xref: /dragonfly/contrib/gcc-8.0/gcc/jump.c (revision 0085a56d)
1 /* Optimize jump instructions, for GNU compiler.
2    Copyright (C) 1987-2018 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 /* This is the pathetic reminder of old fame of the jump-optimization pass
21    of the compiler.  Now it contains basically a set of utility functions to
22    operate with jumps.
23 
24    Each CODE_LABEL has a count of the times it is used
25    stored in the LABEL_NUSES internal field, and each JUMP_INSN
26    has one label that it refers to stored in the
27    JUMP_LABEL internal field.  With this we can detect labels that
28    become unused because of the deletion of all the jumps that
29    formerly used them.  The JUMP_LABEL info is sometimes looked
30    at by later passes.  For return insns, it contains either a
31    RETURN or a SIMPLE_RETURN rtx.
32 
33    The subroutines redirect_jump and invert_jump are used
34    from other passes as well.  */
35 
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "backend.h"
40 #include "target.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "cfghooks.h"
44 #include "tree-pass.h"
45 #include "memmodel.h"
46 #include "tm_p.h"
47 #include "insn-config.h"
48 #include "regs.h"
49 #include "emit-rtl.h"
50 #include "recog.h"
51 #include "cfgrtl.h"
52 #include "rtl-iter.h"
53 
54 /* Optimize jump y; x: ... y: jumpif... x?
55    Don't know if it is worth bothering with.  */
56 /* Optimize two cases of conditional jump to conditional jump?
57    This can never delete any instruction or make anything dead,
58    or even change what is live at any point.
59    So perhaps let combiner do it.  */
60 
61 static void init_label_info (rtx_insn *);
62 static void mark_all_labels (rtx_insn *);
63 static void mark_jump_label_1 (rtx, rtx_insn *, bool, bool);
64 static void mark_jump_label_asm (rtx, rtx_insn *);
65 static void redirect_exp_1 (rtx *, rtx, rtx, rtx_insn *);
66 static int invert_exp_1 (rtx, rtx_insn *);
67 
68 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain.  */
69 static void
70 rebuild_jump_labels_1 (rtx_insn *f, bool count_forced)
71 {
72   timevar_push (TV_REBUILD_JUMP);
73   init_label_info (f);
74   mark_all_labels (f);
75 
76   /* Keep track of labels used from static data; we don't track them
77      closely enough to delete them here, so make sure their reference
78      count doesn't drop to zero.  */
79 
80   if (count_forced)
81     {
82       rtx_insn *insn;
83       unsigned int i;
84       FOR_EACH_VEC_SAFE_ELT (forced_labels, i, insn)
85 	if (LABEL_P (insn))
86 	  LABEL_NUSES (insn)++;
87     }
88   timevar_pop (TV_REBUILD_JUMP);
89 }
90 
91 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
92    notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
93    instructions and jumping insns that have labels as operands
94    (e.g. cbranchsi4).  */
95 void
96 rebuild_jump_labels (rtx_insn *f)
97 {
98   rebuild_jump_labels_1 (f, true);
99 }
100 
101 /* This function is like rebuild_jump_labels, but doesn't run over
102    forced_labels.  It can be used on insn chains that aren't the
103    main function chain.  */
104 void
105 rebuild_jump_labels_chain (rtx_insn *chain)
106 {
107   rebuild_jump_labels_1 (chain, false);
108 }
109 
110 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
111    non-fallthru insn.  This is not generally true, as multiple barriers
112    may have crept in, or the BARRIER may be separated from the last
113    real insn by one or more NOTEs.
114 
115    This simple pass moves barriers and removes duplicates so that the
116    old code is happy.
117  */
118 static unsigned int
119 cleanup_barriers (void)
120 {
121   rtx_insn *insn;
122   for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
123     {
124       if (BARRIER_P (insn))
125 	{
126 	  rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
127 	  if (!prev)
128 	    continue;
129 
130 	  if (BARRIER_P (prev))
131 	    delete_insn (insn);
132 	  else if (prev != PREV_INSN (insn))
133 	    {
134 	      basic_block bb = BLOCK_FOR_INSN (prev);
135 	      rtx_insn *end = PREV_INSN (insn);
136 	      reorder_insns_nobb (insn, insn, prev);
137 	      if (bb)
138 		{
139 		  /* If the backend called in machine reorg compute_bb_for_insn
140 		     and didn't free_bb_for_insn again, preserve basic block
141 		     boundaries.  Move the end of basic block to PREV since
142 		     it is followed by a barrier now, and clear BLOCK_FOR_INSN
143 		     on the following notes.
144 		     ???  Maybe the proper solution for the targets that have
145 		     cfg around after machine reorg is not to run cleanup_barriers
146 		     pass at all.  */
147 		  BB_END (bb) = prev;
148 		  do
149 		    {
150 		      prev = NEXT_INSN (prev);
151 		      if (prev != insn && BLOCK_FOR_INSN (prev) == bb)
152 			BLOCK_FOR_INSN (prev) = NULL;
153 		    }
154 		  while (prev != end);
155 		}
156 	    }
157 	}
158     }
159   return 0;
160 }
161 
162 namespace {
163 
164 const pass_data pass_data_cleanup_barriers =
165 {
166   RTL_PASS, /* type */
167   "barriers", /* name */
168   OPTGROUP_NONE, /* optinfo_flags */
169   TV_NONE, /* tv_id */
170   0, /* properties_required */
171   0, /* properties_provided */
172   0, /* properties_destroyed */
173   0, /* todo_flags_start */
174   0, /* todo_flags_finish */
175 };
176 
177 class pass_cleanup_barriers : public rtl_opt_pass
178 {
179 public:
180   pass_cleanup_barriers (gcc::context *ctxt)
181     : rtl_opt_pass (pass_data_cleanup_barriers, ctxt)
182   {}
183 
184   /* opt_pass methods: */
185   virtual unsigned int execute (function *) { return cleanup_barriers (); }
186 
187 }; // class pass_cleanup_barriers
188 
189 } // anon namespace
190 
191 rtl_opt_pass *
192 make_pass_cleanup_barriers (gcc::context *ctxt)
193 {
194   return new pass_cleanup_barriers (ctxt);
195 }
196 
197 
198 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
199    for remaining targets for JUMP_P.  Delete any REG_LABEL_OPERAND
200    notes whose labels don't occur in the insn any more.  */
201 
202 static void
203 init_label_info (rtx_insn *f)
204 {
205   rtx_insn *insn;
206 
207   for (insn = f; insn; insn = NEXT_INSN (insn))
208     {
209       if (LABEL_P (insn))
210 	LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
211 
212       /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
213 	 sticky and not reset here; that way we won't lose association
214 	 with a label when e.g. the source for a target register
215 	 disappears out of reach for targets that may use jump-target
216 	 registers.  Jump transformations are supposed to transform
217 	 any REG_LABEL_TARGET notes.  The target label reference in a
218 	 branch may disappear from the branch (and from the
219 	 instruction before it) for other reasons, like register
220 	 allocation.  */
221 
222       if (INSN_P (insn))
223 	{
224 	  rtx note, next;
225 
226 	  for (note = REG_NOTES (insn); note; note = next)
227 	    {
228 	      next = XEXP (note, 1);
229 	      if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
230 		  && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
231 		remove_note (insn, note);
232 	    }
233 	}
234     }
235 }
236 
237 /* A subroutine of mark_all_labels.  Trivially propagate a simple label
238    load into a jump_insn that uses it.  */
239 
240 static void
241 maybe_propagate_label_ref (rtx_insn *jump_insn, rtx_insn *prev_nonjump_insn)
242 {
243   rtx label_note, pc, pc_src;
244 
245   pc = pc_set (jump_insn);
246   pc_src = pc != NULL ? SET_SRC (pc) : NULL;
247   label_note = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
248 
249   /* If the previous non-jump insn sets something to a label,
250      something that this jump insn uses, make that label the primary
251      target of this insn if we don't yet have any.  That previous
252      insn must be a single_set and not refer to more than one label.
253      The jump insn must not refer to other labels as jump targets
254      and must be a plain (set (pc) ...), maybe in a parallel, and
255      may refer to the item being set only directly or as one of the
256      arms in an IF_THEN_ELSE.  */
257 
258   if (label_note != NULL && pc_src != NULL)
259     {
260       rtx label_set = single_set (prev_nonjump_insn);
261       rtx label_dest = label_set != NULL ? SET_DEST (label_set) : NULL;
262 
263       if (label_set != NULL
264 	  /* The source must be the direct LABEL_REF, not a
265 	     PLUS, UNSPEC, IF_THEN_ELSE etc.  */
266 	  && GET_CODE (SET_SRC (label_set)) == LABEL_REF
267 	  && (rtx_equal_p (label_dest, pc_src)
268 	      || (GET_CODE (pc_src) == IF_THEN_ELSE
269 		  && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
270 		      || rtx_equal_p (label_dest, XEXP (pc_src, 2))))))
271 	{
272 	  /* The CODE_LABEL referred to in the note must be the
273 	     CODE_LABEL in the LABEL_REF of the "set".  We can
274 	     conveniently use it for the marker function, which
275 	     requires a LABEL_REF wrapping.  */
276 	  gcc_assert (XEXP (label_note, 0) == label_ref_label (SET_SRC (label_set)));
277 
278 	  mark_jump_label_1 (label_set, jump_insn, false, true);
279 
280 	  gcc_assert (JUMP_LABEL (jump_insn) == XEXP (label_note, 0));
281 	}
282     }
283 }
284 
285 /* Mark the label each jump jumps to.
286    Combine consecutive labels, and count uses of labels.  */
287 
288 static void
289 mark_all_labels (rtx_insn *f)
290 {
291   rtx_insn *insn;
292 
293   if (current_ir_type () == IR_RTL_CFGLAYOUT)
294     {
295       basic_block bb;
296       FOR_EACH_BB_FN (bb, cfun)
297 	{
298 	  /* In cfglayout mode, we don't bother with trivial next-insn
299 	     propagation of LABEL_REFs into JUMP_LABEL.  This will be
300 	     handled by other optimizers using better algorithms.  */
301 	  FOR_BB_INSNS (bb, insn)
302 	    {
303 	      gcc_assert (! insn->deleted ());
304 	      if (NONDEBUG_INSN_P (insn))
305 	        mark_jump_label (PATTERN (insn), insn, 0);
306 	    }
307 
308 	  /* In cfglayout mode, there may be non-insns between the
309 	     basic blocks.  If those non-insns represent tablejump data,
310 	     they contain label references that we must record.  */
311 	  for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
312 	    if (JUMP_TABLE_DATA_P (insn))
313 	      mark_jump_label (PATTERN (insn), insn, 0);
314 	  for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
315 	    if (JUMP_TABLE_DATA_P (insn))
316 	      mark_jump_label (PATTERN (insn), insn, 0);
317 	}
318     }
319   else
320     {
321       rtx_insn *prev_nonjump_insn = NULL;
322       for (insn = f; insn; insn = NEXT_INSN (insn))
323 	{
324 	  if (insn->deleted ())
325 	    ;
326 	  else if (LABEL_P (insn))
327 	    prev_nonjump_insn = NULL;
328 	  else if (JUMP_TABLE_DATA_P (insn))
329 	    mark_jump_label (PATTERN (insn), insn, 0);
330 	  else if (NONDEBUG_INSN_P (insn))
331 	    {
332 	      mark_jump_label (PATTERN (insn), insn, 0);
333 	      if (JUMP_P (insn))
334 		{
335 		  if (JUMP_LABEL (insn) == NULL && prev_nonjump_insn != NULL)
336 		    maybe_propagate_label_ref (insn, prev_nonjump_insn);
337 		}
338 	      else
339 		prev_nonjump_insn = insn;
340 	    }
341 	}
342     }
343 }
344 
345 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
346    of reversed comparison if it is possible to do so.  Otherwise return UNKNOWN.
347    UNKNOWN may be returned in case we are having CC_MODE compare and we don't
348    know whether it's source is floating point or integer comparison.  Machine
349    description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
350    to help this function avoid overhead in these cases.  */
351 enum rtx_code
352 reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
353 				const_rtx arg1, const rtx_insn *insn)
354 {
355   machine_mode mode;
356 
357   /* If this is not actually a comparison, we can't reverse it.  */
358   if (GET_RTX_CLASS (code) != RTX_COMPARE
359       && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
360     return UNKNOWN;
361 
362   mode = GET_MODE (arg0);
363   if (mode == VOIDmode)
364     mode = GET_MODE (arg1);
365 
366   /* First see if machine description supplies us way to reverse the
367      comparison.  Give it priority over everything else to allow
368      machine description to do tricks.  */
369   if (GET_MODE_CLASS (mode) == MODE_CC
370       && REVERSIBLE_CC_MODE (mode))
371     return REVERSE_CONDITION (code, mode);
372 
373   /* Try a few special cases based on the comparison code.  */
374   switch (code)
375     {
376     case GEU:
377     case GTU:
378     case LEU:
379     case LTU:
380     case NE:
381     case EQ:
382       /* It is always safe to reverse EQ and NE, even for the floating
383 	 point.  Similarly the unsigned comparisons are never used for
384 	 floating point so we can reverse them in the default way.  */
385       return reverse_condition (code);
386     case ORDERED:
387     case UNORDERED:
388     case LTGT:
389     case UNEQ:
390       /* In case we already see unordered comparison, we can be sure to
391 	 be dealing with floating point so we don't need any more tests.  */
392       return reverse_condition_maybe_unordered (code);
393     case UNLT:
394     case UNLE:
395     case UNGT:
396     case UNGE:
397       /* We don't have safe way to reverse these yet.  */
398       return UNKNOWN;
399     default:
400       break;
401     }
402 
403   if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
404     {
405       /* Try to search for the comparison to determine the real mode.
406          This code is expensive, but with sane machine description it
407          will be never used, since REVERSIBLE_CC_MODE will return true
408          in all cases.  */
409       if (! insn)
410 	return UNKNOWN;
411 
412       /* These CONST_CAST's are okay because prev_nonnote_insn just
413 	 returns its argument and we assign it to a const_rtx
414 	 variable.  */
415       for (rtx_insn *prev = prev_nonnote_insn (const_cast<rtx_insn *> (insn));
416 	   prev != 0 && !LABEL_P (prev);
417 	   prev = prev_nonnote_insn (prev))
418 	{
419 	  const_rtx set = set_of (arg0, prev);
420 	  if (set && GET_CODE (set) == SET
421 	      && rtx_equal_p (SET_DEST (set), arg0))
422 	    {
423 	      rtx src = SET_SRC (set);
424 
425 	      if (GET_CODE (src) == COMPARE)
426 		{
427 		  rtx comparison = src;
428 		  arg0 = XEXP (src, 0);
429 		  mode = GET_MODE (arg0);
430 		  if (mode == VOIDmode)
431 		    mode = GET_MODE (XEXP (comparison, 1));
432 		  break;
433 		}
434 	      /* We can get past reg-reg moves.  This may be useful for model
435 	         of i387 comparisons that first move flag registers around.  */
436 	      if (REG_P (src))
437 		{
438 		  arg0 = src;
439 		  continue;
440 		}
441 	    }
442 	  /* If register is clobbered in some ununderstandable way,
443 	     give up.  */
444 	  if (set)
445 	    return UNKNOWN;
446 	}
447     }
448 
449   /* Test for an integer condition, or a floating-point comparison
450      in which NaNs can be ignored.  */
451   if (CONST_INT_P (arg0)
452       || (GET_MODE (arg0) != VOIDmode
453 	  && GET_MODE_CLASS (mode) != MODE_CC
454 	  && !HONOR_NANS (mode)))
455     return reverse_condition (code);
456 
457   return UNKNOWN;
458 }
459 
460 /* A wrapper around the previous function to take COMPARISON as rtx
461    expression.  This simplifies many callers.  */
462 enum rtx_code
463 reversed_comparison_code (const_rtx comparison, const rtx_insn *insn)
464 {
465   if (!COMPARISON_P (comparison))
466     return UNKNOWN;
467   return reversed_comparison_code_parts (GET_CODE (comparison),
468 					 XEXP (comparison, 0),
469 					 XEXP (comparison, 1), insn);
470 }
471 
472 /* Return comparison with reversed code of EXP.
473    Return NULL_RTX in case we fail to do the reversal.  */
474 rtx
475 reversed_comparison (const_rtx exp, machine_mode mode)
476 {
477   enum rtx_code reversed_code = reversed_comparison_code (exp, NULL);
478   if (reversed_code == UNKNOWN)
479     return NULL_RTX;
480   else
481     return simplify_gen_relational (reversed_code, mode, VOIDmode,
482                                     XEXP (exp, 0), XEXP (exp, 1));
483 }
484 
485 
486 /* Given an rtx-code for a comparison, return the code for the negated
487    comparison.  If no such code exists, return UNKNOWN.
488 
489    WATCH OUT!  reverse_condition is not safe to use on a jump that might
490    be acting on the results of an IEEE floating point comparison, because
491    of the special treatment of non-signaling nans in comparisons.
492    Use reversed_comparison_code instead.  */
493 
494 enum rtx_code
495 reverse_condition (enum rtx_code code)
496 {
497   switch (code)
498     {
499     case EQ:
500       return NE;
501     case NE:
502       return EQ;
503     case GT:
504       return LE;
505     case GE:
506       return LT;
507     case LT:
508       return GE;
509     case LE:
510       return GT;
511     case GTU:
512       return LEU;
513     case GEU:
514       return LTU;
515     case LTU:
516       return GEU;
517     case LEU:
518       return GTU;
519     case UNORDERED:
520       return ORDERED;
521     case ORDERED:
522       return UNORDERED;
523 
524     case UNLT:
525     case UNLE:
526     case UNGT:
527     case UNGE:
528     case UNEQ:
529     case LTGT:
530       return UNKNOWN;
531 
532     default:
533       gcc_unreachable ();
534     }
535 }
536 
537 /* Similar, but we're allowed to generate unordered comparisons, which
538    makes it safe for IEEE floating-point.  Of course, we have to recognize
539    that the target will support them too...  */
540 
541 enum rtx_code
542 reverse_condition_maybe_unordered (enum rtx_code code)
543 {
544   switch (code)
545     {
546     case EQ:
547       return NE;
548     case NE:
549       return EQ;
550     case GT:
551       return UNLE;
552     case GE:
553       return UNLT;
554     case LT:
555       return UNGE;
556     case LE:
557       return UNGT;
558     case LTGT:
559       return UNEQ;
560     case UNORDERED:
561       return ORDERED;
562     case ORDERED:
563       return UNORDERED;
564     case UNLT:
565       return GE;
566     case UNLE:
567       return GT;
568     case UNGT:
569       return LE;
570     case UNGE:
571       return LT;
572     case UNEQ:
573       return LTGT;
574 
575     default:
576       gcc_unreachable ();
577     }
578 }
579 
580 /* Similar, but return the code when two operands of a comparison are swapped.
581    This IS safe for IEEE floating-point.  */
582 
583 enum rtx_code
584 swap_condition (enum rtx_code code)
585 {
586   switch (code)
587     {
588     case EQ:
589     case NE:
590     case UNORDERED:
591     case ORDERED:
592     case UNEQ:
593     case LTGT:
594       return code;
595 
596     case GT:
597       return LT;
598     case GE:
599       return LE;
600     case LT:
601       return GT;
602     case LE:
603       return GE;
604     case GTU:
605       return LTU;
606     case GEU:
607       return LEU;
608     case LTU:
609       return GTU;
610     case LEU:
611       return GEU;
612     case UNLT:
613       return UNGT;
614     case UNLE:
615       return UNGE;
616     case UNGT:
617       return UNLT;
618     case UNGE:
619       return UNLE;
620 
621     default:
622       gcc_unreachable ();
623     }
624 }
625 
626 /* Given a comparison CODE, return the corresponding unsigned comparison.
627    If CODE is an equality comparison or already an unsigned comparison,
628    CODE is returned.  */
629 
630 enum rtx_code
631 unsigned_condition (enum rtx_code code)
632 {
633   switch (code)
634     {
635     case EQ:
636     case NE:
637     case GTU:
638     case GEU:
639     case LTU:
640     case LEU:
641       return code;
642 
643     case GT:
644       return GTU;
645     case GE:
646       return GEU;
647     case LT:
648       return LTU;
649     case LE:
650       return LEU;
651 
652     default:
653       gcc_unreachable ();
654     }
655 }
656 
657 /* Similarly, return the signed version of a comparison.  */
658 
659 enum rtx_code
660 signed_condition (enum rtx_code code)
661 {
662   switch (code)
663     {
664     case EQ:
665     case NE:
666     case GT:
667     case GE:
668     case LT:
669     case LE:
670       return code;
671 
672     case GTU:
673       return GT;
674     case GEU:
675       return GE;
676     case LTU:
677       return LT;
678     case LEU:
679       return LE;
680 
681     default:
682       gcc_unreachable ();
683     }
684 }
685 
686 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
687    truth of CODE1 implies the truth of CODE2.  */
688 
689 int
690 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
691 {
692   /* UNKNOWN comparison codes can happen as a result of trying to revert
693      comparison codes.
694      They can't match anything, so we have to reject them here.  */
695   if (code1 == UNKNOWN || code2 == UNKNOWN)
696     return 0;
697 
698   if (code1 == code2)
699     return 1;
700 
701   switch (code1)
702     {
703     case UNEQ:
704       if (code2 == UNLE || code2 == UNGE)
705 	return 1;
706       break;
707 
708     case EQ:
709       if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
710 	  || code2 == ORDERED)
711 	return 1;
712       break;
713 
714     case UNLT:
715       if (code2 == UNLE || code2 == NE)
716 	return 1;
717       break;
718 
719     case LT:
720       if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
721 	return 1;
722       break;
723 
724     case UNGT:
725       if (code2 == UNGE || code2 == NE)
726 	return 1;
727       break;
728 
729     case GT:
730       if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
731 	return 1;
732       break;
733 
734     case GE:
735     case LE:
736       if (code2 == ORDERED)
737 	return 1;
738       break;
739 
740     case LTGT:
741       if (code2 == NE || code2 == ORDERED)
742 	return 1;
743       break;
744 
745     case LTU:
746       if (code2 == LEU || code2 == NE)
747 	return 1;
748       break;
749 
750     case GTU:
751       if (code2 == GEU || code2 == NE)
752 	return 1;
753       break;
754 
755     case UNORDERED:
756       if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
757 	  || code2 == UNGE || code2 == UNGT)
758 	return 1;
759       break;
760 
761     default:
762       break;
763     }
764 
765   return 0;
766 }
767 
768 /* Return 1 if INSN is an unconditional jump and nothing else.  */
769 
770 int
771 simplejump_p (const rtx_insn *insn)
772 {
773   return (JUMP_P (insn)
774 	  && GET_CODE (PATTERN (insn)) == SET
775 	  && GET_CODE (SET_DEST (PATTERN (insn))) == PC
776 	  && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
777 }
778 
779 /* Return nonzero if INSN is a (possibly) conditional jump
780    and nothing more.
781 
782    Use of this function is deprecated, since we need to support combined
783    branch and compare insns.  Use any_condjump_p instead whenever possible.  */
784 
785 int
786 condjump_p (const rtx_insn *insn)
787 {
788   const_rtx x = PATTERN (insn);
789 
790   if (GET_CODE (x) != SET
791       || GET_CODE (SET_DEST (x)) != PC)
792     return 0;
793 
794   x = SET_SRC (x);
795   if (GET_CODE (x) == LABEL_REF)
796     return 1;
797   else
798     return (GET_CODE (x) == IF_THEN_ELSE
799 	    && ((GET_CODE (XEXP (x, 2)) == PC
800 		 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
801 		     || ANY_RETURN_P (XEXP (x, 1))))
802 		|| (GET_CODE (XEXP (x, 1)) == PC
803 		    && (GET_CODE (XEXP (x, 2)) == LABEL_REF
804 			|| ANY_RETURN_P (XEXP (x, 2))))));
805 }
806 
807 /* Return nonzero if INSN is a (possibly) conditional jump inside a
808    PARALLEL.
809 
810    Use this function is deprecated, since we need to support combined
811    branch and compare insns.  Use any_condjump_p instead whenever possible.  */
812 
813 int
814 condjump_in_parallel_p (const rtx_insn *insn)
815 {
816   const_rtx x = PATTERN (insn);
817 
818   if (GET_CODE (x) != PARALLEL)
819     return 0;
820   else
821     x = XVECEXP (x, 0, 0);
822 
823   if (GET_CODE (x) != SET)
824     return 0;
825   if (GET_CODE (SET_DEST (x)) != PC)
826     return 0;
827   if (GET_CODE (SET_SRC (x)) == LABEL_REF)
828     return 1;
829   if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
830     return 0;
831   if (XEXP (SET_SRC (x), 2) == pc_rtx
832       && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
833 	  || ANY_RETURN_P (XEXP (SET_SRC (x), 1))))
834     return 1;
835   if (XEXP (SET_SRC (x), 1) == pc_rtx
836       && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
837 	  || ANY_RETURN_P (XEXP (SET_SRC (x), 2))))
838     return 1;
839   return 0;
840 }
841 
842 /* Return set of PC, otherwise NULL.  */
843 
844 rtx
845 pc_set (const rtx_insn *insn)
846 {
847   rtx pat;
848   if (!JUMP_P (insn))
849     return NULL_RTX;
850   pat = PATTERN (insn);
851 
852   /* The set is allowed to appear either as the insn pattern or
853      the first set in a PARALLEL.  */
854   if (GET_CODE (pat) == PARALLEL)
855     pat = XVECEXP (pat, 0, 0);
856   if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
857     return pat;
858 
859   return NULL_RTX;
860 }
861 
862 /* Return true when insn is an unconditional direct jump,
863    possibly bundled inside a PARALLEL.  */
864 
865 int
866 any_uncondjump_p (const rtx_insn *insn)
867 {
868   const_rtx x = pc_set (insn);
869   if (!x)
870     return 0;
871   if (GET_CODE (SET_SRC (x)) != LABEL_REF)
872     return 0;
873   if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
874     return 0;
875   return 1;
876 }
877 
878 /* Return true when insn is a conditional jump.  This function works for
879    instructions containing PC sets in PARALLELs.  The instruction may have
880    various other effects so before removing the jump you must verify
881    onlyjump_p.
882 
883    Note that unlike condjump_p it returns false for unconditional jumps.  */
884 
885 int
886 any_condjump_p (const rtx_insn *insn)
887 {
888   const_rtx x = pc_set (insn);
889   enum rtx_code a, b;
890 
891   if (!x)
892     return 0;
893   if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
894     return 0;
895 
896   a = GET_CODE (XEXP (SET_SRC (x), 1));
897   b = GET_CODE (XEXP (SET_SRC (x), 2));
898 
899   return ((b == PC && (a == LABEL_REF || a == RETURN || a == SIMPLE_RETURN))
900 	  || (a == PC
901 	      && (b == LABEL_REF || b == RETURN || b == SIMPLE_RETURN)));
902 }
903 
904 /* Return the label of a conditional jump.  */
905 
906 rtx
907 condjump_label (const rtx_insn *insn)
908 {
909   rtx x = pc_set (insn);
910 
911   if (!x)
912     return NULL_RTX;
913   x = SET_SRC (x);
914   if (GET_CODE (x) == LABEL_REF)
915     return x;
916   if (GET_CODE (x) != IF_THEN_ELSE)
917     return NULL_RTX;
918   if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
919     return XEXP (x, 1);
920   if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
921     return XEXP (x, 2);
922   return NULL_RTX;
923 }
924 
925 /* Return TRUE if INSN is a return jump.  */
926 
927 int
928 returnjump_p (const rtx_insn *insn)
929 {
930   if (JUMP_P (insn))
931     {
932       subrtx_iterator::array_type array;
933       FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
934 	{
935 	  const_rtx x = *iter;
936 	  switch (GET_CODE (x))
937 	    {
938 	    case RETURN:
939 	    case SIMPLE_RETURN:
940 	    case EH_RETURN:
941 	      return true;
942 
943 	    case SET:
944 	      if (SET_IS_RETURN_P (x))
945 		return true;
946 	      break;
947 
948 	    default:
949 	      break;
950 	    }
951 	}
952     }
953   return false;
954 }
955 
956 /* Return true if INSN is a (possibly conditional) return insn.  */
957 
958 int
959 eh_returnjump_p (rtx_insn *insn)
960 {
961   if (JUMP_P (insn))
962     {
963       subrtx_iterator::array_type array;
964       FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
965 	if (GET_CODE (*iter) == EH_RETURN)
966 	  return true;
967     }
968   return false;
969 }
970 
971 /* Return true if INSN is a jump that only transfers control and
972    nothing more.  */
973 
974 int
975 onlyjump_p (const rtx_insn *insn)
976 {
977   rtx set;
978 
979   if (!JUMP_P (insn))
980     return 0;
981 
982   set = single_set (insn);
983   if (set == NULL)
984     return 0;
985   if (GET_CODE (SET_DEST (set)) != PC)
986     return 0;
987   if (side_effects_p (SET_SRC (set)))
988     return 0;
989 
990   return 1;
991 }
992 
993 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
994    NULL or a return.  */
995 bool
996 jump_to_label_p (const rtx_insn *insn)
997 {
998   return (JUMP_P (insn)
999 	  && JUMP_LABEL (insn) != NULL && !ANY_RETURN_P (JUMP_LABEL (insn)));
1000 }
1001 
1002 /* Return nonzero if X is an RTX that only sets the condition codes
1003    and has no side effects.  */
1004 
1005 int
1006 only_sets_cc0_p (const_rtx x)
1007 {
1008   if (! x)
1009     return 0;
1010 
1011   if (INSN_P (x))
1012     x = PATTERN (x);
1013 
1014   return sets_cc0_p (x) == 1 && ! side_effects_p (x);
1015 }
1016 
1017 /* Return 1 if X is an RTX that does nothing but set the condition codes
1018    and CLOBBER or USE registers.
1019    Return -1 if X does explicitly set the condition codes,
1020    but also does other things.  */
1021 
1022 int
1023 sets_cc0_p (const_rtx x)
1024 {
1025   if (! x)
1026     return 0;
1027 
1028   if (INSN_P (x))
1029     x = PATTERN (x);
1030 
1031   if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
1032     return 1;
1033   if (GET_CODE (x) == PARALLEL)
1034     {
1035       int i;
1036       int sets_cc0 = 0;
1037       int other_things = 0;
1038       for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1039 	{
1040 	  if (GET_CODE (XVECEXP (x, 0, i)) == SET
1041 	      && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
1042 	    sets_cc0 = 1;
1043 	  else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
1044 	    other_things = 1;
1045 	}
1046       return ! sets_cc0 ? 0 : other_things ? -1 : 1;
1047     }
1048   return 0;
1049 }
1050 
1051 /* Find all CODE_LABELs referred to in X, and increment their use
1052    counts.  If INSN is a JUMP_INSN and there is at least one
1053    CODE_LABEL referenced in INSN as a jump target, then store the last
1054    one in JUMP_LABEL (INSN).  For a tablejump, this must be the label
1055    for the ADDR_VEC.  Store any other jump targets as REG_LABEL_TARGET
1056    notes.  If INSN is an INSN or a CALL_INSN or non-target operands of
1057    a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1058    INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1059    For returnjumps, the JUMP_LABEL will also be set as appropriate.
1060 
1061    Note that two labels separated by a loop-beginning note
1062    must be kept distinct if we have not yet done loop-optimization,
1063    because the gap between them is where loop-optimize
1064    will want to move invariant code to.  CROSS_JUMP tells us
1065    that loop-optimization is done with.  */
1066 
1067 void
1068 mark_jump_label (rtx x, rtx_insn *insn, int in_mem)
1069 {
1070   rtx asmop = extract_asm_operands (x);
1071   if (asmop)
1072     mark_jump_label_asm (asmop, insn);
1073   else
1074     mark_jump_label_1 (x, insn, in_mem != 0,
1075 		       (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
1076 }
1077 
1078 /* Worker function for mark_jump_label.  IN_MEM is TRUE when X occurs
1079    within a (MEM ...).  IS_TARGET is TRUE when X is to be treated as a
1080    jump-target; when the JUMP_LABEL field of INSN should be set or a
1081    REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1082    note.  */
1083 
1084 static void
1085 mark_jump_label_1 (rtx x, rtx_insn *insn, bool in_mem, bool is_target)
1086 {
1087   RTX_CODE code = GET_CODE (x);
1088   int i;
1089   const char *fmt;
1090 
1091   switch (code)
1092     {
1093     case PC:
1094     case CC0:
1095     case REG:
1096     case CLOBBER:
1097     case CALL:
1098       return;
1099 
1100     case RETURN:
1101     case SIMPLE_RETURN:
1102       if (is_target)
1103 	{
1104 	  gcc_assert (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == x);
1105 	  JUMP_LABEL (insn) = x;
1106 	}
1107       return;
1108 
1109     case MEM:
1110       in_mem = true;
1111       break;
1112 
1113     case SEQUENCE:
1114       {
1115 	rtx_sequence *seq = as_a <rtx_sequence *> (x);
1116 	for (i = 0; i < seq->len (); i++)
1117 	  mark_jump_label (PATTERN (seq->insn (i)),
1118 			   seq->insn (i), 0);
1119       }
1120       return;
1121 
1122     case SYMBOL_REF:
1123       if (!in_mem)
1124 	return;
1125 
1126       /* If this is a constant-pool reference, see if it is a label.  */
1127       if (CONSTANT_POOL_ADDRESS_P (x))
1128 	mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
1129       break;
1130 
1131       /* Handle operands in the condition of an if-then-else as for a
1132 	 non-jump insn.  */
1133     case IF_THEN_ELSE:
1134       if (!is_target)
1135 	break;
1136       mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1137       mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1138       mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1139       return;
1140 
1141     case LABEL_REF:
1142       {
1143 	rtx_insn *label = label_ref_label (x);
1144 
1145 	/* Ignore remaining references to unreachable labels that
1146 	   have been deleted.  */
1147 	if (NOTE_P (label)
1148 	    && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
1149 	  break;
1150 
1151 	gcc_assert (LABEL_P (label));
1152 
1153 	/* Ignore references to labels of containing functions.  */
1154 	if (LABEL_REF_NONLOCAL_P (x))
1155 	  break;
1156 
1157 	set_label_ref_label (x, label);
1158 	if (! insn || ! insn->deleted ())
1159 	  ++LABEL_NUSES (label);
1160 
1161 	if (insn)
1162 	  {
1163 	    if (is_target
1164 		/* Do not change a previous setting of JUMP_LABEL.  If the
1165 		   JUMP_LABEL slot is occupied by a different label,
1166 		   create a note for this label.  */
1167 		&& (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
1168 	      JUMP_LABEL (insn) = label;
1169 	    else
1170 	      {
1171 		enum reg_note kind
1172 		  = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1173 
1174 		/* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1175 		   for LABEL unless there already is one.  All uses of
1176 		   a label, except for the primary target of a jump,
1177 		   must have such a note.  */
1178 		if (! find_reg_note (insn, kind, label))
1179 		  add_reg_note (insn, kind, label);
1180 	      }
1181 	  }
1182 	return;
1183       }
1184 
1185     /* Do walk the labels in a vector, but not the first operand of an
1186        ADDR_DIFF_VEC.  Don't set the JUMP_LABEL of a vector.  */
1187     case ADDR_VEC:
1188     case ADDR_DIFF_VEC:
1189       if (! insn->deleted ())
1190 	{
1191 	  int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1192 
1193 	  for (i = 0; i < XVECLEN (x, eltnum); i++)
1194 	    mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL, in_mem,
1195 			       is_target);
1196 	}
1197       return;
1198 
1199     default:
1200       break;
1201     }
1202 
1203   fmt = GET_RTX_FORMAT (code);
1204 
1205   /* The primary target of a tablejump is the label of the ADDR_VEC,
1206      which is canonically mentioned *last* in the insn.  To get it
1207      marked as JUMP_LABEL, we iterate over items in reverse order.  */
1208   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1209     {
1210       if (fmt[i] == 'e')
1211 	mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
1212       else if (fmt[i] == 'E')
1213 	{
1214 	  int j;
1215 
1216 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1217 	    mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1218 			       is_target);
1219 	}
1220     }
1221 }
1222 
1223 /* Worker function for mark_jump_label.  Handle asm insns specially.
1224    In particular, output operands need not be considered so we can
1225    avoid re-scanning the replicated asm_operand.  Also, the asm_labels
1226    need to be considered targets.  */
1227 
1228 static void
1229 mark_jump_label_asm (rtx asmop, rtx_insn *insn)
1230 {
1231   int i;
1232 
1233   for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
1234     mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
1235 
1236   for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
1237     mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
1238 }
1239 
1240 /* Delete insn INSN from the chain of insns and update label ref counts
1241    and delete insns now unreachable.
1242 
1243    Returns the first insn after INSN that was not deleted.
1244 
1245    Usage of this instruction is deprecated.  Use delete_insn instead and
1246    subsequent cfg_cleanup pass to delete unreachable code if needed.  */
1247 
1248 rtx_insn *
1249 delete_related_insns (rtx uncast_insn)
1250 {
1251   rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
1252   int was_code_label = (LABEL_P (insn));
1253   rtx note;
1254   rtx_insn *next = NEXT_INSN (insn), *prev = PREV_INSN (insn);
1255 
1256   while (next && next->deleted ())
1257     next = NEXT_INSN (next);
1258 
1259   /* This insn is already deleted => return first following nondeleted.  */
1260   if (insn->deleted ())
1261     return next;
1262 
1263   delete_insn (insn);
1264 
1265   /* If instruction is followed by a barrier,
1266      delete the barrier too.  */
1267 
1268   if (next != 0 && BARRIER_P (next))
1269     delete_insn (next);
1270 
1271   /* If deleting a jump, decrement the count of the label,
1272      and delete the label if it is now unused.  */
1273 
1274   if (jump_to_label_p (insn))
1275     {
1276       rtx lab = JUMP_LABEL (insn);
1277       rtx_jump_table_data *lab_next;
1278 
1279       if (LABEL_NUSES (lab) == 0)
1280 	/* This can delete NEXT or PREV,
1281 	   either directly if NEXT is JUMP_LABEL (INSN),
1282 	   or indirectly through more levels of jumps.  */
1283 	delete_related_insns (lab);
1284       else if (tablejump_p (insn, NULL, &lab_next))
1285 	{
1286 	  /* If we're deleting the tablejump, delete the dispatch table.
1287 	     We may not be able to kill the label immediately preceding
1288 	     just yet, as it might be referenced in code leading up to
1289 	     the tablejump.  */
1290 	  delete_related_insns (lab_next);
1291 	}
1292     }
1293 
1294   /* Likewise if we're deleting a dispatch table.  */
1295 
1296   if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
1297     {
1298       rtvec labels = table->get_labels ();
1299       int i;
1300       int len = GET_NUM_ELEM (labels);
1301 
1302       for (i = 0; i < len; i++)
1303 	if (LABEL_NUSES (XEXP (RTVEC_ELT (labels, i), 0)) == 0)
1304 	  delete_related_insns (XEXP (RTVEC_ELT (labels, i), 0));
1305       while (next && next->deleted ())
1306 	next = NEXT_INSN (next);
1307       return next;
1308     }
1309 
1310   /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1311      REG_LABEL_OPERAND or REG_LABEL_TARGET note.  */
1312   if (INSN_P (insn))
1313     for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1314       if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1315 	   || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
1316 	  /* This could also be a NOTE_INSN_DELETED_LABEL note.  */
1317 	  && LABEL_P (XEXP (note, 0)))
1318 	if (LABEL_NUSES (XEXP (note, 0)) == 0)
1319 	  delete_related_insns (XEXP (note, 0));
1320 
1321   while (prev && (prev->deleted () || NOTE_P (prev)))
1322     prev = PREV_INSN (prev);
1323 
1324   /* If INSN was a label and a dispatch table follows it,
1325      delete the dispatch table.  The tablejump must have gone already.
1326      It isn't useful to fall through into a table.  */
1327 
1328   if (was_code_label
1329       && NEXT_INSN (insn) != 0
1330       && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
1331     next = delete_related_insns (NEXT_INSN (insn));
1332 
1333   /* If INSN was a label, delete insns following it if now unreachable.  */
1334 
1335   if (was_code_label && prev && BARRIER_P (prev))
1336     {
1337       enum rtx_code code;
1338       while (next)
1339 	{
1340 	  code = GET_CODE (next);
1341 	  if (code == NOTE)
1342 	    next = NEXT_INSN (next);
1343 	  /* Keep going past other deleted labels to delete what follows.  */
1344 	  else if (code == CODE_LABEL && next->deleted ())
1345 	    next = NEXT_INSN (next);
1346 	  /* Keep the (use (insn))s created by dbr_schedule, which needs
1347 	     them in order to track liveness relative to a previous
1348 	     barrier.  */
1349 	  else if (INSN_P (next)
1350 		   && GET_CODE (PATTERN (next)) == USE
1351 		   && INSN_P (XEXP (PATTERN (next), 0)))
1352 	    next = NEXT_INSN (next);
1353 	  else if (code == BARRIER || INSN_P (next))
1354 	    /* Note: if this deletes a jump, it can cause more
1355 	       deletion of unreachable code, after a different label.
1356 	       As long as the value from this recursive call is correct,
1357 	       this invocation functions correctly.  */
1358 	    next = delete_related_insns (next);
1359 	  else
1360 	    break;
1361 	}
1362     }
1363 
1364   /* I feel a little doubtful about this loop,
1365      but I see no clean and sure alternative way
1366      to find the first insn after INSN that is not now deleted.
1367      I hope this works.  */
1368   while (next && next->deleted ())
1369     next = NEXT_INSN (next);
1370   return next;
1371 }
1372 
1373 /* Delete a range of insns from FROM to TO, inclusive.
1374    This is for the sake of peephole optimization, so assume
1375    that whatever these insns do will still be done by a new
1376    peephole insn that will replace them.  */
1377 
1378 void
1379 delete_for_peephole (rtx_insn *from, rtx_insn *to)
1380 {
1381   rtx_insn *insn = from;
1382 
1383   while (1)
1384     {
1385       rtx_insn *next = NEXT_INSN (insn);
1386       rtx_insn *prev = PREV_INSN (insn);
1387 
1388       if (!NOTE_P (insn))
1389 	{
1390 	  insn->set_deleted();
1391 
1392 	  /* Patch this insn out of the chain.  */
1393 	  /* We don't do this all at once, because we
1394 	     must preserve all NOTEs.  */
1395 	  if (prev)
1396 	    SET_NEXT_INSN (prev) = next;
1397 
1398 	  if (next)
1399 	    SET_PREV_INSN (next) = prev;
1400 	}
1401 
1402       if (insn == to)
1403 	break;
1404       insn = next;
1405     }
1406 
1407   /* Note that if TO is an unconditional jump
1408      we *do not* delete the BARRIER that follows,
1409      since the peephole that replaces this sequence
1410      is also an unconditional jump in that case.  */
1411 }
1412 
1413 /* A helper function for redirect_exp_1; examines its input X and returns
1414    either a LABEL_REF around a label, or a RETURN if X was NULL.  */
1415 static rtx
1416 redirect_target (rtx x)
1417 {
1418   if (x == NULL_RTX)
1419     return ret_rtx;
1420   if (!ANY_RETURN_P (x))
1421     return gen_rtx_LABEL_REF (Pmode, x);
1422   return x;
1423 }
1424 
1425 /* Throughout LOC, redirect OLABEL to NLABEL.  Treat null OLABEL or
1426    NLABEL as a return.  Accrue modifications into the change group.  */
1427 
1428 static void
1429 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx_insn *insn)
1430 {
1431   rtx x = *loc;
1432   RTX_CODE code = GET_CODE (x);
1433   int i;
1434   const char *fmt;
1435 
1436   if ((code == LABEL_REF && label_ref_label (x) == olabel)
1437       || x == olabel)
1438     {
1439       x = redirect_target (nlabel);
1440       if (GET_CODE (x) == LABEL_REF && loc == &PATTERN (insn))
1441  	x = gen_rtx_SET (pc_rtx, x);
1442       validate_change (insn, loc, x, 1);
1443       return;
1444     }
1445 
1446   if (code == SET && SET_DEST (x) == pc_rtx
1447       && ANY_RETURN_P (nlabel)
1448       && GET_CODE (SET_SRC (x)) == LABEL_REF
1449       && label_ref_label (SET_SRC (x)) == olabel)
1450     {
1451       validate_change (insn, loc, nlabel, 1);
1452       return;
1453     }
1454 
1455   if (code == IF_THEN_ELSE)
1456     {
1457       /* Skip the condition of an IF_THEN_ELSE.  We only want to
1458          change jump destinations, not eventual label comparisons.  */
1459       redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1460       redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1461       return;
1462     }
1463 
1464   fmt = GET_RTX_FORMAT (code);
1465   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1466     {
1467       if (fmt[i] == 'e')
1468 	redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1469       else if (fmt[i] == 'E')
1470 	{
1471 	  int j;
1472 	  for (j = 0; j < XVECLEN (x, i); j++)
1473 	    redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1474 	}
1475     }
1476 }
1477 
1478 /* Make JUMP go to NLABEL instead of where it jumps now.  Accrue
1479    the modifications into the change group.  Return false if we did
1480    not see how to do that.  */
1481 
1482 int
1483 redirect_jump_1 (rtx_insn *jump, rtx nlabel)
1484 {
1485   int ochanges = num_validated_changes ();
1486   rtx *loc, asmop;
1487 
1488   gcc_assert (nlabel != NULL_RTX);
1489   asmop = extract_asm_operands (PATTERN (jump));
1490   if (asmop)
1491     {
1492       if (nlabel == NULL)
1493 	return 0;
1494       gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
1495       loc = &ASM_OPERANDS_LABEL (asmop, 0);
1496     }
1497   else if (GET_CODE (PATTERN (jump)) == PARALLEL)
1498     loc = &XVECEXP (PATTERN (jump), 0, 0);
1499   else
1500     loc = &PATTERN (jump);
1501 
1502   redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1503   return num_validated_changes () > ochanges;
1504 }
1505 
1506 /* Make JUMP go to NLABEL instead of where it jumps now.  If the old
1507    jump target label is unused as a result, it and the code following
1508    it may be deleted.
1509 
1510    Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1511    in that case we are to turn the jump into a (possibly conditional)
1512    return insn.
1513 
1514    The return value will be 1 if the change was made, 0 if it wasn't
1515    (this can only occur when trying to produce return insns).  */
1516 
1517 int
1518 redirect_jump (rtx_jump_insn *jump, rtx nlabel, int delete_unused)
1519 {
1520   rtx olabel = jump->jump_label ();
1521 
1522   if (!nlabel)
1523     {
1524       /* If there is no label, we are asked to redirect to the EXIT block.
1525 	 When before the epilogue is emitted, return/simple_return cannot be
1526 	 created so we return 0 immediately.  After the epilogue is emitted,
1527 	 we always expect a label, either a non-null label, or a
1528 	 return/simple_return RTX.  */
1529 
1530       if (!epilogue_completed)
1531 	return 0;
1532       gcc_unreachable ();
1533     }
1534 
1535   if (nlabel == olabel)
1536     return 1;
1537 
1538   if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1539     return 0;
1540 
1541   redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1542   return 1;
1543 }
1544 
1545 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1546    NLABEL in JUMP.
1547    If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1548    count has dropped to zero.  */
1549 void
1550 redirect_jump_2 (rtx_jump_insn *jump, rtx olabel, rtx nlabel, int delete_unused,
1551 		 int invert)
1552 {
1553   rtx note;
1554 
1555   gcc_assert (JUMP_LABEL (jump) == olabel);
1556 
1557   /* Negative DELETE_UNUSED used to be used to signalize behavior on
1558      moving FUNCTION_END note.  Just sanity check that no user still worry
1559      about this.  */
1560   gcc_assert (delete_unused >= 0);
1561   JUMP_LABEL (jump) = nlabel;
1562   if (!ANY_RETURN_P (nlabel))
1563     ++LABEL_NUSES (nlabel);
1564 
1565   /* Update labels in any REG_EQUAL note.  */
1566   if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1567     {
1568       if (ANY_RETURN_P (nlabel)
1569 	  || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1570 	remove_note (jump, note);
1571       else
1572 	{
1573 	  redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1574 	  confirm_change_group ();
1575 	}
1576     }
1577 
1578   /* Handle the case where we had a conditional crossing jump to a return
1579      label and are now changing it into a direct conditional return.
1580      The jump is no longer crossing in that case.  */
1581   if (ANY_RETURN_P (nlabel))
1582     CROSSING_JUMP_P (jump) = 0;
1583 
1584   if (!ANY_RETURN_P (olabel)
1585       && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1586       /* Undefined labels will remain outside the insn stream.  */
1587       && INSN_UID (olabel))
1588     delete_related_insns (olabel);
1589   if (invert)
1590     invert_br_probabilities (jump);
1591 }
1592 
1593 /* Invert the jump condition X contained in jump insn INSN.  Accrue the
1594    modifications into the change group.  Return nonzero for success.  */
1595 static int
1596 invert_exp_1 (rtx x, rtx_insn *insn)
1597 {
1598   RTX_CODE code = GET_CODE (x);
1599 
1600   if (code == IF_THEN_ELSE)
1601     {
1602       rtx comp = XEXP (x, 0);
1603       rtx tem;
1604       enum rtx_code reversed_code;
1605 
1606       /* We can do this in two ways:  The preferable way, which can only
1607 	 be done if this is not an integer comparison, is to reverse
1608 	 the comparison code.  Otherwise, swap the THEN-part and ELSE-part
1609 	 of the IF_THEN_ELSE.  If we can't do either, fail.  */
1610 
1611       reversed_code = reversed_comparison_code (comp, insn);
1612 
1613       if (reversed_code != UNKNOWN)
1614 	{
1615 	  validate_change (insn, &XEXP (x, 0),
1616 			   gen_rtx_fmt_ee (reversed_code,
1617 					   GET_MODE (comp), XEXP (comp, 0),
1618 					   XEXP (comp, 1)),
1619 			   1);
1620 	  return 1;
1621 	}
1622 
1623       tem = XEXP (x, 1);
1624       validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1625       validate_change (insn, &XEXP (x, 2), tem, 1);
1626       return 1;
1627     }
1628   else
1629     return 0;
1630 }
1631 
1632 /* Invert the condition of the jump JUMP, and make it jump to label
1633    NLABEL instead of where it jumps now.  Accrue changes into the
1634    change group.  Return false if we didn't see how to perform the
1635    inversion and redirection.  */
1636 
1637 int
1638 invert_jump_1 (rtx_jump_insn *jump, rtx nlabel)
1639 {
1640   rtx x = pc_set (jump);
1641   int ochanges;
1642   int ok;
1643 
1644   ochanges = num_validated_changes ();
1645   if (x == NULL)
1646     return 0;
1647   ok = invert_exp_1 (SET_SRC (x), jump);
1648   gcc_assert (ok);
1649 
1650   if (num_validated_changes () == ochanges)
1651     return 0;
1652 
1653   /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1654      in Pmode, so checking this is not merely an optimization.  */
1655   return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1656 }
1657 
1658 /* Invert the condition of the jump JUMP, and make it jump to label
1659    NLABEL instead of where it jumps now.  Return true if successful.  */
1660 
1661 int
1662 invert_jump (rtx_jump_insn *jump, rtx nlabel, int delete_unused)
1663 {
1664   rtx olabel = JUMP_LABEL (jump);
1665 
1666   if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1667     {
1668       redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1669       return 1;
1670     }
1671   cancel_changes (0);
1672   return 0;
1673 }
1674 
1675 
1676 /* Like rtx_equal_p except that it considers two REGs as equal
1677    if they renumber to the same value and considers two commutative
1678    operations to be the same if the order of the operands has been
1679    reversed.  */
1680 
1681 int
1682 rtx_renumbered_equal_p (const_rtx x, const_rtx y)
1683 {
1684   int i;
1685   const enum rtx_code code = GET_CODE (x);
1686   const char *fmt;
1687 
1688   if (x == y)
1689     return 1;
1690 
1691   if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1692       && (REG_P (y) || (GET_CODE (y) == SUBREG
1693 				  && REG_P (SUBREG_REG (y)))))
1694     {
1695       int reg_x = -1, reg_y = -1;
1696       poly_int64 byte_x = 0, byte_y = 0;
1697       struct subreg_info info;
1698 
1699       if (GET_MODE (x) != GET_MODE (y))
1700 	return 0;
1701 
1702       /* If we haven't done any renumbering, don't
1703 	 make any assumptions.  */
1704       if (reg_renumber == 0)
1705 	return rtx_equal_p (x, y);
1706 
1707       if (code == SUBREG)
1708 	{
1709 	  reg_x = REGNO (SUBREG_REG (x));
1710 	  byte_x = SUBREG_BYTE (x);
1711 
1712 	  if (reg_renumber[reg_x] >= 0)
1713 	    {
1714 	      subreg_get_info (reg_renumber[reg_x],
1715 			       GET_MODE (SUBREG_REG (x)), byte_x,
1716 			       GET_MODE (x), &info);
1717 	      if (!info.representable_p)
1718 		return 0;
1719 	      reg_x = info.offset;
1720 	      byte_x = 0;
1721 	    }
1722 	}
1723       else
1724 	{
1725 	  reg_x = REGNO (x);
1726 	  if (reg_renumber[reg_x] >= 0)
1727 	    reg_x = reg_renumber[reg_x];
1728 	}
1729 
1730       if (GET_CODE (y) == SUBREG)
1731 	{
1732 	  reg_y = REGNO (SUBREG_REG (y));
1733 	  byte_y = SUBREG_BYTE (y);
1734 
1735 	  if (reg_renumber[reg_y] >= 0)
1736 	    {
1737 	      subreg_get_info (reg_renumber[reg_y],
1738 			       GET_MODE (SUBREG_REG (y)), byte_y,
1739 			       GET_MODE (y), &info);
1740 	      if (!info.representable_p)
1741 		return 0;
1742 	      reg_y = info.offset;
1743 	      byte_y = 0;
1744 	    }
1745 	}
1746       else
1747 	{
1748 	  reg_y = REGNO (y);
1749 	  if (reg_renumber[reg_y] >= 0)
1750 	    reg_y = reg_renumber[reg_y];
1751 	}
1752 
1753       return reg_x >= 0 && reg_x == reg_y && known_eq (byte_x, byte_y);
1754     }
1755 
1756   /* Now we have disposed of all the cases
1757      in which different rtx codes can match.  */
1758   if (code != GET_CODE (y))
1759     return 0;
1760 
1761   switch (code)
1762     {
1763     case PC:
1764     case CC0:
1765     case ADDR_VEC:
1766     case ADDR_DIFF_VEC:
1767     CASE_CONST_UNIQUE:
1768       return 0;
1769 
1770     case LABEL_REF:
1771       /* We can't assume nonlocal labels have their following insns yet.  */
1772       if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1773 	return label_ref_label (x) == label_ref_label (y);
1774 
1775       /* Two label-refs are equivalent if they point at labels
1776 	 in the same position in the instruction stream.  */
1777       else
1778 	{
1779 	  rtx_insn *xi = next_nonnote_nondebug_insn (label_ref_label (x));
1780 	  rtx_insn *yi = next_nonnote_nondebug_insn (label_ref_label (y));
1781 	  while (xi && LABEL_P (xi))
1782 	    xi = next_nonnote_nondebug_insn (xi);
1783 	  while (yi && LABEL_P (yi))
1784 	    yi = next_nonnote_nondebug_insn (yi);
1785 	  return xi == yi;
1786 	}
1787 
1788     case SYMBOL_REF:
1789       return XSTR (x, 0) == XSTR (y, 0);
1790 
1791     case CODE_LABEL:
1792       /* If we didn't match EQ equality above, they aren't the same.  */
1793       return 0;
1794 
1795     default:
1796       break;
1797     }
1798 
1799   /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */
1800 
1801   if (GET_MODE (x) != GET_MODE (y))
1802     return 0;
1803 
1804   /* MEMs referring to different address space are not equivalent.  */
1805   if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
1806     return 0;
1807 
1808   /* For commutative operations, the RTX match if the operand match in any
1809      order.  Also handle the simple binary and unary cases without a loop.  */
1810   if (targetm.commutative_p (x, UNKNOWN))
1811     return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1812 	     && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1813 	    || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1814 		&& rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1815   else if (NON_COMMUTATIVE_P (x))
1816     return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1817 	    && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1818   else if (UNARY_P (x))
1819     return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1820 
1821   /* Compare the elements.  If any pair of corresponding elements
1822      fail to match, return 0 for the whole things.  */
1823 
1824   fmt = GET_RTX_FORMAT (code);
1825   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1826     {
1827       int j;
1828       switch (fmt[i])
1829 	{
1830 	case 'w':
1831 	  if (XWINT (x, i) != XWINT (y, i))
1832 	    return 0;
1833 	  break;
1834 
1835 	case 'i':
1836 	  if (XINT (x, i) != XINT (y, i))
1837 	    {
1838 	      if (((code == ASM_OPERANDS && i == 6)
1839 		   || (code == ASM_INPUT && i == 1)))
1840 		break;
1841 	      return 0;
1842 	    }
1843 	  break;
1844 
1845 	case 'p':
1846 	  if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
1847 	    return 0;
1848 	  break;
1849 
1850 	case 't':
1851 	  if (XTREE (x, i) != XTREE (y, i))
1852 	    return 0;
1853 	  break;
1854 
1855 	case 's':
1856 	  if (strcmp (XSTR (x, i), XSTR (y, i)))
1857 	    return 0;
1858 	  break;
1859 
1860 	case 'e':
1861 	  if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1862 	    return 0;
1863 	  break;
1864 
1865 	case 'u':
1866 	  if (XEXP (x, i) != XEXP (y, i))
1867 	    return 0;
1868 	  /* Fall through.  */
1869 	case '0':
1870 	  break;
1871 
1872 	case 'E':
1873 	  if (XVECLEN (x, i) != XVECLEN (y, i))
1874 	    return 0;
1875 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1876 	    if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1877 	      return 0;
1878 	  break;
1879 
1880 	default:
1881 	  gcc_unreachable ();
1882 	}
1883     }
1884   return 1;
1885 }
1886 
1887 /* If X is a hard register or equivalent to one or a subregister of one,
1888    return the hard register number.  If X is a pseudo register that was not
1889    assigned a hard register, return the pseudo register number.  Otherwise,
1890    return -1.  Any rtx is valid for X.  */
1891 
1892 int
1893 true_regnum (const_rtx x)
1894 {
1895   if (REG_P (x))
1896     {
1897       if (REGNO (x) >= FIRST_PSEUDO_REGISTER
1898 	  && (lra_in_progress || reg_renumber[REGNO (x)] >= 0))
1899 	return reg_renumber[REGNO (x)];
1900       return REGNO (x);
1901     }
1902   if (GET_CODE (x) == SUBREG)
1903     {
1904       int base = true_regnum (SUBREG_REG (x));
1905       if (base >= 0
1906 	  && base < FIRST_PSEUDO_REGISTER)
1907 	{
1908 	  struct subreg_info info;
1909 
1910 	  subreg_get_info (lra_in_progress
1911 			   ? (unsigned) base : REGNO (SUBREG_REG (x)),
1912 			   GET_MODE (SUBREG_REG (x)),
1913 			   SUBREG_BYTE (x), GET_MODE (x), &info);
1914 
1915 	  if (info.representable_p)
1916 	    return base + info.offset;
1917 	}
1918     }
1919   return -1;
1920 }
1921 
1922 /* Return regno of the register REG and handle subregs too.  */
1923 unsigned int
1924 reg_or_subregno (const_rtx reg)
1925 {
1926   if (GET_CODE (reg) == SUBREG)
1927     reg = SUBREG_REG (reg);
1928   gcc_assert (REG_P (reg));
1929   return REGNO (reg);
1930 }
1931