (GET_MODE_SIZE (vec_mode)
1369 		      >= GET_MODE_SIZE (table->get_data_mode ())))
1370 		PUT_MODE (body, vec_mode);
1371 	      if (JUMP_TABLES_IN_TEXT_SECTION
1372 		  || readonly_data_section == text_section)
1373 		{
1374 		  insn_lengths[uid]
1375 		    = (XVECLEN (body, 1)
1376 		       * GET_MODE_SIZE (table->get_data_mode ()));
1377 		  insn_current_address += insn_lengths[uid];
1378 		  if (insn_lengths[uid] != old_length)
1379 		    something_changed = 1;
1380 		}
1381 
1382 	      continue;
1383 	    }
1384 #endif /* CASE_VECTOR_SHORTEN_MODE */
1385 
1386 	  if (! (varying_length[uid]))
1387 	    {
1388 	      if (NONJUMP_INSN_P (insn)
1389 		  && GET_CODE (PATTERN (insn)) == SEQUENCE)
1390 		{
1391 		  int i;
1392 
1393 		  body = PATTERN (insn);
1394 		  for (i = 0; i < XVECLEN (body, 0); i++)
1395 		    {
1396 		      rtx inner_insn = XVECEXP (body, 0, i);
1397 		      int inner_uid = INSN_UID (inner_insn);
1398 
1399 		      INSN_ADDRESSES (inner_uid) = insn_current_address;
1400 
1401 		      insn_current_address += insn_lengths[inner_uid];
1402 		    }
1403 		}
1404 	      else
1405 		insn_current_address += insn_lengths[uid];
1406 
1407 	      continue;
1408 	    }
1409 
1410 	  if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1411 	    {
1412 	      rtx_sequence *seqn = as_a <rtx_sequence *> (PATTERN (insn));
1413 	      int i;
1414 
1415 	      body = PATTERN (insn);
1416 	      new_length = 0;
1417 	      for (i = 0; i < seqn->len (); i++)
1418 		{
1419 		  rtx_insn *inner_insn = seqn->insn (i);
1420 		  int inner_uid = INSN_UID (inner_insn);
1421 		  int inner_length;
1422 
1423 		  INSN_ADDRESSES (inner_uid) = insn_current_address;
1424 
1425 		  /* insn_current_length returns 0 for insns with a
1426 		     non-varying length.  */
1427 		  if (! varying_length[inner_uid])
1428 		    inner_length = insn_lengths[inner_uid];
1429 		  else
1430 		    inner_length = insn_current_length (inner_insn);
1431 
1432 		  if (inner_length != insn_lengths[inner_uid])
1433 		    {
1434 		      if (!increasing || inner_length > insn_lengths[inner_uid])
1435 			{
1436 			  insn_lengths[inner_uid] = inner_length;
1437 			  something_changed = 1;
1438 			}
1439 		      else
1440 			inner_length = insn_lengths[inner_uid];
1441 		    }
1442 		  insn_current_address += inner_length;
1443 		  new_length += inner_length;
1444 		}
1445 	    }
1446 	  else
1447 	    {
1448 	      new_length = insn_current_length (insn);
1449 	      insn_current_address += new_length;
1450 	    }
1451 
1452 #ifdef ADJUST_INSN_LENGTH
1453 	  /* If needed, do any adjustment.  */
1454 	  tmp_length = new_length;
1455 	  ADJUST_INSN_LENGTH (insn, new_length);
1456 	  insn_current_address += (new_length - tmp_length);
1457 #endif
1458 
1459 	  if (new_length != insn_lengths[uid]
1460 	      && (!increasing || new_length > insn_lengths[uid]))
1461 	    {
1462 	      insn_lengths[uid] = new_length;
1463 	      something_changed = 1;
1464 	    }
1465 	  else
1466 	    insn_current_address += insn_lengths[uid] - new_length;
1467 	}
1468       /* For a non-optimizing compile, do only a single pass.  */
1469       if (!increasing)
1470 	break;
1471     }
1472   crtl->max_insn_address = insn_current_address;
1473   free (varying_length);
1474 }
1475 
1476 /* Given the body of an INSN known to be generated by an ASM statement, return
1477    the number of machine instructions likely to be generated for this insn.
1478    This is used to compute its length.  */
1479 
1480 static int
1481 asm_insn_count (rtx body)
1482 {
1483   const char *templ;
1484 
1485   if (GET_CODE (body) == ASM_INPUT)
1486     templ = XSTR (body, 0);
1487   else
1488     templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1489 
1490   return asm_str_count (templ);
1491 }
1492 
1493 /* Return the number of machine instructions likely to be generated for the
1494    inline-asm template. */
1495 int
1496 asm_str_count (const char *templ)
1497 {
1498   int count = 1;
1499 
1500   if (!*templ)
1501     return 0;
1502 
1503   for (; *templ; templ++)
1504     if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1505 	|| *templ == '\n')
1506       count++;
1507 
1508   return count;
1509 }
1510 
1511 /* Return true if DWARF2 debug info can be emitted for DECL.  */
1512 
1513 static bool
1514 dwarf2_debug_info_emitted_p (tree decl)
1515 {
1516   if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1517     return false;
1518 
1519   if (DECL_IGNORED_P (decl))
1520     return false;
1521 
1522   return true;
1523 }
1524 
1525 /* Return scope resulting from combination of S1 and S2.  */
1526 static tree
1527 choose_inner_scope (tree s1, tree s2)
1528 {
1529    if (!s1)
1530      return s2;
1531    if (!s2)
1532      return s1;
1533    if (BLOCK_NUMBER (s1) > BLOCK_NUMBER (s2))
1534      return s1;
1535    return s2;
1536 }
1537 
1538 /* Emit lexical block notes needed to change scope from S1 to S2.  */
1539 
1540 static void
1541 change_scope (rtx_insn *orig_insn, tree s1, tree s2)
1542 {
1543   rtx_insn *insn = orig_insn;
1544   tree com = NULL_TREE;
1545   tree ts1 = s1, ts2 = s2;
1546   tree s;
1547 
1548   while (ts1 != ts2)
1549     {
1550       gcc_assert (ts1 && ts2);
1551       if (BLOCK_NUMBER (ts1) > BLOCK_NUMBER (ts2))
1552 	ts1 = BLOCK_SUPERCONTEXT (ts1);
1553       else if (BLOCK_NUMBER (ts1) < BLOCK_NUMBER (ts2))
1554 	ts2 = BLOCK_SUPERCONTEXT (ts2);
1555       else
1556 	{
1557 	  ts1 = BLOCK_SUPERCONTEXT (ts1);
1558 	  ts2 = BLOCK_SUPERCONTEXT (ts2);
1559 	}
1560     }
1561   com = ts1;
1562 
1563   /* Close scopes.  */
1564   s = s1;
1565   while (s != com)
1566     {
1567       rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1568       NOTE_BLOCK (note) = s;
1569       s = BLOCK_SUPERCONTEXT (s);
1570     }
1571 
1572   /* Open scopes.  */
1573   s = s2;
1574   while (s != com)
1575     {
1576       insn = emit_note_before (NOTE_INSN_BLOCK_BEG, insn);
1577       NOTE_BLOCK (insn) = s;
1578       s = BLOCK_SUPERCONTEXT (s);
1579     }
1580 }
1581 
1582 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1583    on the scope tree and the newly reordered instructions.  */
1584 
1585 static void
1586 reemit_insn_block_notes (void)
1587 {
1588   tree cur_block = DECL_INITIAL (cfun->decl);
1589   rtx_insn *insn;
1590 
1591   insn = get_insns ();
1592   for (; insn; insn = NEXT_INSN (insn))
1593     {
1594       tree this_block;
1595 
1596       /* Prevent lexical blocks from straddling section boundaries.  */
1597       if (NOTE_P (insn))
1598 	switch (NOTE_KIND (insn))
1599 	  {
1600 	  case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1601 	    {
1602 	      for (tree s = cur_block; s != DECL_INITIAL (cfun->decl);
1603 		   s = BLOCK_SUPERCONTEXT (s))
1604 		{
1605 		  rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1606 		  NOTE_BLOCK (note) = s;
1607 		  note = emit_note_after (NOTE_INSN_BLOCK_BEG, insn);
1608 		  NOTE_BLOCK (note) = s;
1609 		}
1610 	    }
1611 	    break;
1612 
1613 	  case NOTE_INSN_BEGIN_STMT:
1614 	  case NOTE_INSN_INLINE_ENTRY:
1615 	    this_block = LOCATION_BLOCK (NOTE_MARKER_LOCATION (insn));
1616 	    goto set_cur_block_to_this_block;
1617 
1618 	  default:
1619 	    continue;
1620 	}
1621 
1622       if (!active_insn_p (insn))
1623         continue;
1624 
1625       /* Avoid putting scope notes between jump table and its label.  */
1626       if (JUMP_TABLE_DATA_P (insn))
1627 	continue;
1628 
1629       this_block = insn_scope (insn);
1630       /* For sequences compute scope resulting from merging all scopes
1631 	 of instructions nested inside.  */
1632       if (rtx_sequence *body = dyn_cast <rtx_sequence *> (PATTERN (insn)))
1633 	{
1634 	  int i;
1635 
1636 	  this_block = NULL;
1637 	  for (i = 0; i < body->len (); i++)
1638 	    this_block = choose_inner_scope (this_block,
1639 					     insn_scope (body->insn (i)));
1640 	}
1641     set_cur_block_to_this_block:
1642       if (! this_block)
1643 	{
1644 	  if (INSN_LOCATION (insn) == UNKNOWN_LOCATION)
1645 	    continue;
1646 	  else
1647 	    this_block = DECL_INITIAL (cfun->decl);
1648 	}
1649 
1650       if (this_block != cur_block)
1651 	{
1652 	  change_scope (insn, cur_block, this_block);
1653 	  cur_block = this_block;
1654 	}
1655     }
1656 
1657   /* change_scope emits before the insn, not after.  */
1658   rtx_note *note = emit_note (NOTE_INSN_DELETED);
1659   change_scope (note, cur_block, DECL_INITIAL (cfun->decl));
1660   delete_insn (note);
1661 
1662   reorder_blocks ();
1663 }
1664 
1665 static const char *some_local_dynamic_name;
1666 
1667 /* Locate some local-dynamic symbol still in use by this function
1668    so that we can print its name in local-dynamic base patterns.
1669    Return null if there are no local-dynamic references.  */
1670 
1671 const char *
1672 get_some_local_dynamic_name ()
1673 {
1674   subrtx_iterator::array_type array;
1675   rtx_insn *insn;
1676 
1677   if (some_local_dynamic_name)
1678     return some_local_dynamic_name;
1679 
1680   for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1681     if (NONDEBUG_INSN_P (insn))
1682       FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
1683 	{
1684 	  const_rtx x = *iter;
1685 	  if (GET_CODE (x) == SYMBOL_REF)
1686 	    {
1687 	      if (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
1688 		return some_local_dynamic_name = XSTR (x, 0);
1689 	      if (CONSTANT_POOL_ADDRESS_P (x))
1690 		iter.substitute (get_pool_constant (x));
1691 	    }
1692 	}
1693 
1694   return 0;
1695 }
1696 
1697 /* Arrange for us to emit a source location note before any further
1698    real insns or section changes, by setting the SEEN_NEXT_VIEW bit in
1699    *SEEN, as long as we are keeping track of location views.  The bit
1700    indicates we have referenced the next view at the current PC, so we
1701    have to emit it.  This should be called next to the var_location
1702    debug hook.  */
1703 
1704 static inline void
1705 set_next_view_needed (int *seen)
1706 {
1707   if (debug_variable_location_views)
1708     *seen |= SEEN_NEXT_VIEW;
1709 }
1710 
1711 /* Clear the flag in *SEEN indicating we need to emit the next view.
1712    This should be called next to the source_line debug hook.  */
1713 
1714 static inline void
1715 clear_next_view_needed (int *seen)
1716 {
1717   *seen &= ~SEEN_NEXT_VIEW;
1718 }
1719 
1720 /* Test whether we have a pending request to emit the next view in
1721    *SEEN, and emit it if needed, clearing the request bit.  */
1722 
1723 static inline void
1724 maybe_output_next_view (int *seen)
1725 {
1726   if ((*seen & SEEN_NEXT_VIEW) != 0)
1727     {
1728       clear_next_view_needed (seen);
1729       (*debug_hooks->source_line) (last_linenum, last_columnnum,
1730 				   last_filename, last_discriminator,
1731 				   false);
1732     }
1733 }
1734 
1735 /* We want to emit param bindings (before the first begin_stmt) in the
1736    initial view, if we are emitting views.  To that end, we may
1737    consume initial notes in the function, processing them in
1738    final_start_function, before signaling the beginning of the
1739    prologue, rather than in final.
1740 
1741    We don't test whether the DECLs are PARM_DECLs: the assumption is
1742    that there will be a NOTE_INSN_BEGIN_STMT marker before any
1743    non-parameter NOTE_INSN_VAR_LOCATION.  It's ok if the marker is not
1744    there, we'll just have more variable locations bound in the initial
1745    view, which is consistent with their being bound without any code
1746    that would give them a value.  */
1747 
1748 static inline bool
1749 in_initial_view_p (rtx_insn *insn)
1750 {
1751   return (!DECL_IGNORED_P (current_function_decl)
1752 	  && debug_variable_location_views
1753 	  && insn && GET_CODE (insn) == NOTE
1754 	  && (NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
1755 	      || NOTE_KIND (insn) == NOTE_INSN_DELETED));
1756 }
1757 
1758 /* Output assembler code for the start of a function,
1759    and initialize some of the variables in this file
1760    for the new function.  The label for the function and associated
1761    assembler pseudo-ops have already been output in `assemble_start_function'.
1762 
1763    FIRST is the first insn of the rtl for the function being compiled.
1764    FILE is the file to write assembler code to.
1765    SEEN should be initially set to zero, and it may be updated to
1766    indicate we have references to the next location view, that would
1767    require us to emit it at the current PC.
1768    OPTIMIZE_P is nonzero if we should eliminate redundant
1769      test and compare insns.  */
1770 
1771 static void
1772 final_start_function_1 (rtx_insn **firstp, FILE *file, int *seen,
1773 			int optimize_p ATTRIBUTE_UNUSED)
1774 {
1775   block_depth = 0;
1776 
1777   this_is_asm_operands = 0;
1778 
1779   need_profile_function = false;
1780 
1781   last_filename = LOCATION_FILE (prologue_location);
1782   last_linenum = LOCATION_LINE (prologue_location);
1783   last_columnnum = LOCATION_COLUMN (prologue_location);
1784   last_discriminator = discriminator = 0;
1785 
1786   high_block_linenum = high_function_linenum = last_linenum;
1787 
1788   if (flag_sanitize & SANITIZE_ADDRESS)
1789     asan_function_start ();
1790 
1791   rtx_insn *first = *firstp;
1792   if (in_initial_view_p (first))
1793     {
1794       do
1795 	{
1796 	  final_scan_insn (first, file, 0, 0, seen);
1797 	  first = NEXT_INSN (first);
1798 	}
1799       while (in_initial_view_p (first));
1800       *firstp = first;
1801     }
1802 
1803   if (!DECL_IGNORED_P (current_function_decl))
1804     debug_hooks->begin_prologue (last_linenum, last_columnnum,
1805 				 last_filename);
1806 
1807   if (!dwarf2_debug_info_emitted_p (current_function_decl))
1808     dwarf2out_begin_prologue (0, 0, NULL);
1809 
1810 #ifdef LEAF_REG_REMAP
1811   if (crtl->uses_only_leaf_regs)
1812     leaf_renumber_regs (first);
1813 #endif
1814 
1815   /* The Sun386i and perhaps other machines don't work right
1816      if the profiling code comes after the prologue.  */
1817   if (targetm.profile_before_prologue () && crtl->profile)
1818     {
1819       if (targetm.asm_out.function_prologue == default_function_pro_epilogue
1820 	  && targetm.have_prologue ())
1821 	{
1822 	  rtx_insn *insn;
1823 	  for (insn = first; insn; insn = NEXT_INSN (insn))
1824 	    if (!NOTE_P (insn))
1825 	      {
1826 		insn = NULL;
1827 		break;
1828 	      }
1829 	    else if (NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK
1830 		     || NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
1831 	      break;
1832 	    else if (NOTE_KIND (insn) == NOTE_INSN_DELETED
1833 		     || NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
1834 	      continue;
1835 	    else
1836 	      {
1837 		insn = NULL;
1838 		break;
1839 	      }
1840 
1841 	  if (insn)
1842 	    need_profile_function = true;
1843 	  else
1844 	    profile_function (file);
1845 	}
1846       else
1847 	profile_function (file);
1848     }
1849 
1850   /* If debugging, assign block numbers to all of the blocks in this
1851      function.  */
1852   if (write_symbols)
1853     {
1854       reemit_insn_block_notes ();
1855       number_blocks (current_function_decl);
1856       /* We never actually put out begin/end notes for the top-level
1857 	 block in the function.  But, conceptually, that block is
1858 	 always needed.  */
1859       TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1860     }
1861 
1862   HOST_WIDE_INT min_frame_size = constant_lower_bound (get_frame_size ());
1863   if (warn_frame_larger_than
1864       && min_frame_size > frame_larger_than_size)
1865     {
1866       /* Issue a warning */
1867       warning (OPT_Wframe_larger_than_,
1868 	       "the frame size of %wd bytes is larger than %wd bytes",
1869 	       min_frame_size, frame_larger_than_size);
1870     }
1871 
1872   /* First output the function prologue: code to set up the stack frame.  */
1873   targetm.asm_out.function_prologue (file);
1874 
1875   /* If the machine represents the prologue as RTL, the profiling code must
1876      be emitted when NOTE_INSN_PROLOGUE_END is scanned.  */
1877   if (! targetm.have_prologue ())
1878     profile_after_prologue (file);
1879 }
1880 
1881 /* This is an exported final_start_function_1, callable without SEEN.  */
1882 
1883 void
1884 final_start_function (rtx_insn *first, FILE *file,
1885 		      int optimize_p ATTRIBUTE_UNUSED)
1886 {
1887   int seen = 0;
1888   final_start_function_1 (&first, file, &seen, optimize_p);
1889   gcc_assert (seen == 0);
1890 }
1891 
1892 static void
1893 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1894 {
1895   if (!targetm.profile_before_prologue () && crtl->profile)
1896     profile_function (file);
1897 }
1898 
1899 static void
1900 profile_function (FILE *file ATTRIBUTE_UNUSED)
1901 {
1902 #ifndef NO_PROFILE_COUNTERS
1903 # define NO_PROFILE_COUNTERS	0
1904 #endif
1905 #ifdef ASM_OUTPUT_REG_PUSH
1906   rtx sval = NULL, chain = NULL;
1907 
1908   if (cfun->returns_struct)
1909     sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl),
1910 					   true);
1911   if (cfun->static_chain_decl)
1912     chain = targetm.calls.static_chain (current_function_decl, true);
1913 #endif /* ASM_OUTPUT_REG_PUSH */
1914 
1915   if (! NO_PROFILE_COUNTERS)
1916     {
1917       int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1918       switch_to_section (data_section);
1919       ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1920       targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1921       assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1922     }
1923 
1924   switch_to_section (current_function_section ());
1925 
1926 #ifdef ASM_OUTPUT_REG_PUSH
1927   if (sval && REG_P (sval))
1928     ASM_OUTPUT_REG_PUSH (file, REGNO (sval));
1929   if (chain && REG_P (chain))
1930     ASM_OUTPUT_REG_PUSH (file, REGNO (chain));
1931 #endif
1932 
1933   FUNCTION_PROFILER (file, current_function_funcdef_no);
1934 
1935 #ifdef ASM_OUTPUT_REG_PUSH
1936   if (chain && REG_P (chain))
1937     ASM_OUTPUT_REG_POP (file, REGNO (chain));
1938   if (sval && REG_P (sval))
1939     ASM_OUTPUT_REG_POP (file, REGNO (sval));
1940 #endif
1941 }
1942 
1943 /* Output assembler code for the end of a function.
1944    For clarity, args are same as those of `final_start_function'
1945    even though not all of them are needed.  */
1946 
1947 void
1948 final_end_function (void)
1949 {
1950   app_disable ();
1951 
1952   if (!DECL_IGNORED_P (current_function_decl))
1953     debug_hooks->end_function (high_function_linenum);
1954 
1955   /* Finally, output the function epilogue:
1956      code to restore the stack frame and return to the caller.  */
1957   targetm.asm_out.function_epilogue (asm_out_file);
1958 
1959   /* And debug output.  */
1960   if (!DECL_IGNORED_P (current_function_decl))
1961     debug_hooks->end_epilogue (last_linenum, last_filename);
1962 
1963   if (!dwarf2_debug_info_emitted_p (current_function_decl)
1964       && dwarf2out_do_frame ())
1965     dwarf2out_end_epilogue (last_linenum, last_filename);
1966 
1967   some_local_dynamic_name = 0;
1968 }
1969 
1970 
1971 /* Dumper helper for basic block information. FILE is the assembly
1972    output file, and INSN is the instruction being emitted.  */
1973 
1974 static void
1975 dump_basic_block_info (FILE *file, rtx_insn *insn, basic_block *start_to_bb,
1976                        basic_block *end_to_bb, int bb_map_size, int *bb_seqn)
1977 {
1978   basic_block bb;
1979 
1980   if (!flag_debug_asm)
1981     return;
1982 
1983   if (INSN_UID (insn) < bb_map_size
1984       && (bb = start_to_bb[INSN_UID (insn)]) != NULL)
1985     {
1986       edge e;
1987       edge_iterator ei;
1988 
1989       fprintf (file, "%s BLOCK %d", ASM_COMMENT_START, bb->index);
1990       if (bb->count.initialized_p ())
1991 	{
1992           fprintf (file, ", count:");
1993 	  bb->count.dump (file);
1994 	}
1995       fprintf (file, " seq:%d", (*bb_seqn)++);
1996       fprintf (file, "\n%s PRED:", ASM_COMMENT_START);
1997       FOR_EACH_EDGE (e, ei, bb->preds)
1998         {
1999           dump_edge_info (file, e, TDF_DETAILS, 0);
2000         }
2001       fprintf (file, "\n");
2002     }
2003   if (INSN_UID (insn) < bb_map_size
2004       && (bb = end_to_bb[INSN_UID (insn)]) != NULL)
2005     {
2006       edge e;
2007       edge_iterator ei;
2008 
2009       fprintf (asm_out_file, "%s SUCC:", ASM_COMMENT_START);
2010       FOR_EACH_EDGE (e, ei, bb->succs)
2011        {
2012          dump_edge_info (asm_out_file, e, TDF_DETAILS, 1);
2013        }
2014       fprintf (file, "\n");
2015     }
2016 }
2017 
2018 /* Output assembler code for some insns: all or part of a function.
2019    For description of args, see `final_start_function', above.  */
2020 
2021 static void
2022 final_1 (rtx_insn *first, FILE *file, int seen, int optimize_p)
2023 {
2024   rtx_insn *insn, *next;
2025 
2026   /* Used for -dA dump.  */
2027   basic_block *start_to_bb = NULL;
2028   basic_block *end_to_bb = NULL;
2029   int bb_map_size = 0;
2030   int bb_seqn = 0;
2031 
2032   last_ignored_compare = 0;
2033 
2034   if (HAVE_cc0)
2035     for (insn = first; insn; insn = NEXT_INSN (insn))
2036       {
2037 	/* If CC tracking across branches is enabled, record the insn which
2038 	   jumps to each branch only reached from one place.  */
2039 	if (optimize_p && JUMP_P (insn))
2040 	  {
2041 	    rtx lab = JUMP_LABEL (insn);
2042 	    if (lab && LABEL_P (lab) && LABEL_NUSES (lab) == 1)
2043 	      {
2044 		LABEL_REFS (lab) = insn;
2045 	      }
2046 	  }
2047       }
2048 
2049   init_recog ();
2050 
2051   CC_STATUS_INIT;
2052 
2053   if (flag_debug_asm)
2054     {
2055       basic_block bb;
2056 
2057       bb_map_size = get_max_uid () + 1;
2058       start_to_bb = XCNEWVEC (basic_block, bb_map_size);
2059       end_to_bb = XCNEWVEC (basic_block, bb_map_size);
2060 
2061       /* There is no cfg for a thunk.  */
2062       if (!cfun->is_thunk)
2063 	FOR_EACH_BB_REVERSE_FN (bb, cfun)
2064 	  {
2065 	    start_to_bb[INSN_UID (BB_HEAD (bb))] = bb;
2066 	    end_to_bb[INSN_UID (BB_END (bb))] = bb;
2067 	  }
2068     }
2069 
2070   /* Output the insns.  */
2071   for (insn = first; insn;)
2072     {
2073       if (HAVE_ATTR_length)
2074 	{
2075 	  if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
2076 	    {
2077 	      /* This can be triggered by bugs elsewhere in the compiler if
2078 		 new insns are created after init_insn_lengths is called.  */
2079 	      gcc_assert (NOTE_P (insn));
2080 	      insn_current_address = -1;
2081 	    }
2082 	  else
2083 	    insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
2084 	  /* final can be seen as an iteration of shorten_branches that
2085 	     does nothing (since a fixed point has already been reached).  */
2086 	  insn_last_address = insn_current_address;
2087 	}
2088 
2089       dump_basic_block_info (file, insn, start_to_bb, end_to_bb,
2090                              bb_map_size, &bb_seqn);
2091       insn = final_scan_insn (insn, file, optimize_p, 0, &seen);
2092     }
2093 
2094   maybe_output_next_view (&seen);
2095 
2096   if (flag_debug_asm)
2097     {
2098       free (start_to_bb);
2099       free (end_to_bb);
2100     }
2101 
2102   /* Remove CFI notes, to avoid compare-debug failures.  */
2103   for (insn = first; insn; insn = next)
2104     {
2105       next = NEXT_INSN (insn);
2106       if (NOTE_P (insn)
2107 	  && (NOTE_KIND (insn) == NOTE_INSN_CFI
2108 	      || NOTE_KIND (insn) == NOTE_INSN_CFI_LABEL))
2109 	delete_insn (insn);
2110     }
2111 }
2112 
2113 /* This is an exported final_1, callable without SEEN.  */
2114 
2115 void
2116 final (rtx_insn *first, FILE *file, int optimize_p)
2117 {
2118   /* Those that use the internal final_start_function_1/final_1 API
2119      skip initial debug bind notes in final_start_function_1, and pass
2120      the modified FIRST to final_1.  But those that use the public
2121      final_start_function/final APIs, final_start_function can't move
2122      FIRST because it's not passed by reference, so if they were
2123      skipped there, skip them again here.  */
2124   while (in_initial_view_p (first))
2125     first = NEXT_INSN (first);
2126 
2127   final_1 (first, file, 0, optimize_p);
2128 }
2129 
2130 const char *
2131 get_insn_template (int code, rtx insn)
2132 {
2133   switch (insn_data[code].output_format)
2134     {
2135     case INSN_OUTPUT_FORMAT_SINGLE:
2136       return insn_data[code].output.single;
2137     case INSN_OUTPUT_FORMAT_MULTI:
2138       return insn_data[code].output.multi[which_alternative];
2139     case INSN_OUTPUT_FORMAT_FUNCTION:
2140       gcc_assert (insn);
2141       return (*insn_data[code].output.function) (recog_data.operand,
2142 						 as_a <rtx_insn *> (insn));
2143 
2144     default:
2145       gcc_unreachable ();
2146     }
2147 }
2148 
2149 /* Emit the appropriate declaration for an alternate-entry-point
2150    symbol represented by INSN, to FILE.  INSN is a CODE_LABEL with
2151    LABEL_KIND != LABEL_NORMAL.
2152 
2153    The case fall-through in this function is intentional.  */
2154 static void
2155 output_alternate_entry_point (FILE *file, rtx_insn *insn)
2156 {
2157   const char *name = LABEL_NAME (insn);
2158 
2159   switch (LABEL_KIND (insn))
2160     {
2161     case LABEL_WEAK_ENTRY:
2162 #ifdef ASM_WEAKEN_LABEL
2163       ASM_WEAKEN_LABEL (file, name);
2164       gcc_fallthrough ();
2165 #endif
2166     case LABEL_GLOBAL_ENTRY:
2167       targetm.asm_out.globalize_label (file, name);
2168       gcc_fallthrough ();
2169     case LABEL_STATIC_ENTRY:
2170 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2171       ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
2172 #endif
2173       ASM_OUTPUT_LABEL (file, name);
2174       break;
2175 
2176     case LABEL_NORMAL:
2177     default:
2178       gcc_unreachable ();
2179     }
2180 }
2181 
2182 /* Given a CALL_INSN, find and return the nested CALL. */
2183 static rtx
2184 call_from_call_insn (rtx_call_insn *insn)
2185 {
2186   rtx x;
2187   gcc_assert (CALL_P (insn));
2188   x = PATTERN (insn);
2189 
2190   while (GET_CODE (x) != CALL)
2191     {
2192       switch (GET_CODE (x))
2193 	{
2194 	default:
2195 	  gcc_unreachable ();
2196 	case COND_EXEC:
2197 	  x = COND_EXEC_CODE (x);
2198 	  break;
2199 	case PARALLEL:
2200 	  x = XVECEXP (x, 0, 0);
2201 	  break;
2202 	case SET:
2203 	  x = XEXP (x, 1);
2204 	  break;
2205 	}
2206     }
2207   return x;
2208 }
2209 
2210 /* Print a comment into the asm showing FILENAME, LINENUM, and the
2211    corresponding source line, if available.  */
2212 
2213 static void
2214 asm_show_source (const char *filename, int linenum)
2215 {
2216   if (!filename)
2217     return;
2218 
2219   int line_size;
2220   const char *line = location_get_source_line (filename, linenum, &line_size);
2221   if (!line)
2222     return;
2223 
2224   fprintf (asm_out_file, "%s %s:%i: ", ASM_COMMENT_START, filename, linenum);
2225   /* "line" is not 0-terminated, so we must use line_size.  */
2226   fwrite (line, 1, line_size, asm_out_file);
2227   fputc ('\n', asm_out_file);
2228 }
2229 
2230 /* The final scan for one insn, INSN.
2231    Args are same as in `final', except that INSN
2232    is the insn being scanned.
2233    Value returned is the next insn to be scanned.
2234 
2235    NOPEEPHOLES is the flag to disallow peephole processing (currently
2236    used for within delayed branch sequence output).
2237 
2238    SEEN is used to track the end of the prologue, for emitting
2239    debug information.  We force the emission of a line note after
2240    both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG.  */
2241 
2242 static rtx_insn *
2243 final_scan_insn_1 (rtx_insn *insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
2244 		   int nopeepholes ATTRIBUTE_UNUSED, int *seen)
2245 {
2246 #if HAVE_cc0
2247   rtx set;
2248 #endif
2249   rtx_insn *next;
2250   rtx_jump_table_data *table;
2251 
2252   insn_counter++;
2253 
2254   /* Ignore deleted insns.  These can occur when we split insns (due to a
2255      template of "#") while not optimizing.  */
2256   if (insn->deleted ())
2257     return NEXT_INSN (insn);
2258 
2259   switch (GET_CODE (insn))
2260     {
2261     case NOTE:
2262       switch (NOTE_KIND (insn))
2263 	{
2264 	case NOTE_INSN_DELETED:
2265 	case NOTE_INSN_UPDATE_SJLJ_CONTEXT:
2266 	  break;
2267 
2268 	case NOTE_INSN_SWITCH_TEXT_SECTIONS:
2269 	  maybe_output_next_view (seen);
2270 
2271 	  output_function_exception_table (0);
2272 
2273 	  if (targetm.asm_out.unwind_emit)
2274 	    targetm.asm_out.unwind_emit (asm_out_file, insn);
2275 
2276 	  in_cold_section_p = !in_cold_section_p;
2277 
2278 	  if (in_cold_section_p)
2279 	    cold_function_name
2280 	      = clone_function_name (current_function_decl, "cold");
2281 
2282 	  if (dwarf2out_do_frame ())
2283 	    {
2284 	      dwarf2out_switch_text_section ();
2285 	      if (!dwarf2_debug_info_emitted_p (current_function_decl)
2286 		  && !DECL_IGNORED_P (current_function_decl))
2287 		debug_hooks->switch_text_section ();
2288 	    }
2289 	  else if (!DECL_IGNORED_P (current_function_decl))
2290 	    debug_hooks->switch_text_section ();
2291 
2292 	  switch_to_section (current_function_section ());
2293 	  targetm.asm_out.function_switched_text_sections (asm_out_file,
2294 							   current_function_decl,
2295 							   in_cold_section_p);
2296 	  /* Emit a label for the split cold section.  Form label name by
2297 	     suffixing "cold" to the original function's name.  */
2298 	  if (in_cold_section_p)
2299 	    {
2300 #ifdef ASM_DECLARE_COLD_FUNCTION_NAME
2301 	      ASM_DECLARE_COLD_FUNCTION_NAME (asm_out_file,
2302 					      IDENTIFIER_POINTER
2303 					          (cold_function_name),
2304 					      current_function_decl);
2305 #else
2306 	      ASM_OUTPUT_LABEL (asm_out_file,
2307 				IDENTIFIER_POINTER (cold_function_name));
2308 #endif
2309 	    }
2310 	  break;
2311 
2312 	case NOTE_INSN_BASIC_BLOCK:
2313 	  if (need_profile_function)
2314 	    {
2315 	      profile_function (asm_out_file);
2316 	      need_profile_function = false;
2317 	    }
2318 
2319 	  if (targetm.asm_out.unwind_emit)
2320 	    targetm.asm_out.unwind_emit (asm_out_file, insn);
2321 
2322           discriminator = NOTE_BASIC_BLOCK (insn)->discriminator;
2323 
2324 	  break;
2325 
2326 	case NOTE_INSN_EH_REGION_BEG:
2327 	  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2328 				  NOTE_EH_HANDLER (insn));
2329 	  break;
2330 
2331 	case NOTE_INSN_EH_REGION_END:
2332 	  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2333 				  NOTE_EH_HANDLER (insn));
2334 	  break;
2335 
2336 	case NOTE_INSN_PROLOGUE_END:
2337 	  targetm.asm_out.function_end_prologue (file);
2338 	  profile_after_prologue (file);
2339 
2340 	  if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2341 	    {
2342 	      *seen |= SEEN_EMITTED;
2343 	      force_source_line = true;
2344 	    }
2345 	  else
2346 	    *seen |= SEEN_NOTE;
2347 
2348 	  break;
2349 
2350 	case NOTE_INSN_EPILOGUE_BEG:
2351           if (!DECL_IGNORED_P (current_function_decl))
2352             (*debug_hooks->begin_epilogue) (last_linenum, last_filename);
2353 	  targetm.asm_out.function_begin_epilogue (file);
2354 	  break;
2355 
2356 	case NOTE_INSN_CFI:
2357 	  dwarf2out_emit_cfi (NOTE_CFI (insn));
2358 	  break;
2359 
2360 	case NOTE_INSN_CFI_LABEL:
2361 	  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LCFI",
2362 				  NOTE_LABEL_NUMBER (insn));
2363 	  break;
2364 
2365 	case NOTE_INSN_FUNCTION_BEG:
2366 	  if (need_profile_function)
2367 	    {
2368 	      profile_function (asm_out_file);
2369 	      need_profile_function = false;
2370 	    }
2371 
2372 	  app_disable ();
2373 	  if (!DECL_IGNORED_P (current_function_decl))
2374 	    debug_hooks->end_prologue (last_linenum, last_filename);
2375 
2376 	  if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2377 	    {
2378 	      *seen |= SEEN_EMITTED;
2379 	      force_source_line = true;
2380 	    }
2381 	  else
2382 	    *seen |= SEEN_NOTE;
2383 
2384 	  break;
2385 
2386 	case NOTE_INSN_BLOCK_BEG:
2387 	  if (debug_info_level == DINFO_LEVEL_NORMAL
2388 	      || debug_info_level == DINFO_LEVEL_VERBOSE
2389 	      || write_symbols == DWARF2_DEBUG
2390 	      || write_symbols == VMS_AND_DWARF2_DEBUG
2391 	      || write_symbols == VMS_DEBUG)
2392 	    {
2393 	      int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2394 
2395 	      app_disable ();
2396 	      ++block_depth;
2397 	      high_block_linenum = last_linenum;
2398 
2399 	      /* Output debugging info about the symbol-block beginning.  */
2400 	      if (!DECL_IGNORED_P (current_function_decl))
2401 		debug_hooks->begin_block (last_linenum, n);
2402 
2403 	      /* Mark this block as output.  */
2404 	      TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2405 	      BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn)) = in_cold_section_p;
2406 	    }
2407 	  if (write_symbols == DBX_DEBUG)
2408 	    {
2409 	      location_t *locus_ptr
2410 		= block_nonartificial_location (NOTE_BLOCK (insn));
2411 
2412 	      if (locus_ptr != NULL)
2413 		{
2414 		  override_filename = LOCATION_FILE (*locus_ptr);
2415 		  override_linenum = LOCATION_LINE (*locus_ptr);
2416 		  override_columnnum = LOCATION_COLUMN (*locus_ptr);
2417 		}
2418 	    }
2419 	  break;
2420 
2421 	case NOTE_INSN_BLOCK_END:
2422 	  maybe_output_next_view (seen);
2423 
2424 	  if (debug_info_level == DINFO_LEVEL_NORMAL
2425 	      || debug_info_level == DINFO_LEVEL_VERBOSE
2426 	      || write_symbols == DWARF2_DEBUG
2427 	      || write_symbols == VMS_AND_DWARF2_DEBUG
2428 	      || write_symbols == VMS_DEBUG)
2429 	    {
2430 	      int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2431 
2432 	      app_disable ();
2433 
2434 	      /* End of a symbol-block.  */
2435 	      --block_depth;
2436 	      gcc_assert (block_depth >= 0);
2437 
2438 	      if (!DECL_IGNORED_P (current_function_decl))
2439 		debug_hooks->end_block (high_block_linenum, n);
2440 	      gcc_assert (BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn))
2441 			  == in_cold_section_p);
2442 	    }
2443 	  if (write_symbols == DBX_DEBUG)
2444 	    {
2445 	      tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
2446 	      location_t *locus_ptr
2447 		= block_nonartificial_location (outer_block);
2448 
2449 	      if (locus_ptr != NULL)
2450 		{
2451 		  override_filename = LOCATION_FILE (*locus_ptr);
2452 		  override_linenum = LOCATION_LINE (*locus_ptr);
2453 		  override_columnnum = LOCATION_COLUMN (*locus_ptr);
2454 		}
2455 	      else
2456 		{
2457 		  override_filename = NULL;
2458 		  override_linenum = 0;
2459 		  override_columnnum = 0;
2460 		}
2461 	    }
2462 	  break;
2463 
2464 	case NOTE_INSN_DELETED_LABEL:
2465 	  /* Emit the label.  We may have deleted the CODE_LABEL because
2466 	     the label could be proved to be unreachable, though still
2467 	     referenced (in the form of having its address taken.  */
2468 	  ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2469 	  break;
2470 
2471 	case NOTE_INSN_DELETED_DEBUG_LABEL:
2472 	  /* Similarly, but need to use different namespace for it.  */
2473 	  if (CODE_LABEL_NUMBER (insn) != -1)
2474 	    ASM_OUTPUT_DEBUG_LABEL (file, "LDL", CODE_LABEL_NUMBER (insn));
2475 	  break;
2476 
2477 	case NOTE_INSN_VAR_LOCATION:
2478 	  if (!DECL_IGNORED_P (current_function_decl))
2479 	    {
2480 	      debug_hooks->var_location (insn);
2481 	      set_next_view_needed (seen);
2482 	    }
2483 	  break;
2484 
2485 	case NOTE_INSN_BEGIN_STMT:
2486 	  gcc_checking_assert (cfun->debug_nonbind_markers);
2487 	  if (!DECL_IGNORED_P (current_function_decl)
2488 	      && notice_source_line (insn, NULL))
2489 	    {
2490 	    output_source_line:
2491 	      (*debug_hooks->source_line) (last_linenum, last_columnnum,
2492 					   last_filename, last_discriminator,
2493 					   true);
2494 	      clear_next_view_needed (seen);
2495 	    }
2496 	  break;
2497 
2498 	case NOTE_INSN_INLINE_ENTRY:
2499 	  gcc_checking_assert (cfun->debug_nonbind_markers);
2500 	  if (!DECL_IGNORED_P (current_function_decl))
2501 	    {
2502 	      if (!notice_source_line (insn, NULL))
2503 		break;
2504 	      (*debug_hooks->inline_entry) (LOCATION_BLOCK
2505 					    (NOTE_MARKER_LOCATION (insn)));
2506 	      goto output_source_line;
2507 	    }
2508 	  break;
2509 
2510 	default:
2511 	  gcc_unreachable ();
2512 	  break;
2513 	}
2514       break;
2515 
2516     case BARRIER:
2517       break;
2518 
2519     case CODE_LABEL:
2520       /* The target port might emit labels in the output function for
2521 	 some insn, e.g. sh.c output_branchy_insn.  */
2522       if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2523 	{
2524 	  int align = LABEL_TO_ALIGNMENT (insn);
2525 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2526 	  int max_skip = LABEL_TO_MAX_SKIP (insn);
2527 #endif
2528 
2529 	  if (align && NEXT_INSN (insn))
2530 	    {
2531 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2532 	      ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2533 #else
2534 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2535               ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
2536 #else
2537 	      ASM_OUTPUT_ALIGN (file, align);
2538 #endif
2539 #endif
2540 	    }
2541 	}
2542       CC_STATUS_INIT;
2543 
2544       if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn))
2545 	debug_hooks->label (as_a <rtx_code_label *> (insn));
2546 
2547       app_disable ();
2548 
2549       /* If this label is followed by a jump-table, make sure we put
2550 	 the label in the read-only section.  Also possibly write the
2551 	 label and jump table together.  */
2552       table = jump_table_for_label (as_a <rtx_code_label *> (insn));
2553       if (table)
2554 	{
2555 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2556 	  /* In this case, the case vector is being moved by the
2557 	     target, so don't output the label at all.  Leave that
2558 	     to the back end macros.  */
2559 #else
2560 	  if (! JUMP_TABLES_IN_TEXT_SECTION)
2561 	    {
2562 	      int log_align;
2563 
2564 	      switch_to_section (targetm.asm_out.function_rodata_section
2565 				 (current_function_decl));
2566 
2567 #ifdef ADDR_VEC_ALIGN
2568 	      log_align = ADDR_VEC_ALIGN (table);
2569 #else
2570 	      log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2571 #endif
2572 	      ASM_OUTPUT_ALIGN (file, log_align);
2573 	    }
2574 	  else
2575 	    switch_to_section (current_function_section ());
2576 
2577 #ifdef ASM_OUTPUT_CASE_LABEL
2578 	  ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn), table);
2579 #else
2580 	  targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2581 #endif
2582 #endif
2583 	  break;
2584 	}
2585       if (LABEL_ALT_ENTRY_P (insn))
2586 	output_alternate_entry_point (file, insn);
2587       else
2588 	targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2589       break;
2590 
2591     default:
2592       {
2593 	rtx body = PATTERN (insn);
2594 	int insn_code_number;
2595 	const char *templ;
2596 	bool is_stmt, *is_stmt_p;
2597 
2598 	if (MAY_HAVE_DEBUG_MARKER_INSNS && cfun->debug_nonbind_markers)
2599 	  {
2600 	    is_stmt = false;
2601 	    is_stmt_p = NULL;
2602 	  }
2603 	else
2604 	  is_stmt_p = &is_stmt;
2605 
2606 	/* Reset this early so it is correct for ASM statements.  */
2607 	current_insn_predicate = NULL_RTX;
2608 
2609 	/* An INSN, JUMP_INSN or CALL_INSN.
2610 	   First check for special kinds that recog doesn't recognize.  */
2611 
2612 	if (GET_CODE (body) == USE /* These are just declarations.  */
2613 	    || GET_CODE (body) == CLOBBER)
2614 	  break;
2615 
2616 #if HAVE_cc0
2617 	{
2618 	  /* If there is a REG_CC_SETTER note on this insn, it means that
2619 	     the setting of the condition code was done in the delay slot
2620 	     of the insn that branched here.  So recover the cc status
2621 	     from the insn that set it.  */
2622 
2623 	  rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2624 	  if (note)
2625 	    {
2626 	      rtx_insn *other = as_a <rtx_insn *> (XEXP (note, 0));
2627 	      NOTICE_UPDATE_CC (PATTERN (other), other);
2628 	      cc_prev_status = cc_status;
2629 	    }
2630 	}
2631 #endif
2632 
2633 	/* Detect insns that are really jump-tables
2634 	   and output them as such.  */
2635 
2636         if (JUMP_TABLE_DATA_P (insn))
2637 	  {
2638 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2639 	    int vlen, idx;
2640 #endif
2641 
2642 	    if (! JUMP_TABLES_IN_TEXT_SECTION)
2643 	      switch_to_section (targetm.asm_out.function_rodata_section
2644 				 (current_function_decl));
2645 	    else
2646 	      switch_to_section (current_function_section ());
2647 
2648 	    app_disable ();
2649 
2650 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2651 	    if (GET_CODE (body) == ADDR_VEC)
2652 	      {
2653 #ifdef ASM_OUTPUT_ADDR_VEC
2654 		ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2655 #else
2656 		gcc_unreachable ();
2657 #endif
2658 	      }
2659 	    else
2660 	      {
2661 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2662 		ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2663 #else
2664 		gcc_unreachable ();
2665 #endif
2666 	      }
2667 #else
2668 	    vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2669 	    for (idx = 0; idx < vlen; idx++)
2670 	      {
2671 		if (GET_CODE (body) == ADDR_VEC)
2672 		  {
2673 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2674 		    ASM_OUTPUT_ADDR_VEC_ELT
2675 		      (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2676 #else
2677 		    gcc_unreachable ();
2678 #endif
2679 		  }
2680 		else
2681 		  {
2682 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2683 		    ASM_OUTPUT_ADDR_DIFF_ELT
2684 		      (file,
2685 		       body,
2686 		       CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2687 		       CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2688 #else
2689 		    gcc_unreachable ();
2690 #endif
2691 		  }
2692 	      }
2693 #ifdef ASM_OUTPUT_CASE_END
2694 	    ASM_OUTPUT_CASE_END (file,
2695 				 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2696 				 insn);
2697 #endif
2698 #endif
2699 
2700 	    switch_to_section (current_function_section ());
2701 
2702 	    if (debug_variable_location_views
2703 		&& !DECL_IGNORED_P (current_function_decl))
2704 	      debug_hooks->var_location (insn);
2705 
2706 	    break;
2707 	  }
2708 	/* Output this line note if it is the first or the last line
2709 	   note in a row.  */
2710 	if (!DECL_IGNORED_P (current_function_decl)
2711 	    && notice_source_line (insn, is_stmt_p))
2712 	  {
2713 	    if (flag_verbose_asm)
2714 	      asm_show_source (last_filename, last_linenum);
2715 	    (*debug_hooks->source_line) (last_linenum, last_columnnum,
2716 					 last_filename, last_discriminator,
2717 					 is_stmt);
2718 	    clear_next_view_needed (seen);
2719 	  }
2720 	else
2721 	  maybe_output_next_view (seen);
2722 
2723 	gcc_checking_assert (!DEBUG_INSN_P (insn));
2724 
2725 	if (GET_CODE (body) == PARALLEL
2726 	    && GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
2727 	  body = XVECEXP (body, 0, 0);
2728 
2729 	if (GET_CODE (body) == ASM_INPUT)
2730 	  {
2731 	    const char *string = XSTR (body, 0);
2732 
2733 	    /* There's no telling what that did to the condition codes.  */
2734 	    CC_STATUS_INIT;
2735 
2736 	    if (string[0])
2737 	      {
2738 		expanded_location loc;
2739 
2740 		app_enable ();
2741 		loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2742 		if (*loc.file && loc.line)
2743 		  fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2744 			   ASM_COMMENT_START, loc.line, loc.file);
2745 		fprintf (asm_out_file, "\t%s\n", string);
2746 #if HAVE_AS_LINE_ZERO
2747 		if (*loc.file && loc.line)
2748 		  fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2749 #endif
2750 	      }
2751 	    break;
2752 	  }
2753 
2754 	/* Detect `asm' construct with operands.  */
2755 	if (asm_noperands (body) >= 0)
2756 	  {
2757 	    unsigned int noperands = asm_noperands (body);
2758 	    rtx *ops = XALLOCAVEC (rtx, noperands);
2759 	    const char *string;
2760 	    location_t loc;
2761 	    expanded_location expanded;
2762 
2763 	    /* There's no telling what that did to the condition codes.  */
2764 	    CC_STATUS_INIT;
2765 
2766 	    /* Get out the operand values.  */
2767 	    string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2768 	    /* Inhibit dying on what would otherwise be compiler bugs.  */
2769 	    insn_noperands = noperands;
2770 	    this_is_asm_operands = insn;
2771 	    expanded = expand_location (loc);
2772 
2773 #ifdef FINAL_PRESCAN_INSN
2774 	    FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2775 #endif
2776 
2777 	    /* Output the insn using them.  */
2778 	    if (string[0])
2779 	      {
2780 		app_enable ();
2781 		if (expanded.file && expanded.line)
2782 		  fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2783 			   ASM_COMMENT_START, expanded.line, expanded.file);
2784 	        output_asm_insn (string, ops);
2785 #if HAVE_AS_LINE_ZERO
2786 		if (expanded.file && expanded.line)
2787 		  fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2788 #endif
2789 	      }
2790 
2791 	    if (targetm.asm_out.final_postscan_insn)
2792 	      targetm.asm_out.final_postscan_insn (file, insn, ops,
2793 						   insn_noperands);
2794 
2795 	    this_is_asm_operands = 0;
2796 	    break;
2797 	  }
2798 
2799 	app_disable ();
2800 
2801 	if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
2802 	  {
2803 	    /* A delayed-branch sequence */
2804 	    int i;
2805 
2806 	    final_sequence = seq;
2807 
2808 	    /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2809 	       force the restoration of a comparison that was previously
2810 	       thought unnecessary.  If that happens, cancel this sequence
2811 	       and cause that insn to be restored.  */
2812 
2813 	    next = final_scan_insn (seq->insn (0), file, 0, 1, seen);
2814 	    if (next != seq->insn (1))
2815 	      {
2816 		final_sequence = 0;
2817 		return next;
2818 	      }
2819 
2820 	    for (i = 1; i < seq->len (); i++)
2821 	      {
2822 		rtx_insn *insn = seq->insn (i);
2823 		rtx_insn *next = NEXT_INSN (insn);
2824 		/* We loop in case any instruction in a delay slot gets
2825 		   split.  */
2826 		do
2827 		  insn = final_scan_insn (insn, file, 0, 1, seen);
2828 		while (insn != next);
2829 	      }
2830 #ifdef DBR_OUTPUT_SEQEND
2831 	    DBR_OUTPUT_SEQEND (file);
2832 #endif
2833 	    final_sequence = 0;
2834 
2835 	    /* If the insn requiring the delay slot was a CALL_INSN, the
2836 	       insns in the delay slot are actually executed before the
2837 	       called function.  Hence we don't preserve any CC-setting
2838 	       actions in these insns and the CC must be marked as being
2839 	       clobbered by the function.  */
2840 	    if (CALL_P (seq->insn (0)))
2841 	      {
2842 		CC_STATUS_INIT;
2843 	      }
2844 	    break;
2845 	  }
2846 
2847 	/* We have a real machine instruction as rtl.  */
2848 
2849 	body = PATTERN (insn);
2850 
2851 #if HAVE_cc0
2852 	set = single_set (insn);
2853 
2854 	/* Check for redundant test and compare instructions
2855 	   (when the condition codes are already set up as desired).
2856 	   This is done only when optimizing; if not optimizing,
2857 	   it should be possible for the user to alter a variable
2858 	   with the debugger in between statements
2859 	   and the next statement should reexamine the variable
2860 	   to compute the condition codes.  */
2861 
2862 	if (optimize_p)
2863 	  {
2864 	    if (set
2865 		&& GET_CODE (SET_DEST (set)) == CC0
2866 		&& insn != last_ignored_compare)
2867 	      {
2868 		rtx src1, src2;
2869 		if (GET_CODE (SET_SRC (set)) == SUBREG)
2870 		  SET_SRC (set) = alter_subreg (&SET_SRC (set), true);
2871 
2872 		src1 = SET_SRC (set);
2873 		src2 = NULL_RTX;
2874 		if (GET_CODE (SET_SRC (set)) == COMPARE)
2875 		  {
2876 		    if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2877 		      XEXP (SET_SRC (set), 0)
2878 			= alter_subreg (&XEXP (SET_SRC (set), 0), true);
2879 		    if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2880 		      XEXP (SET_SRC (set), 1)
2881 			= alter_subreg (&XEXP (SET_SRC (set), 1), true);
2882 		    if (XEXP (SET_SRC (set), 1)
2883 			== CONST0_RTX (GET_MODE (XEXP (SET_SRC (set), 0))))
2884 		      src2 = XEXP (SET_SRC (set), 0);
2885 		  }
2886 		if ((cc_status.value1 != 0
2887 		     && rtx_equal_p (src1, cc_status.value1))
2888 		    || (cc_status.value2 != 0
2889 			&& rtx_equal_p (src1, cc_status.value2))
2890 		    || (src2 != 0 && cc_status.value1 != 0
2891 		        && rtx_equal_p (src2, cc_status.value1))
2892 		    || (src2 != 0 && cc_status.value2 != 0
2893 			&& rtx_equal_p (src2, cc_status.value2)))
2894 		  {
2895 		    /* Don't delete insn if it has an addressing side-effect.  */
2896 		    if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2897 			/* or if anything in it is volatile.  */
2898 			&& ! volatile_refs_p (PATTERN (insn)))
2899 		      {
2900 			/* We don't really delete the insn; just ignore it.  */
2901 			last_ignored_compare = insn;
2902 			break;
2903 		      }
2904 		  }
2905 	      }
2906 	  }
2907 
2908 	/* If this is a conditional branch, maybe modify it
2909 	   if the cc's are in a nonstandard state
2910 	   so that it accomplishes the same thing that it would
2911 	   do straightforwardly if the cc's were set up normally.  */
2912 
2913 	if (cc_status.flags != 0
2914 	    && JUMP_P (insn)
2915 	    && GET_CODE (body) == SET
2916 	    && SET_DEST (body) == pc_rtx
2917 	    && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2918 	    && COMPARISON_P (XEXP (SET_SRC (body), 0))
2919 	    && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2920 	  {
2921 	    /* This function may alter the contents of its argument
2922 	       and clear some of the cc_status.flags bits.
2923 	       It may also return 1 meaning condition now always true
2924 	       or -1 meaning condition now always false
2925 	       or 2 meaning condition nontrivial but altered.  */
2926 	    int result = alter_cond (XEXP (SET_SRC (body), 0));
2927 	    /* If condition now has fixed value, replace the IF_THEN_ELSE
2928 	       with its then-operand or its else-operand.  */
2929 	    if (result == 1)
2930 	      SET_SRC (body) = XEXP (SET_SRC (body), 1);
2931 	    if (result == -1)
2932 	      SET_SRC (body) = XEXP (SET_SRC (body), 2);
2933 
2934 	    /* The jump is now either unconditional or a no-op.
2935 	       If it has become a no-op, don't try to output it.
2936 	       (It would not be recognized.)  */
2937 	    if (SET_SRC (body) == pc_rtx)
2938 	      {
2939 	        delete_insn (insn);
2940 		break;
2941 	      }
2942 	    else if (ANY_RETURN_P (SET_SRC (body)))
2943 	      /* Replace (set (pc) (return)) with (return).  */
2944 	      PATTERN (insn) = body = SET_SRC (body);
2945 
2946 	    /* Rerecognize the instruction if it has changed.  */
2947 	    if (result != 0)
2948 	      INSN_CODE (insn) = -1;
2949 	  }
2950 
2951 	/* If this is a conditional trap, maybe modify it if the cc's
2952 	   are in a nonstandard state so that it accomplishes the same
2953 	   thing that it would do straightforwardly if the cc's were
2954 	   set up normally.  */
2955 	if (cc_status.flags != 0
2956 	    && NONJUMP_INSN_P (insn)
2957 	    && GET_CODE (body) == TRAP_IF
2958 	    && COMPARISON_P (TRAP_CONDITION (body))
2959 	    && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2960 	  {
2961 	    /* This function may alter the contents of its argument
2962 	       and clear some of the cc_status.flags bits.
2963 	       It may also return 1 meaning condition now always true
2964 	       or -1 meaning condition now always false
2965 	       or 2 meaning condition nontrivial but altered.  */
2966 	    int result = alter_cond (TRAP_CONDITION (body));
2967 
2968 	    /* If TRAP_CONDITION has become always false, delete the
2969 	       instruction.  */
2970 	    if (result == -1)
2971 	      {
2972 		delete_insn (insn);
2973 		break;
2974 	      }
2975 
2976 	    /* If TRAP_CONDITION has become always true, replace
2977 	       TRAP_CONDITION with const_true_rtx.  */
2978 	    if (result == 1)
2979 	      TRAP_CONDITION (body) = const_true_rtx;
2980 
2981 	    /* Rerecognize the instruction if it has changed.  */
2982 	    if (result != 0)
2983 	      INSN_CODE (insn) = -1;
2984 	  }
2985 
2986 	/* Make same adjustments to instructions that examine the
2987 	   condition codes without jumping and instructions that
2988 	   handle conditional moves (if this machine has either one).  */
2989 
2990 	if (cc_status.flags != 0
2991 	    && set != 0)
2992 	  {
2993 	    rtx cond_rtx, then_rtx, else_rtx;
2994 
2995 	    if (!JUMP_P (insn)
2996 		&& GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2997 	      {
2998 		cond_rtx = XEXP (SET_SRC (set), 0);
2999 		then_rtx = XEXP (SET_SRC (set), 1);
3000 		else_rtx = XEXP (SET_SRC (set), 2);
3001 	      }
3002 	    else
3003 	      {
3004 		cond_rtx = SET_SRC (set);
3005 		then_rtx = const_true_rtx;
3006 		else_rtx = const0_rtx;
3007 	      }
3008 
3009 	    if (COMPARISON_P (cond_rtx)
3010 		&& XEXP (cond_rtx, 0) == cc0_rtx)
3011 	      {
3012 		int result;
3013 		result = alter_cond (cond_rtx);
3014 		if (result == 1)
3015 		  validate_change (insn, &SET_SRC (set), then_rtx, 0);
3016 		else if (result == -1)
3017 		  validate_change (insn, &SET_SRC (set), else_rtx, 0);
3018 		else if (result == 2)
3019 		  INSN_CODE (insn) = -1;
3020 		if (SET_DEST (set) == SET_SRC (set))
3021 		  delete_insn (insn);
3022 	      }
3023 	  }
3024 
3025 #endif
3026 
3027 	/* Do machine-specific peephole optimizations if desired.  */
3028 
3029 	if (HAVE_peephole && optimize_p && !flag_no_peephole && !nopeepholes)
3030 	  {
3031 	    rtx_insn *next = peephole (insn);
3032 	    /* When peepholing, if there were notes within the peephole,
3033 	       emit them before the peephole.  */
3034 	    if (next != 0 && next != NEXT_INSN (insn))
3035 	      {
3036 		rtx_insn *note, *prev = PREV_INSN (insn);
3037 
3038 		for (note = NEXT_INSN (insn); note != next;
3039 		     note = NEXT_INSN (note))
3040 		  final_scan_insn (note, file, optimize_p, nopeepholes, seen);
3041 
3042 		/* Put the notes in the proper position for a later
3043 		   rescan.  For example, the SH target can do this
3044 		   when generating a far jump in a delayed branch
3045 		   sequence.  */
3046 		note = NEXT_INSN (insn);
3047 		SET_PREV_INSN (note) = prev;
3048 		SET_NEXT_INSN (prev) = note;
3049 		SET_NEXT_INSN (PREV_INSN (next)) = insn;
3050 		SET_PREV_INSN (insn) = PREV_INSN (next);
3051 		SET_NEXT_INSN (insn) = next;
3052 		SET_PREV_INSN (next) = insn;
3053 	      }
3054 
3055 	    /* PEEPHOLE might have changed this.  */
3056 	    body = PATTERN (insn);
3057 	  }
3058 
3059 	/* Try to recognize the instruction.
3060 	   If successful, verify that the operands satisfy the
3061 	   constraints for the instruction.  Crash if they don't,
3062 	   since `reload' should have changed them so that they do.  */
3063 
3064 	insn_code_number = recog_memoized (insn);
3065 	cleanup_subreg_operands (insn);
3066 
3067 	/* Dump the insn in the assembly for debugging (-dAP).
3068 	   If the final dump is requested as slim RTL, dump slim
3069 	   RTL to the assembly file also.  */
3070 	if (flag_dump_rtl_in_asm)
3071 	  {
3072 	    print_rtx_head = ASM_COMMENT_START;
3073 	    if (! (dump_flags & TDF_SLIM))
3074 	      print_rtl_single (asm_out_file, insn);
3075 	    else
3076 	      dump_insn_slim (asm_out_file, insn);
3077 	    print_rtx_head = "";
3078 	  }
3079 
3080 	if (! constrain_operands_cached (insn, 1))
3081 	  fatal_insn_not_found (insn);
3082 
3083 	/* Some target machines need to prescan each insn before
3084 	   it is output.  */
3085 
3086 #ifdef FINAL_PRESCAN_INSN
3087 	FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
3088 #endif
3089 
3090 	if (targetm.have_conditional_execution ()
3091 	    && GET_CODE (PATTERN (insn)) == COND_EXEC)
3092 	  current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
3093 
3094 #if HAVE_cc0
3095 	cc_prev_status = cc_status;
3096 
3097 	/* Update `cc_status' for this instruction.
3098 	   The instruction's output routine may change it further.
3099 	   If the output routine for a jump insn needs to depend
3100 	   on the cc status, it should look at cc_prev_status.  */
3101 
3102 	NOTICE_UPDATE_CC (body, insn);
3103 #endif
3104 
3105 	current_output_insn = debug_insn = insn;
3106 
3107 	/* Find the proper template for this insn.  */
3108 	templ = get_insn_template (insn_code_number, insn);
3109 
3110 	/* If the C code returns 0, it means that it is a jump insn
3111 	   which follows a deleted test insn, and that test insn
3112 	   needs to be reinserted.  */
3113 	if (templ == 0)
3114 	  {
3115 	    rtx_insn *prev;
3116 
3117 	    gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
3118 
3119 	    /* We have already processed the notes between the setter and
3120 	       the user.  Make sure we don't process them again, this is
3121 	       particularly important if one of the notes is a block
3122 	       scope note or an EH note.  */
3123 	    for (prev = insn;
3124 		 prev != last_ignored_compare;
3125 		 prev = PREV_INSN (prev))
3126 	      {
3127 		if (NOTE_P (prev))
3128 		  delete_insn (prev);	/* Use delete_note.  */
3129 	      }
3130 
3131 	    return prev;
3132 	  }
3133 
3134 	/* If the template is the string "#", it means that this insn must
3135 	   be split.  */
3136 	if (templ[0] == '#' && templ[1] == '\0')
3137 	  {
3138 	    rtx_insn *new_rtx = try_split (body, insn, 0);
3139 
3140 	    /* If we didn't split the insn, go away.  */
3141 	    if (new_rtx == insn && PATTERN (new_rtx) == body)
3142 	      fatal_insn ("could not split insn", insn);
3143 
3144 	    /* If we have a length attribute, this instruction should have
3145 	       been split in shorten_branches, to ensure that we would have
3146 	       valid length info for the splitees.  */
3147 	    gcc_assert (!HAVE_ATTR_length);
3148 
3149 	    return new_rtx;
3150 	  }
3151 
3152 	/* ??? This will put the directives in the wrong place if
3153 	   get_insn_template outputs assembly directly.  However calling it
3154 	   before get_insn_template breaks if the insns is split.  */
3155 	if (targetm.asm_out.unwind_emit_before_insn
3156 	    && targetm.asm_out.unwind_emit)
3157 	  targetm.asm_out.unwind_emit (asm_out_file, insn);
3158 
3159 	rtx_call_insn *call_insn = dyn_cast <rtx_call_insn *> (insn);
3160 	if (call_insn != NULL)
3161 	  {
3162 	    rtx x = call_from_call_insn (call_insn);
3163 	    x = XEXP (x, 0);
3164 	    if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3165 	      {
3166 		tree t;
3167 		x = XEXP (x, 0);
3168 		t = SYMBOL_REF_DECL (x);
3169 		if (t)
3170 		  assemble_external (t);
3171 	      }
3172 	  }
3173 
3174 	/* Output assembler code from the template.  */
3175 	output_asm_insn (templ, recog_data.operand);
3176 
3177 	/* Some target machines need to postscan each insn after
3178 	   it is output.  */
3179 	if (targetm.asm_out.final_postscan_insn)
3180 	  targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
3181 					       recog_data.n_operands);
3182 
3183 	if (!targetm.asm_out.unwind_emit_before_insn
3184 	    && targetm.asm_out.unwind_emit)
3185 	  targetm.asm_out.unwind_emit (asm_out_file, insn);
3186 
3187 	/* Let the debug info back-end know about this call.  We do this only
3188 	   after the instruction has been emitted because labels that may be
3189 	   created to reference the call instruction must appear after it.  */
3190 	if ((debug_variable_location_views || call_insn != NULL)
3191 	    && !DECL_IGNORED_P (current_function_decl))
3192 	  debug_hooks->var_location (insn);
3193 
3194 	current_output_insn = debug_insn = 0;
3195       }
3196     }
3197   return NEXT_INSN (insn);
3198 }
3199 
3200 /* This is a wrapper around final_scan_insn_1 that allows ports to
3201    call it recursively without a known value for SEEN.  The value is
3202    saved at the outermost call, and recovered for recursive calls.
3203    Recursive calls MUST pass NULL, or the same pointer if they can
3204    otherwise get to it.  */
3205 
3206 rtx_insn *
3207 final_scan_insn (rtx_insn *insn, FILE *file, int optimize_p,
3208 		 int nopeepholes, int *seen)
3209 {
3210   static int *enclosing_seen;
3211   static int recursion_counter;
3212 
3213   gcc_assert (seen || recursion_counter);
3214   gcc_assert (!recursion_counter || !seen || seen == enclosing_seen);
3215 
3216   if (!recursion_counter++)
3217     enclosing_seen = seen;
3218   else if (!seen)
3219     seen = enclosing_seen;
3220 
3221   rtx_insn *ret = final_scan_insn_1 (insn, file, optimize_p, nopeepholes, seen);
3222 
3223   if (!--recursion_counter)
3224     enclosing_seen = NULL;
3225 
3226   return ret;
3227 }
3228 
3229 
3230 /* Return whether a source line note needs to be emitted before INSN.
3231    Sets IS_STMT to TRUE if the line should be marked as a possible
3232    breakpoint location.  */
3233 
3234 static bool
3235 notice_source_line (rtx_insn *insn, bool *is_stmt)
3236 {
3237   const char *filename;
3238   int linenum, columnnum;
3239 
3240   if (NOTE_MARKER_P (insn))
3241     {
3242       location_t loc = NOTE_MARKER_LOCATION (insn);
3243       /* The inline entry markers (gimple, insn, note) carry the
3244 	 location of the call, because that's what we want to carry
3245 	 during compilation, but the location we want to output in
3246 	 debug information for the inline entry point is the location
3247 	 of the function itself.  */
3248       if (NOTE_KIND (insn) == NOTE_INSN_INLINE_ENTRY)
3249 	{
3250 	  tree block = LOCATION_BLOCK (loc);
3251 	  tree fn = block_ultimate_origin (block);
3252 	  loc = DECL_SOURCE_LOCATION (fn);
3253 	}
3254       expanded_location xloc = expand_location (loc);
3255       if (xloc.line == 0)
3256 	{
3257 	  gcc_checking_assert (LOCATION_LOCUS (loc) == UNKNOWN_LOCATION
3258 			       || LOCATION_LOCUS (loc) == BUILTINS_LOCATION);
3259 	  return false;
3260 	}
3261       filename = xloc.file;
3262       linenum = xloc.line;
3263       columnnum = xloc.column;
3264       force_source_line = true;
3265     }
3266   else if (override_filename)
3267     {
3268       filename = override_filename;
3269       linenum = override_linenum;
3270       columnnum = override_columnnum;
3271     }
3272   else if (INSN_HAS_LOCATION (insn))
3273     {
3274       expanded_location xloc = insn_location (insn);
3275       filename = xloc.file;
3276       linenum = xloc.line;
3277       columnnum = xloc.column;
3278     }
3279   else
3280     {
3281       filename = NULL;
3282       linenum = 0;
3283       columnnum = 0;
3284     }
3285 
3286   if (filename == NULL)
3287     return false;
3288 
3289   if (force_source_line
3290       || filename != last_filename
3291       || last_linenum != linenum
3292       || (debug_column_info && last_columnnum != columnnum))
3293     {
3294       force_source_line = false;
3295       last_filename = filename;
3296       last_linenum = linenum;
3297       last_columnnum = columnnum;
3298       last_discriminator = discriminator;
3299       if (is_stmt)
3300 	*is_stmt = true;
3301       high_block_linenum = MAX (last_linenum, high_block_linenum);
3302       high_function_linenum = MAX (last_linenum, high_function_linenum);
3303       return true;
3304     }
3305 
3306   if (SUPPORTS_DISCRIMINATOR && last_discriminator != discriminator)
3307     {
3308       /* If the discriminator changed, but the line number did not,
3309          output the line table entry with is_stmt false so the
3310          debugger does not treat this as a breakpoint location.  */
3311       last_discriminator = discriminator;
3312       if (is_stmt)
3313 	*is_stmt = false;
3314       return true;
3315     }
3316 
3317   return false;
3318 }
3319 
3320 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3321    directly to the desired hard register.  */
3322 
3323 void
3324 cleanup_subreg_operands (rtx_insn *insn)
3325 {
3326   int i;
3327   bool changed = false;
3328   extract_insn_cached (insn);
3329   for (i = 0; i < recog_data.n_operands; i++)
3330     {
3331       /* The following test cannot use recog_data.operand when testing
3332 	 for a SUBREG: the underlying object might have been changed
3333 	 already if we are inside a match_operator expression that
3334 	 matches the else clause.  Instead we test the underlying
3335 	 expression directly.  */
3336       if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
3337 	{
3338 	  recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i], true);
3339 	  changed = true;
3340 	}
3341       else if (GET_CODE (recog_data.operand[i]) == PLUS
3342 	       || GET_CODE (recog_data.operand[i]) == MULT
3343 	       || MEM_P (recog_data.operand[i]))
3344 	recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
3345     }
3346 
3347   for (i = 0; i < recog_data.n_dups; i++)
3348     {
3349       if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3350 	{
3351 	  *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i], true);
3352 	  changed = true;
3353 	}
3354       else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3355 	       || GET_CODE (*recog_data.dup_loc[i]) == MULT
3356 	       || MEM_P (*recog_data.dup_loc[i]))
3357 	*recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
3358     }
3359   if (changed)
3360     df_insn_rescan (insn);
3361 }
3362 
3363 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3364    the thing it is a subreg of.  Do it anyway if FINAL_P.  */
3365 
3366 rtx
3367 alter_subreg (rtx *xp, bool final_p)
3368 {
3369   rtx x = *xp;
3370   rtx y = SUBREG_REG (x);
3371 
3372   /* simplify_subreg does not remove subreg from volatile references.
3373      We are required to.  */
3374   if (MEM_P (y))
3375     {
3376       poly_int64 offset = SUBREG_BYTE (x);
3377 
3378       /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3379 	 contains 0 instead of the proper offset.  See simplify_subreg.  */
3380       if (paradoxical_subreg_p (x))
3381 	offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3382 
3383       if (final_p)
3384 	*xp = adjust_address (y, GET_MODE (x), offset);
3385       else
3386 	*xp = adjust_address_nv (y, GET_MODE (x), offset);
3387     }
3388   else if (REG_P (y) && HARD_REGISTER_P (y))
3389     {
3390       rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
3391 				     SUBREG_BYTE (x));
3392 
3393       if (new_rtx != 0)
3394 	*xp = new_rtx;
3395       else if (final_p && REG_P (y))
3396 	{
3397 	  /* Simplify_subreg can't handle some REG cases, but we have to.  */
3398 	  unsigned int regno;
3399 	  poly_int64 offset;
3400 
3401 	  regno = subreg_regno (x);
3402 	  if (subreg_lowpart_p (x))
3403 	    offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3404 	  else
3405 	    offset = SUBREG_BYTE (x);
3406 	  *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
3407 	}
3408     }
3409 
3410   return *xp;
3411 }
3412 
3413 /* Do alter_subreg on all the SUBREGs contained in X.  */
3414 
3415 static rtx
3416 walk_alter_subreg (rtx *xp, bool *changed)
3417 {
3418   rtx x = *xp;
3419   switch (GET_CODE (x))
3420     {
3421     case PLUS:
3422     case MULT:
3423     case AND:
3424       XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3425       XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
3426       break;
3427 
3428     case MEM:
3429     case ZERO_EXTEND:
3430       XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3431       break;
3432 
3433     case SUBREG:
3434       *changed = true;
3435       return alter_subreg (xp, true);
3436 
3437     default:
3438       break;
3439     }
3440 
3441   return *xp;
3442 }
3443 
3444 #if HAVE_cc0
3445 
3446 /* Given BODY, the body of a jump instruction, alter the jump condition
3447    as required by the bits that are set in cc_status.flags.
3448    Not all of the bits there can be handled at this level in all cases.
3449 
3450    The value is normally 0.
3451    1 means that the condition has become always true.
3452    -1 means that the condition has become always false.
3453    2 means that COND has been altered.  */
3454 
3455 static int
3456 alter_cond (rtx cond)
3457 {
3458   int value = 0;
3459 
3460   if (cc_status.flags & CC_REVERSED)
3461     {
3462       value = 2;
3463       PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3464     }
3465 
3466   if (cc_status.flags & CC_INVERTED)
3467     {
3468       value = 2;
3469       PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3470     }
3471 
3472   if (cc_status.flags & CC_NOT_POSITIVE)
3473     switch (GET_CODE (cond))
3474       {
3475       case LE:
3476       case LEU:
3477       case GEU:
3478 	/* Jump becomes unconditional.  */
3479 	return 1;
3480 
3481       case GT:
3482       case GTU:
3483       case LTU:
3484 	/* Jump becomes no-op.  */
3485 	return -1;
3486 
3487       case GE:
3488 	PUT_CODE (cond, EQ);
3489 	value = 2;
3490 	break;
3491 
3492       case LT:
3493 	PUT_CODE (cond, NE);
3494 	value = 2;
3495 	break;
3496 
3497       default:
3498 	break;
3499       }
3500 
3501   if (cc_status.flags & CC_NOT_NEGATIVE)
3502     switch (GET_CODE (cond))
3503       {
3504       case GE:
3505       case GEU:
3506 	/* Jump becomes unconditional.  */
3507 	return 1;
3508 
3509       case LT:
3510       case LTU:
3511 	/* Jump becomes no-op.  */
3512 	return -1;
3513 
3514       case LE:
3515       case LEU:
3516 	PUT_CODE (cond, EQ);
3517 	value = 2;
3518 	break;
3519 
3520       case GT:
3521       case GTU:
3522 	PUT_CODE (cond, NE);
3523 	value = 2;
3524 	break;
3525 
3526       default:
3527 	break;
3528       }
3529 
3530   if (cc_status.flags & CC_NO_OVERFLOW)
3531     switch (GET_CODE (cond))
3532       {
3533       case GEU:
3534 	/* Jump becomes unconditional.  */
3535 	return 1;
3536 
3537       case LEU:
3538 	PUT_CODE (cond, EQ);
3539 	value = 2;
3540 	break;
3541 
3542       case GTU:
3543 	PUT_CODE (cond, NE);
3544 	value = 2;
3545 	break;
3546 
3547       case LTU:
3548 	/* Jump becomes no-op.  */
3549 	return -1;
3550 
3551       default:
3552 	break;
3553       }
3554 
3555   if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3556     switch (GET_CODE (cond))
3557       {
3558       default:
3559 	gcc_unreachable ();
3560 
3561       case NE:
3562 	PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3563 	value = 2;
3564 	break;
3565 
3566       case EQ:
3567 	PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3568 	value = 2;
3569 	break;
3570       }
3571 
3572   if (cc_status.flags & CC_NOT_SIGNED)
3573     /* The flags are valid if signed condition operators are converted
3574        to unsigned.  */
3575     switch (GET_CODE (cond))
3576       {
3577       case LE:
3578 	PUT_CODE (cond, LEU);
3579 	value = 2;
3580 	break;
3581 
3582       case LT:
3583 	PUT_CODE (cond, LTU);
3584 	value = 2;
3585 	break;
3586 
3587       case GT:
3588 	PUT_CODE (cond, GTU);
3589 	value = 2;
3590 	break;
3591 
3592       case GE:
3593 	PUT_CODE (cond, GEU);
3594 	value = 2;
3595 	break;
3596 
3597       default:
3598 	break;
3599       }
3600 
3601   return value;
3602 }
3603 #endif
3604 
3605 /* Report inconsistency between the assembler template and the operands.
3606    In an `asm', it's the user's fault; otherwise, the compiler's fault.  */
3607 
3608 void
3609 output_operand_lossage (const char *cmsgid, ...)
3610 {
3611   char *fmt_string;
3612   char *new_message;
3613   const char *pfx_str;
3614   va_list ap;
3615 
3616   va_start (ap, cmsgid);
3617 
3618   pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3619   fmt_string = xasprintf ("%s%s", pfx_str, _(cmsgid));
3620   new_message = xvasprintf (fmt_string, ap);
3621 
3622   if (this_is_asm_operands)
3623     error_for_asm (this_is_asm_operands, "%s", new_message);
3624   else
3625     internal_error ("%s", new_message);
3626 
3627   free (fmt_string);
3628   free (new_message);
3629   va_end (ap);
3630 }
3631 
3632 /* Output of assembler code from a template, and its subroutines.  */
3633 
3634 /* Annotate the assembly with a comment describing the pattern and
3635    alternative used.  */
3636 
3637 static void
3638 output_asm_name (void)
3639 {
3640   if (debug_insn)
3641     {
3642       fprintf (asm_out_file, "\t%s %d\t",
3643 	       ASM_COMMENT_START, INSN_UID (debug_insn));
3644 
3645       fprintf (asm_out_file, "[c=%d",
3646 	       insn_cost (debug_insn, optimize_insn_for_speed_p ()));
3647       if (HAVE_ATTR_length)
3648 	fprintf (asm_out_file, " l=%d",
3649 		 get_attr_length (debug_insn));
3650       fprintf (asm_out_file, "]  ");
3651 
3652       int num = INSN_CODE (debug_insn);
3653       fprintf (asm_out_file, "%s", insn_data[num].name);
3654       if (insn_data[num].n_alternatives > 1)
3655 	fprintf (asm_out_file, "/%d", which_alternative);
3656 
3657       /* Clear this so only the first assembler insn
3658 	 of any rtl insn will get the special comment for -dp.  */
3659       debug_insn = 0;
3660     }
3661 }
3662 
3663 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3664    or its address, return that expr .  Set *PADDRESSP to 1 if the expr
3665    corresponds to the address of the object and 0 if to the object.  */
3666 
3667 static tree
3668 get_mem_expr_from_op (rtx op, int *paddressp)
3669 {
3670   tree expr;
3671   int inner_addressp;
3672 
3673   *paddressp = 0;
3674 
3675   if (REG_P (op))
3676     return REG_EXPR (op);
3677   else if (!MEM_P (op))
3678     return 0;
3679 
3680   if (MEM_EXPR (op) != 0)
3681     return MEM_EXPR (op);
3682 
3683   /* Otherwise we have an address, so indicate it and look at the address.  */
3684   *paddressp = 1;
3685   op = XEXP (op, 0);
3686 
3687   /* First check if we have a decl for the address, then look at the right side
3688      if it is a PLUS.  Otherwise, strip off arithmetic and keep looking.
3689      But don't allow the address to itself be indirect.  */
3690   if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3691     return expr;
3692   else if (GET_CODE (op) == PLUS
3693 	   && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3694     return expr;
3695 
3696   while (UNARY_P (op)
3697 	 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3698     op = XEXP (op, 0);
3699 
3700   expr = get_mem_expr_from_op (op, &inner_addressp);
3701   return inner_addressp ? 0 : expr;
3702 }
3703 
3704 /* Output operand names for assembler instructions.  OPERANDS is the
3705    operand vector, OPORDER is the order to write the operands, and NOPS
3706    is the number of operands to write.  */
3707 
3708 static void
3709 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3710 {
3711   int wrote = 0;
3712   int i;
3713 
3714   for (i = 0; i < nops; i++)
3715     {
3716       int addressp;
3717       rtx op = operands[oporder[i]];
3718       tree expr = get_mem_expr_from_op (op, &addressp);
3719 
3720       fprintf (asm_out_file, "%c%s",
3721 	       wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3722       wrote = 1;
3723       if (expr)
3724 	{
3725 	  fprintf (asm_out_file, "%s",
3726 		   addressp ? "*" : "");
3727 	  print_mem_expr (asm_out_file, expr);
3728 	  wrote = 1;
3729 	}
3730       else if (REG_P (op) && ORIGINAL_REGNO (op)
3731 	       && ORIGINAL_REGNO (op) != REGNO (op))
3732 	fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3733     }
3734 }
3735 
3736 #ifdef ASSEMBLER_DIALECT
3737 /* Helper function to parse assembler dialects in the asm string.
3738    This is called from output_asm_insn and asm_fprintf.  */
3739 static const char *
3740 do_assembler_dialects (const char *p, int *dialect)
3741 {
3742   char c = *(p - 1);
3743 
3744   switch (c)
3745     {
3746     case '{':
3747       {
3748         int i;
3749 
3750         if (*dialect)
3751           output_operand_lossage ("nested assembly dialect alternatives");
3752         else
3753           *dialect = 1;
3754 
3755         /* If we want the first dialect, do nothing.  Otherwise, skip
3756            DIALECT_NUMBER of strings ending with '|'.  */
3757         for (i = 0; i < dialect_number; i++)
3758           {
3759             while (*p && *p != '}')
3760 	      {
3761 		if (*p == '|')
3762 		  {
3763 		    p++;
3764 		    break;
3765 		  }
3766 
3767 		/* Skip over any character after a percent sign.  */
3768 		if (*p == '%')
3769 		  p++;
3770 		if (*p)
3771 		  p++;
3772 	      }
3773 
3774             if (*p == '}')
3775 	      break;
3776           }
3777 
3778         if (*p == '\0')
3779           output_operand_lossage ("unterminated assembly dialect alternative");
3780       }
3781       break;
3782 
3783     case '|':
3784       if (*dialect)
3785         {
3786           /* Skip to close brace.  */
3787           do
3788             {
3789 	      if (*p == '\0')
3790 		{
3791 		  output_operand_lossage ("unterminated assembly dialect alternative");
3792 		  break;
3793 		}
3794 
3795 	      /* Skip over any character after a percent sign.  */
3796 	      if (*p == '%' && p[1])
3797 		{
3798 		  p += 2;
3799 		  continue;
3800 		}
3801 
3802 	      if (*p++ == '}')
3803 		break;
3804             }
3805           while (1);
3806 
3807           *dialect = 0;
3808         }
3809       else
3810         putc (c, asm_out_file);
3811       break;
3812 
3813     case '}':
3814       if (! *dialect)
3815         putc (c, asm_out_file);
3816       *dialect = 0;
3817       break;
3818     default:
3819       gcc_unreachable ();
3820     }
3821 
3822   return p;
3823 }
3824 #endif
3825 
3826 /* Output text from TEMPLATE to the assembler output file,
3827    obeying %-directions to substitute operands taken from
3828    the vector OPERANDS.
3829 
3830    %N (for N a digit) means print operand N in usual manner.
3831    %lN means require operand N to be a CODE_LABEL or LABEL_REF
3832       and print the label name with no punctuation.
3833    %cN means require operand N to be a constant
3834       and print the constant expression with no punctuation.
3835    %aN means expect operand N to be a memory address
3836       (not a memory reference!) and print a reference
3837       to that address.
3838    %nN means expect operand N to be a constant
3839       and print a constant expression for minus the value
3840       of the operand, with no other punctuation.  */
3841 
3842 void
3843 output_asm_insn (const char *templ, rtx *operands)
3844 {
3845   const char *p;
3846   int c;
3847 #ifdef ASSEMBLER_DIALECT
3848   int dialect = 0;
3849 #endif
3850   int oporder[MAX_RECOG_OPERANDS];
3851   char opoutput[MAX_RECOG_OPERANDS];
3852   int ops = 0;
3853 
3854   /* An insn may return a null string template
3855      in a case where no assembler code is needed.  */
3856   if (*templ == 0)
3857     return;
3858 
3859   memset (opoutput, 0, sizeof opoutput);
3860   p = templ;
3861   putc ('\t', asm_out_file);
3862 
3863 #ifdef ASM_OUTPUT_OPCODE
3864   ASM_OUTPUT_OPCODE (asm_out_file, p);
3865 #endif
3866 
3867   while ((c = *p++))
3868     switch (c)
3869       {
3870       case '\n':
3871 	if (flag_verbose_asm)
3872 	  output_asm_operand_names (operands, oporder, ops);
3873 	if (flag_print_asm_name)
3874 	  output_asm_name ();
3875 
3876 	ops = 0;
3877 	memset (opoutput, 0, sizeof opoutput);
3878 
3879 	putc (c, asm_out_file);
3880 #ifdef ASM_OUTPUT_OPCODE
3881 	while ((c = *p) == '\t')
3882 	  {
3883 	    putc (c, asm_out_file);
3884 	    p++;
3885 	  }
3886 	ASM_OUTPUT_OPCODE (asm_out_file, p);
3887 #endif
3888 	break;
3889 
3890 #ifdef ASSEMBLER_DIALECT
3891       case '{':
3892       case '}':
3893       case '|':
3894 	p = do_assembler_dialects (p, &dialect);
3895 	break;
3896 #endif
3897 
3898       case '%':
3899 	/* %% outputs a single %.  %{, %} and %| print {, } and | respectively
3900 	   if ASSEMBLER_DIALECT defined and these characters have a special
3901 	   meaning as dialect delimiters.*/
3902 	if (*p == '%'
3903 #ifdef ASSEMBLER_DIALECT
3904 	    || *p == '{' || *p == '}' || *p == '|'
3905 #endif
3906 	    )
3907 	  {
3908 	    putc (*p, asm_out_file);
3909 	    p++;
3910 	  }
3911 	/* %= outputs a number which is unique to each insn in the entire
3912 	   compilation.  This is useful for making local labels that are
3913 	   referred to more than once in a given insn.  */
3914 	else if (*p == '=')
3915 	  {
3916 	    p++;
3917 	    fprintf (asm_out_file, "%d", insn_counter);
3918 	  }
3919 	/* % followed by a letter and some digits
3920 	   outputs an operand in a special way depending on the letter.
3921 	   Letters `acln' are implemented directly.
3922 	   Other letters are passed to `output_operand' so that
3923 	   the TARGET_PRINT_OPERAND hook can define them.  */
3924 	else if (ISALPHA (*p))
3925 	  {
3926 	    int letter = *p++;
3927 	    unsigned long opnum;
3928 	    char *endptr;
3929 
3930 	    opnum = strtoul (p, &endptr, 10);
3931 
3932 	    if (endptr == p)
3933 	      output_operand_lossage ("operand number missing "
3934 				      "after %%-letter");
3935 	    else if (this_is_asm_operands && opnum >= insn_noperands)
3936 	      output_operand_lossage ("operand number out of range");
3937 	    else if (letter == 'l')
3938 	      output_asm_label (operands[opnum]);
3939 	    else if (letter == 'a')
3940 	      output_address (VOIDmode, operands[opnum]);
3941 	    else if (letter == 'c')
3942 	      {
3943 		if (CONSTANT_ADDRESS_P (operands[opnum]))
3944 		  output_addr_const (asm_out_file, operands[opnum]);
3945 		else
3946 		  output_operand (operands[opnum], 'c');
3947 	      }
3948 	    else if (letter == 'n')
3949 	      {
3950 		if (CONST_INT_P (operands[opnum]))
3951 		  fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3952 			   - INTVAL (operands[opnum]));
3953 		else
3954 		  {
3955 		    putc ('-', asm_out_file);
3956 		    output_addr_const (asm_out_file, operands[opnum]);
3957 		  }
3958 	      }
3959 	    else
3960 	      output_operand (operands[opnum], letter);
3961 
3962 	    if (!opoutput[opnum])
3963 	      oporder[ops++] = opnum;
3964 	    opoutput[opnum] = 1;
3965 
3966 	    p = endptr;
3967 	    c = *p;
3968 	  }
3969 	/* % followed by a digit outputs an operand the default way.  */
3970 	else if (ISDIGIT (*p))
3971 	  {
3972 	    unsigned long opnum;
3973 	    char *endptr;
3974 
3975 	    opnum = strtoul (p, &endptr, 10);
3976 	    if (this_is_asm_operands && opnum >= insn_noperands)
3977 	      output_operand_lossage ("operand number out of range");
3978 	    else
3979 	      output_operand (operands[opnum], 0);
3980 
3981 	    if (!opoutput[opnum])
3982 	      oporder[ops++] = opnum;
3983 	    opoutput[opnum] = 1;
3984 
3985 	    p = endptr;
3986 	    c = *p;
3987 	  }
3988 	/* % followed by punctuation: output something for that
3989 	   punctuation character alone, with no operand.  The
3990 	   TARGET_PRINT_OPERAND hook decides what is actually done.  */
3991 	else if (targetm.asm_out.print_operand_punct_valid_p ((unsigned char) *p))
3992 	  output_operand (NULL_RTX, *p++);
3993 	else
3994 	  output_operand_lossage ("invalid %%-code");
3995 	break;
3996 
3997       default:
3998 	putc (c, asm_out_file);
3999       }
4000 
4001   /* Try to keep the asm a bit more readable.  */
4002   if ((flag_verbose_asm || flag_print_asm_name) && strlen (templ) < 9)
4003     putc ('\t', asm_out_file);
4004 
4005   /* Write out the variable names for operands, if we know them.  */
4006   if (flag_verbose_asm)
4007     output_asm_operand_names (operands, oporder, ops);
4008   if (flag_print_asm_name)
4009     output_asm_name ();
4010 
4011   putc ('\n', asm_out_file);
4012 }
4013 
4014 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol.  */
4015 
4016 void
4017 output_asm_label (rtx x)
4018 {
4019   char buf[256];
4020 
4021   if (GET_CODE (x) == LABEL_REF)
4022     x = label_ref_label (x);
4023   if (LABEL_P (x)
4024       || (NOTE_P (x)
4025 	  && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
4026     ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
4027   else
4028     output_operand_lossage ("'%%l' operand isn't a label");
4029 
4030   assemble_name (asm_out_file, buf);
4031 }
4032 
4033 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external.  */
4034 
4035 void
4036 mark_symbol_refs_as_used (rtx x)
4037 {
4038   subrtx_iterator::array_type array;
4039   FOR_EACH_SUBRTX (iter, array, x, ALL)
4040     {
4041       const_rtx x = *iter;
4042       if (GET_CODE (x) == SYMBOL_REF)
4043 	if (tree t = SYMBOL_REF_DECL (x))
4044 	  assemble_external (t);
4045     }
4046 }
4047 
4048 /* Print operand X using machine-dependent assembler syntax.
4049    CODE is a non-digit that preceded the operand-number in the % spec,
4050    such as 'z' if the spec was `%z3'.  CODE is 0 if there was no char
4051    between the % and the digits.
4052    When CODE is a non-letter, X is 0.
4053 
4054    The meanings of the letters are machine-dependent and controlled
4055    by TARGET_PRINT_OPERAND.  */
4056 
4057 void
4058 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
4059 {
4060   if (x && GET_CODE (x) == SUBREG)
4061     x = alter_subreg (&x, true);
4062 
4063   /* X must not be a pseudo reg.  */
4064   if (!targetm.no_register_allocation)
4065     gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
4066 
4067   targetm.asm_out.print_operand (asm_out_file, x, code);
4068 
4069   if (x == NULL_RTX)
4070     return;
4071 
4072   mark_symbol_refs_as_used (x);
4073 }
4074 
4075 /* Print a memory reference operand for address X using
4076    machine-dependent assembler syntax.  */
4077 
4078 void
4079 output_address (machine_mode mode, rtx x)
4080 {
4081   bool changed = false;
4082   walk_alter_subreg (&x, &changed);
4083   targetm.asm_out.print_operand_address (asm_out_file, mode, x);
4084 }
4085 
4086 /* Print an integer constant expression in assembler syntax.
4087    Addition and subtraction are the only arithmetic
4088    that may appear in these expressions.  */
4089 
4090 void
4091 output_addr_const (FILE *file, rtx x)
4092 {
4093   char buf[256];
4094 
4095  restart:
4096   switch (GET_CODE (x))
4097     {
4098     case PC:
4099       putc ('.', file);
4100       break;
4101 
4102     case SYMBOL_REF:
4103       if (SYMBOL_REF_DECL (x))
4104 	assemble_external (SYMBOL_REF_DECL (x));
4105 #ifdef ASM_OUTPUT_SYMBOL_REF
4106       ASM_OUTPUT_SYMBOL_REF (file, x);
4107 #else
4108       assemble_name (file, XSTR (x, 0));
4109 #endif
4110       break;
4111 
4112     case LABEL_REF:
4113       x = label_ref_label (x);
4114       /* Fall through.  */
4115     case CODE_LABEL:
4116       ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
4117 #ifdef ASM_OUTPUT_LABEL_REF
4118       ASM_OUTPUT_LABEL_REF (file, buf);
4119 #else
4120       assemble_name (file, buf);
4121 #endif
4122       break;
4123 
4124     case CONST_INT:
4125       fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
4126       break;
4127 
4128     case CONST:
4129       /* This used to output parentheses around the expression,
4130 	 but that does not work on the 386 (either ATT or BSD assembler).  */
4131       output_addr_const (file, XEXP (x, 0));
4132       break;
4133 
4134     case CONST_WIDE_INT:
4135       /* We do not know the mode here so we have to use a round about
4136 	 way to build a wide-int to get it printed properly.  */
4137       {
4138 	wide_int w = wide_int::from_array (&CONST_WIDE_INT_ELT (x, 0),
4139 					   CONST_WIDE_INT_NUNITS (x),
4140 					   CONST_WIDE_INT_NUNITS (x)
4141 					   * HOST_BITS_PER_WIDE_INT,
4142 					   false);
4143 	print_decs (w, file);
4144       }
4145       break;
4146 
4147     case CONST_DOUBLE:
4148       if (CONST_DOUBLE_AS_INT_P (x))
4149 	{
4150 	  /* We can use %d if the number is one word and positive.  */
4151 	  if (CONST_DOUBLE_HIGH (x))
4152 	    fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
4153 		     (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
4154 		     (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
4155 	  else if (CONST_DOUBLE_LOW (x) < 0)
4156 	    fprintf (file, HOST_WIDE_INT_PRINT_HEX,
4157 		     (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
4158 	  else
4159 	    fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
4160 	}
4161       else
4162 	/* We can't handle floating point constants;
4163 	   PRINT_OPERAND must handle them.  */
4164 	output_operand_lossage ("floating constant misused");
4165       break;
4166 
4167     case CONST_FIXED:
4168       fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_FIXED_VALUE_LOW (x));
4169       break;
4170 
4171     case PLUS:
4172       /* Some assemblers need integer constants to appear last (eg masm).  */
4173       if (CONST_INT_P (XEXP (x, 0)))
4174 	{
4175 	  output_addr_const (file, XEXP (x, 1));
4176 	  if (INTVAL (XEXP (x, 0)) >= 0)
4177 	    fprintf (file, "+");
4178 	  output_addr_const (file, XEXP (x, 0));
4179 	}
4180       else
4181 	{
4182 	  output_addr_const (file, XEXP (x, 0));
4183 	  if (!CONST_INT_P (XEXP (x, 1))
4184 	      || INTVAL (XEXP (x, 1)) >= 0)
4185 	    fprintf (file, "+");
4186 	  output_addr_const (file, XEXP (x, 1));
4187 	}
4188       break;
4189 
4190     case MINUS:
4191       /* Avoid outputting things like x-x or x+5-x,
4192 	 since some assemblers can't handle that.  */
4193       x = simplify_subtraction (x);
4194       if (GET_CODE (x) != MINUS)
4195 	goto restart;
4196 
4197       output_addr_const (file, XEXP (x, 0));
4198       fprintf (file, "-");
4199       if ((CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0)
4200 	  || GET_CODE (XEXP (x, 1)) == PC
4201 	  || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
4202 	output_addr_const (file, XEXP (x, 1));
4203       else
4204 	{
4205 	  fputs (targetm.asm_out.open_paren, file);
4206 	  output_addr_const (file, XEXP (x, 1));
4207 	  fputs (targetm.asm_out.close_paren, file);
4208 	}
4209       break;
4210 
4211     case ZERO_EXTEND:
4212     case SIGN_EXTEND:
4213     case SUBREG:
4214     case TRUNCATE:
4215       output_addr_const (file, XEXP (x, 0));
4216       break;
4217 
4218     default:
4219       if (targetm.asm_out.output_addr_const_extra (file, x))
4220 	break;
4221 
4222       output_operand_lossage ("invalid expression as operand");
4223     }
4224 }
4225 
4226 /* Output a quoted string.  */
4227 
4228 void
4229 output_quoted_string (FILE *asm_file, const char *string)
4230 {
4231 #ifdef OUTPUT_QUOTED_STRING
4232   OUTPUT_QUOTED_STRING (asm_file, string);
4233 #else
4234   char c;
4235 
4236   putc ('\"', asm_file);
4237   while ((c = *string++) != 0)
4238     {
4239       if (ISPRINT (c))
4240 	{
4241 	  if (c == '\"' || c == '\\')
4242 	    putc ('\\', asm_file);
4243 	  putc (c, asm_file);
4244 	}
4245       else
4246 	fprintf (asm_file, "\\%03o", (unsigned char) c);
4247     }
4248   putc ('\"', asm_file);
4249 #endif
4250 }
4251 
4252 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4253 
4254 void
4255 fprint_whex (FILE *f, unsigned HOST_WIDE_INT value)
4256 {
4257   char buf[2 + CHAR_BIT * sizeof (value) / 4];
4258   if (value == 0)
4259     putc ('0', f);
4260   else
4261     {
4262       char *p = buf + sizeof (buf);
4263       do
4264         *--p = "0123456789abcdef"[value % 16];
4265       while ((value /= 16) != 0);
4266       *--p = 'x';
4267       *--p = '0';
4268       fwrite (p, 1, buf + sizeof (buf) - p, f);
4269     }
4270 }
4271 
4272 /* Internal function that prints an unsigned long in decimal in reverse.
4273    The output string IS NOT null-terminated. */
4274 
4275 static int
4276 sprint_ul_rev (char *s, unsigned long value)
4277 {
4278   int i = 0;
4279   do
4280     {
4281       s[i] = "0123456789"[value % 10];
4282       value /= 10;
4283       i++;
4284       /* alternate version, without modulo */
4285       /* oldval = value; */
4286       /* value /= 10; */
4287       /* s[i] = "0123456789" [oldval - 10*value]; */
4288       /* i++ */
4289     }
4290   while (value != 0);
4291   return i;
4292 }
4293 
4294 /* Write an unsigned long as decimal to a file, fast. */
4295 
4296 void
4297 fprint_ul (FILE *f, unsigned long value)
4298 {
4299   /* python says: len(str(2**64)) == 20 */
4300   char s[20];
4301   int i;
4302 
4303   i = sprint_ul_rev (s, value);
4304 
4305   /* It's probably too small to bother with string reversal and fputs. */
4306   do
4307     {
4308       i--;
4309       putc (s[i], f);
4310     }
4311   while (i != 0);
4312 }
4313 
4314 /* Write an unsigned long as decimal to a string, fast.
4315    s must be wide enough to not overflow, at least 21 chars.
4316    Returns the length of the string (without terminating '\0'). */
4317 
4318 int
4319 sprint_ul (char *s, unsigned long value)
4320 {
4321   int len = sprint_ul_rev (s, value);
4322   s[len] = '\0';
4323 
4324   std::reverse (s, s + len);
4325   return len;
4326 }
4327 
4328 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4329    %R prints the value of REGISTER_PREFIX.
4330    %L prints the value of LOCAL_LABEL_PREFIX.
4331    %U prints the value of USER_LABEL_PREFIX.
4332    %I prints the value of IMMEDIATE_PREFIX.
4333    %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4334    Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4335 
4336    We handle alternate assembler dialects here, just like output_asm_insn.  */
4337 
4338 void
4339 asm_fprintf (FILE *file, const char *p, ...)
4340 {
4341   char buf[10];
4342   char *q, c;
4343 #ifdef ASSEMBLER_DIALECT
4344   int dialect = 0;
4345 #endif
4346   va_list argptr;
4347 
4348   va_start (argptr, p);
4349 
4350   buf[0] = '%';
4351 
4352   while ((c = *p++))
4353     switch (c)
4354       {
4355 #ifdef ASSEMBLER_DIALECT
4356       case '{':
4357       case '}':
4358       case '|':
4359 	p = do_assembler_dialects (p, &dialect);
4360 	break;
4361 #endif
4362 
4363       case '%':
4364 	c = *p++;
4365 	q = &buf[1];
4366 	while (strchr ("-+ #0", c))
4367 	  {
4368 	    *q++ = c;
4369 	    c = *p++;
4370 	  }
4371 	while (ISDIGIT (c) || c == '.')
4372 	  {
4373 	    *q++ = c;
4374 	    c = *p++;
4375 	  }
4376 	switch (c)
4377 	  {
4378 	  case '%':
4379 	    putc ('%', file);
4380 	    break;
4381 
4382 	  case 'd':  case 'i':  case 'u':
4383 	  case 'x':  case 'X':  case 'o':
4384 	  case 'c':
4385 	    *q++ = c;
4386 	    *q = 0;
4387 	    fprintf (file, buf, va_arg (argptr, int));
4388 	    break;
4389 
4390 	  case 'w':
4391 	    /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4392 	       'o' cases, but we do not check for those cases.  It
4393 	       means that the value is a HOST_WIDE_INT, which may be
4394 	       either `long' or `long long'.  */
4395 	    memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
4396 	    q += strlen (HOST_WIDE_INT_PRINT);
4397 	    *q++ = *p++;
4398 	    *q = 0;
4399 	    fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
4400 	    break;
4401 
4402 	  case 'l':
4403 	    *q++ = c;
4404 #ifdef HAVE_LONG_LONG
4405 	    if (*p == 'l')
4406 	      {
4407 		*q++ = *p++;
4408 		*q++ = *p++;
4409 		*q = 0;
4410 		fprintf (file, buf, va_arg (argptr, long long));
4411 	      }
4412 	    else
4413 #endif
4414 	      {
4415 		*q++ = *p++;
4416 		*q = 0;
4417 		fprintf (file, buf, va_arg (argptr, long));
4418 	      }
4419 
4420 	    break;
4421 
4422 	  case 's':
4423 	    *q++ = c;
4424 	    *q = 0;
4425 	    fprintf (file, buf, va_arg (argptr, char *));
4426 	    break;
4427 
4428 	  case 'O':
4429 #ifdef ASM_OUTPUT_OPCODE
4430 	    ASM_OUTPUT_OPCODE (asm_out_file, p);
4431 #endif
4432 	    break;
4433 
4434 	  case 'R':
4435 #ifdef REGISTER_PREFIX
4436 	    fprintf (file, "%s", REGISTER_PREFIX);
4437 #endif
4438 	    break;
4439 
4440 	  case 'I':
4441 #ifdef IMMEDIATE_PREFIX
4442 	    fprintf (file, "%s", IMMEDIATE_PREFIX);
4443 #endif
4444 	    break;
4445 
4446 	  case 'L':
4447 #ifdef LOCAL_LABEL_PREFIX
4448 	    fprintf (file, "%s", LOCAL_LABEL_PREFIX);
4449 #endif
4450 	    break;
4451 
4452 	  case 'U':
4453 	    fputs (user_label_prefix, file);
4454 	    break;
4455 
4456 #ifdef ASM_FPRINTF_EXTENSIONS
4457 	    /* Uppercase letters are reserved for general use by asm_fprintf
4458 	       and so are not available to target specific code.  In order to
4459 	       prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4460 	       they are defined here.  As they get turned into real extensions
4461 	       to asm_fprintf they should be removed from this list.  */
4462 	  case 'A': case 'B': case 'C': case 'D': case 'E':
4463 	  case 'F': case 'G': case 'H': case 'J': case 'K':
4464 	  case 'M': case 'N': case 'P': case 'Q': case 'S':
4465 	  case 'T': case 'V': case 'W': case 'Y': case 'Z':
4466 	    break;
4467 
4468 	  ASM_FPRINTF_EXTENSIONS (file, argptr, p)
4469 #endif
4470 	  default:
4471 	    gcc_unreachable ();
4472 	  }
4473 	break;
4474 
4475       default:
4476 	putc (c, file);
4477       }
4478   va_end (argptr);
4479 }
4480 
4481 /* Return nonzero if this function has no function calls.  */
4482 
4483 int
4484 leaf_function_p (void)
4485 {
4486   rtx_insn *insn;
4487 
4488   /* Ensure we walk the entire function body.  */
4489   gcc_assert (!in_sequence_p ());
4490 
4491   /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4492      functions even if they call mcount.  */
4493   if (crtl->profile && !targetm.keep_leaf_when_profiled ())
4494     return 0;
4495 
4496   for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4497     {
4498       if (CALL_P (insn)
4499 	  && ! SIBLING_CALL_P (insn))
4500 	return 0;
4501       if (NONJUMP_INSN_P (insn)
4502 	  && GET_CODE (PATTERN (insn)) == SEQUENCE
4503 	  && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
4504 	  && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4505 	return 0;
4506     }
4507 
4508   return 1;
4509 }
4510 
4511 /* Return 1 if branch is a forward branch.
4512    Uses insn_shuid array, so it works only in the final pass.  May be used by
4513    output templates to customary add branch prediction hints.
4514  */
4515 int
4516 final_forward_branch_p (rtx_insn *insn)
4517 {
4518   int insn_id, label_id;
4519 
4520   gcc_assert (uid_shuid);
4521   insn_id = INSN_SHUID (insn);
4522   label_id = INSN_SHUID (JUMP_LABEL (insn));
4523   /* We've hit some insns that does not have id information available.  */
4524   gcc_assert (insn_id && label_id);
4525   return insn_id < label_id;
4526 }
4527 
4528 /* On some machines, a function with no call insns
4529    can run faster if it doesn't create its own register window.
4530    When output, the leaf function should use only the "output"
4531    registers.  Ordinarily, the function would be compiled to use
4532    the "input" registers to find its arguments; it is a candidate
4533    for leaf treatment if it uses only the "input" registers.
4534    Leaf function treatment means renumbering so the function
4535    uses the "output" registers instead.  */
4536 
4537 #ifdef LEAF_REGISTERS
4538 
4539 /* Return 1 if this function uses only the registers that can be
4540    safely renumbered.  */
4541 
4542 int
4543 only_leaf_regs_used (void)
4544 {
4545   int i;
4546   const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4547 
4548   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4549     if ((df_regs_ever_live_p (i) || global_regs[i])
4550 	&& ! permitted_reg_in_leaf_functions[i])
4551       return 0;
4552 
4553   if (crtl->uses_pic_offset_table
4554       && pic_offset_table_rtx != 0
4555       && REG_P (pic_offset_table_rtx)
4556       && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4557     return 0;
4558 
4559   return 1;
4560 }
4561 
4562 /* Scan all instructions and renumber all registers into those
4563    available in leaf functions.  */
4564 
4565 static void
4566 leaf_renumber_regs (rtx_insn *first)
4567 {
4568   rtx_insn *insn;
4569 
4570   /* Renumber only the actual patterns.
4571      The reg-notes can contain frame pointer refs,
4572      and renumbering them could crash, and should not be needed.  */
4573   for (insn = first; insn; insn = NEXT_INSN (insn))
4574     if (INSN_P (insn))
4575       leaf_renumber_regs_insn (PATTERN (insn));
4576 }
4577 
4578 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4579    available in leaf functions.  */
4580 
4581 void
4582 leaf_renumber_regs_insn (rtx in_rtx)
4583 {
4584   int i, j;
4585   const char *format_ptr;
4586 
4587   if (in_rtx == 0)
4588     return;
4589 
4590   /* Renumber all input-registers into output-registers.
4591      renumbered_regs would be 1 for an output-register;
4592      they  */
4593 
4594   if (REG_P (in_rtx))
4595     {
4596       int newreg;
4597 
4598       /* Don't renumber the same reg twice.  */
4599       if (in_rtx->used)
4600 	return;
4601 
4602       newreg = REGNO (in_rtx);
4603       /* Don't try to renumber pseudo regs.  It is possible for a pseudo reg
4604 	 to reach here as part of a REG_NOTE.  */
4605       if (newreg >= FIRST_PSEUDO_REGISTER)
4606 	{
4607 	  in_rtx->used = 1;
4608 	  return;
4609 	}
4610       newreg = LEAF_REG_REMAP (newreg);
4611       gcc_assert (newreg >= 0);
4612       df_set_regs_ever_live (REGNO (in_rtx), false);
4613       df_set_regs_ever_live (newreg, true);
4614       SET_REGNO (in_rtx, newreg);
4615       in_rtx->used = 1;
4616       return;
4617     }
4618 
4619   if (INSN_P (in_rtx))
4620     {
4621       /* Inside a SEQUENCE, we find insns.
4622 	 Renumber just the patterns of these insns,
4623 	 just as we do for the top-level insns.  */
4624       leaf_renumber_regs_insn (PATTERN (in_rtx));
4625       return;
4626     }
4627 
4628   format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4629 
4630   for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4631     switch (*format_ptr++)
4632       {
4633       case 'e':
4634 	leaf_renumber_regs_insn (XEXP (in_rtx, i));
4635 	break;
4636 
4637       case 'E':
4638 	if (XVEC (in_rtx, i) != NULL)
4639 	  for (j = 0; j < XVECLEN (in_rtx, i); j++)
4640 	    leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4641 	break;
4642 
4643       case 'S':
4644       case 's':
4645       case '0':
4646       case 'i':
4647       case 'w':
4648       case 'p':
4649       case 'n':
4650       case 'u':
4651 	break;
4652 
4653       default:
4654 	gcc_unreachable ();
4655       }
4656 }
4657 #endif
4658 
4659 /* Turn the RTL into assembly.  */
4660 static unsigned int
4661 rest_of_handle_final (void)
4662 {
4663   const char *fnname = get_fnname_from_decl (current_function_decl);
4664 
4665   /* Turn debug markers into notes if the var-tracking pass has not
4666      been invoked.  */
4667   if (!flag_var_tracking && MAY_HAVE_DEBUG_MARKER_INSNS)
4668     delete_vta_debug_insns (false);
4669 
4670   assemble_start_function (current_function_decl, fnname);
4671   rtx_insn *first = get_insns ();
4672   int seen = 0;
4673   final_start_function_1 (&first, asm_out_file, &seen, optimize);
4674   final_1 (first, asm_out_file, seen, optimize);
4675   if (flag_ipa_ra
4676       && !lookup_attribute ("noipa", DECL_ATTRIBUTES (current_function_decl)))
4677     collect_fn_hard_reg_usage ();
4678   final_end_function ();
4679 
4680   /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4681      directive that closes the procedure descriptor.  Similarly, for x64 SEH.
4682      Otherwise it's not strictly necessary, but it doesn't hurt either.  */
4683   output_function_exception_table (crtl->has_bb_partition ? 1 : 0);
4684 
4685   assemble_end_function (current_function_decl, fnname);
4686 
4687   /* Free up reg info memory.  */
4688   free_reg_info ();
4689 
4690   if (! quiet_flag)
4691     fflush (asm_out_file);
4692 
4693   /* Write DBX symbols if requested.  */
4694 
4695   /* Note that for those inline functions where we don't initially
4696      know for certain that we will be generating an out-of-line copy,
4697      the first invocation of this routine (rest_of_compilation) will
4698      skip over this code by doing a `goto exit_rest_of_compilation;'.
4699      Later on, wrapup_global_declarations will (indirectly) call
4700      rest_of_compilation again for those inline functions that need
4701      to have out-of-line copies generated.  During that call, we
4702      *will* be routed past here.  */
4703 
4704   timevar_push (TV_SYMOUT);
4705   if (!DECL_IGNORED_P (current_function_decl))
4706     debug_hooks->function_decl (current_function_decl);
4707   timevar_pop (TV_SYMOUT);
4708 
4709   /* Release the blocks that are linked to DECL_INITIAL() to free the memory.  */
4710   DECL_INITIAL (current_function_decl) = error_mark_node;
4711 
4712   if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4713       && targetm.have_ctors_dtors)
4714     targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4715 				 decl_init_priority_lookup
4716 				   (current_function_decl));
4717   if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4718       && targetm.have_ctors_dtors)
4719     targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4720 				decl_fini_priority_lookup
4721 				  (current_function_decl));
4722   return 0;
4723 }
4724 
4725 namespace {
4726 
4727 const pass_data pass_data_final =
4728 {
4729   RTL_PASS, /* type */
4730   "final", /* name */
4731   OPTGROUP_NONE, /* optinfo_flags */
4732   TV_FINAL, /* tv_id */
4733   0, /* properties_required */
4734   0, /* properties_provided */
4735   0, /* properties_destroyed */
4736   0, /* todo_flags_start */
4737   0, /* todo_flags_finish */
4738 };
4739 
4740 class pass_final : public rtl_opt_pass
4741 {
4742 public:
4743   pass_final (gcc::context *ctxt)
4744     : rtl_opt_pass (pass_data_final, ctxt)
4745   {}
4746 
4747   /* opt_pass methods: */
4748   virtual unsigned int execute (function *) { return rest_of_handle_final (); }
4749 
4750 }; // class pass_final
4751 
4752 } // anon namespace
4753 
4754 rtl_opt_pass *
4755 make_pass_final (gcc::context *ctxt)
4756 {
4757   return new pass_final (ctxt);
4758 }
4759 
4760 
4761 static unsigned int
4762 rest_of_handle_shorten_branches (void)
4763 {
4764   /* Shorten branches.  */
4765   shorten_branches (get_insns ());
4766   return 0;
4767 }
4768 
4769 namespace {
4770 
4771 const pass_data pass_data_shorten_branches =
4772 {
4773   RTL_PASS, /* type */
4774   "shorten", /* name */
4775   OPTGROUP_NONE, /* optinfo_flags */
4776   TV_SHORTEN_BRANCH, /* tv_id */
4777   0, /* properties_required */
4778   0, /* properties_provided */
4779   0, /* properties_destroyed */
4780   0, /* todo_flags_start */
4781   0, /* todo_flags_finish */
4782 };
4783 
4784 class pass_shorten_branches : public rtl_opt_pass
4785 {
4786 public:
4787   pass_shorten_branches (gcc::context *ctxt)
4788     : rtl_opt_pass (pass_data_shorten_branches, ctxt)
4789   {}
4790 
4791   /* opt_pass methods: */
4792   virtual unsigned int execute (function *)
4793     {
4794       return rest_of_handle_shorten_branches ();
4795     }
4796 
4797 }; // class pass_shorten_branches
4798 
4799 } // anon namespace
4800 
4801 rtl_opt_pass *
4802 make_pass_shorten_branches (gcc::context *ctxt)
4803 {
4804   return new pass_shorten_branches (ctxt);
4805 }
4806 
4807 
4808 static unsigned int
4809 rest_of_clean_state (void)
4810 {
4811   rtx_insn *insn, *next;
4812   FILE *final_output = NULL;
4813   int save_unnumbered = flag_dump_unnumbered;
4814   int save_noaddr = flag_dump_noaddr;
4815 
4816   if (flag_dump_final_insns)
4817     {
4818       final_output = fopen (flag_dump_final_insns, "a");
4819       if (!final_output)
4820 	{
4821 	  error ("could not open final insn dump file %qs: %m",
4822 		 flag_dump_final_insns);
4823 	  flag_dump_final_insns = NULL;
4824 	}
4825       else
4826 	{
4827 	  flag_dump_noaddr = flag_dump_unnumbered = 1;
4828 	  if (flag_compare_debug_opt || flag_compare_debug)
4829 	    dump_flags |= TDF_NOUID | TDF_COMPARE_DEBUG;
4830 	  dump_function_header (final_output, current_function_decl,
4831 				dump_flags);
4832 	  final_insns_dump_p = true;
4833 
4834 	  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4835 	    if (LABEL_P (insn))
4836 	      INSN_UID (insn) = CODE_LABEL_NUMBER (insn);
4837 	    else
4838 	      {
4839 		if (NOTE_P (insn))
4840 		  set_block_for_insn (insn, NULL);
4841 		INSN_UID (insn) = 0;
4842 	      }
4843 	}
4844     }
4845 
4846   /* It is very important to decompose the RTL instruction chain here:
4847      debug information keeps pointing into CODE_LABEL insns inside the function
4848      body.  If these remain pointing to the other insns, we end up preserving
4849      whole RTL chain and attached detailed debug info in memory.  */
4850   for (insn = get_insns (); insn; insn = next)
4851     {
4852       next = NEXT_INSN (insn);
4853       SET_NEXT_INSN (insn) = NULL;
4854       SET_PREV_INSN (insn) = NULL;
4855 
4856       rtx_insn *call_insn = insn;
4857       if (NONJUMP_INSN_P (call_insn)
4858 	  && GET_CODE (PATTERN (call_insn)) == SEQUENCE)
4859 	{
4860 	  rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (call_insn));
4861 	  call_insn = seq->insn (0);
4862 	}
4863       if (CALL_P (call_insn))
4864 	{
4865 	  rtx note
4866 	    = find_reg_note (call_insn, REG_CALL_ARG_LOCATION, NULL_RTX);
4867 	  if (note)
4868 	    remove_note (call_insn, note);
4869 	}
4870 
4871       if (final_output
4872 	  && (!NOTE_P (insn)
4873 	      || (NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION
4874 		  && NOTE_KIND (insn) != NOTE_INSN_BEGIN_STMT
4875 		  && NOTE_KIND (insn) != NOTE_INSN_INLINE_ENTRY
4876 		  && NOTE_KIND (insn) != NOTE_INSN_BLOCK_BEG
4877 		  && NOTE_KIND (insn) != NOTE_INSN_BLOCK_END
4878 		  && NOTE_KIND (insn) != NOTE_INSN_DELETED_DEBUG_LABEL)))
4879 	print_rtl_single (final_output, insn);
4880     }
4881 
4882   if (final_output)
4883     {
4884       flag_dump_noaddr = save_noaddr;
4885       flag_dump_unnumbered = save_unnumbered;
4886       final_insns_dump_p = false;
4887 
4888       if (fclose (final_output))
4889 	{
4890 	  error ("could not close final insn dump file %qs: %m",
4891 		 flag_dump_final_insns);
4892 	  flag_dump_final_insns = NULL;
4893 	}
4894     }
4895 
4896   flag_rerun_cse_after_global_opts = 0;
4897   reload_completed = 0;
4898   epilogue_completed = 0;
4899 #ifdef STACK_REGS
4900   regstack_completed = 0;
4901 #endif
4902 
4903   /* Clear out the insn_length contents now that they are no
4904      longer valid.  */
4905   init_insn_lengths ();
4906 
4907   /* Show no temporary slots allocated.  */
4908   init_temp_slots ();
4909 
4910   free_bb_for_insn ();
4911 
4912   if (cfun->gimple_df)
4913     delete_tree_ssa (cfun);
4914 
4915   /* We can reduce stack alignment on call site only when we are sure that
4916      the function body just produced will be actually used in the final
4917      executable.  */
4918   if (decl_binds_to_current_def_p (current_function_decl))
4919     {
4920       unsigned int pref = crtl->preferred_stack_boundary;
4921       if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
4922         pref = crtl->stack_alignment_needed;
4923       cgraph_node::rtl_info (current_function_decl)
4924 	->preferred_incoming_stack_boundary = pref;
4925     }
4926 
4927   /* Make sure volatile mem refs aren't considered valid operands for
4928      arithmetic insns.  We must call this here if this is a nested inline
4929      function, since the above code leaves us in the init_recog state,
4930      and the function context push/pop code does not save/restore volatile_ok.
4931 
4932      ??? Maybe it isn't necessary for expand_start_function to call this
4933      anymore if we do it here?  */
4934 
4935   init_recog_no_volatile ();
4936 
4937   /* We're done with this function.  Free up memory if we can.  */
4938   free_after_parsing (cfun);
4939   free_after_compilation (cfun);
4940   return 0;
4941 }
4942 
4943 namespace {
4944 
4945 const pass_data pass_data_clean_state =
4946 {
4947   RTL_PASS, /* type */
4948   "*clean_state", /* name */
4949   OPTGROUP_NONE, /* optinfo_flags */
4950   TV_FINAL, /* tv_id */
4951   0, /* properties_required */
4952   0, /* properties_provided */
4953   PROP_rtl, /* properties_destroyed */
4954   0, /* todo_flags_start */
4955   0, /* todo_flags_finish */
4956 };
4957 
4958 class pass_clean_state : public rtl_opt_pass
4959 {
4960 public:
4961   pass_clean_state (gcc::context *ctxt)
4962     : rtl_opt_pass (pass_data_clean_state, ctxt)
4963   {}
4964 
4965   /* opt_pass methods: */
4966   virtual unsigned int execute (function *)
4967     {
4968       return rest_of_clean_state ();
4969     }
4970 
4971 }; // class pass_clean_state
4972 
4973 } // anon namespace
4974 
4975 rtl_opt_pass *
4976 make_pass_clean_state (gcc::context *ctxt)
4977 {
4978   return new pass_clean_state (ctxt);
4979 }
4980 
4981 /* Return true if INSN is a call to the current function.  */
4982 
4983 static bool
4984 self_recursive_call_p (rtx_insn *insn)
4985 {
4986   tree fndecl = get_call_fndecl (insn);
4987   return (fndecl == current_function_decl
4988 	  && decl_binds_to_current_def_p (fndecl));
4989 }
4990 
4991 /* Collect hard register usage for the current function.  */
4992 
4993 static void
4994 collect_fn_hard_reg_usage (void)
4995 {
4996   rtx_insn *insn;
4997 #ifdef STACK_REGS
4998   int i;
4999 #endif
5000   struct cgraph_rtl_info *node;
5001   HARD_REG_SET function_used_regs;
5002 
5003   /* ??? To be removed when all the ports have been fixed.  */
5004   if (!targetm.call_fusage_contains_non_callee_clobbers)
5005     return;
5006 
5007   CLEAR_HARD_REG_SET (function_used_regs);
5008 
5009   for (insn = get_insns (); insn != NULL_RTX; insn = next_insn (insn))
5010     {
5011       HARD_REG_SET insn_used_regs;
5012 
5013       if (!NONDEBUG_INSN_P (insn))
5014 	continue;
5015 
5016       if (CALL_P (insn)
5017 	  && !self_recursive_call_p (insn))
5018 	{
5019 	  if (!get_call_reg_set_usage (insn, &insn_used_regs,
5020 				       call_used_reg_set))
5021 	    return;
5022 
5023 	  IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
5024 	}
5025 
5026       find_all_hard_reg_sets (insn, &insn_used_regs, false);
5027       IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
5028     }
5029 
5030   /* Be conservative - mark fixed and global registers as used.  */
5031   IOR_HARD_REG_SET (function_used_regs, fixed_reg_set);
5032 
5033 #ifdef STACK_REGS
5034   /* Handle STACK_REGS conservatively, since the df-framework does not
5035      provide accurate information for them.  */
5036 
5037   for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
5038     SET_HARD_REG_BIT (function_used_regs, i);
5039 #endif
5040 
5041   /* The information we have gathered is only interesting if it exposes a
5042      register from the call_used_regs that is not used in this function.  */
5043   if (hard_reg_set_subset_p (call_used_reg_set, function_used_regs))
5044     return;
5045 
5046   node = cgraph_node::rtl_info (current_function_decl);
5047   gcc_assert (node != NULL);
5048 
5049   COPY_HARD_REG_SET (node->function_used_regs, function_used_regs);
5050   node->function_used_regs_valid = 1;
5051 }
5052 
5053 /* Get the declaration of the function called by INSN.  */
5054 
5055 static tree
5056 get_call_fndecl (rtx_insn *insn)
5057 {
5058   rtx note, datum;
5059 
5060   note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX);
5061   if (note == NULL_RTX)
5062     return NULL_TREE;
5063 
5064   datum = XEXP (note, 0);
5065   if (datum != NULL_RTX)
5066     return SYMBOL_REF_DECL (datum);
5067 
5068   return NULL_TREE;
5069 }
5070 
5071 /* Return the cgraph_rtl_info of the function called by INSN.  Returns NULL for
5072    call targets that can be overwritten.  */
5073 
5074 static struct cgraph_rtl_info *
5075 get_call_cgraph_rtl_info (rtx_insn *insn)
5076 {
5077   tree fndecl;
5078 
5079   if (insn == NULL_RTX)
5080     return NULL;
5081 
5082   fndecl = get_call_fndecl (insn);
5083   if (fndecl == NULL_TREE
5084       || !decl_binds_to_current_def_p (fndecl))
5085     return NULL;
5086 
5087   return cgraph_node::rtl_info (fndecl);
5088 }
5089 
5090 /* Find hard registers used by function call instruction INSN, and return them
5091    in REG_SET.  Return DEFAULT_SET in REG_SET if not found.  */
5092 
5093 bool
5094 get_call_reg_set_usage (rtx_insn *insn, HARD_REG_SET *reg_set,
5095 			HARD_REG_SET default_set)
5096 {
5097   if (flag_ipa_ra)
5098     {
5099       struct cgraph_rtl_info *node = get_call_cgraph_rtl_info (insn);
5100       if (node != NULL
5101 	  && node->function_used_regs_valid)
5102 	{
5103 	  COPY_HARD_REG_SET (*reg_set, node->function_used_regs);
5104 	  AND_HARD_REG_SET (*reg_set, default_set);
5105 	  return true;
5106 	}
5107     }
5108 
5109   COPY_HARD_REG_SET (*reg_set, default_set);
5110   return false;
5111 }
5112