xref: /dragonfly/contrib/gcc-8.0/gcc/ira.c (revision 8bf5b238)
1 /* Integrated Register Allocator (IRA) entry point.
2    Copyright (C) 2006-2018 Free Software Foundation, Inc.
3    Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 /* The integrated register allocator (IRA) is a
22    regional register allocator performing graph coloring on a top-down
23    traversal of nested regions.  Graph coloring in a region is based
24    on Chaitin-Briggs algorithm.  It is called integrated because
25    register coalescing, register live range splitting, and choosing a
26    better hard register are done on-the-fly during coloring.  Register
27    coalescing and choosing a cheaper hard register is done by hard
28    register preferencing during hard register assigning.  The live
29    range splitting is a byproduct of the regional register allocation.
30 
31    Major IRA notions are:
32 
33      o *Region* is a part of CFG where graph coloring based on
34        Chaitin-Briggs algorithm is done.  IRA can work on any set of
35        nested CFG regions forming a tree.  Currently the regions are
36        the entire function for the root region and natural loops for
37        the other regions.  Therefore data structure representing a
38        region is called loop_tree_node.
39 
40      o *Allocno class* is a register class used for allocation of
41        given allocno.  It means that only hard register of given
42        register class can be assigned to given allocno.  In reality,
43        even smaller subset of (*profitable*) hard registers can be
44        assigned.  In rare cases, the subset can be even smaller
45        because our modification of Chaitin-Briggs algorithm requires
46        that sets of hard registers can be assigned to allocnos forms a
47        forest, i.e. the sets can be ordered in a way where any
48        previous set is not intersected with given set or is a superset
49        of given set.
50 
51      o *Pressure class* is a register class belonging to a set of
52        register classes containing all of the hard-registers available
53        for register allocation.  The set of all pressure classes for a
54        target is defined in the corresponding machine-description file
55        according some criteria.  Register pressure is calculated only
56        for pressure classes and it affects some IRA decisions as
57        forming allocation regions.
58 
59      o *Allocno* represents the live range of a pseudo-register in a
60        region.  Besides the obvious attributes like the corresponding
61        pseudo-register number, allocno class, conflicting allocnos and
62        conflicting hard-registers, there are a few allocno attributes
63        which are important for understanding the allocation algorithm:
64 
65        - *Live ranges*.  This is a list of ranges of *program points*
66          where the allocno lives.  Program points represent places
67          where a pseudo can be born or become dead (there are
68          approximately two times more program points than the insns)
69          and they are represented by integers starting with 0.  The
70          live ranges are used to find conflicts between allocnos.
71          They also play very important role for the transformation of
72          the IRA internal representation of several regions into a one
73          region representation.  The later is used during the reload
74          pass work because each allocno represents all of the
75          corresponding pseudo-registers.
76 
77        - *Hard-register costs*.  This is a vector of size equal to the
78          number of available hard-registers of the allocno class.  The
79          cost of a callee-clobbered hard-register for an allocno is
80          increased by the cost of save/restore code around the calls
81          through the given allocno's life.  If the allocno is a move
82          instruction operand and another operand is a hard-register of
83          the allocno class, the cost of the hard-register is decreased
84          by the move cost.
85 
86          When an allocno is assigned, the hard-register with minimal
87          full cost is used.  Initially, a hard-register's full cost is
88          the corresponding value from the hard-register's cost vector.
89          If the allocno is connected by a *copy* (see below) to
90          another allocno which has just received a hard-register, the
91          cost of the hard-register is decreased.  Before choosing a
92          hard-register for an allocno, the allocno's current costs of
93          the hard-registers are modified by the conflict hard-register
94          costs of all of the conflicting allocnos which are not
95          assigned yet.
96 
97        - *Conflict hard-register costs*.  This is a vector of the same
98          size as the hard-register costs vector.  To permit an
99          unassigned allocno to get a better hard-register, IRA uses
100          this vector to calculate the final full cost of the
101          available hard-registers.  Conflict hard-register costs of an
102          unassigned allocno are also changed with a change of the
103          hard-register cost of the allocno when a copy involving the
104          allocno is processed as described above.  This is done to
105          show other unassigned allocnos that a given allocno prefers
106          some hard-registers in order to remove the move instruction
107          corresponding to the copy.
108 
109      o *Cap*.  If a pseudo-register does not live in a region but
110        lives in a nested region, IRA creates a special allocno called
111        a cap in the outer region.  A region cap is also created for a
112        subregion cap.
113 
114      o *Copy*.  Allocnos can be connected by copies.  Copies are used
115        to modify hard-register costs for allocnos during coloring.
116        Such modifications reflects a preference to use the same
117        hard-register for the allocnos connected by copies.  Usually
118        copies are created for move insns (in this case it results in
119        register coalescing).  But IRA also creates copies for operands
120        of an insn which should be assigned to the same hard-register
121        due to constraints in the machine description (it usually
122        results in removing a move generated in reload to satisfy
123        the constraints) and copies referring to the allocno which is
124        the output operand of an instruction and the allocno which is
125        an input operand dying in the instruction (creation of such
126        copies results in less register shuffling).  IRA *does not*
127        create copies between the same register allocnos from different
128        regions because we use another technique for propagating
129        hard-register preference on the borders of regions.
130 
131    Allocnos (including caps) for the upper region in the region tree
132    *accumulate* information important for coloring from allocnos with
133    the same pseudo-register from nested regions.  This includes
134    hard-register and memory costs, conflicts with hard-registers,
135    allocno conflicts, allocno copies and more.  *Thus, attributes for
136    allocnos in a region have the same values as if the region had no
137    subregions*.  It means that attributes for allocnos in the
138    outermost region corresponding to the function have the same values
139    as though the allocation used only one region which is the entire
140    function.  It also means that we can look at IRA work as if the
141    first IRA did allocation for all function then it improved the
142    allocation for loops then their subloops and so on.
143 
144    IRA major passes are:
145 
146      o Building IRA internal representation which consists of the
147        following subpasses:
148 
149        * First, IRA builds regions and creates allocnos (file
150          ira-build.c) and initializes most of their attributes.
151 
152        * Then IRA finds an allocno class for each allocno and
153          calculates its initial (non-accumulated) cost of memory and
154          each hard-register of its allocno class (file ira-cost.c).
155 
156        * IRA creates live ranges of each allocno, calculates register
157          pressure for each pressure class in each region, sets up
158          conflict hard registers for each allocno and info about calls
159          the allocno lives through (file ira-lives.c).
160 
161        * IRA removes low register pressure loops from the regions
162          mostly to speed IRA up (file ira-build.c).
163 
164        * IRA propagates accumulated allocno info from lower region
165          allocnos to corresponding upper region allocnos (file
166          ira-build.c).
167 
168        * IRA creates all caps (file ira-build.c).
169 
170        * Having live-ranges of allocnos and their classes, IRA creates
171          conflicting allocnos for each allocno.  Conflicting allocnos
172          are stored as a bit vector or array of pointers to the
173          conflicting allocnos whatever is more profitable (file
174          ira-conflicts.c).  At this point IRA creates allocno copies.
175 
176      o Coloring.  Now IRA has all necessary info to start graph coloring
177        process.  It is done in each region on top-down traverse of the
178        region tree (file ira-color.c).  There are following subpasses:
179 
180        * Finding profitable hard registers of corresponding allocno
181          class for each allocno.  For example, only callee-saved hard
182          registers are frequently profitable for allocnos living
183          through colors.  If the profitable hard register set of
184          allocno does not form a tree based on subset relation, we use
185          some approximation to form the tree.  This approximation is
186          used to figure out trivial colorability of allocnos.  The
187          approximation is a pretty rare case.
188 
189        * Putting allocnos onto the coloring stack.  IRA uses Briggs
190          optimistic coloring which is a major improvement over
191          Chaitin's coloring.  Therefore IRA does not spill allocnos at
192          this point.  There is some freedom in the order of putting
193          allocnos on the stack which can affect the final result of
194          the allocation.  IRA uses some heuristics to improve the
195          order.  The major one is to form *threads* from colorable
196          allocnos and push them on the stack by threads.  Thread is a
197          set of non-conflicting colorable allocnos connected by
198          copies.  The thread contains allocnos from the colorable
199          bucket or colorable allocnos already pushed onto the coloring
200          stack.  Pushing thread allocnos one after another onto the
201          stack increases chances of removing copies when the allocnos
202          get the same hard reg.
203 
204 	 We also use a modification of Chaitin-Briggs algorithm which
205          works for intersected register classes of allocnos.  To
206          figure out trivial colorability of allocnos, the mentioned
207          above tree of hard register sets is used.  To get an idea how
208          the algorithm works in i386 example, let us consider an
209          allocno to which any general hard register can be assigned.
210          If the allocno conflicts with eight allocnos to which only
211          EAX register can be assigned, given allocno is still
212          trivially colorable because all conflicting allocnos might be
213          assigned only to EAX and all other general hard registers are
214          still free.
215 
216 	 To get an idea of the used trivial colorability criterion, it
217 	 is also useful to read article "Graph-Coloring Register
218 	 Allocation for Irregular Architectures" by Michael D. Smith
219 	 and Glen Holloway.  Major difference between the article
220 	 approach and approach used in IRA is that Smith's approach
221 	 takes register classes only from machine description and IRA
222 	 calculate register classes from intermediate code too
223 	 (e.g. an explicit usage of hard registers in RTL code for
224 	 parameter passing can result in creation of additional
225 	 register classes which contain or exclude the hard
226 	 registers).  That makes IRA approach useful for improving
227 	 coloring even for architectures with regular register files
228 	 and in fact some benchmarking shows the improvement for
229 	 regular class architectures is even bigger than for irregular
230 	 ones.  Another difference is that Smith's approach chooses
231 	 intersection of classes of all insn operands in which a given
232 	 pseudo occurs.  IRA can use bigger classes if it is still
233 	 more profitable than memory usage.
234 
235        * Popping the allocnos from the stack and assigning them hard
236          registers.  If IRA can not assign a hard register to an
237          allocno and the allocno is coalesced, IRA undoes the
238          coalescing and puts the uncoalesced allocnos onto the stack in
239          the hope that some such allocnos will get a hard register
240          separately.  If IRA fails to assign hard register or memory
241          is more profitable for it, IRA spills the allocno.  IRA
242          assigns the allocno the hard-register with minimal full
243          allocation cost which reflects the cost of usage of the
244          hard-register for the allocno and cost of usage of the
245          hard-register for allocnos conflicting with given allocno.
246 
247        * Chaitin-Briggs coloring assigns as many pseudos as possible
248          to hard registers.  After coloring we try to improve
249          allocation with cost point of view.  We improve the
250          allocation by spilling some allocnos and assigning the freed
251          hard registers to other allocnos if it decreases the overall
252          allocation cost.
253 
254        * After allocno assigning in the region, IRA modifies the hard
255          register and memory costs for the corresponding allocnos in
256          the subregions to reflect the cost of possible loads, stores,
257          or moves on the border of the region and its subregions.
258          When default regional allocation algorithm is used
259          (-fira-algorithm=mixed), IRA just propagates the assignment
260          for allocnos if the register pressure in the region for the
261          corresponding pressure class is less than number of available
262          hard registers for given pressure class.
263 
264      o Spill/restore code moving.  When IRA performs an allocation
265        by traversing regions in top-down order, it does not know what
266        happens below in the region tree.  Therefore, sometimes IRA
267        misses opportunities to perform a better allocation.  A simple
268        optimization tries to improve allocation in a region having
269        subregions and containing in another region.  If the
270        corresponding allocnos in the subregion are spilled, it spills
271        the region allocno if it is profitable.  The optimization
272        implements a simple iterative algorithm performing profitable
273        transformations while they are still possible.  It is fast in
274        practice, so there is no real need for a better time complexity
275        algorithm.
276 
277      o Code change.  After coloring, two allocnos representing the
278        same pseudo-register outside and inside a region respectively
279        may be assigned to different locations (hard-registers or
280        memory).  In this case IRA creates and uses a new
281        pseudo-register inside the region and adds code to move allocno
282        values on the region's borders.  This is done during top-down
283        traversal of the regions (file ira-emit.c).  In some
284        complicated cases IRA can create a new allocno to move allocno
285        values (e.g. when a swap of values stored in two hard-registers
286        is needed).  At this stage, the new allocno is marked as
287        spilled.  IRA still creates the pseudo-register and the moves
288        on the region borders even when both allocnos were assigned to
289        the same hard-register.  If the reload pass spills a
290        pseudo-register for some reason, the effect will be smaller
291        because another allocno will still be in the hard-register.  In
292        most cases, this is better then spilling both allocnos.  If
293        reload does not change the allocation for the two
294        pseudo-registers, the trivial move will be removed by
295        post-reload optimizations.  IRA does not generate moves for
296        allocnos assigned to the same hard register when the default
297        regional allocation algorithm is used and the register pressure
298        in the region for the corresponding pressure class is less than
299        number of available hard registers for given pressure class.
300        IRA also does some optimizations to remove redundant stores and
301        to reduce code duplication on the region borders.
302 
303      o Flattening internal representation.  After changing code, IRA
304        transforms its internal representation for several regions into
305        one region representation (file ira-build.c).  This process is
306        called IR flattening.  Such process is more complicated than IR
307        rebuilding would be, but is much faster.
308 
309      o After IR flattening, IRA tries to assign hard registers to all
310        spilled allocnos.  This is implemented by a simple and fast
311        priority coloring algorithm (see function
312        ira_reassign_conflict_allocnos::ira-color.c).  Here new allocnos
313        created during the code change pass can be assigned to hard
314        registers.
315 
316      o At the end IRA calls the reload pass.  The reload pass
317        communicates with IRA through several functions in file
318        ira-color.c to improve its decisions in
319 
320        * sharing stack slots for the spilled pseudos based on IRA info
321          about pseudo-register conflicts.
322 
323        * reassigning hard-registers to all spilled pseudos at the end
324          of each reload iteration.
325 
326        * choosing a better hard-register to spill based on IRA info
327          about pseudo-register live ranges and the register pressure
328          in places where the pseudo-register lives.
329 
330    IRA uses a lot of data representing the target processors.  These
331    data are initialized in file ira.c.
332 
333    If function has no loops (or the loops are ignored when
334    -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335    coloring (only instead of separate pass of coalescing, we use hard
336    register preferencing).  In such case, IRA works much faster
337    because many things are not made (like IR flattening, the
338    spill/restore optimization, and the code change).
339 
340    Literature is worth to read for better understanding the code:
341 
342    o Preston Briggs, Keith D. Cooper, Linda Torczon.  Improvements to
343      Graph Coloring Register Allocation.
344 
345    o David Callahan, Brian Koblenz.  Register allocation via
346      hierarchical graph coloring.
347 
348    o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349      Coloring Register Allocation: A Study of the Chaitin-Briggs and
350      Callahan-Koblenz Algorithms.
351 
352    o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353      Register Allocation Based on Graph Fusion.
354 
355    o Michael D. Smith and Glenn Holloway.  Graph-Coloring Register
356      Allocation for Irregular Architectures
357 
358    o Vladimir Makarov. The Integrated Register Allocator for GCC.
359 
360    o Vladimir Makarov.  The top-down register allocator for irregular
361      register file architectures.
362 
363 */
364 
365 
366 #include "config.h"
367 #include "system.h"
368 #include "coretypes.h"
369 #include "backend.h"
370 #include "target.h"
371 #include "rtl.h"
372 #include "tree.h"
373 #include "df.h"
374 #include "memmodel.h"
375 #include "tm_p.h"
376 #include "insn-config.h"
377 #include "regs.h"
378 #include "ira.h"
379 #include "ira-int.h"
380 #include "diagnostic-core.h"
381 #include "cfgrtl.h"
382 #include "cfgbuild.h"
383 #include "cfgcleanup.h"
384 #include "expr.h"
385 #include "tree-pass.h"
386 #include "output.h"
387 #include "reload.h"
388 #include "cfgloop.h"
389 #include "lra.h"
390 #include "dce.h"
391 #include "dbgcnt.h"
392 #include "rtl-iter.h"
393 #include "shrink-wrap.h"
394 #include "print-rtl.h"
395 
396 struct target_ira default_target_ira;
397 struct target_ira_int default_target_ira_int;
398 #if SWITCHABLE_TARGET
399 struct target_ira *this_target_ira = &default_target_ira;
400 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
401 #endif
402 
403 /* A modified value of flag `-fira-verbose' used internally.  */
404 int internal_flag_ira_verbose;
405 
406 /* Dump file of the allocator if it is not NULL.  */
407 FILE *ira_dump_file;
408 
409 /* The number of elements in the following array.  */
410 int ira_spilled_reg_stack_slots_num;
411 
412 /* The following array contains info about spilled pseudo-registers
413    stack slots used in current function so far.  */
414 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
415 
416 /* Correspondingly overall cost of the allocation, overall cost before
417    reload, cost of the allocnos assigned to hard-registers, cost of
418    the allocnos assigned to memory, cost of loads, stores and register
419    move insns generated for pseudo-register live range splitting (see
420    ira-emit.c).  */
421 int64_t ira_overall_cost, overall_cost_before;
422 int64_t ira_reg_cost, ira_mem_cost;
423 int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
424 int ira_move_loops_num, ira_additional_jumps_num;
425 
426 /* All registers that can be eliminated.  */
427 
428 HARD_REG_SET eliminable_regset;
429 
430 /* Value of max_reg_num () before IRA work start.  This value helps
431    us to recognize a situation when new pseudos were created during
432    IRA work.  */
433 static int max_regno_before_ira;
434 
435 /* Temporary hard reg set used for a different calculation.  */
436 static HARD_REG_SET temp_hard_regset;
437 
438 #define last_mode_for_init_move_cost \
439   (this_target_ira_int->x_last_mode_for_init_move_cost)
440 
441 
442 /* The function sets up the map IRA_REG_MODE_HARD_REGSET.  */
443 static void
444 setup_reg_mode_hard_regset (void)
445 {
446   int i, m, hard_regno;
447 
448   for (m = 0; m < NUM_MACHINE_MODES; m++)
449     for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
450       {
451 	CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
452 	for (i = hard_regno_nregs (hard_regno, (machine_mode) m) - 1;
453 	     i >= 0; i--)
454 	  if (hard_regno + i < FIRST_PSEUDO_REGISTER)
455 	    SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
456 			      hard_regno + i);
457       }
458 }
459 
460 
461 #define no_unit_alloc_regs \
462   (this_target_ira_int->x_no_unit_alloc_regs)
463 
464 /* The function sets up the three arrays declared above.  */
465 static void
466 setup_class_hard_regs (void)
467 {
468   int cl, i, hard_regno, n;
469   HARD_REG_SET processed_hard_reg_set;
470 
471   ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
472   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
473     {
474       COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
475       AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
476       CLEAR_HARD_REG_SET (processed_hard_reg_set);
477       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
478 	{
479 	  ira_non_ordered_class_hard_regs[cl][i] = -1;
480 	  ira_class_hard_reg_index[cl][i] = -1;
481 	}
482       for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
483 	{
484 #ifdef REG_ALLOC_ORDER
485 	  hard_regno = reg_alloc_order[i];
486 #else
487 	  hard_regno = i;
488 #endif
489 	  if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
490 	    continue;
491 	  SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
492       	  if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
493 	    ira_class_hard_reg_index[cl][hard_regno] = -1;
494 	  else
495 	    {
496 	      ira_class_hard_reg_index[cl][hard_regno] = n;
497 	      ira_class_hard_regs[cl][n++] = hard_regno;
498 	    }
499 	}
500       ira_class_hard_regs_num[cl] = n;
501       for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
502 	if (TEST_HARD_REG_BIT (temp_hard_regset, i))
503 	  ira_non_ordered_class_hard_regs[cl][n++] = i;
504       ira_assert (ira_class_hard_regs_num[cl] == n);
505     }
506 }
507 
508 /* Set up global variables defining info about hard registers for the
509    allocation.  These depend on USE_HARD_FRAME_P whose TRUE value means
510    that we can use the hard frame pointer for the allocation.  */
511 static void
512 setup_alloc_regs (bool use_hard_frame_p)
513 {
514 #ifdef ADJUST_REG_ALLOC_ORDER
515   ADJUST_REG_ALLOC_ORDER;
516 #endif
517   COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_nonglobal_reg_set);
518   if (! use_hard_frame_p)
519     SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
520   setup_class_hard_regs ();
521 }
522 
523 
524 
525 #define alloc_reg_class_subclasses \
526   (this_target_ira_int->x_alloc_reg_class_subclasses)
527 
528 /* Initialize the table of subclasses of each reg class.  */
529 static void
530 setup_reg_subclasses (void)
531 {
532   int i, j;
533   HARD_REG_SET temp_hard_regset2;
534 
535   for (i = 0; i < N_REG_CLASSES; i++)
536     for (j = 0; j < N_REG_CLASSES; j++)
537       alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
538 
539   for (i = 0; i < N_REG_CLASSES; i++)
540     {
541       if (i == (int) NO_REGS)
542 	continue;
543 
544       COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
545       AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
546       if (hard_reg_set_empty_p (temp_hard_regset))
547 	continue;
548       for (j = 0; j < N_REG_CLASSES; j++)
549 	if (i != j)
550 	  {
551 	    enum reg_class *p;
552 
553 	    COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
554 	    AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
555 	    if (! hard_reg_set_subset_p (temp_hard_regset,
556 					 temp_hard_regset2))
557 	      continue;
558 	    p = &alloc_reg_class_subclasses[j][0];
559 	    while (*p != LIM_REG_CLASSES) p++;
560 	    *p = (enum reg_class) i;
561 	  }
562     }
563 }
564 
565 
566 
567 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST.  */
568 static void
569 setup_class_subset_and_memory_move_costs (void)
570 {
571   int cl, cl2, mode, cost;
572   HARD_REG_SET temp_hard_regset2;
573 
574   for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
575     ira_memory_move_cost[mode][NO_REGS][0]
576       = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
577   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
578     {
579       if (cl != (int) NO_REGS)
580 	for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
581 	  {
582 	    ira_max_memory_move_cost[mode][cl][0]
583 	      = ira_memory_move_cost[mode][cl][0]
584 	      = memory_move_cost ((machine_mode) mode,
585 				  (reg_class_t) cl, false);
586 	    ira_max_memory_move_cost[mode][cl][1]
587 	      = ira_memory_move_cost[mode][cl][1]
588 	      = memory_move_cost ((machine_mode) mode,
589 				  (reg_class_t) cl, true);
590 	    /* Costs for NO_REGS are used in cost calculation on the
591 	       1st pass when the preferred register classes are not
592 	       known yet.  In this case we take the best scenario.  */
593 	    if (ira_memory_move_cost[mode][NO_REGS][0]
594 		> ira_memory_move_cost[mode][cl][0])
595 	      ira_max_memory_move_cost[mode][NO_REGS][0]
596 		= ira_memory_move_cost[mode][NO_REGS][0]
597 		= ira_memory_move_cost[mode][cl][0];
598 	    if (ira_memory_move_cost[mode][NO_REGS][1]
599 		> ira_memory_move_cost[mode][cl][1])
600 	      ira_max_memory_move_cost[mode][NO_REGS][1]
601 		= ira_memory_move_cost[mode][NO_REGS][1]
602 		= ira_memory_move_cost[mode][cl][1];
603 	  }
604     }
605   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
606     for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
607       {
608 	COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
609 	AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
610 	COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
611 	AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
612 	ira_class_subset_p[cl][cl2]
613 	  = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
614 	if (! hard_reg_set_empty_p (temp_hard_regset2)
615 	    && hard_reg_set_subset_p (reg_class_contents[cl2],
616 				      reg_class_contents[cl]))
617 	  for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
618 	    {
619 	      cost = ira_memory_move_cost[mode][cl2][0];
620 	      if (cost > ira_max_memory_move_cost[mode][cl][0])
621 		ira_max_memory_move_cost[mode][cl][0] = cost;
622 	      cost = ira_memory_move_cost[mode][cl2][1];
623 	      if (cost > ira_max_memory_move_cost[mode][cl][1])
624 		ira_max_memory_move_cost[mode][cl][1] = cost;
625 	    }
626       }
627   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
628     for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
629       {
630 	ira_memory_move_cost[mode][cl][0]
631 	  = ira_max_memory_move_cost[mode][cl][0];
632 	ira_memory_move_cost[mode][cl][1]
633 	  = ira_max_memory_move_cost[mode][cl][1];
634       }
635   setup_reg_subclasses ();
636 }
637 
638 
639 
640 /* Define the following macro if allocation through malloc if
641    preferable.  */
642 #define IRA_NO_OBSTACK
643 
644 #ifndef IRA_NO_OBSTACK
645 /* Obstack used for storing all dynamic data (except bitmaps) of the
646    IRA.  */
647 static struct obstack ira_obstack;
648 #endif
649 
650 /* Obstack used for storing all bitmaps of the IRA.  */
651 static struct bitmap_obstack ira_bitmap_obstack;
652 
653 /* Allocate memory of size LEN for IRA data.  */
654 void *
655 ira_allocate (size_t len)
656 {
657   void *res;
658 
659 #ifndef IRA_NO_OBSTACK
660   res = obstack_alloc (&ira_obstack, len);
661 #else
662   res = xmalloc (len);
663 #endif
664   return res;
665 }
666 
667 /* Free memory ADDR allocated for IRA data.  */
668 void
669 ira_free (void *addr ATTRIBUTE_UNUSED)
670 {
671 #ifndef IRA_NO_OBSTACK
672   /* do nothing */
673 #else
674   free (addr);
675 #endif
676 }
677 
678 
679 /* Allocate and returns bitmap for IRA.  */
680 bitmap
681 ira_allocate_bitmap (void)
682 {
683   return BITMAP_ALLOC (&ira_bitmap_obstack);
684 }
685 
686 /* Free bitmap B allocated for IRA.  */
687 void
688 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
689 {
690   /* do nothing */
691 }
692 
693 
694 
695 /* Output information about allocation of all allocnos (except for
696    caps) into file F.  */
697 void
698 ira_print_disposition (FILE *f)
699 {
700   int i, n, max_regno;
701   ira_allocno_t a;
702   basic_block bb;
703 
704   fprintf (f, "Disposition:");
705   max_regno = max_reg_num ();
706   for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
707     for (a = ira_regno_allocno_map[i];
708 	 a != NULL;
709 	 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
710       {
711 	if (n % 4 == 0)
712 	  fprintf (f, "\n");
713 	n++;
714 	fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
715 	if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
716 	  fprintf (f, "b%-3d", bb->index);
717 	else
718 	  fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
719 	if (ALLOCNO_HARD_REGNO (a) >= 0)
720 	  fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
721 	else
722 	  fprintf (f, " mem");
723       }
724   fprintf (f, "\n");
725 }
726 
727 /* Outputs information about allocation of all allocnos into
728    stderr.  */
729 void
730 ira_debug_disposition (void)
731 {
732   ira_print_disposition (stderr);
733 }
734 
735 
736 
737 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
738    register class containing stack registers or NO_REGS if there are
739    no stack registers.  To find this class, we iterate through all
740    register pressure classes and choose the first register pressure
741    class containing all the stack registers and having the biggest
742    size.  */
743 static void
744 setup_stack_reg_pressure_class (void)
745 {
746   ira_stack_reg_pressure_class = NO_REGS;
747 #ifdef STACK_REGS
748   {
749     int i, best, size;
750     enum reg_class cl;
751     HARD_REG_SET temp_hard_regset2;
752 
753     CLEAR_HARD_REG_SET (temp_hard_regset);
754     for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
755       SET_HARD_REG_BIT (temp_hard_regset, i);
756     best = 0;
757     for (i = 0; i < ira_pressure_classes_num; i++)
758       {
759 	cl = ira_pressure_classes[i];
760 	COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
761 	AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
762 	size = hard_reg_set_size (temp_hard_regset2);
763 	if (best < size)
764 	  {
765 	    best = size;
766 	    ira_stack_reg_pressure_class = cl;
767 	  }
768       }
769   }
770 #endif
771 }
772 
773 /* Find pressure classes which are register classes for which we
774    calculate register pressure in IRA, register pressure sensitive
775    insn scheduling, and register pressure sensitive loop invariant
776    motion.
777 
778    To make register pressure calculation easy, we always use
779    non-intersected register pressure classes.  A move of hard
780    registers from one register pressure class is not more expensive
781    than load and store of the hard registers.  Most likely an allocno
782    class will be a subset of a register pressure class and in many
783    cases a register pressure class.  That makes usage of register
784    pressure classes a good approximation to find a high register
785    pressure.  */
786 static void
787 setup_pressure_classes (void)
788 {
789   int cost, i, n, curr;
790   int cl, cl2;
791   enum reg_class pressure_classes[N_REG_CLASSES];
792   int m;
793   HARD_REG_SET temp_hard_regset2;
794   bool insert_p;
795 
796   if (targetm.compute_pressure_classes)
797     n = targetm.compute_pressure_classes (pressure_classes);
798   else
799     {
800       n = 0;
801       for (cl = 0; cl < N_REG_CLASSES; cl++)
802 	{
803 	  if (ira_class_hard_regs_num[cl] == 0)
804 	    continue;
805 	  if (ira_class_hard_regs_num[cl] != 1
806 	      /* A register class without subclasses may contain a few
807 		 hard registers and movement between them is costly
808 		 (e.g. SPARC FPCC registers).  We still should consider it
809 		 as a candidate for a pressure class.  */
810 	      && alloc_reg_class_subclasses[cl][0] < cl)
811 	    {
812 	      /* Check that the moves between any hard registers of the
813 		 current class are not more expensive for a legal mode
814 		 than load/store of the hard registers of the current
815 		 class.  Such class is a potential candidate to be a
816 		 register pressure class.  */
817 	      for (m = 0; m < NUM_MACHINE_MODES; m++)
818 		{
819 		  COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
820 		  AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
821 		  AND_COMPL_HARD_REG_SET (temp_hard_regset,
822 					  ira_prohibited_class_mode_regs[cl][m]);
823 		  if (hard_reg_set_empty_p (temp_hard_regset))
824 		    continue;
825 		  ira_init_register_move_cost_if_necessary ((machine_mode) m);
826 		  cost = ira_register_move_cost[m][cl][cl];
827 		  if (cost <= ira_max_memory_move_cost[m][cl][1]
828 		      || cost <= ira_max_memory_move_cost[m][cl][0])
829 		    break;
830 		}
831 	      if (m >= NUM_MACHINE_MODES)
832 		continue;
833 	    }
834 	  curr = 0;
835 	  insert_p = true;
836 	  COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
837 	  AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
838 	  /* Remove so far added pressure classes which are subset of the
839 	     current candidate class.  Prefer GENERAL_REGS as a pressure
840 	     register class to another class containing the same
841 	     allocatable hard registers.  We do this because machine
842 	     dependent cost hooks might give wrong costs for the latter
843 	     class but always give the right cost for the former class
844 	     (GENERAL_REGS).  */
845 	  for (i = 0; i < n; i++)
846 	    {
847 	      cl2 = pressure_classes[i];
848 	      COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
849 	      AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
850 	      if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
851 		  && (! hard_reg_set_equal_p (temp_hard_regset,
852 					      temp_hard_regset2)
853 		      || cl2 == (int) GENERAL_REGS))
854 		{
855 		  pressure_classes[curr++] = (enum reg_class) cl2;
856 		  insert_p = false;
857 		  continue;
858 		}
859 	      if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
860 		  && (! hard_reg_set_equal_p (temp_hard_regset2,
861 					      temp_hard_regset)
862 		      || cl == (int) GENERAL_REGS))
863 		continue;
864 	      if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
865 		insert_p = false;
866 	      pressure_classes[curr++] = (enum reg_class) cl2;
867 	    }
868 	  /* If the current candidate is a subset of a so far added
869 	     pressure class, don't add it to the list of the pressure
870 	     classes.  */
871 	  if (insert_p)
872 	    pressure_classes[curr++] = (enum reg_class) cl;
873 	  n = curr;
874 	}
875     }
876 #ifdef ENABLE_IRA_CHECKING
877   {
878     HARD_REG_SET ignore_hard_regs;
879 
880     /* Check pressure classes correctness: here we check that hard
881        registers from all register pressure classes contains all hard
882        registers available for the allocation.  */
883     CLEAR_HARD_REG_SET (temp_hard_regset);
884     CLEAR_HARD_REG_SET (temp_hard_regset2);
885     COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
886     for (cl = 0; cl < LIM_REG_CLASSES; cl++)
887       {
888 	/* For some targets (like MIPS with MD_REGS), there are some
889 	   classes with hard registers available for allocation but
890 	   not able to hold value of any mode.  */
891 	for (m = 0; m < NUM_MACHINE_MODES; m++)
892 	  if (contains_reg_of_mode[cl][m])
893 	    break;
894 	if (m >= NUM_MACHINE_MODES)
895 	  {
896 	    IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
897 	    continue;
898 	  }
899 	for (i = 0; i < n; i++)
900 	  if ((int) pressure_classes[i] == cl)
901 	    break;
902 	IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
903 	if (i < n)
904 	  IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
905       }
906     for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
907       /* Some targets (like SPARC with ICC reg) have allocatable regs
908 	 for which no reg class is defined.  */
909       if (REGNO_REG_CLASS (i) == NO_REGS)
910 	SET_HARD_REG_BIT (ignore_hard_regs, i);
911     AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
912     AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
913     ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
914   }
915 #endif
916   ira_pressure_classes_num = 0;
917   for (i = 0; i < n; i++)
918     {
919       cl = (int) pressure_classes[i];
920       ira_reg_pressure_class_p[cl] = true;
921       ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
922     }
923   setup_stack_reg_pressure_class ();
924 }
925 
926 /* Set up IRA_UNIFORM_CLASS_P.  Uniform class is a register class
927    whose register move cost between any registers of the class is the
928    same as for all its subclasses.  We use the data to speed up the
929    2nd pass of calculations of allocno costs.  */
930 static void
931 setup_uniform_class_p (void)
932 {
933   int i, cl, cl2, m;
934 
935   for (cl = 0; cl < N_REG_CLASSES; cl++)
936     {
937       ira_uniform_class_p[cl] = false;
938       if (ira_class_hard_regs_num[cl] == 0)
939 	continue;
940       /* We can not use alloc_reg_class_subclasses here because move
941 	 cost hooks does not take into account that some registers are
942 	 unavailable for the subtarget.  E.g. for i686, INT_SSE_REGS
943 	 is element of alloc_reg_class_subclasses for GENERAL_REGS
944 	 because SSE regs are unavailable.  */
945       for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
946 	{
947 	  if (ira_class_hard_regs_num[cl2] == 0)
948 	    continue;
949       	  for (m = 0; m < NUM_MACHINE_MODES; m++)
950 	    if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
951 	      {
952 		ira_init_register_move_cost_if_necessary ((machine_mode) m);
953 		if (ira_register_move_cost[m][cl][cl]
954 		    != ira_register_move_cost[m][cl2][cl2])
955 		  break;
956 	      }
957 	  if (m < NUM_MACHINE_MODES)
958 	    break;
959 	}
960       if (cl2 == LIM_REG_CLASSES)
961 	ira_uniform_class_p[cl] = true;
962     }
963 }
964 
965 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
966    IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
967 
968    Target may have many subtargets and not all target hard registers can
969    be used for allocation, e.g. x86 port in 32-bit mode can not use
970    hard registers introduced in x86-64 like r8-r15).  Some classes
971    might have the same allocatable hard registers, e.g.  INDEX_REGS
972    and GENERAL_REGS in x86 port in 32-bit mode.  To decrease different
973    calculations efforts we introduce allocno classes which contain
974    unique non-empty sets of allocatable hard-registers.
975 
976    Pseudo class cost calculation in ira-costs.c is very expensive.
977    Therefore we are trying to decrease number of classes involved in
978    such calculation.  Register classes used in the cost calculation
979    are called important classes.  They are allocno classes and other
980    non-empty classes whose allocatable hard register sets are inside
981    of an allocno class hard register set.  From the first sight, it
982    looks like that they are just allocno classes.  It is not true.  In
983    example of x86-port in 32-bit mode, allocno classes will contain
984    GENERAL_REGS but not LEGACY_REGS (because allocatable hard
985    registers are the same for the both classes).  The important
986    classes will contain GENERAL_REGS and LEGACY_REGS.  It is done
987    because a machine description insn constraint may refers for
988    LEGACY_REGS and code in ira-costs.c is mostly base on investigation
989    of the insn constraints.  */
990 static void
991 setup_allocno_and_important_classes (void)
992 {
993   int i, j, n, cl;
994   bool set_p;
995   HARD_REG_SET temp_hard_regset2;
996   static enum reg_class classes[LIM_REG_CLASSES + 1];
997 
998   n = 0;
999   /* Collect classes which contain unique sets of allocatable hard
1000      registers.  Prefer GENERAL_REGS to other classes containing the
1001      same set of hard registers.  */
1002   for (i = 0; i < LIM_REG_CLASSES; i++)
1003     {
1004       COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
1005       AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1006       for (j = 0; j < n; j++)
1007 	{
1008 	  cl = classes[j];
1009 	  COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
1010 	  AND_COMPL_HARD_REG_SET (temp_hard_regset2,
1011 				  no_unit_alloc_regs);
1012 	  if (hard_reg_set_equal_p (temp_hard_regset,
1013 				    temp_hard_regset2))
1014 	    break;
1015 	}
1016       if (j >= n || targetm.additional_allocno_class_p (i))
1017 	classes[n++] = (enum reg_class) i;
1018       else if (i == GENERAL_REGS)
1019 	/* Prefer general regs.  For i386 example, it means that
1020 	   we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1021 	   (all of them consists of the same available hard
1022 	   registers).  */
1023 	classes[j] = (enum reg_class) i;
1024     }
1025   classes[n] = LIM_REG_CLASSES;
1026 
1027   /* Set up classes which can be used for allocnos as classes
1028      containing non-empty unique sets of allocatable hard
1029      registers.  */
1030   ira_allocno_classes_num = 0;
1031   for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1032     if (ira_class_hard_regs_num[cl] > 0)
1033       ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1034   ira_important_classes_num = 0;
1035   /* Add non-allocno classes containing to non-empty set of
1036      allocatable hard regs.  */
1037   for (cl = 0; cl < N_REG_CLASSES; cl++)
1038     if (ira_class_hard_regs_num[cl] > 0)
1039       {
1040 	COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1041 	AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1042 	set_p = false;
1043 	for (j = 0; j < ira_allocno_classes_num; j++)
1044 	  {
1045 	    COPY_HARD_REG_SET (temp_hard_regset2,
1046 			       reg_class_contents[ira_allocno_classes[j]]);
1047 	    AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1048 	    if ((enum reg_class) cl == ira_allocno_classes[j])
1049 	      break;
1050 	    else if (hard_reg_set_subset_p (temp_hard_regset,
1051 					    temp_hard_regset2))
1052 	      set_p = true;
1053 	  }
1054 	if (set_p && j >= ira_allocno_classes_num)
1055 	  ira_important_classes[ira_important_classes_num++]
1056 	    = (enum reg_class) cl;
1057       }
1058   /* Now add allocno classes to the important classes.  */
1059   for (j = 0; j < ira_allocno_classes_num; j++)
1060     ira_important_classes[ira_important_classes_num++]
1061       = ira_allocno_classes[j];
1062   for (cl = 0; cl < N_REG_CLASSES; cl++)
1063     {
1064       ira_reg_allocno_class_p[cl] = false;
1065       ira_reg_pressure_class_p[cl] = false;
1066     }
1067   for (j = 0; j < ira_allocno_classes_num; j++)
1068     ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1069   setup_pressure_classes ();
1070   setup_uniform_class_p ();
1071 }
1072 
1073 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1074    given by array CLASSES of length CLASSES_NUM.  The function is used
1075    make translation any reg class to an allocno class or to an
1076    pressure class.  This translation is necessary for some
1077    calculations when we can use only allocno or pressure classes and
1078    such translation represents an approximate representation of all
1079    classes.
1080 
1081    The translation in case when allocatable hard register set of a
1082    given class is subset of allocatable hard register set of a class
1083    in CLASSES is pretty simple.  We use smallest classes from CLASSES
1084    containing a given class.  If allocatable hard register set of a
1085    given class is not a subset of any corresponding set of a class
1086    from CLASSES, we use the cheapest (with load/store point of view)
1087    class from CLASSES whose set intersects with given class set.  */
1088 static void
1089 setup_class_translate_array (enum reg_class *class_translate,
1090 			     int classes_num, enum reg_class *classes)
1091 {
1092   int cl, mode;
1093   enum reg_class aclass, best_class, *cl_ptr;
1094   int i, cost, min_cost, best_cost;
1095 
1096   for (cl = 0; cl < N_REG_CLASSES; cl++)
1097     class_translate[cl] = NO_REGS;
1098 
1099   for (i = 0; i < classes_num; i++)
1100     {
1101       aclass = classes[i];
1102       for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1103 	   (cl = *cl_ptr) != LIM_REG_CLASSES;
1104 	   cl_ptr++)
1105 	if (class_translate[cl] == NO_REGS)
1106 	  class_translate[cl] = aclass;
1107       class_translate[aclass] = aclass;
1108     }
1109   /* For classes which are not fully covered by one of given classes
1110      (in other words covered by more one given class), use the
1111      cheapest class.  */
1112   for (cl = 0; cl < N_REG_CLASSES; cl++)
1113     {
1114       if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1115 	continue;
1116       best_class = NO_REGS;
1117       best_cost = INT_MAX;
1118       for (i = 0; i < classes_num; i++)
1119 	{
1120 	  aclass = classes[i];
1121 	  COPY_HARD_REG_SET (temp_hard_regset,
1122 			     reg_class_contents[aclass]);
1123 	  AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1124 	  AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1125 	  if (! hard_reg_set_empty_p (temp_hard_regset))
1126 	    {
1127 	      min_cost = INT_MAX;
1128 	      for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1129 		{
1130 		  cost = (ira_memory_move_cost[mode][aclass][0]
1131 			  + ira_memory_move_cost[mode][aclass][1]);
1132 		  if (min_cost > cost)
1133 		    min_cost = cost;
1134 		}
1135 	      if (best_class == NO_REGS || best_cost > min_cost)
1136 		{
1137 		  best_class = aclass;
1138 		  best_cost = min_cost;
1139 		}
1140 	    }
1141 	}
1142       class_translate[cl] = best_class;
1143     }
1144 }
1145 
1146 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1147    IRA_PRESSURE_CLASS_TRANSLATE.  */
1148 static void
1149 setup_class_translate (void)
1150 {
1151   setup_class_translate_array (ira_allocno_class_translate,
1152 			       ira_allocno_classes_num, ira_allocno_classes);
1153   setup_class_translate_array (ira_pressure_class_translate,
1154 			       ira_pressure_classes_num, ira_pressure_classes);
1155 }
1156 
1157 /* Order numbers of allocno classes in original target allocno class
1158    array, -1 for non-allocno classes.  */
1159 static int allocno_class_order[N_REG_CLASSES];
1160 
1161 /* The function used to sort the important classes.  */
1162 static int
1163 comp_reg_classes_func (const void *v1p, const void *v2p)
1164 {
1165   enum reg_class cl1 = *(const enum reg_class *) v1p;
1166   enum reg_class cl2 = *(const enum reg_class *) v2p;
1167   enum reg_class tcl1, tcl2;
1168   int diff;
1169 
1170   tcl1 = ira_allocno_class_translate[cl1];
1171   tcl2 = ira_allocno_class_translate[cl2];
1172   if (tcl1 != NO_REGS && tcl2 != NO_REGS
1173       && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1174     return diff;
1175   return (int) cl1 - (int) cl2;
1176 }
1177 
1178 /* For correct work of function setup_reg_class_relation we need to
1179    reorder important classes according to the order of their allocno
1180    classes.  It places important classes containing the same
1181    allocatable hard register set adjacent to each other and allocno
1182    class with the allocatable hard register set right after the other
1183    important classes with the same set.
1184 
1185    In example from comments of function
1186    setup_allocno_and_important_classes, it places LEGACY_REGS and
1187    GENERAL_REGS close to each other and GENERAL_REGS is after
1188    LEGACY_REGS.  */
1189 static void
1190 reorder_important_classes (void)
1191 {
1192   int i;
1193 
1194   for (i = 0; i < N_REG_CLASSES; i++)
1195     allocno_class_order[i] = -1;
1196   for (i = 0; i < ira_allocno_classes_num; i++)
1197     allocno_class_order[ira_allocno_classes[i]] = i;
1198   qsort (ira_important_classes, ira_important_classes_num,
1199 	 sizeof (enum reg_class), comp_reg_classes_func);
1200   for (i = 0; i < ira_important_classes_num; i++)
1201     ira_important_class_nums[ira_important_classes[i]] = i;
1202 }
1203 
1204 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1205    IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1206    IRA_REG_CLASSES_INTERSECT_P.  For the meaning of the relations,
1207    please see corresponding comments in ira-int.h.  */
1208 static void
1209 setup_reg_class_relations (void)
1210 {
1211   int i, cl1, cl2, cl3;
1212   HARD_REG_SET intersection_set, union_set, temp_set2;
1213   bool important_class_p[N_REG_CLASSES];
1214 
1215   memset (important_class_p, 0, sizeof (important_class_p));
1216   for (i = 0; i < ira_important_classes_num; i++)
1217     important_class_p[ira_important_classes[i]] = true;
1218   for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1219     {
1220       ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1221       for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1222 	{
1223 	  ira_reg_classes_intersect_p[cl1][cl2] = false;
1224 	  ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1225 	  ira_reg_class_subset[cl1][cl2] = NO_REGS;
1226 	  COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1227 	  AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1228 	  COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1229 	  AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1230 	  if (hard_reg_set_empty_p (temp_hard_regset)
1231 	      && hard_reg_set_empty_p (temp_set2))
1232 	    {
1233 	      /* The both classes have no allocatable hard registers
1234 		 -- take all class hard registers into account and use
1235 		 reg_class_subunion and reg_class_superunion.  */
1236 	      for (i = 0;; i++)
1237 		{
1238 		  cl3 = reg_class_subclasses[cl1][i];
1239 		  if (cl3 == LIM_REG_CLASSES)
1240 		    break;
1241 		  if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1242 					  (enum reg_class) cl3))
1243 		    ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1244 		}
1245 	      ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1246 	      ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1247 	      continue;
1248 	    }
1249 	  ira_reg_classes_intersect_p[cl1][cl2]
1250 	    = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1251 	  if (important_class_p[cl1] && important_class_p[cl2]
1252 	      && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1253 	    {
1254 	      /* CL1 and CL2 are important classes and CL1 allocatable
1255 		 hard register set is inside of CL2 allocatable hard
1256 		 registers -- make CL1 a superset of CL2.  */
1257 	      enum reg_class *p;
1258 
1259 	      p = &ira_reg_class_super_classes[cl1][0];
1260 	      while (*p != LIM_REG_CLASSES)
1261 		p++;
1262 	      *p++ = (enum reg_class) cl2;
1263 	      *p = LIM_REG_CLASSES;
1264 	    }
1265 	  ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1266 	  ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1267 	  COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1268 	  AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1269 	  AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1270 	  COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1271 	  IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1272 	  AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1273 	  for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1274 	    {
1275 	      COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1276 	      AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1277 	      if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1278 		{
1279 		  /* CL3 allocatable hard register set is inside of
1280 		     intersection of allocatable hard register sets
1281 		     of CL1 and CL2.  */
1282 		  if (important_class_p[cl3])
1283 		    {
1284 		      COPY_HARD_REG_SET
1285 			(temp_set2,
1286 			 reg_class_contents
1287 			 [(int) ira_reg_class_intersect[cl1][cl2]]);
1288 		      AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1289 		      if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1290 			  /* If the allocatable hard register sets are
1291 			     the same, prefer GENERAL_REGS or the
1292 			     smallest class for debugging
1293 			     purposes.  */
1294 			  || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1295 			      && (cl3 == GENERAL_REGS
1296 				  || ((ira_reg_class_intersect[cl1][cl2]
1297 				       != GENERAL_REGS)
1298 				      && hard_reg_set_subset_p
1299 				         (reg_class_contents[cl3],
1300 					  reg_class_contents
1301 					  [(int)
1302 					   ira_reg_class_intersect[cl1][cl2]])))))
1303 			ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1304 		    }
1305 		  COPY_HARD_REG_SET
1306 		    (temp_set2,
1307 		     reg_class_contents[(int) ira_reg_class_subset[cl1][cl2]]);
1308 		  AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1309 		  if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1310 		      /* Ignore unavailable hard registers and prefer
1311 			 smallest class for debugging purposes.  */
1312 		      || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1313 			  && hard_reg_set_subset_p
1314 			     (reg_class_contents[cl3],
1315 			      reg_class_contents
1316 			      [(int) ira_reg_class_subset[cl1][cl2]])))
1317 		    ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1318 		}
1319 	      if (important_class_p[cl3]
1320 		  && hard_reg_set_subset_p (temp_hard_regset, union_set))
1321 		{
1322 		  /* CL3 allocatable hard register set is inside of
1323 		     union of allocatable hard register sets of CL1
1324 		     and CL2.  */
1325 		  COPY_HARD_REG_SET
1326 		    (temp_set2,
1327 		     reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
1328 		  AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1329 	 	  if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1330 		      || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1331 
1332 			  && (! hard_reg_set_equal_p (temp_set2,
1333 						      temp_hard_regset)
1334 			      || cl3 == GENERAL_REGS
1335 			      /* If the allocatable hard register sets are the
1336 				 same, prefer GENERAL_REGS or the smallest
1337 				 class for debugging purposes.  */
1338 			      || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1339 				  && hard_reg_set_subset_p
1340 				     (reg_class_contents[cl3],
1341 				      reg_class_contents
1342 				      [(int) ira_reg_class_subunion[cl1][cl2]])))))
1343 		    ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1344 		}
1345 	      if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1346 		{
1347 		  /* CL3 allocatable hard register set contains union
1348 		     of allocatable hard register sets of CL1 and
1349 		     CL2.  */
1350 		  COPY_HARD_REG_SET
1351 		    (temp_set2,
1352 		     reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1353 		  AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1354 	 	  if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1355 		      || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1356 
1357 			  && (! hard_reg_set_equal_p (temp_set2,
1358 						      temp_hard_regset)
1359 			      || cl3 == GENERAL_REGS
1360 			      /* If the allocatable hard register sets are the
1361 				 same, prefer GENERAL_REGS or the smallest
1362 				 class for debugging purposes.  */
1363 			      || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1364 				  && hard_reg_set_subset_p
1365 				     (reg_class_contents[cl3],
1366 				      reg_class_contents
1367 				      [(int) ira_reg_class_superunion[cl1][cl2]])))))
1368 		    ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1369 		}
1370 	    }
1371 	}
1372     }
1373 }
1374 
1375 /* Output all uniform and important classes into file F.  */
1376 static void
1377 print_uniform_and_important_classes (FILE *f)
1378 {
1379   int i, cl;
1380 
1381   fprintf (f, "Uniform classes:\n");
1382   for (cl = 0; cl < N_REG_CLASSES; cl++)
1383     if (ira_uniform_class_p[cl])
1384       fprintf (f, " %s", reg_class_names[cl]);
1385   fprintf (f, "\nImportant classes:\n");
1386   for (i = 0; i < ira_important_classes_num; i++)
1387     fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1388   fprintf (f, "\n");
1389 }
1390 
1391 /* Output all possible allocno or pressure classes and their
1392    translation map into file F.  */
1393 static void
1394 print_translated_classes (FILE *f, bool pressure_p)
1395 {
1396   int classes_num = (pressure_p
1397 		     ? ira_pressure_classes_num : ira_allocno_classes_num);
1398   enum reg_class *classes = (pressure_p
1399 			     ? ira_pressure_classes : ira_allocno_classes);
1400   enum reg_class *class_translate = (pressure_p
1401 				     ? ira_pressure_class_translate
1402 				     : ira_allocno_class_translate);
1403   int i;
1404 
1405   fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1406   for (i = 0; i < classes_num; i++)
1407     fprintf (f, " %s", reg_class_names[classes[i]]);
1408   fprintf (f, "\nClass translation:\n");
1409   for (i = 0; i < N_REG_CLASSES; i++)
1410     fprintf (f, " %s -> %s\n", reg_class_names[i],
1411 	     reg_class_names[class_translate[i]]);
1412 }
1413 
1414 /* Output all possible allocno and translation classes and the
1415    translation maps into stderr.  */
1416 void
1417 ira_debug_allocno_classes (void)
1418 {
1419   print_uniform_and_important_classes (stderr);
1420   print_translated_classes (stderr, false);
1421   print_translated_classes (stderr, true);
1422 }
1423 
1424 /* Set up different arrays concerning class subsets, allocno and
1425    important classes.  */
1426 static void
1427 find_reg_classes (void)
1428 {
1429   setup_allocno_and_important_classes ();
1430   setup_class_translate ();
1431   reorder_important_classes ();
1432   setup_reg_class_relations ();
1433 }
1434 
1435 
1436 
1437 /* Set up the array above.  */
1438 static void
1439 setup_hard_regno_aclass (void)
1440 {
1441   int i;
1442 
1443   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1444     {
1445 #if 1
1446       ira_hard_regno_allocno_class[i]
1447 	= (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1448 	   ? NO_REGS
1449 	   : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1450 #else
1451       int j;
1452       enum reg_class cl;
1453       ira_hard_regno_allocno_class[i] = NO_REGS;
1454       for (j = 0; j < ira_allocno_classes_num; j++)
1455  	{
1456 	  cl = ira_allocno_classes[j];
1457  	  if (ira_class_hard_reg_index[cl][i] >= 0)
1458  	    {
1459 	      ira_hard_regno_allocno_class[i] = cl;
1460  	      break;
1461  	    }
1462  	}
1463 #endif
1464     }
1465 }
1466 
1467 
1468 
1469 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps.  */
1470 static void
1471 setup_reg_class_nregs (void)
1472 {
1473   int i, cl, cl2, m;
1474 
1475   for (m = 0; m < MAX_MACHINE_MODE; m++)
1476     {
1477       for (cl = 0; cl < N_REG_CLASSES; cl++)
1478 	ira_reg_class_max_nregs[cl][m]
1479 	  = ira_reg_class_min_nregs[cl][m]
1480 	  = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1481       for (cl = 0; cl < N_REG_CLASSES; cl++)
1482 	for (i = 0;
1483 	     (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1484 	     i++)
1485 	  if (ira_reg_class_min_nregs[cl2][m]
1486 	      < ira_reg_class_min_nregs[cl][m])
1487 	    ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1488     }
1489 }
1490 
1491 
1492 
1493 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1494    This function is called once IRA_CLASS_HARD_REGS has been initialized.  */
1495 static void
1496 setup_prohibited_class_mode_regs (void)
1497 {
1498   int j, k, hard_regno, cl, last_hard_regno, count;
1499 
1500   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1501     {
1502       COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1503       AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1504       for (j = 0; j < NUM_MACHINE_MODES; j++)
1505 	{
1506 	  count = 0;
1507 	  last_hard_regno = -1;
1508 	  CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1509 	  for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1510 	    {
1511 	      hard_regno = ira_class_hard_regs[cl][k];
1512 	      if (!targetm.hard_regno_mode_ok (hard_regno, (machine_mode) j))
1513 		SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1514 				  hard_regno);
1515 	      else if (in_hard_reg_set_p (temp_hard_regset,
1516 					  (machine_mode) j, hard_regno))
1517 		{
1518 		  last_hard_regno = hard_regno;
1519 		  count++;
1520 		}
1521 	    }
1522 	  ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1523 	}
1524     }
1525 }
1526 
1527 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1528    spanning from one register pressure class to another one.  It is
1529    called after defining the pressure classes.  */
1530 static void
1531 clarify_prohibited_class_mode_regs (void)
1532 {
1533   int j, k, hard_regno, cl, pclass, nregs;
1534 
1535   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1536     for (j = 0; j < NUM_MACHINE_MODES; j++)
1537       {
1538 	CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1539 	for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1540 	  {
1541 	    hard_regno = ira_class_hard_regs[cl][k];
1542 	    if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1543 	      continue;
1544 	    nregs = hard_regno_nregs (hard_regno, (machine_mode) j);
1545 	    if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1546 	      {
1547 		SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1548 				  hard_regno);
1549 		 continue;
1550 	      }
1551 	    pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1552 	    for (nregs-- ;nregs >= 0; nregs--)
1553 	      if (((enum reg_class) pclass
1554 		   != ira_pressure_class_translate[REGNO_REG_CLASS
1555 						   (hard_regno + nregs)]))
1556 		{
1557 		  SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1558 				    hard_regno);
1559 		  break;
1560 		}
1561 	    if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1562 				    hard_regno))
1563 	      add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1564 				   (machine_mode) j, hard_regno);
1565 	  }
1566       }
1567 }
1568 
1569 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1570    and IRA_MAY_MOVE_OUT_COST for MODE.  */
1571 void
1572 ira_init_register_move_cost (machine_mode mode)
1573 {
1574   static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1575   bool all_match = true;
1576   unsigned int cl1, cl2;
1577 
1578   ira_assert (ira_register_move_cost[mode] == NULL
1579 	      && ira_may_move_in_cost[mode] == NULL
1580 	      && ira_may_move_out_cost[mode] == NULL);
1581   /* Note that we might be asked about the move costs of modes that
1582      cannot be stored in any hard register, for example if an inline
1583      asm tries to create a register operand with an impossible mode.
1584      We therefore can't assert have_regs_of_mode[mode] here.  */
1585   for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1586     for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1587       {
1588 	int cost;
1589 	if (!contains_reg_of_mode[cl1][mode]
1590 	    || !contains_reg_of_mode[cl2][mode])
1591 	  {
1592 	    if ((ira_reg_class_max_nregs[cl1][mode]
1593 		 > ira_class_hard_regs_num[cl1])
1594 		|| (ira_reg_class_max_nregs[cl2][mode]
1595 		    > ira_class_hard_regs_num[cl2]))
1596 	      cost = 65535;
1597 	    else
1598 	      cost = (ira_memory_move_cost[mode][cl1][0]
1599 		      + ira_memory_move_cost[mode][cl2][1]) * 2;
1600 	  }
1601 	else
1602 	  {
1603 	    cost = register_move_cost (mode, (enum reg_class) cl1,
1604 				       (enum reg_class) cl2);
1605 	    ira_assert (cost < 65535);
1606 	  }
1607 	all_match &= (last_move_cost[cl1][cl2] == cost);
1608 	last_move_cost[cl1][cl2] = cost;
1609       }
1610   if (all_match && last_mode_for_init_move_cost != -1)
1611     {
1612       ira_register_move_cost[mode]
1613 	= ira_register_move_cost[last_mode_for_init_move_cost];
1614       ira_may_move_in_cost[mode]
1615 	= ira_may_move_in_cost[last_mode_for_init_move_cost];
1616       ira_may_move_out_cost[mode]
1617 	= ira_may_move_out_cost[last_mode_for_init_move_cost];
1618       return;
1619     }
1620   last_mode_for_init_move_cost = mode;
1621   ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1622   ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1623   ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1624   for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1625     for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1626       {
1627 	int cost;
1628 	enum reg_class *p1, *p2;
1629 
1630 	if (last_move_cost[cl1][cl2] == 65535)
1631 	  {
1632 	    ira_register_move_cost[mode][cl1][cl2] = 65535;
1633 	    ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1634 	    ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1635 	  }
1636 	else
1637 	  {
1638 	    cost = last_move_cost[cl1][cl2];
1639 
1640 	    for (p2 = &reg_class_subclasses[cl2][0];
1641 		 *p2 != LIM_REG_CLASSES; p2++)
1642 	      if (ira_class_hard_regs_num[*p2] > 0
1643 		  && (ira_reg_class_max_nregs[*p2][mode]
1644 		      <= ira_class_hard_regs_num[*p2]))
1645 		cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1646 
1647 	    for (p1 = &reg_class_subclasses[cl1][0];
1648 		 *p1 != LIM_REG_CLASSES; p1++)
1649 	      if (ira_class_hard_regs_num[*p1] > 0
1650 		  && (ira_reg_class_max_nregs[*p1][mode]
1651 		      <= ira_class_hard_regs_num[*p1]))
1652 		cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1653 
1654 	    ira_assert (cost <= 65535);
1655 	    ira_register_move_cost[mode][cl1][cl2] = cost;
1656 
1657 	    if (ira_class_subset_p[cl1][cl2])
1658 	      ira_may_move_in_cost[mode][cl1][cl2] = 0;
1659 	    else
1660 	      ira_may_move_in_cost[mode][cl1][cl2] = cost;
1661 
1662 	    if (ira_class_subset_p[cl2][cl1])
1663 	      ira_may_move_out_cost[mode][cl1][cl2] = 0;
1664 	    else
1665 	      ira_may_move_out_cost[mode][cl1][cl2] = cost;
1666 	  }
1667       }
1668 }
1669 
1670 
1671 
1672 /* This is called once during compiler work.  It sets up
1673    different arrays whose values don't depend on the compiled
1674    function.  */
1675 void
1676 ira_init_once (void)
1677 {
1678   ira_init_costs_once ();
1679   lra_init_once ();
1680 
1681   ira_use_lra_p = targetm.lra_p ();
1682 }
1683 
1684 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1685    ira_may_move_out_cost for each mode.  */
1686 void
1687 target_ira_int::free_register_move_costs (void)
1688 {
1689   int mode, i;
1690 
1691   /* Reset move_cost and friends, making sure we only free shared
1692      table entries once.  */
1693   for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1694     if (x_ira_register_move_cost[mode])
1695       {
1696 	for (i = 0;
1697 	     i < mode && (x_ira_register_move_cost[i]
1698 			  != x_ira_register_move_cost[mode]);
1699 	     i++)
1700 	  ;
1701 	if (i == mode)
1702 	  {
1703 	    free (x_ira_register_move_cost[mode]);
1704 	    free (x_ira_may_move_in_cost[mode]);
1705 	    free (x_ira_may_move_out_cost[mode]);
1706 	  }
1707       }
1708   memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1709   memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1710   memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
1711   last_mode_for_init_move_cost = -1;
1712 }
1713 
1714 target_ira_int::~target_ira_int ()
1715 {
1716   free_ira_costs ();
1717   free_register_move_costs ();
1718 }
1719 
1720 /* This is called every time when register related information is
1721    changed.  */
1722 void
1723 ira_init (void)
1724 {
1725   this_target_ira_int->free_register_move_costs ();
1726   setup_reg_mode_hard_regset ();
1727   setup_alloc_regs (flag_omit_frame_pointer != 0);
1728   setup_class_subset_and_memory_move_costs ();
1729   setup_reg_class_nregs ();
1730   setup_prohibited_class_mode_regs ();
1731   find_reg_classes ();
1732   clarify_prohibited_class_mode_regs ();
1733   setup_hard_regno_aclass ();
1734   ira_init_costs ();
1735 }
1736 
1737 
1738 #define ira_prohibited_mode_move_regs_initialized_p \
1739   (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1740 
1741 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS.  */
1742 static void
1743 setup_prohibited_mode_move_regs (void)
1744 {
1745   int i, j;
1746   rtx test_reg1, test_reg2, move_pat;
1747   rtx_insn *move_insn;
1748 
1749   if (ira_prohibited_mode_move_regs_initialized_p)
1750     return;
1751   ira_prohibited_mode_move_regs_initialized_p = true;
1752   test_reg1 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
1753   test_reg2 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
1754   move_pat = gen_rtx_SET (test_reg1, test_reg2);
1755   move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
1756   for (i = 0; i < NUM_MACHINE_MODES; i++)
1757     {
1758       SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1759       for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1760 	{
1761 	  if (!targetm.hard_regno_mode_ok (j, (machine_mode) i))
1762 	    continue;
1763 	  set_mode_and_regno (test_reg1, (machine_mode) i, j);
1764 	  set_mode_and_regno (test_reg2, (machine_mode) i, j);
1765 	  INSN_CODE (move_insn) = -1;
1766 	  recog_memoized (move_insn);
1767 	  if (INSN_CODE (move_insn) < 0)
1768 	    continue;
1769 	  extract_insn (move_insn);
1770 	  /* We don't know whether the move will be in code that is optimized
1771 	     for size or speed, so consider all enabled alternatives.  */
1772 	  if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
1773 	    continue;
1774 	  CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1775 	}
1776     }
1777 }
1778 
1779 
1780 
1781 /* Setup possible alternatives in ALTS for INSN.  */
1782 void
1783 ira_setup_alts (rtx_insn *insn, HARD_REG_SET &alts)
1784 {
1785   /* MAP nalt * nop -> start of constraints for given operand and
1786      alternative.  */
1787   static vec<const char *> insn_constraints;
1788   int nop, nalt;
1789   bool curr_swapped;
1790   const char *p;
1791   int commutative = -1;
1792 
1793   extract_insn (insn);
1794   alternative_mask preferred = get_preferred_alternatives (insn);
1795   CLEAR_HARD_REG_SET (alts);
1796   insn_constraints.release ();
1797   insn_constraints.safe_grow_cleared (recog_data.n_operands
1798 				      * recog_data.n_alternatives + 1);
1799   /* Check that the hard reg set is enough for holding all
1800      alternatives.  It is hard to imagine the situation when the
1801      assertion is wrong.  */
1802   ira_assert (recog_data.n_alternatives
1803 	      <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1804 			    FIRST_PSEUDO_REGISTER));
1805   for (curr_swapped = false;; curr_swapped = true)
1806     {
1807       /* Calculate some data common for all alternatives to speed up the
1808 	 function.  */
1809       for (nop = 0; nop < recog_data.n_operands; nop++)
1810 	{
1811 	  for (nalt = 0, p = recog_data.constraints[nop];
1812 	       nalt < recog_data.n_alternatives;
1813 	       nalt++)
1814 	    {
1815 	      insn_constraints[nop * recog_data.n_alternatives + nalt] = p;
1816 	      while (*p && *p != ',')
1817 		{
1818 		  /* We only support one commutative marker, the first
1819 		     one.  We already set commutative above.  */
1820 		  if (*p == '%' && commutative < 0)
1821 		    commutative = nop;
1822 		  p++;
1823 		}
1824 	      if (*p)
1825 		p++;
1826 	    }
1827 	}
1828       for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1829 	{
1830 	  if (!TEST_BIT (preferred, nalt)
1831 	      || TEST_HARD_REG_BIT (alts, nalt))
1832 	    continue;
1833 
1834 	  for (nop = 0; nop < recog_data.n_operands; nop++)
1835 	    {
1836 	      int c, len;
1837 
1838 	      rtx op = recog_data.operand[nop];
1839 	      p = insn_constraints[nop * recog_data.n_alternatives + nalt];
1840 	      if (*p == 0 || *p == ',')
1841 		continue;
1842 
1843 	      do
1844 		switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1845 		  {
1846 		  case '#':
1847 		  case ',':
1848 		    c = '\0';
1849 		    /* FALLTHRU */
1850 		  case '\0':
1851 		    len = 0;
1852 		    break;
1853 
1854 		  case '%':
1855 		    /* The commutative modifier is handled above.  */
1856 		    break;
1857 
1858 		  case '0':  case '1':  case '2':  case '3':  case '4':
1859 		  case '5':  case '6':  case '7':  case '8':  case '9':
1860 		    goto op_success;
1861 		    break;
1862 
1863 		  case 'g':
1864 		    goto op_success;
1865 		    break;
1866 
1867 		  default:
1868 		    {
1869 		      enum constraint_num cn = lookup_constraint (p);
1870 		      switch (get_constraint_type (cn))
1871 			{
1872 			case CT_REGISTER:
1873 			  if (reg_class_for_constraint (cn) != NO_REGS)
1874 			    goto op_success;
1875 			  break;
1876 
1877 			case CT_CONST_INT:
1878 			  if (CONST_INT_P (op)
1879 			      && (insn_const_int_ok_for_constraint
1880 				  (INTVAL (op), cn)))
1881 			    goto op_success;
1882 			  break;
1883 
1884 			case CT_ADDRESS:
1885 			case CT_MEMORY:
1886 			case CT_SPECIAL_MEMORY:
1887 			  goto op_success;
1888 
1889 			case CT_FIXED_FORM:
1890 			  if (constraint_satisfied_p (op, cn))
1891 			    goto op_success;
1892 			  break;
1893 			}
1894 		      break;
1895 		    }
1896 		  }
1897 	      while (p += len, c);
1898 	      break;
1899 	    op_success:
1900 	      ;
1901 	    }
1902 	  if (nop >= recog_data.n_operands)
1903 	    SET_HARD_REG_BIT (alts, nalt);
1904 	}
1905       if (commutative < 0)
1906 	break;
1907       /* Swap forth and back to avoid changing recog_data.  */
1908       std::swap (recog_data.operand[commutative],
1909 		 recog_data.operand[commutative + 1]);
1910       if (curr_swapped)
1911 	break;
1912     }
1913 }
1914 
1915 /* Return the number of the output non-early clobber operand which
1916    should be the same in any case as operand with number OP_NUM (or
1917    negative value if there is no such operand).  The function takes
1918    only really possible alternatives into consideration.  */
1919 int
1920 ira_get_dup_out_num (int op_num, HARD_REG_SET &alts)
1921 {
1922   int curr_alt, c, original, dup;
1923   bool ignore_p, use_commut_op_p;
1924   const char *str;
1925 
1926   if (op_num < 0 || recog_data.n_alternatives == 0)
1927     return -1;
1928   /* We should find duplications only for input operands.  */
1929   if (recog_data.operand_type[op_num] != OP_IN)
1930     return -1;
1931   str = recog_data.constraints[op_num];
1932   use_commut_op_p = false;
1933   for (;;)
1934     {
1935       rtx op = recog_data.operand[op_num];
1936 
1937       for (curr_alt = 0, ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt),
1938 	   original = -1;;)
1939 	{
1940 	  c = *str;
1941 	  if (c == '\0')
1942 	    break;
1943 	  if (c == '#')
1944 	    ignore_p = true;
1945 	  else if (c == ',')
1946 	    {
1947 	      curr_alt++;
1948 	      ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt);
1949 	    }
1950 	  else if (! ignore_p)
1951 	    switch (c)
1952 	      {
1953 	      case 'g':
1954 		goto fail;
1955 	      default:
1956 		{
1957 		  enum constraint_num cn = lookup_constraint (str);
1958 		  enum reg_class cl = reg_class_for_constraint (cn);
1959 		  if (cl != NO_REGS
1960 		      && !targetm.class_likely_spilled_p (cl))
1961 		    goto fail;
1962 		  if (constraint_satisfied_p (op, cn))
1963 		    goto fail;
1964 		  break;
1965 		}
1966 
1967 	      case '0': case '1': case '2': case '3': case '4':
1968 	      case '5': case '6': case '7': case '8': case '9':
1969 		if (original != -1 && original != c)
1970 		  goto fail;
1971 		original = c;
1972 		break;
1973 	      }
1974 	  str += CONSTRAINT_LEN (c, str);
1975 	}
1976       if (original == -1)
1977 	goto fail;
1978       dup = -1;
1979       for (ignore_p = false, str = recog_data.constraints[original - '0'];
1980 	   *str != 0;
1981 	   str++)
1982 	if (ignore_p)
1983 	  {
1984 	    if (*str == ',')
1985 	      ignore_p = false;
1986 	  }
1987 	else if (*str == '#')
1988 	  ignore_p = true;
1989 	else if (! ignore_p)
1990 	  {
1991 	    if (*str == '=')
1992 	      dup = original - '0';
1993 	    /* It is better ignore an alternative with early clobber.  */
1994 	    else if (*str == '&')
1995 	      goto fail;
1996 	  }
1997       if (dup >= 0)
1998 	return dup;
1999     fail:
2000       if (use_commut_op_p)
2001 	break;
2002       use_commut_op_p = true;
2003       if (recog_data.constraints[op_num][0] == '%')
2004 	str = recog_data.constraints[op_num + 1];
2005       else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
2006 	str = recog_data.constraints[op_num - 1];
2007       else
2008 	break;
2009     }
2010   return -1;
2011 }
2012 
2013 
2014 
2015 /* Search forward to see if the source register of a copy insn dies
2016    before either it or the destination register is modified, but don't
2017    scan past the end of the basic block.  If so, we can replace the
2018    source with the destination and let the source die in the copy
2019    insn.
2020 
2021    This will reduce the number of registers live in that range and may
2022    enable the destination and the source coalescing, thus often saving
2023    one register in addition to a register-register copy.  */
2024 
2025 static void
2026 decrease_live_ranges_number (void)
2027 {
2028   basic_block bb;
2029   rtx_insn *insn;
2030   rtx set, src, dest, dest_death, note;
2031   rtx_insn *p, *q;
2032   int sregno, dregno;
2033 
2034   if (! flag_expensive_optimizations)
2035     return;
2036 
2037   if (ira_dump_file)
2038     fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2039 
2040   FOR_EACH_BB_FN (bb, cfun)
2041     FOR_BB_INSNS (bb, insn)
2042       {
2043 	set = single_set (insn);
2044 	if (! set)
2045 	  continue;
2046 	src = SET_SRC (set);
2047 	dest = SET_DEST (set);
2048 	if (! REG_P (src) || ! REG_P (dest)
2049 	    || find_reg_note (insn, REG_DEAD, src))
2050 	  continue;
2051 	sregno = REGNO (src);
2052 	dregno = REGNO (dest);
2053 
2054 	/* We don't want to mess with hard regs if register classes
2055 	   are small.  */
2056 	if (sregno == dregno
2057 	    || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2058 		&& (sregno < FIRST_PSEUDO_REGISTER
2059 		    || dregno < FIRST_PSEUDO_REGISTER))
2060 	    /* We don't see all updates to SP if they are in an
2061 	       auto-inc memory reference, so we must disallow this
2062 	       optimization on them.  */
2063 	    || sregno == STACK_POINTER_REGNUM
2064 	    || dregno == STACK_POINTER_REGNUM)
2065 	  continue;
2066 
2067 	dest_death = NULL_RTX;
2068 
2069 	for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2070 	  {
2071 	    if (! INSN_P (p))
2072 	      continue;
2073 	    if (BLOCK_FOR_INSN (p) != bb)
2074 	      break;
2075 
2076 	    if (reg_set_p (src, p) || reg_set_p (dest, p)
2077 		/* If SRC is an asm-declared register, it must not be
2078 		   replaced in any asm.  Unfortunately, the REG_EXPR
2079 		   tree for the asm variable may be absent in the SRC
2080 		   rtx, so we can't check the actual register
2081 		   declaration easily (the asm operand will have it,
2082 		   though).  To avoid complicating the test for a rare
2083 		   case, we just don't perform register replacement
2084 		   for a hard reg mentioned in an asm.  */
2085 		|| (sregno < FIRST_PSEUDO_REGISTER
2086 		    && asm_noperands (PATTERN (p)) >= 0
2087 		    && reg_overlap_mentioned_p (src, PATTERN (p)))
2088 		/* Don't change hard registers used by a call.  */
2089 		|| (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2090 		    && find_reg_fusage (p, USE, src))
2091 		/* Don't change a USE of a register.  */
2092 		|| (GET_CODE (PATTERN (p)) == USE
2093 		    && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2094 	      break;
2095 
2096 	    /* See if all of SRC dies in P.  This test is slightly
2097 	       more conservative than it needs to be.  */
2098 	    if ((note = find_regno_note (p, REG_DEAD, sregno))
2099 		&& GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2100 	      {
2101 		int failed = 0;
2102 
2103 		/* We can do the optimization.  Scan forward from INSN
2104 		   again, replacing regs as we go.  Set FAILED if a
2105 		   replacement can't be done.  In that case, we can't
2106 		   move the death note for SRC.  This should be
2107 		   rare.  */
2108 
2109 		/* Set to stop at next insn.  */
2110 		for (q = next_real_insn (insn);
2111 		     q != next_real_insn (p);
2112 		     q = next_real_insn (q))
2113 		  {
2114 		    if (reg_overlap_mentioned_p (src, PATTERN (q)))
2115 		      {
2116 			/* If SRC is a hard register, we might miss
2117 			   some overlapping registers with
2118 			   validate_replace_rtx, so we would have to
2119 			   undo it.  We can't if DEST is present in
2120 			   the insn, so fail in that combination of
2121 			   cases.  */
2122 			if (sregno < FIRST_PSEUDO_REGISTER
2123 			    && reg_mentioned_p (dest, PATTERN (q)))
2124 			  failed = 1;
2125 
2126 			/* Attempt to replace all uses.  */
2127 			else if (!validate_replace_rtx (src, dest, q))
2128 			  failed = 1;
2129 
2130 			/* If this succeeded, but some part of the
2131 			   register is still present, undo the
2132 			   replacement.  */
2133 			else if (sregno < FIRST_PSEUDO_REGISTER
2134 				 && reg_overlap_mentioned_p (src, PATTERN (q)))
2135 			  {
2136 			    validate_replace_rtx (dest, src, q);
2137 			    failed = 1;
2138 			  }
2139 		      }
2140 
2141 		    /* If DEST dies here, remove the death note and
2142 		       save it for later.  Make sure ALL of DEST dies
2143 		       here; again, this is overly conservative.  */
2144 		    if (! dest_death
2145 			&& (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2146 		      {
2147 			if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2148 			  remove_note (q, dest_death);
2149 			else
2150 			  {
2151 			    failed = 1;
2152 			    dest_death = 0;
2153 			  }
2154 		      }
2155 		  }
2156 
2157 		if (! failed)
2158 		  {
2159 		    /* Move death note of SRC from P to INSN.  */
2160 		    remove_note (p, note);
2161 		    XEXP (note, 1) = REG_NOTES (insn);
2162 		    REG_NOTES (insn) = note;
2163 		  }
2164 
2165 		/* DEST is also dead if INSN has a REG_UNUSED note for
2166 		   DEST.  */
2167 		if (! dest_death
2168 		    && (dest_death
2169 			= find_regno_note (insn, REG_UNUSED, dregno)))
2170 		  {
2171 		    PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2172 		    remove_note (insn, dest_death);
2173 		  }
2174 
2175 		/* Put death note of DEST on P if we saw it die.  */
2176 		if (dest_death)
2177 		  {
2178 		    XEXP (dest_death, 1) = REG_NOTES (p);
2179 		    REG_NOTES (p) = dest_death;
2180 		  }
2181 		break;
2182 	      }
2183 
2184 	    /* If SRC is a hard register which is set or killed in
2185 	       some other way, we can't do this optimization.  */
2186 	    else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2187 	      break;
2188 	  }
2189       }
2190 }
2191 
2192 
2193 
2194 /* Return nonzero if REGNO is a particularly bad choice for reloading X.  */
2195 static bool
2196 ira_bad_reload_regno_1 (int regno, rtx x)
2197 {
2198   int x_regno, n, i;
2199   ira_allocno_t a;
2200   enum reg_class pref;
2201 
2202   /* We only deal with pseudo regs.  */
2203   if (! x || GET_CODE (x) != REG)
2204     return false;
2205 
2206   x_regno = REGNO (x);
2207   if (x_regno < FIRST_PSEUDO_REGISTER)
2208     return false;
2209 
2210   /* If the pseudo prefers REGNO explicitly, then do not consider
2211      REGNO a bad spill choice.  */
2212   pref = reg_preferred_class (x_regno);
2213   if (reg_class_size[pref] == 1)
2214     return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2215 
2216   /* If the pseudo conflicts with REGNO, then we consider REGNO a
2217      poor choice for a reload regno.  */
2218   a = ira_regno_allocno_map[x_regno];
2219   n = ALLOCNO_NUM_OBJECTS (a);
2220   for (i = 0; i < n; i++)
2221     {
2222       ira_object_t obj = ALLOCNO_OBJECT (a, i);
2223       if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2224 	return true;
2225     }
2226   return false;
2227 }
2228 
2229 /* Return nonzero if REGNO is a particularly bad choice for reloading
2230    IN or OUT.  */
2231 bool
2232 ira_bad_reload_regno (int regno, rtx in, rtx out)
2233 {
2234   return (ira_bad_reload_regno_1 (regno, in)
2235 	  || ira_bad_reload_regno_1 (regno, out));
2236 }
2237 
2238 /* Add register clobbers from asm statements.  */
2239 static void
2240 compute_regs_asm_clobbered (void)
2241 {
2242   basic_block bb;
2243 
2244   FOR_EACH_BB_FN (bb, cfun)
2245     {
2246       rtx_insn *insn;
2247       FOR_BB_INSNS_REVERSE (bb, insn)
2248 	{
2249 	  df_ref def;
2250 
2251 	  if (NONDEBUG_INSN_P (insn) && asm_noperands (PATTERN (insn)) >= 0)
2252 	    FOR_EACH_INSN_DEF (def, insn)
2253 	      {
2254 		unsigned int dregno = DF_REF_REGNO (def);
2255 		if (HARD_REGISTER_NUM_P (dregno))
2256 		  add_to_hard_reg_set (&crtl->asm_clobbers,
2257 				       GET_MODE (DF_REF_REAL_REG (def)),
2258 				       dregno);
2259 	      }
2260 	}
2261     }
2262 }
2263 
2264 
2265 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2266    REGS_EVER_LIVE.  */
2267 void
2268 ira_setup_eliminable_regset (void)
2269 {
2270   int i;
2271   static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2272 
2273   /* Setup is_leaf as frame_pointer_required may use it.  This function
2274      is called by sched_init before ira if scheduling is enabled.  */
2275   crtl->is_leaf = leaf_function_p ();
2276 
2277   /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2278      sp for alloca.  So we can't eliminate the frame pointer in that
2279      case.  At some point, we should improve this by emitting the
2280      sp-adjusting insns for this case.  */
2281   frame_pointer_needed
2282     = (! flag_omit_frame_pointer
2283        || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2284        /* We need the frame pointer to catch stack overflow exceptions if
2285 	  the stack pointer is moving (as for the alloca case just above).  */
2286        || (STACK_CHECK_MOVING_SP
2287 	   && flag_stack_check
2288 	   && flag_exceptions
2289 	   && cfun->can_throw_non_call_exceptions)
2290        || crtl->accesses_prior_frames
2291        || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
2292        || targetm.frame_pointer_required ());
2293 
2294     /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2295        RTL is very small.  So if we use frame pointer for RA and RTL
2296        actually prevents this, we will spill pseudos assigned to the
2297        frame pointer in LRA.  */
2298 
2299   if (frame_pointer_needed)
2300     df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2301 
2302   COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
2303   CLEAR_HARD_REG_SET (eliminable_regset);
2304 
2305   compute_regs_asm_clobbered ();
2306 
2307   /* Build the regset of all eliminable registers and show we can't
2308      use those that we already know won't be eliminated.  */
2309   for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2310     {
2311       bool cannot_elim
2312 	= (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2313 	   || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2314 
2315       if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2316 	{
2317 	    SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2318 
2319 	    if (cannot_elim)
2320 	      SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2321 	}
2322       else if (cannot_elim)
2323 	error ("%s cannot be used in asm here",
2324 	       reg_names[eliminables[i].from]);
2325       else
2326 	df_set_regs_ever_live (eliminables[i].from, true);
2327     }
2328   if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
2329     {
2330       if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2331 	{
2332 	  SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
2333 	  if (frame_pointer_needed)
2334 	    SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
2335 	}
2336       else if (frame_pointer_needed)
2337 	error ("%s cannot be used in asm here",
2338 	       reg_names[HARD_FRAME_POINTER_REGNUM]);
2339       else
2340 	df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2341     }
2342 }
2343 
2344 
2345 
2346 /* Vector of substitutions of register numbers,
2347    used to map pseudo regs into hardware regs.
2348    This is set up as a result of register allocation.
2349    Element N is the hard reg assigned to pseudo reg N,
2350    or is -1 if no hard reg was assigned.
2351    If N is a hard reg number, element N is N.  */
2352 short *reg_renumber;
2353 
2354 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2355    the allocation found by IRA.  */
2356 static void
2357 setup_reg_renumber (void)
2358 {
2359   int regno, hard_regno;
2360   ira_allocno_t a;
2361   ira_allocno_iterator ai;
2362 
2363   caller_save_needed = 0;
2364   FOR_EACH_ALLOCNO (a, ai)
2365     {
2366       if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2367 	continue;
2368       /* There are no caps at this point.  */
2369       ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2370       if (! ALLOCNO_ASSIGNED_P (a))
2371 	/* It can happen if A is not referenced but partially anticipated
2372 	   somewhere in a region.  */
2373 	ALLOCNO_ASSIGNED_P (a) = true;
2374       ira_free_allocno_updated_costs (a);
2375       hard_regno = ALLOCNO_HARD_REGNO (a);
2376       regno = ALLOCNO_REGNO (a);
2377       reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2378       if (hard_regno >= 0)
2379 	{
2380 	  int i, nwords;
2381 	  enum reg_class pclass;
2382 	  ira_object_t obj;
2383 
2384 	  pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2385 	  nwords = ALLOCNO_NUM_OBJECTS (a);
2386 	  for (i = 0; i < nwords; i++)
2387 	    {
2388 	      obj = ALLOCNO_OBJECT (a, i);
2389 	      IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
2390 				      reg_class_contents[pclass]);
2391 	    }
2392 	  if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
2393 	      && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
2394 						  call_used_reg_set))
2395 	    {
2396 	      ira_assert (!optimize || flag_caller_saves
2397 			  || (ALLOCNO_CALLS_CROSSED_NUM (a)
2398 			      == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2399 			  || regno >= ira_reg_equiv_len
2400 			  || ira_equiv_no_lvalue_p (regno));
2401 	      caller_save_needed = 1;
2402 	    }
2403 	}
2404     }
2405 }
2406 
2407 /* Set up allocno assignment flags for further allocation
2408    improvements.  */
2409 static void
2410 setup_allocno_assignment_flags (void)
2411 {
2412   int hard_regno;
2413   ira_allocno_t a;
2414   ira_allocno_iterator ai;
2415 
2416   FOR_EACH_ALLOCNO (a, ai)
2417     {
2418       if (! ALLOCNO_ASSIGNED_P (a))
2419 	/* It can happen if A is not referenced but partially anticipated
2420 	   somewhere in a region.  */
2421 	ira_free_allocno_updated_costs (a);
2422       hard_regno = ALLOCNO_HARD_REGNO (a);
2423       /* Don't assign hard registers to allocnos which are destination
2424 	 of removed store at the end of loop.  It has no sense to keep
2425 	 the same value in different hard registers.  It is also
2426 	 impossible to assign hard registers correctly to such
2427 	 allocnos because the cost info and info about intersected
2428 	 calls are incorrect for them.  */
2429       ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2430 				|| ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2431 				|| (ALLOCNO_MEMORY_COST (a)
2432 				    - ALLOCNO_CLASS_COST (a)) < 0);
2433       ira_assert
2434 	(hard_regno < 0
2435 	 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2436 				   reg_class_contents[ALLOCNO_CLASS (a)]));
2437     }
2438 }
2439 
2440 /* Evaluate overall allocation cost and the costs for using hard
2441    registers and memory for allocnos.  */
2442 static void
2443 calculate_allocation_cost (void)
2444 {
2445   int hard_regno, cost;
2446   ira_allocno_t a;
2447   ira_allocno_iterator ai;
2448 
2449   ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2450   FOR_EACH_ALLOCNO (a, ai)
2451     {
2452       hard_regno = ALLOCNO_HARD_REGNO (a);
2453       ira_assert (hard_regno < 0
2454 		  || (ira_hard_reg_in_set_p
2455 		      (hard_regno, ALLOCNO_MODE (a),
2456 		       reg_class_contents[ALLOCNO_CLASS (a)])));
2457       if (hard_regno < 0)
2458 	{
2459 	  cost = ALLOCNO_MEMORY_COST (a);
2460 	  ira_mem_cost += cost;
2461 	}
2462       else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2463 	{
2464 	  cost = (ALLOCNO_HARD_REG_COSTS (a)
2465 		  [ira_class_hard_reg_index
2466 		   [ALLOCNO_CLASS (a)][hard_regno]]);
2467 	  ira_reg_cost += cost;
2468 	}
2469       else
2470 	{
2471 	  cost = ALLOCNO_CLASS_COST (a);
2472 	  ira_reg_cost += cost;
2473 	}
2474       ira_overall_cost += cost;
2475     }
2476 
2477   if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2478     {
2479       fprintf (ira_dump_file,
2480 	       "+++Costs: overall %" PRId64
2481 	       ", reg %" PRId64
2482 	       ", mem %" PRId64
2483 	       ", ld %" PRId64
2484 	       ", st %" PRId64
2485 	       ", move %" PRId64,
2486 	       ira_overall_cost, ira_reg_cost, ira_mem_cost,
2487 	       ira_load_cost, ira_store_cost, ira_shuffle_cost);
2488       fprintf (ira_dump_file, "\n+++       move loops %d, new jumps %d\n",
2489 	       ira_move_loops_num, ira_additional_jumps_num);
2490     }
2491 
2492 }
2493 
2494 #ifdef ENABLE_IRA_CHECKING
2495 /* Check the correctness of the allocation.  We do need this because
2496    of complicated code to transform more one region internal
2497    representation into one region representation.  */
2498 static void
2499 check_allocation (void)
2500 {
2501   ira_allocno_t a;
2502   int hard_regno, nregs, conflict_nregs;
2503   ira_allocno_iterator ai;
2504 
2505   FOR_EACH_ALLOCNO (a, ai)
2506     {
2507       int n = ALLOCNO_NUM_OBJECTS (a);
2508       int i;
2509 
2510       if (ALLOCNO_CAP_MEMBER (a) != NULL
2511 	  || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2512 	continue;
2513       nregs = hard_regno_nregs (hard_regno, ALLOCNO_MODE (a));
2514       if (nregs == 1)
2515 	/* We allocated a single hard register.  */
2516 	n = 1;
2517       else if (n > 1)
2518 	/* We allocated multiple hard registers, and we will test
2519 	   conflicts in a granularity of single hard regs.  */
2520 	nregs = 1;
2521 
2522       for (i = 0; i < n; i++)
2523 	{
2524 	  ira_object_t obj = ALLOCNO_OBJECT (a, i);
2525 	  ira_object_t conflict_obj;
2526 	  ira_object_conflict_iterator oci;
2527 	  int this_regno = hard_regno;
2528 	  if (n > 1)
2529 	    {
2530 	      if (REG_WORDS_BIG_ENDIAN)
2531 		this_regno += n - i - 1;
2532 	      else
2533 		this_regno += i;
2534 	    }
2535 	  FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2536 	    {
2537 	      ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2538 	      int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2539 	      if (conflict_hard_regno < 0)
2540 		continue;
2541 
2542 	      conflict_nregs = hard_regno_nregs (conflict_hard_regno,
2543 						 ALLOCNO_MODE (conflict_a));
2544 
2545 	      if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2546 		  && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2547 		{
2548 		  if (REG_WORDS_BIG_ENDIAN)
2549 		    conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2550 					    - OBJECT_SUBWORD (conflict_obj) - 1);
2551 		  else
2552 		    conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2553 		  conflict_nregs = 1;
2554 		}
2555 
2556 	      if ((conflict_hard_regno <= this_regno
2557 		 && this_regno < conflict_hard_regno + conflict_nregs)
2558 		|| (this_regno <= conflict_hard_regno
2559 		    && conflict_hard_regno < this_regno + nregs))
2560 		{
2561 		  fprintf (stderr, "bad allocation for %d and %d\n",
2562 			   ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2563 		  gcc_unreachable ();
2564 		}
2565 	    }
2566 	}
2567     }
2568 }
2569 #endif
2570 
2571 /* Allocate REG_EQUIV_INIT.  Set up it from IRA_REG_EQUIV which should
2572    be already calculated.  */
2573 static void
2574 setup_reg_equiv_init (void)
2575 {
2576   int i;
2577   int max_regno = max_reg_num ();
2578 
2579   for (i = 0; i < max_regno; i++)
2580     reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2581 }
2582 
2583 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO.  INSNS
2584    are insns which were generated for such movement.  It is assumed
2585    that FROM_REGNO and TO_REGNO always have the same value at the
2586    point of any move containing such registers. This function is used
2587    to update equiv info for register shuffles on the region borders
2588    and for caller save/restore insns.  */
2589 void
2590 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
2591 {
2592   rtx_insn *insn;
2593   rtx x, note;
2594 
2595   if (! ira_reg_equiv[from_regno].defined_p
2596       && (! ira_reg_equiv[to_regno].defined_p
2597 	  || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2598 	      && ! MEM_READONLY_P (x))))
2599     return;
2600   insn = insns;
2601   if (NEXT_INSN (insn) != NULL_RTX)
2602     {
2603       if (! ira_reg_equiv[to_regno].defined_p)
2604 	{
2605 	  ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2606 	  return;
2607 	}
2608       ira_reg_equiv[to_regno].defined_p = false;
2609       ira_reg_equiv[to_regno].memory
2610 	= ira_reg_equiv[to_regno].constant
2611 	= ira_reg_equiv[to_regno].invariant
2612 	= ira_reg_equiv[to_regno].init_insns = NULL;
2613       if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2614 	fprintf (ira_dump_file,
2615 		 "      Invalidating equiv info for reg %d\n", to_regno);
2616       return;
2617     }
2618   /* It is possible that FROM_REGNO still has no equivalence because
2619      in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2620      insn was not processed yet.  */
2621   if (ira_reg_equiv[from_regno].defined_p)
2622     {
2623       ira_reg_equiv[to_regno].defined_p = true;
2624       if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2625 	{
2626 	  ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2627 		      && ira_reg_equiv[from_regno].constant == NULL_RTX);
2628 	  ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2629 		      || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2630 	  ira_reg_equiv[to_regno].memory = x;
2631 	  if (! MEM_READONLY_P (x))
2632 	    /* We don't add the insn to insn init list because memory
2633 	       equivalence is just to say what memory is better to use
2634 	       when the pseudo is spilled.  */
2635 	    return;
2636 	}
2637       else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2638 	{
2639 	  ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2640 	  ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2641 		      || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2642 	  ira_reg_equiv[to_regno].constant = x;
2643 	}
2644       else
2645 	{
2646 	  x = ira_reg_equiv[from_regno].invariant;
2647 	  ira_assert (x != NULL_RTX);
2648 	  ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2649 		      || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2650 	  ira_reg_equiv[to_regno].invariant = x;
2651 	}
2652       if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2653 	{
2654 	  note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (x));
2655 	  gcc_assert (note != NULL_RTX);
2656 	  if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2657 	    {
2658 	      fprintf (ira_dump_file,
2659 		       "      Adding equiv note to insn %u for reg %d ",
2660 		       INSN_UID (insn), to_regno);
2661 	      dump_value_slim (ira_dump_file, x, 1);
2662 	      fprintf (ira_dump_file, "\n");
2663 	    }
2664 	}
2665     }
2666   ira_reg_equiv[to_regno].init_insns
2667     = gen_rtx_INSN_LIST (VOIDmode, insn,
2668 			 ira_reg_equiv[to_regno].init_insns);
2669   if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2670     fprintf (ira_dump_file,
2671 	     "      Adding equiv init move insn %u to reg %d\n",
2672 	     INSN_UID (insn), to_regno);
2673 }
2674 
2675 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2676    by IRA.  */
2677 static void
2678 fix_reg_equiv_init (void)
2679 {
2680   int max_regno = max_reg_num ();
2681   int i, new_regno, max;
2682   rtx set;
2683   rtx_insn_list *x, *next, *prev;
2684   rtx_insn *insn;
2685 
2686   if (max_regno_before_ira < max_regno)
2687     {
2688       max = vec_safe_length (reg_equivs);
2689       grow_reg_equivs ();
2690       for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2691 	for (prev = NULL, x = reg_equiv_init (i);
2692 	     x != NULL_RTX;
2693 	     x = next)
2694 	  {
2695 	    next = x->next ();
2696 	    insn = x->insn ();
2697 	    set = single_set (insn);
2698 	    ira_assert (set != NULL_RTX
2699 			&& (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2700 	    if (REG_P (SET_DEST (set))
2701 		&& ((int) REGNO (SET_DEST (set)) == i
2702 		    || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2703 	      new_regno = REGNO (SET_DEST (set));
2704 	    else if (REG_P (SET_SRC (set))
2705 		     && ((int) REGNO (SET_SRC (set)) == i
2706 			 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2707 	      new_regno = REGNO (SET_SRC (set));
2708 	    else
2709  	      gcc_unreachable ();
2710 	    if (new_regno == i)
2711 	      prev = x;
2712 	    else
2713 	      {
2714 		/* Remove the wrong list element.  */
2715 		if (prev == NULL_RTX)
2716 		  reg_equiv_init (i) = next;
2717 		else
2718 		  XEXP (prev, 1) = next;
2719 		XEXP (x, 1) = reg_equiv_init (new_regno);
2720 		reg_equiv_init (new_regno) = x;
2721 	      }
2722 	  }
2723     }
2724 }
2725 
2726 #ifdef ENABLE_IRA_CHECKING
2727 /* Print redundant memory-memory copies.  */
2728 static void
2729 print_redundant_copies (void)
2730 {
2731   int hard_regno;
2732   ira_allocno_t a;
2733   ira_copy_t cp, next_cp;
2734   ira_allocno_iterator ai;
2735 
2736   FOR_EACH_ALLOCNO (a, ai)
2737     {
2738       if (ALLOCNO_CAP_MEMBER (a) != NULL)
2739 	/* It is a cap.  */
2740 	continue;
2741       hard_regno = ALLOCNO_HARD_REGNO (a);
2742       if (hard_regno >= 0)
2743 	continue;
2744       for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2745 	if (cp->first == a)
2746 	  next_cp = cp->next_first_allocno_copy;
2747 	else
2748 	  {
2749 	    next_cp = cp->next_second_allocno_copy;
2750 	    if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2751 		&& cp->insn != NULL_RTX
2752 		&& ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2753 	      fprintf (ira_dump_file,
2754 		       "        Redundant move from %d(freq %d):%d\n",
2755 		       INSN_UID (cp->insn), cp->freq, hard_regno);
2756 	  }
2757     }
2758 }
2759 #endif
2760 
2761 /* Setup preferred and alternative classes for new pseudo-registers
2762    created by IRA starting with START.  */
2763 static void
2764 setup_preferred_alternate_classes_for_new_pseudos (int start)
2765 {
2766   int i, old_regno;
2767   int max_regno = max_reg_num ();
2768 
2769   for (i = start; i < max_regno; i++)
2770     {
2771       old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2772       ira_assert (i != old_regno);
2773       setup_reg_classes (i, reg_preferred_class (old_regno),
2774 			 reg_alternate_class (old_regno),
2775 			 reg_allocno_class (old_regno));
2776       if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2777 	fprintf (ira_dump_file,
2778 		 "    New r%d: setting preferred %s, alternative %s\n",
2779 		 i, reg_class_names[reg_preferred_class (old_regno)],
2780 		 reg_class_names[reg_alternate_class (old_regno)]);
2781     }
2782 }
2783 
2784 
2785 /* The number of entries allocated in reg_info.  */
2786 static int allocated_reg_info_size;
2787 
2788 /* Regional allocation can create new pseudo-registers.  This function
2789    expands some arrays for pseudo-registers.  */
2790 static void
2791 expand_reg_info (void)
2792 {
2793   int i;
2794   int size = max_reg_num ();
2795 
2796   resize_reg_info ();
2797   for (i = allocated_reg_info_size; i < size; i++)
2798     setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2799   setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2800   allocated_reg_info_size = size;
2801 }
2802 
2803 /* Return TRUE if there is too high register pressure in the function.
2804    It is used to decide when stack slot sharing is worth to do.  */
2805 static bool
2806 too_high_register_pressure_p (void)
2807 {
2808   int i;
2809   enum reg_class pclass;
2810 
2811   for (i = 0; i < ira_pressure_classes_num; i++)
2812     {
2813       pclass = ira_pressure_classes[i];
2814       if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2815 	return true;
2816     }
2817   return false;
2818 }
2819 
2820 
2821 
2822 /* Indicate that hard register number FROM was eliminated and replaced with
2823    an offset from hard register number TO.  The status of hard registers live
2824    at the start of a basic block is updated by replacing a use of FROM with
2825    a use of TO.  */
2826 
2827 void
2828 mark_elimination (int from, int to)
2829 {
2830   basic_block bb;
2831   bitmap r;
2832 
2833   FOR_EACH_BB_FN (bb, cfun)
2834     {
2835       r = DF_LR_IN (bb);
2836       if (bitmap_bit_p (r, from))
2837 	{
2838 	  bitmap_clear_bit (r, from);
2839 	  bitmap_set_bit (r, to);
2840 	}
2841       if (! df_live)
2842         continue;
2843       r = DF_LIVE_IN (bb);
2844       if (bitmap_bit_p (r, from))
2845 	{
2846 	  bitmap_clear_bit (r, from);
2847 	  bitmap_set_bit (r, to);
2848 	}
2849     }
2850 }
2851 
2852 
2853 
2854 /* The length of the following array.  */
2855 int ira_reg_equiv_len;
2856 
2857 /* Info about equiv. info for each register.  */
2858 struct ira_reg_equiv_s *ira_reg_equiv;
2859 
2860 /* Expand ira_reg_equiv if necessary.  */
2861 void
2862 ira_expand_reg_equiv (void)
2863 {
2864   int old = ira_reg_equiv_len;
2865 
2866   if (ira_reg_equiv_len > max_reg_num ())
2867     return;
2868   ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2869   ira_reg_equiv
2870     = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
2871 					 ira_reg_equiv_len
2872 					 * sizeof (struct ira_reg_equiv_s));
2873   gcc_assert (old < ira_reg_equiv_len);
2874   memset (ira_reg_equiv + old, 0,
2875 	  sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
2876 }
2877 
2878 static void
2879 init_reg_equiv (void)
2880 {
2881   ira_reg_equiv_len = 0;
2882   ira_reg_equiv = NULL;
2883   ira_expand_reg_equiv ();
2884 }
2885 
2886 static void
2887 finish_reg_equiv (void)
2888 {
2889   free (ira_reg_equiv);
2890 }
2891 
2892 
2893 
2894 struct equivalence
2895 {
2896   /* Set when a REG_EQUIV note is found or created.  Use to
2897      keep track of what memory accesses might be created later,
2898      e.g. by reload.  */
2899   rtx replacement;
2900   rtx *src_p;
2901 
2902   /* The list of each instruction which initializes this register.
2903 
2904      NULL indicates we know nothing about this register's equivalence
2905      properties.
2906 
2907      An INSN_LIST with a NULL insn indicates this pseudo is already
2908      known to not have a valid equivalence.  */
2909   rtx_insn_list *init_insns;
2910 
2911   /* Loop depth is used to recognize equivalences which appear
2912      to be present within the same loop (or in an inner loop).  */
2913   short loop_depth;
2914   /* Nonzero if this had a preexisting REG_EQUIV note.  */
2915   unsigned char is_arg_equivalence : 1;
2916   /* Set when an attempt should be made to replace a register
2917      with the associated src_p entry.  */
2918   unsigned char replace : 1;
2919   /* Set if this register has no known equivalence.  */
2920   unsigned char no_equiv : 1;
2921   /* Set if this register is mentioned in a paradoxical subreg.  */
2922   unsigned char pdx_subregs : 1;
2923 };
2924 
2925 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2926    structure for that register.  */
2927 static struct equivalence *reg_equiv;
2928 
2929 /* Used for communication between the following two functions.  */
2930 struct equiv_mem_data
2931 {
2932   /* A MEM that we wish to ensure remains unchanged.  */
2933   rtx equiv_mem;
2934 
2935   /* Set true if EQUIV_MEM is modified.  */
2936   bool equiv_mem_modified;
2937 };
2938 
2939 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2940    Called via note_stores.  */
2941 static void
2942 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2943 			       void *data)
2944 {
2945   struct equiv_mem_data *info = (struct equiv_mem_data *) data;
2946 
2947   if ((REG_P (dest)
2948        && reg_overlap_mentioned_p (dest, info->equiv_mem))
2949       || (MEM_P (dest)
2950 	  && anti_dependence (info->equiv_mem, dest)))
2951     info->equiv_mem_modified = true;
2952 }
2953 
2954 enum valid_equiv { valid_none, valid_combine, valid_reload };
2955 
2956 /* Verify that no store between START and the death of REG invalidates
2957    MEMREF.  MEMREF is invalidated by modifying a register used in MEMREF,
2958    by storing into an overlapping memory location, or with a non-const
2959    CALL_INSN.
2960 
2961    Return VALID_RELOAD if MEMREF remains valid for both reload and
2962    combine_and_move insns, VALID_COMBINE if only valid for
2963    combine_and_move_insns, and VALID_NONE otherwise.  */
2964 static enum valid_equiv
2965 validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
2966 {
2967   rtx_insn *insn;
2968   rtx note;
2969   struct equiv_mem_data info = { memref, false };
2970   enum valid_equiv ret = valid_reload;
2971 
2972   /* If the memory reference has side effects or is volatile, it isn't a
2973      valid equivalence.  */
2974   if (side_effects_p (memref))
2975     return valid_none;
2976 
2977   for (insn = start; insn; insn = NEXT_INSN (insn))
2978     {
2979       if (!INSN_P (insn))
2980 	continue;
2981 
2982       if (find_reg_note (insn, REG_DEAD, reg))
2983 	return ret;
2984 
2985       if (CALL_P (insn))
2986 	{
2987 	  /* We can combine a reg def from one insn into a reg use in
2988 	     another over a call if the memory is readonly or the call
2989 	     const/pure.  However, we can't set reg_equiv notes up for
2990 	     reload over any call.  The problem is the equivalent form
2991 	     may reference a pseudo which gets assigned a call
2992 	     clobbered hard reg.  When we later replace REG with its
2993 	     equivalent form, the value in the call-clobbered reg has
2994 	     been changed and all hell breaks loose.  */
2995 	  ret = valid_combine;
2996 	  if (!MEM_READONLY_P (memref)
2997 	      && !RTL_CONST_OR_PURE_CALL_P (insn))
2998 	    return valid_none;
2999 	}
3000 
3001       note_stores (PATTERN (insn), validate_equiv_mem_from_store, &info);
3002       if (info.equiv_mem_modified)
3003 	return valid_none;
3004 
3005       /* If a register mentioned in MEMREF is modified via an
3006 	 auto-increment, we lose the equivalence.  Do the same if one
3007 	 dies; although we could extend the life, it doesn't seem worth
3008 	 the trouble.  */
3009 
3010       for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3011 	if ((REG_NOTE_KIND (note) == REG_INC
3012 	     || REG_NOTE_KIND (note) == REG_DEAD)
3013 	    && REG_P (XEXP (note, 0))
3014 	    && reg_overlap_mentioned_p (XEXP (note, 0), memref))
3015 	  return valid_none;
3016     }
3017 
3018   return valid_none;
3019 }
3020 
3021 /* Returns zero if X is known to be invariant.  */
3022 static int
3023 equiv_init_varies_p (rtx x)
3024 {
3025   RTX_CODE code = GET_CODE (x);
3026   int i;
3027   const char *fmt;
3028 
3029   switch (code)
3030     {
3031     case MEM:
3032       return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3033 
3034     case CONST:
3035     CASE_CONST_ANY:
3036     case SYMBOL_REF:
3037     case LABEL_REF:
3038       return 0;
3039 
3040     case REG:
3041       return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3042 
3043     case ASM_OPERANDS:
3044       if (MEM_VOLATILE_P (x))
3045 	return 1;
3046 
3047       /* Fall through.  */
3048 
3049     default:
3050       break;
3051     }
3052 
3053   fmt = GET_RTX_FORMAT (code);
3054   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3055     if (fmt[i] == 'e')
3056       {
3057 	if (equiv_init_varies_p (XEXP (x, i)))
3058 	  return 1;
3059       }
3060     else if (fmt[i] == 'E')
3061       {
3062 	int j;
3063 	for (j = 0; j < XVECLEN (x, i); j++)
3064 	  if (equiv_init_varies_p (XVECEXP (x, i, j)))
3065 	    return 1;
3066       }
3067 
3068   return 0;
3069 }
3070 
3071 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3072    X is only movable if the registers it uses have equivalent initializations
3073    which appear to be within the same loop (or in an inner loop) and movable
3074    or if they are not candidates for local_alloc and don't vary.  */
3075 static int
3076 equiv_init_movable_p (rtx x, int regno)
3077 {
3078   int i, j;
3079   const char *fmt;
3080   enum rtx_code code = GET_CODE (x);
3081 
3082   switch (code)
3083     {
3084     case SET:
3085       return equiv_init_movable_p (SET_SRC (x), regno);
3086 
3087     case CC0:
3088     case CLOBBER:
3089       return 0;
3090 
3091     case PRE_INC:
3092     case PRE_DEC:
3093     case POST_INC:
3094     case POST_DEC:
3095     case PRE_MODIFY:
3096     case POST_MODIFY:
3097       return 0;
3098 
3099     case REG:
3100       return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3101 	       && reg_equiv[REGNO (x)].replace)
3102 	      || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3103 		  && ! rtx_varies_p (x, 0)));
3104 
3105     case UNSPEC_VOLATILE:
3106       return 0;
3107 
3108     case ASM_OPERANDS:
3109       if (MEM_VOLATILE_P (x))
3110 	return 0;
3111 
3112       /* Fall through.  */
3113 
3114     default:
3115       break;
3116     }
3117 
3118   fmt = GET_RTX_FORMAT (code);
3119   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3120     switch (fmt[i])
3121       {
3122       case 'e':
3123 	if (! equiv_init_movable_p (XEXP (x, i), regno))
3124 	  return 0;
3125 	break;
3126       case 'E':
3127 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3128 	  if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3129 	    return 0;
3130 	break;
3131       }
3132 
3133   return 1;
3134 }
3135 
3136 /* TRUE if X references a memory location that would be affected by a store
3137    to MEMREF.  */
3138 static int
3139 memref_referenced_p (rtx memref, rtx x)
3140 {
3141   int i, j;
3142   const char *fmt;
3143   enum rtx_code code = GET_CODE (x);
3144 
3145   switch (code)
3146     {
3147     case CONST:
3148     case LABEL_REF:
3149     case SYMBOL_REF:
3150     CASE_CONST_ANY:
3151     case PC:
3152     case CC0:
3153     case HIGH:
3154     case LO_SUM:
3155       return 0;
3156 
3157     case REG:
3158       return (reg_equiv[REGNO (x)].replacement
3159 	      && memref_referenced_p (memref,
3160 				      reg_equiv[REGNO (x)].replacement));
3161 
3162     case MEM:
3163       if (true_dependence (memref, VOIDmode, x))
3164 	return 1;
3165       break;
3166 
3167     case SET:
3168       /* If we are setting a MEM, it doesn't count (its address does), but any
3169 	 other SET_DEST that has a MEM in it is referencing the MEM.  */
3170       if (MEM_P (SET_DEST (x)))
3171 	{
3172 	  if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
3173 	    return 1;
3174 	}
3175       else if (memref_referenced_p (memref, SET_DEST (x)))
3176 	return 1;
3177 
3178       return memref_referenced_p (memref, SET_SRC (x));
3179 
3180     default:
3181       break;
3182     }
3183 
3184   fmt = GET_RTX_FORMAT (code);
3185   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3186     switch (fmt[i])
3187       {
3188       case 'e':
3189 	if (memref_referenced_p (memref, XEXP (x, i)))
3190 	  return 1;
3191 	break;
3192       case 'E':
3193 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3194 	  if (memref_referenced_p (memref, XVECEXP (x, i, j)))
3195 	    return 1;
3196 	break;
3197       }
3198 
3199   return 0;
3200 }
3201 
3202 /* TRUE if some insn in the range (START, END] references a memory location
3203    that would be affected by a store to MEMREF.
3204 
3205    Callers should not call this routine if START is after END in the
3206    RTL chain.  */
3207 
3208 static int
3209 memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
3210 {
3211   rtx_insn *insn;
3212 
3213   for (insn = NEXT_INSN (start);
3214        insn && insn != NEXT_INSN (end);
3215        insn = NEXT_INSN (insn))
3216     {
3217       if (!NONDEBUG_INSN_P (insn))
3218 	continue;
3219 
3220       if (memref_referenced_p (memref, PATTERN (insn)))
3221 	return 1;
3222 
3223       /* Nonconst functions may access memory.  */
3224       if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3225 	return 1;
3226     }
3227 
3228   gcc_assert (insn == NEXT_INSN (end));
3229   return 0;
3230 }
3231 
3232 /* Mark REG as having no known equivalence.
3233    Some instructions might have been processed before and furnished
3234    with REG_EQUIV notes for this register; these notes will have to be
3235    removed.
3236    STORE is the piece of RTL that does the non-constant / conflicting
3237    assignment - a SET, CLOBBER or REG_INC note.  It is currently not used,
3238    but needs to be there because this function is called from note_stores.  */
3239 static void
3240 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3241 	  void *data ATTRIBUTE_UNUSED)
3242 {
3243   int regno;
3244   rtx_insn_list *list;
3245 
3246   if (!REG_P (reg))
3247     return;
3248   regno = REGNO (reg);
3249   reg_equiv[regno].no_equiv = 1;
3250   list = reg_equiv[regno].init_insns;
3251   if (list && list->insn () == NULL)
3252     return;
3253   reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
3254   reg_equiv[regno].replacement = NULL_RTX;
3255   /* This doesn't matter for equivalences made for argument registers, we
3256      should keep their initialization insns.  */
3257   if (reg_equiv[regno].is_arg_equivalence)
3258     return;
3259   ira_reg_equiv[regno].defined_p = false;
3260   ira_reg_equiv[regno].init_insns = NULL;
3261   for (; list; list = list->next ())
3262     {
3263       rtx_insn *insn = list->insn ();
3264       remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3265     }
3266 }
3267 
3268 /* Check whether the SUBREG is a paradoxical subreg and set the result
3269    in PDX_SUBREGS.  */
3270 
3271 static void
3272 set_paradoxical_subreg (rtx_insn *insn)
3273 {
3274   subrtx_iterator::array_type array;
3275   FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3276     {
3277       const_rtx subreg = *iter;
3278       if (GET_CODE (subreg) == SUBREG)
3279 	{
3280 	  const_rtx reg = SUBREG_REG (subreg);
3281 	  if (REG_P (reg) && paradoxical_subreg_p (subreg))
3282 	    reg_equiv[REGNO (reg)].pdx_subregs = true;
3283 	}
3284     }
3285 }
3286 
3287 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3288    equivalent replacement.  */
3289 
3290 static rtx
3291 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3292 {
3293   if (REG_P (loc))
3294     {
3295       bitmap cleared_regs = (bitmap) data;
3296       if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3297 	return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3298 					NULL_RTX, adjust_cleared_regs, data);
3299     }
3300   return NULL_RTX;
3301 }
3302 
3303 /* Given register REGNO is set only once, return true if the defining
3304    insn dominates all uses.  */
3305 
3306 static bool
3307 def_dominates_uses (int regno)
3308 {
3309   df_ref def = DF_REG_DEF_CHAIN (regno);
3310 
3311   struct df_insn_info *def_info = DF_REF_INSN_INFO (def);
3312   /* If this is an artificial def (eh handler regs, hard frame pointer
3313      for non-local goto, regs defined on function entry) then def_info
3314      is NULL and the reg is always live before any use.  We might
3315      reasonably return true in that case, but since the only call
3316      of this function is currently here in ira.c when we are looking
3317      at a defining insn we can't have an artificial def as that would
3318      bump DF_REG_DEF_COUNT.  */
3319   gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && def_info != NULL);
3320 
3321   rtx_insn *def_insn = DF_REF_INSN (def);
3322   basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3323 
3324   for (df_ref use = DF_REG_USE_CHAIN (regno);
3325        use;
3326        use = DF_REF_NEXT_REG (use))
3327     {
3328       struct df_insn_info *use_info = DF_REF_INSN_INFO (use);
3329       /* Only check real uses, not artificial ones.  */
3330       if (use_info)
3331 	{
3332 	  rtx_insn *use_insn = DF_REF_INSN (use);
3333 	  if (!DEBUG_INSN_P (use_insn))
3334 	    {
3335 	      basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3336 	      if (use_bb != def_bb
3337 		  ? !dominated_by_p (CDI_DOMINATORS, use_bb, def_bb)
3338 		  : DF_INSN_INFO_LUID (use_info) < DF_INSN_INFO_LUID (def_info))
3339 		return false;
3340 	    }
3341 	}
3342     }
3343   return true;
3344 }
3345 
3346 /* Find registers that are equivalent to a single value throughout the
3347    compilation (either because they can be referenced in memory or are
3348    set once from a single constant).  Lower their priority for a
3349    register.
3350 
3351    If such a register is only referenced once, try substituting its
3352    value into the using insn.  If it succeeds, we can eliminate the
3353    register completely.
3354 
3355    Initialize init_insns in ira_reg_equiv array.  */
3356 static void
3357 update_equiv_regs (void)
3358 {
3359   rtx_insn *insn;
3360   basic_block bb;
3361 
3362   /* Scan insns and set pdx_subregs if the reg is used in a
3363      paradoxical subreg.  Don't set such reg equivalent to a mem,
3364      because lra will not substitute such equiv memory in order to
3365      prevent access beyond allocated memory for paradoxical memory subreg.  */
3366   FOR_EACH_BB_FN (bb, cfun)
3367     FOR_BB_INSNS (bb, insn)
3368       if (NONDEBUG_INSN_P (insn))
3369 	set_paradoxical_subreg (insn);
3370 
3371   /* Scan the insns and find which registers have equivalences.  Do this
3372      in a separate scan of the insns because (due to -fcse-follow-jumps)
3373      a register can be set below its use.  */
3374   bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3375   FOR_EACH_BB_FN (bb, cfun)
3376     {
3377       int loop_depth = bb_loop_depth (bb);
3378 
3379       for (insn = BB_HEAD (bb);
3380 	   insn != NEXT_INSN (BB_END (bb));
3381 	   insn = NEXT_INSN (insn))
3382 	{
3383 	  rtx note;
3384 	  rtx set;
3385 	  rtx dest, src;
3386 	  int regno;
3387 
3388 	  if (! INSN_P (insn))
3389 	    continue;
3390 
3391 	  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3392 	    if (REG_NOTE_KIND (note) == REG_INC)
3393 	      no_equiv (XEXP (note, 0), note, NULL);
3394 
3395 	  set = single_set (insn);
3396 
3397 	  /* If this insn contains more (or less) than a single SET,
3398 	     only mark all destinations as having no known equivalence.  */
3399 	  if (set == NULL_RTX
3400 	      || side_effects_p (SET_SRC (set)))
3401 	    {
3402 	      note_stores (PATTERN (insn), no_equiv, NULL);
3403 	      continue;
3404 	    }
3405 	  else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3406 	    {
3407 	      int i;
3408 
3409 	      for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3410 		{
3411 		  rtx part = XVECEXP (PATTERN (insn), 0, i);
3412 		  if (part != set)
3413 		    note_stores (part, no_equiv, NULL);
3414 		}
3415 	    }
3416 
3417 	  dest = SET_DEST (set);
3418 	  src = SET_SRC (set);
3419 
3420 	  /* See if this is setting up the equivalence between an argument
3421 	     register and its stack slot.  */
3422 	  note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3423 	  if (note)
3424 	    {
3425 	      gcc_assert (REG_P (dest));
3426 	      regno = REGNO (dest);
3427 
3428 	      /* Note that we don't want to clear init_insns in
3429 		 ira_reg_equiv even if there are multiple sets of this
3430 		 register.  */
3431 	      reg_equiv[regno].is_arg_equivalence = 1;
3432 
3433 	      /* The insn result can have equivalence memory although
3434 		 the equivalence is not set up by the insn.  We add
3435 		 this insn to init insns as it is a flag for now that
3436 		 regno has an equivalence.  We will remove the insn
3437 		 from init insn list later.  */
3438 	      if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3439 		ira_reg_equiv[regno].init_insns
3440 		  = gen_rtx_INSN_LIST (VOIDmode, insn,
3441 				       ira_reg_equiv[regno].init_insns);
3442 
3443 	      /* Continue normally in case this is a candidate for
3444 		 replacements.  */
3445 	    }
3446 
3447 	  if (!optimize)
3448 	    continue;
3449 
3450 	  /* We only handle the case of a pseudo register being set
3451 	     once, or always to the same value.  */
3452 	  /* ??? The mn10200 port breaks if we add equivalences for
3453 	     values that need an ADDRESS_REGS register and set them equivalent
3454 	     to a MEM of a pseudo.  The actual problem is in the over-conservative
3455 	     handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3456 	     calculate_needs, but we traditionally work around this problem
3457 	     here by rejecting equivalences when the destination is in a register
3458 	     that's likely spilled.  This is fragile, of course, since the
3459 	     preferred class of a pseudo depends on all instructions that set
3460 	     or use it.  */
3461 
3462 	  if (!REG_P (dest)
3463 	      || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3464 	      || (reg_equiv[regno].init_insns
3465 		  && reg_equiv[regno].init_insns->insn () == NULL)
3466 	      || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3467 		  && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3468 	    {
3469 	      /* This might be setting a SUBREG of a pseudo, a pseudo that is
3470 		 also set somewhere else to a constant.  */
3471 	      note_stores (set, no_equiv, NULL);
3472 	      continue;
3473 	    }
3474 
3475 	  /* Don't set reg mentioned in a paradoxical subreg
3476 	     equivalent to a mem.  */
3477 	  if (MEM_P (src) && reg_equiv[regno].pdx_subregs)
3478 	    {
3479 	      note_stores (set, no_equiv, NULL);
3480 	      continue;
3481 	    }
3482 
3483 	  note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3484 
3485 	  /* cse sometimes generates function invariants, but doesn't put a
3486 	     REG_EQUAL note on the insn.  Since this note would be redundant,
3487 	     there's no point creating it earlier than here.  */
3488 	  if (! note && ! rtx_varies_p (src, 0))
3489 	    note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3490 
3491 	  /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3492 	     since it represents a function call.  */
3493 	  if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3494 	    note = NULL_RTX;
3495 
3496 	  if (DF_REG_DEF_COUNT (regno) != 1)
3497 	    {
3498 	      bool equal_p = true;
3499 	      rtx_insn_list *list;
3500 
3501 	      /* If we have already processed this pseudo and determined it
3502 		 can not have an equivalence, then honor that decision.  */
3503 	      if (reg_equiv[regno].no_equiv)
3504 		continue;
3505 
3506 	      if (! note
3507 		  || rtx_varies_p (XEXP (note, 0), 0)
3508 		  || (reg_equiv[regno].replacement
3509 		      && ! rtx_equal_p (XEXP (note, 0),
3510 					reg_equiv[regno].replacement)))
3511 		{
3512 		  no_equiv (dest, set, NULL);
3513 		  continue;
3514 		}
3515 
3516 	      list = reg_equiv[regno].init_insns;
3517 	      for (; list; list = list->next ())
3518 		{
3519 		  rtx note_tmp;
3520 		  rtx_insn *insn_tmp;
3521 
3522 		  insn_tmp = list->insn ();
3523 		  note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3524 		  gcc_assert (note_tmp);
3525 		  if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3526 		    {
3527 		      equal_p = false;
3528 		      break;
3529 		    }
3530 		}
3531 
3532 	      if (! equal_p)
3533 		{
3534 		  no_equiv (dest, set, NULL);
3535 		  continue;
3536 		}
3537 	    }
3538 
3539 	  /* Record this insn as initializing this register.  */
3540 	  reg_equiv[regno].init_insns
3541 	    = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3542 
3543 	  /* If this register is known to be equal to a constant, record that
3544 	     it is always equivalent to the constant.
3545 	     Note that it is possible to have a register use before
3546 	     the def in loops (see gcc.c-torture/execute/pr79286.c)
3547 	     where the reg is undefined on first use.  If the def insn
3548 	     won't trap we can use it as an equivalence, effectively
3549 	     choosing the "undefined" value for the reg to be the
3550 	     same as the value set by the def.  */
3551 	  if (DF_REG_DEF_COUNT (regno) == 1
3552 	      && note
3553 	      && !rtx_varies_p (XEXP (note, 0), 0)
3554 	      && (!may_trap_or_fault_p (XEXP (note, 0))
3555 		  || def_dominates_uses (regno)))
3556 	    {
3557 	      rtx note_value = XEXP (note, 0);
3558 	      remove_note (insn, note);
3559 	      set_unique_reg_note (insn, REG_EQUIV, note_value);
3560 	    }
3561 
3562 	  /* If this insn introduces a "constant" register, decrease the priority
3563 	     of that register.  Record this insn if the register is only used once
3564 	     more and the equivalence value is the same as our source.
3565 
3566 	     The latter condition is checked for two reasons:  First, it is an
3567 	     indication that it may be more efficient to actually emit the insn
3568 	     as written (if no registers are available, reload will substitute
3569 	     the equivalence).  Secondly, it avoids problems with any registers
3570 	     dying in this insn whose death notes would be missed.
3571 
3572 	     If we don't have a REG_EQUIV note, see if this insn is loading
3573 	     a register used only in one basic block from a MEM.  If so, and the
3574 	     MEM remains unchanged for the life of the register, add a REG_EQUIV
3575 	     note.  */
3576 	  note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3577 
3578 	  rtx replacement = NULL_RTX;
3579 	  if (note)
3580 	    replacement = XEXP (note, 0);
3581 	  else if (REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3582 		   && MEM_P (SET_SRC (set)))
3583 	    {
3584 	      enum valid_equiv validity;
3585 	      validity = validate_equiv_mem (insn, dest, SET_SRC (set));
3586 	      if (validity != valid_none)
3587 		{
3588 		  replacement = copy_rtx (SET_SRC (set));
3589 		  if (validity == valid_reload)
3590 		    note = set_unique_reg_note (insn, REG_EQUIV, replacement);
3591 		}
3592 	    }
3593 
3594 	  /* If we haven't done so, record for reload that this is an
3595 	     equivalencing insn.  */
3596 	  if (note && !reg_equiv[regno].is_arg_equivalence)
3597 	    ira_reg_equiv[regno].init_insns
3598 	      = gen_rtx_INSN_LIST (VOIDmode, insn,
3599 				   ira_reg_equiv[regno].init_insns);
3600 
3601 	  if (replacement)
3602 	    {
3603 	      reg_equiv[regno].replacement = replacement;
3604 	      reg_equiv[regno].src_p = &SET_SRC (set);
3605 	      reg_equiv[regno].loop_depth = (short) loop_depth;
3606 
3607 	      /* Don't mess with things live during setjmp.  */
3608 	      if (optimize && !bitmap_bit_p (setjmp_crosses, regno))
3609 		{
3610 		  /* If the register is referenced exactly twice, meaning it is
3611 		     set once and used once, indicate that the reference may be
3612 		     replaced by the equivalence we computed above.  Do this
3613 		     even if the register is only used in one block so that
3614 		     dependencies can be handled where the last register is
3615 		     used in a different block (i.e. HIGH / LO_SUM sequences)
3616 		     and to reduce the number of registers alive across
3617 		     calls.  */
3618 
3619 		  if (REG_N_REFS (regno) == 2
3620 		      && (rtx_equal_p (replacement, src)
3621 			  || ! equiv_init_varies_p (src))
3622 		      && NONJUMP_INSN_P (insn)
3623 		      && equiv_init_movable_p (PATTERN (insn), regno))
3624 		    reg_equiv[regno].replace = 1;
3625 		}
3626 	    }
3627 	}
3628     }
3629 }
3630 
3631 /* For insns that set a MEM to the contents of a REG that is only used
3632    in a single basic block, see if the register is always equivalent
3633    to that memory location and if moving the store from INSN to the
3634    insn that sets REG is safe.  If so, put a REG_EQUIV note on the
3635    initializing insn.  */
3636 static void
3637 add_store_equivs (void)
3638 {
3639   auto_bitmap seen_insns;
3640 
3641   for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3642     {
3643       rtx set, src, dest;
3644       unsigned regno;
3645       rtx_insn *init_insn;
3646 
3647       bitmap_set_bit (seen_insns, INSN_UID (insn));
3648 
3649       if (! INSN_P (insn))
3650 	continue;
3651 
3652       set = single_set (insn);
3653       if (! set)
3654 	continue;
3655 
3656       dest = SET_DEST (set);
3657       src = SET_SRC (set);
3658 
3659       /* Don't add a REG_EQUIV note if the insn already has one.  The existing
3660 	 REG_EQUIV is likely more useful than the one we are adding.  */
3661       if (MEM_P (dest) && REG_P (src)
3662 	  && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3663 	  && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3664 	  && DF_REG_DEF_COUNT (regno) == 1
3665 	  && ! reg_equiv[regno].pdx_subregs
3666 	  && reg_equiv[regno].init_insns != NULL
3667 	  && (init_insn = reg_equiv[regno].init_insns->insn ()) != 0
3668 	  && bitmap_bit_p (seen_insns, INSN_UID (init_insn))
3669 	  && ! find_reg_note (init_insn, REG_EQUIV, NULL_RTX)
3670 	  && validate_equiv_mem (init_insn, src, dest) == valid_reload
3671 	  && ! memref_used_between_p (dest, init_insn, insn)
3672 	  /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3673 	     multiple sets.  */
3674 	  && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3675 	{
3676 	  /* This insn makes the equivalence, not the one initializing
3677 	     the register.  */
3678 	  ira_reg_equiv[regno].init_insns
3679 	    = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3680 	  df_notes_rescan (init_insn);
3681 	  if (dump_file)
3682 	    fprintf (dump_file,
3683 		     "Adding REG_EQUIV to insn %d for source of insn %d\n",
3684 		     INSN_UID (init_insn),
3685 		     INSN_UID (insn));
3686 	}
3687     }
3688 }
3689 
3690 /* Scan all regs killed in an insn to see if any of them are registers
3691    only used that once.  If so, see if we can replace the reference
3692    with the equivalent form.  If we can, delete the initializing
3693    reference and this register will go away.  If we can't replace the
3694    reference, and the initializing reference is within the same loop
3695    (or in an inner loop), then move the register initialization just
3696    before the use, so that they are in the same basic block.  */
3697 static void
3698 combine_and_move_insns (void)
3699 {
3700   auto_bitmap cleared_regs;
3701   int max = max_reg_num ();
3702 
3703   for (int regno = FIRST_PSEUDO_REGISTER; regno < max; regno++)
3704     {
3705       if (!reg_equiv[regno].replace)
3706 	continue;
3707 
3708       rtx_insn *use_insn = 0;
3709       for (df_ref use = DF_REG_USE_CHAIN (regno);
3710 	   use;
3711 	   use = DF_REF_NEXT_REG (use))
3712 	if (DF_REF_INSN_INFO (use))
3713 	  {
3714 	    if (DEBUG_INSN_P (DF_REF_INSN (use)))
3715 	      continue;
3716 	    gcc_assert (!use_insn);
3717 	    use_insn = DF_REF_INSN (use);
3718 	  }
3719       gcc_assert (use_insn);
3720 
3721       /* Don't substitute into jumps.  indirect_jump_optimize does
3722 	 this for anything we are prepared to handle.  */
3723       if (JUMP_P (use_insn))
3724 	continue;
3725 
3726       /* Also don't substitute into a conditional trap insn -- it can become
3727 	 an unconditional trap, and that is a flow control insn.  */
3728       if (GET_CODE (PATTERN (use_insn)) == TRAP_IF)
3729 	continue;
3730 
3731       df_ref def = DF_REG_DEF_CHAIN (regno);
3732       gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && DF_REF_INSN_INFO (def));
3733       rtx_insn *def_insn = DF_REF_INSN (def);
3734 
3735       /* We may not move instructions that can throw, since that
3736 	 changes basic block boundaries and we are not prepared to
3737 	 adjust the CFG to match.  */
3738       if (can_throw_internal (def_insn))
3739 	continue;
3740 
3741       basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3742       basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3743       if (bb_loop_depth (use_bb) > bb_loop_depth (def_bb))
3744 	continue;
3745 
3746       if (asm_noperands (PATTERN (def_insn)) < 0
3747 	  && validate_replace_rtx (regno_reg_rtx[regno],
3748 				   *reg_equiv[regno].src_p, use_insn))
3749 	{
3750 	  rtx link;
3751 	  /* Append the REG_DEAD notes from def_insn.  */
3752 	  for (rtx *p = &REG_NOTES (def_insn); (link = *p) != 0; )
3753 	    {
3754 	      if (REG_NOTE_KIND (XEXP (link, 0)) == REG_DEAD)
3755 		{
3756 		  *p = XEXP (link, 1);
3757 		  XEXP (link, 1) = REG_NOTES (use_insn);
3758 		  REG_NOTES (use_insn) = link;
3759 		}
3760 	      else
3761 		p = &XEXP (link, 1);
3762 	    }
3763 
3764 	  remove_death (regno, use_insn);
3765 	  SET_REG_N_REFS (regno, 0);
3766 	  REG_FREQ (regno) = 0;
3767 	  df_ref use;
3768 	  FOR_EACH_INSN_USE (use, def_insn)
3769 	    {
3770 	      unsigned int use_regno = DF_REF_REGNO (use);
3771 	      if (!HARD_REGISTER_NUM_P (use_regno))
3772 		reg_equiv[use_regno].replace = 0;
3773 	    }
3774 
3775 	  delete_insn (def_insn);
3776 
3777 	  reg_equiv[regno].init_insns = NULL;
3778 	  ira_reg_equiv[regno].init_insns = NULL;
3779 	  bitmap_set_bit (cleared_regs, regno);
3780 	}
3781 
3782       /* Move the initialization of the register to just before
3783 	 USE_INSN.  Update the flow information.  */
3784       else if (prev_nondebug_insn (use_insn) != def_insn)
3785 	{
3786 	  rtx_insn *new_insn;
3787 
3788 	  new_insn = emit_insn_before (PATTERN (def_insn), use_insn);
3789 	  REG_NOTES (new_insn) = REG_NOTES (def_insn);
3790 	  REG_NOTES (def_insn) = 0;
3791 	  /* Rescan it to process the notes.  */
3792 	  df_insn_rescan (new_insn);
3793 
3794 	  /* Make sure this insn is recognized before reload begins,
3795 	     otherwise eliminate_regs_in_insn will die.  */
3796 	  INSN_CODE (new_insn) = INSN_CODE (def_insn);
3797 
3798 	  delete_insn (def_insn);
3799 
3800 	  XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3801 
3802 	  REG_BASIC_BLOCK (regno) = use_bb->index;
3803 	  REG_N_CALLS_CROSSED (regno) = 0;
3804 
3805 	  if (use_insn == BB_HEAD (use_bb))
3806 	    BB_HEAD (use_bb) = new_insn;
3807 
3808 	  /* We know regno dies in use_insn, but inside a loop
3809 	     REG_DEAD notes might be missing when def_insn was in
3810 	     another basic block.  However, when we move def_insn into
3811 	     this bb we'll definitely get a REG_DEAD note and reload
3812 	     will see the death.  It's possible that update_equiv_regs
3813 	     set up an equivalence referencing regno for a reg set by
3814 	     use_insn, when regno was seen as non-local.  Now that
3815 	     regno is local to this block, and dies, such an
3816 	     equivalence is invalid.  */
3817 	  if (find_reg_note (use_insn, REG_EQUIV, regno_reg_rtx[regno]))
3818 	    {
3819 	      rtx set = single_set (use_insn);
3820 	      if (set && REG_P (SET_DEST (set)))
3821 		no_equiv (SET_DEST (set), set, NULL);
3822 	    }
3823 
3824 	  ira_reg_equiv[regno].init_insns
3825 	    = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3826 	  bitmap_set_bit (cleared_regs, regno);
3827 	}
3828     }
3829 
3830   if (!bitmap_empty_p (cleared_regs))
3831     {
3832       basic_block bb;
3833 
3834       FOR_EACH_BB_FN (bb, cfun)
3835 	{
3836 	  bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3837 	  bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3838 	  if (!df_live)
3839 	    continue;
3840 	  bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3841 	  bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3842 	}
3843 
3844       /* Last pass - adjust debug insns referencing cleared regs.  */
3845       if (MAY_HAVE_DEBUG_BIND_INSNS)
3846 	for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3847 	  if (DEBUG_BIND_INSN_P (insn))
3848 	    {
3849 	      rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3850 	      INSN_VAR_LOCATION_LOC (insn)
3851 		= simplify_replace_fn_rtx (old_loc, NULL_RTX,
3852 					   adjust_cleared_regs,
3853 					   (void *) cleared_regs);
3854 	      if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3855 		df_insn_rescan (insn);
3856 	    }
3857     }
3858 }
3859 
3860 /* A pass over indirect jumps, converting simple cases to direct jumps.
3861    Combine does this optimization too, but only within a basic block.  */
3862 static void
3863 indirect_jump_optimize (void)
3864 {
3865   basic_block bb;
3866   bool rebuild_p = false;
3867 
3868   FOR_EACH_BB_REVERSE_FN (bb, cfun)
3869     {
3870       rtx_insn *insn = BB_END (bb);
3871       if (!JUMP_P (insn)
3872 	  || find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3873 	continue;
3874 
3875       rtx x = pc_set (insn);
3876       if (!x || !REG_P (SET_SRC (x)))
3877 	continue;
3878 
3879       int regno = REGNO (SET_SRC (x));
3880       if (DF_REG_DEF_COUNT (regno) == 1)
3881 	{
3882 	  df_ref def = DF_REG_DEF_CHAIN (regno);
3883 	  if (!DF_REF_IS_ARTIFICIAL (def))
3884 	    {
3885 	      rtx_insn *def_insn = DF_REF_INSN (def);
3886 	      rtx lab = NULL_RTX;
3887 	      rtx set = single_set (def_insn);
3888 	      if (set && GET_CODE (SET_SRC (set)) == LABEL_REF)
3889 		lab = SET_SRC (set);
3890 	      else
3891 		{
3892 		  rtx eqnote = find_reg_note (def_insn, REG_EQUAL, NULL_RTX);
3893 		  if (eqnote && GET_CODE (XEXP (eqnote, 0)) == LABEL_REF)
3894 		    lab = XEXP (eqnote, 0);
3895 		}
3896 	      if (lab && validate_replace_rtx (SET_SRC (x), lab, insn))
3897 		rebuild_p = true;
3898 	    }
3899 	}
3900     }
3901 
3902   if (rebuild_p)
3903     {
3904       timevar_push (TV_JUMP);
3905       rebuild_jump_labels (get_insns ());
3906       if (purge_all_dead_edges ())
3907 	delete_unreachable_blocks ();
3908       timevar_pop (TV_JUMP);
3909     }
3910 }
3911 
3912 /* Set up fields memory, constant, and invariant from init_insns in
3913    the structures of array ira_reg_equiv.  */
3914 static void
3915 setup_reg_equiv (void)
3916 {
3917   int i;
3918   rtx_insn_list *elem, *prev_elem, *next_elem;
3919   rtx_insn *insn;
3920   rtx set, x;
3921 
3922   for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
3923     for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3924 	 elem;
3925 	 prev_elem = elem, elem = next_elem)
3926       {
3927 	next_elem = elem->next ();
3928 	insn = elem->insn ();
3929 	set = single_set (insn);
3930 
3931 	/* Init insns can set up equivalence when the reg is a destination or
3932 	   a source (in this case the destination is memory).  */
3933 	if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3934 	  {
3935 	    if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
3936 	      {
3937 		x = XEXP (x, 0);
3938 		if (REG_P (SET_DEST (set))
3939 		    && REGNO (SET_DEST (set)) == (unsigned int) i
3940 		    && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3941 		  {
3942 		    /* This insn reporting the equivalence but
3943 		       actually not setting it.  Remove it from the
3944 		       list.  */
3945 		    if (prev_elem == NULL)
3946 		      ira_reg_equiv[i].init_insns = next_elem;
3947 		    else
3948 		      XEXP (prev_elem, 1) = next_elem;
3949 		    elem = prev_elem;
3950 		  }
3951 	      }
3952 	    else if (REG_P (SET_DEST (set))
3953 		     && REGNO (SET_DEST (set)) == (unsigned int) i)
3954 	      x = SET_SRC (set);
3955 	    else
3956 	      {
3957 		gcc_assert (REG_P (SET_SRC (set))
3958 			    && REGNO (SET_SRC (set)) == (unsigned int) i);
3959 		x = SET_DEST (set);
3960 	      }
3961 	    if (! function_invariant_p (x)
3962 		|| ! flag_pic
3963 		/* A function invariant is often CONSTANT_P but may
3964 		   include a register.  We promise to only pass
3965 		   CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P.  */
3966 		|| (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
3967 	      {
3968 		/* It can happen that a REG_EQUIV note contains a MEM
3969 		   that is not a legitimate memory operand.  As later
3970 		   stages of reload assume that all addresses found in
3971 		   the lra_regno_equiv_* arrays were originally
3972 		   legitimate, we ignore such REG_EQUIV notes.  */
3973 		if (memory_operand (x, VOIDmode))
3974 		  {
3975 		    ira_reg_equiv[i].defined_p = true;
3976 		    ira_reg_equiv[i].memory = x;
3977 		    continue;
3978 		  }
3979 		else if (function_invariant_p (x))
3980 		  {
3981 		    machine_mode mode;
3982 
3983 		    mode = GET_MODE (SET_DEST (set));
3984 		    if (GET_CODE (x) == PLUS
3985 			|| x == frame_pointer_rtx || x == arg_pointer_rtx)
3986 		      /* This is PLUS of frame pointer and a constant,
3987 			 or fp, or argp.  */
3988 		      ira_reg_equiv[i].invariant = x;
3989 		    else if (targetm.legitimate_constant_p (mode, x))
3990 		      ira_reg_equiv[i].constant = x;
3991 		    else
3992 		      {
3993 			ira_reg_equiv[i].memory = force_const_mem (mode, x);
3994 			if (ira_reg_equiv[i].memory == NULL_RTX)
3995 			  {
3996 			    ira_reg_equiv[i].defined_p = false;
3997 			    ira_reg_equiv[i].init_insns = NULL;
3998 			    break;
3999 			  }
4000 		      }
4001 		    ira_reg_equiv[i].defined_p = true;
4002 		    continue;
4003 		  }
4004 	      }
4005 	  }
4006 	ira_reg_equiv[i].defined_p = false;
4007 	ira_reg_equiv[i].init_insns = NULL;
4008 	break;
4009       }
4010 }
4011 
4012 
4013 
4014 /* Print chain C to FILE.  */
4015 static void
4016 print_insn_chain (FILE *file, struct insn_chain *c)
4017 {
4018   fprintf (file, "insn=%d, ", INSN_UID (c->insn));
4019   bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
4020   bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
4021 }
4022 
4023 
4024 /* Print all reload_insn_chains to FILE.  */
4025 static void
4026 print_insn_chains (FILE *file)
4027 {
4028   struct insn_chain *c;
4029   for (c = reload_insn_chain; c ; c = c->next)
4030     print_insn_chain (file, c);
4031 }
4032 
4033 /* Return true if pseudo REGNO should be added to set live_throughout
4034    or dead_or_set of the insn chains for reload consideration.  */
4035 static bool
4036 pseudo_for_reload_consideration_p (int regno)
4037 {
4038   /* Consider spilled pseudos too for IRA because they still have a
4039      chance to get hard-registers in the reload when IRA is used.  */
4040   return (reg_renumber[regno] >= 0 || ira_conflicts_p);
4041 }
4042 
4043 /* Return true if we can track the individual bytes of subreg X.
4044    When returning true, set *OUTER_SIZE to the number of bytes in
4045    X itself, *INNER_SIZE to the number of bytes in the inner register
4046    and *START to the offset of the first byte.  */
4047 static bool
4048 get_subreg_tracking_sizes (rtx x, HOST_WIDE_INT *outer_size,
4049 			   HOST_WIDE_INT *inner_size, HOST_WIDE_INT *start)
4050 {
4051   rtx reg = regno_reg_rtx[REGNO (SUBREG_REG (x))];
4052   return (GET_MODE_SIZE (GET_MODE (x)).is_constant (outer_size)
4053 	  && GET_MODE_SIZE (GET_MODE (reg)).is_constant (inner_size)
4054 	  && SUBREG_BYTE (x).is_constant (start));
4055 }
4056 
4057 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] for
4058    a register with SIZE bytes, making the register live if INIT_VALUE.  */
4059 static void
4060 init_live_subregs (bool init_value, sbitmap *live_subregs,
4061 		   bitmap live_subregs_used, int allocnum, int size)
4062 {
4063   gcc_assert (size > 0);
4064 
4065   /* Been there, done that.  */
4066   if (bitmap_bit_p (live_subregs_used, allocnum))
4067     return;
4068 
4069   /* Create a new one.  */
4070   if (live_subregs[allocnum] == NULL)
4071     live_subregs[allocnum] = sbitmap_alloc (size);
4072 
4073   /* If the entire reg was live before blasting into subregs, we need
4074      to init all of the subregs to ones else init to 0.  */
4075   if (init_value)
4076     bitmap_ones (live_subregs[allocnum]);
4077   else
4078     bitmap_clear (live_subregs[allocnum]);
4079 
4080   bitmap_set_bit (live_subregs_used, allocnum);
4081 }
4082 
4083 /* Walk the insns of the current function and build reload_insn_chain,
4084    and record register life information.  */
4085 static void
4086 build_insn_chain (void)
4087 {
4088   unsigned int i;
4089   struct insn_chain **p = &reload_insn_chain;
4090   basic_block bb;
4091   struct insn_chain *c = NULL;
4092   struct insn_chain *next = NULL;
4093   auto_bitmap live_relevant_regs;
4094   auto_bitmap elim_regset;
4095   /* live_subregs is a vector used to keep accurate information about
4096      which hardregs are live in multiword pseudos.  live_subregs and
4097      live_subregs_used are indexed by pseudo number.  The live_subreg
4098      entry for a particular pseudo is only used if the corresponding
4099      element is non zero in live_subregs_used.  The sbitmap size of
4100      live_subreg[allocno] is number of bytes that the pseudo can
4101      occupy.  */
4102   sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4103   auto_bitmap live_subregs_used;
4104 
4105   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4106     if (TEST_HARD_REG_BIT (eliminable_regset, i))
4107       bitmap_set_bit (elim_regset, i);
4108   FOR_EACH_BB_REVERSE_FN (bb, cfun)
4109     {
4110       bitmap_iterator bi;
4111       rtx_insn *insn;
4112 
4113       CLEAR_REG_SET (live_relevant_regs);
4114       bitmap_clear (live_subregs_used);
4115 
4116       EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4117 	{
4118 	  if (i >= FIRST_PSEUDO_REGISTER)
4119 	    break;
4120 	  bitmap_set_bit (live_relevant_regs, i);
4121 	}
4122 
4123       EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4124 				FIRST_PSEUDO_REGISTER, i, bi)
4125 	{
4126 	  if (pseudo_for_reload_consideration_p (i))
4127 	    bitmap_set_bit (live_relevant_regs, i);
4128 	}
4129 
4130       FOR_BB_INSNS_REVERSE (bb, insn)
4131 	{
4132 	  if (!NOTE_P (insn) && !BARRIER_P (insn))
4133 	    {
4134 	      struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4135 	      df_ref def, use;
4136 
4137 	      c = new_insn_chain ();
4138 	      c->next = next;
4139 	      next = c;
4140 	      *p = c;
4141 	      p = &c->prev;
4142 
4143 	      c->insn = insn;
4144 	      c->block = bb->index;
4145 
4146 	      if (NONDEBUG_INSN_P (insn))
4147 		FOR_EACH_INSN_INFO_DEF (def, insn_info)
4148 		  {
4149 		    unsigned int regno = DF_REF_REGNO (def);
4150 
4151 		    /* Ignore may clobbers because these are generated
4152 		       from calls. However, every other kind of def is
4153 		       added to dead_or_set.  */
4154 		    if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4155 		      {
4156 			if (regno < FIRST_PSEUDO_REGISTER)
4157 			  {
4158 			    if (!fixed_regs[regno])
4159 			      bitmap_set_bit (&c->dead_or_set, regno);
4160 			  }
4161 			else if (pseudo_for_reload_consideration_p (regno))
4162 			  bitmap_set_bit (&c->dead_or_set, regno);
4163 		      }
4164 
4165 		    if ((regno < FIRST_PSEUDO_REGISTER
4166 			 || reg_renumber[regno] >= 0
4167 			 || ira_conflicts_p)
4168 			&& (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4169 		      {
4170 			rtx reg = DF_REF_REG (def);
4171 			HOST_WIDE_INT outer_size, inner_size, start;
4172 
4173 			/* We can usually track the liveness of individual
4174 			   bytes within a subreg.  The only exceptions are
4175 			   subregs wrapped in ZERO_EXTRACTs and subregs whose
4176 			   size is not known; in those cases we need to be
4177 			   conservative and treat the definition as a partial
4178 			   definition of the full register rather than a full
4179 			   definition of a specific part of the register.  */
4180 			if (GET_CODE (reg) == SUBREG
4181 			    && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT)
4182 			    && get_subreg_tracking_sizes (reg, &outer_size,
4183 							  &inner_size, &start))
4184 			  {
4185 			    HOST_WIDE_INT last = start + outer_size;
4186 
4187 			    init_live_subregs
4188 			      (bitmap_bit_p (live_relevant_regs, regno),
4189 			       live_subregs, live_subregs_used, regno,
4190 			       inner_size);
4191 
4192 			    if (!DF_REF_FLAGS_IS_SET
4193 				(def, DF_REF_STRICT_LOW_PART))
4194 			      {
4195 				/* Expand the range to cover entire words.
4196 				   Bytes added here are "don't care".  */
4197 				start
4198 				  = start / UNITS_PER_WORD * UNITS_PER_WORD;
4199 				last = ((last + UNITS_PER_WORD - 1)
4200 					/ UNITS_PER_WORD * UNITS_PER_WORD);
4201 			      }
4202 
4203 			    /* Ignore the paradoxical bits.  */
4204 			    if (last > SBITMAP_SIZE (live_subregs[regno]))
4205 			      last = SBITMAP_SIZE (live_subregs[regno]);
4206 
4207 			    while (start < last)
4208 			      {
4209 				bitmap_clear_bit (live_subregs[regno], start);
4210 				start++;
4211 			      }
4212 
4213 			    if (bitmap_empty_p (live_subregs[regno]))
4214 			      {
4215 				bitmap_clear_bit (live_subregs_used, regno);
4216 				bitmap_clear_bit (live_relevant_regs, regno);
4217 			      }
4218 			    else
4219 			      /* Set live_relevant_regs here because
4220 				 that bit has to be true to get us to
4221 				 look at the live_subregs fields.  */
4222 			      bitmap_set_bit (live_relevant_regs, regno);
4223 			  }
4224 			else
4225 			  {
4226 			    /* DF_REF_PARTIAL is generated for
4227 			       subregs, STRICT_LOW_PART, and
4228 			       ZERO_EXTRACT.  We handle the subreg
4229 			       case above so here we have to keep from
4230 			       modeling the def as a killing def.  */
4231 			    if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4232 			      {
4233 				bitmap_clear_bit (live_subregs_used, regno);
4234 				bitmap_clear_bit (live_relevant_regs, regno);
4235 			      }
4236 			  }
4237 		      }
4238 		  }
4239 
4240 	      bitmap_and_compl_into (live_relevant_regs, elim_regset);
4241 	      bitmap_copy (&c->live_throughout, live_relevant_regs);
4242 
4243 	      if (NONDEBUG_INSN_P (insn))
4244 		FOR_EACH_INSN_INFO_USE (use, insn_info)
4245 		  {
4246 		    unsigned int regno = DF_REF_REGNO (use);
4247 		    rtx reg = DF_REF_REG (use);
4248 
4249 		    /* DF_REF_READ_WRITE on a use means that this use
4250 		       is fabricated from a def that is a partial set
4251 		       to a multiword reg.  Here, we only model the
4252 		       subreg case that is not wrapped in ZERO_EXTRACT
4253 		       precisely so we do not need to look at the
4254 		       fabricated use.  */
4255 		    if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4256 			&& !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4257 			&& DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4258 		      continue;
4259 
4260 		    /* Add the last use of each var to dead_or_set.  */
4261 		    if (!bitmap_bit_p (live_relevant_regs, regno))
4262 		      {
4263 			if (regno < FIRST_PSEUDO_REGISTER)
4264 			  {
4265 			    if (!fixed_regs[regno])
4266 			      bitmap_set_bit (&c->dead_or_set, regno);
4267 			  }
4268 			else if (pseudo_for_reload_consideration_p (regno))
4269 			  bitmap_set_bit (&c->dead_or_set, regno);
4270 		      }
4271 
4272 		    if (regno < FIRST_PSEUDO_REGISTER
4273 			|| pseudo_for_reload_consideration_p (regno))
4274 		      {
4275 			HOST_WIDE_INT outer_size, inner_size, start;
4276 			if (GET_CODE (reg) == SUBREG
4277 			    && !DF_REF_FLAGS_IS_SET (use,
4278 						     DF_REF_SIGN_EXTRACT
4279 						     | DF_REF_ZERO_EXTRACT)
4280 			    && get_subreg_tracking_sizes (reg, &outer_size,
4281 							  &inner_size, &start))
4282 			  {
4283 			    HOST_WIDE_INT last = start + outer_size;
4284 
4285 			    init_live_subregs
4286 			      (bitmap_bit_p (live_relevant_regs, regno),
4287 			       live_subregs, live_subregs_used, regno,
4288 			       inner_size);
4289 
4290 			    /* Ignore the paradoxical bits.  */
4291 			    if (last > SBITMAP_SIZE (live_subregs[regno]))
4292 			      last = SBITMAP_SIZE (live_subregs[regno]);
4293 
4294 			    while (start < last)
4295 			      {
4296 				bitmap_set_bit (live_subregs[regno], start);
4297 				start++;
4298 			      }
4299 			  }
4300 			else
4301 			  /* Resetting the live_subregs_used is
4302 			     effectively saying do not use the subregs
4303 			     because we are reading the whole
4304 			     pseudo.  */
4305 			  bitmap_clear_bit (live_subregs_used, regno);
4306 			bitmap_set_bit (live_relevant_regs, regno);
4307 		      }
4308 		  }
4309 	    }
4310 	}
4311 
4312       /* FIXME!! The following code is a disaster.  Reload needs to see the
4313 	 labels and jump tables that are just hanging out in between
4314 	 the basic blocks.  See pr33676.  */
4315       insn = BB_HEAD (bb);
4316 
4317       /* Skip over the barriers and cruft.  */
4318       while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4319 		      || BLOCK_FOR_INSN (insn) == bb))
4320 	insn = PREV_INSN (insn);
4321 
4322       /* While we add anything except barriers and notes, the focus is
4323 	 to get the labels and jump tables into the
4324 	 reload_insn_chain.  */
4325       while (insn)
4326 	{
4327 	  if (!NOTE_P (insn) && !BARRIER_P (insn))
4328 	    {
4329 	      if (BLOCK_FOR_INSN (insn))
4330 		break;
4331 
4332 	      c = new_insn_chain ();
4333 	      c->next = next;
4334 	      next = c;
4335 	      *p = c;
4336 	      p = &c->prev;
4337 
4338 	      /* The block makes no sense here, but it is what the old
4339 		 code did.  */
4340 	      c->block = bb->index;
4341 	      c->insn = insn;
4342 	      bitmap_copy (&c->live_throughout, live_relevant_regs);
4343 	    }
4344 	  insn = PREV_INSN (insn);
4345 	}
4346     }
4347 
4348   reload_insn_chain = c;
4349   *p = NULL;
4350 
4351   for (i = 0; i < (unsigned int) max_regno; i++)
4352     if (live_subregs[i] != NULL)
4353       sbitmap_free (live_subregs[i]);
4354   free (live_subregs);
4355 
4356   if (dump_file)
4357     print_insn_chains (dump_file);
4358 }
4359 
4360 /* Examine the rtx found in *LOC, which is read or written to as determined
4361    by TYPE.  Return false if we find a reason why an insn containing this
4362    rtx should not be moved (such as accesses to non-constant memory), true
4363    otherwise.  */
4364 static bool
4365 rtx_moveable_p (rtx *loc, enum op_type type)
4366 {
4367   const char *fmt;
4368   rtx x = *loc;
4369   enum rtx_code code = GET_CODE (x);
4370   int i, j;
4371 
4372   code = GET_CODE (x);
4373   switch (code)
4374     {
4375     case CONST:
4376     CASE_CONST_ANY:
4377     case SYMBOL_REF:
4378     case LABEL_REF:
4379       return true;
4380 
4381     case PC:
4382       return type == OP_IN;
4383 
4384     case CC0:
4385       return false;
4386 
4387     case REG:
4388       if (x == frame_pointer_rtx)
4389 	return true;
4390       if (HARD_REGISTER_P (x))
4391 	return false;
4392 
4393       return true;
4394 
4395     case MEM:
4396       if (type == OP_IN && MEM_READONLY_P (x))
4397 	return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4398       return false;
4399 
4400     case SET:
4401       return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4402 	      && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4403 
4404     case STRICT_LOW_PART:
4405       return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4406 
4407     case ZERO_EXTRACT:
4408     case SIGN_EXTRACT:
4409       return (rtx_moveable_p (&XEXP (x, 0), type)
4410 	      && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4411 	      && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4412 
4413     case CLOBBER:
4414       return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4415 
4416     case UNSPEC_VOLATILE:
4417       /* It is a bad idea to consider insns with such rtl
4418 	 as moveable ones.  The insn scheduler also considers them as barrier
4419 	 for a reason.  */
4420       return false;
4421 
4422     case ASM_OPERANDS:
4423       /* The same is true for volatile asm: it has unknown side effects, it
4424          cannot be moved at will.  */
4425       if (MEM_VOLATILE_P (x))
4426 	return false;
4427 
4428     default:
4429       break;
4430     }
4431 
4432   fmt = GET_RTX_FORMAT (code);
4433   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4434     {
4435       if (fmt[i] == 'e')
4436 	{
4437 	  if (!rtx_moveable_p (&XEXP (x, i), type))
4438 	    return false;
4439 	}
4440       else if (fmt[i] == 'E')
4441 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4442 	  {
4443 	    if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4444 	      return false;
4445 	  }
4446     }
4447   return true;
4448 }
4449 
4450 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4451    to give dominance relationships between two insns I1 and I2.  */
4452 static bool
4453 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4454 {
4455   basic_block bb1 = BLOCK_FOR_INSN (i1);
4456   basic_block bb2 = BLOCK_FOR_INSN (i2);
4457 
4458   if (bb1 == bb2)
4459     return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4460   return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4461 }
4462 
4463 /* Record the range of register numbers added by find_moveable_pseudos.  */
4464 int first_moveable_pseudo, last_moveable_pseudo;
4465 
4466 /* These two vectors hold data for every register added by
4467    find_movable_pseudos, with index 0 holding data for the
4468    first_moveable_pseudo.  */
4469 /* The original home register.  */
4470 static vec<rtx> pseudo_replaced_reg;
4471 
4472 /* Look for instances where we have an instruction that is known to increase
4473    register pressure, and whose result is not used immediately.  If it is
4474    possible to move the instruction downwards to just before its first use,
4475    split its lifetime into two ranges.  We create a new pseudo to compute the
4476    value, and emit a move instruction just before the first use.  If, after
4477    register allocation, the new pseudo remains unallocated, the function
4478    move_unallocated_pseudos then deletes the move instruction and places
4479    the computation just before the first use.
4480 
4481    Such a move is safe and profitable if all the input registers remain live
4482    and unchanged between the original computation and its first use.  In such
4483    a situation, the computation is known to increase register pressure, and
4484    moving it is known to at least not worsen it.
4485 
4486    We restrict moves to only those cases where a register remains unallocated,
4487    in order to avoid interfering too much with the instruction schedule.  As
4488    an exception, we may move insns which only modify their input register
4489    (typically induction variables), as this increases the freedom for our
4490    intended transformation, and does not limit the second instruction
4491    scheduler pass.  */
4492 
4493 static void
4494 find_moveable_pseudos (void)
4495 {
4496   unsigned i;
4497   int max_regs = max_reg_num ();
4498   int max_uid = get_max_uid ();
4499   basic_block bb;
4500   int *uid_luid = XNEWVEC (int, max_uid);
4501   rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
4502   /* A set of registers which are live but not modified throughout a block.  */
4503   bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4504 					 last_basic_block_for_fn (cfun));
4505   /* A set of registers which only exist in a given basic block.  */
4506   bitmap_head *bb_local = XNEWVEC (bitmap_head,
4507 				   last_basic_block_for_fn (cfun));
4508   /* A set of registers which are set once, in an instruction that can be
4509      moved freely downwards, but are otherwise transparent to a block.  */
4510   bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4511 					       last_basic_block_for_fn (cfun));
4512   auto_bitmap live, used, set, interesting, unusable_as_input;
4513   bitmap_iterator bi;
4514 
4515   first_moveable_pseudo = max_regs;
4516   pseudo_replaced_reg.release ();
4517   pseudo_replaced_reg.safe_grow_cleared (max_regs);
4518 
4519   df_analyze ();
4520   calculate_dominance_info (CDI_DOMINATORS);
4521 
4522   i = 0;
4523   FOR_EACH_BB_FN (bb, cfun)
4524     {
4525       rtx_insn *insn;
4526       bitmap transp = bb_transp_live + bb->index;
4527       bitmap moveable = bb_moveable_reg_sets + bb->index;
4528       bitmap local = bb_local + bb->index;
4529 
4530       bitmap_initialize (local, 0);
4531       bitmap_initialize (transp, 0);
4532       bitmap_initialize (moveable, 0);
4533       bitmap_copy (live, df_get_live_out (bb));
4534       bitmap_and_into (live, df_get_live_in (bb));
4535       bitmap_copy (transp, live);
4536       bitmap_clear (moveable);
4537       bitmap_clear (live);
4538       bitmap_clear (used);
4539       bitmap_clear (set);
4540       FOR_BB_INSNS (bb, insn)
4541 	if (NONDEBUG_INSN_P (insn))
4542 	  {
4543 	    df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4544 	    df_ref def, use;
4545 
4546 	    uid_luid[INSN_UID (insn)] = i++;
4547 
4548 	    def = df_single_def (insn_info);
4549 	    use = df_single_use (insn_info);
4550 	    if (use
4551 		&& def
4552 		&& DF_REF_REGNO (use) == DF_REF_REGNO (def)
4553 		&& !bitmap_bit_p (set, DF_REF_REGNO (use))
4554 		&& rtx_moveable_p (&PATTERN (insn), OP_IN))
4555 	      {
4556 		unsigned regno = DF_REF_REGNO (use);
4557 		bitmap_set_bit (moveable, regno);
4558 		bitmap_set_bit (set, regno);
4559 		bitmap_set_bit (used, regno);
4560 		bitmap_clear_bit (transp, regno);
4561 		continue;
4562 	      }
4563 	    FOR_EACH_INSN_INFO_USE (use, insn_info)
4564 	      {
4565 		unsigned regno = DF_REF_REGNO (use);
4566 		bitmap_set_bit (used, regno);
4567 		if (bitmap_clear_bit (moveable, regno))
4568 		  bitmap_clear_bit (transp, regno);
4569 	      }
4570 
4571 	    FOR_EACH_INSN_INFO_DEF (def, insn_info)
4572 	      {
4573 		unsigned regno = DF_REF_REGNO (def);
4574 		bitmap_set_bit (set, regno);
4575 		bitmap_clear_bit (transp, regno);
4576 		bitmap_clear_bit (moveable, regno);
4577 	      }
4578 	  }
4579     }
4580 
4581   FOR_EACH_BB_FN (bb, cfun)
4582     {
4583       bitmap local = bb_local + bb->index;
4584       rtx_insn *insn;
4585 
4586       FOR_BB_INSNS (bb, insn)
4587 	if (NONDEBUG_INSN_P (insn))
4588 	  {
4589 	    df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4590 	    rtx_insn *def_insn;
4591 	    rtx closest_use, note;
4592 	    df_ref def, use;
4593 	    unsigned regno;
4594 	    bool all_dominated, all_local;
4595 	    machine_mode mode;
4596 
4597 	    def = df_single_def (insn_info);
4598 	    /* There must be exactly one def in this insn.  */
4599 	    if (!def || !single_set (insn))
4600 	      continue;
4601 	    /* This must be the only definition of the reg.  We also limit
4602 	       which modes we deal with so that we can assume we can generate
4603 	       move instructions.  */
4604 	    regno = DF_REF_REGNO (def);
4605 	    mode = GET_MODE (DF_REF_REG (def));
4606 	    if (DF_REG_DEF_COUNT (regno) != 1
4607 		|| !DF_REF_INSN_INFO (def)
4608 		|| HARD_REGISTER_NUM_P (regno)
4609 		|| DF_REG_EQ_USE_COUNT (regno) > 0
4610 		|| (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4611 	      continue;
4612 	    def_insn = DF_REF_INSN (def);
4613 
4614 	    for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4615 	      if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4616 		break;
4617 
4618 	    if (note)
4619 	      {
4620 		if (dump_file)
4621 		  fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4622 			   regno);
4623 		bitmap_set_bit (unusable_as_input, regno);
4624 		continue;
4625 	      }
4626 
4627 	    use = DF_REG_USE_CHAIN (regno);
4628 	    all_dominated = true;
4629 	    all_local = true;
4630 	    closest_use = NULL_RTX;
4631 	    for (; use; use = DF_REF_NEXT_REG (use))
4632 	      {
4633 		rtx_insn *insn;
4634 		if (!DF_REF_INSN_INFO (use))
4635 		  {
4636 		    all_dominated = false;
4637 		    all_local = false;
4638 		    break;
4639 		  }
4640 		insn = DF_REF_INSN (use);
4641 		if (DEBUG_INSN_P (insn))
4642 		  continue;
4643 		if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4644 		  all_local = false;
4645 		if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4646 		  all_dominated = false;
4647 		if (closest_use != insn && closest_use != const0_rtx)
4648 		  {
4649 		    if (closest_use == NULL_RTX)
4650 		      closest_use = insn;
4651 		    else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4652 		      closest_use = insn;
4653 		    else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4654 		      closest_use = const0_rtx;
4655 		  }
4656 	      }
4657 	    if (!all_dominated)
4658 	      {
4659 		if (dump_file)
4660 		  fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4661 			   regno);
4662 		continue;
4663 	      }
4664 	    if (all_local)
4665 	      bitmap_set_bit (local, regno);
4666 	    if (closest_use == const0_rtx || closest_use == NULL
4667 		|| next_nonnote_nondebug_insn (def_insn) == closest_use)
4668 	      {
4669 		if (dump_file)
4670 		  fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4671 			   closest_use == const0_rtx || closest_use == NULL
4672 			   ? " (no unique first use)" : "");
4673 		continue;
4674 	      }
4675 	    if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4676 	      {
4677 		if (dump_file)
4678 		  fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4679 			   regno);
4680 		continue;
4681 	      }
4682 
4683 	    bitmap_set_bit (interesting, regno);
4684 	    /* If we get here, we know closest_use is a non-NULL insn
4685 	       (as opposed to const_0_rtx).  */
4686 	    closest_uses[regno] = as_a <rtx_insn *> (closest_use);
4687 
4688 	    if (dump_file && (all_local || all_dominated))
4689 	      {
4690 		fprintf (dump_file, "Reg %u:", regno);
4691 		if (all_local)
4692 		  fprintf (dump_file, " local to bb %d", bb->index);
4693 		if (all_dominated)
4694 		  fprintf (dump_file, " def dominates all uses");
4695 		if (closest_use != const0_rtx)
4696 		  fprintf (dump_file, " has unique first use");
4697 		fputs ("\n", dump_file);
4698 	      }
4699 	  }
4700     }
4701 
4702   EXECUTE_IF_SET_IN_BITMAP (interesting, 0, i, bi)
4703     {
4704       df_ref def = DF_REG_DEF_CHAIN (i);
4705       rtx_insn *def_insn = DF_REF_INSN (def);
4706       basic_block def_block = BLOCK_FOR_INSN (def_insn);
4707       bitmap def_bb_local = bb_local + def_block->index;
4708       bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4709       bitmap def_bb_transp = bb_transp_live + def_block->index;
4710       bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4711       rtx_insn *use_insn = closest_uses[i];
4712       df_ref use;
4713       bool all_ok = true;
4714       bool all_transp = true;
4715 
4716       if (!REG_P (DF_REF_REG (def)))
4717 	continue;
4718 
4719       if (!local_to_bb_p)
4720 	{
4721 	  if (dump_file)
4722 	    fprintf (dump_file, "Reg %u not local to one basic block\n",
4723 		     i);
4724 	  continue;
4725 	}
4726       if (reg_equiv_init (i) != NULL_RTX)
4727 	{
4728 	  if (dump_file)
4729 	    fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4730 		     i);
4731 	  continue;
4732 	}
4733       if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4734 	{
4735 	  if (dump_file)
4736 	    fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4737 		     INSN_UID (def_insn), i);
4738 	  continue;
4739 	}
4740       if (dump_file)
4741 	fprintf (dump_file, "Examining insn %d, def for %d\n",
4742 		 INSN_UID (def_insn), i);
4743       FOR_EACH_INSN_USE (use, def_insn)
4744 	{
4745 	  unsigned regno = DF_REF_REGNO (use);
4746 	  if (bitmap_bit_p (unusable_as_input, regno))
4747 	    {
4748 	      all_ok = false;
4749 	      if (dump_file)
4750 		fprintf (dump_file, "  found unusable input reg %u.\n", regno);
4751 	      break;
4752 	    }
4753 	  if (!bitmap_bit_p (def_bb_transp, regno))
4754 	    {
4755 	      if (bitmap_bit_p (def_bb_moveable, regno)
4756 		  && !control_flow_insn_p (use_insn)
4757 		  && (!HAVE_cc0 || !sets_cc0_p (use_insn)))
4758 		{
4759 		  if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4760 		    {
4761 		      rtx_insn *x = NEXT_INSN (def_insn);
4762 		      while (!modified_in_p (DF_REF_REG (use), x))
4763 			{
4764 			  gcc_assert (x != use_insn);
4765 			  x = NEXT_INSN (x);
4766 			}
4767 		      if (dump_file)
4768 			fprintf (dump_file, "  input reg %u modified but insn %d moveable\n",
4769 				 regno, INSN_UID (x));
4770 		      emit_insn_after (PATTERN (x), use_insn);
4771 		      set_insn_deleted (x);
4772 		    }
4773 		  else
4774 		    {
4775 		      if (dump_file)
4776 			fprintf (dump_file, "  input reg %u modified between def and use\n",
4777 				 regno);
4778 		      all_transp = false;
4779 		    }
4780 		}
4781 	      else
4782 		all_transp = false;
4783 	    }
4784 	}
4785       if (!all_ok)
4786 	continue;
4787       if (!dbg_cnt (ira_move))
4788 	break;
4789       if (dump_file)
4790 	fprintf (dump_file, "  all ok%s\n", all_transp ? " and transp" : "");
4791 
4792       if (all_transp)
4793 	{
4794 	  rtx def_reg = DF_REF_REG (def);
4795 	  rtx newreg = ira_create_new_reg (def_reg);
4796 	  if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
4797 	    {
4798 	      unsigned nregno = REGNO (newreg);
4799 	      emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4800 	      nregno -= max_regs;
4801 	      pseudo_replaced_reg[nregno] = def_reg;
4802 	    }
4803 	}
4804     }
4805 
4806   FOR_EACH_BB_FN (bb, cfun)
4807     {
4808       bitmap_clear (bb_local + bb->index);
4809       bitmap_clear (bb_transp_live + bb->index);
4810       bitmap_clear (bb_moveable_reg_sets + bb->index);
4811     }
4812   free (uid_luid);
4813   free (closest_uses);
4814   free (bb_local);
4815   free (bb_transp_live);
4816   free (bb_moveable_reg_sets);
4817 
4818   last_moveable_pseudo = max_reg_num ();
4819 
4820   fix_reg_equiv_init ();
4821   expand_reg_info ();
4822   regstat_free_n_sets_and_refs ();
4823   regstat_free_ri ();
4824   regstat_init_n_sets_and_refs ();
4825   regstat_compute_ri ();
4826   free_dominance_info (CDI_DOMINATORS);
4827 }
4828 
4829 /* If SET pattern SET is an assignment from a hard register to a pseudo which
4830    is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4831    the destination.  Otherwise return NULL.  */
4832 
4833 static rtx
4834 interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
4835 {
4836   rtx src = SET_SRC (set);
4837   rtx dest = SET_DEST (set);
4838   if (!REG_P (src) || !HARD_REGISTER_P (src)
4839       || !REG_P (dest) || HARD_REGISTER_P (dest)
4840       || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4841     return NULL;
4842   return dest;
4843 }
4844 
4845 /* If insn is interesting for parameter range-splitting shrink-wrapping
4846    preparation, i.e. it is a single set from a hard register to a pseudo, which
4847    is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4848    parallel statement with only one such statement, return the destination.
4849    Otherwise return NULL.  */
4850 
4851 static rtx
4852 interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
4853 {
4854   if (!INSN_P (insn))
4855     return NULL;
4856   rtx pat = PATTERN (insn);
4857   if (GET_CODE (pat) == SET)
4858     return interesting_dest_for_shprep_1 (pat, call_dom);
4859 
4860   if (GET_CODE (pat) != PARALLEL)
4861     return NULL;
4862   rtx ret = NULL;
4863   for (int i = 0; i < XVECLEN (pat, 0); i++)
4864     {
4865       rtx sub = XVECEXP (pat, 0, i);
4866       if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
4867 	continue;
4868       if (GET_CODE (sub) != SET
4869 	  || side_effects_p (sub))
4870 	return NULL;
4871       rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4872       if (dest && ret)
4873 	return NULL;
4874       if (dest)
4875 	ret = dest;
4876     }
4877   return ret;
4878 }
4879 
4880 /* Split live ranges of pseudos that are loaded from hard registers in the
4881    first BB in a BB that dominates all non-sibling call if such a BB can be
4882    found and is not in a loop.  Return true if the function has made any
4883    changes.  */
4884 
4885 static bool
4886 split_live_ranges_for_shrink_wrap (void)
4887 {
4888   basic_block bb, call_dom = NULL;
4889   basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4890   rtx_insn *insn, *last_interesting_insn = NULL;
4891   auto_bitmap need_new, reachable;
4892   vec<basic_block> queue;
4893 
4894   if (!SHRINK_WRAPPING_ENABLED)
4895     return false;
4896 
4897   queue.create (n_basic_blocks_for_fn (cfun));
4898 
4899   FOR_EACH_BB_FN (bb, cfun)
4900     FOR_BB_INSNS (bb, insn)
4901       if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4902 	{
4903 	  if (bb == first)
4904 	    {
4905 	      queue.release ();
4906 	      return false;
4907 	    }
4908 
4909 	  bitmap_set_bit (need_new, bb->index);
4910 	  bitmap_set_bit (reachable, bb->index);
4911 	  queue.quick_push (bb);
4912 	  break;
4913 	}
4914 
4915   if (queue.is_empty ())
4916     {
4917       queue.release ();
4918       return false;
4919     }
4920 
4921   while (!queue.is_empty ())
4922     {
4923       edge e;
4924       edge_iterator ei;
4925 
4926       bb = queue.pop ();
4927       FOR_EACH_EDGE (e, ei, bb->succs)
4928 	if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
4929 	    && bitmap_set_bit (reachable, e->dest->index))
4930 	  queue.quick_push (e->dest);
4931     }
4932   queue.release ();
4933 
4934   FOR_BB_INSNS (first, insn)
4935     {
4936       rtx dest = interesting_dest_for_shprep (insn, NULL);
4937       if (!dest)
4938 	continue;
4939 
4940       if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
4941 	return false;
4942 
4943       for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
4944 	   use;
4945 	   use = DF_REF_NEXT_REG (use))
4946 	{
4947 	  int ubbi = DF_REF_BB (use)->index;
4948 	  if (bitmap_bit_p (reachable, ubbi))
4949 	    bitmap_set_bit (need_new, ubbi);
4950 	}
4951       last_interesting_insn = insn;
4952     }
4953 
4954   if (!last_interesting_insn)
4955     return false;
4956 
4957   call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, need_new);
4958   if (call_dom == first)
4959     return false;
4960 
4961   loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4962   while (bb_loop_depth (call_dom) > 0)
4963     call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
4964   loop_optimizer_finalize ();
4965 
4966   if (call_dom == first)
4967     return false;
4968 
4969   calculate_dominance_info (CDI_POST_DOMINATORS);
4970   if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
4971     {
4972       free_dominance_info (CDI_POST_DOMINATORS);
4973       return false;
4974     }
4975   free_dominance_info (CDI_POST_DOMINATORS);
4976 
4977   if (dump_file)
4978     fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
4979 	     call_dom->index);
4980 
4981   bool ret = false;
4982   FOR_BB_INSNS (first, insn)
4983     {
4984       rtx dest = interesting_dest_for_shprep (insn, call_dom);
4985       if (!dest || dest == pic_offset_table_rtx)
4986 	continue;
4987 
4988       bool need_newreg = false;
4989       df_ref use, next;
4990       for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
4991 	{
4992 	  rtx_insn *uin = DF_REF_INSN (use);
4993 	  next = DF_REF_NEXT_REG (use);
4994 
4995 	  if (DEBUG_INSN_P (uin))
4996 	    continue;
4997 
4998 	  basic_block ubb = BLOCK_FOR_INSN (uin);
4999 	  if (ubb == call_dom
5000 	      || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5001 	    {
5002 	      need_newreg = true;
5003 	      break;
5004 	    }
5005 	}
5006 
5007       if (need_newreg)
5008 	{
5009 	  rtx newreg = ira_create_new_reg (dest);
5010 
5011 	  for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
5012 	    {
5013 	      rtx_insn *uin = DF_REF_INSN (use);
5014 	      next = DF_REF_NEXT_REG (use);
5015 
5016 	      basic_block ubb = BLOCK_FOR_INSN (uin);
5017 	      if (ubb == call_dom
5018 		  || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5019 		validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
5020 	    }
5021 
5022 	  rtx_insn *new_move = gen_move_insn (newreg, dest);
5023 	  emit_insn_after (new_move, bb_note (call_dom));
5024 	  if (dump_file)
5025 	    {
5026 	      fprintf (dump_file, "Split live-range of register ");
5027 	      print_rtl_single (dump_file, dest);
5028 	    }
5029 	  ret = true;
5030 	}
5031 
5032       if (insn == last_interesting_insn)
5033 	break;
5034     }
5035   apply_change_group ();
5036   return ret;
5037 }
5038 
5039 /* Perform the second half of the transformation started in
5040    find_moveable_pseudos.  We look for instances where the newly introduced
5041    pseudo remains unallocated, and remove it by moving the definition to
5042    just before its use, replacing the move instruction generated by
5043    find_moveable_pseudos.  */
5044 static void
5045 move_unallocated_pseudos (void)
5046 {
5047   int i;
5048   for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
5049     if (reg_renumber[i] < 0)
5050       {
5051 	int idx = i - first_moveable_pseudo;
5052 	rtx other_reg = pseudo_replaced_reg[idx];
5053 	rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
5054 	/* The use must follow all definitions of OTHER_REG, so we can
5055 	   insert the new definition immediately after any of them.  */
5056 	df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
5057 	rtx_insn *move_insn = DF_REF_INSN (other_def);
5058 	rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
5059 	rtx set;
5060 	int success;
5061 
5062 	if (dump_file)
5063 	  fprintf (dump_file, "moving def of %d (insn %d now) ",
5064 		   REGNO (other_reg), INSN_UID (def_insn));
5065 
5066 	delete_insn (move_insn);
5067 	while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
5068 	  delete_insn (DF_REF_INSN (other_def));
5069 	delete_insn (def_insn);
5070 
5071 	set = single_set (newinsn);
5072 	success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5073 	gcc_assert (success);
5074 	if (dump_file)
5075 	  fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5076 		   INSN_UID (newinsn), i);
5077 	SET_REG_N_REFS (i, 0);
5078       }
5079 }
5080 
5081 /* If the backend knows where to allocate pseudos for hard
5082    register initial values, register these allocations now.  */
5083 static void
5084 allocate_initial_values (void)
5085 {
5086   if (targetm.allocate_initial_value)
5087     {
5088       rtx hreg, preg, x;
5089       int i, regno;
5090 
5091       for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5092 	{
5093 	  if (! initial_value_entry (i, &hreg, &preg))
5094 	    break;
5095 
5096 	  x = targetm.allocate_initial_value (hreg);
5097 	  regno = REGNO (preg);
5098 	  if (x && REG_N_SETS (regno) <= 1)
5099 	    {
5100 	      if (MEM_P (x))
5101 		reg_equiv_memory_loc (regno) = x;
5102 	      else
5103 		{
5104 		  basic_block bb;
5105 		  int new_regno;
5106 
5107 		  gcc_assert (REG_P (x));
5108 		  new_regno = REGNO (x);
5109 		  reg_renumber[regno] = new_regno;
5110 		  /* Poke the regno right into regno_reg_rtx so that even
5111 		     fixed regs are accepted.  */
5112 		  SET_REGNO (preg, new_regno);
5113 		  /* Update global register liveness information.  */
5114 		  FOR_EACH_BB_FN (bb, cfun)
5115 		    {
5116 		      if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5117 			SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5118 		      if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5119 			SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5120 		    }
5121 		}
5122 	    }
5123 	}
5124 
5125       gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5126 						  &hreg, &preg));
5127     }
5128 }
5129 
5130 
5131 /* True when we use LRA instead of reload pass for the current
5132    function.  */
5133 bool ira_use_lra_p;
5134 
5135 /* True if we have allocno conflicts.  It is false for non-optimized
5136    mode or when the conflict table is too big.  */
5137 bool ira_conflicts_p;
5138 
5139 /* Saved between IRA and reload.  */
5140 static int saved_flag_ira_share_spill_slots;
5141 
5142 /* This is the main entry of IRA.  */
5143 static void
5144 ira (FILE *f)
5145 {
5146   bool loops_p;
5147   int ira_max_point_before_emit;
5148   bool saved_flag_caller_saves = flag_caller_saves;
5149   enum ira_region saved_flag_ira_region = flag_ira_region;
5150 
5151   clear_bb_flags ();
5152 
5153   /* Determine if the current function is a leaf before running IRA
5154      since this can impact optimizations done by the prologue and
5155      epilogue thus changing register elimination offsets.
5156      Other target callbacks may use crtl->is_leaf too, including
5157      SHRINK_WRAPPING_ENABLED, so initialize as early as possible.  */
5158   crtl->is_leaf = leaf_function_p ();
5159 
5160   /* Perform target specific PIC register initialization.  */
5161   targetm.init_pic_reg ();
5162 
5163   ira_conflicts_p = optimize > 0;
5164 
5165   /* If there are too many pseudos and/or basic blocks (e.g. 10K
5166      pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5167      use simplified and faster algorithms in LRA.  */
5168   lra_simple_p
5169     = (ira_use_lra_p
5170        && max_reg_num () >= (1 << 26) / last_basic_block_for_fn (cfun));
5171   if (lra_simple_p)
5172     {
5173       /* It permits to skip live range splitting in LRA.  */
5174       flag_caller_saves = false;
5175       /* There is no sense to do regional allocation when we use
5176 	 simplified LRA.  */
5177       flag_ira_region = IRA_REGION_ONE;
5178       ira_conflicts_p = false;
5179     }
5180 
5181 #ifndef IRA_NO_OBSTACK
5182   gcc_obstack_init (&ira_obstack);
5183 #endif
5184   bitmap_obstack_initialize (&ira_bitmap_obstack);
5185 
5186   /* LRA uses its own infrastructure to handle caller save registers.  */
5187   if (flag_caller_saves && !ira_use_lra_p)
5188     init_caller_save ();
5189 
5190   if (flag_ira_verbose < 10)
5191     {
5192       internal_flag_ira_verbose = flag_ira_verbose;
5193       ira_dump_file = f;
5194     }
5195   else
5196     {
5197       internal_flag_ira_verbose = flag_ira_verbose - 10;
5198       ira_dump_file = stderr;
5199     }
5200 
5201   setup_prohibited_mode_move_regs ();
5202   decrease_live_ranges_number ();
5203   df_note_add_problem ();
5204 
5205   /* DF_LIVE can't be used in the register allocator, too many other
5206      parts of the compiler depend on using the "classic" liveness
5207      interpretation of the DF_LR problem.  See PR38711.
5208      Remove the problem, so that we don't spend time updating it in
5209      any of the df_analyze() calls during IRA/LRA.  */
5210   if (optimize > 1)
5211     df_remove_problem (df_live);
5212   gcc_checking_assert (df_live == NULL);
5213 
5214   if (flag_checking)
5215     df->changeable_flags |= DF_VERIFY_SCHEDULED;
5216 
5217   df_analyze ();
5218 
5219   init_reg_equiv ();
5220   if (ira_conflicts_p)
5221     {
5222       calculate_dominance_info (CDI_DOMINATORS);
5223 
5224       if (split_live_ranges_for_shrink_wrap ())
5225 	df_analyze ();
5226 
5227       free_dominance_info (CDI_DOMINATORS);
5228     }
5229 
5230   df_clear_flags (DF_NO_INSN_RESCAN);
5231 
5232   indirect_jump_optimize ();
5233   if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5234     df_analyze ();
5235 
5236   regstat_init_n_sets_and_refs ();
5237   regstat_compute_ri ();
5238 
5239   /* If we are not optimizing, then this is the only place before
5240      register allocation where dataflow is done.  And that is needed
5241      to generate these warnings.  */
5242   if (warn_clobbered)
5243     generate_setjmp_warnings ();
5244 
5245   if (resize_reg_info () && flag_ira_loop_pressure)
5246     ira_set_pseudo_classes (true, ira_dump_file);
5247 
5248   init_alias_analysis ();
5249   loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5250   reg_equiv = XCNEWVEC (struct equivalence, max_reg_num ());
5251   update_equiv_regs ();
5252 
5253   /* Don't move insns if live range shrinkage or register
5254      pressure-sensitive scheduling were done because it will not
5255      improve allocation but likely worsen insn scheduling.  */
5256   if (optimize
5257       && !flag_live_range_shrinkage
5258       && !(flag_sched_pressure && flag_schedule_insns))
5259     combine_and_move_insns ();
5260 
5261   /* Gather additional equivalences with memory.  */
5262   if (optimize)
5263     add_store_equivs ();
5264 
5265   loop_optimizer_finalize ();
5266   free_dominance_info (CDI_DOMINATORS);
5267   end_alias_analysis ();
5268   free (reg_equiv);
5269 
5270   setup_reg_equiv ();
5271   grow_reg_equivs ();
5272   setup_reg_equiv_init ();
5273 
5274   allocated_reg_info_size = max_reg_num ();
5275 
5276   /* It is not worth to do such improvement when we use a simple
5277      allocation because of -O0 usage or because the function is too
5278      big.  */
5279   if (ira_conflicts_p)
5280     find_moveable_pseudos ();
5281 
5282   max_regno_before_ira = max_reg_num ();
5283   ira_setup_eliminable_regset ();
5284 
5285   ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5286   ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5287   ira_move_loops_num = ira_additional_jumps_num = 0;
5288 
5289   ira_assert (current_loops == NULL);
5290   if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5291     loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5292 
5293   if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5294     fprintf (ira_dump_file, "Building IRA IR\n");
5295   loops_p = ira_build ();
5296 
5297   ira_assert (ira_conflicts_p || !loops_p);
5298 
5299   saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5300   if (too_high_register_pressure_p () || cfun->calls_setjmp)
5301     /* It is just wasting compiler's time to pack spilled pseudos into
5302        stack slots in this case -- prohibit it.  We also do this if
5303        there is setjmp call because a variable not modified between
5304        setjmp and longjmp the compiler is required to preserve its
5305        value and sharing slots does not guarantee it.  */
5306     flag_ira_share_spill_slots = FALSE;
5307 
5308   ira_color ();
5309 
5310   ira_max_point_before_emit = ira_max_point;
5311 
5312   ira_initiate_emit_data ();
5313 
5314   ira_emit (loops_p);
5315 
5316   max_regno = max_reg_num ();
5317   if (ira_conflicts_p)
5318     {
5319       if (! loops_p)
5320 	{
5321 	  if (! ira_use_lra_p)
5322 	    ira_initiate_assign ();
5323 	}
5324       else
5325 	{
5326 	  expand_reg_info ();
5327 
5328 	  if (ira_use_lra_p)
5329 	    {
5330 	      ira_allocno_t a;
5331 	      ira_allocno_iterator ai;
5332 
5333 	      FOR_EACH_ALLOCNO (a, ai)
5334                 {
5335                   int old_regno = ALLOCNO_REGNO (a);
5336                   int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5337 
5338                   ALLOCNO_REGNO (a) = new_regno;
5339 
5340                   if (old_regno != new_regno)
5341                     setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5342                                        reg_alternate_class (old_regno),
5343                                        reg_allocno_class (old_regno));
5344                 }
5345 	    }
5346 	  else
5347 	    {
5348 	      if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5349 		fprintf (ira_dump_file, "Flattening IR\n");
5350 	      ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5351 	    }
5352 	  /* New insns were generated: add notes and recalculate live
5353 	     info.  */
5354 	  df_analyze ();
5355 
5356 	  /* ??? Rebuild the loop tree, but why?  Does the loop tree
5357 	     change if new insns were generated?  Can that be handled
5358 	     by updating the loop tree incrementally?  */
5359 	  loop_optimizer_finalize ();
5360 	  free_dominance_info (CDI_DOMINATORS);
5361 	  loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5362 			       | LOOPS_HAVE_RECORDED_EXITS);
5363 
5364 	  if (! ira_use_lra_p)
5365 	    {
5366 	      setup_allocno_assignment_flags ();
5367 	      ira_initiate_assign ();
5368 	      ira_reassign_conflict_allocnos (max_regno);
5369 	    }
5370 	}
5371     }
5372 
5373   ira_finish_emit_data ();
5374 
5375   setup_reg_renumber ();
5376 
5377   calculate_allocation_cost ();
5378 
5379 #ifdef ENABLE_IRA_CHECKING
5380   if (ira_conflicts_p && ! ira_use_lra_p)
5381     /* Opposite to reload pass, LRA does not use any conflict info
5382        from IRA.  We don't rebuild conflict info for LRA (through
5383        ira_flattening call) and can not use the check here.  We could
5384        rebuild this info for LRA in the check mode but there is a risk
5385        that code generated with the check and without it will be a bit
5386        different.  Calling ira_flattening in any mode would be a
5387        wasting CPU time.  So do not check the allocation for LRA.  */
5388     check_allocation ();
5389 #endif
5390 
5391   if (max_regno != max_regno_before_ira)
5392     {
5393       regstat_free_n_sets_and_refs ();
5394       regstat_free_ri ();
5395       regstat_init_n_sets_and_refs ();
5396       regstat_compute_ri ();
5397     }
5398 
5399   overall_cost_before = ira_overall_cost;
5400   if (! ira_conflicts_p)
5401     grow_reg_equivs ();
5402   else
5403     {
5404       fix_reg_equiv_init ();
5405 
5406 #ifdef ENABLE_IRA_CHECKING
5407       print_redundant_copies ();
5408 #endif
5409       if (! ira_use_lra_p)
5410 	{
5411 	  ira_spilled_reg_stack_slots_num = 0;
5412 	  ira_spilled_reg_stack_slots
5413 	    = ((struct ira_spilled_reg_stack_slot *)
5414 	       ira_allocate (max_regno
5415 			     * sizeof (struct ira_spilled_reg_stack_slot)));
5416 	  memset (ira_spilled_reg_stack_slots, 0,
5417 		  max_regno * sizeof (struct ira_spilled_reg_stack_slot));
5418 	}
5419     }
5420   allocate_initial_values ();
5421 
5422   /* See comment for find_moveable_pseudos call.  */
5423   if (ira_conflicts_p)
5424     move_unallocated_pseudos ();
5425 
5426   /* Restore original values.  */
5427   if (lra_simple_p)
5428     {
5429       flag_caller_saves = saved_flag_caller_saves;
5430       flag_ira_region = saved_flag_ira_region;
5431     }
5432 }
5433 
5434 static void
5435 do_reload (void)
5436 {
5437   basic_block bb;
5438   bool need_dce;
5439   unsigned pic_offset_table_regno = INVALID_REGNUM;
5440 
5441   if (flag_ira_verbose < 10)
5442     ira_dump_file = dump_file;
5443 
5444   /* If pic_offset_table_rtx is a pseudo register, then keep it so
5445      after reload to avoid possible wrong usages of hard reg assigned
5446      to it.  */
5447   if (pic_offset_table_rtx
5448       && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5449     pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5450 
5451   timevar_push (TV_RELOAD);
5452   if (ira_use_lra_p)
5453     {
5454       if (current_loops != NULL)
5455 	{
5456 	  loop_optimizer_finalize ();
5457 	  free_dominance_info (CDI_DOMINATORS);
5458 	}
5459       FOR_ALL_BB_FN (bb, cfun)
5460 	bb->loop_father = NULL;
5461       current_loops = NULL;
5462 
5463       ira_destroy ();
5464 
5465       lra (ira_dump_file);
5466       /* ???!!! Move it before lra () when we use ira_reg_equiv in
5467 	 LRA.  */
5468       vec_free (reg_equivs);
5469       reg_equivs = NULL;
5470       need_dce = false;
5471     }
5472   else
5473     {
5474       df_set_flags (DF_NO_INSN_RESCAN);
5475       build_insn_chain ();
5476 
5477       need_dce = reload (get_insns (), ira_conflicts_p);
5478     }
5479 
5480   timevar_pop (TV_RELOAD);
5481 
5482   timevar_push (TV_IRA);
5483 
5484   if (ira_conflicts_p && ! ira_use_lra_p)
5485     {
5486       ira_free (ira_spilled_reg_stack_slots);
5487       ira_finish_assign ();
5488     }
5489 
5490   if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5491       && overall_cost_before != ira_overall_cost)
5492     fprintf (ira_dump_file, "+++Overall after reload %" PRId64 "\n",
5493 	     ira_overall_cost);
5494 
5495   flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5496 
5497   if (! ira_use_lra_p)
5498     {
5499       ira_destroy ();
5500       if (current_loops != NULL)
5501 	{
5502 	  loop_optimizer_finalize ();
5503 	  free_dominance_info (CDI_DOMINATORS);
5504 	}
5505       FOR_ALL_BB_FN (bb, cfun)
5506 	bb->loop_father = NULL;
5507       current_loops = NULL;
5508 
5509       regstat_free_ri ();
5510       regstat_free_n_sets_and_refs ();
5511     }
5512 
5513   if (optimize)
5514     cleanup_cfg (CLEANUP_EXPENSIVE);
5515 
5516   finish_reg_equiv ();
5517 
5518   bitmap_obstack_release (&ira_bitmap_obstack);
5519 #ifndef IRA_NO_OBSTACK
5520   obstack_free (&ira_obstack, NULL);
5521 #endif
5522 
5523   /* The code after the reload has changed so much that at this point
5524      we might as well just rescan everything.  Note that
5525      df_rescan_all_insns is not going to help here because it does not
5526      touch the artificial uses and defs.  */
5527   df_finish_pass (true);
5528   df_scan_alloc (NULL);
5529   df_scan_blocks ();
5530 
5531   if (optimize > 1)
5532     {
5533       df_live_add_problem ();
5534       df_live_set_all_dirty ();
5535     }
5536 
5537   if (optimize)
5538     df_analyze ();
5539 
5540   if (need_dce && optimize)
5541     run_fast_dce ();
5542 
5543   /* Diagnose uses of the hard frame pointer when it is used as a global
5544      register.  Often we can get away with letting the user appropriate
5545      the frame pointer, but we should let them know when code generation
5546      makes that impossible.  */
5547   if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5548     {
5549       tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5550       error_at (DECL_SOURCE_LOCATION (current_function_decl),
5551                 "frame pointer required, but reserved");
5552       inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5553     }
5554 
5555   /* If we are doing generic stack checking, give a warning if this
5556      function's frame size is larger than we expect.  */
5557   if (flag_stack_check == GENERIC_STACK_CHECK)
5558     {
5559       poly_int64 size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
5560 
5561       for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5562 	if (df_regs_ever_live_p (i) && !fixed_regs[i] && call_used_regs[i])
5563 	  size += UNITS_PER_WORD;
5564 
5565       if (constant_lower_bound (size) > STACK_CHECK_MAX_FRAME_SIZE)
5566 	warning (0, "frame size too large for reliable stack checking");
5567     }
5568 
5569   if (pic_offset_table_regno != INVALID_REGNUM)
5570     pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
5571 
5572   timevar_pop (TV_IRA);
5573 }
5574 
5575 /* Run the integrated register allocator.  */
5576 
5577 namespace {
5578 
5579 const pass_data pass_data_ira =
5580 {
5581   RTL_PASS, /* type */
5582   "ira", /* name */
5583   OPTGROUP_NONE, /* optinfo_flags */
5584   TV_IRA, /* tv_id */
5585   0, /* properties_required */
5586   0, /* properties_provided */
5587   0, /* properties_destroyed */
5588   0, /* todo_flags_start */
5589   TODO_do_not_ggc_collect, /* todo_flags_finish */
5590 };
5591 
5592 class pass_ira : public rtl_opt_pass
5593 {
5594 public:
5595   pass_ira (gcc::context *ctxt)
5596     : rtl_opt_pass (pass_data_ira, ctxt)
5597   {}
5598 
5599   /* opt_pass methods: */
5600   virtual bool gate (function *)
5601     {
5602       return !targetm.no_register_allocation;
5603     }
5604   virtual unsigned int execute (function *)
5605     {
5606       ira (dump_file);
5607       return 0;
5608     }
5609 
5610 }; // class pass_ira
5611 
5612 } // anon namespace
5613 
5614 rtl_opt_pass *
5615 make_pass_ira (gcc::context *ctxt)
5616 {
5617   return new pass_ira (ctxt);
5618 }
5619 
5620 namespace {
5621 
5622 const pass_data pass_data_reload =
5623 {
5624   RTL_PASS, /* type */
5625   "reload", /* name */
5626   OPTGROUP_NONE, /* optinfo_flags */
5627   TV_RELOAD, /* tv_id */
5628   0, /* properties_required */
5629   0, /* properties_provided */
5630   0, /* properties_destroyed */
5631   0, /* todo_flags_start */
5632   0, /* todo_flags_finish */
5633 };
5634 
5635 class pass_reload : public rtl_opt_pass
5636 {
5637 public:
5638   pass_reload (gcc::context *ctxt)
5639     : rtl_opt_pass (pass_data_reload, ctxt)
5640   {}
5641 
5642   /* opt_pass methods: */
5643   virtual bool gate (function *)
5644     {
5645       return !targetm.no_register_allocation;
5646     }
5647   virtual unsigned int execute (function *)
5648     {
5649       do_reload ();
5650       return 0;
5651     }
5652 
5653 }; // class pass_reload
5654 
5655 } // anon namespace
5656 
5657 rtl_opt_pass *
5658 make_pass_reload (gcc::context *ctxt)
5659 {
5660   return new pass_reload (ctxt);
5661 }
5662