xref: /dragonfly/contrib/gcc-8.0/gcc/haifa-sched.c (revision 3d33658b)
1 /* Instruction scheduling pass.
2    Copyright (C) 1992-2018 Free Software Foundation, Inc.
3    Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4    and currently maintained by, Jim Wilson (wilson@cygnus.com)
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 /* Instruction scheduling pass.  This file, along with sched-deps.c,
23    contains the generic parts.  The actual entry point for
24    the normal instruction scheduling pass is found in sched-rgn.c.
25 
26    We compute insn priorities based on data dependencies.  Flow
27    analysis only creates a fraction of the data-dependencies we must
28    observe: namely, only those dependencies which the combiner can be
29    expected to use.  For this pass, we must therefore create the
30    remaining dependencies we need to observe: register dependencies,
31    memory dependencies, dependencies to keep function calls in order,
32    and the dependence between a conditional branch and the setting of
33    condition codes are all dealt with here.
34 
35    The scheduler first traverses the data flow graph, starting with
36    the last instruction, and proceeding to the first, assigning values
37    to insn_priority as it goes.  This sorts the instructions
38    topologically by data dependence.
39 
40    Once priorities have been established, we order the insns using
41    list scheduling.  This works as follows: starting with a list of
42    all the ready insns, and sorted according to priority number, we
43    schedule the insn from the end of the list by placing its
44    predecessors in the list according to their priority order.  We
45    consider this insn scheduled by setting the pointer to the "end" of
46    the list to point to the previous insn.  When an insn has no
47    predecessors, we either queue it until sufficient time has elapsed
48    or add it to the ready list.  As the instructions are scheduled or
49    when stalls are introduced, the queue advances and dumps insns into
50    the ready list.  When all insns down to the lowest priority have
51    been scheduled, the critical path of the basic block has been made
52    as short as possible.  The remaining insns are then scheduled in
53    remaining slots.
54 
55    The following list shows the order in which we want to break ties
56    among insns in the ready list:
57 
58    1.  choose insn with the longest path to end of bb, ties
59    broken by
60    2.  choose insn with least contribution to register pressure,
61    ties broken by
62    3.  prefer in-block upon interblock motion, ties broken by
63    4.  prefer useful upon speculative motion, ties broken by
64    5.  choose insn with largest control flow probability, ties
65    broken by
66    6.  choose insn with the least dependences upon the previously
67    scheduled insn, or finally
68    7   choose the insn which has the most insns dependent on it.
69    8.  choose insn with lowest UID.
70 
71    Memory references complicate matters.  Only if we can be certain
72    that memory references are not part of the data dependency graph
73    (via true, anti, or output dependence), can we move operations past
74    memory references.  To first approximation, reads can be done
75    independently, while writes introduce dependencies.  Better
76    approximations will yield fewer dependencies.
77 
78    Before reload, an extended analysis of interblock data dependences
79    is required for interblock scheduling.  This is performed in
80    compute_block_dependences ().
81 
82    Dependencies set up by memory references are treated in exactly the
83    same way as other dependencies, by using insn backward dependences
84    INSN_BACK_DEPS.  INSN_BACK_DEPS are translated into forward dependences
85    INSN_FORW_DEPS for the purpose of forward list scheduling.
86 
87    Having optimized the critical path, we may have also unduly
88    extended the lifetimes of some registers.  If an operation requires
89    that constants be loaded into registers, it is certainly desirable
90    to load those constants as early as necessary, but no earlier.
91    I.e., it will not do to load up a bunch of registers at the
92    beginning of a basic block only to use them at the end, if they
93    could be loaded later, since this may result in excessive register
94    utilization.
95 
96    Note that since branches are never in basic blocks, but only end
97    basic blocks, this pass will not move branches.  But that is ok,
98    since we can use GNU's delayed branch scheduling pass to take care
99    of this case.
100 
101    Also note that no further optimizations based on algebraic
102    identities are performed, so this pass would be a good one to
103    perform instruction splitting, such as breaking up a multiply
104    instruction into shifts and adds where that is profitable.
105 
106    Given the memory aliasing analysis that this pass should perform,
107    it should be possible to remove redundant stores to memory, and to
108    load values from registers instead of hitting memory.
109 
110    Before reload, speculative insns are moved only if a 'proof' exists
111    that no exception will be caused by this, and if no live registers
112    exist that inhibit the motion (live registers constraints are not
113    represented by data dependence edges).
114 
115    This pass must update information that subsequent passes expect to
116    be correct.  Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
117    reg_n_calls_crossed, and reg_live_length.  Also, BB_HEAD, BB_END.
118 
119    The information in the line number notes is carefully retained by
120    this pass.  Notes that refer to the starting and ending of
121    exception regions are also carefully retained by this pass.  All
122    other NOTE insns are grouped in their same relative order at the
123    beginning of basic blocks and regions that have been scheduled.  */
124 
125 #include "config.h"
126 #include "system.h"
127 #include "coretypes.h"
128 #include "backend.h"
129 #include "target.h"
130 #include "rtl.h"
131 #include "cfghooks.h"
132 #include "df.h"
133 #include "memmodel.h"
134 #include "tm_p.h"
135 #include "insn-config.h"
136 #include "regs.h"
137 #include "ira.h"
138 #include "recog.h"
139 #include "insn-attr.h"
140 #include "cfgrtl.h"
141 #include "cfgbuild.h"
142 #include "sched-int.h"
143 #include "common/common-target.h"
144 #include "params.h"
145 #include "dbgcnt.h"
146 #include "cfgloop.h"
147 #include "dumpfile.h"
148 #include "print-rtl.h"
149 
150 #ifdef INSN_SCHEDULING
151 
152 /* True if we do register pressure relief through live-range
153    shrinkage.  */
154 static bool live_range_shrinkage_p;
155 
156 /* Switch on live range shrinkage.  */
157 void
158 initialize_live_range_shrinkage (void)
159 {
160   live_range_shrinkage_p = true;
161 }
162 
163 /* Switch off live range shrinkage.  */
164 void
165 finish_live_range_shrinkage (void)
166 {
167   live_range_shrinkage_p = false;
168 }
169 
170 /* issue_rate is the number of insns that can be scheduled in the same
171    machine cycle.  It can be defined in the config/mach/mach.h file,
172    otherwise we set it to 1.  */
173 
174 int issue_rate;
175 
176 /* This can be set to true by a backend if the scheduler should not
177    enable a DCE pass.  */
178 bool sched_no_dce;
179 
180 /* The current initiation interval used when modulo scheduling.  */
181 static int modulo_ii;
182 
183 /* The maximum number of stages we are prepared to handle.  */
184 static int modulo_max_stages;
185 
186 /* The number of insns that exist in each iteration of the loop.  We use this
187    to detect when we've scheduled all insns from the first iteration.  */
188 static int modulo_n_insns;
189 
190 /* The current count of insns in the first iteration of the loop that have
191    already been scheduled.  */
192 static int modulo_insns_scheduled;
193 
194 /* The maximum uid of insns from the first iteration of the loop.  */
195 static int modulo_iter0_max_uid;
196 
197 /* The number of times we should attempt to backtrack when modulo scheduling.
198    Decreased each time we have to backtrack.  */
199 static int modulo_backtracks_left;
200 
201 /* The stage in which the last insn from the original loop was
202    scheduled.  */
203 static int modulo_last_stage;
204 
205 /* sched-verbose controls the amount of debugging output the
206    scheduler prints.  It is controlled by -fsched-verbose=N:
207    N=0: no debugging output.
208    N=1: default value.
209    N=2: bb's probabilities, detailed ready list info, unit/insn info.
210    N=3: rtl at abort point, control-flow, regions info.
211    N=5: dependences info.  */
212 int sched_verbose = 0;
213 
214 /* Debugging file.  All printouts are sent to dump. */
215 FILE *sched_dump = 0;
216 
217 /* This is a placeholder for the scheduler parameters common
218    to all schedulers.  */
219 struct common_sched_info_def *common_sched_info;
220 
221 #define INSN_TICK(INSN)	(HID (INSN)->tick)
222 #define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
223 #define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
224 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
225 #define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
226 #define SHADOW_P(INSN) (HID (INSN)->shadow_p)
227 #define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
228 /* Cached cost of the instruction.  Use insn_sched_cost to get cost of the
229    insn.  -1 here means that the field is not initialized.  */
230 #define INSN_COST(INSN)	(HID (INSN)->cost)
231 
232 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
233    then it should be recalculated from scratch.  */
234 #define INVALID_TICK (-(max_insn_queue_index + 1))
235 /* The minimal value of the INSN_TICK of an instruction.  */
236 #define MIN_TICK (-max_insn_queue_index)
237 
238 /* Original order of insns in the ready list.
239    Used to keep order of normal insns while separating DEBUG_INSNs.  */
240 #define INSN_RFS_DEBUG_ORIG_ORDER(INSN) (HID (INSN)->rfs_debug_orig_order)
241 
242 /* The deciding reason for INSN's place in the ready list.  */
243 #define INSN_LAST_RFS_WIN(INSN) (HID (INSN)->last_rfs_win)
244 
245 /* List of important notes we must keep around.  This is a pointer to the
246    last element in the list.  */
247 rtx_insn *note_list;
248 
249 static struct spec_info_def spec_info_var;
250 /* Description of the speculative part of the scheduling.
251    If NULL - no speculation.  */
252 spec_info_t spec_info = NULL;
253 
254 /* True, if recovery block was added during scheduling of current block.
255    Used to determine, if we need to fix INSN_TICKs.  */
256 static bool haifa_recovery_bb_recently_added_p;
257 
258 /* True, if recovery block was added during this scheduling pass.
259    Used to determine if we should have empty memory pools of dependencies
260    after finishing current region.  */
261 bool haifa_recovery_bb_ever_added_p;
262 
263 /* Counters of different types of speculative instructions.  */
264 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
265 
266 /* Array used in {unlink, restore}_bb_notes.  */
267 static rtx_insn **bb_header = 0;
268 
269 /* Basic block after which recovery blocks will be created.  */
270 static basic_block before_recovery;
271 
272 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
273    created it.  */
274 basic_block after_recovery;
275 
276 /* FALSE if we add bb to another region, so we don't need to initialize it.  */
277 bool adding_bb_to_current_region_p = true;
278 
279 /* Queues, etc.  */
280 
281 /* An instruction is ready to be scheduled when all insns preceding it
282    have already been scheduled.  It is important to ensure that all
283    insns which use its result will not be executed until its result
284    has been computed.  An insn is maintained in one of four structures:
285 
286    (P) the "Pending" set of insns which cannot be scheduled until
287    their dependencies have been satisfied.
288    (Q) the "Queued" set of insns that can be scheduled when sufficient
289    time has passed.
290    (R) the "Ready" list of unscheduled, uncommitted insns.
291    (S) the "Scheduled" list of insns.
292 
293    Initially, all insns are either "Pending" or "Ready" depending on
294    whether their dependencies are satisfied.
295 
296    Insns move from the "Ready" list to the "Scheduled" list as they
297    are committed to the schedule.  As this occurs, the insns in the
298    "Pending" list have their dependencies satisfied and move to either
299    the "Ready" list or the "Queued" set depending on whether
300    sufficient time has passed to make them ready.  As time passes,
301    insns move from the "Queued" set to the "Ready" list.
302 
303    The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
304    unscheduled insns, i.e., those that are ready, queued, and pending.
305    The "Queued" set (Q) is implemented by the variable `insn_queue'.
306    The "Ready" list (R) is implemented by the variables `ready' and
307    `n_ready'.
308    The "Scheduled" list (S) is the new insn chain built by this pass.
309 
310    The transition (R->S) is implemented in the scheduling loop in
311    `schedule_block' when the best insn to schedule is chosen.
312    The transitions (P->R and P->Q) are implemented in `schedule_insn' as
313    insns move from the ready list to the scheduled list.
314    The transition (Q->R) is implemented in 'queue_to_insn' as time
315    passes or stalls are introduced.  */
316 
317 /* Implement a circular buffer to delay instructions until sufficient
318    time has passed.  For the new pipeline description interface,
319    MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
320    than maximal time of instruction execution computed by genattr.c on
321    the base maximal time of functional unit reservations and getting a
322    result.  This is the longest time an insn may be queued.  */
323 
324 static rtx_insn_list **insn_queue;
325 static int q_ptr = 0;
326 static int q_size = 0;
327 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
328 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
329 
330 #define QUEUE_SCHEDULED (-3)
331 #define QUEUE_NOWHERE   (-2)
332 #define QUEUE_READY     (-1)
333 /* QUEUE_SCHEDULED - INSN is scheduled.
334    QUEUE_NOWHERE   - INSN isn't scheduled yet and is neither in
335    queue or ready list.
336    QUEUE_READY     - INSN is in ready list.
337    N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles.  */
338 
339 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
340 
341 /* The following variable value refers for all current and future
342    reservations of the processor units.  */
343 state_t curr_state;
344 
345 /* The following variable value is size of memory representing all
346    current and future reservations of the processor units.  */
347 size_t dfa_state_size;
348 
349 /* The following array is used to find the best insn from ready when
350    the automaton pipeline interface is used.  */
351 signed char *ready_try = NULL;
352 
353 /* The ready list.  */
354 struct ready_list ready = {NULL, 0, 0, 0, 0};
355 
356 /* The pointer to the ready list (to be removed).  */
357 static struct ready_list *readyp = &ready;
358 
359 /* Scheduling clock.  */
360 static int clock_var;
361 
362 /* Clock at which the previous instruction was issued.  */
363 static int last_clock_var;
364 
365 /* Set to true if, when queuing a shadow insn, we discover that it would be
366    scheduled too late.  */
367 static bool must_backtrack;
368 
369 /* The following variable value is number of essential insns issued on
370    the current cycle.  An insn is essential one if it changes the
371    processors state.  */
372 int cycle_issued_insns;
373 
374 /* This records the actual schedule.  It is built up during the main phase
375    of schedule_block, and afterwards used to reorder the insns in the RTL.  */
376 static vec<rtx_insn *> scheduled_insns;
377 
378 static int may_trap_exp (const_rtx, int);
379 
380 /* Nonzero iff the address is comprised from at most 1 register.  */
381 #define CONST_BASED_ADDRESS_P(x)			\
382   (REG_P (x)					\
383    || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS	\
384 	|| (GET_CODE (x) == LO_SUM))			\
385        && (CONSTANT_P (XEXP (x, 0))			\
386 	   || CONSTANT_P (XEXP (x, 1)))))
387 
388 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
389    as found by analyzing insn's expression.  */
390 
391 
392 static int haifa_luid_for_non_insn (rtx x);
393 
394 /* Haifa version of sched_info hooks common to all headers.  */
395 const struct common_sched_info_def haifa_common_sched_info =
396   {
397     NULL, /* fix_recovery_cfg */
398     NULL, /* add_block */
399     NULL, /* estimate_number_of_insns */
400     haifa_luid_for_non_insn, /* luid_for_non_insn */
401     SCHED_PASS_UNKNOWN /* sched_pass_id */
402   };
403 
404 /* Mapping from instruction UID to its Logical UID.  */
405 vec<int> sched_luids;
406 
407 /* Next LUID to assign to an instruction.  */
408 int sched_max_luid = 1;
409 
410 /* Haifa Instruction Data.  */
411 vec<haifa_insn_data_def> h_i_d;
412 
413 void (* sched_init_only_bb) (basic_block, basic_block);
414 
415 /* Split block function.  Different schedulers might use different functions
416    to handle their internal data consistent.  */
417 basic_block (* sched_split_block) (basic_block, rtx);
418 
419 /* Create empty basic block after the specified block.  */
420 basic_block (* sched_create_empty_bb) (basic_block);
421 
422 /* Return the number of cycles until INSN is expected to be ready.
423    Return zero if it already is.  */
424 static int
425 insn_delay (rtx_insn *insn)
426 {
427   return MAX (INSN_TICK (insn) - clock_var, 0);
428 }
429 
430 static int
431 may_trap_exp (const_rtx x, int is_store)
432 {
433   enum rtx_code code;
434 
435   if (x == 0)
436     return TRAP_FREE;
437   code = GET_CODE (x);
438   if (is_store)
439     {
440       if (code == MEM && may_trap_p (x))
441 	return TRAP_RISKY;
442       else
443 	return TRAP_FREE;
444     }
445   if (code == MEM)
446     {
447       /* The insn uses memory:  a volatile load.  */
448       if (MEM_VOLATILE_P (x))
449 	return IRISKY;
450       /* An exception-free load.  */
451       if (!may_trap_p (x))
452 	return IFREE;
453       /* A load with 1 base register, to be further checked.  */
454       if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
455 	return PFREE_CANDIDATE;
456       /* No info on the load, to be further checked.  */
457       return PRISKY_CANDIDATE;
458     }
459   else
460     {
461       const char *fmt;
462       int i, insn_class = TRAP_FREE;
463 
464       /* Neither store nor load, check if it may cause a trap.  */
465       if (may_trap_p (x))
466 	return TRAP_RISKY;
467       /* Recursive step: walk the insn...  */
468       fmt = GET_RTX_FORMAT (code);
469       for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
470 	{
471 	  if (fmt[i] == 'e')
472 	    {
473 	      int tmp_class = may_trap_exp (XEXP (x, i), is_store);
474 	      insn_class = WORST_CLASS (insn_class, tmp_class);
475 	    }
476 	  else if (fmt[i] == 'E')
477 	    {
478 	      int j;
479 	      for (j = 0; j < XVECLEN (x, i); j++)
480 		{
481 		  int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
482 		  insn_class = WORST_CLASS (insn_class, tmp_class);
483 		  if (insn_class == TRAP_RISKY || insn_class == IRISKY)
484 		    break;
485 		}
486 	    }
487 	  if (insn_class == TRAP_RISKY || insn_class == IRISKY)
488 	    break;
489 	}
490       return insn_class;
491     }
492 }
493 
494 /* Classifies rtx X of an insn for the purpose of verifying that X can be
495    executed speculatively (and consequently the insn can be moved
496    speculatively), by examining X, returning:
497    TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
498    TRAP_FREE: non-load insn.
499    IFREE: load from a globally safe location.
500    IRISKY: volatile load.
501    PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
502    being either PFREE or PRISKY.  */
503 
504 static int
505 haifa_classify_rtx (const_rtx x)
506 {
507   int tmp_class = TRAP_FREE;
508   int insn_class = TRAP_FREE;
509   enum rtx_code code;
510 
511   if (GET_CODE (x) == PARALLEL)
512     {
513       int i, len = XVECLEN (x, 0);
514 
515       for (i = len - 1; i >= 0; i--)
516 	{
517 	  tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
518 	  insn_class = WORST_CLASS (insn_class, tmp_class);
519 	  if (insn_class == TRAP_RISKY || insn_class == IRISKY)
520 	    break;
521 	}
522     }
523   else
524     {
525       code = GET_CODE (x);
526       switch (code)
527 	{
528 	case CLOBBER:
529 	  /* Test if it is a 'store'.  */
530 	  tmp_class = may_trap_exp (XEXP (x, 0), 1);
531 	  break;
532 	case SET:
533 	  /* Test if it is a store.  */
534 	  tmp_class = may_trap_exp (SET_DEST (x), 1);
535 	  if (tmp_class == TRAP_RISKY)
536 	    break;
537 	  /* Test if it is a load.  */
538 	  tmp_class =
539 	    WORST_CLASS (tmp_class,
540 			 may_trap_exp (SET_SRC (x), 0));
541 	  break;
542 	case COND_EXEC:
543 	  tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
544 	  if (tmp_class == TRAP_RISKY)
545 	    break;
546 	  tmp_class = WORST_CLASS (tmp_class,
547 				   may_trap_exp (COND_EXEC_TEST (x), 0));
548 	  break;
549 	case TRAP_IF:
550 	  tmp_class = TRAP_RISKY;
551 	  break;
552 	default:;
553 	}
554       insn_class = tmp_class;
555     }
556 
557   return insn_class;
558 }
559 
560 int
561 haifa_classify_insn (const_rtx insn)
562 {
563   return haifa_classify_rtx (PATTERN (insn));
564 }
565 
566 /* After the scheduler initialization function has been called, this function
567    can be called to enable modulo scheduling.  II is the initiation interval
568    we should use, it affects the delays for delay_pairs that were recorded as
569    separated by a given number of stages.
570 
571    MAX_STAGES provides us with a limit
572    after which we give up scheduling; the caller must have unrolled at least
573    as many copies of the loop body and recorded delay_pairs for them.
574 
575    INSNS is the number of real (non-debug) insns in one iteration of
576    the loop.  MAX_UID can be used to test whether an insn belongs to
577    the first iteration of the loop; all of them have a uid lower than
578    MAX_UID.  */
579 void
580 set_modulo_params (int ii, int max_stages, int insns, int max_uid)
581 {
582   modulo_ii = ii;
583   modulo_max_stages = max_stages;
584   modulo_n_insns = insns;
585   modulo_iter0_max_uid = max_uid;
586   modulo_backtracks_left = PARAM_VALUE (PARAM_MAX_MODULO_BACKTRACK_ATTEMPTS);
587 }
588 
589 /* A structure to record a pair of insns where the first one is a real
590    insn that has delay slots, and the second is its delayed shadow.
591    I1 is scheduled normally and will emit an assembly instruction,
592    while I2 describes the side effect that takes place at the
593    transition between cycles CYCLES and (CYCLES + 1) after I1.  */
594 struct delay_pair
595 {
596   struct delay_pair *next_same_i1;
597   rtx_insn *i1, *i2;
598   int cycles;
599   /* When doing modulo scheduling, we a delay_pair can also be used to
600      show that I1 and I2 are the same insn in a different stage.  If that
601      is the case, STAGES will be nonzero.  */
602   int stages;
603 };
604 
605 /* Helpers for delay hashing.  */
606 
607 struct delay_i1_hasher : nofree_ptr_hash <delay_pair>
608 {
609   typedef void *compare_type;
610   static inline hashval_t hash (const delay_pair *);
611   static inline bool equal (const delay_pair *, const void *);
612 };
613 
614 /* Returns a hash value for X, based on hashing just I1.  */
615 
616 inline hashval_t
617 delay_i1_hasher::hash (const delay_pair *x)
618 {
619   return htab_hash_pointer (x->i1);
620 }
621 
622 /* Return true if I1 of pair X is the same as that of pair Y.  */
623 
624 inline bool
625 delay_i1_hasher::equal (const delay_pair *x, const void *y)
626 {
627   return x->i1 == y;
628 }
629 
630 struct delay_i2_hasher : free_ptr_hash <delay_pair>
631 {
632   typedef void *compare_type;
633   static inline hashval_t hash (const delay_pair *);
634   static inline bool equal (const delay_pair *, const void *);
635 };
636 
637 /* Returns a hash value for X, based on hashing just I2.  */
638 
639 inline hashval_t
640 delay_i2_hasher::hash (const delay_pair *x)
641 {
642   return htab_hash_pointer (x->i2);
643 }
644 
645 /* Return true if I2 of pair X is the same as that of pair Y.  */
646 
647 inline bool
648 delay_i2_hasher::equal (const delay_pair *x, const void *y)
649 {
650   return x->i2 == y;
651 }
652 
653 /* Two hash tables to record delay_pairs, one indexed by I1 and the other
654    indexed by I2.  */
655 static hash_table<delay_i1_hasher> *delay_htab;
656 static hash_table<delay_i2_hasher> *delay_htab_i2;
657 
658 /* Called through htab_traverse.  Walk the hashtable using I2 as
659    index, and delete all elements involving an UID higher than
660    that pointed to by *DATA.  */
661 int
662 haifa_htab_i2_traverse (delay_pair **slot, int *data)
663 {
664   int maxuid = *data;
665   struct delay_pair *p = *slot;
666   if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
667     {
668       delay_htab_i2->clear_slot (slot);
669     }
670   return 1;
671 }
672 
673 /* Called through htab_traverse.  Walk the hashtable using I2 as
674    index, and delete all elements involving an UID higher than
675    that pointed to by *DATA.  */
676 int
677 haifa_htab_i1_traverse (delay_pair **pslot, int *data)
678 {
679   int maxuid = *data;
680   struct delay_pair *p, *first, **pprev;
681 
682   if (INSN_UID ((*pslot)->i1) >= maxuid)
683     {
684       delay_htab->clear_slot (pslot);
685       return 1;
686     }
687   pprev = &first;
688   for (p = *pslot; p; p = p->next_same_i1)
689     {
690       if (INSN_UID (p->i2) < maxuid)
691 	{
692 	  *pprev = p;
693 	  pprev = &p->next_same_i1;
694 	}
695     }
696   *pprev = NULL;
697   if (first == NULL)
698     delay_htab->clear_slot (pslot);
699   else
700     *pslot = first;
701   return 1;
702 }
703 
704 /* Discard all delay pairs which involve an insn with an UID higher
705    than MAX_UID.  */
706 void
707 discard_delay_pairs_above (int max_uid)
708 {
709   delay_htab->traverse <int *, haifa_htab_i1_traverse> (&max_uid);
710   delay_htab_i2->traverse <int *, haifa_htab_i2_traverse> (&max_uid);
711 }
712 
713 /* This function can be called by a port just before it starts the final
714    scheduling pass.  It records the fact that an instruction with delay
715    slots has been split into two insns, I1 and I2.  The first one will be
716    scheduled normally and initiates the operation.  The second one is a
717    shadow which must follow a specific number of cycles after I1; its only
718    purpose is to show the side effect that occurs at that cycle in the RTL.
719    If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
720    while I2 retains the original insn type.
721 
722    There are two ways in which the number of cycles can be specified,
723    involving the CYCLES and STAGES arguments to this function.  If STAGES
724    is zero, we just use the value of CYCLES.  Otherwise, STAGES is a factor
725    which is multiplied by MODULO_II to give the number of cycles.  This is
726    only useful if the caller also calls set_modulo_params to enable modulo
727    scheduling.  */
728 
729 void
730 record_delay_slot_pair (rtx_insn *i1, rtx_insn *i2, int cycles, int stages)
731 {
732   struct delay_pair *p = XNEW (struct delay_pair);
733   struct delay_pair **slot;
734 
735   p->i1 = i1;
736   p->i2 = i2;
737   p->cycles = cycles;
738   p->stages = stages;
739 
740   if (!delay_htab)
741     {
742       delay_htab = new hash_table<delay_i1_hasher> (10);
743       delay_htab_i2 = new hash_table<delay_i2_hasher> (10);
744     }
745   slot = delay_htab->find_slot_with_hash (i1, htab_hash_pointer (i1), INSERT);
746   p->next_same_i1 = *slot;
747   *slot = p;
748   slot = delay_htab_i2->find_slot (p, INSERT);
749   *slot = p;
750 }
751 
752 /* Examine the delay pair hashtable to see if INSN is a shadow for another,
753    and return the other insn if so.  Return NULL otherwise.  */
754 rtx_insn *
755 real_insn_for_shadow (rtx_insn *insn)
756 {
757   struct delay_pair *pair;
758 
759   if (!delay_htab)
760     return NULL;
761 
762   pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
763   if (!pair || pair->stages > 0)
764     return NULL;
765   return pair->i1;
766 }
767 
768 /* For a pair P of insns, return the fixed distance in cycles from the first
769    insn after which the second must be scheduled.  */
770 static int
771 pair_delay (struct delay_pair *p)
772 {
773   if (p->stages == 0)
774     return p->cycles;
775   else
776     return p->stages * modulo_ii;
777 }
778 
779 /* Given an insn INSN, add a dependence on its delayed shadow if it
780    has one.  Also try to find situations where shadows depend on each other
781    and add dependencies to the real insns to limit the amount of backtracking
782    needed.  */
783 void
784 add_delay_dependencies (rtx_insn *insn)
785 {
786   struct delay_pair *pair;
787   sd_iterator_def sd_it;
788   dep_t dep;
789 
790   if (!delay_htab)
791     return;
792 
793   pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
794   if (!pair)
795     return;
796   add_dependence (insn, pair->i1, REG_DEP_ANTI);
797   if (pair->stages)
798     return;
799 
800   FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
801     {
802       rtx_insn *pro = DEP_PRO (dep);
803       struct delay_pair *other_pair
804 	= delay_htab_i2->find_with_hash (pro, htab_hash_pointer (pro));
805       if (!other_pair || other_pair->stages)
806 	continue;
807       if (pair_delay (other_pair) >= pair_delay (pair))
808 	{
809 	  if (sched_verbose >= 4)
810 	    {
811 	      fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
812 		       INSN_UID (other_pair->i1),
813 		       INSN_UID (pair->i1));
814 	      fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
815 		       INSN_UID (pair->i1),
816 		       INSN_UID (pair->i2),
817 		       pair_delay (pair));
818 	      fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
819 		       INSN_UID (other_pair->i1),
820 		       INSN_UID (other_pair->i2),
821 		       pair_delay (other_pair));
822 	    }
823 	  add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
824 	}
825     }
826 }
827 
828 /* Forward declarations.  */
829 
830 static int priority (rtx_insn *);
831 static int autopref_rank_for_schedule (const rtx_insn *, const rtx_insn *);
832 static int rank_for_schedule (const void *, const void *);
833 static void swap_sort (rtx_insn **, int);
834 static void queue_insn (rtx_insn *, int, const char *);
835 static int schedule_insn (rtx_insn *);
836 static void adjust_priority (rtx_insn *);
837 static void advance_one_cycle (void);
838 static void extend_h_i_d (void);
839 
840 
841 /* Notes handling mechanism:
842    =========================
843    Generally, NOTES are saved before scheduling and restored after scheduling.
844    The scheduler distinguishes between two types of notes:
845 
846    (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
847    Before scheduling a region, a pointer to the note is added to the insn
848    that follows or precedes it.  (This happens as part of the data dependence
849    computation).  After scheduling an insn, the pointer contained in it is
850    used for regenerating the corresponding note (in reemit_notes).
851 
852    (2) All other notes (e.g. INSN_DELETED):  Before scheduling a block,
853    these notes are put in a list (in rm_other_notes() and
854    unlink_other_notes ()).  After scheduling the block, these notes are
855    inserted at the beginning of the block (in schedule_block()).  */
856 
857 static void ready_add (struct ready_list *, rtx_insn *, bool);
858 static rtx_insn *ready_remove_first (struct ready_list *);
859 static rtx_insn *ready_remove_first_dispatch (struct ready_list *ready);
860 
861 static void queue_to_ready (struct ready_list *);
862 static int early_queue_to_ready (state_t, struct ready_list *);
863 
864 /* The following functions are used to implement multi-pass scheduling
865    on the first cycle.  */
866 static rtx_insn *ready_remove (struct ready_list *, int);
867 static void ready_remove_insn (rtx_insn *);
868 
869 static void fix_inter_tick (rtx_insn *, rtx_insn *);
870 static int fix_tick_ready (rtx_insn *);
871 static void change_queue_index (rtx_insn *, int);
872 
873 /* The following functions are used to implement scheduling of data/control
874    speculative instructions.  */
875 
876 static void extend_h_i_d (void);
877 static void init_h_i_d (rtx_insn *);
878 static int haifa_speculate_insn (rtx_insn *, ds_t, rtx *);
879 static void generate_recovery_code (rtx_insn *);
880 static void process_insn_forw_deps_be_in_spec (rtx_insn *, rtx_insn *, ds_t);
881 static void begin_speculative_block (rtx_insn *);
882 static void add_to_speculative_block (rtx_insn *);
883 static void init_before_recovery (basic_block *);
884 static void create_check_block_twin (rtx_insn *, bool);
885 static void fix_recovery_deps (basic_block);
886 static bool haifa_change_pattern (rtx_insn *, rtx);
887 static void dump_new_block_header (int, basic_block, rtx_insn *, rtx_insn *);
888 static void restore_bb_notes (basic_block);
889 static void fix_jump_move (rtx_insn *);
890 static void move_block_after_check (rtx_insn *);
891 static void move_succs (vec<edge, va_gc> **, basic_block);
892 static void sched_remove_insn (rtx_insn *);
893 static void clear_priorities (rtx_insn *, rtx_vec_t *);
894 static void calc_priorities (rtx_vec_t);
895 static void add_jump_dependencies (rtx_insn *, rtx_insn *);
896 
897 #endif /* INSN_SCHEDULING */
898 
899 /* Point to state used for the current scheduling pass.  */
900 struct haifa_sched_info *current_sched_info;
901 
902 #ifndef INSN_SCHEDULING
903 void
904 schedule_insns (void)
905 {
906 }
907 #else
908 
909 /* Do register pressure sensitive insn scheduling if the flag is set
910    up.  */
911 enum sched_pressure_algorithm sched_pressure;
912 
913 /* Map regno -> its pressure class.  The map defined only when
914    SCHED_PRESSURE != SCHED_PRESSURE_NONE.  */
915 enum reg_class *sched_regno_pressure_class;
916 
917 /* The current register pressure.  Only elements corresponding pressure
918    classes are defined.  */
919 static int curr_reg_pressure[N_REG_CLASSES];
920 
921 /* Saved value of the previous array.  */
922 static int saved_reg_pressure[N_REG_CLASSES];
923 
924 /* Register living at given scheduling point.  */
925 static bitmap curr_reg_live;
926 
927 /* Saved value of the previous array.  */
928 static bitmap saved_reg_live;
929 
930 /* Registers mentioned in the current region.  */
931 static bitmap region_ref_regs;
932 
933 /* Temporary bitmap used for SCHED_PRESSURE_MODEL.  */
934 static bitmap tmp_bitmap;
935 
936 /* Effective number of available registers of a given class (see comment
937    in sched_pressure_start_bb).  */
938 static int sched_class_regs_num[N_REG_CLASSES];
939 /* Number of call_saved_regs and fixed_regs.  Helpers for calculating of
940    sched_class_regs_num.  */
941 static int call_saved_regs_num[N_REG_CLASSES];
942 static int fixed_regs_num[N_REG_CLASSES];
943 
944 /* Initiate register pressure relative info for scheduling the current
945    region.  Currently it is only clearing register mentioned in the
946    current region.  */
947 void
948 sched_init_region_reg_pressure_info (void)
949 {
950   bitmap_clear (region_ref_regs);
951 }
952 
953 /* PRESSURE[CL] describes the pressure on register class CL.  Update it
954    for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO.
955    LIVE tracks the set of live registers; if it is null, assume that
956    every birth or death is genuine.  */
957 static inline void
958 mark_regno_birth_or_death (bitmap live, int *pressure, int regno, bool birth_p)
959 {
960   enum reg_class pressure_class;
961 
962   pressure_class = sched_regno_pressure_class[regno];
963   if (regno >= FIRST_PSEUDO_REGISTER)
964     {
965       if (pressure_class != NO_REGS)
966 	{
967 	  if (birth_p)
968 	    {
969 	      if (!live || bitmap_set_bit (live, regno))
970 		pressure[pressure_class]
971 		  += (ira_reg_class_max_nregs
972 		      [pressure_class][PSEUDO_REGNO_MODE (regno)]);
973 	    }
974 	  else
975 	    {
976 	      if (!live || bitmap_clear_bit (live, regno))
977 		pressure[pressure_class]
978 		  -= (ira_reg_class_max_nregs
979 		      [pressure_class][PSEUDO_REGNO_MODE (regno)]);
980 	    }
981 	}
982     }
983   else if (pressure_class != NO_REGS
984 	   && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
985     {
986       if (birth_p)
987 	{
988 	  if (!live || bitmap_set_bit (live, regno))
989 	    pressure[pressure_class]++;
990 	}
991       else
992 	{
993 	  if (!live || bitmap_clear_bit (live, regno))
994 	    pressure[pressure_class]--;
995 	}
996     }
997 }
998 
999 /* Initiate current register pressure related info from living
1000    registers given by LIVE.  */
1001 static void
1002 initiate_reg_pressure_info (bitmap live)
1003 {
1004   int i;
1005   unsigned int j;
1006   bitmap_iterator bi;
1007 
1008   for (i = 0; i < ira_pressure_classes_num; i++)
1009     curr_reg_pressure[ira_pressure_classes[i]] = 0;
1010   bitmap_clear (curr_reg_live);
1011   EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
1012     if (sched_pressure == SCHED_PRESSURE_MODEL
1013 	|| current_nr_blocks == 1
1014 	|| bitmap_bit_p (region_ref_regs, j))
1015       mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, j, true);
1016 }
1017 
1018 /* Mark registers in X as mentioned in the current region.  */
1019 static void
1020 setup_ref_regs (rtx x)
1021 {
1022   int i, j;
1023   const RTX_CODE code = GET_CODE (x);
1024   const char *fmt;
1025 
1026   if (REG_P (x))
1027     {
1028       bitmap_set_range (region_ref_regs, REGNO (x), REG_NREGS (x));
1029       return;
1030     }
1031   fmt = GET_RTX_FORMAT (code);
1032   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1033     if (fmt[i] == 'e')
1034       setup_ref_regs (XEXP (x, i));
1035     else if (fmt[i] == 'E')
1036       {
1037 	for (j = 0; j < XVECLEN (x, i); j++)
1038 	  setup_ref_regs (XVECEXP (x, i, j));
1039       }
1040 }
1041 
1042 /* Initiate current register pressure related info at the start of
1043    basic block BB.  */
1044 static void
1045 initiate_bb_reg_pressure_info (basic_block bb)
1046 {
1047   unsigned int i ATTRIBUTE_UNUSED;
1048   rtx_insn *insn;
1049 
1050   if (current_nr_blocks > 1)
1051     FOR_BB_INSNS (bb, insn)
1052       if (NONDEBUG_INSN_P (insn))
1053 	setup_ref_regs (PATTERN (insn));
1054   initiate_reg_pressure_info (df_get_live_in (bb));
1055   if (bb_has_eh_pred (bb))
1056     for (i = 0; ; ++i)
1057       {
1058 	unsigned int regno = EH_RETURN_DATA_REGNO (i);
1059 
1060 	if (regno == INVALID_REGNUM)
1061 	  break;
1062 	if (! bitmap_bit_p (df_get_live_in (bb), regno))
1063 	  mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
1064 				     regno, true);
1065       }
1066 }
1067 
1068 /* Save current register pressure related info.  */
1069 static void
1070 save_reg_pressure (void)
1071 {
1072   int i;
1073 
1074   for (i = 0; i < ira_pressure_classes_num; i++)
1075     saved_reg_pressure[ira_pressure_classes[i]]
1076       = curr_reg_pressure[ira_pressure_classes[i]];
1077   bitmap_copy (saved_reg_live, curr_reg_live);
1078 }
1079 
1080 /* Restore saved register pressure related info.  */
1081 static void
1082 restore_reg_pressure (void)
1083 {
1084   int i;
1085 
1086   for (i = 0; i < ira_pressure_classes_num; i++)
1087     curr_reg_pressure[ira_pressure_classes[i]]
1088       = saved_reg_pressure[ira_pressure_classes[i]];
1089   bitmap_copy (curr_reg_live, saved_reg_live);
1090 }
1091 
1092 /* Return TRUE if the register is dying after its USE.  */
1093 static bool
1094 dying_use_p (struct reg_use_data *use)
1095 {
1096   struct reg_use_data *next;
1097 
1098   for (next = use->next_regno_use; next != use; next = next->next_regno_use)
1099     if (NONDEBUG_INSN_P (next->insn)
1100 	&& QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
1101       return false;
1102   return true;
1103 }
1104 
1105 /* Print info about the current register pressure and its excess for
1106    each pressure class.  */
1107 static void
1108 print_curr_reg_pressure (void)
1109 {
1110   int i;
1111   enum reg_class cl;
1112 
1113   fprintf (sched_dump, ";;\t");
1114   for (i = 0; i < ira_pressure_classes_num; i++)
1115     {
1116       cl = ira_pressure_classes[i];
1117       gcc_assert (curr_reg_pressure[cl] >= 0);
1118       fprintf (sched_dump, "  %s:%d(%d)", reg_class_names[cl],
1119 	       curr_reg_pressure[cl],
1120 	       curr_reg_pressure[cl] - sched_class_regs_num[cl]);
1121     }
1122   fprintf (sched_dump, "\n");
1123 }
1124 
1125 /* Determine if INSN has a condition that is clobbered if a register
1126    in SET_REGS is modified.  */
1127 static bool
1128 cond_clobbered_p (rtx_insn *insn, HARD_REG_SET set_regs)
1129 {
1130   rtx pat = PATTERN (insn);
1131   gcc_assert (GET_CODE (pat) == COND_EXEC);
1132   if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
1133     {
1134       sd_iterator_def sd_it;
1135       dep_t dep;
1136       haifa_change_pattern (insn, ORIG_PAT (insn));
1137       FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1138 	DEP_STATUS (dep) &= ~DEP_CANCELLED;
1139       TODO_SPEC (insn) = HARD_DEP;
1140       if (sched_verbose >= 2)
1141 	fprintf (sched_dump,
1142 		 ";;\t\tdequeue insn %s because of clobbered condition\n",
1143 		 (*current_sched_info->print_insn) (insn, 0));
1144       return true;
1145     }
1146 
1147   return false;
1148 }
1149 
1150 /* This function should be called after modifying the pattern of INSN,
1151    to update scheduler data structures as needed.  */
1152 static void
1153 update_insn_after_change (rtx_insn *insn)
1154 {
1155   sd_iterator_def sd_it;
1156   dep_t dep;
1157 
1158   dfa_clear_single_insn_cache (insn);
1159 
1160   sd_it = sd_iterator_start (insn,
1161 			     SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
1162   while (sd_iterator_cond (&sd_it, &dep))
1163     {
1164       DEP_COST (dep) = UNKNOWN_DEP_COST;
1165       sd_iterator_next (&sd_it);
1166     }
1167 
1168   /* Invalidate INSN_COST, so it'll be recalculated.  */
1169   INSN_COST (insn) = -1;
1170   /* Invalidate INSN_TICK, so it'll be recalculated.  */
1171   INSN_TICK (insn) = INVALID_TICK;
1172 
1173   /* Invalidate autoprefetch data entry.  */
1174   INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
1175     = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1176   INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
1177     = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1178 }
1179 
1180 
1181 /* Two VECs, one to hold dependencies for which pattern replacements
1182    need to be applied or restored at the start of the next cycle, and
1183    another to hold an integer that is either one, to apply the
1184    corresponding replacement, or zero to restore it.  */
1185 static vec<dep_t> next_cycle_replace_deps;
1186 static vec<int> next_cycle_apply;
1187 
1188 static void apply_replacement (dep_t, bool);
1189 static void restore_pattern (dep_t, bool);
1190 
1191 /* Look at the remaining dependencies for insn NEXT, and compute and return
1192    the TODO_SPEC value we should use for it.  This is called after one of
1193    NEXT's dependencies has been resolved.
1194    We also perform pattern replacements for predication, and for broken
1195    replacement dependencies.  The latter is only done if FOR_BACKTRACK is
1196    false.  */
1197 
1198 static ds_t
1199 recompute_todo_spec (rtx_insn *next, bool for_backtrack)
1200 {
1201   ds_t new_ds;
1202   sd_iterator_def sd_it;
1203   dep_t dep, modify_dep = NULL;
1204   int n_spec = 0;
1205   int n_control = 0;
1206   int n_replace = 0;
1207   bool first_p = true;
1208 
1209   if (sd_lists_empty_p (next, SD_LIST_BACK))
1210     /* NEXT has all its dependencies resolved.  */
1211     return 0;
1212 
1213   if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
1214     return HARD_DEP;
1215 
1216   /* If NEXT is intended to sit adjacent to this instruction, we don't
1217      want to try to break any dependencies.  Treat it as a HARD_DEP.  */
1218   if (SCHED_GROUP_P (next))
1219     return HARD_DEP;
1220 
1221   /* Now we've got NEXT with speculative deps only.
1222      1. Look at the deps to see what we have to do.
1223      2. Check if we can do 'todo'.  */
1224   new_ds = 0;
1225 
1226   FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1227     {
1228       rtx_insn *pro = DEP_PRO (dep);
1229       ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
1230 
1231       if (DEBUG_INSN_P (pro) && !DEBUG_INSN_P (next))
1232 	continue;
1233 
1234       if (ds)
1235 	{
1236 	  n_spec++;
1237 	  if (first_p)
1238 	    {
1239 	      first_p = false;
1240 
1241 	      new_ds = ds;
1242 	    }
1243 	  else
1244 	    new_ds = ds_merge (new_ds, ds);
1245 	}
1246       else if (DEP_TYPE (dep) == REG_DEP_CONTROL)
1247 	{
1248 	  if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1249 	    {
1250 	      n_control++;
1251 	      modify_dep = dep;
1252 	    }
1253 	  DEP_STATUS (dep) &= ~DEP_CANCELLED;
1254 	}
1255       else if (DEP_REPLACE (dep) != NULL)
1256 	{
1257 	  if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1258 	    {
1259 	      n_replace++;
1260 	      modify_dep = dep;
1261 	    }
1262 	  DEP_STATUS (dep) &= ~DEP_CANCELLED;
1263 	}
1264     }
1265 
1266   if (n_replace > 0 && n_control == 0 && n_spec == 0)
1267     {
1268       if (!dbg_cnt (sched_breakdep))
1269 	return HARD_DEP;
1270       FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1271 	{
1272 	  struct dep_replacement *desc = DEP_REPLACE (dep);
1273 	  if (desc != NULL)
1274 	    {
1275 	      if (desc->insn == next && !for_backtrack)
1276 		{
1277 		  gcc_assert (n_replace == 1);
1278 		  apply_replacement (dep, true);
1279 		}
1280 	      DEP_STATUS (dep) |= DEP_CANCELLED;
1281 	    }
1282 	}
1283       return 0;
1284     }
1285 
1286   else if (n_control == 1 && n_replace == 0 && n_spec == 0)
1287     {
1288       rtx_insn *pro, *other;
1289       rtx new_pat;
1290       rtx cond = NULL_RTX;
1291       bool success;
1292       rtx_insn *prev = NULL;
1293       int i;
1294       unsigned regno;
1295 
1296       if ((current_sched_info->flags & DO_PREDICATION) == 0
1297 	  || (ORIG_PAT (next) != NULL_RTX
1298 	      && PREDICATED_PAT (next) == NULL_RTX))
1299 	return HARD_DEP;
1300 
1301       pro = DEP_PRO (modify_dep);
1302       other = real_insn_for_shadow (pro);
1303       if (other != NULL_RTX)
1304 	pro = other;
1305 
1306       cond = sched_get_reverse_condition_uncached (pro);
1307       regno = REGNO (XEXP (cond, 0));
1308 
1309       /* Find the last scheduled insn that modifies the condition register.
1310 	 We can stop looking once we find the insn we depend on through the
1311 	 REG_DEP_CONTROL; if the condition register isn't modified after it,
1312 	 we know that it still has the right value.  */
1313       if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
1314 	FOR_EACH_VEC_ELT_REVERSE (scheduled_insns, i, prev)
1315 	  {
1316 	    HARD_REG_SET t;
1317 
1318 	    find_all_hard_reg_sets (prev, &t, true);
1319 	    if (TEST_HARD_REG_BIT (t, regno))
1320 	      return HARD_DEP;
1321 	    if (prev == pro)
1322 	      break;
1323 	  }
1324       if (ORIG_PAT (next) == NULL_RTX)
1325 	{
1326 	  ORIG_PAT (next) = PATTERN (next);
1327 
1328 	  new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
1329 	  success = haifa_change_pattern (next, new_pat);
1330 	  if (!success)
1331 	    return HARD_DEP;
1332 	  PREDICATED_PAT (next) = new_pat;
1333 	}
1334       else if (PATTERN (next) != PREDICATED_PAT (next))
1335 	{
1336 	  bool success = haifa_change_pattern (next,
1337 					       PREDICATED_PAT (next));
1338 	  gcc_assert (success);
1339 	}
1340       DEP_STATUS (modify_dep) |= DEP_CANCELLED;
1341       return DEP_CONTROL;
1342     }
1343 
1344   if (PREDICATED_PAT (next) != NULL_RTX)
1345     {
1346       int tick = INSN_TICK (next);
1347       bool success = haifa_change_pattern (next,
1348 					   ORIG_PAT (next));
1349       INSN_TICK (next) = tick;
1350       gcc_assert (success);
1351     }
1352 
1353   /* We can't handle the case where there are both speculative and control
1354      dependencies, so we return HARD_DEP in such a case.  Also fail if
1355      we have speculative dependencies with not enough points, or more than
1356      one control dependency.  */
1357   if ((n_spec > 0 && (n_control > 0 || n_replace > 0))
1358       || (n_spec > 0
1359 	  /* Too few points?  */
1360 	  && ds_weak (new_ds) < spec_info->data_weakness_cutoff)
1361       || n_control > 0
1362       || n_replace > 0)
1363     return HARD_DEP;
1364 
1365   return new_ds;
1366 }
1367 
1368 /* Pointer to the last instruction scheduled.  */
1369 static rtx_insn *last_scheduled_insn;
1370 
1371 /* Pointer to the last nondebug instruction scheduled within the
1372    block, or the prev_head of the scheduling block.  Used by
1373    rank_for_schedule, so that insns independent of the last scheduled
1374    insn will be preferred over dependent instructions.  */
1375 static rtx_insn *last_nondebug_scheduled_insn;
1376 
1377 /* Pointer that iterates through the list of unscheduled insns if we
1378    have a dbg_cnt enabled.  It always points at an insn prior to the
1379    first unscheduled one.  */
1380 static rtx_insn *nonscheduled_insns_begin;
1381 
1382 /* Compute cost of executing INSN.
1383    This is the number of cycles between instruction issue and
1384    instruction results.  */
1385 int
1386 insn_sched_cost (rtx_insn *insn)
1387 {
1388   int cost;
1389 
1390   if (sched_fusion)
1391     return 0;
1392 
1393   if (sel_sched_p ())
1394     {
1395       if (recog_memoized (insn) < 0)
1396 	return 0;
1397 
1398       cost = insn_default_latency (insn);
1399       if (cost < 0)
1400 	cost = 0;
1401 
1402       return cost;
1403     }
1404 
1405   cost = INSN_COST (insn);
1406 
1407   if (cost < 0)
1408     {
1409       /* A USE insn, or something else we don't need to
1410 	 understand.  We can't pass these directly to
1411 	 result_ready_cost or insn_default_latency because it will
1412 	 trigger a fatal error for unrecognizable insns.  */
1413       if (recog_memoized (insn) < 0)
1414 	{
1415 	  INSN_COST (insn) = 0;
1416 	  return 0;
1417 	}
1418       else
1419 	{
1420 	  cost = insn_default_latency (insn);
1421 	  if (cost < 0)
1422 	    cost = 0;
1423 
1424 	  INSN_COST (insn) = cost;
1425 	}
1426     }
1427 
1428   return cost;
1429 }
1430 
1431 /* Compute cost of dependence LINK.
1432    This is the number of cycles between instruction issue and
1433    instruction results.
1434    ??? We also use this function to call recog_memoized on all insns.  */
1435 int
1436 dep_cost_1 (dep_t link, dw_t dw)
1437 {
1438   rtx_insn *insn = DEP_PRO (link);
1439   rtx_insn *used = DEP_CON (link);
1440   int cost;
1441 
1442   if (DEP_COST (link) != UNKNOWN_DEP_COST)
1443     return DEP_COST (link);
1444 
1445   if (delay_htab)
1446     {
1447       struct delay_pair *delay_entry;
1448       delay_entry
1449 	= delay_htab_i2->find_with_hash (used, htab_hash_pointer (used));
1450       if (delay_entry)
1451 	{
1452 	  if (delay_entry->i1 == insn)
1453 	    {
1454 	      DEP_COST (link) = pair_delay (delay_entry);
1455 	      return DEP_COST (link);
1456 	    }
1457 	}
1458     }
1459 
1460   /* A USE insn should never require the value used to be computed.
1461      This allows the computation of a function's result and parameter
1462      values to overlap the return and call.  We don't care about the
1463      dependence cost when only decreasing register pressure.  */
1464   if (recog_memoized (used) < 0)
1465     {
1466       cost = 0;
1467       recog_memoized (insn);
1468     }
1469   else
1470     {
1471       enum reg_note dep_type = DEP_TYPE (link);
1472 
1473       cost = insn_sched_cost (insn);
1474 
1475       if (INSN_CODE (insn) >= 0)
1476 	{
1477 	  if (dep_type == REG_DEP_ANTI)
1478 	    cost = 0;
1479 	  else if (dep_type == REG_DEP_OUTPUT)
1480 	    {
1481 	      cost = (insn_default_latency (insn)
1482 		      - insn_default_latency (used));
1483 	      if (cost <= 0)
1484 		cost = 1;
1485 	    }
1486 	  else if (bypass_p (insn))
1487 	    cost = insn_latency (insn, used);
1488 	}
1489 
1490 
1491       if (targetm.sched.adjust_cost)
1492 	cost = targetm.sched.adjust_cost (used, (int) dep_type, insn, cost,
1493 					  dw);
1494 
1495       if (cost < 0)
1496 	cost = 0;
1497     }
1498 
1499   DEP_COST (link) = cost;
1500   return cost;
1501 }
1502 
1503 /* Compute cost of dependence LINK.
1504    This is the number of cycles between instruction issue and
1505    instruction results.  */
1506 int
1507 dep_cost (dep_t link)
1508 {
1509   return dep_cost_1 (link, 0);
1510 }
1511 
1512 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
1513    INSN_PRIORITY explicitly.  */
1514 void
1515 increase_insn_priority (rtx_insn *insn, int amount)
1516 {
1517   if (!sel_sched_p ())
1518     {
1519       /* We're dealing with haifa-sched.c INSN_PRIORITY.  */
1520       if (INSN_PRIORITY_KNOWN (insn))
1521 	  INSN_PRIORITY (insn) += amount;
1522     }
1523   else
1524     {
1525       /* In sel-sched.c INSN_PRIORITY is not kept up to date.
1526 	 Use EXPR_PRIORITY instead. */
1527       sel_add_to_insn_priority (insn, amount);
1528     }
1529 }
1530 
1531 /* Return 'true' if DEP should be included in priority calculations.  */
1532 static bool
1533 contributes_to_priority_p (dep_t dep)
1534 {
1535   if (DEBUG_INSN_P (DEP_CON (dep))
1536       || DEBUG_INSN_P (DEP_PRO (dep)))
1537     return false;
1538 
1539   /* Critical path is meaningful in block boundaries only.  */
1540   if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
1541 						    DEP_PRO (dep)))
1542     return false;
1543 
1544   if (DEP_REPLACE (dep) != NULL)
1545     return false;
1546 
1547   /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
1548      then speculative instructions will less likely be
1549      scheduled.  That is because the priority of
1550      their producers will increase, and, thus, the
1551      producers will more likely be scheduled, thus,
1552      resolving the dependence.  */
1553   if (sched_deps_info->generate_spec_deps
1554       && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
1555       && (DEP_STATUS (dep) & SPECULATIVE))
1556     return false;
1557 
1558   return true;
1559 }
1560 
1561 /* Compute the number of nondebug deps in list LIST for INSN.  */
1562 
1563 static int
1564 dep_list_size (rtx_insn *insn, sd_list_types_def list)
1565 {
1566   sd_iterator_def sd_it;
1567   dep_t dep;
1568   int dbgcount = 0, nodbgcount = 0;
1569 
1570   if (!MAY_HAVE_DEBUG_INSNS)
1571     return sd_lists_size (insn, list);
1572 
1573   FOR_EACH_DEP (insn, list, sd_it, dep)
1574     {
1575       if (DEBUG_INSN_P (DEP_CON (dep)))
1576 	dbgcount++;
1577       else if (!DEBUG_INSN_P (DEP_PRO (dep)))
1578 	nodbgcount++;
1579     }
1580 
1581   gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, list));
1582 
1583   return nodbgcount;
1584 }
1585 
1586 bool sched_fusion;
1587 
1588 /* Compute the priority number for INSN.  */
1589 static int
1590 priority (rtx_insn *insn)
1591 {
1592   if (! INSN_P (insn))
1593     return 0;
1594 
1595   /* We should not be interested in priority of an already scheduled insn.  */
1596   gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1597 
1598   if (!INSN_PRIORITY_KNOWN (insn))
1599     {
1600       int this_priority = -1;
1601 
1602       if (sched_fusion)
1603 	{
1604 	  int this_fusion_priority;
1605 
1606 	  targetm.sched.fusion_priority (insn, FUSION_MAX_PRIORITY,
1607 					 &this_fusion_priority, &this_priority);
1608 	  INSN_FUSION_PRIORITY (insn) = this_fusion_priority;
1609 	}
1610       else if (dep_list_size (insn, SD_LIST_FORW) == 0)
1611 	/* ??? We should set INSN_PRIORITY to insn_sched_cost when and insn
1612 	   has some forward deps but all of them are ignored by
1613 	   contributes_to_priority hook.  At the moment we set priority of
1614 	   such insn to 0.  */
1615 	this_priority = insn_sched_cost (insn);
1616       else
1617 	{
1618 	  rtx_insn *prev_first, *twin;
1619 	  basic_block rec;
1620 
1621 	  /* For recovery check instructions we calculate priority slightly
1622 	     different than that of normal instructions.  Instead of walking
1623 	     through INSN_FORW_DEPS (check) list, we walk through
1624 	     INSN_FORW_DEPS list of each instruction in the corresponding
1625 	     recovery block.  */
1626 
1627           /* Selective scheduling does not define RECOVERY_BLOCK macro.  */
1628 	  rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1629 	  if (!rec || rec == EXIT_BLOCK_PTR_FOR_FN (cfun))
1630 	    {
1631 	      prev_first = PREV_INSN (insn);
1632 	      twin = insn;
1633 	    }
1634 	  else
1635 	    {
1636 	      prev_first = NEXT_INSN (BB_HEAD (rec));
1637 	      twin = PREV_INSN (BB_END (rec));
1638 	    }
1639 
1640 	  do
1641 	    {
1642 	      sd_iterator_def sd_it;
1643 	      dep_t dep;
1644 
1645 	      FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1646 		{
1647 		  rtx_insn *next;
1648 		  int next_priority;
1649 
1650 		  next = DEP_CON (dep);
1651 
1652 		  if (BLOCK_FOR_INSN (next) != rec)
1653 		    {
1654 		      int cost;
1655 
1656 		      if (!contributes_to_priority_p (dep))
1657 			continue;
1658 
1659 		      if (twin == insn)
1660 			cost = dep_cost (dep);
1661 		      else
1662 			{
1663 			  struct _dep _dep1, *dep1 = &_dep1;
1664 
1665 			  init_dep (dep1, insn, next, REG_DEP_ANTI);
1666 
1667 			  cost = dep_cost (dep1);
1668 			}
1669 
1670 		      next_priority = cost + priority (next);
1671 
1672 		      if (next_priority > this_priority)
1673 			this_priority = next_priority;
1674 		    }
1675 		}
1676 
1677 	      twin = PREV_INSN (twin);
1678 	    }
1679 	  while (twin != prev_first);
1680 	}
1681 
1682       if (this_priority < 0)
1683 	{
1684 	  gcc_assert (this_priority == -1);
1685 
1686 	  this_priority = insn_sched_cost (insn);
1687 	}
1688 
1689       INSN_PRIORITY (insn) = this_priority;
1690       INSN_PRIORITY_STATUS (insn) = 1;
1691     }
1692 
1693   return INSN_PRIORITY (insn);
1694 }
1695 
1696 /* Macros and functions for keeping the priority queue sorted, and
1697    dealing with queuing and dequeuing of instructions.  */
1698 
1699 /* For each pressure class CL, set DEATH[CL] to the number of registers
1700    in that class that die in INSN.  */
1701 
1702 static void
1703 calculate_reg_deaths (rtx_insn *insn, int *death)
1704 {
1705   int i;
1706   struct reg_use_data *use;
1707 
1708   for (i = 0; i < ira_pressure_classes_num; i++)
1709     death[ira_pressure_classes[i]] = 0;
1710   for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1711     if (dying_use_p (use))
1712       mark_regno_birth_or_death (0, death, use->regno, true);
1713 }
1714 
1715 /* Setup info about the current register pressure impact of scheduling
1716    INSN at the current scheduling point.  */
1717 static void
1718 setup_insn_reg_pressure_info (rtx_insn *insn)
1719 {
1720   int i, change, before, after, hard_regno;
1721   int excess_cost_change;
1722   machine_mode mode;
1723   enum reg_class cl;
1724   struct reg_pressure_data *pressure_info;
1725   int *max_reg_pressure;
1726   static int death[N_REG_CLASSES];
1727 
1728   gcc_checking_assert (!DEBUG_INSN_P (insn));
1729 
1730   excess_cost_change = 0;
1731   calculate_reg_deaths (insn, death);
1732   pressure_info = INSN_REG_PRESSURE (insn);
1733   max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1734   gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1735   for (i = 0; i < ira_pressure_classes_num; i++)
1736     {
1737       cl = ira_pressure_classes[i];
1738       gcc_assert (curr_reg_pressure[cl] >= 0);
1739       change = (int) pressure_info[i].set_increase - death[cl];
1740       before = MAX (0, max_reg_pressure[i] - sched_class_regs_num[cl]);
1741       after = MAX (0, max_reg_pressure[i] + change
1742 		   - sched_class_regs_num[cl]);
1743       hard_regno = ira_class_hard_regs[cl][0];
1744       gcc_assert (hard_regno >= 0);
1745       mode = reg_raw_mode[hard_regno];
1746       excess_cost_change += ((after - before)
1747 			     * (ira_memory_move_cost[mode][cl][0]
1748 				+ ira_memory_move_cost[mode][cl][1]));
1749     }
1750   INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1751 }
1752 
1753 /* This is the first page of code related to SCHED_PRESSURE_MODEL.
1754    It tries to make the scheduler take register pressure into account
1755    without introducing too many unnecessary stalls.  It hooks into the
1756    main scheduling algorithm at several points:
1757 
1758     - Before scheduling starts, model_start_schedule constructs a
1759       "model schedule" for the current block.  This model schedule is
1760       chosen solely to keep register pressure down.  It does not take the
1761       target's pipeline or the original instruction order into account,
1762       except as a tie-breaker.  It also doesn't work to a particular
1763       pressure limit.
1764 
1765       This model schedule gives us an idea of what pressure can be
1766       achieved for the block and gives us an example of a schedule that
1767       keeps to that pressure.  It also makes the final schedule less
1768       dependent on the original instruction order.  This is important
1769       because the original order can either be "wide" (many values live
1770       at once, such as in user-scheduled code) or "narrow" (few values
1771       live at once, such as after loop unrolling, where several
1772       iterations are executed sequentially).
1773 
1774       We do not apply this model schedule to the rtx stream.  We simply
1775       record it in model_schedule.  We also compute the maximum pressure,
1776       MP, that was seen during this schedule.
1777 
1778     - Instructions are added to the ready queue even if they require
1779       a stall.  The length of the stall is instead computed as:
1780 
1781 	 MAX (INSN_TICK (INSN) - clock_var, 0)
1782 
1783       (= insn_delay).  This allows rank_for_schedule to choose between
1784       introducing a deliberate stall or increasing pressure.
1785 
1786     - Before sorting the ready queue, model_set_excess_costs assigns
1787       a pressure-based cost to each ready instruction in the queue.
1788       This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE
1789       (ECC for short) and is effectively measured in cycles.
1790 
1791     - rank_for_schedule ranks instructions based on:
1792 
1793 	ECC (insn) + insn_delay (insn)
1794 
1795       then as:
1796 
1797 	insn_delay (insn)
1798 
1799       So, for example, an instruction X1 with an ECC of 1 that can issue
1800       now will win over an instruction X0 with an ECC of zero that would
1801       introduce a stall of one cycle.  However, an instruction X2 with an
1802       ECC of 2 that can issue now will lose to both X0 and X1.
1803 
1804     - When an instruction is scheduled, model_recompute updates the model
1805       schedule with the new pressures (some of which might now exceed the
1806       original maximum pressure MP).  model_update_limit_points then searches
1807       for the new point of maximum pressure, if not already known.  */
1808 
1809 /* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL
1810    from surrounding debug information.  */
1811 #define MODEL_BAR \
1812   ";;\t\t+------------------------------------------------------\n"
1813 
1814 /* Information about the pressure on a particular register class at a
1815    particular point of the model schedule.  */
1816 struct model_pressure_data {
1817   /* The pressure at this point of the model schedule, or -1 if the
1818      point is associated with an instruction that has already been
1819      scheduled.  */
1820   int ref_pressure;
1821 
1822   /* The maximum pressure during or after this point of the model schedule.  */
1823   int max_pressure;
1824 };
1825 
1826 /* Per-instruction information that is used while building the model
1827    schedule.  Here, "schedule" refers to the model schedule rather
1828    than the main schedule.  */
1829 struct model_insn_info {
1830   /* The instruction itself.  */
1831   rtx_insn *insn;
1832 
1833   /* If this instruction is in model_worklist, these fields link to the
1834      previous (higher-priority) and next (lower-priority) instructions
1835      in the list.  */
1836   struct model_insn_info *prev;
1837   struct model_insn_info *next;
1838 
1839   /* While constructing the schedule, QUEUE_INDEX describes whether an
1840      instruction has already been added to the schedule (QUEUE_SCHEDULED),
1841      is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE).
1842      old_queue records the value that QUEUE_INDEX had before scheduling
1843      started, so that we can restore it once the schedule is complete.  */
1844   int old_queue;
1845 
1846   /* The relative importance of an unscheduled instruction.  Higher
1847      values indicate greater importance.  */
1848   unsigned int model_priority;
1849 
1850   /* The length of the longest path of satisfied true dependencies
1851      that leads to this instruction.  */
1852   unsigned int depth;
1853 
1854   /* The length of the longest path of dependencies of any kind
1855      that leads from this instruction.  */
1856   unsigned int alap;
1857 
1858   /* The number of predecessor nodes that must still be scheduled.  */
1859   int unscheduled_preds;
1860 };
1861 
1862 /* Information about the pressure limit for a particular register class.
1863    This structure is used when applying a model schedule to the main
1864    schedule.  */
1865 struct model_pressure_limit {
1866   /* The maximum register pressure seen in the original model schedule.  */
1867   int orig_pressure;
1868 
1869   /* The maximum register pressure seen in the current model schedule
1870      (which excludes instructions that have already been scheduled).  */
1871   int pressure;
1872 
1873   /* The point of the current model schedule at which PRESSURE is first
1874      reached.  It is set to -1 if the value needs to be recomputed.  */
1875   int point;
1876 };
1877 
1878 /* Describes a particular way of measuring register pressure.  */
1879 struct model_pressure_group {
1880   /* Index PCI describes the maximum pressure on ira_pressure_classes[PCI].  */
1881   struct model_pressure_limit limits[N_REG_CLASSES];
1882 
1883   /* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure
1884      on register class ira_pressure_classes[PCI] at point POINT of the
1885      current model schedule.  A POINT of model_num_insns describes the
1886      pressure at the end of the schedule.  */
1887   struct model_pressure_data *model;
1888 };
1889 
1890 /* Index POINT gives the instruction at point POINT of the model schedule.
1891    This array doesn't change during main scheduling.  */
1892 static vec<rtx_insn *> model_schedule;
1893 
1894 /* The list of instructions in the model worklist, sorted in order of
1895    decreasing priority.  */
1896 static struct model_insn_info *model_worklist;
1897 
1898 /* Index I describes the instruction with INSN_LUID I.  */
1899 static struct model_insn_info *model_insns;
1900 
1901 /* The number of instructions in the model schedule.  */
1902 static int model_num_insns;
1903 
1904 /* The index of the first instruction in model_schedule that hasn't yet been
1905    added to the main schedule, or model_num_insns if all of them have.  */
1906 static int model_curr_point;
1907 
1908 /* Describes the pressure before each instruction in the model schedule.  */
1909 static struct model_pressure_group model_before_pressure;
1910 
1911 /* The first unused model_priority value (as used in model_insn_info).  */
1912 static unsigned int model_next_priority;
1913 
1914 
1915 /* The model_pressure_data for ira_pressure_classes[PCI] in GROUP
1916    at point POINT of the model schedule.  */
1917 #define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \
1918   (&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)])
1919 
1920 /* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or
1921    after point POINT of the model schedule.  */
1922 #define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \
1923   (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure)
1924 
1925 /* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT
1926    of the model schedule.  */
1927 #define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \
1928   (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure)
1929 
1930 /* Information about INSN that is used when creating the model schedule.  */
1931 #define MODEL_INSN_INFO(INSN) \
1932   (&model_insns[INSN_LUID (INSN)])
1933 
1934 /* The instruction at point POINT of the model schedule.  */
1935 #define MODEL_INSN(POINT) \
1936   (model_schedule[POINT])
1937 
1938 
1939 /* Return INSN's index in the model schedule, or model_num_insns if it
1940    doesn't belong to that schedule.  */
1941 
1942 static int
1943 model_index (rtx_insn *insn)
1944 {
1945   if (INSN_MODEL_INDEX (insn) == 0)
1946     return model_num_insns;
1947   return INSN_MODEL_INDEX (insn) - 1;
1948 }
1949 
1950 /* Make sure that GROUP->limits is up-to-date for the current point
1951    of the model schedule.  */
1952 
1953 static void
1954 model_update_limit_points_in_group (struct model_pressure_group *group)
1955 {
1956   int pci, max_pressure, point;
1957 
1958   for (pci = 0; pci < ira_pressure_classes_num; pci++)
1959     {
1960       /* We may have passed the final point at which the pressure in
1961 	 group->limits[pci].pressure was reached.  Update the limit if so.  */
1962       max_pressure = MODEL_MAX_PRESSURE (group, model_curr_point, pci);
1963       group->limits[pci].pressure = max_pressure;
1964 
1965       /* Find the point at which MAX_PRESSURE is first reached.  We need
1966 	 to search in three cases:
1967 
1968 	 - We've already moved past the previous pressure point.
1969 	   In this case we search forward from model_curr_point.
1970 
1971 	 - We scheduled the previous point of maximum pressure ahead of
1972 	   its position in the model schedule, but doing so didn't bring
1973 	   the pressure point earlier.  In this case we search forward
1974 	   from that previous pressure point.
1975 
1976 	 - Scheduling an instruction early caused the maximum pressure
1977 	   to decrease.  In this case we will have set the pressure
1978 	   point to -1, and we search forward from model_curr_point.  */
1979       point = MAX (group->limits[pci].point, model_curr_point);
1980       while (point < model_num_insns
1981 	     && MODEL_REF_PRESSURE (group, point, pci) < max_pressure)
1982 	point++;
1983       group->limits[pci].point = point;
1984 
1985       gcc_assert (MODEL_REF_PRESSURE (group, point, pci) == max_pressure);
1986       gcc_assert (MODEL_MAX_PRESSURE (group, point, pci) == max_pressure);
1987     }
1988 }
1989 
1990 /* Make sure that all register-pressure limits are up-to-date for the
1991    current position in the model schedule.  */
1992 
1993 static void
1994 model_update_limit_points (void)
1995 {
1996   model_update_limit_points_in_group (&model_before_pressure);
1997 }
1998 
1999 /* Return the model_index of the last unscheduled use in chain USE
2000    outside of USE's instruction.  Return -1 if there are no other uses,
2001    or model_num_insns if the register is live at the end of the block.  */
2002 
2003 static int
2004 model_last_use_except (struct reg_use_data *use)
2005 {
2006   struct reg_use_data *next;
2007   int last, index;
2008 
2009   last = -1;
2010   for (next = use->next_regno_use; next != use; next = next->next_regno_use)
2011     if (NONDEBUG_INSN_P (next->insn)
2012 	&& QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
2013       {
2014 	index = model_index (next->insn);
2015 	if (index == model_num_insns)
2016 	  return model_num_insns;
2017 	if (last < index)
2018 	  last = index;
2019       }
2020   return last;
2021 }
2022 
2023 /* An instruction with model_index POINT has just been scheduled, and it
2024    adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1.
2025    Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and
2026    MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly.  */
2027 
2028 static void
2029 model_start_update_pressure (struct model_pressure_group *group,
2030 			     int point, int pci, int delta)
2031 {
2032   int next_max_pressure;
2033 
2034   if (point == model_num_insns)
2035     {
2036       /* The instruction wasn't part of the model schedule; it was moved
2037 	 from a different block.  Update the pressure for the end of
2038 	 the model schedule.  */
2039       MODEL_REF_PRESSURE (group, point, pci) += delta;
2040       MODEL_MAX_PRESSURE (group, point, pci) += delta;
2041     }
2042   else
2043     {
2044       /* Record that this instruction has been scheduled.  Nothing now
2045 	 changes between POINT and POINT + 1, so get the maximum pressure
2046 	 from the latter.  If the maximum pressure decreases, the new
2047 	 pressure point may be before POINT.  */
2048       MODEL_REF_PRESSURE (group, point, pci) = -1;
2049       next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2050       if (MODEL_MAX_PRESSURE (group, point, pci) > next_max_pressure)
2051 	{
2052 	  MODEL_MAX_PRESSURE (group, point, pci) = next_max_pressure;
2053 	  if (group->limits[pci].point == point)
2054 	    group->limits[pci].point = -1;
2055 	}
2056     }
2057 }
2058 
2059 /* Record that scheduling a later instruction has changed the pressure
2060    at point POINT of the model schedule by DELTA (which might be 0).
2061    Update GROUP accordingly.  Return nonzero if these changes might
2062    trigger changes to previous points as well.  */
2063 
2064 static int
2065 model_update_pressure (struct model_pressure_group *group,
2066 		       int point, int pci, int delta)
2067 {
2068   int ref_pressure, max_pressure, next_max_pressure;
2069 
2070   /* If POINT hasn't yet been scheduled, update its pressure.  */
2071   ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
2072   if (ref_pressure >= 0 && delta != 0)
2073     {
2074       ref_pressure += delta;
2075       MODEL_REF_PRESSURE (group, point, pci) = ref_pressure;
2076 
2077       /* Check whether the maximum pressure in the overall schedule
2078 	 has increased.  (This means that the MODEL_MAX_PRESSURE of
2079 	 every point <= POINT will need to increase too; see below.)  */
2080       if (group->limits[pci].pressure < ref_pressure)
2081 	group->limits[pci].pressure = ref_pressure;
2082 
2083       /* If we are at maximum pressure, and the maximum pressure
2084 	 point was previously unknown or later than POINT,
2085 	 bring it forward.  */
2086       if (group->limits[pci].pressure == ref_pressure
2087 	  && !IN_RANGE (group->limits[pci].point, 0, point))
2088 	group->limits[pci].point = point;
2089 
2090       /* If POINT used to be the point of maximum pressure, but isn't
2091 	 any longer, we need to recalculate it using a forward walk.  */
2092       if (group->limits[pci].pressure > ref_pressure
2093 	  && group->limits[pci].point == point)
2094 	group->limits[pci].point = -1;
2095     }
2096 
2097   /* Update the maximum pressure at POINT.  Changes here might also
2098      affect the maximum pressure at POINT - 1.  */
2099   next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2100   max_pressure = MAX (ref_pressure, next_max_pressure);
2101   if (MODEL_MAX_PRESSURE (group, point, pci) != max_pressure)
2102     {
2103       MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
2104       return 1;
2105     }
2106   return 0;
2107 }
2108 
2109 /* INSN has just been scheduled.  Update the model schedule accordingly.  */
2110 
2111 static void
2112 model_recompute (rtx_insn *insn)
2113 {
2114   struct {
2115     int last_use;
2116     int regno;
2117   } uses[FIRST_PSEUDO_REGISTER + MAX_RECOG_OPERANDS];
2118   struct reg_use_data *use;
2119   struct reg_pressure_data *reg_pressure;
2120   int delta[N_REG_CLASSES];
2121   int pci, point, mix, new_last, cl, ref_pressure, queue;
2122   unsigned int i, num_uses, num_pending_births;
2123   bool print_p;
2124 
2125   /* The destinations of INSN were previously live from POINT onwards, but are
2126      now live from model_curr_point onwards.  Set up DELTA accordingly.  */
2127   point = model_index (insn);
2128   reg_pressure = INSN_REG_PRESSURE (insn);
2129   for (pci = 0; pci < ira_pressure_classes_num; pci++)
2130     {
2131       cl = ira_pressure_classes[pci];
2132       delta[cl] = reg_pressure[pci].set_increase;
2133     }
2134 
2135   /* Record which registers previously died at POINT, but which now die
2136      before POINT.  Adjust DELTA so that it represents the effect of
2137      this change after POINT - 1.  Set NUM_PENDING_BIRTHS to the number of
2138      registers that will be born in the range [model_curr_point, POINT).  */
2139   num_uses = 0;
2140   num_pending_births = 0;
2141   bitmap_clear (tmp_bitmap);
2142   for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2143     {
2144       new_last = model_last_use_except (use);
2145       if (new_last < point && bitmap_set_bit (tmp_bitmap, use->regno))
2146 	{
2147 	  gcc_assert (num_uses < ARRAY_SIZE (uses));
2148 	  uses[num_uses].last_use = new_last;
2149 	  uses[num_uses].regno = use->regno;
2150 	  /* This register is no longer live after POINT - 1.  */
2151 	  mark_regno_birth_or_death (NULL, delta, use->regno, false);
2152 	  num_uses++;
2153 	  if (new_last >= 0)
2154 	    num_pending_births++;
2155 	}
2156     }
2157 
2158   /* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT.
2159      Also set each group pressure limit for POINT.  */
2160   for (pci = 0; pci < ira_pressure_classes_num; pci++)
2161     {
2162       cl = ira_pressure_classes[pci];
2163       model_start_update_pressure (&model_before_pressure,
2164 				   point, pci, delta[cl]);
2165     }
2166 
2167   /* Walk the model schedule backwards, starting immediately before POINT.  */
2168   print_p = false;
2169   if (point != model_curr_point)
2170     do
2171       {
2172 	point--;
2173 	insn = MODEL_INSN (point);
2174 	queue = QUEUE_INDEX (insn);
2175 
2176 	if (queue != QUEUE_SCHEDULED)
2177 	  {
2178 	    /* DELTA describes the effect of the move on the register pressure
2179 	       after POINT.  Make it describe the effect on the pressure
2180 	       before POINT.  */
2181 	    i = 0;
2182 	    while (i < num_uses)
2183 	      {
2184 		if (uses[i].last_use == point)
2185 		  {
2186 		    /* This register is now live again.  */
2187 		    mark_regno_birth_or_death (NULL, delta,
2188 					       uses[i].regno, true);
2189 
2190 		    /* Remove this use from the array.  */
2191 		    uses[i] = uses[num_uses - 1];
2192 		    num_uses--;
2193 		    num_pending_births--;
2194 		  }
2195 		else
2196 		  i++;
2197 	      }
2198 
2199 	    if (sched_verbose >= 5)
2200 	      {
2201 		if (!print_p)
2202 		  {
2203 		    fprintf (sched_dump, MODEL_BAR);
2204 		    fprintf (sched_dump, ";;\t\t| New pressure for model"
2205 			     " schedule\n");
2206 		    fprintf (sched_dump, MODEL_BAR);
2207 		    print_p = true;
2208 		  }
2209 
2210 		fprintf (sched_dump, ";;\t\t| %3d %4d %-30s ",
2211 			 point, INSN_UID (insn),
2212 			 str_pattern_slim (PATTERN (insn)));
2213 		for (pci = 0; pci < ira_pressure_classes_num; pci++)
2214 		  {
2215 		    cl = ira_pressure_classes[pci];
2216 		    ref_pressure = MODEL_REF_PRESSURE (&model_before_pressure,
2217 						       point, pci);
2218 		    fprintf (sched_dump, " %s:[%d->%d]",
2219 			     reg_class_names[ira_pressure_classes[pci]],
2220 			     ref_pressure, ref_pressure + delta[cl]);
2221 		  }
2222 		fprintf (sched_dump, "\n");
2223 	      }
2224 	  }
2225 
2226 	/* Adjust the pressure at POINT.  Set MIX to nonzero if POINT - 1
2227 	   might have changed as well.  */
2228 	mix = num_pending_births;
2229 	for (pci = 0; pci < ira_pressure_classes_num; pci++)
2230 	  {
2231 	    cl = ira_pressure_classes[pci];
2232 	    mix |= delta[cl];
2233 	    mix |= model_update_pressure (&model_before_pressure,
2234 					  point, pci, delta[cl]);
2235 	  }
2236       }
2237     while (mix && point > model_curr_point);
2238 
2239   if (print_p)
2240     fprintf (sched_dump, MODEL_BAR);
2241 }
2242 
2243 /* After DEP, which was cancelled, has been resolved for insn NEXT,
2244    check whether the insn's pattern needs restoring.  */
2245 static bool
2246 must_restore_pattern_p (rtx_insn *next, dep_t dep)
2247 {
2248   if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
2249     return false;
2250 
2251   if (DEP_TYPE (dep) == REG_DEP_CONTROL)
2252     {
2253       gcc_assert (ORIG_PAT (next) != NULL_RTX);
2254       gcc_assert (next == DEP_CON (dep));
2255     }
2256   else
2257     {
2258       struct dep_replacement *desc = DEP_REPLACE (dep);
2259       if (desc->insn != next)
2260 	{
2261 	  gcc_assert (*desc->loc == desc->orig);
2262 	  return false;
2263 	}
2264     }
2265   return true;
2266 }
2267 
2268 /* model_spill_cost (CL, P, P') returns the cost of increasing the
2269    pressure on CL from P to P'.  We use this to calculate a "base ECC",
2270    baseECC (CL, X), for each pressure class CL and each instruction X.
2271    Supposing X changes the pressure on CL from P to P', and that the
2272    maximum pressure on CL in the current model schedule is MP', then:
2273 
2274    * if X occurs before or at the next point of maximum pressure in
2275      the model schedule and P' > MP', then:
2276 
2277        baseECC (CL, X) = model_spill_cost (CL, MP, P')
2278 
2279      The idea is that the pressure after scheduling a fixed set of
2280      instructions -- in this case, the set up to and including the
2281      next maximum pressure point -- is going to be the same regardless
2282      of the order; we simply want to keep the intermediate pressure
2283      under control.  Thus X has a cost of zero unless scheduling it
2284      now would exceed MP'.
2285 
2286      If all increases in the set are by the same amount, no zero-cost
2287      instruction will ever cause the pressure to exceed MP'.  However,
2288      if X is instead moved past an instruction X' with pressure in the
2289      range (MP' - (P' - P), MP'), the pressure at X' will increase
2290      beyond MP'.  Since baseECC is very much a heuristic anyway,
2291      it doesn't seem worth the overhead of tracking cases like these.
2292 
2293      The cost of exceeding MP' is always based on the original maximum
2294      pressure MP.  This is so that going 2 registers over the original
2295      limit has the same cost regardless of whether it comes from two
2296      separate +1 deltas or from a single +2 delta.
2297 
2298    * if X occurs after the next point of maximum pressure in the model
2299      schedule and P' > P, then:
2300 
2301        baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P))
2302 
2303      That is, if we move X forward across a point of maximum pressure,
2304      and if X increases the pressure by P' - P, then we conservatively
2305      assume that scheduling X next would increase the maximum pressure
2306      by P' - P.  Again, the cost of doing this is based on the original
2307      maximum pressure MP, for the same reason as above.
2308 
2309    * if P' < P, P > MP, and X occurs at or after the next point of
2310      maximum pressure, then:
2311 
2312        baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P)
2313 
2314      That is, if we have already exceeded the original maximum pressure MP,
2315      and if X might reduce the maximum pressure again -- or at least push
2316      it further back, and thus allow more scheduling freedom -- it is given
2317      a negative cost to reflect the improvement.
2318 
2319    * otherwise,
2320 
2321        baseECC (CL, X) = 0
2322 
2323      In this case, X is not expected to affect the maximum pressure MP',
2324      so it has zero cost.
2325 
2326    We then create a combined value baseECC (X) that is the sum of
2327    baseECC (CL, X) for each pressure class CL.
2328 
2329    baseECC (X) could itself be used as the ECC value described above.
2330    However, this is often too conservative, in the sense that it
2331    tends to make high-priority instructions that increase pressure
2332    wait too long in cases where introducing a spill would be better.
2333    For this reason the final ECC is a priority-adjusted form of
2334    baseECC (X).  Specifically, we calculate:
2335 
2336      P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X)
2337      baseP = MAX { P (X) | baseECC (X) <= 0 }
2338 
2339    Then:
2340 
2341      ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0)
2342 
2343    Thus an instruction's effect on pressure is ignored if it has a high
2344    enough priority relative to the ones that don't increase pressure.
2345    Negative values of baseECC (X) do not increase the priority of X
2346    itself, but they do make it harder for other instructions to
2347    increase the pressure further.
2348 
2349    This pressure cost is deliberately timid.  The intention has been
2350    to choose a heuristic that rarely interferes with the normal list
2351    scheduler in cases where that scheduler would produce good code.
2352    We simply want to curb some of its worst excesses.  */
2353 
2354 /* Return the cost of increasing the pressure in class CL from FROM to TO.
2355 
2356    Here we use the very simplistic cost model that every register above
2357    sched_class_regs_num[CL] has a spill cost of 1.  We could use other
2358    measures instead, such as one based on MEMORY_MOVE_COST.  However:
2359 
2360       (1) In order for an instruction to be scheduled, the higher cost
2361 	  would need to be justified in a single saving of that many stalls.
2362 	  This is overly pessimistic, because the benefit of spilling is
2363 	  often to avoid a sequence of several short stalls rather than
2364 	  a single long one.
2365 
2366       (2) The cost is still arbitrary.  Because we are not allocating
2367 	  registers during scheduling, we have no way of knowing for
2368 	  sure how many memory accesses will be required by each spill,
2369 	  where the spills will be placed within the block, or even
2370 	  which block(s) will contain the spills.
2371 
2372    So a higher cost than 1 is often too conservative in practice,
2373    forcing blocks to contain unnecessary stalls instead of spill code.
2374    The simple cost below seems to be the best compromise.  It reduces
2375    the interference with the normal list scheduler, which helps make
2376    it more suitable for a default-on option.  */
2377 
2378 static int
2379 model_spill_cost (int cl, int from, int to)
2380 {
2381   from = MAX (from, sched_class_regs_num[cl]);
2382   return MAX (to, from) - from;
2383 }
2384 
2385 /* Return baseECC (ira_pressure_classes[PCI], POINT), given that
2386    P = curr_reg_pressure[ira_pressure_classes[PCI]] and that
2387    P' = P + DELTA.  */
2388 
2389 static int
2390 model_excess_group_cost (struct model_pressure_group *group,
2391 			 int point, int pci, int delta)
2392 {
2393   int pressure, cl;
2394 
2395   cl = ira_pressure_classes[pci];
2396   if (delta < 0 && point >= group->limits[pci].point)
2397     {
2398       pressure = MAX (group->limits[pci].orig_pressure,
2399 		      curr_reg_pressure[cl] + delta);
2400       return -model_spill_cost (cl, pressure, curr_reg_pressure[cl]);
2401     }
2402 
2403   if (delta > 0)
2404     {
2405       if (point > group->limits[pci].point)
2406 	pressure = group->limits[pci].pressure + delta;
2407       else
2408 	pressure = curr_reg_pressure[cl] + delta;
2409 
2410       if (pressure > group->limits[pci].pressure)
2411 	return model_spill_cost (cl, group->limits[pci].orig_pressure,
2412 				 pressure);
2413     }
2414 
2415   return 0;
2416 }
2417 
2418 /* Return baseECC (MODEL_INSN (INSN)).  Dump the costs to sched_dump
2419    if PRINT_P.  */
2420 
2421 static int
2422 model_excess_cost (rtx_insn *insn, bool print_p)
2423 {
2424   int point, pci, cl, cost, this_cost, delta;
2425   struct reg_pressure_data *insn_reg_pressure;
2426   int insn_death[N_REG_CLASSES];
2427 
2428   calculate_reg_deaths (insn, insn_death);
2429   point = model_index (insn);
2430   insn_reg_pressure = INSN_REG_PRESSURE (insn);
2431   cost = 0;
2432 
2433   if (print_p)
2434     fprintf (sched_dump, ";;\t\t| %3d %4d | %4d %+3d |", point,
2435 	     INSN_UID (insn), INSN_PRIORITY (insn), insn_delay (insn));
2436 
2437   /* Sum up the individual costs for each register class.  */
2438   for (pci = 0; pci < ira_pressure_classes_num; pci++)
2439     {
2440       cl = ira_pressure_classes[pci];
2441       delta = insn_reg_pressure[pci].set_increase - insn_death[cl];
2442       this_cost = model_excess_group_cost (&model_before_pressure,
2443 					   point, pci, delta);
2444       cost += this_cost;
2445       if (print_p)
2446 	fprintf (sched_dump, " %s:[%d base cost %d]",
2447 		 reg_class_names[cl], delta, this_cost);
2448     }
2449 
2450   if (print_p)
2451     fprintf (sched_dump, "\n");
2452 
2453   return cost;
2454 }
2455 
2456 /* Dump the next points of maximum pressure for GROUP.  */
2457 
2458 static void
2459 model_dump_pressure_points (struct model_pressure_group *group)
2460 {
2461   int pci, cl;
2462 
2463   fprintf (sched_dump, ";;\t\t|  pressure points");
2464   for (pci = 0; pci < ira_pressure_classes_num; pci++)
2465     {
2466       cl = ira_pressure_classes[pci];
2467       fprintf (sched_dump, " %s:[%d->%d at ", reg_class_names[cl],
2468 	       curr_reg_pressure[cl], group->limits[pci].pressure);
2469       if (group->limits[pci].point < model_num_insns)
2470 	fprintf (sched_dump, "%d:%d]", group->limits[pci].point,
2471 		 INSN_UID (MODEL_INSN (group->limits[pci].point)));
2472       else
2473 	fprintf (sched_dump, "end]");
2474     }
2475   fprintf (sched_dump, "\n");
2476 }
2477 
2478 /* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1].  */
2479 
2480 static void
2481 model_set_excess_costs (rtx_insn **insns, int count)
2482 {
2483   int i, cost, priority_base, priority;
2484   bool print_p;
2485 
2486   /* Record the baseECC value for each instruction in the model schedule,
2487      except that negative costs are converted to zero ones now rather than
2488      later.  Do not assign a cost to debug instructions, since they must
2489      not change code-generation decisions.  Experiments suggest we also
2490      get better results by not assigning a cost to instructions from
2491      a different block.
2492 
2493      Set PRIORITY_BASE to baseP in the block comment above.  This is the
2494      maximum priority of the "cheap" instructions, which should always
2495      include the next model instruction.  */
2496   priority_base = 0;
2497   print_p = false;
2498   for (i = 0; i < count; i++)
2499     if (INSN_MODEL_INDEX (insns[i]))
2500       {
2501 	if (sched_verbose >= 6 && !print_p)
2502 	  {
2503 	    fprintf (sched_dump, MODEL_BAR);
2504 	    fprintf (sched_dump, ";;\t\t| Pressure costs for ready queue\n");
2505 	    model_dump_pressure_points (&model_before_pressure);
2506 	    fprintf (sched_dump, MODEL_BAR);
2507 	    print_p = true;
2508 	  }
2509 	cost = model_excess_cost (insns[i], print_p);
2510 	if (cost <= 0)
2511 	  {
2512 	    priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]) - cost;
2513 	    priority_base = MAX (priority_base, priority);
2514 	    cost = 0;
2515 	  }
2516 	INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = cost;
2517       }
2518   if (print_p)
2519     fprintf (sched_dump, MODEL_BAR);
2520 
2521   /* Use MAX (baseECC, 0) and baseP to calculcate ECC for each
2522      instruction.  */
2523   for (i = 0; i < count; i++)
2524     {
2525       cost = INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]);
2526       priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]);
2527       if (cost > 0 && priority > priority_base)
2528 	{
2529 	  cost += priority_base - priority;
2530 	  INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = MAX (cost, 0);
2531 	}
2532     }
2533 }
2534 
2535 
2536 /* Enum of rank_for_schedule heuristic decisions.  */
2537 enum rfs_decision {
2538   RFS_LIVE_RANGE_SHRINK1, RFS_LIVE_RANGE_SHRINK2,
2539   RFS_SCHED_GROUP, RFS_PRESSURE_DELAY, RFS_PRESSURE_TICK,
2540   RFS_FEEDS_BACKTRACK_INSN, RFS_PRIORITY, RFS_SPECULATION,
2541   RFS_SCHED_RANK, RFS_LAST_INSN, RFS_PRESSURE_INDEX,
2542   RFS_DEP_COUNT, RFS_TIE, RFS_FUSION, RFS_N };
2543 
2544 /* Corresponding strings for print outs.  */
2545 static const char *rfs_str[RFS_N] = {
2546   "RFS_LIVE_RANGE_SHRINK1", "RFS_LIVE_RANGE_SHRINK2",
2547   "RFS_SCHED_GROUP", "RFS_PRESSURE_DELAY", "RFS_PRESSURE_TICK",
2548   "RFS_FEEDS_BACKTRACK_INSN", "RFS_PRIORITY", "RFS_SPECULATION",
2549   "RFS_SCHED_RANK", "RFS_LAST_INSN", "RFS_PRESSURE_INDEX",
2550   "RFS_DEP_COUNT", "RFS_TIE", "RFS_FUSION" };
2551 
2552 /* Statistical breakdown of rank_for_schedule decisions.  */
2553 struct rank_for_schedule_stats_t { unsigned stats[RFS_N]; };
2554 static rank_for_schedule_stats_t rank_for_schedule_stats;
2555 
2556 /* Return the result of comparing insns TMP and TMP2 and update
2557    Rank_For_Schedule statistics.  */
2558 static int
2559 rfs_result (enum rfs_decision decision, int result, rtx tmp, rtx tmp2)
2560 {
2561   ++rank_for_schedule_stats.stats[decision];
2562   if (result < 0)
2563     INSN_LAST_RFS_WIN (tmp) = decision;
2564   else if (result > 0)
2565     INSN_LAST_RFS_WIN (tmp2) = decision;
2566   else
2567     gcc_unreachable ();
2568   return result;
2569 }
2570 
2571 /* Sorting predicate to move DEBUG_INSNs to the top of ready list, while
2572    keeping normal insns in original order.  */
2573 
2574 static int
2575 rank_for_schedule_debug (const void *x, const void *y)
2576 {
2577   rtx_insn *tmp = *(rtx_insn * const *) y;
2578   rtx_insn *tmp2 = *(rtx_insn * const *) x;
2579 
2580   /* Schedule debug insns as early as possible.  */
2581   if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
2582     return -1;
2583   else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2584     return 1;
2585   else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2586     return INSN_LUID (tmp) - INSN_LUID (tmp2);
2587   else
2588     return INSN_RFS_DEBUG_ORIG_ORDER (tmp2) - INSN_RFS_DEBUG_ORIG_ORDER (tmp);
2589 }
2590 
2591 /* Returns a positive value if x is preferred; returns a negative value if
2592    y is preferred.  Should never return 0, since that will make the sort
2593    unstable.  */
2594 
2595 static int
2596 rank_for_schedule (const void *x, const void *y)
2597 {
2598   rtx_insn *tmp = *(rtx_insn * const *) y;
2599   rtx_insn *tmp2 = *(rtx_insn * const *) x;
2600   int tmp_class, tmp2_class;
2601   int val, priority_val, info_val, diff;
2602 
2603   if (live_range_shrinkage_p)
2604     {
2605       /* Don't use SCHED_PRESSURE_MODEL -- it results in much worse
2606 	 code.  */
2607       gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
2608       if ((INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp) < 0
2609 	   || INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2) < 0)
2610 	  && (diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2611 		      - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2))) != 0)
2612 	return rfs_result (RFS_LIVE_RANGE_SHRINK1, diff, tmp, tmp2);
2613       /* Sort by INSN_LUID (original insn order), so that we make the
2614 	 sort stable.  This minimizes instruction movement, thus
2615 	 minimizing sched's effect on debugging and cross-jumping.  */
2616       return rfs_result (RFS_LIVE_RANGE_SHRINK2,
2617 			 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2618     }
2619 
2620   /* The insn in a schedule group should be issued the first.  */
2621   if (flag_sched_group_heuristic &&
2622       SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
2623     return rfs_result (RFS_SCHED_GROUP, SCHED_GROUP_P (tmp2) ? 1 : -1,
2624 		       tmp, tmp2);
2625 
2626   /* Make sure that priority of TMP and TMP2 are initialized.  */
2627   gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
2628 
2629   if (sched_fusion)
2630     {
2631       /* The instruction that has the same fusion priority as the last
2632 	 instruction is the instruction we picked next.  If that is not
2633 	 the case, we sort ready list firstly by fusion priority, then
2634 	 by priority, and at last by INSN_LUID.  */
2635       int a = INSN_FUSION_PRIORITY (tmp);
2636       int b = INSN_FUSION_PRIORITY (tmp2);
2637       int last = -1;
2638 
2639       if (last_nondebug_scheduled_insn
2640 	  && !NOTE_P (last_nondebug_scheduled_insn)
2641 	  && BLOCK_FOR_INSN (tmp)
2642 	       == BLOCK_FOR_INSN (last_nondebug_scheduled_insn))
2643 	last = INSN_FUSION_PRIORITY (last_nondebug_scheduled_insn);
2644 
2645       if (a != last && b != last)
2646 	{
2647 	  if (a == b)
2648 	    {
2649 	      a = INSN_PRIORITY (tmp);
2650 	      b = INSN_PRIORITY (tmp2);
2651 	    }
2652 	  if (a != b)
2653 	    return rfs_result (RFS_FUSION, b - a, tmp, tmp2);
2654 	  else
2655 	    return rfs_result (RFS_FUSION,
2656 			       INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2657 	}
2658       else if (a == b)
2659 	{
2660 	  gcc_assert (last_nondebug_scheduled_insn
2661 		      && !NOTE_P (last_nondebug_scheduled_insn));
2662 	  last = INSN_PRIORITY (last_nondebug_scheduled_insn);
2663 
2664 	  a = abs (INSN_PRIORITY (tmp) - last);
2665 	  b = abs (INSN_PRIORITY (tmp2) - last);
2666 	  if (a != b)
2667 	    return rfs_result (RFS_FUSION, a - b, tmp, tmp2);
2668 	  else
2669 	    return rfs_result (RFS_FUSION,
2670 			       INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2671 	}
2672       else if (a == last)
2673 	return rfs_result (RFS_FUSION, -1, tmp, tmp2);
2674       else
2675 	return rfs_result (RFS_FUSION, 1, tmp, tmp2);
2676     }
2677 
2678   if (sched_pressure != SCHED_PRESSURE_NONE)
2679     {
2680       /* Prefer insn whose scheduling results in the smallest register
2681 	 pressure excess.  */
2682       if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2683 		   + insn_delay (tmp)
2684 		   - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
2685 		   - insn_delay (tmp2))))
2686 	return rfs_result (RFS_PRESSURE_DELAY, diff, tmp, tmp2);
2687     }
2688 
2689   if (sched_pressure != SCHED_PRESSURE_NONE
2690       && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var)
2691       && INSN_TICK (tmp2) != INSN_TICK (tmp))
2692     {
2693       diff = INSN_TICK (tmp) - INSN_TICK (tmp2);
2694       return rfs_result (RFS_PRESSURE_TICK, diff, tmp, tmp2);
2695     }
2696 
2697   /* If we are doing backtracking in this schedule, prefer insns that
2698      have forward dependencies with negative cost against an insn that
2699      was already scheduled.  */
2700   if (current_sched_info->flags & DO_BACKTRACKING)
2701     {
2702       priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
2703       if (priority_val)
2704 	return rfs_result (RFS_FEEDS_BACKTRACK_INSN, priority_val, tmp, tmp2);
2705     }
2706 
2707   /* Prefer insn with higher priority.  */
2708   priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
2709 
2710   if (flag_sched_critical_path_heuristic && priority_val)
2711     return rfs_result (RFS_PRIORITY, priority_val, tmp, tmp2);
2712 
2713   if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) >= 0)
2714     {
2715       int autopref = autopref_rank_for_schedule (tmp, tmp2);
2716       if (autopref != 0)
2717 	return autopref;
2718     }
2719 
2720   /* Prefer speculative insn with greater dependencies weakness.  */
2721   if (flag_sched_spec_insn_heuristic && spec_info)
2722     {
2723       ds_t ds1, ds2;
2724       dw_t dw1, dw2;
2725       int dw;
2726 
2727       ds1 = TODO_SPEC (tmp) & SPECULATIVE;
2728       if (ds1)
2729 	dw1 = ds_weak (ds1);
2730       else
2731 	dw1 = NO_DEP_WEAK;
2732 
2733       ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
2734       if (ds2)
2735 	dw2 = ds_weak (ds2);
2736       else
2737 	dw2 = NO_DEP_WEAK;
2738 
2739       dw = dw2 - dw1;
2740       if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
2741 	return rfs_result (RFS_SPECULATION, dw, tmp, tmp2);
2742     }
2743 
2744   info_val = (*current_sched_info->rank) (tmp, tmp2);
2745   if (flag_sched_rank_heuristic && info_val)
2746     return rfs_result (RFS_SCHED_RANK, info_val, tmp, tmp2);
2747 
2748   /* Compare insns based on their relation to the last scheduled
2749      non-debug insn.  */
2750   if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
2751     {
2752       dep_t dep1;
2753       dep_t dep2;
2754       rtx_insn *last = last_nondebug_scheduled_insn;
2755 
2756       /* Classify the instructions into three classes:
2757          1) Data dependent on last schedule insn.
2758          2) Anti/Output dependent on last scheduled insn.
2759          3) Independent of last scheduled insn, or has latency of one.
2760          Choose the insn from the highest numbered class if different.  */
2761       dep1 = sd_find_dep_between (last, tmp, true);
2762 
2763       if (dep1 == NULL || dep_cost (dep1) == 1)
2764 	tmp_class = 3;
2765       else if (/* Data dependence.  */
2766 	       DEP_TYPE (dep1) == REG_DEP_TRUE)
2767 	tmp_class = 1;
2768       else
2769 	tmp_class = 2;
2770 
2771       dep2 = sd_find_dep_between (last, tmp2, true);
2772 
2773       if (dep2 == NULL || dep_cost (dep2)  == 1)
2774 	tmp2_class = 3;
2775       else if (/* Data dependence.  */
2776 	       DEP_TYPE (dep2) == REG_DEP_TRUE)
2777 	tmp2_class = 1;
2778       else
2779 	tmp2_class = 2;
2780 
2781       if ((val = tmp2_class - tmp_class))
2782 	return rfs_result (RFS_LAST_INSN, val, tmp, tmp2);
2783     }
2784 
2785   /* Prefer instructions that occur earlier in the model schedule.  */
2786   if (sched_pressure == SCHED_PRESSURE_MODEL)
2787     {
2788       diff = model_index (tmp) - model_index (tmp2);
2789       if (diff != 0)
2790 	return rfs_result (RFS_PRESSURE_INDEX, diff, tmp, tmp2);
2791     }
2792 
2793   /* Prefer the insn which has more later insns that depend on it.
2794      This gives the scheduler more freedom when scheduling later
2795      instructions at the expense of added register pressure.  */
2796 
2797   val = (dep_list_size (tmp2, SD_LIST_FORW)
2798 	 - dep_list_size (tmp, SD_LIST_FORW));
2799 
2800   if (flag_sched_dep_count_heuristic && val != 0)
2801     return rfs_result (RFS_DEP_COUNT, val, tmp, tmp2);
2802 
2803   /* If insns are equally good, sort by INSN_LUID (original insn order),
2804      so that we make the sort stable.  This minimizes instruction movement,
2805      thus minimizing sched's effect on debugging and cross-jumping.  */
2806   return rfs_result (RFS_TIE, INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2807 }
2808 
2809 /* Resort the array A in which only element at index N may be out of order.  */
2810 
2811 HAIFA_INLINE static void
2812 swap_sort (rtx_insn **a, int n)
2813 {
2814   rtx_insn *insn = a[n - 1];
2815   int i = n - 2;
2816 
2817   while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
2818     {
2819       a[i + 1] = a[i];
2820       i -= 1;
2821     }
2822   a[i + 1] = insn;
2823 }
2824 
2825 /* Add INSN to the insn queue so that it can be executed at least
2826    N_CYCLES after the currently executing insn.  Preserve insns
2827    chain for debugging purposes.  REASON will be printed in debugging
2828    output.  */
2829 
2830 HAIFA_INLINE static void
2831 queue_insn (rtx_insn *insn, int n_cycles, const char *reason)
2832 {
2833   int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
2834   rtx_insn_list *link = alloc_INSN_LIST (insn, insn_queue[next_q]);
2835   int new_tick;
2836 
2837   gcc_assert (n_cycles <= max_insn_queue_index);
2838   gcc_assert (!DEBUG_INSN_P (insn));
2839 
2840   insn_queue[next_q] = link;
2841   q_size += 1;
2842 
2843   if (sched_verbose >= 2)
2844     {
2845       fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
2846 	       (*current_sched_info->print_insn) (insn, 0));
2847 
2848       fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
2849     }
2850 
2851   QUEUE_INDEX (insn) = next_q;
2852 
2853   if (current_sched_info->flags & DO_BACKTRACKING)
2854     {
2855       new_tick = clock_var + n_cycles;
2856       if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
2857 	INSN_TICK (insn) = new_tick;
2858 
2859       if (INSN_EXACT_TICK (insn) != INVALID_TICK
2860 	  && INSN_EXACT_TICK (insn) < clock_var + n_cycles)
2861 	{
2862 	  must_backtrack = true;
2863 	  if (sched_verbose >= 2)
2864 	    fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
2865 	}
2866     }
2867 }
2868 
2869 /* Remove INSN from queue.  */
2870 static void
2871 queue_remove (rtx_insn *insn)
2872 {
2873   gcc_assert (QUEUE_INDEX (insn) >= 0);
2874   remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
2875   q_size--;
2876   QUEUE_INDEX (insn) = QUEUE_NOWHERE;
2877 }
2878 
2879 /* Return a pointer to the bottom of the ready list, i.e. the insn
2880    with the lowest priority.  */
2881 
2882 rtx_insn **
2883 ready_lastpos (struct ready_list *ready)
2884 {
2885   gcc_assert (ready->n_ready >= 1);
2886   return ready->vec + ready->first - ready->n_ready + 1;
2887 }
2888 
2889 /* Add an element INSN to the ready list so that it ends up with the
2890    lowest/highest priority depending on FIRST_P.  */
2891 
2892 HAIFA_INLINE static void
2893 ready_add (struct ready_list *ready, rtx_insn *insn, bool first_p)
2894 {
2895   if (!first_p)
2896     {
2897       if (ready->first == ready->n_ready)
2898 	{
2899 	  memmove (ready->vec + ready->veclen - ready->n_ready,
2900 		   ready_lastpos (ready),
2901 		   ready->n_ready * sizeof (rtx));
2902 	  ready->first = ready->veclen - 1;
2903 	}
2904       ready->vec[ready->first - ready->n_ready] = insn;
2905     }
2906   else
2907     {
2908       if (ready->first == ready->veclen - 1)
2909 	{
2910 	  if (ready->n_ready)
2911 	    /* ready_lastpos() fails when called with (ready->n_ready == 0).  */
2912 	    memmove (ready->vec + ready->veclen - ready->n_ready - 1,
2913 		     ready_lastpos (ready),
2914 		     ready->n_ready * sizeof (rtx));
2915 	  ready->first = ready->veclen - 2;
2916 	}
2917       ready->vec[++(ready->first)] = insn;
2918     }
2919 
2920   ready->n_ready++;
2921   if (DEBUG_INSN_P (insn))
2922     ready->n_debug++;
2923 
2924   gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
2925   QUEUE_INDEX (insn) = QUEUE_READY;
2926 
2927   if (INSN_EXACT_TICK (insn) != INVALID_TICK
2928       && INSN_EXACT_TICK (insn) < clock_var)
2929     {
2930       must_backtrack = true;
2931     }
2932 }
2933 
2934 /* Remove the element with the highest priority from the ready list and
2935    return it.  */
2936 
2937 HAIFA_INLINE static rtx_insn *
2938 ready_remove_first (struct ready_list *ready)
2939 {
2940   rtx_insn *t;
2941 
2942   gcc_assert (ready->n_ready);
2943   t = ready->vec[ready->first--];
2944   ready->n_ready--;
2945   if (DEBUG_INSN_P (t))
2946     ready->n_debug--;
2947   /* If the queue becomes empty, reset it.  */
2948   if (ready->n_ready == 0)
2949     ready->first = ready->veclen - 1;
2950 
2951   gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
2952   QUEUE_INDEX (t) = QUEUE_NOWHERE;
2953 
2954   return t;
2955 }
2956 
2957 /* The following code implements multi-pass scheduling for the first
2958    cycle.  In other words, we will try to choose ready insn which
2959    permits to start maximum number of insns on the same cycle.  */
2960 
2961 /* Return a pointer to the element INDEX from the ready.  INDEX for
2962    insn with the highest priority is 0, and the lowest priority has
2963    N_READY - 1.  */
2964 
2965 rtx_insn *
2966 ready_element (struct ready_list *ready, int index)
2967 {
2968   gcc_assert (ready->n_ready && index < ready->n_ready);
2969 
2970   return ready->vec[ready->first - index];
2971 }
2972 
2973 /* Remove the element INDEX from the ready list and return it.  INDEX
2974    for insn with the highest priority is 0, and the lowest priority
2975    has N_READY - 1.  */
2976 
2977 HAIFA_INLINE static rtx_insn *
2978 ready_remove (struct ready_list *ready, int index)
2979 {
2980   rtx_insn *t;
2981   int i;
2982 
2983   if (index == 0)
2984     return ready_remove_first (ready);
2985   gcc_assert (ready->n_ready && index < ready->n_ready);
2986   t = ready->vec[ready->first - index];
2987   ready->n_ready--;
2988   if (DEBUG_INSN_P (t))
2989     ready->n_debug--;
2990   for (i = index; i < ready->n_ready; i++)
2991     ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
2992   QUEUE_INDEX (t) = QUEUE_NOWHERE;
2993   return t;
2994 }
2995 
2996 /* Remove INSN from the ready list.  */
2997 static void
2998 ready_remove_insn (rtx_insn *insn)
2999 {
3000   int i;
3001 
3002   for (i = 0; i < readyp->n_ready; i++)
3003     if (ready_element (readyp, i) == insn)
3004       {
3005         ready_remove (readyp, i);
3006         return;
3007       }
3008   gcc_unreachable ();
3009 }
3010 
3011 /* Calculate difference of two statistics set WAS and NOW.
3012    Result returned in WAS.  */
3013 static void
3014 rank_for_schedule_stats_diff (rank_for_schedule_stats_t *was,
3015 			      const rank_for_schedule_stats_t *now)
3016 {
3017   for (int i = 0; i < RFS_N; ++i)
3018     was->stats[i] = now->stats[i] - was->stats[i];
3019 }
3020 
3021 /* Print rank_for_schedule statistics.  */
3022 static void
3023 print_rank_for_schedule_stats (const char *prefix,
3024 			       const rank_for_schedule_stats_t *stats,
3025 			       struct ready_list *ready)
3026 {
3027   for (int i = 0; i < RFS_N; ++i)
3028     if (stats->stats[i])
3029       {
3030 	fprintf (sched_dump, "%s%20s: %u", prefix, rfs_str[i], stats->stats[i]);
3031 
3032 	if (ready != NULL)
3033 	  /* Print out insns that won due to RFS_<I>.  */
3034 	  {
3035 	    rtx_insn **p = ready_lastpos (ready);
3036 
3037 	    fprintf (sched_dump, ":");
3038 	    /* Start with 1 since least-priority insn didn't have any wins.  */
3039 	    for (int j = 1; j < ready->n_ready; ++j)
3040 	      if (INSN_LAST_RFS_WIN (p[j]) == i)
3041 		fprintf (sched_dump, " %s",
3042 			 (*current_sched_info->print_insn) (p[j], 0));
3043 	  }
3044 	fprintf (sched_dump, "\n");
3045       }
3046 }
3047 
3048 /* Separate DEBUG_INSNS from normal insns.  DEBUG_INSNs go to the end
3049    of array.  */
3050 static void
3051 ready_sort_debug (struct ready_list *ready)
3052 {
3053   int i;
3054   rtx_insn **first = ready_lastpos (ready);
3055 
3056   for (i = 0; i < ready->n_ready; ++i)
3057     if (!DEBUG_INSN_P (first[i]))
3058       INSN_RFS_DEBUG_ORIG_ORDER (first[i]) = i;
3059 
3060   qsort (first, ready->n_ready, sizeof (rtx), rank_for_schedule_debug);
3061 }
3062 
3063 /* Sort non-debug insns in the ready list READY by ascending priority.
3064    Assumes that all debug insns are separated from the real insns.  */
3065 static void
3066 ready_sort_real (struct ready_list *ready)
3067 {
3068   int i;
3069   rtx_insn **first = ready_lastpos (ready);
3070   int n_ready_real = ready->n_ready - ready->n_debug;
3071 
3072   if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
3073     for (i = 0; i < n_ready_real; ++i)
3074       setup_insn_reg_pressure_info (first[i]);
3075   else if (sched_pressure == SCHED_PRESSURE_MODEL
3076 	   && model_curr_point < model_num_insns)
3077     model_set_excess_costs (first, n_ready_real);
3078 
3079   rank_for_schedule_stats_t stats1;
3080   if (sched_verbose >= 4)
3081     stats1 = rank_for_schedule_stats;
3082 
3083   if (n_ready_real == 2)
3084     swap_sort (first, n_ready_real);
3085   else if (n_ready_real > 2)
3086     qsort (first, n_ready_real, sizeof (rtx), rank_for_schedule);
3087 
3088   if (sched_verbose >= 4)
3089     {
3090       rank_for_schedule_stats_diff (&stats1, &rank_for_schedule_stats);
3091       print_rank_for_schedule_stats (";;\t\t", &stats1, ready);
3092     }
3093 }
3094 
3095 /* Sort the ready list READY by ascending priority.  */
3096 static void
3097 ready_sort (struct ready_list *ready)
3098 {
3099   if (ready->n_debug > 0)
3100     ready_sort_debug (ready);
3101   else
3102     ready_sort_real (ready);
3103 }
3104 
3105 /* PREV is an insn that is ready to execute.  Adjust its priority if that
3106    will help shorten or lengthen register lifetimes as appropriate.  Also
3107    provide a hook for the target to tweak itself.  */
3108 
3109 HAIFA_INLINE static void
3110 adjust_priority (rtx_insn *prev)
3111 {
3112   /* ??? There used to be code here to try and estimate how an insn
3113      affected register lifetimes, but it did it by looking at REG_DEAD
3114      notes, which we removed in schedule_region.  Nor did it try to
3115      take into account register pressure or anything useful like that.
3116 
3117      Revisit when we have a machine model to work with and not before.  */
3118 
3119   if (targetm.sched.adjust_priority)
3120     INSN_PRIORITY (prev) =
3121       targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
3122 }
3123 
3124 /* Advance DFA state STATE on one cycle.  */
3125 void
3126 advance_state (state_t state)
3127 {
3128   if (targetm.sched.dfa_pre_advance_cycle)
3129     targetm.sched.dfa_pre_advance_cycle ();
3130 
3131   if (targetm.sched.dfa_pre_cycle_insn)
3132     state_transition (state,
3133 		      targetm.sched.dfa_pre_cycle_insn ());
3134 
3135   state_transition (state, NULL);
3136 
3137   if (targetm.sched.dfa_post_cycle_insn)
3138     state_transition (state,
3139 		      targetm.sched.dfa_post_cycle_insn ());
3140 
3141   if (targetm.sched.dfa_post_advance_cycle)
3142     targetm.sched.dfa_post_advance_cycle ();
3143 }
3144 
3145 /* Advance time on one cycle.  */
3146 HAIFA_INLINE static void
3147 advance_one_cycle (void)
3148 {
3149   advance_state (curr_state);
3150   if (sched_verbose >= 4)
3151     fprintf (sched_dump, ";;\tAdvance the current state.\n");
3152 }
3153 
3154 /* Update register pressure after scheduling INSN.  */
3155 static void
3156 update_register_pressure (rtx_insn *insn)
3157 {
3158   struct reg_use_data *use;
3159   struct reg_set_data *set;
3160 
3161   gcc_checking_assert (!DEBUG_INSN_P (insn));
3162 
3163   for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
3164     if (dying_use_p (use))
3165       mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3166 				 use->regno, false);
3167   for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
3168     mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3169 			       set->regno, true);
3170 }
3171 
3172 /* Set up or update (if UPDATE_P) max register pressure (see its
3173    meaning in sched-int.h::_haifa_insn_data) for all current BB insns
3174    after insn AFTER.  */
3175 static void
3176 setup_insn_max_reg_pressure (rtx_insn *after, bool update_p)
3177 {
3178   int i, p;
3179   bool eq_p;
3180   rtx_insn *insn;
3181   static int max_reg_pressure[N_REG_CLASSES];
3182 
3183   save_reg_pressure ();
3184   for (i = 0; i < ira_pressure_classes_num; i++)
3185     max_reg_pressure[ira_pressure_classes[i]]
3186       = curr_reg_pressure[ira_pressure_classes[i]];
3187   for (insn = NEXT_INSN (after);
3188        insn != NULL_RTX && ! BARRIER_P (insn)
3189 	 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
3190        insn = NEXT_INSN (insn))
3191     if (NONDEBUG_INSN_P (insn))
3192       {
3193 	eq_p = true;
3194 	for (i = 0; i < ira_pressure_classes_num; i++)
3195 	  {
3196 	    p = max_reg_pressure[ira_pressure_classes[i]];
3197 	    if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
3198 	      {
3199 		eq_p = false;
3200 		INSN_MAX_REG_PRESSURE (insn)[i]
3201 		  = max_reg_pressure[ira_pressure_classes[i]];
3202 	      }
3203 	  }
3204 	if (update_p && eq_p)
3205 	  break;
3206 	update_register_pressure (insn);
3207 	for (i = 0; i < ira_pressure_classes_num; i++)
3208 	  if (max_reg_pressure[ira_pressure_classes[i]]
3209 	      < curr_reg_pressure[ira_pressure_classes[i]])
3210 	    max_reg_pressure[ira_pressure_classes[i]]
3211 	      = curr_reg_pressure[ira_pressure_classes[i]];
3212       }
3213   restore_reg_pressure ();
3214 }
3215 
3216 /* Update the current register pressure after scheduling INSN.  Update
3217    also max register pressure for unscheduled insns of the current
3218    BB.  */
3219 static void
3220 update_reg_and_insn_max_reg_pressure (rtx_insn *insn)
3221 {
3222   int i;
3223   int before[N_REG_CLASSES];
3224 
3225   for (i = 0; i < ira_pressure_classes_num; i++)
3226     before[i] = curr_reg_pressure[ira_pressure_classes[i]];
3227   update_register_pressure (insn);
3228   for (i = 0; i < ira_pressure_classes_num; i++)
3229     if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
3230       break;
3231   if (i < ira_pressure_classes_num)
3232     setup_insn_max_reg_pressure (insn, true);
3233 }
3234 
3235 /* Set up register pressure at the beginning of basic block BB whose
3236    insns starting after insn AFTER.  Set up also max register pressure
3237    for all insns of the basic block.  */
3238 void
3239 sched_setup_bb_reg_pressure_info (basic_block bb, rtx_insn *after)
3240 {
3241   gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
3242   initiate_bb_reg_pressure_info (bb);
3243   setup_insn_max_reg_pressure (after, false);
3244 }
3245 
3246 /* If doing predication while scheduling, verify whether INSN, which
3247    has just been scheduled, clobbers the conditions of any
3248    instructions that must be predicated in order to break their
3249    dependencies.  If so, remove them from the queues so that they will
3250    only be scheduled once their control dependency is resolved.  */
3251 
3252 static void
3253 check_clobbered_conditions (rtx_insn *insn)
3254 {
3255   HARD_REG_SET t;
3256   int i;
3257 
3258   if ((current_sched_info->flags & DO_PREDICATION) == 0)
3259     return;
3260 
3261   find_all_hard_reg_sets (insn, &t, true);
3262 
3263  restart:
3264   for (i = 0; i < ready.n_ready; i++)
3265     {
3266       rtx_insn *x = ready_element (&ready, i);
3267       if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3268 	{
3269 	  ready_remove_insn (x);
3270 	  goto restart;
3271 	}
3272     }
3273   for (i = 0; i <= max_insn_queue_index; i++)
3274     {
3275       rtx_insn_list *link;
3276       int q = NEXT_Q_AFTER (q_ptr, i);
3277 
3278     restart_queue:
3279       for (link = insn_queue[q]; link; link = link->next ())
3280 	{
3281 	  rtx_insn *x = link->insn ();
3282 	  if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3283 	    {
3284 	      queue_remove (x);
3285 	      goto restart_queue;
3286 	    }
3287 	}
3288     }
3289 }
3290 
3291 /* Return (in order):
3292 
3293    - positive if INSN adversely affects the pressure on one
3294      register class
3295 
3296    - negative if INSN reduces the pressure on one register class
3297 
3298    - 0 if INSN doesn't affect the pressure on any register class.  */
3299 
3300 static int
3301 model_classify_pressure (struct model_insn_info *insn)
3302 {
3303   struct reg_pressure_data *reg_pressure;
3304   int death[N_REG_CLASSES];
3305   int pci, cl, sum;
3306 
3307   calculate_reg_deaths (insn->insn, death);
3308   reg_pressure = INSN_REG_PRESSURE (insn->insn);
3309   sum = 0;
3310   for (pci = 0; pci < ira_pressure_classes_num; pci++)
3311     {
3312       cl = ira_pressure_classes[pci];
3313       if (death[cl] < reg_pressure[pci].set_increase)
3314 	return 1;
3315       sum += reg_pressure[pci].set_increase - death[cl];
3316     }
3317   return sum;
3318 }
3319 
3320 /* Return true if INSN1 should come before INSN2 in the model schedule.  */
3321 
3322 static int
3323 model_order_p (struct model_insn_info *insn1, struct model_insn_info *insn2)
3324 {
3325   unsigned int height1, height2;
3326   unsigned int priority1, priority2;
3327 
3328   /* Prefer instructions with a higher model priority.  */
3329   if (insn1->model_priority != insn2->model_priority)
3330     return insn1->model_priority > insn2->model_priority;
3331 
3332   /* Combine the length of the longest path of satisfied true dependencies
3333      that leads to each instruction (depth) with the length of the longest
3334      path of any dependencies that leads from the instruction (alap).
3335      Prefer instructions with the greatest combined length.  If the combined
3336      lengths are equal, prefer instructions with the greatest depth.
3337 
3338      The idea is that, if we have a set S of "equal" instructions that each
3339      have ALAP value X, and we pick one such instruction I, any true-dependent
3340      successors of I that have ALAP value X - 1 should be preferred over S.
3341      This encourages the schedule to be "narrow" rather than "wide".
3342      However, if I is a low-priority instruction that we decided to
3343      schedule because of its model_classify_pressure, and if there
3344      is a set of higher-priority instructions T, the aforementioned
3345      successors of I should not have the edge over T.  */
3346   height1 = insn1->depth + insn1->alap;
3347   height2 = insn2->depth + insn2->alap;
3348   if (height1 != height2)
3349     return height1 > height2;
3350   if (insn1->depth != insn2->depth)
3351     return insn1->depth > insn2->depth;
3352 
3353   /* We have no real preference between INSN1 an INSN2 as far as attempts
3354      to reduce pressure go.  Prefer instructions with higher priorities.  */
3355   priority1 = INSN_PRIORITY (insn1->insn);
3356   priority2 = INSN_PRIORITY (insn2->insn);
3357   if (priority1 != priority2)
3358     return priority1 > priority2;
3359 
3360   /* Use the original rtl sequence as a tie-breaker.  */
3361   return insn1 < insn2;
3362 }
3363 
3364 /* Add INSN to the model worklist immediately after PREV.  Add it to the
3365    beginning of the list if PREV is null.  */
3366 
3367 static void
3368 model_add_to_worklist_at (struct model_insn_info *insn,
3369 			  struct model_insn_info *prev)
3370 {
3371   gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_NOWHERE);
3372   QUEUE_INDEX (insn->insn) = QUEUE_READY;
3373 
3374   insn->prev = prev;
3375   if (prev)
3376     {
3377       insn->next = prev->next;
3378       prev->next = insn;
3379     }
3380   else
3381     {
3382       insn->next = model_worklist;
3383       model_worklist = insn;
3384     }
3385   if (insn->next)
3386     insn->next->prev = insn;
3387 }
3388 
3389 /* Remove INSN from the model worklist.  */
3390 
3391 static void
3392 model_remove_from_worklist (struct model_insn_info *insn)
3393 {
3394   gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_READY);
3395   QUEUE_INDEX (insn->insn) = QUEUE_NOWHERE;
3396 
3397   if (insn->prev)
3398     insn->prev->next = insn->next;
3399   else
3400     model_worklist = insn->next;
3401   if (insn->next)
3402     insn->next->prev = insn->prev;
3403 }
3404 
3405 /* Add INSN to the model worklist.  Start looking for a suitable position
3406    between neighbors PREV and NEXT, testing at most MAX_SCHED_READY_INSNS
3407    insns either side.  A null PREV indicates the beginning of the list and
3408    a null NEXT indicates the end.  */
3409 
3410 static void
3411 model_add_to_worklist (struct model_insn_info *insn,
3412 		       struct model_insn_info *prev,
3413 		       struct model_insn_info *next)
3414 {
3415   int count;
3416 
3417   count = MAX_SCHED_READY_INSNS;
3418   if (count > 0 && prev && model_order_p (insn, prev))
3419     do
3420       {
3421 	count--;
3422 	prev = prev->prev;
3423       }
3424     while (count > 0 && prev && model_order_p (insn, prev));
3425   else
3426     while (count > 0 && next && model_order_p (next, insn))
3427       {
3428 	count--;
3429 	prev = next;
3430 	next = next->next;
3431       }
3432   model_add_to_worklist_at (insn, prev);
3433 }
3434 
3435 /* INSN may now have a higher priority (in the model_order_p sense)
3436    than before.  Move it up the worklist if necessary.  */
3437 
3438 static void
3439 model_promote_insn (struct model_insn_info *insn)
3440 {
3441   struct model_insn_info *prev;
3442   int count;
3443 
3444   prev = insn->prev;
3445   count = MAX_SCHED_READY_INSNS;
3446   while (count > 0 && prev && model_order_p (insn, prev))
3447     {
3448       count--;
3449       prev = prev->prev;
3450     }
3451   if (prev != insn->prev)
3452     {
3453       model_remove_from_worklist (insn);
3454       model_add_to_worklist_at (insn, prev);
3455     }
3456 }
3457 
3458 /* Add INSN to the end of the model schedule.  */
3459 
3460 static void
3461 model_add_to_schedule (rtx_insn *insn)
3462 {
3463   unsigned int point;
3464 
3465   gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3466   QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3467 
3468   point = model_schedule.length ();
3469   model_schedule.quick_push (insn);
3470   INSN_MODEL_INDEX (insn) = point + 1;
3471 }
3472 
3473 /* Analyze the instructions that are to be scheduled, setting up
3474    MODEL_INSN_INFO (...) and model_num_insns accordingly.  Add ready
3475    instructions to model_worklist.  */
3476 
3477 static void
3478 model_analyze_insns (void)
3479 {
3480   rtx_insn *start, *end, *iter;
3481   sd_iterator_def sd_it;
3482   dep_t dep;
3483   struct model_insn_info *insn, *con;
3484 
3485   model_num_insns = 0;
3486   start = PREV_INSN (current_sched_info->next_tail);
3487   end = current_sched_info->prev_head;
3488   for (iter = start; iter != end; iter = PREV_INSN (iter))
3489     if (NONDEBUG_INSN_P (iter))
3490       {
3491 	insn = MODEL_INSN_INFO (iter);
3492 	insn->insn = iter;
3493 	FOR_EACH_DEP (iter, SD_LIST_FORW, sd_it, dep)
3494 	  {
3495 	    con = MODEL_INSN_INFO (DEP_CON (dep));
3496 	    if (con->insn && insn->alap < con->alap + 1)
3497 	      insn->alap = con->alap + 1;
3498 	  }
3499 
3500 	insn->old_queue = QUEUE_INDEX (iter);
3501 	QUEUE_INDEX (iter) = QUEUE_NOWHERE;
3502 
3503 	insn->unscheduled_preds = dep_list_size (iter, SD_LIST_HARD_BACK);
3504 	if (insn->unscheduled_preds == 0)
3505 	  model_add_to_worklist (insn, NULL, model_worklist);
3506 
3507 	model_num_insns++;
3508       }
3509 }
3510 
3511 /* The global state describes the register pressure at the start of the
3512    model schedule.  Initialize GROUP accordingly.  */
3513 
3514 static void
3515 model_init_pressure_group (struct model_pressure_group *group)
3516 {
3517   int pci, cl;
3518 
3519   for (pci = 0; pci < ira_pressure_classes_num; pci++)
3520     {
3521       cl = ira_pressure_classes[pci];
3522       group->limits[pci].pressure = curr_reg_pressure[cl];
3523       group->limits[pci].point = 0;
3524     }
3525   /* Use index model_num_insns to record the state after the last
3526      instruction in the model schedule.  */
3527   group->model = XNEWVEC (struct model_pressure_data,
3528 			  (model_num_insns + 1) * ira_pressure_classes_num);
3529 }
3530 
3531 /* Record that MODEL_REF_PRESSURE (GROUP, POINT, PCI) is PRESSURE.
3532    Update the maximum pressure for the whole schedule.  */
3533 
3534 static void
3535 model_record_pressure (struct model_pressure_group *group,
3536 		       int point, int pci, int pressure)
3537 {
3538   MODEL_REF_PRESSURE (group, point, pci) = pressure;
3539   if (group->limits[pci].pressure < pressure)
3540     {
3541       group->limits[pci].pressure = pressure;
3542       group->limits[pci].point = point;
3543     }
3544 }
3545 
3546 /* INSN has just been added to the end of the model schedule.  Record its
3547    register-pressure information.  */
3548 
3549 static void
3550 model_record_pressures (struct model_insn_info *insn)
3551 {
3552   struct reg_pressure_data *reg_pressure;
3553   int point, pci, cl, delta;
3554   int death[N_REG_CLASSES];
3555 
3556   point = model_index (insn->insn);
3557   if (sched_verbose >= 2)
3558     {
3559       if (point == 0)
3560 	{
3561 	  fprintf (sched_dump, "\n;;\tModel schedule:\n;;\n");
3562 	  fprintf (sched_dump, ";;\t| idx insn | mpri hght dpth prio |\n");
3563 	}
3564       fprintf (sched_dump, ";;\t| %3d %4d | %4d %4d %4d %4d | %-30s ",
3565 	       point, INSN_UID (insn->insn), insn->model_priority,
3566 	       insn->depth + insn->alap, insn->depth,
3567 	       INSN_PRIORITY (insn->insn),
3568 	       str_pattern_slim (PATTERN (insn->insn)));
3569     }
3570   calculate_reg_deaths (insn->insn, death);
3571   reg_pressure = INSN_REG_PRESSURE (insn->insn);
3572   for (pci = 0; pci < ira_pressure_classes_num; pci++)
3573     {
3574       cl = ira_pressure_classes[pci];
3575       delta = reg_pressure[pci].set_increase - death[cl];
3576       if (sched_verbose >= 2)
3577 	fprintf (sched_dump, " %s:[%d,%+d]", reg_class_names[cl],
3578 		 curr_reg_pressure[cl], delta);
3579       model_record_pressure (&model_before_pressure, point, pci,
3580 			     curr_reg_pressure[cl]);
3581     }
3582   if (sched_verbose >= 2)
3583     fprintf (sched_dump, "\n");
3584 }
3585 
3586 /* All instructions have been added to the model schedule.  Record the
3587    final register pressure in GROUP and set up all MODEL_MAX_PRESSUREs.  */
3588 
3589 static void
3590 model_record_final_pressures (struct model_pressure_group *group)
3591 {
3592   int point, pci, max_pressure, ref_pressure, cl;
3593 
3594   for (pci = 0; pci < ira_pressure_classes_num; pci++)
3595     {
3596       /* Record the final pressure for this class.  */
3597       cl = ira_pressure_classes[pci];
3598       point = model_num_insns;
3599       ref_pressure = curr_reg_pressure[cl];
3600       model_record_pressure (group, point, pci, ref_pressure);
3601 
3602       /* Record the original maximum pressure.  */
3603       group->limits[pci].orig_pressure = group->limits[pci].pressure;
3604 
3605       /* Update the MODEL_MAX_PRESSURE for every point of the schedule.  */
3606       max_pressure = ref_pressure;
3607       MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3608       while (point > 0)
3609 	{
3610 	  point--;
3611 	  ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
3612 	  max_pressure = MAX (max_pressure, ref_pressure);
3613 	  MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3614 	}
3615     }
3616 }
3617 
3618 /* Update all successors of INSN, given that INSN has just been scheduled.  */
3619 
3620 static void
3621 model_add_successors_to_worklist (struct model_insn_info *insn)
3622 {
3623   sd_iterator_def sd_it;
3624   struct model_insn_info *con;
3625   dep_t dep;
3626 
3627   FOR_EACH_DEP (insn->insn, SD_LIST_FORW, sd_it, dep)
3628     {
3629       con = MODEL_INSN_INFO (DEP_CON (dep));
3630       /* Ignore debug instructions, and instructions from other blocks.  */
3631       if (con->insn)
3632 	{
3633 	  con->unscheduled_preds--;
3634 
3635 	  /* Update the depth field of each true-dependent successor.
3636 	     Increasing the depth gives them a higher priority than
3637 	     before.  */
3638 	  if (DEP_TYPE (dep) == REG_DEP_TRUE && con->depth < insn->depth + 1)
3639 	    {
3640 	      con->depth = insn->depth + 1;
3641 	      if (QUEUE_INDEX (con->insn) == QUEUE_READY)
3642 		model_promote_insn (con);
3643 	    }
3644 
3645 	  /* If this is a true dependency, or if there are no remaining
3646 	     dependencies for CON (meaning that CON only had non-true
3647 	     dependencies), make sure that CON is on the worklist.
3648 	     We don't bother otherwise because it would tend to fill the
3649 	     worklist with a lot of low-priority instructions that are not
3650 	     yet ready to issue.  */
3651 	  if ((con->depth > 0 || con->unscheduled_preds == 0)
3652 	      && QUEUE_INDEX (con->insn) == QUEUE_NOWHERE)
3653 	    model_add_to_worklist (con, insn, insn->next);
3654 	}
3655     }
3656 }
3657 
3658 /* Give INSN a higher priority than any current instruction, then give
3659    unscheduled predecessors of INSN a higher priority still.  If any of
3660    those predecessors are not on the model worklist, do the same for its
3661    predecessors, and so on.  */
3662 
3663 static void
3664 model_promote_predecessors (struct model_insn_info *insn)
3665 {
3666   struct model_insn_info *pro, *first;
3667   sd_iterator_def sd_it;
3668   dep_t dep;
3669 
3670   if (sched_verbose >= 7)
3671     fprintf (sched_dump, ";;\t+--- priority of %d = %d, priority of",
3672 	     INSN_UID (insn->insn), model_next_priority);
3673   insn->model_priority = model_next_priority++;
3674   model_remove_from_worklist (insn);
3675   model_add_to_worklist_at (insn, NULL);
3676 
3677   first = NULL;
3678   for (;;)
3679     {
3680       FOR_EACH_DEP (insn->insn, SD_LIST_HARD_BACK, sd_it, dep)
3681 	{
3682 	  pro = MODEL_INSN_INFO (DEP_PRO (dep));
3683 	  /* The first test is to ignore debug instructions, and instructions
3684 	     from other blocks.  */
3685 	  if (pro->insn
3686 	      && pro->model_priority != model_next_priority
3687 	      && QUEUE_INDEX (pro->insn) != QUEUE_SCHEDULED)
3688 	    {
3689 	      pro->model_priority = model_next_priority;
3690 	      if (sched_verbose >= 7)
3691 		fprintf (sched_dump, " %d", INSN_UID (pro->insn));
3692 	      if (QUEUE_INDEX (pro->insn) == QUEUE_READY)
3693 		{
3694 		  /* PRO is already in the worklist, but it now has
3695 		     a higher priority than before.  Move it at the
3696 		     appropriate place.  */
3697 		  model_remove_from_worklist (pro);
3698 		  model_add_to_worklist (pro, NULL, model_worklist);
3699 		}
3700 	      else
3701 		{
3702 		  /* PRO isn't in the worklist.  Recursively process
3703 		     its predecessors until we find one that is.  */
3704 		  pro->next = first;
3705 		  first = pro;
3706 		}
3707 	    }
3708 	}
3709       if (!first)
3710 	break;
3711       insn = first;
3712       first = insn->next;
3713     }
3714   if (sched_verbose >= 7)
3715     fprintf (sched_dump, " = %d\n", model_next_priority);
3716   model_next_priority++;
3717 }
3718 
3719 /* Pick one instruction from model_worklist and process it.  */
3720 
3721 static void
3722 model_choose_insn (void)
3723 {
3724   struct model_insn_info *insn, *fallback;
3725   int count;
3726 
3727   if (sched_verbose >= 7)
3728     {
3729       fprintf (sched_dump, ";;\t+--- worklist:\n");
3730       insn = model_worklist;
3731       count = MAX_SCHED_READY_INSNS;
3732       while (count > 0 && insn)
3733 	{
3734 	  fprintf (sched_dump, ";;\t+---   %d [%d, %d, %d, %d]\n",
3735 		   INSN_UID (insn->insn), insn->model_priority,
3736 		   insn->depth + insn->alap, insn->depth,
3737 		   INSN_PRIORITY (insn->insn));
3738 	  count--;
3739 	  insn = insn->next;
3740 	}
3741     }
3742 
3743   /* Look for a ready instruction whose model_classify_priority is zero
3744      or negative, picking the highest-priority one.  Adding such an
3745      instruction to the schedule now should do no harm, and may actually
3746      do some good.
3747 
3748      Failing that, see whether there is an instruction with the highest
3749      extant model_priority that is not yet ready, but which would reduce
3750      pressure if it became ready.  This is designed to catch cases like:
3751 
3752        (set (mem (reg R1)) (reg R2))
3753 
3754      where the instruction is the last remaining use of R1 and where the
3755      value of R2 is not yet available (or vice versa).  The death of R1
3756      means that this instruction already reduces pressure.  It is of
3757      course possible that the computation of R2 involves other registers
3758      that are hard to kill, but such cases are rare enough for this
3759      heuristic to be a win in general.
3760 
3761      Failing that, just pick the highest-priority instruction in the
3762      worklist.  */
3763   count = MAX_SCHED_READY_INSNS;
3764   insn = model_worklist;
3765   fallback = 0;
3766   for (;;)
3767     {
3768       if (count == 0 || !insn)
3769 	{
3770 	  insn = fallback ? fallback : model_worklist;
3771 	  break;
3772 	}
3773       if (insn->unscheduled_preds)
3774 	{
3775 	  if (model_worklist->model_priority == insn->model_priority
3776 	      && !fallback
3777 	      && model_classify_pressure (insn) < 0)
3778 	    fallback = insn;
3779 	}
3780       else
3781 	{
3782 	  if (model_classify_pressure (insn) <= 0)
3783 	    break;
3784 	}
3785       count--;
3786       insn = insn->next;
3787     }
3788 
3789   if (sched_verbose >= 7 && insn != model_worklist)
3790     {
3791       if (insn->unscheduled_preds)
3792 	fprintf (sched_dump, ";;\t+--- promoting insn %d, with dependencies\n",
3793 		 INSN_UID (insn->insn));
3794       else
3795 	fprintf (sched_dump, ";;\t+--- promoting insn %d, which is ready\n",
3796 		 INSN_UID (insn->insn));
3797     }
3798   if (insn->unscheduled_preds)
3799     /* INSN isn't yet ready to issue.  Give all its predecessors the
3800        highest priority.  */
3801     model_promote_predecessors (insn);
3802   else
3803     {
3804       /* INSN is ready.  Add it to the end of model_schedule and
3805 	 process its successors.  */
3806       model_add_successors_to_worklist (insn);
3807       model_remove_from_worklist (insn);
3808       model_add_to_schedule (insn->insn);
3809       model_record_pressures (insn);
3810       update_register_pressure (insn->insn);
3811     }
3812 }
3813 
3814 /* Restore all QUEUE_INDEXs to the values that they had before
3815    model_start_schedule was called.  */
3816 
3817 static void
3818 model_reset_queue_indices (void)
3819 {
3820   unsigned int i;
3821   rtx_insn *insn;
3822 
3823   FOR_EACH_VEC_ELT (model_schedule, i, insn)
3824     QUEUE_INDEX (insn) = MODEL_INSN_INFO (insn)->old_queue;
3825 }
3826 
3827 /* We have calculated the model schedule and spill costs.  Print a summary
3828    to sched_dump.  */
3829 
3830 static void
3831 model_dump_pressure_summary (void)
3832 {
3833   int pci, cl;
3834 
3835   fprintf (sched_dump, ";; Pressure summary:");
3836   for (pci = 0; pci < ira_pressure_classes_num; pci++)
3837     {
3838       cl = ira_pressure_classes[pci];
3839       fprintf (sched_dump, " %s:%d", reg_class_names[cl],
3840 	       model_before_pressure.limits[pci].pressure);
3841     }
3842   fprintf (sched_dump, "\n\n");
3843 }
3844 
3845 /* Initialize the SCHED_PRESSURE_MODEL information for the current
3846    scheduling region.  */
3847 
3848 static void
3849 model_start_schedule (basic_block bb)
3850 {
3851   model_next_priority = 1;
3852   model_schedule.create (sched_max_luid);
3853   model_insns = XCNEWVEC (struct model_insn_info, sched_max_luid);
3854 
3855   gcc_assert (bb == BLOCK_FOR_INSN (NEXT_INSN (current_sched_info->prev_head)));
3856   initiate_reg_pressure_info (df_get_live_in (bb));
3857 
3858   model_analyze_insns ();
3859   model_init_pressure_group (&model_before_pressure);
3860   while (model_worklist)
3861     model_choose_insn ();
3862   gcc_assert (model_num_insns == (int) model_schedule.length ());
3863   if (sched_verbose >= 2)
3864     fprintf (sched_dump, "\n");
3865 
3866   model_record_final_pressures (&model_before_pressure);
3867   model_reset_queue_indices ();
3868 
3869   XDELETEVEC (model_insns);
3870 
3871   model_curr_point = 0;
3872   initiate_reg_pressure_info (df_get_live_in (bb));
3873   if (sched_verbose >= 1)
3874     model_dump_pressure_summary ();
3875 }
3876 
3877 /* Free the information associated with GROUP.  */
3878 
3879 static void
3880 model_finalize_pressure_group (struct model_pressure_group *group)
3881 {
3882   XDELETEVEC (group->model);
3883 }
3884 
3885 /* Free the information created by model_start_schedule.  */
3886 
3887 static void
3888 model_end_schedule (void)
3889 {
3890   model_finalize_pressure_group (&model_before_pressure);
3891   model_schedule.release ();
3892 }
3893 
3894 /* Prepare reg pressure scheduling for basic block BB.  */
3895 static void
3896 sched_pressure_start_bb (basic_block bb)
3897 {
3898   /* Set the number of available registers for each class taking into account
3899      relative probability of current basic block versus function prologue and
3900      epilogue.
3901      * If the basic block executes much more often than the prologue/epilogue
3902      (e.g., inside a hot loop), then cost of spill in the prologue is close to
3903      nil, so the effective number of available registers is
3904      (ira_class_hard_regs_num[cl] - fixed_regs_num[cl] - 0).
3905      * If the basic block executes as often as the prologue/epilogue,
3906      then spill in the block is as costly as in the prologue, so the effective
3907      number of available registers is
3908      (ira_class_hard_regs_num[cl] - fixed_regs_num[cl]
3909       - call_saved_regs_num[cl]).
3910      Note that all-else-equal, we prefer to spill in the prologue, since that
3911      allows "extra" registers for other basic blocks of the function.
3912      * If the basic block is on the cold path of the function and executes
3913      rarely, then we should always prefer to spill in the block, rather than
3914      in the prologue/epilogue.  The effective number of available register is
3915      (ira_class_hard_regs_num[cl] - fixed_regs_num[cl]
3916       - call_saved_regs_num[cl]).  */
3917   {
3918     int i;
3919     int entry_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.to_frequency (cfun);
3920     int bb_freq = bb->count.to_frequency (cfun);
3921 
3922     if (bb_freq == 0)
3923       {
3924 	if (entry_freq == 0)
3925 	  entry_freq = bb_freq = 1;
3926       }
3927     if (bb_freq < entry_freq)
3928       bb_freq = entry_freq;
3929 
3930     for (i = 0; i < ira_pressure_classes_num; ++i)
3931       {
3932 	enum reg_class cl = ira_pressure_classes[i];
3933 	sched_class_regs_num[cl] = ira_class_hard_regs_num[cl]
3934 				   - fixed_regs_num[cl];
3935 	sched_class_regs_num[cl]
3936 	  -= (call_saved_regs_num[cl] * entry_freq) / bb_freq;
3937       }
3938   }
3939 
3940   if (sched_pressure == SCHED_PRESSURE_MODEL)
3941     model_start_schedule (bb);
3942 }
3943 
3944 /* A structure that holds local state for the loop in schedule_block.  */
3945 struct sched_block_state
3946 {
3947   /* True if no real insns have been scheduled in the current cycle.  */
3948   bool first_cycle_insn_p;
3949   /* True if a shadow insn has been scheduled in the current cycle, which
3950      means that no more normal insns can be issued.  */
3951   bool shadows_only_p;
3952   /* True if we're winding down a modulo schedule, which means that we only
3953      issue insns with INSN_EXACT_TICK set.  */
3954   bool modulo_epilogue;
3955   /* Initialized with the machine's issue rate every cycle, and updated
3956      by calls to the variable_issue hook.  */
3957   int can_issue_more;
3958 };
3959 
3960 /* INSN is the "currently executing insn".  Launch each insn which was
3961    waiting on INSN.  READY is the ready list which contains the insns
3962    that are ready to fire.  CLOCK is the current cycle.  The function
3963    returns necessary cycle advance after issuing the insn (it is not
3964    zero for insns in a schedule group).  */
3965 
3966 static int
3967 schedule_insn (rtx_insn *insn)
3968 {
3969   sd_iterator_def sd_it;
3970   dep_t dep;
3971   int i;
3972   int advance = 0;
3973 
3974   if (sched_verbose >= 1)
3975     {
3976       struct reg_pressure_data *pressure_info;
3977       fprintf (sched_dump, ";;\t%3i--> %s %-40s:",
3978 	       clock_var, (*current_sched_info->print_insn) (insn, 1),
3979 	       str_pattern_slim (PATTERN (insn)));
3980 
3981       if (recog_memoized (insn) < 0)
3982 	fprintf (sched_dump, "nothing");
3983       else
3984 	print_reservation (sched_dump, insn);
3985       pressure_info = INSN_REG_PRESSURE (insn);
3986       if (pressure_info != NULL)
3987 	{
3988 	  fputc (':', sched_dump);
3989 	  for (i = 0; i < ira_pressure_classes_num; i++)
3990 	    fprintf (sched_dump, "%s%s%+d(%d)",
3991 		     scheduled_insns.length () > 1
3992 		     && INSN_LUID (insn)
3993 		     < INSN_LUID (scheduled_insns[scheduled_insns.length () - 2]) ? "@" : "",
3994 		     reg_class_names[ira_pressure_classes[i]],
3995 		     pressure_info[i].set_increase, pressure_info[i].change);
3996 	}
3997       if (sched_pressure == SCHED_PRESSURE_MODEL
3998 	  && model_curr_point < model_num_insns
3999 	  && model_index (insn) == model_curr_point)
4000 	fprintf (sched_dump, ":model %d", model_curr_point);
4001       fputc ('\n', sched_dump);
4002     }
4003 
4004   if (sched_pressure == SCHED_PRESSURE_WEIGHTED && !DEBUG_INSN_P (insn))
4005     update_reg_and_insn_max_reg_pressure (insn);
4006 
4007   /* Scheduling instruction should have all its dependencies resolved and
4008      should have been removed from the ready list.  */
4009   gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK));
4010 
4011   /* Reset debug insns invalidated by moving this insn.  */
4012   if (MAY_HAVE_DEBUG_BIND_INSNS && !DEBUG_INSN_P (insn))
4013     for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
4014 	 sd_iterator_cond (&sd_it, &dep);)
4015       {
4016 	rtx_insn *dbg = DEP_PRO (dep);
4017 	struct reg_use_data *use, *next;
4018 
4019 	if (DEP_STATUS (dep) & DEP_CANCELLED)
4020 	  {
4021 	    sd_iterator_next (&sd_it);
4022 	    continue;
4023 	  }
4024 
4025 	gcc_assert (DEBUG_BIND_INSN_P (dbg));
4026 
4027 	if (sched_verbose >= 6)
4028 	  fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
4029 		   INSN_UID (dbg));
4030 
4031 	/* ??? Rather than resetting the debug insn, we might be able
4032 	   to emit a debug temp before the just-scheduled insn, but
4033 	   this would involve checking that the expression at the
4034 	   point of the debug insn is equivalent to the expression
4035 	   before the just-scheduled insn.  They might not be: the
4036 	   expression in the debug insn may depend on other insns not
4037 	   yet scheduled that set MEMs, REGs or even other debug
4038 	   insns.  It's not clear that attempting to preserve debug
4039 	   information in these cases is worth the effort, given how
4040 	   uncommon these resets are and the likelihood that the debug
4041 	   temps introduced won't survive the schedule change.  */
4042 	INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
4043 	df_insn_rescan (dbg);
4044 
4045 	/* Unknown location doesn't use any registers.  */
4046 	for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
4047 	  {
4048 	    struct reg_use_data *prev = use;
4049 
4050 	    /* Remove use from the cyclic next_regno_use chain first.  */
4051 	    while (prev->next_regno_use != use)
4052 	      prev = prev->next_regno_use;
4053 	    prev->next_regno_use = use->next_regno_use;
4054 	    next = use->next_insn_use;
4055 	    free (use);
4056 	  }
4057 	INSN_REG_USE_LIST (dbg) = NULL;
4058 
4059 	/* We delete rather than resolve these deps, otherwise we
4060 	   crash in sched_free_deps(), because forward deps are
4061 	   expected to be released before backward deps.  */
4062 	sd_delete_dep (sd_it);
4063       }
4064 
4065   gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
4066   QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
4067 
4068   if (sched_pressure == SCHED_PRESSURE_MODEL
4069       && model_curr_point < model_num_insns
4070       && NONDEBUG_INSN_P (insn))
4071     {
4072       if (model_index (insn) == model_curr_point)
4073 	do
4074 	  model_curr_point++;
4075 	while (model_curr_point < model_num_insns
4076 	       && (QUEUE_INDEX (MODEL_INSN (model_curr_point))
4077 		   == QUEUE_SCHEDULED));
4078       else
4079 	model_recompute (insn);
4080       model_update_limit_points ();
4081       update_register_pressure (insn);
4082       if (sched_verbose >= 2)
4083 	print_curr_reg_pressure ();
4084     }
4085 
4086   gcc_assert (INSN_TICK (insn) >= MIN_TICK);
4087   if (INSN_TICK (insn) > clock_var)
4088     /* INSN has been prematurely moved from the queue to the ready list.
4089        This is possible only if following flags are set.  */
4090     gcc_assert (flag_sched_stalled_insns || sched_fusion);
4091 
4092   /* ??? Probably, if INSN is scheduled prematurely, we should leave
4093      INSN_TICK untouched.  This is a machine-dependent issue, actually.  */
4094   INSN_TICK (insn) = clock_var;
4095 
4096   check_clobbered_conditions (insn);
4097 
4098   /* Update dependent instructions.  First, see if by scheduling this insn
4099      now we broke a dependence in a way that requires us to change another
4100      insn.  */
4101   for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4102        sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
4103     {
4104       struct dep_replacement *desc = DEP_REPLACE (dep);
4105       rtx_insn *pro = DEP_PRO (dep);
4106       if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED
4107 	  && desc != NULL && desc->insn == pro)
4108 	apply_replacement (dep, false);
4109     }
4110 
4111   /* Go through and resolve forward dependencies.  */
4112   for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4113        sd_iterator_cond (&sd_it, &dep);)
4114     {
4115       rtx_insn *next = DEP_CON (dep);
4116       bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0;
4117 
4118       /* Resolve the dependence between INSN and NEXT.
4119 	 sd_resolve_dep () moves current dep to another list thus
4120 	 advancing the iterator.  */
4121       sd_resolve_dep (sd_it);
4122 
4123       if (cancelled)
4124 	{
4125 	  if (must_restore_pattern_p (next, dep))
4126 	    restore_pattern (dep, false);
4127 	  continue;
4128 	}
4129 
4130       /* Don't bother trying to mark next as ready if insn is a debug
4131 	 insn.  If insn is the last hard dependency, it will have
4132 	 already been discounted.  */
4133       if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
4134 	continue;
4135 
4136       if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4137 	{
4138 	  int effective_cost;
4139 
4140 	  effective_cost = try_ready (next);
4141 
4142 	  if (effective_cost >= 0
4143 	      && SCHED_GROUP_P (next)
4144 	      && advance < effective_cost)
4145 	    advance = effective_cost;
4146 	}
4147       else
4148 	/* Check always has only one forward dependence (to the first insn in
4149 	   the recovery block), therefore, this will be executed only once.  */
4150 	{
4151 	  gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4152 	  fix_recovery_deps (RECOVERY_BLOCK (insn));
4153 	}
4154     }
4155 
4156   /* Annotate the instruction with issue information -- TImode
4157      indicates that the instruction is expected not to be able
4158      to issue on the same cycle as the previous insn.  A machine
4159      may use this information to decide how the instruction should
4160      be aligned.  */
4161   if (issue_rate > 1
4162       && GET_CODE (PATTERN (insn)) != USE
4163       && GET_CODE (PATTERN (insn)) != CLOBBER
4164       && !DEBUG_INSN_P (insn))
4165     {
4166       if (reload_completed)
4167 	PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
4168       last_clock_var = clock_var;
4169     }
4170 
4171   if (nonscheduled_insns_begin != NULL_RTX)
4172     /* Indicate to debug counters that INSN is scheduled.  */
4173     nonscheduled_insns_begin = insn;
4174 
4175   return advance;
4176 }
4177 
4178 /* Functions for handling of notes.  */
4179 
4180 /* Add note list that ends on FROM_END to the end of TO_ENDP.  */
4181 void
4182 concat_note_lists (rtx_insn *from_end, rtx_insn **to_endp)
4183 {
4184   rtx_insn *from_start;
4185 
4186   /* It's easy when have nothing to concat.  */
4187   if (from_end == NULL)
4188     return;
4189 
4190   /* It's also easy when destination is empty.  */
4191   if (*to_endp == NULL)
4192     {
4193       *to_endp = from_end;
4194       return;
4195     }
4196 
4197   from_start = from_end;
4198   while (PREV_INSN (from_start) != NULL)
4199     from_start = PREV_INSN (from_start);
4200 
4201   SET_PREV_INSN (from_start) = *to_endp;
4202   SET_NEXT_INSN (*to_endp) = from_start;
4203   *to_endp = from_end;
4204 }
4205 
4206 /* Delete notes between HEAD and TAIL and put them in the chain
4207    of notes ended by NOTE_LIST.  */
4208 void
4209 remove_notes (rtx_insn *head, rtx_insn *tail)
4210 {
4211   rtx_insn *next_tail, *insn, *next;
4212 
4213   note_list = 0;
4214   if (head == tail && !INSN_P (head))
4215     return;
4216 
4217   next_tail = NEXT_INSN (tail);
4218   for (insn = head; insn != next_tail; insn = next)
4219     {
4220       next = NEXT_INSN (insn);
4221       if (!NOTE_P (insn))
4222 	continue;
4223 
4224       switch (NOTE_KIND (insn))
4225 	{
4226 	case NOTE_INSN_BASIC_BLOCK:
4227 	  continue;
4228 
4229 	case NOTE_INSN_EPILOGUE_BEG:
4230 	  if (insn != tail)
4231 	    {
4232 	      remove_insn (insn);
4233 	      add_reg_note (next, REG_SAVE_NOTE,
4234 			    GEN_INT (NOTE_INSN_EPILOGUE_BEG));
4235 	      break;
4236 	    }
4237 	  /* FALLTHRU */
4238 
4239 	default:
4240 	  remove_insn (insn);
4241 
4242 	  /* Add the note to list that ends at NOTE_LIST.  */
4243 	  SET_PREV_INSN (insn) = note_list;
4244 	  SET_NEXT_INSN (insn) = NULL_RTX;
4245 	  if (note_list)
4246 	    SET_NEXT_INSN (note_list) = insn;
4247 	  note_list = insn;
4248 	  break;
4249 	}
4250 
4251       gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
4252     }
4253 }
4254 
4255 /* A structure to record enough data to allow us to backtrack the scheduler to
4256    a previous state.  */
4257 struct haifa_saved_data
4258 {
4259   /* Next entry on the list.  */
4260   struct haifa_saved_data *next;
4261 
4262   /* Backtracking is associated with scheduling insns that have delay slots.
4263      DELAY_PAIR points to the structure that contains the insns involved, and
4264      the number of cycles between them.  */
4265   struct delay_pair *delay_pair;
4266 
4267   /* Data used by the frontend (e.g. sched-ebb or sched-rgn).  */
4268   void *fe_saved_data;
4269   /* Data used by the backend.  */
4270   void *be_saved_data;
4271 
4272   /* Copies of global state.  */
4273   int clock_var, last_clock_var;
4274   struct ready_list ready;
4275   state_t curr_state;
4276 
4277   rtx_insn *last_scheduled_insn;
4278   rtx_insn *last_nondebug_scheduled_insn;
4279   rtx_insn *nonscheduled_insns_begin;
4280   int cycle_issued_insns;
4281 
4282   /* Copies of state used in the inner loop of schedule_block.  */
4283   struct sched_block_state sched_block;
4284 
4285   /* We don't need to save q_ptr, as its value is arbitrary and we can set it
4286      to 0 when restoring.  */
4287   int q_size;
4288   rtx_insn_list **insn_queue;
4289 
4290   /* Describe pattern replacements that occurred since this backtrack point
4291      was queued.  */
4292   vec<dep_t> replacement_deps;
4293   vec<int> replace_apply;
4294 
4295   /* A copy of the next-cycle replacement vectors at the time of the backtrack
4296      point.  */
4297   vec<dep_t> next_cycle_deps;
4298   vec<int> next_cycle_apply;
4299 };
4300 
4301 /* A record, in reverse order, of all scheduled insns which have delay slots
4302    and may require backtracking.  */
4303 static struct haifa_saved_data *backtrack_queue;
4304 
4305 /* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
4306    to SET_P.  */
4307 static void
4308 mark_backtrack_feeds (rtx_insn *insn, int set_p)
4309 {
4310   sd_iterator_def sd_it;
4311   dep_t dep;
4312   FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep)
4313     {
4314       FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p;
4315     }
4316 }
4317 
4318 /* Save the current scheduler state so that we can backtrack to it
4319    later if necessary.  PAIR gives the insns that make it necessary to
4320    save this point.  SCHED_BLOCK is the local state of schedule_block
4321    that need to be saved.  */
4322 static void
4323 save_backtrack_point (struct delay_pair *pair,
4324 		      struct sched_block_state sched_block)
4325 {
4326   int i;
4327   struct haifa_saved_data *save = XNEW (struct haifa_saved_data);
4328 
4329   save->curr_state = xmalloc (dfa_state_size);
4330   memcpy (save->curr_state, curr_state, dfa_state_size);
4331 
4332   save->ready.first = ready.first;
4333   save->ready.n_ready = ready.n_ready;
4334   save->ready.n_debug = ready.n_debug;
4335   save->ready.veclen = ready.veclen;
4336   save->ready.vec = XNEWVEC (rtx_insn *, ready.veclen);
4337   memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx));
4338 
4339   save->insn_queue = XNEWVEC (rtx_insn_list *, max_insn_queue_index + 1);
4340   save->q_size = q_size;
4341   for (i = 0; i <= max_insn_queue_index; i++)
4342     {
4343       int q = NEXT_Q_AFTER (q_ptr, i);
4344       save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]);
4345     }
4346 
4347   save->clock_var = clock_var;
4348   save->last_clock_var = last_clock_var;
4349   save->cycle_issued_insns = cycle_issued_insns;
4350   save->last_scheduled_insn = last_scheduled_insn;
4351   save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn;
4352   save->nonscheduled_insns_begin = nonscheduled_insns_begin;
4353 
4354   save->sched_block = sched_block;
4355 
4356   save->replacement_deps.create (0);
4357   save->replace_apply.create (0);
4358   save->next_cycle_deps = next_cycle_replace_deps.copy ();
4359   save->next_cycle_apply = next_cycle_apply.copy ();
4360 
4361   if (current_sched_info->save_state)
4362     save->fe_saved_data = (*current_sched_info->save_state) ();
4363 
4364   if (targetm.sched.alloc_sched_context)
4365     {
4366       save->be_saved_data = targetm.sched.alloc_sched_context ();
4367       targetm.sched.init_sched_context (save->be_saved_data, false);
4368     }
4369   else
4370     save->be_saved_data = NULL;
4371 
4372   save->delay_pair = pair;
4373 
4374   save->next = backtrack_queue;
4375   backtrack_queue = save;
4376 
4377   while (pair)
4378     {
4379       mark_backtrack_feeds (pair->i2, 1);
4380       INSN_TICK (pair->i2) = INVALID_TICK;
4381       INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair);
4382       SHADOW_P (pair->i2) = pair->stages == 0;
4383       pair = pair->next_same_i1;
4384     }
4385 }
4386 
4387 /* Walk the ready list and all queues. If any insns have unresolved backwards
4388    dependencies, these must be cancelled deps, broken by predication.  Set or
4389    clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS.  */
4390 
4391 static void
4392 toggle_cancelled_flags (bool set)
4393 {
4394   int i;
4395   sd_iterator_def sd_it;
4396   dep_t dep;
4397 
4398   if (ready.n_ready > 0)
4399     {
4400       rtx_insn **first = ready_lastpos (&ready);
4401       for (i = 0; i < ready.n_ready; i++)
4402 	FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep)
4403 	  if (!DEBUG_INSN_P (DEP_PRO (dep)))
4404 	    {
4405 	      if (set)
4406 		DEP_STATUS (dep) |= DEP_CANCELLED;
4407 	      else
4408 		DEP_STATUS (dep) &= ~DEP_CANCELLED;
4409 	    }
4410     }
4411   for (i = 0; i <= max_insn_queue_index; i++)
4412     {
4413       int q = NEXT_Q_AFTER (q_ptr, i);
4414       rtx_insn_list *link;
4415       for (link = insn_queue[q]; link; link = link->next ())
4416 	{
4417 	  rtx_insn *insn = link->insn ();
4418 	  FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4419 	    if (!DEBUG_INSN_P (DEP_PRO (dep)))
4420 	      {
4421 		if (set)
4422 		  DEP_STATUS (dep) |= DEP_CANCELLED;
4423 		else
4424 		  DEP_STATUS (dep) &= ~DEP_CANCELLED;
4425 	      }
4426 	}
4427     }
4428 }
4429 
4430 /* Undo the replacements that have occurred after backtrack point SAVE
4431    was placed.  */
4432 static void
4433 undo_replacements_for_backtrack (struct haifa_saved_data *save)
4434 {
4435   while (!save->replacement_deps.is_empty ())
4436     {
4437       dep_t dep = save->replacement_deps.pop ();
4438       int apply_p = save->replace_apply.pop ();
4439 
4440       if (apply_p)
4441 	restore_pattern (dep, true);
4442       else
4443 	apply_replacement (dep, true);
4444     }
4445   save->replacement_deps.release ();
4446   save->replace_apply.release ();
4447 }
4448 
4449 /* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
4450    Restore their dependencies to an unresolved state, and mark them as
4451    queued nowhere.  */
4452 
4453 static void
4454 unschedule_insns_until (rtx_insn *insn)
4455 {
4456   auto_vec<rtx_insn *> recompute_vec;
4457 
4458   /* Make two passes over the insns to be unscheduled.  First, we clear out
4459      dependencies and other trivial bookkeeping.  */
4460   for (;;)
4461     {
4462       rtx_insn *last;
4463       sd_iterator_def sd_it;
4464       dep_t dep;
4465 
4466       last = scheduled_insns.pop ();
4467 
4468       /* This will be changed by restore_backtrack_point if the insn is in
4469 	 any queue.  */
4470       QUEUE_INDEX (last) = QUEUE_NOWHERE;
4471       if (last != insn)
4472 	INSN_TICK (last) = INVALID_TICK;
4473 
4474       if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid)
4475 	modulo_insns_scheduled--;
4476 
4477       for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW);
4478 	   sd_iterator_cond (&sd_it, &dep);)
4479 	{
4480 	  rtx_insn *con = DEP_CON (dep);
4481 	  sd_unresolve_dep (sd_it);
4482 	  if (!MUST_RECOMPUTE_SPEC_P (con))
4483 	    {
4484 	      MUST_RECOMPUTE_SPEC_P (con) = 1;
4485 	      recompute_vec.safe_push (con);
4486 	    }
4487 	}
4488 
4489       if (last == insn)
4490 	break;
4491     }
4492 
4493   /* A second pass, to update ready and speculation status for insns
4494      depending on the unscheduled ones.  The first pass must have
4495      popped the scheduled_insns vector up to the point where we
4496      restart scheduling, as recompute_todo_spec requires it to be
4497      up-to-date.  */
4498   while (!recompute_vec.is_empty ())
4499     {
4500       rtx_insn *con;
4501 
4502       con = recompute_vec.pop ();
4503       MUST_RECOMPUTE_SPEC_P (con) = 0;
4504       if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK))
4505 	{
4506 	  TODO_SPEC (con) = HARD_DEP;
4507 	  INSN_TICK (con) = INVALID_TICK;
4508 	  if (PREDICATED_PAT (con) != NULL_RTX)
4509 	    haifa_change_pattern (con, ORIG_PAT (con));
4510 	}
4511       else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED)
4512 	TODO_SPEC (con) = recompute_todo_spec (con, true);
4513     }
4514 }
4515 
4516 /* Restore scheduler state from the topmost entry on the backtracking queue.
4517    PSCHED_BLOCK_P points to the local data of schedule_block that we must
4518    overwrite with the saved data.
4519    The caller must already have called unschedule_insns_until.  */
4520 
4521 static void
4522 restore_last_backtrack_point (struct sched_block_state *psched_block)
4523 {
4524   int i;
4525   struct haifa_saved_data *save = backtrack_queue;
4526 
4527   backtrack_queue = save->next;
4528 
4529   if (current_sched_info->restore_state)
4530     (*current_sched_info->restore_state) (save->fe_saved_data);
4531 
4532   if (targetm.sched.alloc_sched_context)
4533     {
4534       targetm.sched.set_sched_context (save->be_saved_data);
4535       targetm.sched.free_sched_context (save->be_saved_data);
4536     }
4537 
4538   /* Do this first since it clobbers INSN_TICK of the involved
4539      instructions.  */
4540   undo_replacements_for_backtrack (save);
4541 
4542   /* Clear the QUEUE_INDEX of everything in the ready list or one
4543      of the queues.  */
4544   if (ready.n_ready > 0)
4545     {
4546       rtx_insn **first = ready_lastpos (&ready);
4547       for (i = 0; i < ready.n_ready; i++)
4548 	{
4549 	  rtx_insn *insn = first[i];
4550 	  QUEUE_INDEX (insn) = QUEUE_NOWHERE;
4551 	  INSN_TICK (insn) = INVALID_TICK;
4552 	}
4553     }
4554   for (i = 0; i <= max_insn_queue_index; i++)
4555     {
4556       int q = NEXT_Q_AFTER (q_ptr, i);
4557 
4558       for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4559 	{
4560 	  rtx_insn *x = link->insn ();
4561 	  QUEUE_INDEX (x) = QUEUE_NOWHERE;
4562 	  INSN_TICK (x) = INVALID_TICK;
4563 	}
4564       free_INSN_LIST_list (&insn_queue[q]);
4565     }
4566 
4567   free (ready.vec);
4568   ready = save->ready;
4569 
4570   if (ready.n_ready > 0)
4571     {
4572       rtx_insn **first = ready_lastpos (&ready);
4573       for (i = 0; i < ready.n_ready; i++)
4574 	{
4575 	  rtx_insn *insn = first[i];
4576 	  QUEUE_INDEX (insn) = QUEUE_READY;
4577 	  TODO_SPEC (insn) = recompute_todo_spec (insn, true);
4578 	  INSN_TICK (insn) = save->clock_var;
4579 	}
4580     }
4581 
4582   q_ptr = 0;
4583   q_size = save->q_size;
4584   for (i = 0; i <= max_insn_queue_index; i++)
4585     {
4586       int q = NEXT_Q_AFTER (q_ptr, i);
4587 
4588       insn_queue[q] = save->insn_queue[q];
4589 
4590       for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4591 	{
4592 	  rtx_insn *x = link->insn ();
4593 	  QUEUE_INDEX (x) = i;
4594 	  TODO_SPEC (x) = recompute_todo_spec (x, true);
4595 	  INSN_TICK (x) = save->clock_var + i;
4596 	}
4597     }
4598   free (save->insn_queue);
4599 
4600   toggle_cancelled_flags (true);
4601 
4602   clock_var = save->clock_var;
4603   last_clock_var = save->last_clock_var;
4604   cycle_issued_insns = save->cycle_issued_insns;
4605   last_scheduled_insn = save->last_scheduled_insn;
4606   last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn;
4607   nonscheduled_insns_begin = save->nonscheduled_insns_begin;
4608 
4609   *psched_block = save->sched_block;
4610 
4611   memcpy (curr_state, save->curr_state, dfa_state_size);
4612   free (save->curr_state);
4613 
4614   mark_backtrack_feeds (save->delay_pair->i2, 0);
4615 
4616   gcc_assert (next_cycle_replace_deps.is_empty ());
4617   next_cycle_replace_deps = save->next_cycle_deps.copy ();
4618   next_cycle_apply = save->next_cycle_apply.copy ();
4619 
4620   free (save);
4621 
4622   for (save = backtrack_queue; save; save = save->next)
4623     {
4624       mark_backtrack_feeds (save->delay_pair->i2, 1);
4625     }
4626 }
4627 
4628 /* Discard all data associated with the topmost entry in the backtrack
4629    queue.  If RESET_TICK is false, we just want to free the data.  If true,
4630    we are doing this because we discovered a reason to backtrack.  In the
4631    latter case, also reset the INSN_TICK for the shadow insn.  */
4632 static void
4633 free_topmost_backtrack_point (bool reset_tick)
4634 {
4635   struct haifa_saved_data *save = backtrack_queue;
4636   int i;
4637 
4638   backtrack_queue = save->next;
4639 
4640   if (reset_tick)
4641     {
4642       struct delay_pair *pair = save->delay_pair;
4643       while (pair)
4644 	{
4645 	  INSN_TICK (pair->i2) = INVALID_TICK;
4646 	  INSN_EXACT_TICK (pair->i2) = INVALID_TICK;
4647 	  pair = pair->next_same_i1;
4648 	}
4649       undo_replacements_for_backtrack (save);
4650     }
4651   else
4652     {
4653       save->replacement_deps.release ();
4654       save->replace_apply.release ();
4655     }
4656 
4657   if (targetm.sched.free_sched_context)
4658     targetm.sched.free_sched_context (save->be_saved_data);
4659   if (current_sched_info->restore_state)
4660     free (save->fe_saved_data);
4661   for (i = 0; i <= max_insn_queue_index; i++)
4662     free_INSN_LIST_list (&save->insn_queue[i]);
4663   free (save->insn_queue);
4664   free (save->curr_state);
4665   free (save->ready.vec);
4666   free (save);
4667 }
4668 
4669 /* Free the entire backtrack queue.  */
4670 static void
4671 free_backtrack_queue (void)
4672 {
4673   while (backtrack_queue)
4674     free_topmost_backtrack_point (false);
4675 }
4676 
4677 /* Apply a replacement described by DESC.  If IMMEDIATELY is false, we
4678    may have to postpone the replacement until the start of the next cycle,
4679    at which point we will be called again with IMMEDIATELY true.  This is
4680    only done for machines which have instruction packets with explicit
4681    parallelism however.  */
4682 static void
4683 apply_replacement (dep_t dep, bool immediately)
4684 {
4685   struct dep_replacement *desc = DEP_REPLACE (dep);
4686   if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4687     {
4688       next_cycle_replace_deps.safe_push (dep);
4689       next_cycle_apply.safe_push (1);
4690     }
4691   else
4692     {
4693       bool success;
4694 
4695       if (QUEUE_INDEX (desc->insn) == QUEUE_SCHEDULED)
4696 	return;
4697 
4698       if (sched_verbose >= 5)
4699 	fprintf (sched_dump, "applying replacement for insn %d\n",
4700 		 INSN_UID (desc->insn));
4701 
4702       success = validate_change (desc->insn, desc->loc, desc->newval, 0);
4703       gcc_assert (success);
4704 
4705       update_insn_after_change (desc->insn);
4706       if ((TODO_SPEC (desc->insn) & (HARD_DEP | DEP_POSTPONED)) == 0)
4707 	fix_tick_ready (desc->insn);
4708 
4709       if (backtrack_queue != NULL)
4710 	{
4711 	  backtrack_queue->replacement_deps.safe_push (dep);
4712 	  backtrack_queue->replace_apply.safe_push (1);
4713 	}
4714     }
4715 }
4716 
4717 /* We have determined that a pattern involved in DEP must be restored.
4718    If IMMEDIATELY is false, we may have to postpone the replacement
4719    until the start of the next cycle, at which point we will be called
4720    again with IMMEDIATELY true.  */
4721 static void
4722 restore_pattern (dep_t dep, bool immediately)
4723 {
4724   rtx_insn *next = DEP_CON (dep);
4725   int tick = INSN_TICK (next);
4726 
4727   /* If we already scheduled the insn, the modified version is
4728      correct.  */
4729   if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
4730     return;
4731 
4732   if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4733     {
4734       next_cycle_replace_deps.safe_push (dep);
4735       next_cycle_apply.safe_push (0);
4736       return;
4737     }
4738 
4739 
4740   if (DEP_TYPE (dep) == REG_DEP_CONTROL)
4741     {
4742       if (sched_verbose >= 5)
4743 	fprintf (sched_dump, "restoring pattern for insn %d\n",
4744 		 INSN_UID (next));
4745       haifa_change_pattern (next, ORIG_PAT (next));
4746     }
4747   else
4748     {
4749       struct dep_replacement *desc = DEP_REPLACE (dep);
4750       bool success;
4751 
4752       if (sched_verbose >= 5)
4753 	fprintf (sched_dump, "restoring pattern for insn %d\n",
4754 		 INSN_UID (desc->insn));
4755       tick = INSN_TICK (desc->insn);
4756 
4757       success = validate_change (desc->insn, desc->loc, desc->orig, 0);
4758       gcc_assert (success);
4759       update_insn_after_change (desc->insn);
4760       if (backtrack_queue != NULL)
4761 	{
4762 	  backtrack_queue->replacement_deps.safe_push (dep);
4763 	  backtrack_queue->replace_apply.safe_push (0);
4764 	}
4765     }
4766   INSN_TICK (next) = tick;
4767   if (TODO_SPEC (next) == DEP_POSTPONED)
4768     return;
4769 
4770   if (sd_lists_empty_p (next, SD_LIST_BACK))
4771     TODO_SPEC (next) = 0;
4772   else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
4773     TODO_SPEC (next) = HARD_DEP;
4774 }
4775 
4776 /* Perform pattern replacements that were queued up until the next
4777    cycle.  */
4778 static void
4779 perform_replacements_new_cycle (void)
4780 {
4781   int i;
4782   dep_t dep;
4783   FOR_EACH_VEC_ELT (next_cycle_replace_deps, i, dep)
4784     {
4785       int apply_p = next_cycle_apply[i];
4786       if (apply_p)
4787 	apply_replacement (dep, true);
4788       else
4789 	restore_pattern (dep, true);
4790     }
4791   next_cycle_replace_deps.truncate (0);
4792   next_cycle_apply.truncate (0);
4793 }
4794 
4795 /* Compute INSN_TICK_ESTIMATE for INSN.  PROCESSED is a bitmap of
4796    instructions we've previously encountered, a set bit prevents
4797    recursion.  BUDGET is a limit on how far ahead we look, it is
4798    reduced on recursive calls.  Return true if we produced a good
4799    estimate, or false if we exceeded the budget.  */
4800 static bool
4801 estimate_insn_tick (bitmap processed, rtx_insn *insn, int budget)
4802 {
4803   sd_iterator_def sd_it;
4804   dep_t dep;
4805   int earliest = INSN_TICK (insn);
4806 
4807   FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4808     {
4809       rtx_insn *pro = DEP_PRO (dep);
4810       int t;
4811 
4812       if (DEP_STATUS (dep) & DEP_CANCELLED)
4813 	continue;
4814 
4815       if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
4816 	gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn));
4817       else
4818 	{
4819 	  int cost = dep_cost (dep);
4820 	  if (cost >= budget)
4821 	    return false;
4822 	  if (!bitmap_bit_p (processed, INSN_LUID (pro)))
4823 	    {
4824 	      if (!estimate_insn_tick (processed, pro, budget - cost))
4825 		return false;
4826 	    }
4827 	  gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK);
4828 	  t = INSN_TICK_ESTIMATE (pro) + cost;
4829 	  if (earliest == INVALID_TICK || t > earliest)
4830 	    earliest = t;
4831 	}
4832     }
4833   bitmap_set_bit (processed, INSN_LUID (insn));
4834   INSN_TICK_ESTIMATE (insn) = earliest;
4835   return true;
4836 }
4837 
4838 /* Examine the pair of insns in P, and estimate (optimistically, assuming
4839    infinite resources) the cycle in which the delayed shadow can be issued.
4840    Return the number of cycles that must pass before the real insn can be
4841    issued in order to meet this constraint.  */
4842 static int
4843 estimate_shadow_tick (struct delay_pair *p)
4844 {
4845   auto_bitmap processed;
4846   int t;
4847   bool cutoff;
4848 
4849   cutoff = !estimate_insn_tick (processed, p->i2,
4850 				max_insn_queue_index + pair_delay (p));
4851   if (cutoff)
4852     return max_insn_queue_index;
4853   t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1);
4854   if (t > 0)
4855     return t;
4856   return 0;
4857 }
4858 
4859 /* If INSN has no unresolved backwards dependencies, add it to the schedule and
4860    recursively resolve all its forward dependencies.  */
4861 static void
4862 resolve_dependencies (rtx_insn *insn)
4863 {
4864   sd_iterator_def sd_it;
4865   dep_t dep;
4866 
4867   /* Don't use sd_lists_empty_p; it ignores debug insns.  */
4868   if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL
4869       || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL)
4870     return;
4871 
4872   if (sched_verbose >= 4)
4873     fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn));
4874 
4875   if (QUEUE_INDEX (insn) >= 0)
4876     queue_remove (insn);
4877 
4878   scheduled_insns.safe_push (insn);
4879 
4880   /* Update dependent instructions.  */
4881   for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4882        sd_iterator_cond (&sd_it, &dep);)
4883     {
4884       rtx_insn *next = DEP_CON (dep);
4885 
4886       if (sched_verbose >= 4)
4887 	fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn),
4888 		 INSN_UID (next));
4889 
4890       /* Resolve the dependence between INSN and NEXT.
4891 	 sd_resolve_dep () moves current dep to another list thus
4892 	 advancing the iterator.  */
4893       sd_resolve_dep (sd_it);
4894 
4895       if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4896 	{
4897 	  resolve_dependencies (next);
4898 	}
4899       else
4900 	/* Check always has only one forward dependence (to the first insn in
4901 	   the recovery block), therefore, this will be executed only once.  */
4902 	{
4903 	  gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4904 	}
4905     }
4906 }
4907 
4908 
4909 /* Return the head and tail pointers of ebb starting at BEG and ending
4910    at END.  */
4911 void
4912 get_ebb_head_tail (basic_block beg, basic_block end,
4913 		   rtx_insn **headp, rtx_insn **tailp)
4914 {
4915   rtx_insn *beg_head = BB_HEAD (beg);
4916   rtx_insn * beg_tail = BB_END (beg);
4917   rtx_insn * end_head = BB_HEAD (end);
4918   rtx_insn * end_tail = BB_END (end);
4919 
4920   /* Don't include any notes or labels at the beginning of the BEG
4921      basic block, or notes at the end of the END basic blocks.  */
4922 
4923   if (LABEL_P (beg_head))
4924     beg_head = NEXT_INSN (beg_head);
4925 
4926   while (beg_head != beg_tail)
4927     if (NOTE_P (beg_head))
4928       beg_head = NEXT_INSN (beg_head);
4929     else if (DEBUG_INSN_P (beg_head))
4930       {
4931 	rtx_insn * note, *next;
4932 
4933 	for (note = NEXT_INSN (beg_head);
4934 	     note != beg_tail;
4935 	     note = next)
4936 	  {
4937 	    next = NEXT_INSN (note);
4938 	    if (NOTE_P (note))
4939 	      {
4940 		if (sched_verbose >= 9)
4941 		  fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4942 
4943 		reorder_insns_nobb (note, note, PREV_INSN (beg_head));
4944 
4945 		if (BLOCK_FOR_INSN (note) != beg)
4946 		  df_insn_change_bb (note, beg);
4947 	      }
4948 	    else if (!DEBUG_INSN_P (note))
4949 	      break;
4950 	  }
4951 
4952 	break;
4953       }
4954     else
4955       break;
4956 
4957   *headp = beg_head;
4958 
4959   if (beg == end)
4960     end_head = beg_head;
4961   else if (LABEL_P (end_head))
4962     end_head = NEXT_INSN (end_head);
4963 
4964   while (end_head != end_tail)
4965     if (NOTE_P (end_tail))
4966       end_tail = PREV_INSN (end_tail);
4967     else if (DEBUG_INSN_P (end_tail))
4968       {
4969 	rtx_insn * note, *prev;
4970 
4971 	for (note = PREV_INSN (end_tail);
4972 	     note != end_head;
4973 	     note = prev)
4974 	  {
4975 	    prev = PREV_INSN (note);
4976 	    if (NOTE_P (note))
4977 	      {
4978 		if (sched_verbose >= 9)
4979 		  fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4980 
4981 		reorder_insns_nobb (note, note, end_tail);
4982 
4983 		if (end_tail == BB_END (end))
4984 		  BB_END (end) = note;
4985 
4986 		if (BLOCK_FOR_INSN (note) != end)
4987 		  df_insn_change_bb (note, end);
4988 	      }
4989 	    else if (!DEBUG_INSN_P (note))
4990 	      break;
4991 	  }
4992 
4993 	break;
4994       }
4995     else
4996       break;
4997 
4998   *tailp = end_tail;
4999 }
5000 
5001 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ].  */
5002 
5003 int
5004 no_real_insns_p (const rtx_insn *head, const rtx_insn *tail)
5005 {
5006   while (head != NEXT_INSN (tail))
5007     {
5008       if (!NOTE_P (head) && !LABEL_P (head))
5009 	return 0;
5010       head = NEXT_INSN (head);
5011     }
5012   return 1;
5013 }
5014 
5015 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
5016    previously found among the insns.  Insert them just before HEAD.  */
5017 rtx_insn *
5018 restore_other_notes (rtx_insn *head, basic_block head_bb)
5019 {
5020   if (note_list != 0)
5021     {
5022       rtx_insn *note_head = note_list;
5023 
5024       if (head)
5025 	head_bb = BLOCK_FOR_INSN (head);
5026       else
5027 	head = NEXT_INSN (bb_note (head_bb));
5028 
5029       while (PREV_INSN (note_head))
5030 	{
5031 	  set_block_for_insn (note_head, head_bb);
5032 	  note_head = PREV_INSN (note_head);
5033 	}
5034       /* In the above cycle we've missed this note.  */
5035       set_block_for_insn (note_head, head_bb);
5036 
5037       SET_PREV_INSN (note_head) = PREV_INSN (head);
5038       SET_NEXT_INSN (PREV_INSN (head)) = note_head;
5039       SET_PREV_INSN (head) = note_list;
5040       SET_NEXT_INSN (note_list) = head;
5041 
5042       if (BLOCK_FOR_INSN (head) != head_bb)
5043 	BB_END (head_bb) = note_list;
5044 
5045       head = note_head;
5046     }
5047 
5048   return head;
5049 }
5050 
5051 /* When we know we are going to discard the schedule due to a failed attempt
5052    at modulo scheduling, undo all replacements.  */
5053 static void
5054 undo_all_replacements (void)
5055 {
5056   rtx_insn *insn;
5057   int i;
5058 
5059   FOR_EACH_VEC_ELT (scheduled_insns, i, insn)
5060     {
5061       sd_iterator_def sd_it;
5062       dep_t dep;
5063 
5064       /* See if we must undo a replacement.  */
5065       for (sd_it = sd_iterator_start (insn, SD_LIST_RES_FORW);
5066 	   sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
5067 	{
5068 	  struct dep_replacement *desc = DEP_REPLACE (dep);
5069 	  if (desc != NULL)
5070 	    validate_change (desc->insn, desc->loc, desc->orig, 0);
5071 	}
5072     }
5073 }
5074 
5075 /* Return first non-scheduled insn in the current scheduling block.
5076    This is mostly used for debug-counter purposes.  */
5077 static rtx_insn *
5078 first_nonscheduled_insn (void)
5079 {
5080   rtx_insn *insn = (nonscheduled_insns_begin != NULL_RTX
5081 		    ? nonscheduled_insns_begin
5082 		    : current_sched_info->prev_head);
5083 
5084   do
5085     {
5086       insn = next_nonnote_nondebug_insn (insn);
5087     }
5088   while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);
5089 
5090   return insn;
5091 }
5092 
5093 /* Move insns that became ready to fire from queue to ready list.  */
5094 
5095 static void
5096 queue_to_ready (struct ready_list *ready)
5097 {
5098   rtx_insn *insn;
5099   rtx_insn_list *link;
5100   rtx_insn *skip_insn;
5101 
5102   q_ptr = NEXT_Q (q_ptr);
5103 
5104   if (dbg_cnt (sched_insn) == false)
5105     /* If debug counter is activated do not requeue the first
5106        nonscheduled insn.  */
5107     skip_insn = first_nonscheduled_insn ();
5108   else
5109     skip_insn = NULL;
5110 
5111   /* Add all pending insns that can be scheduled without stalls to the
5112      ready list.  */
5113   for (link = insn_queue[q_ptr]; link; link = link->next ())
5114     {
5115       insn = link->insn ();
5116       q_size -= 1;
5117 
5118       if (sched_verbose >= 2)
5119 	fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5120 		 (*current_sched_info->print_insn) (insn, 0));
5121 
5122       /* If the ready list is full, delay the insn for 1 cycle.
5123 	 See the comment in schedule_block for the rationale.  */
5124       if (!reload_completed
5125 	  && (ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
5126 	      || (sched_pressure == SCHED_PRESSURE_MODEL
5127 		  /* Limit pressure recalculations to MAX_SCHED_READY_INSNS
5128 		     instructions too.  */
5129 		  && model_index (insn) > (model_curr_point
5130 					   + MAX_SCHED_READY_INSNS)))
5131 	  && !(sched_pressure == SCHED_PRESSURE_MODEL
5132 	       && model_curr_point < model_num_insns
5133 	       /* Always allow the next model instruction to issue.  */
5134 	       && model_index (insn) == model_curr_point)
5135 	  && !SCHED_GROUP_P (insn)
5136 	  && insn != skip_insn)
5137 	{
5138 	  if (sched_verbose >= 2)
5139 	    fprintf (sched_dump, "keeping in queue, ready full\n");
5140 	  queue_insn (insn, 1, "ready full");
5141 	}
5142       else
5143 	{
5144 	  ready_add (ready, insn, false);
5145 	  if (sched_verbose >= 2)
5146 	    fprintf (sched_dump, "moving to ready without stalls\n");
5147         }
5148     }
5149   free_INSN_LIST_list (&insn_queue[q_ptr]);
5150 
5151   /* If there are no ready insns, stall until one is ready and add all
5152      of the pending insns at that point to the ready list.  */
5153   if (ready->n_ready == 0)
5154     {
5155       int stalls;
5156 
5157       for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
5158 	{
5159 	  if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5160 	    {
5161 	      for (; link; link = link->next ())
5162 		{
5163 		  insn = link->insn ();
5164 		  q_size -= 1;
5165 
5166 		  if (sched_verbose >= 2)
5167 		    fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5168 			     (*current_sched_info->print_insn) (insn, 0));
5169 
5170 		  ready_add (ready, insn, false);
5171 		  if (sched_verbose >= 2)
5172 		    fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
5173 		}
5174 	      free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
5175 
5176 	      advance_one_cycle ();
5177 
5178 	      break;
5179 	    }
5180 
5181 	  advance_one_cycle ();
5182 	}
5183 
5184       q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
5185       clock_var += stalls;
5186       if (sched_verbose >= 2)
5187 	fprintf (sched_dump, ";;\tAdvancing clock by %d cycle[s] to %d\n",
5188 		 stalls, clock_var);
5189     }
5190 }
5191 
5192 /* Used by early_queue_to_ready.  Determines whether it is "ok" to
5193    prematurely move INSN from the queue to the ready list.  Currently,
5194    if a target defines the hook 'is_costly_dependence', this function
5195    uses the hook to check whether there exist any dependences which are
5196    considered costly by the target, between INSN and other insns that
5197    have already been scheduled.  Dependences are checked up to Y cycles
5198    back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
5199    controlling this value.
5200    (Other considerations could be taken into account instead (or in
5201    addition) depending on user flags and target hooks.  */
5202 
5203 static bool
5204 ok_for_early_queue_removal (rtx_insn *insn)
5205 {
5206   if (targetm.sched.is_costly_dependence)
5207     {
5208       int n_cycles;
5209       int i = scheduled_insns.length ();
5210       for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
5211 	{
5212 	  while (i-- > 0)
5213 	    {
5214 	      int cost;
5215 
5216 	      rtx_insn *prev_insn = scheduled_insns[i];
5217 
5218 	      if (!NOTE_P (prev_insn))
5219 		{
5220 		  dep_t dep;
5221 
5222 		  dep = sd_find_dep_between (prev_insn, insn, true);
5223 
5224 		  if (dep != NULL)
5225 		    {
5226 		      cost = dep_cost (dep);
5227 
5228 		      if (targetm.sched.is_costly_dependence (dep, cost,
5229 				flag_sched_stalled_insns_dep - n_cycles))
5230 			return false;
5231 		    }
5232 		}
5233 
5234 	      if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
5235 		break;
5236 	    }
5237 
5238 	  if (i == 0)
5239 	    break;
5240 	}
5241     }
5242 
5243   return true;
5244 }
5245 
5246 
5247 /* Remove insns from the queue, before they become "ready" with respect
5248    to FU latency considerations.  */
5249 
5250 static int
5251 early_queue_to_ready (state_t state, struct ready_list *ready)
5252 {
5253   rtx_insn *insn;
5254   rtx_insn_list *link;
5255   rtx_insn_list *next_link;
5256   rtx_insn_list *prev_link;
5257   bool move_to_ready;
5258   int cost;
5259   state_t temp_state = alloca (dfa_state_size);
5260   int stalls;
5261   int insns_removed = 0;
5262 
5263   /*
5264      Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
5265      function:
5266 
5267      X == 0: There is no limit on how many queued insns can be removed
5268              prematurely.  (flag_sched_stalled_insns = -1).
5269 
5270      X >= 1: Only X queued insns can be removed prematurely in each
5271 	     invocation.  (flag_sched_stalled_insns = X).
5272 
5273      Otherwise: Early queue removal is disabled.
5274          (flag_sched_stalled_insns = 0)
5275   */
5276 
5277   if (! flag_sched_stalled_insns)
5278     return 0;
5279 
5280   for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
5281     {
5282       if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5283 	{
5284 	  if (sched_verbose > 6)
5285 	    fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
5286 
5287 	  prev_link = 0;
5288 	  while (link)
5289 	    {
5290 	      next_link = link->next ();
5291 	      insn = link->insn ();
5292 	      if (insn && sched_verbose > 6)
5293 		print_rtl_single (sched_dump, insn);
5294 
5295 	      memcpy (temp_state, state, dfa_state_size);
5296 	      if (recog_memoized (insn) < 0)
5297 		/* non-negative to indicate that it's not ready
5298 		   to avoid infinite Q->R->Q->R... */
5299 		cost = 0;
5300 	      else
5301 		cost = state_transition (temp_state, insn);
5302 
5303 	      if (sched_verbose >= 6)
5304 		fprintf (sched_dump, "transition cost = %d\n", cost);
5305 
5306 	      move_to_ready = false;
5307 	      if (cost < 0)
5308 		{
5309 		  move_to_ready = ok_for_early_queue_removal (insn);
5310 		  if (move_to_ready == true)
5311 		    {
5312 		      /* move from Q to R */
5313 		      q_size -= 1;
5314 		      ready_add (ready, insn, false);
5315 
5316 		      if (prev_link)
5317 			XEXP (prev_link, 1) = next_link;
5318 		      else
5319 			insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
5320 
5321 		      free_INSN_LIST_node (link);
5322 
5323 		      if (sched_verbose >= 2)
5324 			fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
5325 				 (*current_sched_info->print_insn) (insn, 0));
5326 
5327 		      insns_removed++;
5328 		      if (insns_removed == flag_sched_stalled_insns)
5329 			/* Remove no more than flag_sched_stalled_insns insns
5330 			   from Q at a time.  */
5331 			return insns_removed;
5332 		    }
5333 		}
5334 
5335 	      if (move_to_ready == false)
5336 		prev_link = link;
5337 
5338 	      link = next_link;
5339 	    } /* while link */
5340 	} /* if link */
5341 
5342     } /* for stalls.. */
5343 
5344   return insns_removed;
5345 }
5346 
5347 
5348 /* Print the ready list for debugging purposes.
5349    If READY_TRY is non-zero then only print insns that max_issue
5350    will consider.  */
5351 static void
5352 debug_ready_list_1 (struct ready_list *ready, signed char *ready_try)
5353 {
5354   rtx_insn **p;
5355   int i;
5356 
5357   if (ready->n_ready == 0)
5358     {
5359       fprintf (sched_dump, "\n");
5360       return;
5361     }
5362 
5363   p = ready_lastpos (ready);
5364   for (i = 0; i < ready->n_ready; i++)
5365     {
5366       if (ready_try != NULL && ready_try[ready->n_ready - i - 1])
5367 	continue;
5368 
5369       fprintf (sched_dump, "  %s:%d",
5370 	       (*current_sched_info->print_insn) (p[i], 0),
5371 	       INSN_LUID (p[i]));
5372       if (sched_pressure != SCHED_PRESSURE_NONE)
5373 	fprintf (sched_dump, "(cost=%d",
5374 		 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
5375       fprintf (sched_dump, ":prio=%d", INSN_PRIORITY (p[i]));
5376       if (INSN_TICK (p[i]) > clock_var)
5377 	fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
5378       if (sched_pressure == SCHED_PRESSURE_MODEL)
5379 	fprintf (sched_dump, ":idx=%d",
5380 		 model_index (p[i]));
5381       if (sched_pressure != SCHED_PRESSURE_NONE)
5382 	fprintf (sched_dump, ")");
5383     }
5384   fprintf (sched_dump, "\n");
5385 }
5386 
5387 /* Print the ready list.  Callable from debugger.  */
5388 static void
5389 debug_ready_list (struct ready_list *ready)
5390 {
5391   debug_ready_list_1 (ready, NULL);
5392 }
5393 
5394 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
5395    NOTEs.  This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
5396    replaces the epilogue note in the correct basic block.  */
5397 void
5398 reemit_notes (rtx_insn *insn)
5399 {
5400   rtx note;
5401   rtx_insn *last = insn;
5402 
5403   for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
5404     {
5405       if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
5406 	{
5407 	  enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
5408 
5409 	  last = emit_note_before (note_type, last);
5410 	  remove_note (insn, note);
5411 	}
5412     }
5413 }
5414 
5415 /* Move INSN.  Reemit notes if needed.  Update CFG, if needed.  */
5416 static void
5417 move_insn (rtx_insn *insn, rtx_insn *last, rtx nt)
5418 {
5419   if (PREV_INSN (insn) != last)
5420     {
5421       basic_block bb;
5422       rtx_insn *note;
5423       int jump_p = 0;
5424 
5425       bb = BLOCK_FOR_INSN (insn);
5426 
5427       /* BB_HEAD is either LABEL or NOTE.  */
5428       gcc_assert (BB_HEAD (bb) != insn);
5429 
5430       if (BB_END (bb) == insn)
5431 	/* If this is last instruction in BB, move end marker one
5432 	   instruction up.  */
5433 	{
5434 	  /* Jumps are always placed at the end of basic block.  */
5435 	  jump_p = control_flow_insn_p (insn);
5436 
5437 	  gcc_assert (!jump_p
5438 		      || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
5439 			  && IS_SPECULATION_BRANCHY_CHECK_P (insn))
5440 		      || (common_sched_info->sched_pass_id
5441 			  == SCHED_EBB_PASS));
5442 
5443 	  gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
5444 
5445 	  BB_END (bb) = PREV_INSN (insn);
5446 	}
5447 
5448       gcc_assert (BB_END (bb) != last);
5449 
5450       if (jump_p)
5451 	/* We move the block note along with jump.  */
5452 	{
5453 	  gcc_assert (nt);
5454 
5455 	  note = NEXT_INSN (insn);
5456 	  while (NOTE_NOT_BB_P (note) && note != nt)
5457 	    note = NEXT_INSN (note);
5458 
5459 	  if (note != nt
5460 	      && (LABEL_P (note)
5461 		  || BARRIER_P (note)))
5462 	    note = NEXT_INSN (note);
5463 
5464 	  gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5465 	}
5466       else
5467 	note = insn;
5468 
5469       SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
5470       SET_PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
5471 
5472       SET_NEXT_INSN (note) = NEXT_INSN (last);
5473       SET_PREV_INSN (NEXT_INSN (last)) = note;
5474 
5475       SET_NEXT_INSN (last) = insn;
5476       SET_PREV_INSN (insn) = last;
5477 
5478       bb = BLOCK_FOR_INSN (last);
5479 
5480       if (jump_p)
5481 	{
5482 	  fix_jump_move (insn);
5483 
5484 	  if (BLOCK_FOR_INSN (insn) != bb)
5485 	    move_block_after_check (insn);
5486 
5487 	  gcc_assert (BB_END (bb) == last);
5488 	}
5489 
5490       df_insn_change_bb (insn, bb);
5491 
5492       /* Update BB_END, if needed.  */
5493       if (BB_END (bb) == last)
5494 	BB_END (bb) = insn;
5495     }
5496 
5497   SCHED_GROUP_P (insn) = 0;
5498 }
5499 
5500 /* Return true if scheduling INSN will finish current clock cycle.  */
5501 static bool
5502 insn_finishes_cycle_p (rtx_insn *insn)
5503 {
5504   if (SCHED_GROUP_P (insn))
5505     /* After issuing INSN, rest of the sched_group will be forced to issue
5506        in order.  Don't make any plans for the rest of cycle.  */
5507     return true;
5508 
5509   /* Finishing the block will, apparently, finish the cycle.  */
5510   if (current_sched_info->insn_finishes_block_p
5511       && current_sched_info->insn_finishes_block_p (insn))
5512     return true;
5513 
5514   return false;
5515 }
5516 
5517 /* Helper for autopref_multipass_init.  Given a SET in PAT and whether
5518    we're expecting a memory WRITE or not, check that the insn is relevant to
5519    the autoprefetcher modelling code.  Return true iff that is the case.
5520    If it is relevant, record the base register of the memory op in BASE and
5521    the offset in OFFSET.  */
5522 
5523 static bool
5524 analyze_set_insn_for_autopref (rtx pat, bool write, rtx *base, int *offset)
5525 {
5526   if (GET_CODE (pat) != SET)
5527     return false;
5528 
5529   rtx mem = write ? SET_DEST (pat) : SET_SRC (pat);
5530   if (!MEM_P (mem))
5531     return false;
5532 
5533   struct address_info info;
5534   decompose_mem_address (&info, mem);
5535 
5536   /* TODO: Currently only (base+const) addressing is supported.  */
5537   if (info.base == NULL || !REG_P (*info.base)
5538       || (info.disp != NULL && !CONST_INT_P (*info.disp)))
5539     return false;
5540 
5541   *base = *info.base;
5542   *offset = info.disp ? INTVAL (*info.disp) : 0;
5543   return true;
5544 }
5545 
5546 /* Functions to model cache auto-prefetcher.
5547 
5548    Some of the CPUs have cache auto-prefetcher, which /seems/ to initiate
5549    memory prefetches if it sees instructions with consequitive memory accesses
5550    in the instruction stream.  Details of such hardware units are not published,
5551    so we can only guess what exactly is going on there.
5552    In the scheduler, we model abstract auto-prefetcher.  If there are memory
5553    insns in the ready list (or the queue) that have same memory base, but
5554    different offsets, then we delay the insns with larger offsets until insns
5555    with smaller offsets get scheduled.  If PARAM_SCHED_AUTOPREF_QUEUE_DEPTH
5556    is "1", then we look at the ready list; if it is N>1, then we also look
5557    through N-1 queue entries.
5558    If the param is N>=0, then rank_for_schedule will consider auto-prefetching
5559    among its heuristics.
5560    Param value of "-1" disables modelling of the auto-prefetcher.  */
5561 
5562 /* Initialize autoprefetcher model data for INSN.  */
5563 static void
5564 autopref_multipass_init (const rtx_insn *insn, int write)
5565 {
5566   autopref_multipass_data_t data = &INSN_AUTOPREF_MULTIPASS_DATA (insn)[write];
5567 
5568   gcc_assert (data->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED);
5569   data->base = NULL_RTX;
5570   data->offset = 0;
5571   /* Set insn entry initialized, but not relevant for auto-prefetcher.  */
5572   data->status = AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5573 
5574   rtx pat = PATTERN (insn);
5575 
5576   /* We have a multi-set insn like a load-multiple or store-multiple.
5577      We care about these as long as all the memory ops inside the PARALLEL
5578      have the same base register.  We care about the minimum and maximum
5579      offsets from that base but don't check for the order of those offsets
5580      within the PARALLEL insn itself.  */
5581   if (GET_CODE (pat) == PARALLEL)
5582     {
5583       int n_elems = XVECLEN (pat, 0);
5584 
5585       int i, offset;
5586       rtx base, prev_base = NULL_RTX;
5587       int min_offset = INT_MAX;
5588 
5589       for (i = 0; i < n_elems; i++)
5590 	{
5591 	  rtx set = XVECEXP (pat, 0, i);
5592 	  if (GET_CODE (set) != SET)
5593 	    return;
5594 
5595 	  if (!analyze_set_insn_for_autopref (set, write, &base, &offset))
5596 	    return;
5597 
5598 	  /* Ensure that all memory operations in the PARALLEL use the same
5599 	     base register.  */
5600 	  if (i > 0 && REGNO (base) != REGNO (prev_base))
5601 	    return;
5602 	  prev_base = base;
5603 	  min_offset = MIN (min_offset, offset);
5604 	}
5605 
5606       /* If we reached here then we have a valid PARALLEL of multiple memory ops
5607 	 with prev_base as the base and min_offset containing the offset.  */
5608       gcc_assert (prev_base);
5609       data->base = prev_base;
5610       data->offset = min_offset;
5611       data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5612       return;
5613     }
5614 
5615   /* Otherwise this is a single set memory operation.  */
5616   rtx set = single_set (insn);
5617   if (set == NULL_RTX)
5618     return;
5619 
5620   if (!analyze_set_insn_for_autopref (set, write, &data->base,
5621 				       &data->offset))
5622     return;
5623 
5624   /* This insn is relevant for the auto-prefetcher.
5625      The base and offset fields will have been filled in the
5626      analyze_set_insn_for_autopref call above.  */
5627   data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5628 }
5629 
5630 /* Helper function for rank_for_schedule sorting.  */
5631 static int
5632 autopref_rank_for_schedule (const rtx_insn *insn1, const rtx_insn *insn2)
5633 {
5634   int r = 0;
5635   for (int write = 0; write < 2 && !r; ++write)
5636     {
5637       autopref_multipass_data_t data1
5638 	= &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5639       autopref_multipass_data_t data2
5640 	= &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5641 
5642       if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5643 	autopref_multipass_init (insn1, write);
5644 
5645       if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5646 	autopref_multipass_init (insn2, write);
5647 
5648       int irrel1 = data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5649       int irrel2 = data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5650 
5651       if (!irrel1 && !irrel2)
5652 	r = data1->offset - data2->offset;
5653       else
5654 	r = irrel2 - irrel1;
5655     }
5656 
5657   return r;
5658 }
5659 
5660 /* True if header of debug dump was printed.  */
5661 static bool autopref_multipass_dfa_lookahead_guard_started_dump_p;
5662 
5663 /* Helper for autopref_multipass_dfa_lookahead_guard.
5664    Return "1" if INSN1 should be delayed in favor of INSN2.  */
5665 static int
5666 autopref_multipass_dfa_lookahead_guard_1 (const rtx_insn *insn1,
5667 					  const rtx_insn *insn2, int write)
5668 {
5669   autopref_multipass_data_t data1
5670     = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5671   autopref_multipass_data_t data2
5672     = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5673 
5674   if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5675     autopref_multipass_init (insn2, write);
5676   if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5677     return 0;
5678 
5679   if (rtx_equal_p (data1->base, data2->base)
5680       && data1->offset > data2->offset)
5681     {
5682       if (sched_verbose >= 2)
5683 	{
5684           if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5685 	    {
5686 	      fprintf (sched_dump,
5687 		       ";;\t\tnot trying in max_issue due to autoprefetch "
5688 		       "model: ");
5689 	      autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5690 	    }
5691 
5692 	  fprintf (sched_dump, " %d(%d)", INSN_UID (insn1), INSN_UID (insn2));
5693 	}
5694 
5695       return 1;
5696     }
5697 
5698   return 0;
5699 }
5700 
5701 /* General note:
5702 
5703    We could have also hooked autoprefetcher model into
5704    first_cycle_multipass_backtrack / first_cycle_multipass_issue hooks
5705    to enable intelligent selection of "[r1+0]=r2; [r1+4]=r3" on the same cycle
5706    (e.g., once "[r1+0]=r2" is issued in max_issue(), "[r1+4]=r3" gets
5707    unblocked).  We don't bother about this yet because target of interest
5708    (ARM Cortex-A15) can issue only 1 memory operation per cycle.  */
5709 
5710 /* Implementation of first_cycle_multipass_dfa_lookahead_guard hook.
5711    Return "1" if INSN1 should not be considered in max_issue due to
5712    auto-prefetcher considerations.  */
5713 int
5714 autopref_multipass_dfa_lookahead_guard (rtx_insn *insn1, int ready_index)
5715 {
5716   int r = 0;
5717 
5718   /* Exit early if the param forbids this or if we're not entering here through
5719      normal haifa scheduling.  This can happen if selective scheduling is
5720      explicitly enabled.  */
5721   if (!insn_queue || PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) <= 0)
5722     return 0;
5723 
5724   if (sched_verbose >= 2 && ready_index == 0)
5725     autopref_multipass_dfa_lookahead_guard_started_dump_p = false;
5726 
5727   for (int write = 0; write < 2; ++write)
5728     {
5729       autopref_multipass_data_t data1
5730 	= &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5731 
5732       if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5733 	autopref_multipass_init (insn1, write);
5734       if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5735 	continue;
5736 
5737       if (ready_index == 0
5738 	  && data1->status == AUTOPREF_MULTIPASS_DATA_DONT_DELAY)
5739 	/* We allow only a single delay on priviledged instructions.
5740 	   Doing otherwise would cause infinite loop.  */
5741 	{
5742 	  if (sched_verbose >= 2)
5743 	    {
5744 	      if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5745 		{
5746 		  fprintf (sched_dump,
5747 			   ";;\t\tnot trying in max_issue due to autoprefetch "
5748 			   "model: ");
5749 		  autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5750 		}
5751 
5752 	      fprintf (sched_dump, " *%d*", INSN_UID (insn1));
5753 	    }
5754 	  continue;
5755 	}
5756 
5757       for (int i2 = 0; i2 < ready.n_ready; ++i2)
5758 	{
5759 	  rtx_insn *insn2 = get_ready_element (i2);
5760 	  if (insn1 == insn2)
5761 	    continue;
5762 	  r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2, write);
5763 	  if (r)
5764 	    {
5765 	      if (ready_index == 0)
5766 		{
5767 		  r = -1;
5768 		  data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5769 		}
5770 	      goto finish;
5771 	    }
5772 	}
5773 
5774       if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) == 1)
5775 	continue;
5776 
5777       /* Everything from the current queue slot should have been moved to
5778 	 the ready list.  */
5779       gcc_assert (insn_queue[NEXT_Q_AFTER (q_ptr, 0)] == NULL_RTX);
5780 
5781       int n_stalls = PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) - 1;
5782       if (n_stalls > max_insn_queue_index)
5783 	n_stalls = max_insn_queue_index;
5784 
5785       for (int stalls = 1; stalls <= n_stalls; ++stalls)
5786 	{
5787 	  for (rtx_insn_list *link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)];
5788 	       link != NULL_RTX;
5789 	       link = link->next ())
5790 	    {
5791 	      rtx_insn *insn2 = link->insn ();
5792 	      r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2,
5793 							    write);
5794 	      if (r)
5795 		{
5796 		  /* Queue INSN1 until INSN2 can issue.  */
5797 		  r = -stalls;
5798 		  if (ready_index == 0)
5799 		    data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5800 		  goto finish;
5801 		}
5802 	    }
5803 	}
5804     }
5805 
5806     finish:
5807   if (sched_verbose >= 2
5808       && autopref_multipass_dfa_lookahead_guard_started_dump_p
5809       && (ready_index == ready.n_ready - 1 || r < 0))
5810     /* This does not /always/ trigger.  We don't output EOL if the last
5811        insn is not recognized (INSN_CODE < 0) and lookahead_guard is not
5812        called.  We can live with this.  */
5813     fprintf (sched_dump, "\n");
5814 
5815   return r;
5816 }
5817 
5818 /* Define type for target data used in multipass scheduling.  */
5819 #ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
5820 # define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
5821 #endif
5822 typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;
5823 
5824 /* The following structure describe an entry of the stack of choices.  */
5825 struct choice_entry
5826 {
5827   /* Ordinal number of the issued insn in the ready queue.  */
5828   int index;
5829   /* The number of the rest insns whose issues we should try.  */
5830   int rest;
5831   /* The number of issued essential insns.  */
5832   int n;
5833   /* State after issuing the insn.  */
5834   state_t state;
5835   /* Target-specific data.  */
5836   first_cycle_multipass_data_t target_data;
5837 };
5838 
5839 /* The following array is used to implement a stack of choices used in
5840    function max_issue.  */
5841 static struct choice_entry *choice_stack;
5842 
5843 /* This holds the value of the target dfa_lookahead hook.  */
5844 int dfa_lookahead;
5845 
5846 /* The following variable value is maximal number of tries of issuing
5847    insns for the first cycle multipass insn scheduling.  We define
5848    this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE).  We would not
5849    need this constraint if all real insns (with non-negative codes)
5850    had reservations because in this case the algorithm complexity is
5851    O(DFA_LOOKAHEAD**ISSUE_RATE).  Unfortunately, the dfa descriptions
5852    might be incomplete and such insn might occur.  For such
5853    descriptions, the complexity of algorithm (without the constraint)
5854    could achieve DFA_LOOKAHEAD ** N , where N is the queue length.  */
5855 static int max_lookahead_tries;
5856 
5857 /* The following function returns maximal (or close to maximal) number
5858    of insns which can be issued on the same cycle and one of which
5859    insns is insns with the best rank (the first insn in READY).  To
5860    make this function tries different samples of ready insns.  READY
5861    is current queue `ready'.  Global array READY_TRY reflects what
5862    insns are already issued in this try.  The function stops immediately,
5863    if it reached the such a solution, that all instruction can be issued.
5864    INDEX will contain index of the best insn in READY.  The following
5865    function is used only for first cycle multipass scheduling.
5866 
5867    PRIVILEGED_N >= 0
5868 
5869    This function expects recognized insns only.  All USEs,
5870    CLOBBERs, etc must be filtered elsewhere.  */
5871 int
5872 max_issue (struct ready_list *ready, int privileged_n, state_t state,
5873 	   bool first_cycle_insn_p, int *index)
5874 {
5875   int n, i, all, n_ready, best, delay, tries_num;
5876   int more_issue;
5877   struct choice_entry *top;
5878   rtx_insn *insn;
5879 
5880   if (sched_fusion)
5881     return 0;
5882 
5883   n_ready = ready->n_ready;
5884   gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
5885 	      && privileged_n <= n_ready);
5886 
5887   /* Init MAX_LOOKAHEAD_TRIES.  */
5888   if (max_lookahead_tries == 0)
5889     {
5890       max_lookahead_tries = 100;
5891       for (i = 0; i < issue_rate; i++)
5892 	max_lookahead_tries *= dfa_lookahead;
5893     }
5894 
5895   /* Init max_points.  */
5896   more_issue = issue_rate - cycle_issued_insns;
5897   gcc_assert (more_issue >= 0);
5898 
5899   /* The number of the issued insns in the best solution.  */
5900   best = 0;
5901 
5902   top = choice_stack;
5903 
5904   /* Set initial state of the search.  */
5905   memcpy (top->state, state, dfa_state_size);
5906   top->rest = dfa_lookahead;
5907   top->n = 0;
5908   if (targetm.sched.first_cycle_multipass_begin)
5909     targetm.sched.first_cycle_multipass_begin (&top->target_data,
5910 					       ready_try, n_ready,
5911 					       first_cycle_insn_p);
5912 
5913   /* Count the number of the insns to search among.  */
5914   for (all = i = 0; i < n_ready; i++)
5915     if (!ready_try [i])
5916       all++;
5917 
5918   if (sched_verbose >= 2)
5919     {
5920       fprintf (sched_dump, ";;\t\tmax_issue among %d insns:", all);
5921       debug_ready_list_1 (ready, ready_try);
5922     }
5923 
5924   /* I is the index of the insn to try next.  */
5925   i = 0;
5926   tries_num = 0;
5927   for (;;)
5928     {
5929       if (/* If we've reached a dead end or searched enough of what we have
5930 	     been asked...  */
5931 	  top->rest == 0
5932 	  /* or have nothing else to try...  */
5933 	  || i >= n_ready
5934 	  /* or should not issue more.  */
5935 	  || top->n >= more_issue)
5936 	{
5937 	  /* ??? (... || i == n_ready).  */
5938 	  gcc_assert (i <= n_ready);
5939 
5940 	  /* We should not issue more than issue_rate instructions.  */
5941 	  gcc_assert (top->n <= more_issue);
5942 
5943 	  if (top == choice_stack)
5944 	    break;
5945 
5946 	  if (best < top - choice_stack)
5947 	    {
5948 	      if (privileged_n)
5949 		{
5950 		  n = privileged_n;
5951 		  /* Try to find issued privileged insn.  */
5952 		  while (n && !ready_try[--n])
5953 		    ;
5954 		}
5955 
5956 	      if (/* If all insns are equally good...  */
5957 		  privileged_n == 0
5958 		  /* Or a privileged insn will be issued.  */
5959 		  || ready_try[n])
5960 		/* Then we have a solution.  */
5961 		{
5962 		  best = top - choice_stack;
5963 		  /* This is the index of the insn issued first in this
5964 		     solution.  */
5965 		  *index = choice_stack [1].index;
5966 		  if (top->n == more_issue || best == all)
5967 		    break;
5968 		}
5969 	    }
5970 
5971 	  /* Set ready-list index to point to the last insn
5972 	     ('i++' below will advance it to the next insn).  */
5973 	  i = top->index;
5974 
5975 	  /* Backtrack.  */
5976 	  ready_try [i] = 0;
5977 
5978 	  if (targetm.sched.first_cycle_multipass_backtrack)
5979 	    targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
5980 							   ready_try, n_ready);
5981 
5982 	  top--;
5983 	  memcpy (state, top->state, dfa_state_size);
5984 	}
5985       else if (!ready_try [i])
5986 	{
5987 	  tries_num++;
5988 	  if (tries_num > max_lookahead_tries)
5989 	    break;
5990 	  insn = ready_element (ready, i);
5991 	  delay = state_transition (state, insn);
5992 	  if (delay < 0)
5993 	    {
5994 	      if (state_dead_lock_p (state)
5995 		  || insn_finishes_cycle_p (insn))
5996 		/* We won't issue any more instructions in the next
5997 		   choice_state.  */
5998 		top->rest = 0;
5999 	      else
6000 		top->rest--;
6001 
6002 	      n = top->n;
6003 	      if (memcmp (top->state, state, dfa_state_size) != 0)
6004 		n++;
6005 
6006 	      /* Advance to the next choice_entry.  */
6007 	      top++;
6008 	      /* Initialize it.  */
6009 	      top->rest = dfa_lookahead;
6010 	      top->index = i;
6011 	      top->n = n;
6012 	      memcpy (top->state, state, dfa_state_size);
6013 	      ready_try [i] = 1;
6014 
6015 	      if (targetm.sched.first_cycle_multipass_issue)
6016 		targetm.sched.first_cycle_multipass_issue (&top->target_data,
6017 							   ready_try, n_ready,
6018 							   insn,
6019 							   &((top - 1)
6020 							     ->target_data));
6021 
6022 	      i = -1;
6023 	    }
6024 	}
6025 
6026       /* Increase ready-list index.  */
6027       i++;
6028     }
6029 
6030   if (targetm.sched.first_cycle_multipass_end)
6031     targetm.sched.first_cycle_multipass_end (best != 0
6032 					     ? &choice_stack[1].target_data
6033 					     : NULL);
6034 
6035   /* Restore the original state of the DFA.  */
6036   memcpy (state, choice_stack->state, dfa_state_size);
6037 
6038   return best;
6039 }
6040 
6041 /* The following function chooses insn from READY and modifies
6042    READY.  The following function is used only for first
6043    cycle multipass scheduling.
6044    Return:
6045    -1 if cycle should be advanced,
6046    0 if INSN_PTR is set to point to the desirable insn,
6047    1 if choose_ready () should be restarted without advancing the cycle.  */
6048 static int
6049 choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
6050 	      rtx_insn **insn_ptr)
6051 {
6052   if (dbg_cnt (sched_insn) == false)
6053     {
6054       if (nonscheduled_insns_begin == NULL_RTX)
6055 	nonscheduled_insns_begin = current_sched_info->prev_head;
6056 
6057       rtx_insn *insn = first_nonscheduled_insn ();
6058 
6059       if (QUEUE_INDEX (insn) == QUEUE_READY)
6060 	/* INSN is in the ready_list.  */
6061 	{
6062 	  ready_remove_insn (insn);
6063 	  *insn_ptr = insn;
6064 	  return 0;
6065 	}
6066 
6067       /* INSN is in the queue.  Advance cycle to move it to the ready list.  */
6068       gcc_assert (QUEUE_INDEX (insn) >= 0);
6069       return -1;
6070     }
6071 
6072   if (dfa_lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
6073       || DEBUG_INSN_P (ready_element (ready, 0)))
6074     {
6075       if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6076 	*insn_ptr = ready_remove_first_dispatch (ready);
6077       else
6078 	*insn_ptr = ready_remove_first (ready);
6079 
6080       return 0;
6081     }
6082   else
6083     {
6084       /* Try to choose the best insn.  */
6085       int index = 0, i;
6086       rtx_insn *insn;
6087 
6088       insn = ready_element (ready, 0);
6089       if (INSN_CODE (insn) < 0)
6090 	{
6091 	  *insn_ptr = ready_remove_first (ready);
6092 	  return 0;
6093 	}
6094 
6095       /* Filter the search space.  */
6096       for (i = 0; i < ready->n_ready; i++)
6097 	{
6098 	  ready_try[i] = 0;
6099 
6100 	  insn = ready_element (ready, i);
6101 
6102 	  /* If this insn is recognizable we should have already
6103 	     recognized it earlier.
6104 	     ??? Not very clear where this is supposed to be done.
6105 	     See dep_cost_1.  */
6106 	  gcc_checking_assert (INSN_CODE (insn) >= 0
6107 			       || recog_memoized (insn) < 0);
6108 	  if (INSN_CODE (insn) < 0)
6109 	    {
6110 	      /* Non-recognized insns at position 0 are handled above.  */
6111 	      gcc_assert (i > 0);
6112 	      ready_try[i] = 1;
6113 	      continue;
6114 	    }
6115 
6116 	  if (targetm.sched.first_cycle_multipass_dfa_lookahead_guard)
6117 	    {
6118 	      ready_try[i]
6119 		= (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
6120 		    (insn, i));
6121 
6122 	      if (ready_try[i] < 0)
6123 		/* Queue instruction for several cycles.
6124 		   We need to restart choose_ready as we have changed
6125 		   the ready list.  */
6126 		{
6127 		  change_queue_index (insn, -ready_try[i]);
6128 		  return 1;
6129 		}
6130 
6131 	      /* Make sure that we didn't end up with 0'th insn filtered out.
6132 		 Don't be tempted to make life easier for backends and just
6133 		 requeue 0'th insn if (ready_try[0] == 0) and restart
6134 		 choose_ready.  Backends should be very considerate about
6135 		 requeueing instructions -- especially the highest priority
6136 		 one at position 0.  */
6137 	      gcc_assert (ready_try[i] == 0 || i > 0);
6138 	      if (ready_try[i])
6139 		continue;
6140 	    }
6141 
6142 	  gcc_assert (ready_try[i] == 0);
6143 	  /* INSN made it through the scrutiny of filters!  */
6144 	}
6145 
6146       if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
6147 	{
6148 	  *insn_ptr = ready_remove_first (ready);
6149 	  if (sched_verbose >= 4)
6150 	    fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
6151                      (*current_sched_info->print_insn) (*insn_ptr, 0));
6152 	  return 0;
6153 	}
6154       else
6155 	{
6156 	  if (sched_verbose >= 4)
6157 	    fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
6158 		     (*current_sched_info->print_insn)
6159 		     (ready_element (ready, index), 0));
6160 
6161 	  *insn_ptr = ready_remove (ready, index);
6162 	  return 0;
6163 	}
6164     }
6165 }
6166 
6167 /* This function is called when we have successfully scheduled a
6168    block.  It uses the schedule stored in the scheduled_insns vector
6169    to rearrange the RTL.  PREV_HEAD is used as the anchor to which we
6170    append the scheduled insns; TAIL is the insn after the scheduled
6171    block.  TARGET_BB is the argument passed to schedule_block.  */
6172 
6173 static void
6174 commit_schedule (rtx_insn *prev_head, rtx_insn *tail, basic_block *target_bb)
6175 {
6176   unsigned int i;
6177   rtx_insn *insn;
6178 
6179   last_scheduled_insn = prev_head;
6180   for (i = 0;
6181        scheduled_insns.iterate (i, &insn);
6182        i++)
6183     {
6184       if (control_flow_insn_p (last_scheduled_insn)
6185 	  || current_sched_info->advance_target_bb (*target_bb, insn))
6186 	{
6187 	  *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);
6188 
6189 	  if (sched_verbose)
6190 	    {
6191 	      rtx_insn *x;
6192 
6193 	      x = next_real_insn (last_scheduled_insn);
6194 	      gcc_assert (x);
6195 	      dump_new_block_header (1, *target_bb, x, tail);
6196 	    }
6197 
6198 	  last_scheduled_insn = bb_note (*target_bb);
6199 	}
6200 
6201       if (current_sched_info->begin_move_insn)
6202 	(*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
6203       move_insn (insn, last_scheduled_insn,
6204 		 current_sched_info->next_tail);
6205       if (!DEBUG_INSN_P (insn))
6206 	reemit_notes (insn);
6207       last_scheduled_insn = insn;
6208     }
6209 
6210   scheduled_insns.truncate (0);
6211 }
6212 
6213 /* Examine all insns on the ready list and queue those which can't be
6214    issued in this cycle.  TEMP_STATE is temporary scheduler state we
6215    can use as scratch space.  If FIRST_CYCLE_INSN_P is true, no insns
6216    have been issued for the current cycle, which means it is valid to
6217    issue an asm statement.
6218 
6219    If SHADOWS_ONLY_P is true, we eliminate all real insns and only
6220    leave those for which SHADOW_P is true.  If MODULO_EPILOGUE is true,
6221    we only leave insns which have an INSN_EXACT_TICK.  */
6222 
6223 static void
6224 prune_ready_list (state_t temp_state, bool first_cycle_insn_p,
6225 		  bool shadows_only_p, bool modulo_epilogue_p)
6226 {
6227   int i, pass;
6228   bool sched_group_found = false;
6229   int min_cost_group = 0;
6230 
6231   if (sched_fusion)
6232     return;
6233 
6234   for (i = 0; i < ready.n_ready; i++)
6235     {
6236       rtx_insn *insn = ready_element (&ready, i);
6237       if (SCHED_GROUP_P (insn))
6238 	{
6239 	  sched_group_found = true;
6240 	  break;
6241 	}
6242     }
6243 
6244   /* Make two passes if there's a SCHED_GROUP_P insn; make sure to handle
6245      such an insn first and note its cost.  If at least one SCHED_GROUP_P insn
6246      gets queued, then all other insns get queued for one cycle later.  */
6247   for (pass = sched_group_found ? 0 : 1; pass < 2; )
6248     {
6249       int n = ready.n_ready;
6250       for (i = 0; i < n; i++)
6251 	{
6252 	  rtx_insn *insn = ready_element (&ready, i);
6253 	  int cost = 0;
6254 	  const char *reason = "resource conflict";
6255 
6256 	  if (DEBUG_INSN_P (insn))
6257 	    continue;
6258 
6259 	  if (sched_group_found && !SCHED_GROUP_P (insn)
6260 	      && ((pass == 0) || (min_cost_group >= 1)))
6261 	    {
6262 	      if (pass == 0)
6263 		continue;
6264 	      cost = min_cost_group;
6265 	      reason = "not in sched group";
6266 	    }
6267 	  else if (modulo_epilogue_p
6268 		   && INSN_EXACT_TICK (insn) == INVALID_TICK)
6269 	    {
6270 	      cost = max_insn_queue_index;
6271 	      reason = "not an epilogue insn";
6272 	    }
6273 	  else if (shadows_only_p && !SHADOW_P (insn))
6274 	    {
6275 	      cost = 1;
6276 	      reason = "not a shadow";
6277 	    }
6278 	  else if (recog_memoized (insn) < 0)
6279 	    {
6280 	      if (!first_cycle_insn_p
6281 		  && (GET_CODE (PATTERN (insn)) == ASM_INPUT
6282 		      || asm_noperands (PATTERN (insn)) >= 0))
6283 		cost = 1;
6284 	      reason = "asm";
6285 	    }
6286 	  else if (sched_pressure != SCHED_PRESSURE_NONE)
6287 	    {
6288 	      if (sched_pressure == SCHED_PRESSURE_MODEL
6289 		  && INSN_TICK (insn) <= clock_var)
6290 		{
6291 		  memcpy (temp_state, curr_state, dfa_state_size);
6292 		  if (state_transition (temp_state, insn) >= 0)
6293 		    INSN_TICK (insn) = clock_var + 1;
6294 		}
6295 	      cost = 0;
6296 	    }
6297 	  else
6298 	    {
6299 	      int delay_cost = 0;
6300 
6301 	      if (delay_htab)
6302 		{
6303 		  struct delay_pair *delay_entry;
6304 		  delay_entry
6305 		    = delay_htab->find_with_hash (insn,
6306 						  htab_hash_pointer (insn));
6307 		  while (delay_entry && delay_cost == 0)
6308 		    {
6309 		      delay_cost = estimate_shadow_tick (delay_entry);
6310 		      if (delay_cost > max_insn_queue_index)
6311 			delay_cost = max_insn_queue_index;
6312 		      delay_entry = delay_entry->next_same_i1;
6313 		    }
6314 		}
6315 
6316 	      memcpy (temp_state, curr_state, dfa_state_size);
6317 	      cost = state_transition (temp_state, insn);
6318 	      if (cost < 0)
6319 		cost = 0;
6320 	      else if (cost == 0)
6321 		cost = 1;
6322 	      if (cost < delay_cost)
6323 		{
6324 		  cost = delay_cost;
6325 		  reason = "shadow tick";
6326 		}
6327 	    }
6328 	  if (cost >= 1)
6329 	    {
6330 	      if (SCHED_GROUP_P (insn) && cost > min_cost_group)
6331 		min_cost_group = cost;
6332 	      ready_remove (&ready, i);
6333 	      /* Normally we'd want to queue INSN for COST cycles.  However,
6334 		 if SCHED_GROUP_P is set, then we must ensure that nothing
6335 		 else comes between INSN and its predecessor.  If there is
6336 		 some other insn ready to fire on the next cycle, then that
6337 		 invariant would be broken.
6338 
6339 		 So when SCHED_GROUP_P is set, just queue this insn for a
6340 		 single cycle.  */
6341 	      queue_insn (insn, SCHED_GROUP_P (insn) ? 1 : cost, reason);
6342 	      if (i + 1 < n)
6343 		break;
6344 	    }
6345 	}
6346       if (i == n)
6347 	pass++;
6348     }
6349 }
6350 
6351 /* Called when we detect that the schedule is impossible.  We examine the
6352    backtrack queue to find the earliest insn that caused this condition.  */
6353 
6354 static struct haifa_saved_data *
6355 verify_shadows (void)
6356 {
6357   struct haifa_saved_data *save, *earliest_fail = NULL;
6358   for (save = backtrack_queue; save; save = save->next)
6359     {
6360       int t;
6361       struct delay_pair *pair = save->delay_pair;
6362       rtx_insn *i1 = pair->i1;
6363 
6364       for (; pair; pair = pair->next_same_i1)
6365 	{
6366 	  rtx_insn *i2 = pair->i2;
6367 
6368 	  if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED)
6369 	    continue;
6370 
6371 	  t = INSN_TICK (i1) + pair_delay (pair);
6372 	  if (t < clock_var)
6373 	    {
6374 	      if (sched_verbose >= 2)
6375 		fprintf (sched_dump,
6376 			 ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
6377 			 ", not ready\n",
6378 			 INSN_UID (pair->i1), INSN_UID (pair->i2),
6379 			 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6380 	      earliest_fail = save;
6381 	      break;
6382 	    }
6383 	  if (QUEUE_INDEX (i2) >= 0)
6384 	    {
6385 	      int queued_for = INSN_TICK (i2);
6386 
6387 	      if (t < queued_for)
6388 		{
6389 		  if (sched_verbose >= 2)
6390 		    fprintf (sched_dump,
6391 			     ";;\t\tfailed delay requirements for %d/%d"
6392 			     " (%d->%d), queued too late\n",
6393 			     INSN_UID (pair->i1), INSN_UID (pair->i2),
6394 			     INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6395 		  earliest_fail = save;
6396 		  break;
6397 		}
6398 	    }
6399 	}
6400     }
6401 
6402   return earliest_fail;
6403 }
6404 
6405 /* Print instructions together with useful scheduling information between
6406    HEAD and TAIL (inclusive).  */
6407 static void
6408 dump_insn_stream (rtx_insn *head, rtx_insn *tail)
6409 {
6410   fprintf (sched_dump, ";;\t| insn | prio |\n");
6411 
6412   rtx_insn *next_tail = NEXT_INSN (tail);
6413   for (rtx_insn *insn = head; insn != next_tail; insn = NEXT_INSN (insn))
6414     {
6415       int priority = NOTE_P (insn) ? 0 : INSN_PRIORITY (insn);
6416       const char *pattern = (NOTE_P (insn)
6417 			     ? "note"
6418 			     : str_pattern_slim (PATTERN (insn)));
6419 
6420       fprintf (sched_dump, ";;\t| %4d | %4d | %-30s ",
6421 	       INSN_UID (insn), priority, pattern);
6422 
6423       if (sched_verbose >= 4)
6424 	{
6425 	  if (NOTE_P (insn) || LABEL_P (insn) || recog_memoized (insn) < 0)
6426 	    fprintf (sched_dump, "nothing");
6427 	  else
6428 	    print_reservation (sched_dump, insn);
6429 	}
6430       fprintf (sched_dump, "\n");
6431     }
6432 }
6433 
6434 /* Use forward list scheduling to rearrange insns of block pointed to by
6435    TARGET_BB, possibly bringing insns from subsequent blocks in the same
6436    region.  */
6437 
6438 bool
6439 schedule_block (basic_block *target_bb, state_t init_state)
6440 {
6441   int i;
6442   bool success = modulo_ii == 0;
6443   struct sched_block_state ls;
6444   state_t temp_state = NULL;  /* It is used for multipass scheduling.  */
6445   int sort_p, advance, start_clock_var;
6446 
6447   /* Head/tail info for this block.  */
6448   rtx_insn *prev_head = current_sched_info->prev_head;
6449   rtx_insn *next_tail = current_sched_info->next_tail;
6450   rtx_insn *head = NEXT_INSN (prev_head);
6451   rtx_insn *tail = PREV_INSN (next_tail);
6452 
6453   if ((current_sched_info->flags & DONT_BREAK_DEPENDENCIES) == 0
6454       && sched_pressure != SCHED_PRESSURE_MODEL && !sched_fusion)
6455     find_modifiable_mems (head, tail);
6456 
6457   /* We used to have code to avoid getting parameters moved from hard
6458      argument registers into pseudos.
6459 
6460      However, it was removed when it proved to be of marginal benefit
6461      and caused problems because schedule_block and compute_forward_dependences
6462      had different notions of what the "head" insn was.  */
6463 
6464   gcc_assert (head != tail || INSN_P (head));
6465 
6466   haifa_recovery_bb_recently_added_p = false;
6467 
6468   backtrack_queue = NULL;
6469 
6470   /* Debug info.  */
6471   if (sched_verbose)
6472     {
6473       dump_new_block_header (0, *target_bb, head, tail);
6474 
6475       if (sched_verbose >= 2)
6476 	{
6477 	  dump_insn_stream (head, tail);
6478 	  memset (&rank_for_schedule_stats, 0,
6479 		  sizeof (rank_for_schedule_stats));
6480 	}
6481     }
6482 
6483   if (init_state == NULL)
6484     state_reset (curr_state);
6485   else
6486     memcpy (curr_state, init_state, dfa_state_size);
6487 
6488   /* Clear the ready list.  */
6489   ready.first = ready.veclen - 1;
6490   ready.n_ready = 0;
6491   ready.n_debug = 0;
6492 
6493   /* It is used for first cycle multipass scheduling.  */
6494   temp_state = alloca (dfa_state_size);
6495 
6496   if (targetm.sched.init)
6497     targetm.sched.init (sched_dump, sched_verbose, ready.veclen);
6498 
6499   /* We start inserting insns after PREV_HEAD.  */
6500   last_scheduled_insn = prev_head;
6501   last_nondebug_scheduled_insn = NULL;
6502   nonscheduled_insns_begin = NULL;
6503 
6504   gcc_assert ((NOTE_P (last_scheduled_insn)
6505 	       || DEBUG_INSN_P (last_scheduled_insn))
6506 	      && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
6507 
6508   /* Initialize INSN_QUEUE.  Q_SIZE is the total number of insns in the
6509      queue.  */
6510   q_ptr = 0;
6511   q_size = 0;
6512 
6513   insn_queue = XALLOCAVEC (rtx_insn_list *, max_insn_queue_index + 1);
6514   memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
6515 
6516   /* Start just before the beginning of time.  */
6517   clock_var = -1;
6518 
6519   /* We need queue and ready lists and clock_var be initialized
6520      in try_ready () (which is called through init_ready_list ()).  */
6521   (*current_sched_info->init_ready_list) ();
6522 
6523   if (sched_pressure)
6524     sched_pressure_start_bb (*target_bb);
6525 
6526   /* The algorithm is O(n^2) in the number of ready insns at any given
6527      time in the worst case.  Before reload we are more likely to have
6528      big lists so truncate them to a reasonable size.  */
6529   if (!reload_completed
6530       && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
6531     {
6532       ready_sort_debug (&ready);
6533       ready_sort_real (&ready);
6534 
6535       /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
6536          If there are debug insns, we know they're first.  */
6537       for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
6538 	if (!SCHED_GROUP_P (ready_element (&ready, i)))
6539 	  break;
6540 
6541       if (sched_verbose >= 2)
6542 	{
6543 	  fprintf (sched_dump,
6544 		   ";;\t\tReady list on entry: %d insns:  ", ready.n_ready);
6545 	  debug_ready_list (&ready);
6546 	  fprintf (sched_dump,
6547 		   ";;\t\t before reload => truncated to %d insns\n", i);
6548 	}
6549 
6550       /* Delay all insns past it for 1 cycle.  If debug counter is
6551 	 activated make an exception for the insn right after
6552 	 nonscheduled_insns_begin.  */
6553       {
6554 	rtx_insn *skip_insn;
6555 
6556 	if (dbg_cnt (sched_insn) == false)
6557 	  skip_insn = first_nonscheduled_insn ();
6558 	else
6559 	  skip_insn = NULL;
6560 
6561 	while (i < ready.n_ready)
6562 	  {
6563 	    rtx_insn *insn;
6564 
6565 	    insn = ready_remove (&ready, i);
6566 
6567 	    if (insn != skip_insn)
6568 	      queue_insn (insn, 1, "list truncated");
6569 	  }
6570 	if (skip_insn)
6571 	  ready_add (&ready, skip_insn, true);
6572       }
6573     }
6574 
6575   /* Now we can restore basic block notes and maintain precise cfg.  */
6576   restore_bb_notes (*target_bb);
6577 
6578   last_clock_var = -1;
6579 
6580   advance = 0;
6581 
6582   gcc_assert (scheduled_insns.length () == 0);
6583   sort_p = TRUE;
6584   must_backtrack = false;
6585   modulo_insns_scheduled = 0;
6586 
6587   ls.modulo_epilogue = false;
6588   ls.first_cycle_insn_p = true;
6589 
6590   /* Loop until all the insns in BB are scheduled.  */
6591   while ((*current_sched_info->schedule_more_p) ())
6592     {
6593       perform_replacements_new_cycle ();
6594       do
6595 	{
6596 	  start_clock_var = clock_var;
6597 
6598 	  clock_var++;
6599 
6600 	  advance_one_cycle ();
6601 
6602 	  /* Add to the ready list all pending insns that can be issued now.
6603 	     If there are no ready insns, increment clock until one
6604 	     is ready and add all pending insns at that point to the ready
6605 	     list.  */
6606 	  queue_to_ready (&ready);
6607 
6608 	  gcc_assert (ready.n_ready);
6609 
6610 	  if (sched_verbose >= 2)
6611 	    {
6612 	      fprintf (sched_dump, ";;\t\tReady list after queue_to_ready:");
6613 	      debug_ready_list (&ready);
6614 	    }
6615 	  advance -= clock_var - start_clock_var;
6616 	}
6617       while (advance > 0);
6618 
6619       if (ls.modulo_epilogue)
6620 	{
6621 	  int stage = clock_var / modulo_ii;
6622 	  if (stage > modulo_last_stage * 2 + 2)
6623 	    {
6624 	      if (sched_verbose >= 2)
6625 		fprintf (sched_dump,
6626 			 ";;\t\tmodulo scheduled succeeded at II %d\n",
6627 			 modulo_ii);
6628 	      success = true;
6629 	      goto end_schedule;
6630 	    }
6631 	}
6632       else if (modulo_ii > 0)
6633 	{
6634 	  int stage = clock_var / modulo_ii;
6635 	  if (stage > modulo_max_stages)
6636 	    {
6637 	      if (sched_verbose >= 2)
6638 		fprintf (sched_dump,
6639 			 ";;\t\tfailing schedule due to excessive stages\n");
6640 	      goto end_schedule;
6641 	    }
6642 	  if (modulo_n_insns == modulo_insns_scheduled
6643 	      && stage > modulo_last_stage)
6644 	    {
6645 	      if (sched_verbose >= 2)
6646 		fprintf (sched_dump,
6647 			 ";;\t\tfound kernel after %d stages, II %d\n",
6648 			 stage, modulo_ii);
6649 	      ls.modulo_epilogue = true;
6650 	    }
6651 	}
6652 
6653       prune_ready_list (temp_state, true, false, ls.modulo_epilogue);
6654       if (ready.n_ready == 0)
6655 	continue;
6656       if (must_backtrack)
6657 	goto do_backtrack;
6658 
6659       ls.shadows_only_p = false;
6660       cycle_issued_insns = 0;
6661       ls.can_issue_more = issue_rate;
6662       for (;;)
6663 	{
6664 	  rtx_insn *insn;
6665 	  int cost;
6666 	  bool asm_p;
6667 
6668 	  if (sort_p && ready.n_ready > 0)
6669 	    {
6670 	      /* Sort the ready list based on priority.  This must be
6671 		 done every iteration through the loop, as schedule_insn
6672 		 may have readied additional insns that will not be
6673 		 sorted correctly.  */
6674 	      ready_sort (&ready);
6675 
6676 	      if (sched_verbose >= 2)
6677 		{
6678 		  fprintf (sched_dump,
6679 			   ";;\t\tReady list after ready_sort:    ");
6680 		  debug_ready_list (&ready);
6681 		}
6682 	    }
6683 
6684 	  /* We don't want md sched reorder to even see debug isns, so put
6685 	     them out right away.  */
6686 	  if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
6687 	      && (*current_sched_info->schedule_more_p) ())
6688 	    {
6689 	      while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
6690 		{
6691 		  rtx_insn *insn = ready_remove_first (&ready);
6692 		  gcc_assert (DEBUG_INSN_P (insn));
6693 		  (*current_sched_info->begin_schedule_ready) (insn);
6694 		  scheduled_insns.safe_push (insn);
6695 		  last_scheduled_insn = insn;
6696 		  advance = schedule_insn (insn);
6697 		  gcc_assert (advance == 0);
6698 		  if (ready.n_ready > 0)
6699 		    ready_sort (&ready);
6700 		}
6701 	    }
6702 
6703 	  if (ls.first_cycle_insn_p && !ready.n_ready)
6704 	    break;
6705 
6706 	resume_after_backtrack:
6707 	  /* Allow the target to reorder the list, typically for
6708 	     better instruction bundling.  */
6709 	  if (sort_p
6710 	      && (ready.n_ready == 0
6711 		  || !SCHED_GROUP_P (ready_element (&ready, 0))))
6712 	    {
6713 	      if (ls.first_cycle_insn_p && targetm.sched.reorder)
6714 		ls.can_issue_more
6715 		  = targetm.sched.reorder (sched_dump, sched_verbose,
6716 					   ready_lastpos (&ready),
6717 					   &ready.n_ready, clock_var);
6718 	      else if (!ls.first_cycle_insn_p && targetm.sched.reorder2)
6719 		ls.can_issue_more
6720 		  = targetm.sched.reorder2 (sched_dump, sched_verbose,
6721 					    ready.n_ready
6722 					    ? ready_lastpos (&ready) : NULL,
6723 					    &ready.n_ready, clock_var);
6724 	    }
6725 
6726 	restart_choose_ready:
6727 	  if (sched_verbose >= 2)
6728 	    {
6729 	      fprintf (sched_dump, ";;\tReady list (t = %3d):  ",
6730 		       clock_var);
6731 	      debug_ready_list (&ready);
6732 	      if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6733 		print_curr_reg_pressure ();
6734 	    }
6735 
6736 	  if (ready.n_ready == 0
6737 	      && ls.can_issue_more
6738 	      && reload_completed)
6739 	    {
6740 	      /* Allow scheduling insns directly from the queue in case
6741 		 there's nothing better to do (ready list is empty) but
6742 		 there are still vacant dispatch slots in the current cycle.  */
6743 	      if (sched_verbose >= 6)
6744 		fprintf (sched_dump,";;\t\tSecond chance\n");
6745 	      memcpy (temp_state, curr_state, dfa_state_size);
6746 	      if (early_queue_to_ready (temp_state, &ready))
6747 		ready_sort (&ready);
6748 	    }
6749 
6750 	  if (ready.n_ready == 0
6751 	      || !ls.can_issue_more
6752 	      || state_dead_lock_p (curr_state)
6753 	      || !(*current_sched_info->schedule_more_p) ())
6754 	    break;
6755 
6756 	  /* Select and remove the insn from the ready list.  */
6757 	  if (sort_p)
6758 	    {
6759 	      int res;
6760 
6761 	      insn = NULL;
6762 	      res = choose_ready (&ready, ls.first_cycle_insn_p, &insn);
6763 
6764 	      if (res < 0)
6765 		/* Finish cycle.  */
6766 		break;
6767 	      if (res > 0)
6768 		goto restart_choose_ready;
6769 
6770 	      gcc_assert (insn != NULL_RTX);
6771 	    }
6772 	  else
6773 	    insn = ready_remove_first (&ready);
6774 
6775 	  if (sched_pressure != SCHED_PRESSURE_NONE
6776 	      && INSN_TICK (insn) > clock_var)
6777 	    {
6778 	      ready_add (&ready, insn, true);
6779 	      advance = 1;
6780 	      break;
6781 	    }
6782 
6783 	  if (targetm.sched.dfa_new_cycle
6784 	      && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
6785 					      insn, last_clock_var,
6786 					      clock_var, &sort_p))
6787 	    /* SORT_P is used by the target to override sorting
6788 	       of the ready list.  This is needed when the target
6789 	       has modified its internal structures expecting that
6790 	       the insn will be issued next.  As we need the insn
6791 	       to have the highest priority (so it will be returned by
6792 	       the ready_remove_first call above), we invoke
6793 	       ready_add (&ready, insn, true).
6794 	       But, still, there is one issue: INSN can be later
6795 	       discarded by scheduler's front end through
6796 	       current_sched_info->can_schedule_ready_p, hence, won't
6797 	       be issued next.  */
6798 	    {
6799 	      ready_add (&ready, insn, true);
6800               break;
6801 	    }
6802 
6803 	  sort_p = TRUE;
6804 
6805 	  if (current_sched_info->can_schedule_ready_p
6806 	      && ! (*current_sched_info->can_schedule_ready_p) (insn))
6807 	    /* We normally get here only if we don't want to move
6808 	       insn from the split block.  */
6809 	    {
6810 	      TODO_SPEC (insn) = DEP_POSTPONED;
6811 	      goto restart_choose_ready;
6812 	    }
6813 
6814 	  if (delay_htab)
6815 	    {
6816 	      /* If this insn is the first part of a delay-slot pair, record a
6817 		 backtrack point.  */
6818 	      struct delay_pair *delay_entry;
6819 	      delay_entry
6820 		= delay_htab->find_with_hash (insn, htab_hash_pointer (insn));
6821 	      if (delay_entry)
6822 		{
6823 		  save_backtrack_point (delay_entry, ls);
6824 		  if (sched_verbose >= 2)
6825 		    fprintf (sched_dump, ";;\t\tsaving backtrack point\n");
6826 		}
6827 	    }
6828 
6829 	  /* DECISION is made.  */
6830 
6831 	  if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid)
6832 	    {
6833 	      modulo_insns_scheduled++;
6834 	      modulo_last_stage = clock_var / modulo_ii;
6835 	    }
6836           if (TODO_SPEC (insn) & SPECULATIVE)
6837             generate_recovery_code (insn);
6838 
6839 	  if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6840 	    targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);
6841 
6842 	  /* Update counters, etc in the scheduler's front end.  */
6843 	  (*current_sched_info->begin_schedule_ready) (insn);
6844 	  scheduled_insns.safe_push (insn);
6845 	  gcc_assert (NONDEBUG_INSN_P (insn));
6846 	  last_nondebug_scheduled_insn = last_scheduled_insn = insn;
6847 
6848 	  if (recog_memoized (insn) >= 0)
6849 	    {
6850 	      memcpy (temp_state, curr_state, dfa_state_size);
6851 	      cost = state_transition (curr_state, insn);
6852 	      if (sched_pressure != SCHED_PRESSURE_WEIGHTED && !sched_fusion)
6853 		gcc_assert (cost < 0);
6854 	      if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
6855 		cycle_issued_insns++;
6856 	      asm_p = false;
6857 	    }
6858 	  else
6859 	    asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
6860 		     || asm_noperands (PATTERN (insn)) >= 0);
6861 
6862 	  if (targetm.sched.variable_issue)
6863 	    ls.can_issue_more =
6864 	      targetm.sched.variable_issue (sched_dump, sched_verbose,
6865 					    insn, ls.can_issue_more);
6866 	  /* A naked CLOBBER or USE generates no instruction, so do
6867 	     not count them against the issue rate.  */
6868 	  else if (GET_CODE (PATTERN (insn)) != USE
6869 		   && GET_CODE (PATTERN (insn)) != CLOBBER)
6870 	    ls.can_issue_more--;
6871 	  advance = schedule_insn (insn);
6872 
6873 	  if (SHADOW_P (insn))
6874 	    ls.shadows_only_p = true;
6875 
6876 	  /* After issuing an asm insn we should start a new cycle.  */
6877 	  if (advance == 0 && asm_p)
6878 	    advance = 1;
6879 
6880 	  if (must_backtrack)
6881 	    break;
6882 
6883 	  if (advance != 0)
6884 	    break;
6885 
6886 	  ls.first_cycle_insn_p = false;
6887 	  if (ready.n_ready > 0)
6888 	    prune_ready_list (temp_state, false, ls.shadows_only_p,
6889 			      ls.modulo_epilogue);
6890 	}
6891 
6892     do_backtrack:
6893       if (!must_backtrack)
6894 	for (i = 0; i < ready.n_ready; i++)
6895 	  {
6896 	    rtx_insn *insn = ready_element (&ready, i);
6897 	    if (INSN_EXACT_TICK (insn) == clock_var)
6898 	      {
6899 		must_backtrack = true;
6900 		clock_var++;
6901 		break;
6902 	      }
6903 	  }
6904       if (must_backtrack && modulo_ii > 0)
6905 	{
6906 	  if (modulo_backtracks_left == 0)
6907 	    goto end_schedule;
6908 	  modulo_backtracks_left--;
6909 	}
6910       while (must_backtrack)
6911 	{
6912 	  struct haifa_saved_data *failed;
6913 	  rtx_insn *failed_insn;
6914 
6915 	  must_backtrack = false;
6916 	  failed = verify_shadows ();
6917 	  gcc_assert (failed);
6918 
6919 	  failed_insn = failed->delay_pair->i1;
6920 	  /* Clear these queues.  */
6921 	  perform_replacements_new_cycle ();
6922 	  toggle_cancelled_flags (false);
6923 	  unschedule_insns_until (failed_insn);
6924 	  while (failed != backtrack_queue)
6925 	    free_topmost_backtrack_point (true);
6926 	  restore_last_backtrack_point (&ls);
6927 	  if (sched_verbose >= 2)
6928 	    fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var);
6929 	  /* Delay by at least a cycle.  This could cause additional
6930 	     backtracking.  */
6931 	  queue_insn (failed_insn, 1, "backtracked");
6932 	  advance = 0;
6933 	  if (must_backtrack)
6934 	    continue;
6935 	  if (ready.n_ready > 0)
6936 	    goto resume_after_backtrack;
6937 	  else
6938 	    {
6939 	      if (clock_var == 0 && ls.first_cycle_insn_p)
6940 		goto end_schedule;
6941 	      advance = 1;
6942 	      break;
6943 	    }
6944 	}
6945       ls.first_cycle_insn_p = true;
6946     }
6947   if (ls.modulo_epilogue)
6948     success = true;
6949  end_schedule:
6950   if (!ls.first_cycle_insn_p || advance)
6951     advance_one_cycle ();
6952   perform_replacements_new_cycle ();
6953   if (modulo_ii > 0)
6954     {
6955       /* Once again, debug insn suckiness: they can be on the ready list
6956 	 even if they have unresolved dependencies.  To make our view
6957 	 of the world consistent, remove such "ready" insns.  */
6958     restart_debug_insn_loop:
6959       for (i = ready.n_ready - 1; i >= 0; i--)
6960 	{
6961 	  rtx_insn *x;
6962 
6963 	  x = ready_element (&ready, i);
6964 	  if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL
6965 	      || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL)
6966 	    {
6967 	      ready_remove (&ready, i);
6968 	      goto restart_debug_insn_loop;
6969 	    }
6970 	}
6971       for (i = ready.n_ready - 1; i >= 0; i--)
6972 	{
6973 	  rtx_insn *x;
6974 
6975 	  x = ready_element (&ready, i);
6976 	  resolve_dependencies (x);
6977 	}
6978       for (i = 0; i <= max_insn_queue_index; i++)
6979 	{
6980 	  rtx_insn_list *link;
6981 	  while ((link = insn_queue[i]) != NULL)
6982 	    {
6983 	      rtx_insn *x = link->insn ();
6984 	      insn_queue[i] = link->next ();
6985 	      QUEUE_INDEX (x) = QUEUE_NOWHERE;
6986 	      free_INSN_LIST_node (link);
6987 	      resolve_dependencies (x);
6988 	    }
6989 	}
6990     }
6991 
6992   if (!success)
6993     undo_all_replacements ();
6994 
6995   /* Debug info.  */
6996   if (sched_verbose)
6997     {
6998       fprintf (sched_dump, ";;\tReady list (final):  ");
6999       debug_ready_list (&ready);
7000     }
7001 
7002   if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty)
7003     /* Sanity check -- queue must be empty now.  Meaningless if region has
7004        multiple bbs.  */
7005     gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
7006   else if (modulo_ii == 0)
7007     {
7008       /* We must maintain QUEUE_INDEX between blocks in region.  */
7009       for (i = ready.n_ready - 1; i >= 0; i--)
7010 	{
7011 	  rtx_insn *x;
7012 
7013 	  x = ready_element (&ready, i);
7014 	  QUEUE_INDEX (x) = QUEUE_NOWHERE;
7015 	  TODO_SPEC (x) = HARD_DEP;
7016 	}
7017 
7018       if (q_size)
7019 	for (i = 0; i <= max_insn_queue_index; i++)
7020 	  {
7021 	    rtx_insn_list *link;
7022 	    for (link = insn_queue[i]; link; link = link->next ())
7023 	      {
7024 		rtx_insn *x;
7025 
7026 		x = link->insn ();
7027 		QUEUE_INDEX (x) = QUEUE_NOWHERE;
7028 		TODO_SPEC (x) = HARD_DEP;
7029 	      }
7030 	    free_INSN_LIST_list (&insn_queue[i]);
7031 	  }
7032     }
7033 
7034   if (sched_pressure == SCHED_PRESSURE_MODEL)
7035     model_end_schedule ();
7036 
7037   if (success)
7038     {
7039       commit_schedule (prev_head, tail, target_bb);
7040       if (sched_verbose)
7041 	fprintf (sched_dump, ";;   total time = %d\n", clock_var);
7042     }
7043   else
7044     last_scheduled_insn = tail;
7045 
7046   scheduled_insns.truncate (0);
7047 
7048   if (!current_sched_info->queue_must_finish_empty
7049       || haifa_recovery_bb_recently_added_p)
7050     {
7051       /* INSN_TICK (minimum clock tick at which the insn becomes
7052          ready) may be not correct for the insn in the subsequent
7053          blocks of the region.  We should use a correct value of
7054          `clock_var' or modify INSN_TICK.  It is better to keep
7055          clock_var value equal to 0 at the start of a basic block.
7056          Therefore we modify INSN_TICK here.  */
7057       fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
7058     }
7059 
7060   if (targetm.sched.finish)
7061     {
7062       targetm.sched.finish (sched_dump, sched_verbose);
7063       /* Target might have added some instructions to the scheduled block
7064 	 in its md_finish () hook.  These new insns don't have any data
7065 	 initialized and to identify them we extend h_i_d so that they'll
7066 	 get zero luids.  */
7067       sched_extend_luids ();
7068     }
7069 
7070   /* Update head/tail boundaries.  */
7071   head = NEXT_INSN (prev_head);
7072   tail = last_scheduled_insn;
7073 
7074   if (sched_verbose)
7075     {
7076       fprintf (sched_dump, ";;   new head = %d\n;;   new tail = %d\n",
7077 	       INSN_UID (head), INSN_UID (tail));
7078 
7079       if (sched_verbose >= 2)
7080 	{
7081 	  dump_insn_stream (head, tail);
7082 	  print_rank_for_schedule_stats (";; TOTAL ", &rank_for_schedule_stats,
7083 					 NULL);
7084 	}
7085 
7086       fprintf (sched_dump, "\n");
7087     }
7088 
7089   head = restore_other_notes (head, NULL);
7090 
7091   current_sched_info->head = head;
7092   current_sched_info->tail = tail;
7093 
7094   free_backtrack_queue ();
7095 
7096   return success;
7097 }
7098 
7099 /* Set_priorities: compute priority of each insn in the block.  */
7100 
7101 int
7102 set_priorities (rtx_insn *head, rtx_insn *tail)
7103 {
7104   rtx_insn *insn;
7105   int n_insn;
7106   int sched_max_insns_priority =
7107 	current_sched_info->sched_max_insns_priority;
7108   rtx_insn *prev_head;
7109 
7110   if (head == tail && ! INSN_P (head))
7111     gcc_unreachable ();
7112 
7113   n_insn = 0;
7114 
7115   prev_head = PREV_INSN (head);
7116   for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
7117     {
7118       if (!INSN_P (insn))
7119 	continue;
7120 
7121       n_insn++;
7122       (void) priority (insn);
7123 
7124       gcc_assert (INSN_PRIORITY_KNOWN (insn));
7125 
7126       sched_max_insns_priority = MAX (sched_max_insns_priority,
7127 				      INSN_PRIORITY (insn));
7128     }
7129 
7130   current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
7131 
7132   return n_insn;
7133 }
7134 
7135 /* Set sched_dump and sched_verbose for the desired debugging output. */
7136 void
7137 setup_sched_dump (void)
7138 {
7139   sched_verbose = sched_verbose_param;
7140   sched_dump = dump_file;
7141   if (!dump_file)
7142     sched_verbose = 0;
7143 }
7144 
7145 /* Allocate data for register pressure sensitive scheduling.  */
7146 static void
7147 alloc_global_sched_pressure_data (void)
7148 {
7149   if (sched_pressure != SCHED_PRESSURE_NONE)
7150     {
7151       int i, max_regno = max_reg_num ();
7152 
7153       if (sched_dump != NULL)
7154 	/* We need info about pseudos for rtl dumps about pseudo
7155 	   classes and costs.  */
7156 	regstat_init_n_sets_and_refs ();
7157       ira_set_pseudo_classes (true, sched_verbose ? sched_dump : NULL);
7158       sched_regno_pressure_class
7159 	= (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
7160       for (i = 0; i < max_regno; i++)
7161 	sched_regno_pressure_class[i]
7162 	  = (i < FIRST_PSEUDO_REGISTER
7163 	     ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
7164 	     : ira_pressure_class_translate[reg_allocno_class (i)]);
7165       curr_reg_live = BITMAP_ALLOC (NULL);
7166       if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7167 	{
7168 	  saved_reg_live = BITMAP_ALLOC (NULL);
7169 	  region_ref_regs = BITMAP_ALLOC (NULL);
7170 	}
7171       if (sched_pressure == SCHED_PRESSURE_MODEL)
7172 	tmp_bitmap = BITMAP_ALLOC (NULL);
7173 
7174       /* Calculate number of CALL_SAVED_REGS and FIXED_REGS in register classes
7175 	 that we calculate register pressure for.  */
7176       for (int c = 0; c < ira_pressure_classes_num; ++c)
7177 	{
7178 	  enum reg_class cl = ira_pressure_classes[c];
7179 
7180 	  call_saved_regs_num[cl] = 0;
7181 	  fixed_regs_num[cl] = 0;
7182 
7183 	  for (int i = 0; i < ira_class_hard_regs_num[cl]; ++i)
7184 	    if (!call_used_regs[ira_class_hard_regs[cl][i]])
7185 	      ++call_saved_regs_num[cl];
7186 	    else if (fixed_regs[ira_class_hard_regs[cl][i]])
7187 	      ++fixed_regs_num[cl];
7188 	}
7189     }
7190 }
7191 
7192 /*  Free data for register pressure sensitive scheduling.  Also called
7193     from schedule_region when stopping sched-pressure early.  */
7194 void
7195 free_global_sched_pressure_data (void)
7196 {
7197   if (sched_pressure != SCHED_PRESSURE_NONE)
7198     {
7199       if (regstat_n_sets_and_refs != NULL)
7200 	regstat_free_n_sets_and_refs ();
7201       if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7202 	{
7203 	  BITMAP_FREE (region_ref_regs);
7204 	  BITMAP_FREE (saved_reg_live);
7205 	}
7206       if (sched_pressure == SCHED_PRESSURE_MODEL)
7207 	BITMAP_FREE (tmp_bitmap);
7208       BITMAP_FREE (curr_reg_live);
7209       free (sched_regno_pressure_class);
7210     }
7211 }
7212 
7213 /* Initialize some global state for the scheduler.  This function works
7214    with the common data shared between all the schedulers.  It is called
7215    from the scheduler specific initialization routine.  */
7216 
7217 void
7218 sched_init (void)
7219 {
7220   /* Disable speculative loads in their presence if cc0 defined.  */
7221   if (HAVE_cc0)
7222   flag_schedule_speculative_load = 0;
7223 
7224   if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
7225     targetm.sched.dispatch_do (NULL, DISPATCH_INIT);
7226 
7227   if (live_range_shrinkage_p)
7228     sched_pressure = SCHED_PRESSURE_WEIGHTED;
7229   else if (flag_sched_pressure
7230 	   && !reload_completed
7231 	   && common_sched_info->sched_pass_id == SCHED_RGN_PASS)
7232     sched_pressure = ((enum sched_pressure_algorithm)
7233 		      PARAM_VALUE (PARAM_SCHED_PRESSURE_ALGORITHM));
7234   else
7235     sched_pressure = SCHED_PRESSURE_NONE;
7236 
7237   if (sched_pressure != SCHED_PRESSURE_NONE)
7238     ira_setup_eliminable_regset ();
7239 
7240   /* Initialize SPEC_INFO.  */
7241   if (targetm.sched.set_sched_flags)
7242     {
7243       spec_info = &spec_info_var;
7244       targetm.sched.set_sched_flags (spec_info);
7245 
7246       if (spec_info->mask != 0)
7247         {
7248           spec_info->data_weakness_cutoff =
7249             (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
7250           spec_info->control_weakness_cutoff =
7251             (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
7252              * REG_BR_PROB_BASE) / 100;
7253         }
7254       else
7255 	/* So we won't read anything accidentally.  */
7256 	spec_info = NULL;
7257 
7258     }
7259   else
7260     /* So we won't read anything accidentally.  */
7261     spec_info = 0;
7262 
7263   /* Initialize issue_rate.  */
7264   if (targetm.sched.issue_rate)
7265     issue_rate = targetm.sched.issue_rate ();
7266   else
7267     issue_rate = 1;
7268 
7269   if (targetm.sched.first_cycle_multipass_dfa_lookahead
7270       /* Don't use max_issue with reg_pressure scheduling.  Multipass
7271 	 scheduling and reg_pressure scheduling undo each other's decisions.  */
7272       && sched_pressure == SCHED_PRESSURE_NONE)
7273     dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
7274   else
7275     dfa_lookahead = 0;
7276 
7277   /* Set to "0" so that we recalculate.  */
7278   max_lookahead_tries = 0;
7279 
7280   if (targetm.sched.init_dfa_pre_cycle_insn)
7281     targetm.sched.init_dfa_pre_cycle_insn ();
7282 
7283   if (targetm.sched.init_dfa_post_cycle_insn)
7284     targetm.sched.init_dfa_post_cycle_insn ();
7285 
7286   dfa_start ();
7287   dfa_state_size = state_size ();
7288 
7289   init_alias_analysis ();
7290 
7291   if (!sched_no_dce)
7292     df_set_flags (DF_LR_RUN_DCE);
7293   df_note_add_problem ();
7294 
7295   /* More problems needed for interloop dep calculation in SMS.  */
7296   if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
7297     {
7298       df_rd_add_problem ();
7299       df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
7300     }
7301 
7302   df_analyze ();
7303 
7304   /* Do not run DCE after reload, as this can kill nops inserted
7305      by bundling.  */
7306   if (reload_completed)
7307     df_clear_flags (DF_LR_RUN_DCE);
7308 
7309   regstat_compute_calls_crossed ();
7310 
7311   if (targetm.sched.init_global)
7312     targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);
7313 
7314   alloc_global_sched_pressure_data ();
7315 
7316   curr_state = xmalloc (dfa_state_size);
7317 }
7318 
7319 static void haifa_init_only_bb (basic_block, basic_block);
7320 
7321 /* Initialize data structures specific to the Haifa scheduler.  */
7322 void
7323 haifa_sched_init (void)
7324 {
7325   setup_sched_dump ();
7326   sched_init ();
7327 
7328   scheduled_insns.create (0);
7329 
7330   if (spec_info != NULL)
7331     {
7332       sched_deps_info->use_deps_list = 1;
7333       sched_deps_info->generate_spec_deps = 1;
7334     }
7335 
7336   /* Initialize luids, dependency caches, target and h_i_d for the
7337      whole function.  */
7338   {
7339     sched_init_bbs ();
7340 
7341     auto_vec<basic_block> bbs (n_basic_blocks_for_fn (cfun));
7342     basic_block bb;
7343     FOR_EACH_BB_FN (bb, cfun)
7344       bbs.quick_push (bb);
7345     sched_init_luids (bbs);
7346     sched_deps_init (true);
7347     sched_extend_target ();
7348     haifa_init_h_i_d (bbs);
7349   }
7350 
7351   sched_init_only_bb = haifa_init_only_bb;
7352   sched_split_block = sched_split_block_1;
7353   sched_create_empty_bb = sched_create_empty_bb_1;
7354   haifa_recovery_bb_ever_added_p = false;
7355 
7356   nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
7357   before_recovery = 0;
7358   after_recovery = 0;
7359 
7360   modulo_ii = 0;
7361 }
7362 
7363 /* Finish work with the data specific to the Haifa scheduler.  */
7364 void
7365 haifa_sched_finish (void)
7366 {
7367   sched_create_empty_bb = NULL;
7368   sched_split_block = NULL;
7369   sched_init_only_bb = NULL;
7370 
7371   if (spec_info && spec_info->dump)
7372     {
7373       char c = reload_completed ? 'a' : 'b';
7374 
7375       fprintf (spec_info->dump,
7376 	       ";; %s:\n", current_function_name ());
7377 
7378       fprintf (spec_info->dump,
7379                ";; Procedure %cr-begin-data-spec motions == %d\n",
7380                c, nr_begin_data);
7381       fprintf (spec_info->dump,
7382                ";; Procedure %cr-be-in-data-spec motions == %d\n",
7383                c, nr_be_in_data);
7384       fprintf (spec_info->dump,
7385                ";; Procedure %cr-begin-control-spec motions == %d\n",
7386                c, nr_begin_control);
7387       fprintf (spec_info->dump,
7388                ";; Procedure %cr-be-in-control-spec motions == %d\n",
7389                c, nr_be_in_control);
7390     }
7391 
7392   scheduled_insns.release ();
7393 
7394   /* Finalize h_i_d, dependency caches, and luids for the whole
7395      function.  Target will be finalized in md_global_finish ().  */
7396   sched_deps_finish ();
7397   sched_finish_luids ();
7398   current_sched_info = NULL;
7399   insn_queue = NULL;
7400   sched_finish ();
7401 }
7402 
7403 /* Free global data used during insn scheduling.  This function works with
7404    the common data shared between the schedulers.  */
7405 
7406 void
7407 sched_finish (void)
7408 {
7409   haifa_finish_h_i_d ();
7410   free_global_sched_pressure_data ();
7411   free (curr_state);
7412 
7413   if (targetm.sched.finish_global)
7414     targetm.sched.finish_global (sched_dump, sched_verbose);
7415 
7416   end_alias_analysis ();
7417 
7418   regstat_free_calls_crossed ();
7419 
7420   dfa_finish ();
7421 }
7422 
7423 /* Free all delay_pair structures that were recorded.  */
7424 void
7425 free_delay_pairs (void)
7426 {
7427   if (delay_htab)
7428     {
7429       delay_htab->empty ();
7430       delay_htab_i2->empty ();
7431     }
7432 }
7433 
7434 /* Fix INSN_TICKs of the instructions in the current block as well as
7435    INSN_TICKs of their dependents.
7436    HEAD and TAIL are the begin and the end of the current scheduled block.  */
7437 static void
7438 fix_inter_tick (rtx_insn *head, rtx_insn *tail)
7439 {
7440   /* Set of instructions with corrected INSN_TICK.  */
7441   auto_bitmap processed;
7442   /* ??? It is doubtful if we should assume that cycle advance happens on
7443      basic block boundaries.  Basically insns that are unconditionally ready
7444      on the start of the block are more preferable then those which have
7445      a one cycle dependency over insn from the previous block.  */
7446   int next_clock = clock_var + 1;
7447 
7448   /* Iterates over scheduled instructions and fix their INSN_TICKs and
7449      INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
7450      across different blocks.  */
7451   for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
7452     {
7453       if (INSN_P (head))
7454 	{
7455 	  int tick;
7456 	  sd_iterator_def sd_it;
7457 	  dep_t dep;
7458 
7459 	  tick = INSN_TICK (head);
7460 	  gcc_assert (tick >= MIN_TICK);
7461 
7462 	  /* Fix INSN_TICK of instruction from just scheduled block.  */
7463 	  if (bitmap_set_bit (processed, INSN_LUID (head)))
7464 	    {
7465 	      tick -= next_clock;
7466 
7467 	      if (tick < MIN_TICK)
7468 		tick = MIN_TICK;
7469 
7470 	      INSN_TICK (head) = tick;
7471 	    }
7472 
7473 	  if (DEBUG_INSN_P (head))
7474 	    continue;
7475 
7476 	  FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
7477 	    {
7478 	      rtx_insn *next;
7479 
7480 	      next = DEP_CON (dep);
7481 	      tick = INSN_TICK (next);
7482 
7483 	      if (tick != INVALID_TICK
7484 		  /* If NEXT has its INSN_TICK calculated, fix it.
7485 		     If not - it will be properly calculated from
7486 		     scratch later in fix_tick_ready.  */
7487 		  && bitmap_set_bit (processed, INSN_LUID (next)))
7488 		{
7489 		  tick -= next_clock;
7490 
7491 		  if (tick < MIN_TICK)
7492 		    tick = MIN_TICK;
7493 
7494 		  if (tick > INTER_TICK (next))
7495 		    INTER_TICK (next) = tick;
7496 		  else
7497 		    tick = INTER_TICK (next);
7498 
7499 		  INSN_TICK (next) = tick;
7500 		}
7501 	    }
7502 	}
7503     }
7504 }
7505 
7506 /* Check if NEXT is ready to be added to the ready or queue list.
7507    If "yes", add it to the proper list.
7508    Returns:
7509       -1 - is not ready yet,
7510        0 - added to the ready list,
7511    0 < N - queued for N cycles.  */
7512 int
7513 try_ready (rtx_insn *next)
7514 {
7515   ds_t old_ts, new_ts;
7516 
7517   old_ts = TODO_SPEC (next);
7518 
7519   gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL | DEP_POSTPONED))
7520 	      && (old_ts == HARD_DEP
7521 		  || old_ts == DEP_POSTPONED
7522 		  || (old_ts & SPECULATIVE)
7523 		  || old_ts == DEP_CONTROL));
7524 
7525   new_ts = recompute_todo_spec (next, false);
7526 
7527   if (new_ts & (HARD_DEP | DEP_POSTPONED))
7528     gcc_assert (new_ts == old_ts
7529 		&& QUEUE_INDEX (next) == QUEUE_NOWHERE);
7530   else if (current_sched_info->new_ready)
7531     new_ts = current_sched_info->new_ready (next, new_ts);
7532 
7533   /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
7534      have its original pattern or changed (speculative) one.  This is due
7535      to changing ebb in region scheduling.
7536      * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
7537      has speculative pattern.
7538 
7539      We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
7540      control-speculative NEXT could have been discarded by sched-rgn.c
7541      (the same case as when discarded by can_schedule_ready_p ()).  */
7542 
7543   if ((new_ts & SPECULATIVE)
7544       /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
7545 	 need to change anything.  */
7546       && new_ts != old_ts)
7547     {
7548       int res;
7549       rtx new_pat;
7550 
7551       gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE));
7552 
7553       res = haifa_speculate_insn (next, new_ts, &new_pat);
7554 
7555       switch (res)
7556 	{
7557 	case -1:
7558 	  /* It would be nice to change DEP_STATUS of all dependences,
7559 	     which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
7560 	     so we won't reanalyze anything.  */
7561 	  new_ts = HARD_DEP;
7562 	  break;
7563 
7564 	case 0:
7565 	  /* We follow the rule, that every speculative insn
7566 	     has non-null ORIG_PAT.  */
7567 	  if (!ORIG_PAT (next))
7568 	    ORIG_PAT (next) = PATTERN (next);
7569 	  break;
7570 
7571 	case 1:
7572 	  if (!ORIG_PAT (next))
7573 	    /* If we gonna to overwrite the original pattern of insn,
7574 	       save it.  */
7575 	    ORIG_PAT (next) = PATTERN (next);
7576 
7577 	  res = haifa_change_pattern (next, new_pat);
7578 	  gcc_assert (res);
7579 	  break;
7580 
7581 	default:
7582 	  gcc_unreachable ();
7583 	}
7584     }
7585 
7586   /* We need to restore pattern only if (new_ts == 0), because otherwise it is
7587      either correct (new_ts & SPECULATIVE),
7588      or we simply don't care (new_ts & HARD_DEP).  */
7589 
7590   gcc_assert (!ORIG_PAT (next)
7591 	      || !IS_SPECULATION_BRANCHY_CHECK_P (next));
7592 
7593   TODO_SPEC (next) = new_ts;
7594 
7595   if (new_ts & (HARD_DEP | DEP_POSTPONED))
7596     {
7597       /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
7598 	 control-speculative NEXT could have been discarded by sched-rgn.c
7599 	 (the same case as when discarded by can_schedule_ready_p ()).  */
7600       /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
7601 
7602       change_queue_index (next, QUEUE_NOWHERE);
7603 
7604       return -1;
7605     }
7606   else if (!(new_ts & BEGIN_SPEC)
7607 	   && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX
7608 	   && !IS_SPECULATION_CHECK_P (next))
7609     /* We should change pattern of every previously speculative
7610        instruction - and we determine if NEXT was speculative by using
7611        ORIG_PAT field.  Except one case - speculation checks have ORIG_PAT
7612        pat too, so skip them.  */
7613     {
7614       bool success = haifa_change_pattern (next, ORIG_PAT (next));
7615       gcc_assert (success);
7616       ORIG_PAT (next) = 0;
7617     }
7618 
7619   if (sched_verbose >= 2)
7620     {
7621       fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
7622                (*current_sched_info->print_insn) (next, 0));
7623 
7624       if (spec_info && spec_info->dump)
7625         {
7626           if (new_ts & BEGIN_DATA)
7627             fprintf (spec_info->dump, "; data-spec;");
7628           if (new_ts & BEGIN_CONTROL)
7629             fprintf (spec_info->dump, "; control-spec;");
7630           if (new_ts & BE_IN_CONTROL)
7631             fprintf (spec_info->dump, "; in-control-spec;");
7632         }
7633       if (TODO_SPEC (next) & DEP_CONTROL)
7634 	fprintf (sched_dump, " predicated");
7635       fprintf (sched_dump, "\n");
7636     }
7637 
7638   adjust_priority (next);
7639 
7640   return fix_tick_ready (next);
7641 }
7642 
7643 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list.  */
7644 static int
7645 fix_tick_ready (rtx_insn *next)
7646 {
7647   int tick, delay;
7648 
7649   if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
7650     {
7651       int full_p;
7652       sd_iterator_def sd_it;
7653       dep_t dep;
7654 
7655       tick = INSN_TICK (next);
7656       /* if tick is not equal to INVALID_TICK, then update
7657 	 INSN_TICK of NEXT with the most recent resolved dependence
7658 	 cost.  Otherwise, recalculate from scratch.  */
7659       full_p = (tick == INVALID_TICK);
7660 
7661       FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
7662         {
7663           rtx_insn *pro = DEP_PRO (dep);
7664           int tick1;
7665 
7666 	  gcc_assert (INSN_TICK (pro) >= MIN_TICK);
7667 
7668           tick1 = INSN_TICK (pro) + dep_cost (dep);
7669           if (tick1 > tick)
7670             tick = tick1;
7671 
7672 	  if (!full_p)
7673 	    break;
7674         }
7675     }
7676   else
7677     tick = -1;
7678 
7679   INSN_TICK (next) = tick;
7680 
7681   delay = tick - clock_var;
7682   if (delay <= 0 || sched_pressure != SCHED_PRESSURE_NONE || sched_fusion)
7683     delay = QUEUE_READY;
7684 
7685   change_queue_index (next, delay);
7686 
7687   return delay;
7688 }
7689 
7690 /* Move NEXT to the proper queue list with (DELAY >= 1),
7691    or add it to the ready list (DELAY == QUEUE_READY),
7692    or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE).  */
7693 static void
7694 change_queue_index (rtx_insn *next, int delay)
7695 {
7696   int i = QUEUE_INDEX (next);
7697 
7698   gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
7699 	      && delay != 0);
7700   gcc_assert (i != QUEUE_SCHEDULED);
7701 
7702   if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
7703       || (delay < 0 && delay == i))
7704     /* We have nothing to do.  */
7705     return;
7706 
7707   /* Remove NEXT from wherever it is now.  */
7708   if (i == QUEUE_READY)
7709     ready_remove_insn (next);
7710   else if (i >= 0)
7711     queue_remove (next);
7712 
7713   /* Add it to the proper place.  */
7714   if (delay == QUEUE_READY)
7715     ready_add (readyp, next, false);
7716   else if (delay >= 1)
7717     queue_insn (next, delay, "change queue index");
7718 
7719   if (sched_verbose >= 2)
7720     {
7721       fprintf (sched_dump, ";;\t\ttick updated: insn %s",
7722 	       (*current_sched_info->print_insn) (next, 0));
7723 
7724       if (delay == QUEUE_READY)
7725 	fprintf (sched_dump, " into ready\n");
7726       else if (delay >= 1)
7727 	fprintf (sched_dump, " into queue with cost=%d\n", delay);
7728       else
7729 	fprintf (sched_dump, " removed from ready or queue lists\n");
7730     }
7731 }
7732 
7733 static int sched_ready_n_insns = -1;
7734 
7735 /* Initialize per region data structures.  */
7736 void
7737 sched_extend_ready_list (int new_sched_ready_n_insns)
7738 {
7739   int i;
7740 
7741   if (sched_ready_n_insns == -1)
7742     /* At the first call we need to initialize one more choice_stack
7743        entry.  */
7744     {
7745       i = 0;
7746       sched_ready_n_insns = 0;
7747       scheduled_insns.reserve (new_sched_ready_n_insns);
7748     }
7749   else
7750     i = sched_ready_n_insns + 1;
7751 
7752   ready.veclen = new_sched_ready_n_insns + issue_rate;
7753   ready.vec = XRESIZEVEC (rtx_insn *, ready.vec, ready.veclen);
7754 
7755   gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
7756 
7757   ready_try = (signed char *) xrecalloc (ready_try, new_sched_ready_n_insns,
7758 					 sched_ready_n_insns,
7759 					 sizeof (*ready_try));
7760 
7761   /* We allocate +1 element to save initial state in the choice_stack[0]
7762      entry.  */
7763   choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
7764 			     new_sched_ready_n_insns + 1);
7765 
7766   for (; i <= new_sched_ready_n_insns; i++)
7767     {
7768       choice_stack[i].state = xmalloc (dfa_state_size);
7769 
7770       if (targetm.sched.first_cycle_multipass_init)
7771 	targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
7772 						    .target_data));
7773     }
7774 
7775   sched_ready_n_insns = new_sched_ready_n_insns;
7776 }
7777 
7778 /* Free per region data structures.  */
7779 void
7780 sched_finish_ready_list (void)
7781 {
7782   int i;
7783 
7784   free (ready.vec);
7785   ready.vec = NULL;
7786   ready.veclen = 0;
7787 
7788   free (ready_try);
7789   ready_try = NULL;
7790 
7791   for (i = 0; i <= sched_ready_n_insns; i++)
7792     {
7793       if (targetm.sched.first_cycle_multipass_fini)
7794 	targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
7795 						    .target_data));
7796 
7797       free (choice_stack [i].state);
7798     }
7799   free (choice_stack);
7800   choice_stack = NULL;
7801 
7802   sched_ready_n_insns = -1;
7803 }
7804 
7805 static int
7806 haifa_luid_for_non_insn (rtx x)
7807 {
7808   gcc_assert (NOTE_P (x) || LABEL_P (x));
7809 
7810   return 0;
7811 }
7812 
7813 /* Generates recovery code for INSN.  */
7814 static void
7815 generate_recovery_code (rtx_insn *insn)
7816 {
7817   if (TODO_SPEC (insn) & BEGIN_SPEC)
7818     begin_speculative_block (insn);
7819 
7820   /* Here we have insn with no dependencies to
7821      instructions other then CHECK_SPEC ones.  */
7822 
7823   if (TODO_SPEC (insn) & BE_IN_SPEC)
7824     add_to_speculative_block (insn);
7825 }
7826 
7827 /* Helper function.
7828    Tries to add speculative dependencies of type FS between instructions
7829    in deps_list L and TWIN.  */
7830 static void
7831 process_insn_forw_deps_be_in_spec (rtx_insn *insn, rtx_insn *twin, ds_t fs)
7832 {
7833   sd_iterator_def sd_it;
7834   dep_t dep;
7835 
7836   FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
7837     {
7838       ds_t ds;
7839       rtx_insn *consumer;
7840 
7841       consumer = DEP_CON (dep);
7842 
7843       ds = DEP_STATUS (dep);
7844 
7845       if (/* If we want to create speculative dep.  */
7846 	  fs
7847 	  /* And we can do that because this is a true dep.  */
7848 	  && (ds & DEP_TYPES) == DEP_TRUE)
7849 	{
7850 	  gcc_assert (!(ds & BE_IN_SPEC));
7851 
7852 	  if (/* If this dep can be overcome with 'begin speculation'.  */
7853 	      ds & BEGIN_SPEC)
7854 	    /* Then we have a choice: keep the dep 'begin speculative'
7855 	       or transform it into 'be in speculative'.  */
7856 	    {
7857 	      if (/* In try_ready we assert that if insn once became ready
7858 		     it can be removed from the ready (or queue) list only
7859 		     due to backend decision.  Hence we can't let the
7860 		     probability of the speculative dep to decrease.  */
7861 		  ds_weak (ds) <= ds_weak (fs))
7862 		{
7863 		  ds_t new_ds;
7864 
7865 		  new_ds = (ds & ~BEGIN_SPEC) | fs;
7866 
7867 		  if (/* consumer can 'be in speculative'.  */
7868 		      sched_insn_is_legitimate_for_speculation_p (consumer,
7869 								  new_ds))
7870 		    /* Transform it to be in speculative.  */
7871 		    ds = new_ds;
7872 		}
7873 	    }
7874 	  else
7875 	    /* Mark the dep as 'be in speculative'.  */
7876 	    ds |= fs;
7877 	}
7878 
7879       {
7880 	dep_def _new_dep, *new_dep = &_new_dep;
7881 
7882 	init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
7883 	sd_add_dep (new_dep, false);
7884       }
7885     }
7886 }
7887 
7888 /* Generates recovery code for BEGIN speculative INSN.  */
7889 static void
7890 begin_speculative_block (rtx_insn *insn)
7891 {
7892   if (TODO_SPEC (insn) & BEGIN_DATA)
7893     nr_begin_data++;
7894   if (TODO_SPEC (insn) & BEGIN_CONTROL)
7895     nr_begin_control++;
7896 
7897   create_check_block_twin (insn, false);
7898 
7899   TODO_SPEC (insn) &= ~BEGIN_SPEC;
7900 }
7901 
7902 static void haifa_init_insn (rtx_insn *);
7903 
7904 /* Generates recovery code for BE_IN speculative INSN.  */
7905 static void
7906 add_to_speculative_block (rtx_insn *insn)
7907 {
7908   ds_t ts;
7909   sd_iterator_def sd_it;
7910   dep_t dep;
7911   auto_vec<rtx_insn *, 10> twins;
7912 
7913   ts = TODO_SPEC (insn);
7914   gcc_assert (!(ts & ~BE_IN_SPEC));
7915 
7916   if (ts & BE_IN_DATA)
7917     nr_be_in_data++;
7918   if (ts & BE_IN_CONTROL)
7919     nr_be_in_control++;
7920 
7921   TODO_SPEC (insn) &= ~BE_IN_SPEC;
7922   gcc_assert (!TODO_SPEC (insn));
7923 
7924   DONE_SPEC (insn) |= ts;
7925 
7926   /* First we convert all simple checks to branchy.  */
7927   for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7928        sd_iterator_cond (&sd_it, &dep);)
7929     {
7930       rtx_insn *check = DEP_PRO (dep);
7931 
7932       if (IS_SPECULATION_SIMPLE_CHECK_P (check))
7933 	{
7934 	  create_check_block_twin (check, true);
7935 
7936 	  /* Restart search.  */
7937 	  sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7938 	}
7939       else
7940 	/* Continue search.  */
7941 	sd_iterator_next (&sd_it);
7942     }
7943 
7944   auto_vec<rtx_insn *> priorities_roots;
7945   clear_priorities (insn, &priorities_roots);
7946 
7947   while (1)
7948     {
7949       rtx_insn *check, *twin;
7950       basic_block rec;
7951 
7952       /* Get the first backward dependency of INSN.  */
7953       sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7954       if (!sd_iterator_cond (&sd_it, &dep))
7955 	/* INSN has no backward dependencies left.  */
7956 	break;
7957 
7958       gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
7959 		  && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
7960 		  && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
7961 
7962       check = DEP_PRO (dep);
7963 
7964       gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
7965 		  && QUEUE_INDEX (check) == QUEUE_NOWHERE);
7966 
7967       rec = BLOCK_FOR_INSN (check);
7968 
7969       twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
7970       haifa_init_insn (twin);
7971 
7972       sd_copy_back_deps (twin, insn, true);
7973 
7974       if (sched_verbose && spec_info->dump)
7975         /* INSN_BB (insn) isn't determined for twin insns yet.
7976            So we can't use current_sched_info->print_insn.  */
7977         fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
7978                  INSN_UID (twin), rec->index);
7979 
7980       twins.safe_push (twin);
7981 
7982       /* Add dependences between TWIN and all appropriate
7983 	 instructions from REC.  */
7984       FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
7985 	{
7986 	  rtx_insn *pro = DEP_PRO (dep);
7987 
7988 	  gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
7989 
7990 	  /* INSN might have dependencies from the instructions from
7991 	     several recovery blocks.  At this iteration we process those
7992 	     producers that reside in REC.  */
7993 	  if (BLOCK_FOR_INSN (pro) == rec)
7994 	    {
7995 	      dep_def _new_dep, *new_dep = &_new_dep;
7996 
7997 	      init_dep (new_dep, pro, twin, REG_DEP_TRUE);
7998 	      sd_add_dep (new_dep, false);
7999 	    }
8000 	}
8001 
8002       process_insn_forw_deps_be_in_spec (insn, twin, ts);
8003 
8004       /* Remove all dependencies between INSN and insns in REC.  */
8005       for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8006 	   sd_iterator_cond (&sd_it, &dep);)
8007 	{
8008 	  rtx_insn *pro = DEP_PRO (dep);
8009 
8010 	  if (BLOCK_FOR_INSN (pro) == rec)
8011 	    sd_delete_dep (sd_it);
8012 	  else
8013 	    sd_iterator_next (&sd_it);
8014 	}
8015     }
8016 
8017   /* We couldn't have added the dependencies between INSN and TWINS earlier
8018      because that would make TWINS appear in the INSN_BACK_DEPS (INSN).  */
8019   unsigned int i;
8020   rtx_insn *twin;
8021   FOR_EACH_VEC_ELT_REVERSE (twins, i, twin)
8022     {
8023       dep_def _new_dep, *new_dep = &_new_dep;
8024 
8025       init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8026       sd_add_dep (new_dep, false);
8027     }
8028 
8029   calc_priorities (priorities_roots);
8030 }
8031 
8032 /* Extends and fills with zeros (only the new part) array pointed to by P.  */
8033 void *
8034 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
8035 {
8036   gcc_assert (new_nmemb >= old_nmemb);
8037   p = XRESIZEVAR (void, p, new_nmemb * size);
8038   memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
8039   return p;
8040 }
8041 
8042 /* Helper function.
8043    Find fallthru edge from PRED.  */
8044 edge
8045 find_fallthru_edge_from (basic_block pred)
8046 {
8047   edge e;
8048   basic_block succ;
8049 
8050   succ = pred->next_bb;
8051   gcc_assert (succ->prev_bb == pred);
8052 
8053   if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
8054     {
8055       e = find_fallthru_edge (pred->succs);
8056 
8057       if (e)
8058 	{
8059 	  gcc_assert (e->dest == succ);
8060 	  return e;
8061 	}
8062     }
8063   else
8064     {
8065       e = find_fallthru_edge (succ->preds);
8066 
8067       if (e)
8068 	{
8069 	  gcc_assert (e->src == pred);
8070 	  return e;
8071 	}
8072     }
8073 
8074   return NULL;
8075 }
8076 
8077 /* Extend per basic block data structures.  */
8078 static void
8079 sched_extend_bb (void)
8080 {
8081   /* The following is done to keep current_sched_info->next_tail non null.  */
8082   rtx_insn *end = BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
8083   rtx_insn *insn = DEBUG_INSN_P (end) ? prev_nondebug_insn (end) : end;
8084   if (NEXT_INSN (end) == 0
8085       || (!NOTE_P (insn)
8086 	  && !LABEL_P (insn)
8087 	  /* Don't emit a NOTE if it would end up before a BARRIER.  */
8088 	  && !BARRIER_P (next_nondebug_insn (end))))
8089     {
8090       rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
8091       /* Make note appear outside BB.  */
8092       set_block_for_insn (note, NULL);
8093       BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb) = end;
8094     }
8095 }
8096 
8097 /* Init per basic block data structures.  */
8098 void
8099 sched_init_bbs (void)
8100 {
8101   sched_extend_bb ();
8102 }
8103 
8104 /* Initialize BEFORE_RECOVERY variable.  */
8105 static void
8106 init_before_recovery (basic_block *before_recovery_ptr)
8107 {
8108   basic_block last;
8109   edge e;
8110 
8111   last = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8112   e = find_fallthru_edge_from (last);
8113 
8114   if (e)
8115     {
8116       /* We create two basic blocks:
8117          1. Single instruction block is inserted right after E->SRC
8118          and has jump to
8119          2. Empty block right before EXIT_BLOCK.
8120          Between these two blocks recovery blocks will be emitted.  */
8121 
8122       basic_block single, empty;
8123 
8124       /* If the fallthrough edge to exit we've found is from the block we've
8125 	 created before, don't do anything more.  */
8126       if (last == after_recovery)
8127 	return;
8128 
8129       adding_bb_to_current_region_p = false;
8130 
8131       single = sched_create_empty_bb (last);
8132       empty = sched_create_empty_bb (single);
8133 
8134       /* Add new blocks to the root loop.  */
8135       if (current_loops != NULL)
8136 	{
8137 	  add_bb_to_loop (single, (*current_loops->larray)[0]);
8138 	  add_bb_to_loop (empty, (*current_loops->larray)[0]);
8139 	}
8140 
8141       single->count = last->count;
8142       empty->count = last->count;
8143       BB_COPY_PARTITION (single, last);
8144       BB_COPY_PARTITION (empty, last);
8145 
8146       redirect_edge_succ (e, single);
8147       make_single_succ_edge (single, empty, 0);
8148       make_single_succ_edge (empty, EXIT_BLOCK_PTR_FOR_FN (cfun),
8149 			     EDGE_FALLTHRU);
8150 
8151       rtx_code_label *label = block_label (empty);
8152       rtx_jump_insn *x = emit_jump_insn_after (targetm.gen_jump (label),
8153 					       BB_END (single));
8154       JUMP_LABEL (x) = label;
8155       LABEL_NUSES (label)++;
8156       haifa_init_insn (x);
8157 
8158       emit_barrier_after (x);
8159 
8160       sched_init_only_bb (empty, NULL);
8161       sched_init_only_bb (single, NULL);
8162       sched_extend_bb ();
8163 
8164       adding_bb_to_current_region_p = true;
8165       before_recovery = single;
8166       after_recovery = empty;
8167 
8168       if (before_recovery_ptr)
8169         *before_recovery_ptr = before_recovery;
8170 
8171       if (sched_verbose >= 2 && spec_info->dump)
8172         fprintf (spec_info->dump,
8173 		 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
8174                  last->index, single->index, empty->index);
8175     }
8176   else
8177     before_recovery = last;
8178 }
8179 
8180 /* Returns new recovery block.  */
8181 basic_block
8182 sched_create_recovery_block (basic_block *before_recovery_ptr)
8183 {
8184   rtx_insn *barrier;
8185   basic_block rec;
8186 
8187   haifa_recovery_bb_recently_added_p = true;
8188   haifa_recovery_bb_ever_added_p = true;
8189 
8190   init_before_recovery (before_recovery_ptr);
8191 
8192   barrier = get_last_bb_insn (before_recovery);
8193   gcc_assert (BARRIER_P (barrier));
8194 
8195   rtx_insn *label = emit_label_after (gen_label_rtx (), barrier);
8196 
8197   rec = create_basic_block (label, label, before_recovery);
8198 
8199   /* A recovery block always ends with an unconditional jump.  */
8200   emit_barrier_after (BB_END (rec));
8201 
8202   if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
8203     BB_SET_PARTITION (rec, BB_COLD_PARTITION);
8204 
8205   if (sched_verbose && spec_info->dump)
8206     fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
8207              rec->index);
8208 
8209   return rec;
8210 }
8211 
8212 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
8213    and emit necessary jumps.  */
8214 void
8215 sched_create_recovery_edges (basic_block first_bb, basic_block rec,
8216 			     basic_block second_bb)
8217 {
8218   int edge_flags;
8219 
8220   /* This is fixing of incoming edge.  */
8221   /* ??? Which other flags should be specified?  */
8222   if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
8223     /* Partition type is the same, if it is "unpartitioned".  */
8224     edge_flags = EDGE_CROSSING;
8225   else
8226     edge_flags = 0;
8227 
8228   edge e2 = single_succ_edge (first_bb);
8229   edge e = make_edge (first_bb, rec, edge_flags);
8230 
8231   /* TODO: The actual probability can be determined and is computed as
8232      'todo_spec' variable in create_check_block_twin and
8233      in sel-sched.c `check_ds' in create_speculation_check.  */
8234   e->probability = profile_probability::very_unlikely ();
8235   rec->count = e->count ();
8236   e2->probability = e->probability.invert ();
8237 
8238   rtx_code_label *label = block_label (second_bb);
8239   rtx_jump_insn *jump = emit_jump_insn_after (targetm.gen_jump (label),
8240 					      BB_END (rec));
8241   JUMP_LABEL (jump) = label;
8242   LABEL_NUSES (label)++;
8243 
8244   if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
8245     /* Partition type is the same, if it is "unpartitioned".  */
8246     {
8247       /* Rewritten from cfgrtl.c.  */
8248       if (crtl->has_bb_partition && targetm_common.have_named_sections)
8249 	{
8250 	  /* We don't need the same note for the check because
8251 	     any_condjump_p (check) == true.  */
8252 	  CROSSING_JUMP_P (jump) = 1;
8253 	}
8254       edge_flags = EDGE_CROSSING;
8255     }
8256   else
8257     edge_flags = 0;
8258 
8259   make_single_succ_edge (rec, second_bb, edge_flags);
8260   if (dom_info_available_p (CDI_DOMINATORS))
8261     set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
8262 }
8263 
8264 /* This function creates recovery code for INSN.  If MUTATE_P is nonzero,
8265    INSN is a simple check, that should be converted to branchy one.  */
8266 static void
8267 create_check_block_twin (rtx_insn *insn, bool mutate_p)
8268 {
8269   basic_block rec;
8270   rtx_insn *label, *check, *twin;
8271   rtx check_pat;
8272   ds_t fs;
8273   sd_iterator_def sd_it;
8274   dep_t dep;
8275   dep_def _new_dep, *new_dep = &_new_dep;
8276   ds_t todo_spec;
8277 
8278   gcc_assert (ORIG_PAT (insn) != NULL_RTX);
8279 
8280   if (!mutate_p)
8281     todo_spec = TODO_SPEC (insn);
8282   else
8283     {
8284       gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
8285 		  && (TODO_SPEC (insn) & SPECULATIVE) == 0);
8286 
8287       todo_spec = CHECK_SPEC (insn);
8288     }
8289 
8290   todo_spec &= SPECULATIVE;
8291 
8292   /* Create recovery block.  */
8293   if (mutate_p || targetm.sched.needs_block_p (todo_spec))
8294     {
8295       rec = sched_create_recovery_block (NULL);
8296       label = BB_HEAD (rec);
8297     }
8298   else
8299     {
8300       rec = EXIT_BLOCK_PTR_FOR_FN (cfun);
8301       label = NULL;
8302     }
8303 
8304   /* Emit CHECK.  */
8305   check_pat = targetm.sched.gen_spec_check (insn, label, todo_spec);
8306 
8307   if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8308     {
8309       /* To have mem_reg alive at the beginning of second_bb,
8310 	 we emit check BEFORE insn, so insn after splitting
8311 	 insn will be at the beginning of second_bb, which will
8312 	 provide us with the correct life information.  */
8313       check = emit_jump_insn_before (check_pat, insn);
8314       JUMP_LABEL (check) = label;
8315       LABEL_NUSES (label)++;
8316     }
8317   else
8318     check = emit_insn_before (check_pat, insn);
8319 
8320   /* Extend data structures.  */
8321   haifa_init_insn (check);
8322 
8323   /* CHECK is being added to current region.  Extend ready list.  */
8324   gcc_assert (sched_ready_n_insns != -1);
8325   sched_extend_ready_list (sched_ready_n_insns + 1);
8326 
8327   if (current_sched_info->add_remove_insn)
8328     current_sched_info->add_remove_insn (insn, 0);
8329 
8330   RECOVERY_BLOCK (check) = rec;
8331 
8332   if (sched_verbose && spec_info->dump)
8333     fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
8334              (*current_sched_info->print_insn) (check, 0));
8335 
8336   gcc_assert (ORIG_PAT (insn));
8337 
8338   /* Initialize TWIN (twin is a duplicate of original instruction
8339      in the recovery block).  */
8340   if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8341     {
8342       sd_iterator_def sd_it;
8343       dep_t dep;
8344 
8345       FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
8346 	if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
8347 	  {
8348 	    struct _dep _dep2, *dep2 = &_dep2;
8349 
8350 	    init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
8351 
8352 	    sd_add_dep (dep2, true);
8353 	  }
8354 
8355       twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
8356       haifa_init_insn (twin);
8357 
8358       if (sched_verbose && spec_info->dump)
8359 	/* INSN_BB (insn) isn't determined for twin insns yet.
8360 	   So we can't use current_sched_info->print_insn.  */
8361 	fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
8362 		 INSN_UID (twin), rec->index);
8363     }
8364   else
8365     {
8366       ORIG_PAT (check) = ORIG_PAT (insn);
8367       HAS_INTERNAL_DEP (check) = 1;
8368       twin = check;
8369       /* ??? We probably should change all OUTPUT dependencies to
8370 	 (TRUE | OUTPUT).  */
8371     }
8372 
8373   /* Copy all resolved back dependencies of INSN to TWIN.  This will
8374      provide correct value for INSN_TICK (TWIN).  */
8375   sd_copy_back_deps (twin, insn, true);
8376 
8377   if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8378     /* In case of branchy check, fix CFG.  */
8379     {
8380       basic_block first_bb, second_bb;
8381       rtx_insn *jump;
8382 
8383       first_bb = BLOCK_FOR_INSN (check);
8384       second_bb = sched_split_block (first_bb, check);
8385 
8386       sched_create_recovery_edges (first_bb, rec, second_bb);
8387 
8388       sched_init_only_bb (second_bb, first_bb);
8389       sched_init_only_bb (rec, EXIT_BLOCK_PTR_FOR_FN (cfun));
8390 
8391       jump = BB_END (rec);
8392       haifa_init_insn (jump);
8393     }
8394 
8395   /* Move backward dependences from INSN to CHECK and
8396      move forward dependences from INSN to TWIN.  */
8397 
8398   /* First, create dependencies between INSN's producers and CHECK & TWIN.  */
8399   FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8400     {
8401       rtx_insn *pro = DEP_PRO (dep);
8402       ds_t ds;
8403 
8404       /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
8405 	 check --TRUE--> producer  ??? or ANTI ???
8406 	 twin  --TRUE--> producer
8407 	 twin  --ANTI--> check
8408 
8409 	 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
8410 	 check --ANTI--> producer
8411 	 twin  --ANTI--> producer
8412 	 twin  --ANTI--> check
8413 
8414 	 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
8415 	 check ~~TRUE~~> producer
8416 	 twin  ~~TRUE~~> producer
8417 	 twin  --ANTI--> check  */
8418 
8419       ds = DEP_STATUS (dep);
8420 
8421       if (ds & BEGIN_SPEC)
8422 	{
8423 	  gcc_assert (!mutate_p);
8424 	  ds &= ~BEGIN_SPEC;
8425 	}
8426 
8427       init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
8428       sd_add_dep (new_dep, false);
8429 
8430       if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8431 	{
8432 	  DEP_CON (new_dep) = twin;
8433 	  sd_add_dep (new_dep, false);
8434 	}
8435     }
8436 
8437   /* Second, remove backward dependencies of INSN.  */
8438   for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8439        sd_iterator_cond (&sd_it, &dep);)
8440     {
8441       if ((DEP_STATUS (dep) & BEGIN_SPEC)
8442 	  || mutate_p)
8443 	/* We can delete this dep because we overcome it with
8444 	   BEGIN_SPECULATION.  */
8445 	sd_delete_dep (sd_it);
8446       else
8447 	sd_iterator_next (&sd_it);
8448     }
8449 
8450   /* Future Speculations.  Determine what BE_IN speculations will be like.  */
8451   fs = 0;
8452 
8453   /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
8454      here.  */
8455 
8456   gcc_assert (!DONE_SPEC (insn));
8457 
8458   if (!mutate_p)
8459     {
8460       ds_t ts = TODO_SPEC (insn);
8461 
8462       DONE_SPEC (insn) = ts & BEGIN_SPEC;
8463       CHECK_SPEC (check) = ts & BEGIN_SPEC;
8464 
8465       /* Luckiness of future speculations solely depends upon initial
8466 	 BEGIN speculation.  */
8467       if (ts & BEGIN_DATA)
8468 	fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
8469       if (ts & BEGIN_CONTROL)
8470 	fs = set_dep_weak (fs, BE_IN_CONTROL,
8471 			   get_dep_weak (ts, BEGIN_CONTROL));
8472     }
8473   else
8474     CHECK_SPEC (check) = CHECK_SPEC (insn);
8475 
8476   /* Future speculations: call the helper.  */
8477   process_insn_forw_deps_be_in_spec (insn, twin, fs);
8478 
8479   if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8480     {
8481       /* Which types of dependencies should we use here is,
8482 	 generally, machine-dependent question...  But, for now,
8483 	 it is not.  */
8484 
8485       if (!mutate_p)
8486 	{
8487 	  init_dep (new_dep, insn, check, REG_DEP_TRUE);
8488 	  sd_add_dep (new_dep, false);
8489 
8490 	  init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8491 	  sd_add_dep (new_dep, false);
8492 	}
8493       else
8494 	{
8495 	  if (spec_info->dump)
8496 	    fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
8497 		     (*current_sched_info->print_insn) (insn, 0));
8498 
8499 	  /* Remove all dependencies of the INSN.  */
8500 	  {
8501 	    sd_it = sd_iterator_start (insn, (SD_LIST_FORW
8502 					      | SD_LIST_BACK
8503 					      | SD_LIST_RES_BACK));
8504 	    while (sd_iterator_cond (&sd_it, &dep))
8505 	      sd_delete_dep (sd_it);
8506 	  }
8507 
8508 	  /* If former check (INSN) already was moved to the ready (or queue)
8509 	     list, add new check (CHECK) there too.  */
8510 	  if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
8511 	    try_ready (check);
8512 
8513 	  /* Remove old check from instruction stream and free its
8514 	     data.  */
8515 	  sched_remove_insn (insn);
8516 	}
8517 
8518       init_dep (new_dep, check, twin, REG_DEP_ANTI);
8519       sd_add_dep (new_dep, false);
8520     }
8521   else
8522     {
8523       init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
8524       sd_add_dep (new_dep, false);
8525     }
8526 
8527   if (!mutate_p)
8528     /* Fix priorities.  If MUTATE_P is nonzero, this is not necessary,
8529        because it'll be done later in add_to_speculative_block.  */
8530     {
8531       auto_vec<rtx_insn *> priorities_roots;
8532 
8533       clear_priorities (twin, &priorities_roots);
8534       calc_priorities (priorities_roots);
8535     }
8536 }
8537 
8538 /* Removes dependency between instructions in the recovery block REC
8539    and usual region instructions.  It keeps inner dependences so it
8540    won't be necessary to recompute them.  */
8541 static void
8542 fix_recovery_deps (basic_block rec)
8543 {
8544   rtx_insn *note, *insn, *jump;
8545   auto_vec<rtx_insn *, 10> ready_list;
8546   auto_bitmap in_ready;
8547 
8548   /* NOTE - a basic block note.  */
8549   note = NEXT_INSN (BB_HEAD (rec));
8550   gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8551   insn = BB_END (rec);
8552   gcc_assert (JUMP_P (insn));
8553   insn = PREV_INSN (insn);
8554 
8555   do
8556     {
8557       sd_iterator_def sd_it;
8558       dep_t dep;
8559 
8560       for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
8561 	   sd_iterator_cond (&sd_it, &dep);)
8562 	{
8563 	  rtx_insn *consumer = DEP_CON (dep);
8564 
8565 	  if (BLOCK_FOR_INSN (consumer) != rec)
8566 	    {
8567 	      sd_delete_dep (sd_it);
8568 
8569 	      if (bitmap_set_bit (in_ready, INSN_LUID (consumer)))
8570 		ready_list.safe_push (consumer);
8571 	    }
8572 	  else
8573 	    {
8574 	      gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
8575 
8576 	      sd_iterator_next (&sd_it);
8577 	    }
8578 	}
8579 
8580       insn = PREV_INSN (insn);
8581     }
8582   while (insn != note);
8583 
8584   /* Try to add instructions to the ready or queue list.  */
8585   unsigned int i;
8586   rtx_insn *temp;
8587   FOR_EACH_VEC_ELT_REVERSE (ready_list, i, temp)
8588     try_ready (temp);
8589 
8590   /* Fixing jump's dependences.  */
8591   insn = BB_HEAD (rec);
8592   jump = BB_END (rec);
8593 
8594   gcc_assert (LABEL_P (insn));
8595   insn = NEXT_INSN (insn);
8596 
8597   gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
8598   add_jump_dependencies (insn, jump);
8599 }
8600 
8601 /* Change pattern of INSN to NEW_PAT.  Invalidate cached haifa
8602    instruction data.  */
8603 static bool
8604 haifa_change_pattern (rtx_insn *insn, rtx new_pat)
8605 {
8606   int t;
8607 
8608   t = validate_change (insn, &PATTERN (insn), new_pat, 0);
8609   if (!t)
8610     return false;
8611 
8612   update_insn_after_change (insn);
8613   return true;
8614 }
8615 
8616 /* -1 - can't speculate,
8617    0 - for speculation with REQUEST mode it is OK to use
8618    current instruction pattern,
8619    1 - need to change pattern for *NEW_PAT to be speculative.  */
8620 int
8621 sched_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8622 {
8623   gcc_assert (current_sched_info->flags & DO_SPECULATION
8624               && (request & SPECULATIVE)
8625 	      && sched_insn_is_legitimate_for_speculation_p (insn, request));
8626 
8627   if ((request & spec_info->mask) != request)
8628     return -1;
8629 
8630   if (request & BE_IN_SPEC
8631       && !(request & BEGIN_SPEC))
8632     return 0;
8633 
8634   return targetm.sched.speculate_insn (insn, request, new_pat);
8635 }
8636 
8637 static int
8638 haifa_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8639 {
8640   gcc_assert (sched_deps_info->generate_spec_deps
8641 	      && !IS_SPECULATION_CHECK_P (insn));
8642 
8643   if (HAS_INTERNAL_DEP (insn)
8644       || SCHED_GROUP_P (insn))
8645     return -1;
8646 
8647   return sched_speculate_insn (insn, request, new_pat);
8648 }
8649 
8650 /* Print some information about block BB, which starts with HEAD and
8651    ends with TAIL, before scheduling it.
8652    I is zero, if scheduler is about to start with the fresh ebb.  */
8653 static void
8654 dump_new_block_header (int i, basic_block bb, rtx_insn *head, rtx_insn *tail)
8655 {
8656   if (!i)
8657     fprintf (sched_dump,
8658 	     ";;   ======================================================\n");
8659   else
8660     fprintf (sched_dump,
8661 	     ";;   =====================ADVANCING TO=====================\n");
8662   fprintf (sched_dump,
8663 	   ";;   -- basic block %d from %d to %d -- %s reload\n",
8664 	   bb->index, INSN_UID (head), INSN_UID (tail),
8665 	   (reload_completed ? "after" : "before"));
8666   fprintf (sched_dump,
8667 	   ";;   ======================================================\n");
8668   fprintf (sched_dump, "\n");
8669 }
8670 
8671 /* Unlink basic block notes and labels and saves them, so they
8672    can be easily restored.  We unlink basic block notes in EBB to
8673    provide back-compatibility with the previous code, as target backends
8674    assume, that there'll be only instructions between
8675    current_sched_info->{head and tail}.  We restore these notes as soon
8676    as we can.
8677    FIRST (LAST) is the first (last) basic block in the ebb.
8678    NB: In usual case (FIRST == LAST) nothing is really done.  */
8679 void
8680 unlink_bb_notes (basic_block first, basic_block last)
8681 {
8682   /* We DON'T unlink basic block notes of the first block in the ebb.  */
8683   if (first == last)
8684     return;
8685 
8686   bb_header = XNEWVEC (rtx_insn *, last_basic_block_for_fn (cfun));
8687 
8688   /* Make a sentinel.  */
8689   if (last->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
8690     bb_header[last->next_bb->index] = 0;
8691 
8692   first = first->next_bb;
8693   do
8694     {
8695       rtx_insn *prev, *label, *note, *next;
8696 
8697       label = BB_HEAD (last);
8698       if (LABEL_P (label))
8699 	note = NEXT_INSN (label);
8700       else
8701 	note = label;
8702       gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8703 
8704       prev = PREV_INSN (label);
8705       next = NEXT_INSN (note);
8706       gcc_assert (prev && next);
8707 
8708       SET_NEXT_INSN (prev) = next;
8709       SET_PREV_INSN (next) = prev;
8710 
8711       bb_header[last->index] = label;
8712 
8713       if (last == first)
8714 	break;
8715 
8716       last = last->prev_bb;
8717     }
8718   while (1);
8719 }
8720 
8721 /* Restore basic block notes.
8722    FIRST is the first basic block in the ebb.  */
8723 static void
8724 restore_bb_notes (basic_block first)
8725 {
8726   if (!bb_header)
8727     return;
8728 
8729   /* We DON'T unlink basic block notes of the first block in the ebb.  */
8730   first = first->next_bb;
8731   /* Remember: FIRST is actually a second basic block in the ebb.  */
8732 
8733   while (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
8734 	 && bb_header[first->index])
8735     {
8736       rtx_insn *prev, *label, *note, *next;
8737 
8738       label = bb_header[first->index];
8739       prev = PREV_INSN (label);
8740       next = NEXT_INSN (prev);
8741 
8742       if (LABEL_P (label))
8743 	note = NEXT_INSN (label);
8744       else
8745 	note = label;
8746       gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8747 
8748       bb_header[first->index] = 0;
8749 
8750       SET_NEXT_INSN (prev) = label;
8751       SET_NEXT_INSN (note) = next;
8752       SET_PREV_INSN (next) = note;
8753 
8754       first = first->next_bb;
8755     }
8756 
8757   free (bb_header);
8758   bb_header = 0;
8759 }
8760 
8761 /* Helper function.
8762    Fix CFG after both in- and inter-block movement of
8763    control_flow_insn_p JUMP.  */
8764 static void
8765 fix_jump_move (rtx_insn *jump)
8766 {
8767   basic_block bb, jump_bb, jump_bb_next;
8768 
8769   bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8770   jump_bb = BLOCK_FOR_INSN (jump);
8771   jump_bb_next = jump_bb->next_bb;
8772 
8773   gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
8774 	      || IS_SPECULATION_BRANCHY_CHECK_P (jump));
8775 
8776   if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
8777     /* if jump_bb_next is not empty.  */
8778     BB_END (jump_bb) = BB_END (jump_bb_next);
8779 
8780   if (BB_END (bb) != PREV_INSN (jump))
8781     /* Then there are instruction after jump that should be placed
8782        to jump_bb_next.  */
8783     BB_END (jump_bb_next) = BB_END (bb);
8784   else
8785     /* Otherwise jump_bb_next is empty.  */
8786     BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
8787 
8788   /* To make assertion in move_insn happy.  */
8789   BB_END (bb) = PREV_INSN (jump);
8790 
8791   update_bb_for_insn (jump_bb_next);
8792 }
8793 
8794 /* Fix CFG after interblock movement of control_flow_insn_p JUMP.  */
8795 static void
8796 move_block_after_check (rtx_insn *jump)
8797 {
8798   basic_block bb, jump_bb, jump_bb_next;
8799   vec<edge, va_gc> *t;
8800 
8801   bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8802   jump_bb = BLOCK_FOR_INSN (jump);
8803   jump_bb_next = jump_bb->next_bb;
8804 
8805   update_bb_for_insn (jump_bb);
8806 
8807   gcc_assert (IS_SPECULATION_CHECK_P (jump)
8808 	      || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
8809 
8810   unlink_block (jump_bb_next);
8811   link_block (jump_bb_next, bb);
8812 
8813   t = bb->succs;
8814   bb->succs = 0;
8815   move_succs (&(jump_bb->succs), bb);
8816   move_succs (&(jump_bb_next->succs), jump_bb);
8817   move_succs (&t, jump_bb_next);
8818 
8819   df_mark_solutions_dirty ();
8820 
8821   common_sched_info->fix_recovery_cfg
8822     (bb->index, jump_bb->index, jump_bb_next->index);
8823 }
8824 
8825 /* Helper function for move_block_after_check.
8826    This functions attaches edge vector pointed to by SUCCSP to
8827    block TO.  */
8828 static void
8829 move_succs (vec<edge, va_gc> **succsp, basic_block to)
8830 {
8831   edge e;
8832   edge_iterator ei;
8833 
8834   gcc_assert (to->succs == 0);
8835 
8836   to->succs = *succsp;
8837 
8838   FOR_EACH_EDGE (e, ei, to->succs)
8839     e->src = to;
8840 
8841   *succsp = 0;
8842 }
8843 
8844 /* Remove INSN from the instruction stream.
8845    INSN should have any dependencies.  */
8846 static void
8847 sched_remove_insn (rtx_insn *insn)
8848 {
8849   sd_finish_insn (insn);
8850 
8851   change_queue_index (insn, QUEUE_NOWHERE);
8852   current_sched_info->add_remove_insn (insn, 1);
8853   delete_insn (insn);
8854 }
8855 
8856 /* Clear priorities of all instructions, that are forward dependent on INSN.
8857    Store in vector pointed to by ROOTS_PTR insns on which priority () should
8858    be invoked to initialize all cleared priorities.  */
8859 static void
8860 clear_priorities (rtx_insn *insn, rtx_vec_t *roots_ptr)
8861 {
8862   sd_iterator_def sd_it;
8863   dep_t dep;
8864   bool insn_is_root_p = true;
8865 
8866   gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
8867 
8868   FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8869     {
8870       rtx_insn *pro = DEP_PRO (dep);
8871 
8872       if (INSN_PRIORITY_STATUS (pro) >= 0
8873 	  && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
8874 	{
8875 	  /* If DEP doesn't contribute to priority then INSN itself should
8876 	     be added to priority roots.  */
8877 	  if (contributes_to_priority_p (dep))
8878 	    insn_is_root_p = false;
8879 
8880 	  INSN_PRIORITY_STATUS (pro) = -1;
8881 	  clear_priorities (pro, roots_ptr);
8882 	}
8883     }
8884 
8885   if (insn_is_root_p)
8886     roots_ptr->safe_push (insn);
8887 }
8888 
8889 /* Recompute priorities of instructions, whose priorities might have been
8890    changed.  ROOTS is a vector of instructions whose priority computation will
8891    trigger initialization of all cleared priorities.  */
8892 static void
8893 calc_priorities (rtx_vec_t roots)
8894 {
8895   int i;
8896   rtx_insn *insn;
8897 
8898   FOR_EACH_VEC_ELT (roots, i, insn)
8899     priority (insn);
8900 }
8901 
8902 
8903 /* Add dependences between JUMP and other instructions in the recovery
8904    block.  INSN is the first insn the recovery block.  */
8905 static void
8906 add_jump_dependencies (rtx_insn *insn, rtx_insn *jump)
8907 {
8908   do
8909     {
8910       insn = NEXT_INSN (insn);
8911       if (insn == jump)
8912 	break;
8913 
8914       if (dep_list_size (insn, SD_LIST_FORW) == 0)
8915 	{
8916 	  dep_def _new_dep, *new_dep = &_new_dep;
8917 
8918 	  init_dep (new_dep, insn, jump, REG_DEP_ANTI);
8919 	  sd_add_dep (new_dep, false);
8920 	}
8921     }
8922   while (1);
8923 
8924   gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
8925 }
8926 
8927 /* Extend data structures for logical insn UID.  */
8928 void
8929 sched_extend_luids (void)
8930 {
8931   int new_luids_max_uid = get_max_uid () + 1;
8932 
8933   sched_luids.safe_grow_cleared (new_luids_max_uid);
8934 }
8935 
8936 /* Initialize LUID for INSN.  */
8937 void
8938 sched_init_insn_luid (rtx_insn *insn)
8939 {
8940   int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
8941   int luid;
8942 
8943   if (i >= 0)
8944     {
8945       luid = sched_max_luid;
8946       sched_max_luid += i;
8947     }
8948   else
8949     luid = -1;
8950 
8951   SET_INSN_LUID (insn, luid);
8952 }
8953 
8954 /* Initialize luids for BBS.
8955    The hook common_sched_info->luid_for_non_insn () is used to determine
8956    if notes, labels, etc. need luids.  */
8957 void
8958 sched_init_luids (bb_vec_t bbs)
8959 {
8960   int i;
8961   basic_block bb;
8962 
8963   sched_extend_luids ();
8964   FOR_EACH_VEC_ELT (bbs, i, bb)
8965     {
8966       rtx_insn *insn;
8967 
8968       FOR_BB_INSNS (bb, insn)
8969 	sched_init_insn_luid (insn);
8970     }
8971 }
8972 
8973 /* Free LUIDs.  */
8974 void
8975 sched_finish_luids (void)
8976 {
8977   sched_luids.release ();
8978   sched_max_luid = 1;
8979 }
8980 
8981 /* Return logical uid of INSN.  Helpful while debugging.  */
8982 int
8983 insn_luid (rtx_insn *insn)
8984 {
8985   return INSN_LUID (insn);
8986 }
8987 
8988 /* Extend per insn data in the target.  */
8989 void
8990 sched_extend_target (void)
8991 {
8992   if (targetm.sched.h_i_d_extended)
8993     targetm.sched.h_i_d_extended ();
8994 }
8995 
8996 /* Extend global scheduler structures (those, that live across calls to
8997    schedule_block) to include information about just emitted INSN.  */
8998 static void
8999 extend_h_i_d (void)
9000 {
9001   int reserve = (get_max_uid () + 1 - h_i_d.length ());
9002   if (reserve > 0
9003       && ! h_i_d.space (reserve))
9004     {
9005       h_i_d.safe_grow_cleared (3 * get_max_uid () / 2);
9006       sched_extend_target ();
9007     }
9008 }
9009 
9010 /* Initialize h_i_d entry of the INSN with default values.
9011    Values, that are not explicitly initialized here, hold zero.  */
9012 static void
9013 init_h_i_d (rtx_insn *insn)
9014 {
9015   if (INSN_LUID (insn) > 0)
9016     {
9017       INSN_COST (insn) = -1;
9018       QUEUE_INDEX (insn) = QUEUE_NOWHERE;
9019       INSN_TICK (insn) = INVALID_TICK;
9020       INSN_EXACT_TICK (insn) = INVALID_TICK;
9021       INTER_TICK (insn) = INVALID_TICK;
9022       TODO_SPEC (insn) = HARD_DEP;
9023       INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
9024 	= AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9025       INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
9026 	= AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9027     }
9028 }
9029 
9030 /* Initialize haifa_insn_data for BBS.  */
9031 void
9032 haifa_init_h_i_d (bb_vec_t bbs)
9033 {
9034   int i;
9035   basic_block bb;
9036 
9037   extend_h_i_d ();
9038   FOR_EACH_VEC_ELT (bbs, i, bb)
9039     {
9040       rtx_insn *insn;
9041 
9042       FOR_BB_INSNS (bb, insn)
9043 	init_h_i_d (insn);
9044     }
9045 }
9046 
9047 /* Finalize haifa_insn_data.  */
9048 void
9049 haifa_finish_h_i_d (void)
9050 {
9051   int i;
9052   haifa_insn_data_t data;
9053   reg_use_data *use, *next_use;
9054   reg_set_data *set, *next_set;
9055 
9056   FOR_EACH_VEC_ELT (h_i_d, i, data)
9057     {
9058       free (data->max_reg_pressure);
9059       free (data->reg_pressure);
9060       for (use = data->reg_use_list; use != NULL; use = next_use)
9061 	{
9062 	  next_use = use->next_insn_use;
9063 	  free (use);
9064 	}
9065       for (set = data->reg_set_list; set != NULL; set = next_set)
9066 	{
9067 	  next_set = set->next_insn_set;
9068 	  free (set);
9069 	}
9070 
9071     }
9072   h_i_d.release ();
9073 }
9074 
9075 /* Init data for the new insn INSN.  */
9076 static void
9077 haifa_init_insn (rtx_insn *insn)
9078 {
9079   gcc_assert (insn != NULL);
9080 
9081   sched_extend_luids ();
9082   sched_init_insn_luid (insn);
9083   sched_extend_target ();
9084   sched_deps_init (false);
9085   extend_h_i_d ();
9086   init_h_i_d (insn);
9087 
9088   if (adding_bb_to_current_region_p)
9089     {
9090       sd_init_insn (insn);
9091 
9092       /* Extend dependency caches by one element.  */
9093       extend_dependency_caches (1, false);
9094     }
9095   if (sched_pressure != SCHED_PRESSURE_NONE)
9096     init_insn_reg_pressure_info (insn);
9097 }
9098 
9099 /* Init data for the new basic block BB which comes after AFTER.  */
9100 static void
9101 haifa_init_only_bb (basic_block bb, basic_block after)
9102 {
9103   gcc_assert (bb != NULL);
9104 
9105   sched_init_bbs ();
9106 
9107   if (common_sched_info->add_block)
9108     /* This changes only data structures of the front-end.  */
9109     common_sched_info->add_block (bb, after);
9110 }
9111 
9112 /* A generic version of sched_split_block ().  */
9113 basic_block
9114 sched_split_block_1 (basic_block first_bb, rtx after)
9115 {
9116   edge e;
9117 
9118   e = split_block (first_bb, after);
9119   gcc_assert (e->src == first_bb);
9120 
9121   /* sched_split_block emits note if *check == BB_END.  Probably it
9122      is better to rip that note off.  */
9123 
9124   return e->dest;
9125 }
9126 
9127 /* A generic version of sched_create_empty_bb ().  */
9128 basic_block
9129 sched_create_empty_bb_1 (basic_block after)
9130 {
9131   return create_empty_bb (after);
9132 }
9133 
9134 /* Insert PAT as an INSN into the schedule and update the necessary data
9135    structures to account for it. */
9136 rtx_insn *
9137 sched_emit_insn (rtx pat)
9138 {
9139   rtx_insn *insn = emit_insn_before (pat, first_nonscheduled_insn ());
9140   haifa_init_insn (insn);
9141 
9142   if (current_sched_info->add_remove_insn)
9143     current_sched_info->add_remove_insn (insn, 0);
9144 
9145   (*current_sched_info->begin_schedule_ready) (insn);
9146   scheduled_insns.safe_push (insn);
9147 
9148   last_scheduled_insn = insn;
9149   return insn;
9150 }
9151 
9152 /* This function returns a candidate satisfying dispatch constraints from
9153    the ready list.  */
9154 
9155 static rtx_insn *
9156 ready_remove_first_dispatch (struct ready_list *ready)
9157 {
9158   int i;
9159   rtx_insn *insn = ready_element (ready, 0);
9160 
9161   if (ready->n_ready == 1
9162       || !INSN_P (insn)
9163       || INSN_CODE (insn) < 0
9164       || !active_insn_p (insn)
9165       || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9166     return ready_remove_first (ready);
9167 
9168   for (i = 1; i < ready->n_ready; i++)
9169     {
9170       insn = ready_element (ready, i);
9171 
9172       if (!INSN_P (insn)
9173 	  || INSN_CODE (insn) < 0
9174 	  || !active_insn_p (insn))
9175 	continue;
9176 
9177       if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9178 	{
9179 	  /* Return ith element of ready.  */
9180 	  insn = ready_remove (ready, i);
9181 	  return insn;
9182 	}
9183     }
9184 
9185   if (targetm.sched.dispatch (NULL, DISPATCH_VIOLATION))
9186     return ready_remove_first (ready);
9187 
9188   for (i = 1; i < ready->n_ready; i++)
9189     {
9190       insn = ready_element (ready, i);
9191 
9192       if (!INSN_P (insn)
9193 	  || INSN_CODE (insn) < 0
9194 	  || !active_insn_p (insn))
9195 	continue;
9196 
9197       /* Return i-th element of ready.  */
9198       if (targetm.sched.dispatch (insn, IS_CMP))
9199 	return ready_remove (ready, i);
9200     }
9201 
9202   return ready_remove_first (ready);
9203 }
9204 
9205 /* Get number of ready insn in the ready list.  */
9206 
9207 int
9208 number_in_ready (void)
9209 {
9210   return ready.n_ready;
9211 }
9212 
9213 /* Get number of ready's in the ready list.  */
9214 
9215 rtx_insn *
9216 get_ready_element (int i)
9217 {
9218   return ready_element (&ready, i);
9219 }
9220 
9221 #endif /* INSN_SCHEDULING */
9222