xref: /dragonfly/contrib/gcc-8.0/gcc/match.pd (revision 9f47dde1)
1/* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2   This file is consumed by genmatch which produces gimple-match.c
3   and generic-match.c from it.
4
5   Copyright (C) 2014-2018 Free Software Foundation, Inc.
6   Contributed by Richard Biener <rguenther@suse.de>
7   and Prathamesh Kulkarni  <bilbotheelffriend@gmail.com>
8
9This file is part of GCC.
10
11GCC is free software; you can redistribute it and/or modify it under
12the terms of the GNU General Public License as published by the Free
13Software Foundation; either version 3, or (at your option) any later
14version.
15
16GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17WARRANTY; without even the implied warranty of MERCHANTABILITY or
18FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
19for more details.
20
21You should have received a copy of the GNU General Public License
22along with GCC; see the file COPYING3.  If not see
23<http://www.gnu.org/licenses/>.  */
24
25
26/* Generic tree predicates we inherit.  */
27(define_predicates
28   integer_onep integer_zerop integer_all_onesp integer_minus_onep
29   integer_each_onep integer_truep integer_nonzerop
30   real_zerop real_onep real_minus_onep
31   zerop
32   CONSTANT_CLASS_P
33   tree_expr_nonnegative_p
34   tree_expr_nonzero_p
35   integer_valued_real_p
36   integer_pow2p
37   HONOR_NANS)
38
39/* Operator lists.  */
40(define_operator_list tcc_comparison
41  lt   le   eq ne ge   gt   unordered ordered   unlt unle ungt unge uneq ltgt)
42(define_operator_list inverted_tcc_comparison
43  ge   gt   ne eq lt   le   ordered   unordered ge   gt   le   lt   ltgt uneq)
44(define_operator_list inverted_tcc_comparison_with_nans
45  unge ungt ne eq unlt unle ordered   unordered ge   gt   le   lt   ltgt uneq)
46(define_operator_list swapped_tcc_comparison
47  gt   ge   eq ne le   lt   unordered ordered   ungt unge unlt unle uneq ltgt)
48(define_operator_list simple_comparison         lt   le   eq ne ge   gt)
49(define_operator_list swapped_simple_comparison gt   ge   eq ne le   lt)
50
51#include "cfn-operators.pd"
52
53/* Define operand lists for math rounding functions {,i,l,ll}FN,
54   where the versions prefixed with "i" return an int, those prefixed with
55   "l" return a long and those prefixed with "ll" return a long long.
56
57   Also define operand lists:
58
59     X<FN>F for all float functions, in the order i, l, ll
60     X<FN> for all double functions, in the same order
61     X<FN>L for all long double functions, in the same order.  */
62#define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
63  (define_operator_list X##FN##F BUILT_IN_I##FN##F \
64				 BUILT_IN_L##FN##F \
65				 BUILT_IN_LL##FN##F) \
66  (define_operator_list X##FN BUILT_IN_I##FN \
67			      BUILT_IN_L##FN \
68			      BUILT_IN_LL##FN) \
69  (define_operator_list X##FN##L BUILT_IN_I##FN##L \
70				 BUILT_IN_L##FN##L \
71				 BUILT_IN_LL##FN##L)
72
73DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
74DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
75DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
76DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
77
78/* As opposed to convert?, this still creates a single pattern, so
79   it is not a suitable replacement for convert? in all cases.  */
80(match (nop_convert @0)
81 (convert @0)
82 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
83(match (nop_convert @0)
84 (view_convert @0)
85 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
86      && known_eq (TYPE_VECTOR_SUBPARTS (type),
87		   TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
88      && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
89/* This one has to be last, or it shadows the others.  */
90(match (nop_convert @0)
91 @0)
92
93/* Simplifications of operations with one constant operand and
94   simplifications to constants or single values.  */
95
96(for op (plus pointer_plus minus bit_ior bit_xor)
97  (simplify
98    (op @0 integer_zerop)
99    (non_lvalue @0)))
100
101/* 0 +p index -> (type)index */
102(simplify
103 (pointer_plus integer_zerop @1)
104 (non_lvalue (convert @1)))
105
106/* ptr - 0 -> (type)ptr */
107(simplify
108 (pointer_diff @0 integer_zerop)
109 (convert @0))
110
111/* See if ARG1 is zero and X + ARG1 reduces to X.
112   Likewise if the operands are reversed.  */
113(simplify
114 (plus:c @0 real_zerop@1)
115 (if (fold_real_zero_addition_p (type, @1, 0))
116  (non_lvalue @0)))
117
118/* See if ARG1 is zero and X - ARG1 reduces to X.  */
119(simplify
120 (minus @0 real_zerop@1)
121 (if (fold_real_zero_addition_p (type, @1, 1))
122  (non_lvalue @0)))
123
124/* Simplify x - x.
125   This is unsafe for certain floats even in non-IEEE formats.
126   In IEEE, it is unsafe because it does wrong for NaNs.
127   Also note that operand_equal_p is always false if an operand
128   is volatile.  */
129(simplify
130 (minus @0 @0)
131 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
132  { build_zero_cst (type); }))
133(simplify
134 (pointer_diff @@0 @0)
135 { build_zero_cst (type); })
136
137(simplify
138 (mult @0 integer_zerop@1)
139 @1)
140
141/* Maybe fold x * 0 to 0.  The expressions aren't the same
142   when x is NaN, since x * 0 is also NaN.  Nor are they the
143   same in modes with signed zeros, since multiplying a
144   negative value by 0 gives -0, not +0.  */
145(simplify
146 (mult @0 real_zerop@1)
147 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
148  @1))
149
150/* In IEEE floating point, x*1 is not equivalent to x for snans.
151   Likewise for complex arithmetic with signed zeros.  */
152(simplify
153 (mult @0 real_onep)
154 (if (!HONOR_SNANS (type)
155      && (!HONOR_SIGNED_ZEROS (type)
156          || !COMPLEX_FLOAT_TYPE_P (type)))
157  (non_lvalue @0)))
158
159/* Transform x * -1.0 into -x.  */
160(simplify
161 (mult @0 real_minus_onep)
162  (if (!HONOR_SNANS (type)
163       && (!HONOR_SIGNED_ZEROS (type)
164           || !COMPLEX_FLOAT_TYPE_P (type)))
165   (negate @0)))
166
167(for cmp (gt ge lt le)
168     outp (convert convert negate negate)
169     outn (negate negate convert convert)
170 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
171 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
172 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
173 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
174 (simplify
175  (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
176  (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
177       && types_match (type, TREE_TYPE (@0)))
178   (switch
179    (if (types_match (type, float_type_node))
180     (BUILT_IN_COPYSIGNF @1 (outp @0)))
181    (if (types_match (type, double_type_node))
182     (BUILT_IN_COPYSIGN @1 (outp @0)))
183    (if (types_match (type, long_double_type_node))
184     (BUILT_IN_COPYSIGNL @1 (outp @0))))))
185 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
186 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
187 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
188 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
189 (simplify
190  (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
191  (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
192       && types_match (type, TREE_TYPE (@0)))
193   (switch
194    (if (types_match (type, float_type_node))
195     (BUILT_IN_COPYSIGNF @1 (outn @0)))
196    (if (types_match (type, double_type_node))
197     (BUILT_IN_COPYSIGN @1 (outn @0)))
198    (if (types_match (type, long_double_type_node))
199     (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
200
201/* Transform X * copysign (1.0, X) into abs(X). */
202(simplify
203 (mult:c @0 (COPYSIGN_ALL real_onep @0))
204 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
205  (abs @0)))
206
207/* Transform X * copysign (1.0, -X) into -abs(X). */
208(simplify
209 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
210 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
211  (negate (abs @0))))
212
213/* Transform copysign (CST, X) into copysign (ABS(CST), X). */
214(simplify
215 (COPYSIGN_ALL REAL_CST@0 @1)
216 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
217  (COPYSIGN_ALL (negate @0) @1)))
218
219/* X * 1, X / 1 -> X.  */
220(for op (mult trunc_div ceil_div floor_div round_div exact_div)
221  (simplify
222    (op @0 integer_onep)
223    (non_lvalue @0)))
224
225/* (A / (1 << B)) -> (A >> B).
226   Only for unsigned A.  For signed A, this would not preserve rounding
227   toward zero.
228   For example: (-1 / ( 1 << B)) !=  -1 >> B.  */
229(simplify
230 (trunc_div @0 (lshift integer_onep@1 @2))
231 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
232      && (!VECTOR_TYPE_P (type)
233	  || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
234	  || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar)))
235  (rshift @0 @2)))
236
237/* Preserve explicit divisions by 0: the C++ front-end wants to detect
238   undefined behavior in constexpr evaluation, and assuming that the division
239   traps enables better optimizations than these anyway.  */
240(for div (trunc_div ceil_div floor_div round_div exact_div)
241 /* 0 / X is always zero.  */
242 (simplify
243  (div integer_zerop@0 @1)
244  /* But not for 0 / 0 so that we can get the proper warnings and errors.  */
245  (if (!integer_zerop (@1))
246   @0))
247  /* X / -1 is -X.  */
248 (simplify
249   (div @0 integer_minus_onep@1)
250   (if (!TYPE_UNSIGNED (type))
251    (negate @0)))
252 /* X / X is one.  */
253 (simplify
254  (div @0 @0)
255  /* But not for 0 / 0 so that we can get the proper warnings and errors.
256     And not for _Fract types where we can't build 1.  */
257  (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
258   { build_one_cst (type); }))
259 /* X / abs (X) is X < 0 ? -1 : 1.  */
260 (simplify
261   (div:C @0 (abs @0))
262   (if (INTEGRAL_TYPE_P (type)
263	&& TYPE_OVERFLOW_UNDEFINED (type))
264    (cond (lt @0 { build_zero_cst (type); })
265          { build_minus_one_cst (type); } { build_one_cst (type); })))
266 /* X / -X is -1.  */
267 (simplify
268   (div:C @0 (negate @0))
269   (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
270	&& TYPE_OVERFLOW_UNDEFINED (type))
271    { build_minus_one_cst (type); })))
272
273/* For unsigned integral types, FLOOR_DIV_EXPR is the same as
274   TRUNC_DIV_EXPR.  Rewrite into the latter in this case.  */
275(simplify
276 (floor_div @0 @1)
277 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
278      && TYPE_UNSIGNED (type))
279  (trunc_div @0 @1)))
280
281/* Combine two successive divisions.  Note that combining ceil_div
282   and floor_div is trickier and combining round_div even more so.  */
283(for div (trunc_div exact_div)
284 (simplify
285  (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
286  (with {
287    bool overflow_p;
288    wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
289			    TYPE_SIGN (type), &overflow_p);
290   }
291   (if (!overflow_p)
292    (div @0 { wide_int_to_tree (type, mul); })
293    (if (TYPE_UNSIGNED (type)
294	 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
295     { build_zero_cst (type); })))))
296
297/* Combine successive multiplications.  Similar to above, but handling
298   overflow is different.  */
299(simplify
300 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
301 (with {
302   bool overflow_p;
303   wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
304			   TYPE_SIGN (type), &overflow_p);
305  }
306  /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
307     otherwise undefined overflow implies that @0 must be zero.  */
308  (if (!overflow_p || TYPE_OVERFLOW_WRAPS (type))
309   (mult @0 { wide_int_to_tree (type, mul); }))))
310
311/* Optimize A / A to 1.0 if we don't care about
312   NaNs or Infinities.  */
313(simplify
314 (rdiv @0 @0)
315 (if (FLOAT_TYPE_P (type)
316      && ! HONOR_NANS (type)
317      && ! HONOR_INFINITIES (type))
318  { build_one_cst (type); }))
319
320/* Optimize -A / A to -1.0 if we don't care about
321   NaNs or Infinities.  */
322(simplify
323 (rdiv:C @0 (negate @0))
324 (if (FLOAT_TYPE_P (type)
325      && ! HONOR_NANS (type)
326      && ! HONOR_INFINITIES (type))
327  { build_minus_one_cst (type); }))
328
329/* PR71078: x / abs(x) -> copysign (1.0, x) */
330(simplify
331 (rdiv:C (convert? @0) (convert? (abs @0)))
332  (if (SCALAR_FLOAT_TYPE_P (type)
333       && ! HONOR_NANS (type)
334       && ! HONOR_INFINITIES (type))
335   (switch
336    (if (types_match (type, float_type_node))
337     (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
338    (if (types_match (type, double_type_node))
339     (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
340    (if (types_match (type, long_double_type_node))
341     (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
342
343/* In IEEE floating point, x/1 is not equivalent to x for snans.  */
344(simplify
345 (rdiv @0 real_onep)
346 (if (!HONOR_SNANS (type))
347  (non_lvalue @0)))
348
349/* In IEEE floating point, x/-1 is not equivalent to -x for snans.  */
350(simplify
351 (rdiv @0 real_minus_onep)
352 (if (!HONOR_SNANS (type))
353  (negate @0)))
354
355(if (flag_reciprocal_math)
356 /* Convert (A/B)/C to A/(B*C). */
357 (simplify
358  (rdiv (rdiv:s @0 @1) @2)
359  (rdiv @0 (mult @1 @2)))
360
361 /* Canonicalize x / (C1 * y) to (x * C2) / y.  */
362 (simplify
363  (rdiv @0 (mult:s @1 REAL_CST@2))
364  (with
365   { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
366   (if (tem)
367    (rdiv (mult @0 { tem; } ) @1))))
368
369 /* Convert A/(B/C) to (A/B)*C  */
370 (simplify
371  (rdiv @0 (rdiv:s @1 @2))
372   (mult (rdiv @0 @1) @2)))
373
374/* Simplify x / (- y) to -x / y.  */
375(simplify
376 (rdiv @0 (negate @1))
377 (rdiv (negate @0) @1))
378
379/* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
380(for div (trunc_div ceil_div floor_div round_div exact_div)
381 (simplify
382  (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
383  (if (integer_pow2p (@2)
384       && tree_int_cst_sgn (@2) > 0
385       && tree_nop_conversion_p (type, TREE_TYPE (@0))
386       && wi::to_wide (@2) + wi::to_wide (@1) == 0)
387   (rshift (convert @0)
388	   { build_int_cst (integer_type_node,
389			    wi::exact_log2 (wi::to_wide (@2))); }))))
390
391/* If ARG1 is a constant, we can convert this to a multiply by the
392   reciprocal.  This does not have the same rounding properties,
393   so only do this if -freciprocal-math.  We can actually
394   always safely do it if ARG1 is a power of two, but it's hard to
395   tell if it is or not in a portable manner.  */
396(for cst (REAL_CST COMPLEX_CST VECTOR_CST)
397 (simplify
398  (rdiv @0 cst@1)
399  (if (optimize)
400   (if (flag_reciprocal_math
401	&& !real_zerop (@1))
402    (with
403     { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
404     (if (tem)
405      (mult @0 { tem; } )))
406    (if (cst != COMPLEX_CST)
407     (with { tree inverse = exact_inverse (type, @1); }
408      (if (inverse)
409       (mult @0 { inverse; } ))))))))
410
411(for mod (ceil_mod floor_mod round_mod trunc_mod)
412 /* 0 % X is always zero.  */
413 (simplify
414  (mod integer_zerop@0 @1)
415  /* But not for 0 % 0 so that we can get the proper warnings and errors.  */
416  (if (!integer_zerop (@1))
417   @0))
418 /* X % 1 is always zero.  */
419 (simplify
420  (mod @0 integer_onep)
421  { build_zero_cst (type); })
422 /* X % -1 is zero.  */
423 (simplify
424  (mod @0 integer_minus_onep@1)
425  (if (!TYPE_UNSIGNED (type))
426   { build_zero_cst (type); }))
427 /* X % X is zero.  */
428 (simplify
429  (mod @0 @0)
430  /* But not for 0 % 0 so that we can get the proper warnings and errors.  */
431  (if (!integer_zerop (@0))
432   { build_zero_cst (type); }))
433 /* (X % Y) % Y is just X % Y.  */
434 (simplify
435  (mod (mod@2 @0 @1) @1)
436  @2)
437 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2.  */
438 (simplify
439  (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
440  (if (ANY_INTEGRAL_TYPE_P (type)
441       && TYPE_OVERFLOW_UNDEFINED (type)
442       && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
443			     TYPE_SIGN (type)))
444   { build_zero_cst (type); })))
445
446/* X % -C is the same as X % C.  */
447(simplify
448 (trunc_mod @0 INTEGER_CST@1)
449  (if (TYPE_SIGN (type) == SIGNED
450       && !TREE_OVERFLOW (@1)
451       && wi::neg_p (wi::to_wide (@1))
452       && !TYPE_OVERFLOW_TRAPS (type)
453       /* Avoid this transformation if C is INT_MIN, i.e. C == -C.  */
454       && !sign_bit_p (@1, @1))
455   (trunc_mod @0 (negate @1))))
456
457/* X % -Y is the same as X % Y.  */
458(simplify
459 (trunc_mod @0 (convert? (negate @1)))
460 (if (INTEGRAL_TYPE_P (type)
461      && !TYPE_UNSIGNED (type)
462      && !TYPE_OVERFLOW_TRAPS (type)
463      && tree_nop_conversion_p (type, TREE_TYPE (@1))
464      /* Avoid this transformation if X might be INT_MIN or
465	 Y might be -1, because we would then change valid
466	 INT_MIN % -(-1) into invalid INT_MIN % -1.  */
467      && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
468	  || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
469							(TREE_TYPE (@1))))))
470  (trunc_mod @0 (convert @1))))
471
472/* X - (X / Y) * Y is the same as X % Y.  */
473(simplify
474 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
475 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
476  (convert (trunc_mod @0 @1))))
477
478/* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
479   i.e. "X % C" into "X & (C - 1)", if X and C are positive.
480   Also optimize A % (C << N)  where C is a power of 2,
481   to A & ((C << N) - 1).  */
482(match (power_of_two_cand @1)
483 INTEGER_CST@1)
484(match (power_of_two_cand @1)
485 (lshift INTEGER_CST@1 @2))
486(for mod (trunc_mod floor_mod)
487 (simplify
488  (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
489  (if ((TYPE_UNSIGNED (type)
490	|| tree_expr_nonnegative_p (@0))
491	&& tree_nop_conversion_p (type, TREE_TYPE (@3))
492	&& integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
493   (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
494
495/* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF.  */
496(simplify
497 (trunc_div (mult @0 integer_pow2p@1) @1)
498 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
499  (bit_and @0 { wide_int_to_tree
500		(type, wi::mask (TYPE_PRECISION (type)
501				 - wi::exact_log2 (wi::to_wide (@1)),
502				 false, TYPE_PRECISION (type))); })))
503
504/* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1.  */
505(simplify
506 (mult (trunc_div @0 integer_pow2p@1) @1)
507 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
508  (bit_and @0 (negate @1))))
509
510/* Simplify (t * 2) / 2) -> t.  */
511(for div (trunc_div ceil_div floor_div round_div exact_div)
512 (simplify
513  (div (mult:c @0 @1) @1)
514  (if (ANY_INTEGRAL_TYPE_P (type)
515       && TYPE_OVERFLOW_UNDEFINED (type))
516   @0)))
517
518(for op (negate abs)
519 /* Simplify cos(-x) and cos(|x|) -> cos(x).  Similarly for cosh.  */
520 (for coss (COS COSH)
521  (simplify
522   (coss (op @0))
523    (coss @0)))
524 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer.  */
525 (for pows (POW)
526  (simplify
527   (pows (op @0) REAL_CST@1)
528   (with { HOST_WIDE_INT n; }
529    (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
530     (pows @0 @1)))))
531 /* Likewise for powi.  */
532 (for pows (POWI)
533  (simplify
534   (pows (op @0) INTEGER_CST@1)
535   (if ((wi::to_wide (@1) & 1) == 0)
536    (pows @0 @1))))
537 /* Strip negate and abs from both operands of hypot.  */
538 (for hypots (HYPOT)
539  (simplify
540   (hypots (op @0) @1)
541   (hypots @0 @1))
542  (simplify
543   (hypots @0 (op @1))
544   (hypots @0 @1)))
545 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y).  */
546 (for copysigns (COPYSIGN_ALL)
547  (simplify
548   (copysigns (op @0) @1)
549   (copysigns @0 @1))))
550
551/* abs(x)*abs(x) -> x*x.  Should be valid for all types.  */
552(simplify
553 (mult (abs@1 @0) @1)
554 (mult @0 @0))
555
556/* cos(copysign(x, y)) -> cos(x).  Similarly for cosh.  */
557(for coss (COS COSH)
558     copysigns (COPYSIGN)
559 (simplify
560  (coss (copysigns @0 @1))
561   (coss @0)))
562
563/* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer.  */
564(for pows (POW)
565     copysigns (COPYSIGN)
566 (simplify
567  (pows (copysigns @0 @2) REAL_CST@1)
568  (with { HOST_WIDE_INT n; }
569   (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
570    (pows @0 @1)))))
571/* Likewise for powi.  */
572(for pows (POWI)
573     copysigns (COPYSIGN)
574 (simplify
575  (pows (copysigns @0 @2) INTEGER_CST@1)
576  (if ((wi::to_wide (@1) & 1) == 0)
577   (pows @0 @1))))
578
579(for hypots (HYPOT)
580     copysigns (COPYSIGN)
581 /* hypot(copysign(x, y), z) -> hypot(x, z).  */
582 (simplify
583  (hypots (copysigns @0 @1) @2)
584  (hypots @0 @2))
585 /* hypot(x, copysign(y, z)) -> hypot(x, y).  */
586 (simplify
587  (hypots @0 (copysigns @1 @2))
588  (hypots @0 @1)))
589
590/* copysign(x, CST) -> [-]abs (x).  */
591(for copysigns (COPYSIGN_ALL)
592 (simplify
593  (copysigns @0 REAL_CST@1)
594  (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
595   (negate (abs @0))
596   (abs @0))))
597
598/* copysign(copysign(x, y), z) -> copysign(x, z).  */
599(for copysigns (COPYSIGN_ALL)
600 (simplify
601  (copysigns (copysigns @0 @1) @2)
602  (copysigns @0 @2)))
603
604/* copysign(x,y)*copysign(x,y) -> x*x.  */
605(for copysigns (COPYSIGN_ALL)
606 (simplify
607  (mult (copysigns@2 @0 @1) @2)
608  (mult @0 @0)))
609
610/* ccos(-x) -> ccos(x).  Similarly for ccosh.  */
611(for ccoss (CCOS CCOSH)
612 (simplify
613  (ccoss (negate @0))
614   (ccoss @0)))
615
616/* cabs(-x) and cos(conj(x)) -> cabs(x).  */
617(for ops (conj negate)
618 (for cabss (CABS)
619  (simplify
620   (cabss (ops @0))
621   (cabss @0))))
622
623/* Fold (a * (1 << b)) into (a << b)  */
624(simplify
625 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
626  (if (! FLOAT_TYPE_P (type)
627       && tree_nop_conversion_p (type, TREE_TYPE (@1)))
628   (lshift @0 @2)))
629
630/* Fold (1 << (C - x)) where C = precision(type) - 1
631   into ((1 << C) >> x). */
632(simplify
633 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
634  (if (INTEGRAL_TYPE_P (type)
635       && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
636       && single_use (@1))
637   (if (TYPE_UNSIGNED (type))
638     (rshift (lshift @0 @2) @3)
639   (with
640    { tree utype = unsigned_type_for (type); }
641    (convert (rshift (lshift (convert:utype @0) @2) @3))))))
642
643/* Fold (C1/X)*C2 into (C1*C2)/X.  */
644(simplify
645 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
646  (if (flag_associative_math
647       && single_use (@3))
648   (with
649    { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
650    (if (tem)
651     (rdiv { tem; } @1)))))
652
653/* Simplify ~X & X as zero.  */
654(simplify
655 (bit_and:c (convert? @0) (convert? (bit_not @0)))
656  { build_zero_cst (type); })
657
658/* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b);  */
659(simplify
660  (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
661  (if (TYPE_UNSIGNED (type))
662    (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
663
664(for bitop (bit_and bit_ior)
665     cmp (eq ne)
666 /* PR35691: Transform
667    (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
668    (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0.  */
669 (simplify
670  (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
671   (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
672	&& INTEGRAL_TYPE_P (TREE_TYPE (@1))
673	&& TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
674    (cmp (bit_ior @0 (convert @1)) @2)))
675 /* Transform:
676    (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
677    (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1.  */
678 (simplify
679  (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
680   (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
681	&& INTEGRAL_TYPE_P (TREE_TYPE (@1))
682	&& TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
683    (cmp (bit_and @0 (convert @1)) @2))))
684
685/* Fold (A & ~B) - (A & B) into (A ^ B) - B.  */
686(simplify
687 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
688  (minus (bit_xor @0 @1) @1))
689(simplify
690 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
691 (if (~wi::to_wide (@2) == wi::to_wide (@1))
692  (minus (bit_xor @0 @1) @1)))
693
694/* Fold (A & B) - (A & ~B) into B - (A ^ B).  */
695(simplify
696 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
697  (minus @1 (bit_xor @0 @1)))
698
699/* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y.  */
700(for op (bit_ior bit_xor plus)
701 (simplify
702  (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
703   (bit_xor @0 @1))
704 (simplify
705  (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
706  (if (~wi::to_wide (@2) == wi::to_wide (@1))
707   (bit_xor @0 @1))))
708
709/* PR53979: Transform ((a ^ b) | a) -> (a | b) */
710(simplify
711  (bit_ior:c (bit_xor:c @0 @1) @0)
712  (bit_ior @0 @1))
713
714/* (a & ~b) | (a ^ b)  -->  a ^ b  */
715(simplify
716 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
717 @2)
718
719/* (a & ~b) ^ ~a  -->  ~(a & b)  */
720(simplify
721 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
722 (bit_not (bit_and @0 @1)))
723
724/* (a | b) & ~(a ^ b)  -->  a & b  */
725(simplify
726 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
727 (bit_and @0 @1))
728
729/* a | ~(a ^ b)  -->  a | ~b  */
730(simplify
731 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
732 (bit_ior @0 (bit_not @1)))
733
734/* (a | b) | (a &^ b)  -->  a | b  */
735(for op (bit_and bit_xor)
736 (simplify
737  (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
738  @2))
739
740/* (a & b) | ~(a ^ b)  -->  ~(a ^ b)  */
741(simplify
742 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
743 @2)
744
745/* ~(~a & b)  -->  a | ~b  */
746(simplify
747 (bit_not (bit_and:cs (bit_not @0) @1))
748 (bit_ior @0 (bit_not @1)))
749
750/* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0.  */
751#if GIMPLE
752(simplify
753 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
754 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
755      && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
756  (bit_xor @0 @1)))
757#endif
758
759/* X % Y is smaller than Y.  */
760(for cmp (lt ge)
761 (simplify
762  (cmp (trunc_mod @0 @1) @1)
763  (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
764   { constant_boolean_node (cmp == LT_EXPR, type); })))
765(for cmp (gt le)
766 (simplify
767  (cmp @1 (trunc_mod @0 @1))
768  (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
769   { constant_boolean_node (cmp == GT_EXPR, type); })))
770
771/* x | ~0 -> ~0  */
772(simplify
773 (bit_ior @0 integer_all_onesp@1)
774 @1)
775
776/* x | 0 -> x  */
777(simplify
778 (bit_ior @0 integer_zerop)
779 @0)
780
781/* x & 0 -> 0  */
782(simplify
783 (bit_and @0 integer_zerop@1)
784 @1)
785
786/* ~x | x -> -1 */
787/* ~x ^ x -> -1 */
788/* ~x + x -> -1 */
789(for op (bit_ior bit_xor plus)
790 (simplify
791  (op:c (convert? @0) (convert? (bit_not @0)))
792  (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
793
794/* x ^ x -> 0 */
795(simplify
796  (bit_xor @0 @0)
797  { build_zero_cst (type); })
798
799/* Canonicalize X ^ ~0 to ~X.  */
800(simplify
801  (bit_xor @0 integer_all_onesp@1)
802  (bit_not @0))
803
804/* x & ~0 -> x  */
805(simplify
806 (bit_and @0 integer_all_onesp)
807  (non_lvalue @0))
808
809/* x & x -> x,  x | x -> x  */
810(for bitop (bit_and bit_ior)
811 (simplify
812  (bitop @0 @0)
813  (non_lvalue @0)))
814
815/* x & C -> x if we know that x & ~C == 0.  */
816#if GIMPLE
817(simplify
818 (bit_and SSA_NAME@0 INTEGER_CST@1)
819 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
820      && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
821  @0))
822#endif
823
824/* x + (x & 1) -> (x + 1) & ~1 */
825(simplify
826 (plus:c @0 (bit_and:s @0 integer_onep@1))
827 (bit_and (plus @0 @1) (bit_not @1)))
828
829/* x & ~(x & y) -> x & ~y */
830/* x | ~(x | y) -> x | ~y  */
831(for bitop (bit_and bit_ior)
832 (simplify
833  (bitop:c @0 (bit_not (bitop:cs @0 @1)))
834  (bitop @0 (bit_not @1))))
835
836/* (x | y) & ~x -> y & ~x */
837/* (x & y) | ~x -> y | ~x */
838(for bitop (bit_and bit_ior)
839     rbitop (bit_ior bit_and)
840 (simplify
841  (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
842  (bitop @1 @2)))
843
844/* (x & y) ^ (x | y) -> x ^ y */
845(simplify
846 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
847 (bit_xor @0 @1))
848
849/* (x ^ y) ^ (x | y) -> x & y */
850(simplify
851 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
852 (bit_and @0 @1))
853
854/* (x & y) + (x ^ y) -> x | y */
855/* (x & y) | (x ^ y) -> x | y */
856/* (x & y) ^ (x ^ y) -> x | y */
857(for op (plus bit_ior bit_xor)
858 (simplify
859  (op:c (bit_and @0 @1) (bit_xor @0 @1))
860  (bit_ior @0 @1)))
861
862/* (x & y) + (x | y) -> x + y */
863(simplify
864 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
865 (plus @0 @1))
866
867/* (x + y) - (x | y) -> x & y */
868(simplify
869 (minus (plus @0 @1) (bit_ior @0 @1))
870 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
871      && !TYPE_SATURATING (type))
872  (bit_and @0 @1)))
873
874/* (x + y) - (x & y) -> x | y */
875(simplify
876 (minus (plus @0 @1) (bit_and @0 @1))
877 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
878      && !TYPE_SATURATING (type))
879  (bit_ior @0 @1)))
880
881/* (x | y) - (x ^ y) -> x & y */
882(simplify
883 (minus (bit_ior @0 @1) (bit_xor @0 @1))
884 (bit_and @0 @1))
885
886/* (x | y) - (x & y) -> x ^ y */
887(simplify
888 (minus (bit_ior @0 @1) (bit_and @0 @1))
889 (bit_xor @0 @1))
890
891/* (x | y) & ~(x & y) -> x ^ y */
892(simplify
893 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
894 (bit_xor @0 @1))
895
896/* (x | y) & (~x ^ y) -> x & y */
897(simplify
898 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
899 (bit_and @0 @1))
900
901/* ~x & ~y -> ~(x | y)
902   ~x | ~y -> ~(x & y) */
903(for op (bit_and bit_ior)
904     rop (bit_ior bit_and)
905 (simplify
906  (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
907  (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
908       && element_precision (type) <= element_precision (TREE_TYPE (@1)))
909   (bit_not (rop (convert @0) (convert @1))))))
910
911/* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
912   with a constant, and the two constants have no bits in common,
913   we should treat this as a BIT_IOR_EXPR since this may produce more
914   simplifications.  */
915(for op (bit_xor plus)
916 (simplify
917  (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
918      (convert2? (bit_and@5 @2 INTEGER_CST@3)))
919  (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
920       && tree_nop_conversion_p (type, TREE_TYPE (@2))
921       && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
922   (bit_ior (convert @4) (convert @5)))))
923
924/* (X | Y) ^ X -> Y & ~ X*/
925(simplify
926 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
927 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
928  (convert (bit_and @1 (bit_not @0)))))
929
930/* Convert ~X ^ ~Y to X ^ Y.  */
931(simplify
932 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
933 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
934      && element_precision (type) <= element_precision (TREE_TYPE (@1)))
935  (bit_xor (convert @0) (convert @1))))
936
937/* Convert ~X ^ C to X ^ ~C.  */
938(simplify
939 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
940 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
941  (bit_xor (convert @0) (bit_not @1))))
942
943/* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y.  */
944(for opo (bit_and bit_xor)
945     opi (bit_xor bit_and)
946 (simplify
947  (opo:c (opi:c @0 @1) @1)
948  (bit_and (bit_not @0) @1)))
949
950/* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
951   operands are another bit-wise operation with a common input.  If so,
952   distribute the bit operations to save an operation and possibly two if
953   constants are involved.  For example, convert
954     (A | B) & (A | C) into A | (B & C)
955   Further simplification will occur if B and C are constants.  */
956(for op (bit_and bit_ior bit_xor)
957     rop (bit_ior bit_and bit_and)
958 (simplify
959  (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
960  (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
961       && tree_nop_conversion_p (type, TREE_TYPE (@2)))
962   (rop (convert @0) (op (convert @1) (convert @2))))))
963
964/* Some simple reassociation for bit operations, also handled in reassoc.  */
965/* (X & Y) & Y -> X & Y
966   (X | Y) | Y -> X | Y  */
967(for op (bit_and bit_ior)
968 (simplify
969  (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
970  @2))
971/* (X ^ Y) ^ Y -> X  */
972(simplify
973 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
974 (convert @0))
975/* (X & Y) & (X & Z) -> (X & Y) & Z
976   (X | Y) | (X | Z) -> (X | Y) | Z  */
977(for op (bit_and bit_ior)
978 (simplify
979  (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
980  (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
981       && tree_nop_conversion_p (type, TREE_TYPE (@2)))
982   (if (single_use (@5) && single_use (@6))
983    (op @3 (convert @2))
984    (if (single_use (@3) && single_use (@4))
985     (op (convert @1) @5))))))
986/* (X ^ Y) ^ (X ^ Z) -> Y ^ Z  */
987(simplify
988 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
989 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
990      && tree_nop_conversion_p (type, TREE_TYPE (@2)))
991  (bit_xor (convert @1) (convert @2))))
992
993(simplify
994 (abs (abs@1 @0))
995 @1)
996(simplify
997 (abs (negate @0))
998 (abs @0))
999(simplify
1000 (abs tree_expr_nonnegative_p@0)
1001 @0)
1002
1003/* A few cases of fold-const.c negate_expr_p predicate.  */
1004(match negate_expr_p
1005 INTEGER_CST
1006 (if ((INTEGRAL_TYPE_P (type)
1007       && TYPE_UNSIGNED (type))
1008      || (!TYPE_OVERFLOW_SANITIZED (type)
1009	  && may_negate_without_overflow_p (t)))))
1010(match negate_expr_p
1011 FIXED_CST)
1012(match negate_expr_p
1013 (negate @0)
1014 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1015(match negate_expr_p
1016 REAL_CST
1017 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1018/* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1019   ways.  */
1020(match negate_expr_p
1021 VECTOR_CST
1022 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1023(match negate_expr_p
1024 (minus @0 @1)
1025 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1026      || (FLOAT_TYPE_P (type)
1027	  && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1028	  && !HONOR_SIGNED_ZEROS (type)))))
1029
1030/* (-A) * (-B) -> A * B  */
1031(simplify
1032 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1033  (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1034       && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1035   (mult (convert @0) (convert (negate @1)))))
1036
1037/* -(A + B) -> (-B) - A.  */
1038(simplify
1039 (negate (plus:c @0 negate_expr_p@1))
1040 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1041      && !HONOR_SIGNED_ZEROS (element_mode (type)))
1042  (minus (negate @1) @0)))
1043
1044/* -(A - B) -> B - A.  */
1045(simplify
1046 (negate (minus @0 @1))
1047 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1048      || (FLOAT_TYPE_P (type)
1049	  && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1050	  && !HONOR_SIGNED_ZEROS (type)))
1051  (minus @1 @0)))
1052(simplify
1053 (negate (pointer_diff @0 @1))
1054 (if (TYPE_OVERFLOW_UNDEFINED (type))
1055  (pointer_diff @1 @0)))
1056
1057/* A - B -> A + (-B) if B is easily negatable.  */
1058(simplify
1059 (minus @0 negate_expr_p@1)
1060 (if (!FIXED_POINT_TYPE_P (type))
1061 (plus @0 (negate @1))))
1062
1063/* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1064   when profitable.
1065   For bitwise binary operations apply operand conversions to the
1066   binary operation result instead of to the operands.  This allows
1067   to combine successive conversions and bitwise binary operations.
1068   We combine the above two cases by using a conditional convert.  */
1069(for bitop (bit_and bit_ior bit_xor)
1070 (simplify
1071  (bitop (convert @0) (convert? @1))
1072  (if (((TREE_CODE (@1) == INTEGER_CST
1073	 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1074	 && int_fits_type_p (@1, TREE_TYPE (@0)))
1075	|| types_match (@0, @1))
1076       /* ???  This transform conflicts with fold-const.c doing
1077	  Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1078	  constants (if x has signed type, the sign bit cannot be set
1079	  in c).  This folds extension into the BIT_AND_EXPR.
1080	  Restrict it to GIMPLE to avoid endless recursions.  */
1081       && (bitop != BIT_AND_EXPR || GIMPLE)
1082       && (/* That's a good idea if the conversion widens the operand, thus
1083	      after hoisting the conversion the operation will be narrower.  */
1084	   TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1085	   /* It's also a good idea if the conversion is to a non-integer
1086	      mode.  */
1087	   || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1088	   /* Or if the precision of TO is not the same as the precision
1089	      of its mode.  */
1090	   || !type_has_mode_precision_p (type)))
1091   (convert (bitop @0 (convert @1))))))
1092
1093(for bitop (bit_and bit_ior)
1094     rbitop (bit_ior bit_and)
1095  /* (x | y) & x -> x */
1096  /* (x & y) | x -> x */
1097 (simplify
1098  (bitop:c (rbitop:c @0 @1) @0)
1099  @0)
1100 /* (~x | y) & x -> x & y */
1101 /* (~x & y) | x -> x | y */
1102 (simplify
1103  (bitop:c (rbitop:c (bit_not @0) @1) @0)
1104  (bitop @0 @1)))
1105
1106/* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1107(simplify
1108  (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1109  (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1110
1111/* Combine successive equal operations with constants.  */
1112(for bitop (bit_and bit_ior bit_xor)
1113 (simplify
1114  (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1115  (if (!CONSTANT_CLASS_P (@0))
1116   /* This is the canonical form regardless of whether (bitop @1 @2) can be
1117      folded to a constant.  */
1118   (bitop @0 (bitop @1 @2))
1119   /* In this case we have three constants and (bitop @0 @1) doesn't fold
1120      to a constant.  This can happen if @0 or @1 is a POLY_INT_CST and if
1121      the values involved are such that the operation can't be decided at
1122      compile time.  Try folding one of @0 or @1 with @2 to see whether
1123      that combination can be decided at compile time.
1124
1125      Keep the existing form if both folds fail, to avoid endless
1126      oscillation.  */
1127   (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1128    (if (cst1)
1129     (bitop @1 { cst1; })
1130     (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1131      (if (cst2)
1132       (bitop @0 { cst2; }))))))))
1133
1134/* Try simple folding for X op !X, and X op X with the help
1135   of the truth_valued_p and logical_inverted_value predicates.  */
1136(match truth_valued_p
1137 @0
1138 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1139(for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1140 (match truth_valued_p
1141  (op @0 @1)))
1142(match truth_valued_p
1143  (truth_not @0))
1144
1145(match (logical_inverted_value @0)
1146 (truth_not @0))
1147(match (logical_inverted_value @0)
1148 (bit_not truth_valued_p@0))
1149(match (logical_inverted_value @0)
1150 (eq @0 integer_zerop))
1151(match (logical_inverted_value @0)
1152 (ne truth_valued_p@0 integer_truep))
1153(match (logical_inverted_value @0)
1154 (bit_xor truth_valued_p@0 integer_truep))
1155
1156/* X & !X -> 0.  */
1157(simplify
1158 (bit_and:c @0 (logical_inverted_value @0))
1159 { build_zero_cst (type); })
1160/* X | !X and X ^ !X -> 1, , if X is truth-valued.  */
1161(for op (bit_ior bit_xor)
1162 (simplify
1163  (op:c truth_valued_p@0 (logical_inverted_value @0))
1164  { constant_boolean_node (true, type); }))
1165/* X ==/!= !X is false/true.  */
1166(for op (eq ne)
1167 (simplify
1168  (op:c truth_valued_p@0 (logical_inverted_value @0))
1169  { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1170
1171/* ~~x -> x */
1172(simplify
1173  (bit_not (bit_not @0))
1174  @0)
1175
1176/* Convert ~ (-A) to A - 1.  */
1177(simplify
1178 (bit_not (convert? (negate @0)))
1179 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1180      || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1181  (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1182
1183/* Convert - (~A) to A + 1.  */
1184(simplify
1185 (negate (nop_convert (bit_not @0)))
1186 (plus (view_convert @0) { build_each_one_cst (type); }))
1187
1188/* Convert ~ (A - 1) or ~ (A + -1) to -A.  */
1189(simplify
1190 (bit_not (convert? (minus @0 integer_each_onep)))
1191 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1192      || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1193  (convert (negate @0))))
1194(simplify
1195 (bit_not (convert? (plus @0 integer_all_onesp)))
1196 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1197      || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1198  (convert (negate @0))))
1199
1200/* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify.  */
1201(simplify
1202 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1203 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1204  (convert (bit_xor @0 (bit_not @1)))))
1205(simplify
1206 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1207 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1208  (convert (bit_xor @0 @1))))
1209
1210/* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical.  */
1211(simplify
1212 (bit_xor:c (nop_convert:s (bit_not:s @0)) @1)
1213 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1214  (bit_not (bit_xor (view_convert @0) @1))))
1215
1216/* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1217(simplify
1218 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1219 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1220
1221/* Fold A - (A & B) into ~B & A.  */
1222(simplify
1223 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1224 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1225      && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1226  (convert (bit_and (bit_not @1) @0))))
1227
1228/* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0  */
1229(for cmp (gt lt ge le)
1230(simplify
1231 (mult (convert (cmp @0 @1)) @2)
1232  (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1233
1234/* For integral types with undefined overflow and C != 0 fold
1235   x * C EQ/NE y * C into x EQ/NE y.  */
1236(for cmp (eq ne)
1237 (simplify
1238  (cmp (mult:c @0 @1) (mult:c @2 @1))
1239  (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1240       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1241       && tree_expr_nonzero_p (@1))
1242   (cmp @0 @2))))
1243
1244/* For integral types with wrapping overflow and C odd fold
1245   x * C EQ/NE y * C into x EQ/NE y.  */
1246(for cmp (eq ne)
1247 (simplify
1248  (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1249  (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1250       && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1251       && (TREE_INT_CST_LOW (@1) & 1) != 0)
1252   (cmp @0 @2))))
1253
1254/* For integral types with undefined overflow and C != 0 fold
1255   x * C RELOP y * C into:
1256
1257   x RELOP y for nonnegative C
1258   y RELOP x for negative C  */
1259(for cmp (lt gt le ge)
1260 (simplify
1261  (cmp (mult:c @0 @1) (mult:c @2 @1))
1262  (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1263       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1264   (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1265    (cmp @0 @2)
1266   (if (TREE_CODE (@1) == INTEGER_CST
1267	&& wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1268    (cmp @2 @0))))))
1269
1270/* (X - 1U) <= INT_MAX-1U into (int) X > 0.  */
1271(for cmp (le gt)
1272     icmp (gt le)
1273 (simplify
1274  (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1275   (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1276	&& TYPE_UNSIGNED (TREE_TYPE (@0))
1277	&& TYPE_PRECISION (TREE_TYPE (@0)) > 1
1278	&& (wi::to_wide (@2)
1279	    == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1280    (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1281     (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1282
1283/* X / 4 < Y / 4 iff X < Y when the division is known to be exact.  */
1284(for cmp (simple_comparison)
1285 (simplify
1286  (cmp (exact_div @0 INTEGER_CST@2) (exact_div @1 @2))
1287  (if (wi::gt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1288   (cmp @0 @1))))
1289
1290/* X / C1 op C2 into a simple range test.  */
1291(for cmp (simple_comparison)
1292 (simplify
1293  (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1294  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1295       && integer_nonzerop (@1)
1296       && !TREE_OVERFLOW (@1)
1297       && !TREE_OVERFLOW (@2))
1298   (with { tree lo, hi; bool neg_overflow;
1299	   enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1300						   &neg_overflow); }
1301    (switch
1302     (if (code == LT_EXPR || code == GE_EXPR)
1303       (if (TREE_OVERFLOW (lo))
1304	{ build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1305	(if (code == LT_EXPR)
1306	 (lt @0 { lo; })
1307	 (ge @0 { lo; }))))
1308     (if (code == LE_EXPR || code == GT_EXPR)
1309       (if (TREE_OVERFLOW (hi))
1310	{ build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1311	(if (code == LE_EXPR)
1312	 (le @0 { hi; })
1313	 (gt @0 { hi; }))))
1314     (if (!lo && !hi)
1315      { build_int_cst (type, code == NE_EXPR); })
1316     (if (code == EQ_EXPR && !hi)
1317      (ge @0 { lo; }))
1318     (if (code == EQ_EXPR && !lo)
1319      (le @0 { hi; }))
1320     (if (code == NE_EXPR && !hi)
1321      (lt @0 { lo; }))
1322     (if (code == NE_EXPR && !lo)
1323      (gt @0 { hi; }))
1324     (if (GENERIC)
1325      { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1326			   lo, hi); })
1327     (with
1328      {
1329	tree etype = range_check_type (TREE_TYPE (@0));
1330	if (etype)
1331	  {
1332	    if (! TYPE_UNSIGNED (etype))
1333	      etype = unsigned_type_for (etype);
1334	    hi = fold_convert (etype, hi);
1335	    lo = fold_convert (etype, lo);
1336	    hi = const_binop (MINUS_EXPR, etype, hi, lo);
1337	  }
1338      }
1339      (if (etype && hi && !TREE_OVERFLOW (hi))
1340       (if (code == EQ_EXPR)
1341	(le (minus (convert:etype @0) { lo; }) { hi; })
1342	(gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1343
1344/* X + Z < Y + Z is the same as X < Y when there is no overflow.  */
1345(for op (lt le ge gt)
1346 (simplify
1347  (op (plus:c @0 @2) (plus:c @1 @2))
1348  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1349       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1350   (op @0 @1))))
1351/* For equality and subtraction, this is also true with wrapping overflow.  */
1352(for op (eq ne minus)
1353 (simplify
1354  (op (plus:c @0 @2) (plus:c @1 @2))
1355  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1356       && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1357	   || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1358   (op @0 @1))))
1359
1360/* X - Z < Y - Z is the same as X < Y when there is no overflow.  */
1361(for op (lt le ge gt)
1362 (simplify
1363  (op (minus @0 @2) (minus @1 @2))
1364  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1365       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1366   (op @0 @1))))
1367/* For equality and subtraction, this is also true with wrapping overflow.  */
1368(for op (eq ne minus)
1369 (simplify
1370  (op (minus @0 @2) (minus @1 @2))
1371  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1372       && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1373	   || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1374   (op @0 @1))))
1375/* And for pointers...  */
1376(for op (simple_comparison)
1377 (simplify
1378  (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1379  (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1380   (op @0 @1))))
1381(simplify
1382 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1383 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1384      && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1385  (pointer_diff @0 @1)))
1386
1387/* Z - X < Z - Y is the same as Y < X when there is no overflow.  */
1388(for op (lt le ge gt)
1389 (simplify
1390  (op (minus @2 @0) (minus @2 @1))
1391  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1392       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1393   (op @1 @0))))
1394/* For equality and subtraction, this is also true with wrapping overflow.  */
1395(for op (eq ne minus)
1396 (simplify
1397  (op (minus @2 @0) (minus @2 @1))
1398  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1399       && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1400	   || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1401   (op @1 @0))))
1402/* And for pointers...  */
1403(for op (simple_comparison)
1404 (simplify
1405  (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1406  (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1407   (op @1 @0))))
1408(simplify
1409 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1410 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1411      && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1412  (pointer_diff @1 @0)))
1413
1414/* X + Y < Y is the same as X < 0 when there is no overflow.  */
1415(for op (lt le gt ge)
1416 (simplify
1417  (op:c (plus:c@2 @0 @1) @1)
1418  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1419       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1420       && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1421   (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1422/* For equality, this is also true with wrapping overflow.  */
1423(for op (eq ne)
1424 (simplify
1425  (op:c (nop_convert@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1426  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1427       && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1428	   || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1429       && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1430       && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1431       && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1432   (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1433 (simplify
1434  (op:c (nop_convert@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1435  (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1436       && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1437       && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1438   (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1439
1440/* X - Y < X is the same as Y > 0 when there is no overflow.
1441   For equality, this is also true with wrapping overflow.  */
1442(for op (simple_comparison)
1443 (simplify
1444  (op:c @0 (minus@2 @0 @1))
1445  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1446       && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1447	   || ((op == EQ_EXPR || op == NE_EXPR)
1448	       && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1449       && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1450   (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1451
1452/* Transform:
1453 * (X / Y) == 0 -> X < Y if X, Y are unsigned.
1454 * (X / Y) != 0 -> X >= Y, if X, Y are unsigned.
1455 */
1456(for cmp (eq ne)
1457     ocmp (lt ge)
1458 (simplify
1459  (cmp (trunc_div @0 @1) integer_zerop)
1460  (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1461       && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1462   (ocmp @0 @1))))
1463
1464/* X == C - X can never be true if C is odd.  */
1465(for cmp (eq ne)
1466 (simplify
1467  (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1468  (if (TREE_INT_CST_LOW (@1) & 1)
1469   { constant_boolean_node (cmp == NE_EXPR, type); })))
1470
1471/* Arguments on which one can call get_nonzero_bits to get the bits
1472   possibly set.  */
1473(match with_possible_nonzero_bits
1474 INTEGER_CST@0)
1475(match with_possible_nonzero_bits
1476 SSA_NAME@0
1477 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1478/* Slightly extended version, do not make it recursive to keep it cheap.  */
1479(match (with_possible_nonzero_bits2 @0)
1480 with_possible_nonzero_bits@0)
1481(match (with_possible_nonzero_bits2 @0)
1482 (bit_and:c with_possible_nonzero_bits@0 @2))
1483
1484/* Same for bits that are known to be set, but we do not have
1485   an equivalent to get_nonzero_bits yet.  */
1486(match (with_certain_nonzero_bits2 @0)
1487 INTEGER_CST@0)
1488(match (with_certain_nonzero_bits2 @0)
1489 (bit_ior @1 INTEGER_CST@0))
1490
1491/* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0.  */
1492(for cmp (eq ne)
1493 (simplify
1494  (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1495  (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
1496   { constant_boolean_node (cmp == NE_EXPR, type); })))
1497
1498/* ((X inner_op C0) outer_op C1)
1499   With X being a tree where value_range has reasoned certain bits to always be
1500   zero throughout its computed value range,
1501   inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1502   where zero_mask has 1's for all bits that are sure to be 0 in
1503   and 0's otherwise.
1504   if (inner_op == '^') C0 &= ~C1;
1505   if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1506   if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1507*/
1508(for inner_op (bit_ior bit_xor)
1509     outer_op (bit_xor bit_ior)
1510(simplify
1511 (outer_op
1512  (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1513 (with
1514  {
1515    bool fail = false;
1516    wide_int zero_mask_not;
1517    wide_int C0;
1518    wide_int cst_emit;
1519
1520    if (TREE_CODE (@2) == SSA_NAME)
1521      zero_mask_not = get_nonzero_bits (@2);
1522    else
1523      fail = true;
1524
1525    if (inner_op == BIT_XOR_EXPR)
1526      {
1527	C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1528	cst_emit = C0 | wi::to_wide (@1);
1529      }
1530    else
1531      {
1532	C0 = wi::to_wide (@0);
1533	cst_emit = C0 ^ wi::to_wide (@1);
1534      }
1535  }
1536  (if (!fail && (C0 & zero_mask_not) == 0)
1537   (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1538   (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
1539    (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1540
1541/* Associate (p +p off1) +p off2 as (p +p (off1 + off2)).  */
1542(simplify
1543  (pointer_plus (pointer_plus:s @0 @1) @3)
1544  (pointer_plus @0 (plus @1 @3)))
1545
1546/* Pattern match
1547     tem1 = (long) ptr1;
1548     tem2 = (long) ptr2;
1549     tem3 = tem2 - tem1;
1550     tem4 = (unsigned long) tem3;
1551     tem5 = ptr1 + tem4;
1552   and produce
1553     tem5 = ptr2;  */
1554(simplify
1555  (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1556  /* Conditionally look through a sign-changing conversion.  */
1557  (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1558       && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1559	    || (GENERIC && type == TREE_TYPE (@1))))
1560   @1))
1561(simplify
1562  (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1563  (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1564   (convert @1)))
1565
1566/* Pattern match
1567     tem = (sizetype) ptr;
1568     tem = tem & algn;
1569     tem = -tem;
1570     ... = ptr p+ tem;
1571   and produce the simpler and easier to analyze with respect to alignment
1572     ... = ptr & ~algn;  */
1573(simplify
1574  (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1575  (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
1576   (bit_and @0 { algn; })))
1577
1578/* Try folding difference of addresses.  */
1579(simplify
1580 (minus (convert ADDR_EXPR@0) (convert @1))
1581 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1582  (with { poly_int64 diff; }
1583   (if (ptr_difference_const (@0, @1, &diff))
1584    { build_int_cst_type (type, diff); }))))
1585(simplify
1586 (minus (convert @0) (convert ADDR_EXPR@1))
1587 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1588  (with { poly_int64 diff; }
1589   (if (ptr_difference_const (@0, @1, &diff))
1590    { build_int_cst_type (type, diff); }))))
1591(simplify
1592 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert?@3 @1))
1593 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1594      && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1595  (with { poly_int64 diff; }
1596   (if (ptr_difference_const (@0, @1, &diff))
1597    { build_int_cst_type (type, diff); }))))
1598(simplify
1599 (pointer_diff (convert?@2 @0) (convert?@3 ADDR_EXPR@1))
1600 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1601      && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1602  (with { poly_int64 diff; }
1603   (if (ptr_difference_const (@0, @1, &diff))
1604    { build_int_cst_type (type, diff); }))))
1605
1606/* If arg0 is derived from the address of an object or function, we may
1607   be able to fold this expression using the object or function's
1608   alignment.  */
1609(simplify
1610 (bit_and (convert? @0) INTEGER_CST@1)
1611 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1612      && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1613  (with
1614   {
1615     unsigned int align;
1616     unsigned HOST_WIDE_INT bitpos;
1617     get_pointer_alignment_1 (@0, &align, &bitpos);
1618   }
1619   (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1620    { wide_int_to_tree (type, (wi::to_wide (@1)
1621			       & (bitpos / BITS_PER_UNIT))); }))))
1622
1623
1624/* We can't reassociate at all for saturating types.  */
1625(if (!TYPE_SATURATING (type))
1626
1627 /* Contract negates.  */
1628 /* A + (-B) -> A - B */
1629 (simplify
1630  (plus:c @0 (convert? (negate @1)))
1631  /* Apply STRIP_NOPS on the negate.  */
1632  (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1633       && !TYPE_OVERFLOW_SANITIZED (type))
1634   (with
1635    {
1636     tree t1 = type;
1637     if (INTEGRAL_TYPE_P (type)
1638	 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1639       t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1640    }
1641    (convert (minus (convert:t1 @0) (convert:t1 @1))))))
1642 /* A - (-B) -> A + B */
1643 (simplify
1644  (minus @0 (convert? (negate @1)))
1645  (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1646       && !TYPE_OVERFLOW_SANITIZED (type))
1647   (with
1648    {
1649     tree t1 = type;
1650     if (INTEGRAL_TYPE_P (type)
1651	 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1652       t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1653    }
1654    (convert (plus (convert:t1 @0) (convert:t1 @1))))))
1655 /* -(T)(-A) -> (T)A
1656    Sign-extension is ok except for INT_MIN, which thankfully cannot
1657    happen without overflow.  */
1658 (simplify
1659  (negate (convert (negate @1)))
1660  (if (INTEGRAL_TYPE_P (type)
1661       && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
1662	   || (!TYPE_UNSIGNED (TREE_TYPE (@1))
1663	       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1664       && !TYPE_OVERFLOW_SANITIZED (type)
1665       && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1666   (convert @1)))
1667 (simplify
1668  (negate (convert negate_expr_p@1))
1669  (if (SCALAR_FLOAT_TYPE_P (type)
1670       && ((DECIMAL_FLOAT_TYPE_P (type)
1671	    == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
1672	    && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
1673	   || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
1674   (convert (negate @1))))
1675 (simplify
1676  (negate (nop_convert (negate @1)))
1677  (if (!TYPE_OVERFLOW_SANITIZED (type)
1678       && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1679   (view_convert @1)))
1680
1681 /* We can't reassociate floating-point unless -fassociative-math
1682    or fixed-point plus or minus because of saturation to +-Inf.  */
1683 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1684      && !FIXED_POINT_TYPE_P (type))
1685
1686  /* Match patterns that allow contracting a plus-minus pair
1687     irrespective of overflow issues.  */
1688  /* (A +- B) - A       ->  +- B */
1689  /* (A +- B) -+ B      ->  A */
1690  /* A - (A +- B)       -> -+ B */
1691  /* A +- (B -+ A)      ->  +- B */
1692  (simplify
1693    (minus (plus:c @0 @1) @0)
1694    @1)
1695  (simplify
1696    (minus (minus @0 @1) @0)
1697    (negate @1))
1698  (simplify
1699    (plus:c (minus @0 @1) @1)
1700    @0)
1701  (simplify
1702   (minus @0 (plus:c @0 @1))
1703   (negate @1))
1704  (simplify
1705   (minus @0 (minus @0 @1))
1706   @1)
1707  /* (A +- B) + (C - A)   -> C +- B */
1708  /* (A +  B) - (A - C)   -> B + C */
1709  /* More cases are handled with comparisons.  */
1710  (simplify
1711   (plus:c (plus:c @0 @1) (minus @2 @0))
1712   (plus @2 @1))
1713  (simplify
1714   (plus:c (minus @0 @1) (minus @2 @0))
1715   (minus @2 @1))
1716  (simplify
1717   (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
1718   (if (TYPE_OVERFLOW_UNDEFINED (type)
1719	&& !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
1720    (pointer_diff @2 @1)))
1721  (simplify
1722   (minus (plus:c @0 @1) (minus @0 @2))
1723   (plus @1 @2))
1724
1725  /* (A +- CST1) +- CST2 -> A + CST3
1726     Use view_convert because it is safe for vectors and equivalent for
1727     scalars.  */
1728  (for outer_op (plus minus)
1729   (for inner_op (plus minus)
1730	neg_inner_op (minus plus)
1731    (simplify
1732     (outer_op (nop_convert (inner_op @0 CONSTANT_CLASS_P@1))
1733	       CONSTANT_CLASS_P@2)
1734     /* If one of the types wraps, use that one.  */
1735     (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
1736      /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
1737	 forever if something doesn't simplify into a constant.  */
1738      (if (!CONSTANT_CLASS_P (@0))
1739       (if (outer_op == PLUS_EXPR)
1740	(plus (view_convert @0) (inner_op @2 (view_convert @1)))
1741	(minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
1742      (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1743	   || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1744       (if (outer_op == PLUS_EXPR)
1745	(view_convert (plus @0 (inner_op (view_convert @2) @1)))
1746	(view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
1747       /* If the constant operation overflows we cannot do the transform
1748	  directly as we would introduce undefined overflow, for example
1749	  with (a - 1) + INT_MIN.  */
1750       (if (types_match (type, @0))
1751	(with { tree cst = const_binop (outer_op == inner_op
1752					? PLUS_EXPR : MINUS_EXPR,
1753					type, @1, @2); }
1754	 (if (cst && !TREE_OVERFLOW (cst))
1755	  (inner_op @0 { cst; } )
1756	  /* X+INT_MAX+1 is X-INT_MIN.  */
1757	  (if (INTEGRAL_TYPE_P (type) && cst
1758	       && wi::to_wide (cst) == wi::min_value (type))
1759	   (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
1760	   /* Last resort, use some unsigned type.  */
1761	   (with { tree utype = unsigned_type_for (type); }
1762	    (view_convert (inner_op
1763			   (view_convert:utype @0)
1764			   (view_convert:utype
1765			    { drop_tree_overflow (cst); })))))))))))))
1766
1767  /* (CST1 - A) +- CST2 -> CST3 - A  */
1768  (for outer_op (plus minus)
1769   (simplify
1770    (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
1771    (with { tree cst = const_binop (outer_op, type, @1, @2); }
1772     (if (cst && !TREE_OVERFLOW (cst))
1773      (minus { cst; } @0)))))
1774
1775  /* CST1 - (CST2 - A) -> CST3 + A  */
1776  (simplify
1777   (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
1778   (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
1779    (if (cst && !TREE_OVERFLOW (cst))
1780     (plus { cst; } @0))))
1781
1782  /* ~A + A -> -1 */
1783  (simplify
1784   (plus:c (bit_not @0) @0)
1785   (if (!TYPE_OVERFLOW_TRAPS (type))
1786    { build_all_ones_cst (type); }))
1787
1788  /* ~A + 1 -> -A */
1789  (simplify
1790   (plus (convert? (bit_not @0)) integer_each_onep)
1791   (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1792    (negate (convert @0))))
1793
1794  /* -A - 1 -> ~A */
1795  (simplify
1796   (minus (convert? (negate @0)) integer_each_onep)
1797   (if (!TYPE_OVERFLOW_TRAPS (type)
1798	&& tree_nop_conversion_p (type, TREE_TYPE (@0)))
1799    (bit_not (convert @0))))
1800
1801  /* -1 - A -> ~A */
1802  (simplify
1803   (minus integer_all_onesp @0)
1804   (bit_not @0))
1805
1806  /* (T)(P + A) - (T)P -> (T) A */
1807  (simplify
1808   (minus (convert (plus:c @@0 @1))
1809    (convert? @0))
1810   (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1811	/* For integer types, if A has a smaller type
1812	   than T the result depends on the possible
1813	   overflow in P + A.
1814	   E.g. T=size_t, A=(unsigned)429497295, P>0.
1815	   However, if an overflow in P + A would cause
1816	   undefined behavior, we can assume that there
1817	   is no overflow.  */
1818	|| (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1819	    && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1820    (convert @1)))
1821  (simplify
1822   (minus (convert (pointer_plus @@0 @1))
1823    (convert @0))
1824   (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1825	/* For pointer types, if the conversion of A to the
1826	   final type requires a sign- or zero-extension,
1827	   then we have to punt - it is not defined which
1828	   one is correct.  */
1829	|| (POINTER_TYPE_P (TREE_TYPE (@0))
1830	    && TREE_CODE (@1) == INTEGER_CST
1831	    && tree_int_cst_sign_bit (@1) == 0))
1832    (convert @1)))
1833   (simplify
1834    (pointer_diff (pointer_plus @@0 @1) @0)
1835    /* The second argument of pointer_plus must be interpreted as signed, and
1836       thus sign-extended if necessary.  */
1837    (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1838     /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1839	second arg is unsigned even when we need to consider it as signed,
1840	we don't want to diagnose overflow here.  */
1841     (convert (view_convert:stype @1))))
1842
1843  /* (T)P - (T)(P + A) -> -(T) A */
1844  (simplify
1845   (minus (convert? @0)
1846    (convert (plus:c @@0 @1)))
1847   (if (INTEGRAL_TYPE_P (type)
1848	&& TYPE_OVERFLOW_UNDEFINED (type)
1849	&& element_precision (type) <= element_precision (TREE_TYPE (@1)))
1850    (with { tree utype = unsigned_type_for (type); }
1851     (convert (negate (convert:utype @1))))
1852    (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1853	 /* For integer types, if A has a smaller type
1854	    than T the result depends on the possible
1855	    overflow in P + A.
1856	    E.g. T=size_t, A=(unsigned)429497295, P>0.
1857	    However, if an overflow in P + A would cause
1858	    undefined behavior, we can assume that there
1859	    is no overflow.  */
1860	 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1861	     && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1862     (negate (convert @1)))))
1863  (simplify
1864   (minus (convert @0)
1865    (convert (pointer_plus @@0 @1)))
1866   (if (INTEGRAL_TYPE_P (type)
1867	&& TYPE_OVERFLOW_UNDEFINED (type)
1868	&& element_precision (type) <= element_precision (TREE_TYPE (@1)))
1869    (with { tree utype = unsigned_type_for (type); }
1870     (convert (negate (convert:utype @1))))
1871    (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1872	 /* For pointer types, if the conversion of A to the
1873	    final type requires a sign- or zero-extension,
1874	    then we have to punt - it is not defined which
1875	    one is correct.  */
1876	 || (POINTER_TYPE_P (TREE_TYPE (@0))
1877	     && TREE_CODE (@1) == INTEGER_CST
1878	     && tree_int_cst_sign_bit (@1) == 0))
1879     (negate (convert @1)))))
1880   (simplify
1881    (pointer_diff @0 (pointer_plus @@0 @1))
1882    /* The second argument of pointer_plus must be interpreted as signed, and
1883       thus sign-extended if necessary.  */
1884    (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1885     /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1886	second arg is unsigned even when we need to consider it as signed,
1887	we don't want to diagnose overflow here.  */
1888     (negate (convert (view_convert:stype @1)))))
1889
1890  /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
1891  (simplify
1892   (minus (convert (plus:c @@0 @1))
1893    (convert (plus:c @0 @2)))
1894   (if (INTEGRAL_TYPE_P (type)
1895	&& TYPE_OVERFLOW_UNDEFINED (type)
1896	&& element_precision (type) <= element_precision (TREE_TYPE (@1))
1897	&& element_precision (type) <= element_precision (TREE_TYPE (@2)))
1898    (with { tree utype = unsigned_type_for (type); }
1899     (convert (minus (convert:utype @1) (convert:utype @2))))
1900    (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
1901	  == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
1902	 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
1903	     /* For integer types, if A has a smaller type
1904		than T the result depends on the possible
1905		overflow in P + A.
1906		E.g. T=size_t, A=(unsigned)429497295, P>0.
1907		However, if an overflow in P + A would cause
1908		undefined behavior, we can assume that there
1909		is no overflow.  */
1910	     || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1911		 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1912		 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
1913		 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
1914     (minus (convert @1) (convert @2)))))
1915  (simplify
1916   (minus (convert (pointer_plus @@0 @1))
1917    (convert (pointer_plus @0 @2)))
1918   (if (INTEGRAL_TYPE_P (type)
1919	&& TYPE_OVERFLOW_UNDEFINED (type)
1920	&& element_precision (type) <= element_precision (TREE_TYPE (@1)))
1921    (with { tree utype = unsigned_type_for (type); }
1922     (convert (minus (convert:utype @1) (convert:utype @2))))
1923    (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1924	 /* For pointer types, if the conversion of A to the
1925	    final type requires a sign- or zero-extension,
1926	    then we have to punt - it is not defined which
1927	    one is correct.  */
1928	 || (POINTER_TYPE_P (TREE_TYPE (@0))
1929	     && TREE_CODE (@1) == INTEGER_CST
1930	     && tree_int_cst_sign_bit (@1) == 0
1931	     && TREE_CODE (@2) == INTEGER_CST
1932	     && tree_int_cst_sign_bit (@2) == 0))
1933     (minus (convert @1) (convert @2)))))
1934   (simplify
1935    (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
1936    /* The second argument of pointer_plus must be interpreted as signed, and
1937       thus sign-extended if necessary.  */
1938    (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1939     /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1940	second arg is unsigned even when we need to consider it as signed,
1941	we don't want to diagnose overflow here.  */
1942     (minus (convert (view_convert:stype @1))
1943	    (convert (view_convert:stype @2)))))))
1944
1945/* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
1946    Modeled after fold_plusminus_mult_expr.  */
1947(if (!TYPE_SATURATING (type)
1948     && (!FLOAT_TYPE_P (type) || flag_associative_math))
1949 (for plusminus (plus minus)
1950  (simplify
1951   (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
1952   (if ((!ANY_INTEGRAL_TYPE_P (type)
1953	 || TYPE_OVERFLOW_WRAPS (type)
1954	 || (INTEGRAL_TYPE_P (type)
1955	     && tree_expr_nonzero_p (@0)
1956	     && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
1957	/* If @1 +- @2 is constant require a hard single-use on either
1958	   original operand (but not on both).  */
1959	&& (single_use (@3) || single_use (@4)))
1960    (mult (plusminus @1 @2) @0)))
1961  /* We cannot generate constant 1 for fract.  */
1962  (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
1963   (simplify
1964    (plusminus @0 (mult:c@3 @0 @2))
1965    (if ((!ANY_INTEGRAL_TYPE_P (type)
1966	  || TYPE_OVERFLOW_WRAPS (type)
1967	  || (INTEGRAL_TYPE_P (type)
1968	      && tree_expr_nonzero_p (@0)
1969	      && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
1970	 && single_use (@3))
1971     (mult (plusminus { build_one_cst (type); } @2) @0)))
1972   (simplify
1973    (plusminus (mult:c@3 @0 @2) @0)
1974    (if ((!ANY_INTEGRAL_TYPE_P (type)
1975	  || TYPE_OVERFLOW_WRAPS (type)
1976	  || (INTEGRAL_TYPE_P (type)
1977	      && tree_expr_nonzero_p (@0)
1978	      && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
1979	 && single_use (@3))
1980     (mult (plusminus @2 { build_one_cst (type); }) @0))))))
1981
1982/* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax().  */
1983
1984(for minmax (min max FMIN_ALL FMAX_ALL)
1985 (simplify
1986  (minmax @0 @0)
1987  @0))
1988/* min(max(x,y),y) -> y.  */
1989(simplify
1990 (min:c (max:c @0 @1) @1)
1991 @1)
1992/* max(min(x,y),y) -> y.  */
1993(simplify
1994 (max:c (min:c @0 @1) @1)
1995 @1)
1996/* max(a,-a) -> abs(a).  */
1997(simplify
1998 (max:c @0 (negate @0))
1999 (if (TREE_CODE (type) != COMPLEX_TYPE
2000      && (! ANY_INTEGRAL_TYPE_P (type)
2001	  || TYPE_OVERFLOW_UNDEFINED (type)))
2002  (abs @0)))
2003/* min(a,-a) -> -abs(a).  */
2004(simplify
2005 (min:c @0 (negate @0))
2006 (if (TREE_CODE (type) != COMPLEX_TYPE
2007      && (! ANY_INTEGRAL_TYPE_P (type)
2008	  || TYPE_OVERFLOW_UNDEFINED (type)))
2009  (negate (abs @0))))
2010(simplify
2011 (min @0 @1)
2012 (switch
2013  (if (INTEGRAL_TYPE_P (type)
2014       && TYPE_MIN_VALUE (type)
2015       && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2016   @1)
2017  (if (INTEGRAL_TYPE_P (type)
2018       && TYPE_MAX_VALUE (type)
2019       && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2020   @0)))
2021(simplify
2022 (max @0 @1)
2023 (switch
2024  (if (INTEGRAL_TYPE_P (type)
2025       && TYPE_MAX_VALUE (type)
2026       && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2027   @1)
2028  (if (INTEGRAL_TYPE_P (type)
2029       && TYPE_MIN_VALUE (type)
2030       && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2031   @0)))
2032
2033/* max (a, a + CST) -> a + CST where CST is positive.  */
2034/* max (a, a + CST) -> a where CST is negative.  */
2035(simplify
2036 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2037  (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2038   (if (tree_int_cst_sgn (@1) > 0)
2039    @2
2040    @0)))
2041
2042/* min (a, a + CST) -> a where CST is positive.  */
2043/* min (a, a + CST) -> a + CST where CST is negative. */
2044(simplify
2045 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2046  (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2047   (if (tree_int_cst_sgn (@1) > 0)
2048    @0
2049    @2)))
2050
2051/* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2052   and the outer convert demotes the expression back to x's type.  */
2053(for minmax (min max)
2054 (simplify
2055  (convert (minmax@0 (convert @1) INTEGER_CST@2))
2056  (if (INTEGRAL_TYPE_P (type)
2057       && types_match (@1, type) && int_fits_type_p (@2, type)
2058       && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2059       && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2060   (minmax @1 (convert @2)))))
2061
2062(for minmax (FMIN_ALL FMAX_ALL)
2063 /* If either argument is NaN, return the other one.  Avoid the
2064    transformation if we get (and honor) a signalling NaN.  */
2065 (simplify
2066  (minmax:c @0 REAL_CST@1)
2067  (if (real_isnan (TREE_REAL_CST_PTR (@1))
2068       && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2069   @0)))
2070/* Convert fmin/fmax to MIN_EXPR/MAX_EXPR.  C99 requires these
2071   functions to return the numeric arg if the other one is NaN.
2072   MIN and MAX don't honor that, so only transform if -ffinite-math-only
2073   is set.  C99 doesn't require -0.0 to be handled, so we don't have to
2074   worry about it either.  */
2075(if (flag_finite_math_only)
2076 (simplify
2077  (FMIN_ALL @0 @1)
2078  (min @0 @1))
2079 (simplify
2080  (FMAX_ALL @0 @1)
2081  (max @0 @1)))
2082/* min (-A, -B) -> -max (A, B)  */
2083(for minmax (min max FMIN_ALL FMAX_ALL)
2084     maxmin (max min FMAX_ALL FMIN_ALL)
2085 (simplify
2086  (minmax (negate:s@2 @0) (negate:s@3 @1))
2087  (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2088       || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2089           && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2090   (negate (maxmin @0 @1)))))
2091/* MIN (~X, ~Y) -> ~MAX (X, Y)
2092   MAX (~X, ~Y) -> ~MIN (X, Y)  */
2093(for minmax (min max)
2094 maxmin (max min)
2095 (simplify
2096  (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2097  (bit_not (maxmin @0 @1))))
2098
2099/* MIN (X, Y) == X -> X <= Y  */
2100(for minmax (min min max max)
2101     cmp    (eq  ne  eq  ne )
2102     out    (le  gt  ge  lt )
2103 (simplify
2104  (cmp:c (minmax:c @0 @1) @0)
2105  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2106   (out @0 @1))))
2107/* MIN (X, 5) == 0 -> X == 0
2108   MIN (X, 5) == 7 -> false  */
2109(for cmp (eq ne)
2110 (simplify
2111  (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
2112  (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2113		 TYPE_SIGN (TREE_TYPE (@0))))
2114   { constant_boolean_node (cmp == NE_EXPR, type); }
2115   (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2116		  TYPE_SIGN (TREE_TYPE (@0))))
2117    (cmp @0 @2)))))
2118(for cmp (eq ne)
2119 (simplify
2120  (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
2121  (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2122		 TYPE_SIGN (TREE_TYPE (@0))))
2123   { constant_boolean_node (cmp == NE_EXPR, type); }
2124   (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2125		  TYPE_SIGN (TREE_TYPE (@0))))
2126    (cmp @0 @2)))))
2127/* MIN (X, C1) < C2 -> X < C2 || C1 < C2  */
2128(for minmax (min     min     max     max     min     min     max     max    )
2129     cmp    (lt      le      gt      ge      gt      ge      lt      le     )
2130     comb   (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2131 (simplify
2132  (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2133  (comb (cmp @0 @2) (cmp @1 @2))))
2134
2135/* Simplifications of shift and rotates.  */
2136
2137(for rotate (lrotate rrotate)
2138 (simplify
2139  (rotate integer_all_onesp@0 @1)
2140  @0))
2141
2142/* Optimize -1 >> x for arithmetic right shifts.  */
2143(simplify
2144 (rshift integer_all_onesp@0 @1)
2145 (if (!TYPE_UNSIGNED (type)
2146      && tree_expr_nonnegative_p (@1))
2147  @0))
2148
2149/* Optimize (x >> c) << c into x & (-1<<c).  */
2150(simplify
2151 (lshift (rshift @0 INTEGER_CST@1) @1)
2152 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
2153  (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
2154
2155/* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2156   types.  */
2157(simplify
2158 (rshift (lshift @0 INTEGER_CST@1) @1)
2159 (if (TYPE_UNSIGNED (type)
2160      && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
2161  (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2162
2163(for shiftrotate (lrotate rrotate lshift rshift)
2164 (simplify
2165  (shiftrotate @0 integer_zerop)
2166  (non_lvalue @0))
2167 (simplify
2168  (shiftrotate integer_zerop@0 @1)
2169  @0)
2170 /* Prefer vector1 << scalar to vector1 << vector2
2171    if vector2 is uniform.  */
2172 (for vec (VECTOR_CST CONSTRUCTOR)
2173  (simplify
2174   (shiftrotate @0 vec@1)
2175   (with { tree tem = uniform_vector_p (@1); }
2176    (if (tem)
2177     (shiftrotate @0 { tem; }))))))
2178
2179/* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2180   Y is 0.  Similarly for X >> Y.  */
2181#if GIMPLE
2182(for shift (lshift rshift)
2183 (simplify
2184  (shift @0 SSA_NAME@1)
2185   (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2186    (with {
2187      int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2188      int prec = TYPE_PRECISION (TREE_TYPE (@1));
2189     }
2190     (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2191      @0)))))
2192#endif
2193
2194/* Rewrite an LROTATE_EXPR by a constant into an
2195   RROTATE_EXPR by a new constant.  */
2196(simplify
2197 (lrotate @0 INTEGER_CST@1)
2198 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
2199			    build_int_cst (TREE_TYPE (@1),
2200					   element_precision (type)), @1); }))
2201
2202/* Turn (a OP c1) OP c2 into a OP (c1+c2).  */
2203(for op (lrotate rrotate rshift lshift)
2204 (simplify
2205  (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2206  (with { unsigned int prec = element_precision (type); }
2207   (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2208        && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2209        && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2210	&& wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
2211    (with { unsigned int low = (tree_to_uhwi (@1)
2212				+ tree_to_uhwi (@2)); }
2213     /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2214        being well defined.  */
2215     (if (low >= prec)
2216      (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
2217       (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
2218       (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
2219        { build_zero_cst (type); }
2220        (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2221      (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
2222
2223
2224/* ((1 << A) & 1) != 0 -> A == 0
2225   ((1 << A) & 1) == 0 -> A != 0 */
2226(for cmp (ne eq)
2227     icmp (eq ne)
2228 (simplify
2229  (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2230  (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
2231
2232/* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2233   (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2234   if CST2 != 0.  */
2235(for cmp (ne eq)
2236 (simplify
2237  (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
2238  (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
2239   (if (cand < 0
2240	|| (!integer_zerop (@2)
2241	    && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
2242    { constant_boolean_node (cmp == NE_EXPR, type); }
2243    (if (!integer_zerop (@2)
2244	 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
2245     (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
2246
2247/* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2248        (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2249   if the new mask might be further optimized.  */
2250(for shift (lshift rshift)
2251 (simplify
2252  (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2253           INTEGER_CST@2)
2254   (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2255	&& TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2256	&& tree_fits_uhwi_p (@1)
2257	&& tree_to_uhwi (@1) > 0
2258	&& tree_to_uhwi (@1) < TYPE_PRECISION (type))
2259    (with
2260     {
2261       unsigned int shiftc = tree_to_uhwi (@1);
2262       unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2263       unsigned HOST_WIDE_INT newmask, zerobits = 0;
2264       tree shift_type = TREE_TYPE (@3);
2265       unsigned int prec;
2266
2267       if (shift == LSHIFT_EXPR)
2268	 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
2269       else if (shift == RSHIFT_EXPR
2270		&& type_has_mode_precision_p (shift_type))
2271	 {
2272	   prec = TYPE_PRECISION (TREE_TYPE (@3));
2273	   tree arg00 = @0;
2274	   /* See if more bits can be proven as zero because of
2275	      zero extension.  */
2276	   if (@3 != @0
2277	       && TYPE_UNSIGNED (TREE_TYPE (@0)))
2278	     {
2279	       tree inner_type = TREE_TYPE (@0);
2280	       if (type_has_mode_precision_p (inner_type)
2281		   && TYPE_PRECISION (inner_type) < prec)
2282		 {
2283		   prec = TYPE_PRECISION (inner_type);
2284		   /* See if we can shorten the right shift.  */
2285		   if (shiftc < prec)
2286		     shift_type = inner_type;
2287		   /* Otherwise X >> C1 is all zeros, so we'll optimize
2288		      it into (X, 0) later on by making sure zerobits
2289		      is all ones.  */
2290		 }
2291	     }
2292	   zerobits = HOST_WIDE_INT_M1U;
2293	   if (shiftc < prec)
2294	     {
2295	       zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2296	       zerobits <<= prec - shiftc;
2297	     }
2298	   /* For arithmetic shift if sign bit could be set, zerobits
2299	      can contain actually sign bits, so no transformation is
2300	      possible, unless MASK masks them all away.  In that
2301	      case the shift needs to be converted into logical shift.  */
2302	   if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2303	       && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2304	     {
2305	       if ((mask & zerobits) == 0)
2306		 shift_type = unsigned_type_for (TREE_TYPE (@3));
2307	       else
2308		 zerobits = 0;
2309	     }
2310	 }
2311     }
2312     /* ((X << 16) & 0xff00) is (X, 0).  */
2313     (if ((mask & zerobits) == mask)
2314      { build_int_cst (type, 0); }
2315      (with { newmask = mask | zerobits; }
2316       (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2317        (with
2318	 {
2319	   /* Only do the transformation if NEWMASK is some integer
2320	      mode's mask.  */
2321	   for (prec = BITS_PER_UNIT;
2322	        prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
2323	     if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
2324	       break;
2325	 }
2326	 (if (prec < HOST_BITS_PER_WIDE_INT
2327	      || newmask == HOST_WIDE_INT_M1U)
2328	  (with
2329	   { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2330	   (if (!tree_int_cst_equal (newmaskt, @2))
2331	    (if (shift_type != TREE_TYPE (@3))
2332	     (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2333	     (bit_and @4 { newmaskt; })))))))))))))
2334
2335/* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2336   (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1).  */
2337(for shift (lshift rshift)
2338 (for bit_op (bit_and bit_xor bit_ior)
2339  (simplify
2340   (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2341   (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2342    (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2343     (bit_op (shift (convert @0) @1) { mask; }))))))
2344
2345/* ~(~X >> Y) -> X >> Y (for arithmetic shift).  */
2346(simplify
2347 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2348  (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
2349       && (element_precision (TREE_TYPE (@0))
2350	   <= element_precision (TREE_TYPE (@1))
2351	   || !TYPE_UNSIGNED (TREE_TYPE (@1))))
2352   (with
2353    { tree shift_type = TREE_TYPE (@0); }
2354     (convert (rshift (convert:shift_type @1) @2)))))
2355
2356/* ~(~X >>r Y) -> X >>r Y
2357   ~(~X <<r Y) -> X <<r Y */
2358(for rotate (lrotate rrotate)
2359 (simplify
2360  (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
2361   (if ((element_precision (TREE_TYPE (@0))
2362	 <= element_precision (TREE_TYPE (@1))
2363	 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2364        && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2365	    || !TYPE_UNSIGNED (TREE_TYPE (@0))))
2366    (with
2367     { tree rotate_type = TREE_TYPE (@0); }
2368      (convert (rotate (convert:rotate_type @1) @2))))))
2369
2370/* Simplifications of conversions.  */
2371
2372/* Basic strip-useless-type-conversions / strip_nops.  */
2373(for cvt (convert view_convert float fix_trunc)
2374 (simplify
2375  (cvt @0)
2376  (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2377       || (GENERIC && type == TREE_TYPE (@0)))
2378   @0)))
2379
2380/* Contract view-conversions.  */
2381(simplify
2382  (view_convert (view_convert @0))
2383  (view_convert @0))
2384
2385/* For integral conversions with the same precision or pointer
2386   conversions use a NOP_EXPR instead.  */
2387(simplify
2388  (view_convert @0)
2389  (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2390       && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2391       && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
2392   (convert @0)))
2393
2394/* Strip inner integral conversions that do not change precision or size, or
2395   zero-extend while keeping the same size (for bool-to-char).  */
2396(simplify
2397  (view_convert (convert@0 @1))
2398  (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2399       && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
2400       && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
2401       && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
2402	   || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
2403	       && TYPE_UNSIGNED (TREE_TYPE (@1)))))
2404   (view_convert @1)))
2405
2406/* Re-association barriers around constants and other re-association
2407   barriers can be removed.  */
2408(simplify
2409 (paren CONSTANT_CLASS_P@0)
2410 @0)
2411(simplify
2412 (paren (paren@1 @0))
2413 @1)
2414
2415/* Handle cases of two conversions in a row.  */
2416(for ocvt (convert float fix_trunc)
2417 (for icvt (convert float)
2418  (simplify
2419   (ocvt (icvt@1 @0))
2420   (with
2421    {
2422      tree inside_type = TREE_TYPE (@0);
2423      tree inter_type = TREE_TYPE (@1);
2424      int inside_int = INTEGRAL_TYPE_P (inside_type);
2425      int inside_ptr = POINTER_TYPE_P (inside_type);
2426      int inside_float = FLOAT_TYPE_P (inside_type);
2427      int inside_vec = VECTOR_TYPE_P (inside_type);
2428      unsigned int inside_prec = TYPE_PRECISION (inside_type);
2429      int inside_unsignedp = TYPE_UNSIGNED (inside_type);
2430      int inter_int = INTEGRAL_TYPE_P (inter_type);
2431      int inter_ptr = POINTER_TYPE_P (inter_type);
2432      int inter_float = FLOAT_TYPE_P (inter_type);
2433      int inter_vec = VECTOR_TYPE_P (inter_type);
2434      unsigned int inter_prec = TYPE_PRECISION (inter_type);
2435      int inter_unsignedp = TYPE_UNSIGNED (inter_type);
2436      int final_int = INTEGRAL_TYPE_P (type);
2437      int final_ptr = POINTER_TYPE_P (type);
2438      int final_float = FLOAT_TYPE_P (type);
2439      int final_vec = VECTOR_TYPE_P (type);
2440      unsigned int final_prec = TYPE_PRECISION (type);
2441      int final_unsignedp = TYPE_UNSIGNED (type);
2442    }
2443   (switch
2444    /* In addition to the cases of two conversions in a row
2445       handled below, if we are converting something to its own
2446       type via an object of identical or wider precision, neither
2447       conversion is needed.  */
2448    (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
2449	  || (GENERIC
2450	      && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
2451	 && (((inter_int || inter_ptr) && final_int)
2452	     || (inter_float && final_float))
2453	 && inter_prec >= final_prec)
2454     (ocvt @0))
2455
2456    /* Likewise, if the intermediate and initial types are either both
2457       float or both integer, we don't need the middle conversion if the
2458       former is wider than the latter and doesn't change the signedness
2459       (for integers).  Avoid this if the final type is a pointer since
2460       then we sometimes need the middle conversion.  */
2461    (if (((inter_int && inside_int) || (inter_float && inside_float))
2462	 && (final_int || final_float)
2463	 && inter_prec >= inside_prec
2464	 && (inter_float || inter_unsignedp == inside_unsignedp))
2465     (ocvt @0))
2466
2467    /* If we have a sign-extension of a zero-extended value, we can
2468       replace that by a single zero-extension.  Likewise if the
2469       final conversion does not change precision we can drop the
2470       intermediate conversion.  */
2471    (if (inside_int && inter_int && final_int
2472	 && ((inside_prec < inter_prec && inter_prec < final_prec
2473	      && inside_unsignedp && !inter_unsignedp)
2474	     || final_prec == inter_prec))
2475     (ocvt @0))
2476
2477    /* Two conversions in a row are not needed unless:
2478	- some conversion is floating-point (overstrict for now), or
2479	- some conversion is a vector (overstrict for now), or
2480	- the intermediate type is narrower than both initial and
2481	  final, or
2482	- the intermediate type and innermost type differ in signedness,
2483	  and the outermost type is wider than the intermediate, or
2484	- the initial type is a pointer type and the precisions of the
2485	  intermediate and final types differ, or
2486	- the final type is a pointer type and the precisions of the
2487	  initial and intermediate types differ.  */
2488    (if (! inside_float && ! inter_float && ! final_float
2489	 && ! inside_vec && ! inter_vec && ! final_vec
2490	 && (inter_prec >= inside_prec || inter_prec >= final_prec)
2491	 && ! (inside_int && inter_int
2492	       && inter_unsignedp != inside_unsignedp
2493	       && inter_prec < final_prec)
2494	 && ((inter_unsignedp && inter_prec > inside_prec)
2495	     == (final_unsignedp && final_prec > inter_prec))
2496	 && ! (inside_ptr && inter_prec != final_prec)
2497	 && ! (final_ptr && inside_prec != inter_prec))
2498     (ocvt @0))
2499
2500    /* A truncation to an unsigned type (a zero-extension) should be
2501       canonicalized as bitwise and of a mask.  */
2502    (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion.  */
2503	 && final_int && inter_int && inside_int
2504	 && final_prec == inside_prec
2505	 && final_prec > inter_prec
2506	 && inter_unsignedp)
2507     (convert (bit_and @0 { wide_int_to_tree
2508	                      (inside_type,
2509			       wi::mask (inter_prec, false,
2510					 TYPE_PRECISION (inside_type))); })))
2511
2512    /* If we are converting an integer to a floating-point that can
2513       represent it exactly and back to an integer, we can skip the
2514       floating-point conversion.  */
2515    (if (GIMPLE /* PR66211 */
2516	 && inside_int && inter_float && final_int &&
2517	 (unsigned) significand_size (TYPE_MODE (inter_type))
2518	 >= inside_prec - !inside_unsignedp)
2519     (convert @0)))))))
2520
2521/* If we have a narrowing conversion to an integral type that is fed by a
2522   BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
2523   masks off bits outside the final type (and nothing else).  */
2524(simplify
2525  (convert (bit_and @0 INTEGER_CST@1))
2526  (if (INTEGRAL_TYPE_P (type)
2527       && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2528       && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2529       && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
2530						    TYPE_PRECISION (type)), 0))
2531   (convert @0)))
2532
2533
2534/* (X /[ex] A) * A -> X.  */
2535(simplify
2536  (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
2537  (convert @0))
2538
2539/* Canonicalization of binary operations.  */
2540
2541/* Convert X + -C into X - C.  */
2542(simplify
2543 (plus @0 REAL_CST@1)
2544 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
2545  (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
2546   (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
2547    (minus @0 { tem; })))))
2548
2549/* Convert x+x into x*2.  */
2550(simplify
2551 (plus @0 @0)
2552 (if (SCALAR_FLOAT_TYPE_P (type))
2553  (mult @0 { build_real (type, dconst2); })
2554  (if (INTEGRAL_TYPE_P (type))
2555   (mult @0 { build_int_cst (type, 2); }))))
2556
2557/* 0 - X  ->  -X.  */
2558(simplify
2559 (minus integer_zerop @1)
2560 (negate @1))
2561(simplify
2562 (pointer_diff integer_zerop @1)
2563 (negate (convert @1)))
2564
2565/* (ARG0 - ARG1) is the same as (-ARG1 + ARG0).  So check whether
2566   ARG0 is zero and X + ARG0 reduces to X, since that would mean
2567   (-ARG1 + ARG0) reduces to -ARG1.  */
2568(simplify
2569 (minus real_zerop@0 @1)
2570 (if (fold_real_zero_addition_p (type, @0, 0))
2571  (negate @1)))
2572
2573/* Transform x * -1 into -x.  */
2574(simplify
2575 (mult @0 integer_minus_onep)
2576 (negate @0))
2577
2578/* Reassociate (X * CST) * Y to (X * Y) * CST.  This does not introduce
2579   signed overflow for CST != 0 && CST != -1.  */
2580(simplify
2581 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
2582 (if (TREE_CODE (@2) != INTEGER_CST
2583      && single_use (@3)
2584      && !integer_zerop (@1) && !integer_minus_onep (@1))
2585  (mult (mult @0 @2) @1)))
2586
2587/* True if we can easily extract the real and imaginary parts of a complex
2588   number.  */
2589(match compositional_complex
2590 (convert? (complex @0 @1)))
2591
2592/* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations.  */
2593(simplify
2594 (complex (realpart @0) (imagpart @0))
2595 @0)
2596(simplify
2597 (realpart (complex @0 @1))
2598 @0)
2599(simplify
2600 (imagpart (complex @0 @1))
2601 @1)
2602
2603/* Sometimes we only care about half of a complex expression.  */
2604(simplify
2605 (realpart (convert?:s (conj:s @0)))
2606 (convert (realpart @0)))
2607(simplify
2608 (imagpart (convert?:s (conj:s @0)))
2609 (convert (negate (imagpart @0))))
2610(for part (realpart imagpart)
2611 (for op (plus minus)
2612  (simplify
2613   (part (convert?:s@2 (op:s @0 @1)))
2614   (convert (op (part @0) (part @1))))))
2615(simplify
2616 (realpart (convert?:s (CEXPI:s @0)))
2617 (convert (COS @0)))
2618(simplify
2619 (imagpart (convert?:s (CEXPI:s @0)))
2620 (convert (SIN @0)))
2621
2622/* conj(conj(x)) -> x  */
2623(simplify
2624 (conj (convert? (conj @0)))
2625 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
2626  (convert @0)))
2627
2628/* conj({x,y}) -> {x,-y}  */
2629(simplify
2630 (conj (convert?:s (complex:s @0 @1)))
2631 (with { tree itype = TREE_TYPE (type); }
2632  (complex (convert:itype @0) (negate (convert:itype @1)))))
2633
2634/* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c.  */
2635(for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
2636 (simplify
2637  (bswap (bswap @0))
2638  @0)
2639 (simplify
2640  (bswap (bit_not (bswap @0)))
2641  (bit_not @0))
2642 (for bitop (bit_xor bit_ior bit_and)
2643  (simplify
2644   (bswap (bitop:c (bswap @0) @1))
2645   (bitop @0 (bswap @1)))))
2646
2647
2648/* Combine COND_EXPRs and VEC_COND_EXPRs.  */
2649
2650/* Simplify constant conditions.
2651   Only optimize constant conditions when the selected branch
2652   has the same type as the COND_EXPR.  This avoids optimizing
2653   away "c ? x : throw", where the throw has a void type.
2654   Note that we cannot throw away the fold-const.c variant nor
2655   this one as we depend on doing this transform before possibly
2656   A ? B : B -> B triggers and the fold-const.c one can optimize
2657   0 ? A : B to B even if A has side-effects.  Something
2658   genmatch cannot handle.  */
2659(simplify
2660 (cond INTEGER_CST@0 @1 @2)
2661 (if (integer_zerop (@0))
2662  (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
2663   @2)
2664  (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
2665   @1)))
2666(simplify
2667 (vec_cond VECTOR_CST@0 @1 @2)
2668 (if (integer_all_onesp (@0))
2669  @1
2670  (if (integer_zerop (@0))
2671   @2)))
2672
2673/* Simplification moved from fold_cond_expr_with_comparison.  It may also
2674   be extended.  */
2675/* This pattern implements two kinds simplification:
2676
2677   Case 1)
2678   (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
2679     1) Conversions are type widening from smaller type.
2680     2) Const c1 equals to c2 after canonicalizing comparison.
2681     3) Comparison has tree code LT, LE, GT or GE.
2682   This specific pattern is needed when (cmp (convert x) c) may not
2683   be simplified by comparison patterns because of multiple uses of
2684   x.  It also makes sense here because simplifying across multiple
2685   referred var is always benefitial for complicated cases.
2686
2687   Case 2)
2688   (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2).  */
2689(for cmp (lt le gt ge eq)
2690 (simplify
2691  (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
2692  (with
2693   {
2694     tree from_type = TREE_TYPE (@1);
2695     tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
2696     enum tree_code code = ERROR_MARK;
2697
2698     if (INTEGRAL_TYPE_P (from_type)
2699	 && int_fits_type_p (@2, from_type)
2700	 && (types_match (c1_type, from_type)
2701	     || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
2702		 && (TYPE_UNSIGNED (from_type)
2703		     || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
2704	 && (types_match (c2_type, from_type)
2705	     || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
2706		 && (TYPE_UNSIGNED (from_type)
2707		     || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
2708       {
2709	 if (cmp != EQ_EXPR)
2710	   {
2711	     if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
2712	       {
2713		 /* X <= Y - 1 equals to X < Y.  */
2714		 if (cmp == LE_EXPR)
2715		   code = LT_EXPR;
2716		 /* X > Y - 1 equals to X >= Y.  */
2717		 if (cmp == GT_EXPR)
2718		   code = GE_EXPR;
2719	       }
2720	     if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
2721	       {
2722		 /* X < Y + 1 equals to X <= Y.  */
2723		 if (cmp == LT_EXPR)
2724		   code = LE_EXPR;
2725		 /* X >= Y + 1 equals to X > Y.  */
2726		 if (cmp == GE_EXPR)
2727		   code = GT_EXPR;
2728	       }
2729	     if (code != ERROR_MARK
2730		 || wi::to_widest (@2) == wi::to_widest (@3))
2731	       {
2732		 if (cmp == LT_EXPR || cmp == LE_EXPR)
2733		   code = MIN_EXPR;
2734		 if (cmp == GT_EXPR || cmp == GE_EXPR)
2735		   code = MAX_EXPR;
2736	       }
2737	   }
2738	 /* Can do A == C1 ? A : C2  ->  A == C1 ? C1 : C2?  */
2739	 else if (int_fits_type_p (@3, from_type))
2740	   code = EQ_EXPR;
2741       }
2742   }
2743   (if (code == MAX_EXPR)
2744    (convert (max @1 (convert @2)))
2745    (if (code == MIN_EXPR)
2746     (convert (min @1 (convert @2)))
2747     (if (code == EQ_EXPR)
2748      (convert (cond (eq @1 (convert @3))
2749		     (convert:from_type @3) (convert:from_type @2)))))))))
2750
2751/* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
2752
2753     1) OP is PLUS or MINUS.
2754     2) CMP is LT, LE, GT or GE.
2755     3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
2756
2757   This pattern also handles special cases like:
2758
2759     A) Operand x is a unsigned to signed type conversion and c1 is
2760	integer zero.  In this case,
2761	  (signed type)x  < 0  <=>  x  > MAX_VAL(signed type)
2762	  (signed type)x >= 0  <=>  x <= MAX_VAL(signed type)
2763     B) Const c1 may not equal to (C3 op' C2).  In this case we also
2764	check equality for (c1+1) and (c1-1) by adjusting comparison
2765	code.
2766
2767   TODO: Though signed type is handled by this pattern, it cannot be
2768   simplified at the moment because C standard requires additional
2769   type promotion.  In order to match&simplify it here, the IR needs
2770   to be cleaned up by other optimizers, i.e, VRP.  */
2771(for op (plus minus)
2772 (for cmp (lt le gt ge)
2773  (simplify
2774   (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
2775   (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
2776    (if (types_match (from_type, to_type)
2777	 /* Check if it is special case A).  */
2778	 || (TYPE_UNSIGNED (from_type)
2779	     && !TYPE_UNSIGNED (to_type)
2780	     && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
2781	     && integer_zerop (@1)
2782	     && (cmp == LT_EXPR || cmp == GE_EXPR)))
2783     (with
2784      {
2785	bool overflow = false;
2786	enum tree_code code, cmp_code = cmp;
2787	wide_int real_c1;
2788	wide_int c1 = wi::to_wide (@1);
2789	wide_int c2 = wi::to_wide (@2);
2790	wide_int c3 = wi::to_wide (@3);
2791	signop sgn = TYPE_SIGN (from_type);
2792
2793	/* Handle special case A), given x of unsigned type:
2794	    ((signed type)x  < 0) <=> (x  > MAX_VAL(signed type))
2795	    ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type))  */
2796	if (!types_match (from_type, to_type))
2797	  {
2798	    if (cmp_code == LT_EXPR)
2799	      cmp_code = GT_EXPR;
2800	    if (cmp_code == GE_EXPR)
2801	      cmp_code = LE_EXPR;
2802	    c1 = wi::max_value (to_type);
2803	  }
2804	/* To simplify this pattern, we require c3 = (c1 op c2).  Here we
2805	   compute (c3 op' c2) and check if it equals to c1 with op' being
2806	   the inverted operator of op.  Make sure overflow doesn't happen
2807	   if it is undefined.  */
2808	if (op == PLUS_EXPR)
2809	  real_c1 = wi::sub (c3, c2, sgn, &overflow);
2810	else
2811	  real_c1 = wi::add (c3, c2, sgn, &overflow);
2812
2813	code = cmp_code;
2814	if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
2815	  {
2816	    /* Check if c1 equals to real_c1.  Boundary condition is handled
2817	       by adjusting comparison operation if necessary.  */
2818	    if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
2819		&& !overflow)
2820	      {
2821		/* X <= Y - 1 equals to X < Y.  */
2822		if (cmp_code == LE_EXPR)
2823		  code = LT_EXPR;
2824		/* X > Y - 1 equals to X >= Y.  */
2825		if (cmp_code == GT_EXPR)
2826		  code = GE_EXPR;
2827	      }
2828	    if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
2829		&& !overflow)
2830	      {
2831		/* X < Y + 1 equals to X <= Y.  */
2832		if (cmp_code == LT_EXPR)
2833		  code = LE_EXPR;
2834		/* X >= Y + 1 equals to X > Y.  */
2835		if (cmp_code == GE_EXPR)
2836		  code = GT_EXPR;
2837	      }
2838	    if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
2839	      {
2840		if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
2841		  code = MIN_EXPR;
2842		if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
2843		  code = MAX_EXPR;
2844	      }
2845	  }
2846      }
2847      (if (code == MAX_EXPR)
2848       (op (max @X { wide_int_to_tree (from_type, real_c1); })
2849	   { wide_int_to_tree (from_type, c2); })
2850       (if (code == MIN_EXPR)
2851	(op (min @X { wide_int_to_tree (from_type, real_c1); })
2852	    { wide_int_to_tree (from_type, c2); })))))))))
2853
2854(for cnd (cond vec_cond)
2855 /* A ? B : (A ? X : C) -> A ? B : C.  */
2856 (simplify
2857  (cnd @0 (cnd @0 @1 @2) @3)
2858  (cnd @0 @1 @3))
2859 (simplify
2860  (cnd @0 @1 (cnd @0 @2 @3))
2861  (cnd @0 @1 @3))
2862 /* A ? B : (!A ? C : X) -> A ? B : C.  */
2863 /* ???  This matches embedded conditions open-coded because genmatch
2864    would generate matching code for conditions in separate stmts only.
2865    The following is still important to merge then and else arm cases
2866    from if-conversion.  */
2867 (simplify
2868  (cnd @0 @1 (cnd @2 @3 @4))
2869  (if (COMPARISON_CLASS_P (@0)
2870       && COMPARISON_CLASS_P (@2)
2871       && invert_tree_comparison
2872           (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@2)
2873       && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@2, 0), 0)
2874       && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@2, 1), 0))
2875   (cnd @0 @1 @3)))
2876 (simplify
2877  (cnd @0 (cnd @1 @2 @3) @4)
2878  (if (COMPARISON_CLASS_P (@0)
2879       && COMPARISON_CLASS_P (@1)
2880       && invert_tree_comparison
2881           (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@1)
2882       && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@1, 0), 0)
2883       && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@1, 1), 0))
2884   (cnd @0 @3 @4)))
2885
2886 /* A ? B : B -> B.  */
2887 (simplify
2888  (cnd @0 @1 @1)
2889  @1)
2890
2891 /* !A ? B : C -> A ? C : B.  */
2892 (simplify
2893  (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
2894  (cnd @0 @2 @1)))
2895
2896/* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
2897   return all -1 or all 0 results.  */
2898/* ??? We could instead convert all instances of the vec_cond to negate,
2899   but that isn't necessarily a win on its own.  */
2900(simplify
2901 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
2902 (if (VECTOR_TYPE_P (type)
2903      && known_eq (TYPE_VECTOR_SUBPARTS (type),
2904		   TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
2905      && (TYPE_MODE (TREE_TYPE (type))
2906          == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
2907  (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
2908
2909/* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0).  */
2910(simplify
2911 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
2912 (if (VECTOR_TYPE_P (type)
2913      && known_eq (TYPE_VECTOR_SUBPARTS (type),
2914		   TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
2915      && (TYPE_MODE (TREE_TYPE (type))
2916          == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
2917  (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
2918
2919
2920/* Simplifications of comparisons.  */
2921
2922/* See if we can reduce the magnitude of a constant involved in a
2923   comparison by changing the comparison code.  This is a canonicalization
2924   formerly done by maybe_canonicalize_comparison_1.  */
2925(for cmp  (le gt)
2926     acmp (lt ge)
2927 (simplify
2928  (cmp @0 INTEGER_CST@1)
2929  (if (tree_int_cst_sgn (@1) == -1)
2930   (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
2931(for cmp  (ge lt)
2932     acmp (gt le)
2933 (simplify
2934  (cmp @0 INTEGER_CST@1)
2935  (if (tree_int_cst_sgn (@1) == 1)
2936   (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
2937
2938
2939/* We can simplify a logical negation of a comparison to the
2940   inverted comparison.  As we cannot compute an expression
2941   operator using invert_tree_comparison we have to simulate
2942   that with expression code iteration.  */
2943(for cmp (tcc_comparison)
2944     icmp (inverted_tcc_comparison)
2945     ncmp (inverted_tcc_comparison_with_nans)
2946 /* Ideally we'd like to combine the following two patterns
2947    and handle some more cases by using
2948      (logical_inverted_value (cmp @0 @1))
2949    here but for that genmatch would need to "inline" that.
2950    For now implement what forward_propagate_comparison did.  */
2951 (simplify
2952  (bit_not (cmp @0 @1))
2953  (if (VECTOR_TYPE_P (type)
2954       || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
2955   /* Comparison inversion may be impossible for trapping math,
2956      invert_tree_comparison will tell us.  But we can't use
2957      a computed operator in the replacement tree thus we have
2958      to play the trick below.  */
2959   (with { enum tree_code ic = invert_tree_comparison
2960             (cmp, HONOR_NANS (@0)); }
2961    (if (ic == icmp)
2962     (icmp @0 @1)
2963     (if (ic == ncmp)
2964      (ncmp @0 @1))))))
2965 (simplify
2966  (bit_xor (cmp @0 @1) integer_truep)
2967  (with { enum tree_code ic = invert_tree_comparison
2968            (cmp, HONOR_NANS (@0)); }
2969   (if (ic == icmp)
2970    (icmp @0 @1)
2971    (if (ic == ncmp)
2972     (ncmp @0 @1))))))
2973
2974/* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
2975   ??? The transformation is valid for the other operators if overflow
2976   is undefined for the type, but performing it here badly interacts
2977   with the transformation in fold_cond_expr_with_comparison which
2978   attempts to synthetize ABS_EXPR.  */
2979(for cmp (eq ne)
2980 (for sub (minus pointer_diff)
2981  (simplify
2982   (cmp (sub@2 @0 @1) integer_zerop)
2983   (if (single_use (@2))
2984    (cmp @0 @1)))))
2985
2986/* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
2987   signed arithmetic case.  That form is created by the compiler
2988   often enough for folding it to be of value.  One example is in
2989   computing loop trip counts after Operator Strength Reduction.  */
2990(for cmp (simple_comparison)
2991     scmp (swapped_simple_comparison)
2992 (simplify
2993  (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
2994  /* Handle unfolded multiplication by zero.  */
2995  (if (integer_zerop (@1))
2996   (cmp @1 @2)
2997   (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2998	&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2999	&& single_use (@3))
3000    /* If @1 is negative we swap the sense of the comparison.  */
3001    (if (tree_int_cst_sgn (@1) < 0)
3002     (scmp @0 @2)
3003     (cmp @0 @2))))))
3004
3005/* Simplify comparison of something with itself.  For IEEE
3006   floating-point, we can only do some of these simplifications.  */
3007(for cmp (eq ge le)
3008 (simplify
3009  (cmp @0 @0)
3010  (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
3011       || ! HONOR_NANS (@0))
3012   { constant_boolean_node (true, type); }
3013   (if (cmp != EQ_EXPR)
3014    (eq @0 @0)))))
3015(for cmp (ne gt lt)
3016 (simplify
3017  (cmp @0 @0)
3018  (if (cmp != NE_EXPR
3019       || ! FLOAT_TYPE_P (TREE_TYPE (@0))
3020       || ! HONOR_NANS (@0))
3021   { constant_boolean_node (false, type); })))
3022(for cmp (unle unge uneq)
3023 (simplify
3024  (cmp @0 @0)
3025  { constant_boolean_node (true, type); }))
3026(for cmp (unlt ungt)
3027 (simplify
3028  (cmp @0 @0)
3029  (unordered @0 @0)))
3030(simplify
3031 (ltgt @0 @0)
3032 (if (!flag_trapping_math)
3033  { constant_boolean_node (false, type); }))
3034
3035/* Fold ~X op ~Y as Y op X.  */
3036(for cmp (simple_comparison)
3037 (simplify
3038  (cmp (bit_not@2 @0) (bit_not@3 @1))
3039  (if (single_use (@2) && single_use (@3))
3040   (cmp @1 @0))))
3041
3042/* Fold ~X op C as X op' ~C, where op' is the swapped comparison.  */
3043(for cmp (simple_comparison)
3044     scmp (swapped_simple_comparison)
3045 (simplify
3046  (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3047  (if (single_use (@2)
3048       && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
3049   (scmp @0 (bit_not @1)))))
3050
3051(for cmp (simple_comparison)
3052 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2.  */
3053 (simplify
3054  (cmp (convert@2 @0) (convert? @1))
3055  (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3056       && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3057	   == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3058       && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3059	   == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3060   (with
3061    {
3062      tree type1 = TREE_TYPE (@1);
3063      if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3064        {
3065	  REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3066	  if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3067	      && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3068	    type1 = float_type_node;
3069	  if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3070	      && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3071	    type1 = double_type_node;
3072        }
3073      tree newtype
3074        = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3075	   ? TREE_TYPE (@0) : type1);
3076    }
3077    (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3078     (cmp (convert:newtype @0) (convert:newtype @1))))))
3079
3080 (simplify
3081  (cmp @0 REAL_CST@1)
3082  /* IEEE doesn't distinguish +0 and -0 in comparisons.  */
3083  (switch
3084   /* a CMP (-0) -> a CMP 0  */
3085   (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3086    (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3087   /* x != NaN is always true, other ops are always false.  */
3088   (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3089	&& ! HONOR_SNANS (@1))
3090    { constant_boolean_node (cmp == NE_EXPR, type); })
3091   /* Fold comparisons against infinity.  */
3092   (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3093	&& MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3094    (with
3095     {
3096       REAL_VALUE_TYPE max;
3097       enum tree_code code = cmp;
3098       bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3099       if (neg)
3100         code = swap_tree_comparison (code);
3101     }
3102     (switch
3103      /* x > +Inf is always false, if we ignore NaNs or exceptions.  */
3104      (if (code == GT_EXPR
3105	   && !(HONOR_NANS (@0) && flag_trapping_math))
3106       { constant_boolean_node (false, type); })
3107      (if (code == LE_EXPR)
3108       /* x <= +Inf is always true, if we don't care about NaNs.  */
3109       (if (! HONOR_NANS (@0))
3110	{ constant_boolean_node (true, type); }
3111	/* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3112	   an "invalid" exception.  */
3113	(if (!flag_trapping_math)
3114	 (eq @0 @0))))
3115      /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3116	 for == this introduces an exception for x a NaN.  */
3117      (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3118	   || code == GE_EXPR)
3119       (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3120	(if (neg)
3121	 (lt @0 { build_real (TREE_TYPE (@0), max); })
3122	 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3123      /* x < +Inf is always equal to x <= DBL_MAX.  */
3124      (if (code == LT_EXPR)
3125       (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3126	(if (neg)
3127	 (ge @0 { build_real (TREE_TYPE (@0), max); })
3128	 (le @0 { build_real (TREE_TYPE (@0), max); }))))
3129      /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3130	 an exception for x a NaN so use an unordered comparison.  */
3131      (if (code == NE_EXPR)
3132       (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3133	(if (! HONOR_NANS (@0))
3134	 (if (neg)
3135	  (ge @0 { build_real (TREE_TYPE (@0), max); })
3136	  (le @0 { build_real (TREE_TYPE (@0), max); }))
3137	 (if (neg)
3138	  (unge @0 { build_real (TREE_TYPE (@0), max); })
3139	  (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
3140
3141 /* If this is a comparison of a real constant with a PLUS_EXPR
3142    or a MINUS_EXPR of a real constant, we can convert it into a
3143    comparison with a revised real constant as long as no overflow
3144    occurs when unsafe_math_optimizations are enabled.  */
3145 (if (flag_unsafe_math_optimizations)
3146  (for op (plus minus)
3147   (simplify
3148    (cmp (op @0 REAL_CST@1) REAL_CST@2)
3149    (with
3150     {
3151       tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3152			       TREE_TYPE (@1), @2, @1);
3153     }
3154     (if (tem && !TREE_OVERFLOW (tem))
3155      (cmp @0 { tem; }))))))
3156
3157 /* Likewise, we can simplify a comparison of a real constant with
3158    a MINUS_EXPR whose first operand is also a real constant, i.e.
3159    (c1 - x) < c2 becomes x > c1-c2.  Reordering is allowed on
3160    floating-point types only if -fassociative-math is set.  */
3161 (if (flag_associative_math)
3162  (simplify
3163   (cmp (minus REAL_CST@0 @1) REAL_CST@2)
3164   (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
3165    (if (tem && !TREE_OVERFLOW (tem))
3166     (cmp { tem; } @1)))))
3167
3168 /* Fold comparisons against built-in math functions.  */
3169 (if (flag_unsafe_math_optimizations
3170      && ! flag_errno_math)
3171  (for sq (SQRT)
3172   (simplify
3173    (cmp (sq @0) REAL_CST@1)
3174    (switch
3175     (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3176      (switch
3177       /* sqrt(x) < y is always false, if y is negative.  */
3178       (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
3179	{ constant_boolean_node (false, type); })
3180       /* sqrt(x) > y is always true, if y is negative and we
3181	  don't care about NaNs, i.e. negative values of x.  */
3182       (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3183	{ constant_boolean_node (true, type); })
3184       /* sqrt(x) > y is the same as x >= 0, if y is negative.  */
3185       (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
3186     (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3187      (switch
3188       /* sqrt(x) < 0 is always false.  */
3189       (if (cmp == LT_EXPR)
3190	{ constant_boolean_node (false, type); })
3191       /* sqrt(x) >= 0 is always true if we don't care about NaNs.  */
3192       (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3193	{ constant_boolean_node (true, type); })
3194       /* sqrt(x) <= 0 -> x == 0.  */
3195       (if (cmp == LE_EXPR)
3196	(eq @0 @1))
3197       /* Otherwise sqrt(x) cmp 0 -> x cmp 0.  Here cmp can be >=, >,
3198          == or !=.  In the last case:
3199
3200	    (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3201
3202	  if x is negative or NaN.  Due to -funsafe-math-optimizations,
3203	  the results for other x follow from natural arithmetic.  */
3204       (cmp @0 @1)))
3205     (if (cmp == GT_EXPR || cmp == GE_EXPR)
3206      (with
3207       {
3208         REAL_VALUE_TYPE c2;
3209	 real_arithmetic (&c2, MULT_EXPR,
3210			  &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3211	 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3212       }
3213       (if (REAL_VALUE_ISINF (c2))
3214	/* sqrt(x) > y is x == +Inf, when y is very large.  */
3215	(if (HONOR_INFINITIES (@0))
3216	 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3217	 { constant_boolean_node (false, type); })
3218	/* sqrt(x) > c is the same as x > c*c.  */
3219	(cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
3220     (if (cmp == LT_EXPR || cmp == LE_EXPR)
3221      (with
3222       {
3223       	 REAL_VALUE_TYPE c2;
3224	 real_arithmetic (&c2, MULT_EXPR,
3225			  &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3226	 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3227       }
3228       (if (REAL_VALUE_ISINF (c2))
3229        (switch
3230	 /* sqrt(x) < y is always true, when y is a very large
3231	    value and we don't care about NaNs or Infinities.  */
3232	 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3233	  { constant_boolean_node (true, type); })
3234	 /* sqrt(x) < y is x != +Inf when y is very large and we
3235	    don't care about NaNs.  */
3236	 (if (! HONOR_NANS (@0))
3237	  (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3238	 /* sqrt(x) < y is x >= 0 when y is very large and we
3239	    don't care about Infinities.  */
3240	 (if (! HONOR_INFINITIES (@0))
3241	  (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3242	 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large.  */
3243	 (if (GENERIC)
3244	  (truth_andif
3245	   (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3246	   (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3247	/* sqrt(x) < c is the same as x < c*c, if we ignore NaNs.  */
3248	(if (! HONOR_NANS (@0))
3249	 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
3250	 /* sqrt(x) < c is the same as x >= 0 && x < c*c.  */
3251	 (if (GENERIC)
3252	  (truth_andif
3253	   (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3254	   (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
3255   /* Transform sqrt(x) cmp sqrt(y) -> x cmp y.  */
3256   (simplify
3257    (cmp (sq @0) (sq @1))
3258      (if (! HONOR_NANS (@0))
3259	(cmp @0 @1))))))
3260
3261/* Optimize various special cases of (FTYPE) N CMP CST.  */
3262(for cmp  (lt le eq ne ge gt)
3263     icmp (le le eq ne ge ge)
3264 (simplify
3265  (cmp (float @0) REAL_CST@1)
3266   (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
3267	&& ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
3268    (with
3269     {
3270       tree itype = TREE_TYPE (@0);
3271       signop isign = TYPE_SIGN (itype);
3272       format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
3273       const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
3274       /* Be careful to preserve any potential exceptions due to
3275	  NaNs.  qNaNs are ok in == or != context.
3276	  TODO: relax under -fno-trapping-math or
3277	  -fno-signaling-nans.  */
3278       bool exception_p
3279         = real_isnan (cst) && (cst->signalling
3280				|| (cmp != EQ_EXPR && cmp != NE_EXPR));
3281       /* INT?_MIN is power-of-two so it takes
3282	  only one mantissa bit.  */
3283       bool signed_p = isign == SIGNED;
3284       bool itype_fits_ftype_p
3285	 = TYPE_PRECISION (itype) - signed_p <= significand_size (fmt);
3286     }
3287     /* TODO: allow non-fitting itype and SNaNs when
3288	-fno-trapping-math.  */
3289     (if (itype_fits_ftype_p && ! exception_p)
3290      (with
3291       {
3292	 REAL_VALUE_TYPE imin, imax;
3293	 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
3294	 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
3295
3296	 REAL_VALUE_TYPE icst;
3297	 if (cmp == GT_EXPR || cmp == GE_EXPR)
3298	   real_ceil (&icst, fmt, cst);
3299	 else if (cmp == LT_EXPR || cmp == LE_EXPR)
3300	   real_floor (&icst, fmt, cst);
3301	 else
3302	   real_trunc (&icst, fmt, cst);
3303
3304	 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
3305
3306	 bool overflow_p = false;
3307	 wide_int icst_val
3308	   = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
3309       }
3310       (switch
3311	/* Optimize cases when CST is outside of ITYPE's range.  */
3312	(if (real_compare (LT_EXPR, cst, &imin))
3313	 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
3314				  type); })
3315	(if (real_compare (GT_EXPR, cst, &imax))
3316	 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
3317				  type); })
3318	/* Remove cast if CST is an integer representable by ITYPE.  */
3319	(if (cst_int_p)
3320	 (cmp @0 { gcc_assert (!overflow_p);
3321		   wide_int_to_tree (itype, icst_val); })
3322	)
3323	/* When CST is fractional, optimize
3324	    (FTYPE) N == CST -> 0
3325	    (FTYPE) N != CST -> 1.  */
3326	(if (cmp == EQ_EXPR || cmp == NE_EXPR)
3327	 { constant_boolean_node (cmp == NE_EXPR, type); })
3328	/* Otherwise replace with sensible integer constant.  */
3329	(with
3330	 {
3331	   gcc_checking_assert (!overflow_p);
3332	 }
3333	 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
3334
3335/* Fold A /[ex] B CMP C to A CMP B * C.  */
3336(for cmp (eq ne)
3337 (simplify
3338  (cmp (exact_div @0 @1) INTEGER_CST@2)
3339  (if (!integer_zerop (@1))
3340   (if (wi::to_wide (@2) == 0)
3341    (cmp @0 @2)
3342    (if (TREE_CODE (@1) == INTEGER_CST)
3343     (with
3344      {
3345	bool ovf;
3346	wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3347				 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3348      }
3349      (if (ovf)
3350       { constant_boolean_node (cmp == NE_EXPR, type); }
3351       (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
3352(for cmp (lt le gt ge)
3353 (simplify
3354  (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
3355  (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
3356   (with
3357    {
3358      bool ovf;
3359      wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3360			       TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3361    }
3362    (if (ovf)
3363     { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
3364					TYPE_SIGN (TREE_TYPE (@2)))
3365			      != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
3366     (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
3367
3368/* Unordered tests if either argument is a NaN.  */
3369(simplify
3370 (bit_ior (unordered @0 @0) (unordered @1 @1))
3371 (if (types_match (@0, @1))
3372  (unordered @0 @1)))
3373(simplify
3374 (bit_and (ordered @0 @0) (ordered @1 @1))
3375 (if (types_match (@0, @1))
3376  (ordered @0 @1)))
3377(simplify
3378 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
3379 @2)
3380(simplify
3381 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
3382 @2)
3383
3384/* Simple range test simplifications.  */
3385/* A < B || A >= B -> true.  */
3386(for test1 (lt le le le ne ge)
3387     test2 (ge gt ge ne eq ne)
3388 (simplify
3389  (bit_ior:c (test1 @0 @1) (test2 @0 @1))
3390  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3391       || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3392   { constant_boolean_node (true, type); })))
3393/* A < B && A >= B -> false.  */
3394(for test1 (lt lt lt le ne eq)
3395     test2 (ge gt eq gt eq gt)
3396 (simplify
3397  (bit_and:c (test1 @0 @1) (test2 @0 @1))
3398  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3399       || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3400   { constant_boolean_node (false, type); })))
3401
3402/* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
3403   A & (2**N - 1) >  2**K - 1 -> A & (2**N - 2**K) != 0
3404
3405   Note that comparisons
3406     A & (2**N - 1) <  2**K   -> A & (2**N - 2**K) == 0
3407     A & (2**N - 1) >= 2**K   -> A & (2**N - 2**K) != 0
3408   will be canonicalized to above so there's no need to
3409   consider them here.
3410 */
3411
3412(for cmp (le gt)
3413     eqcmp (eq ne)
3414 (simplify
3415  (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
3416  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3417   (with
3418    {
3419     tree ty = TREE_TYPE (@0);
3420     unsigned prec = TYPE_PRECISION (ty);
3421     wide_int mask = wi::to_wide (@2, prec);
3422     wide_int rhs = wi::to_wide (@3, prec);
3423     signop sgn = TYPE_SIGN (ty);
3424    }
3425    (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
3426	 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
3427      (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
3428	     { build_zero_cst (ty); }))))))
3429
3430/* -A CMP -B -> B CMP A.  */
3431(for cmp (tcc_comparison)
3432     scmp (swapped_tcc_comparison)
3433 (simplify
3434  (cmp (negate @0) (negate @1))
3435  (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3436       || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3437	   && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3438   (scmp @0 @1)))
3439 (simplify
3440  (cmp (negate @0) CONSTANT_CLASS_P@1)
3441  (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3442       || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3443	   && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3444   (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
3445    (if (tem && !TREE_OVERFLOW (tem))
3446     (scmp @0 { tem; }))))))
3447
3448/* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0.  */
3449(for op (eq ne)
3450 (simplify
3451  (op (abs @0) zerop@1)
3452  (op @0 @1)))
3453
3454/* From fold_sign_changed_comparison and fold_widened_comparison.
3455   FIXME: the lack of symmetry is disturbing.  */
3456(for cmp (simple_comparison)
3457 (simplify
3458  (cmp (convert@0 @00) (convert?@1 @10))
3459  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3460       /* Disable this optimization if we're casting a function pointer
3461	  type on targets that require function pointer canonicalization.  */
3462       && !(targetm.have_canonicalize_funcptr_for_compare ()
3463	    && TREE_CODE (TREE_TYPE (@00)) == POINTER_TYPE
3464	    && TREE_CODE (TREE_TYPE (TREE_TYPE (@00))) == FUNCTION_TYPE)
3465       && single_use (@0))
3466   (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
3467	&& (TREE_CODE (@10) == INTEGER_CST
3468	    || @1 != @10)
3469	&& (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
3470	    || cmp == NE_EXPR
3471	    || cmp == EQ_EXPR)
3472	&& !POINTER_TYPE_P (TREE_TYPE (@00)))
3473    /* ???  The special-casing of INTEGER_CST conversion was in the original
3474       code and here to avoid a spurious overflow flag on the resulting
3475       constant which fold_convert produces.  */
3476    (if (TREE_CODE (@1) == INTEGER_CST)
3477     (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
3478				TREE_OVERFLOW (@1)); })
3479     (cmp @00 (convert @1)))
3480
3481    (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
3482     /* If possible, express the comparison in the shorter mode.  */
3483     (if ((cmp == EQ_EXPR || cmp == NE_EXPR
3484	   || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
3485	   || (!TYPE_UNSIGNED (TREE_TYPE (@0))
3486	       && TYPE_UNSIGNED (TREE_TYPE (@00))))
3487	  && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
3488	      || ((TYPE_PRECISION (TREE_TYPE (@00))
3489		   >= TYPE_PRECISION (TREE_TYPE (@10)))
3490		  && (TYPE_UNSIGNED (TREE_TYPE (@00))
3491		      == TYPE_UNSIGNED (TREE_TYPE (@10))))
3492	      || (TREE_CODE (@10) == INTEGER_CST
3493		  && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3494		  && int_fits_type_p (@10, TREE_TYPE (@00)))))
3495      (cmp @00 (convert @10))
3496      (if (TREE_CODE (@10) == INTEGER_CST
3497	   && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3498	   && !int_fits_type_p (@10, TREE_TYPE (@00)))
3499       (with
3500	{
3501	  tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3502	  tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3503	  bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
3504	  bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
3505	}
3506	(if (above || below)
3507	 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3508	  { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
3509	  (if (cmp == LT_EXPR || cmp == LE_EXPR)
3510	   { constant_boolean_node (above ? true : false, type); }
3511	   (if (cmp == GT_EXPR || cmp == GE_EXPR)
3512	    { constant_boolean_node (above ? false : true, type); }))))))))))))
3513
3514(for cmp (eq ne)
3515 /* A local variable can never be pointed to by
3516    the default SSA name of an incoming parameter.
3517    SSA names are canonicalized to 2nd place.  */
3518 (simplify
3519  (cmp addr@0 SSA_NAME@1)
3520  (if (SSA_NAME_IS_DEFAULT_DEF (@1)
3521       && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
3522   (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
3523    (if (TREE_CODE (base) == VAR_DECL
3524         && auto_var_in_fn_p (base, current_function_decl))
3525     (if (cmp == NE_EXPR)
3526      { constant_boolean_node (true, type); }
3527      { constant_boolean_node (false, type); }))))))
3528
3529/* Equality compare simplifications from fold_binary  */
3530(for cmp (eq ne)
3531
3532 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
3533    Similarly for NE_EXPR.  */
3534 (simplify
3535  (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
3536  (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
3537       && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
3538   { constant_boolean_node (cmp == NE_EXPR, type); }))
3539
3540 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y.  */
3541 (simplify
3542  (cmp (bit_xor @0 @1) integer_zerop)
3543  (cmp @0 @1))
3544
3545 /* (X ^ Y) == Y becomes X == 0.
3546    Likewise (X ^ Y) == X becomes Y == 0.  */
3547 (simplify
3548  (cmp:c (bit_xor:c @0 @1) @0)
3549  (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
3550
3551 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2).  */
3552 (simplify
3553  (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
3554  (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
3555   (cmp @0 (bit_xor @1 (convert @2)))))
3556
3557 (simplify
3558  (cmp (convert? addr@0) integer_zerop)
3559  (if (tree_single_nonzero_warnv_p (@0, NULL))
3560   { constant_boolean_node (cmp == NE_EXPR, type); })))
3561
3562/* If we have (A & C) == C where C is a power of 2, convert this into
3563   (A & C) != 0.  Similarly for NE_EXPR.  */
3564(for cmp (eq ne)
3565     icmp (ne eq)
3566 (simplify
3567  (cmp (bit_and@2 @0 integer_pow2p@1) @1)
3568  (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
3569
3570/* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
3571   convert this into a shift followed by ANDing with D.  */
3572(simplify
3573 (cond
3574  (ne (bit_and @0 integer_pow2p@1) integer_zerop)
3575  INTEGER_CST@2 integer_zerop)
3576 (if (integer_pow2p (@2))
3577  (with {
3578     int shift = (wi::exact_log2 (wi::to_wide (@2))
3579		  - wi::exact_log2 (wi::to_wide (@1)));
3580   }
3581   (if (shift > 0)
3582    (bit_and
3583     (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
3584    (bit_and
3585     (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
3586     @2)))))
3587
3588/* If we have (A & C) != 0 where C is the sign bit of A, convert
3589   this into A < 0.  Similarly for (A & C) == 0 into A >= 0.  */
3590(for cmp (eq ne)
3591     ncmp (ge lt)
3592 (simplify
3593  (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
3594  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3595       && type_has_mode_precision_p (TREE_TYPE (@0))
3596       && element_precision (@2) >= element_precision (@0)
3597       && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
3598   (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
3599    (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
3600
3601/* If we have A < 0 ? C : 0 where C is a power of 2, convert
3602   this into a right shift or sign extension followed by ANDing with C.  */
3603(simplify
3604 (cond
3605  (lt @0 integer_zerop)
3606  INTEGER_CST@1 integer_zerop)
3607 (if (integer_pow2p (@1)
3608      && !TYPE_UNSIGNED (TREE_TYPE (@0)))
3609  (with {
3610    int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
3611   }
3612   (if (shift >= 0)
3613    (bit_and
3614     (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
3615     @1)
3616    /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
3617       sign extension followed by AND with C will achieve the effect.  */
3618    (bit_and (convert @0) @1)))))
3619
3620/* When the addresses are not directly of decls compare base and offset.
3621   This implements some remaining parts of fold_comparison address
3622   comparisons but still no complete part of it.  Still it is good
3623   enough to make fold_stmt not regress when not dispatching to fold_binary.  */
3624(for cmp (simple_comparison)
3625 (simplify
3626  (cmp (convert1?@2 addr@0) (convert2? addr@1))
3627  (with
3628   {
3629     poly_int64 off0, off1;
3630     tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
3631     tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
3632     if (base0 && TREE_CODE (base0) == MEM_REF)
3633       {
3634	 off0 += mem_ref_offset (base0).force_shwi ();
3635         base0 = TREE_OPERAND (base0, 0);
3636       }
3637     if (base1 && TREE_CODE (base1) == MEM_REF)
3638       {
3639	 off1 += mem_ref_offset (base1).force_shwi ();
3640         base1 = TREE_OPERAND (base1, 0);
3641       }
3642   }
3643   (if (base0 && base1)
3644    (with
3645     {
3646       int equal = 2;
3647       /* Punt in GENERIC on variables with value expressions;
3648	  the value expressions might point to fields/elements
3649	  of other vars etc.  */
3650       if (GENERIC
3651	   && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
3652	       || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
3653	 ;
3654       else if (decl_in_symtab_p (base0)
3655		&& decl_in_symtab_p (base1))
3656         equal = symtab_node::get_create (base0)
3657	           ->equal_address_to (symtab_node::get_create (base1));
3658       else if ((DECL_P (base0)
3659		 || TREE_CODE (base0) == SSA_NAME
3660		 || TREE_CODE (base0) == STRING_CST)
3661		&& (DECL_P (base1)
3662		    || TREE_CODE (base1) == SSA_NAME
3663		    || TREE_CODE (base1) == STRING_CST))
3664         equal = (base0 == base1);
3665     }
3666     (if (equal == 1
3667	  && (cmp == EQ_EXPR || cmp == NE_EXPR
3668	      /* If the offsets are equal we can ignore overflow.  */
3669	      || known_eq (off0, off1)
3670	      || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3671		 /* Or if we compare using pointers to decls or strings.  */
3672	      || (POINTER_TYPE_P (TREE_TYPE (@2))
3673		  && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
3674      (switch
3675       (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3676	{ constant_boolean_node (known_eq (off0, off1), type); })
3677       (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3678	{ constant_boolean_node (known_ne (off0, off1), type); })
3679       (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
3680	{ constant_boolean_node (known_lt (off0, off1), type); })
3681       (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
3682	{ constant_boolean_node (known_le (off0, off1), type); })
3683       (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
3684	{ constant_boolean_node (known_ge (off0, off1), type); })
3685       (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
3686	{ constant_boolean_node (known_gt (off0, off1), type); }))
3687      (if (equal == 0
3688	   && DECL_P (base0) && DECL_P (base1)
3689	   /* If we compare this as integers require equal offset.  */
3690	   && (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
3691	       || known_eq (off0, off1)))
3692       (switch
3693	(if (cmp == EQ_EXPR)
3694	 { constant_boolean_node (false, type); })
3695	(if (cmp == NE_EXPR)
3696	 { constant_boolean_node (true, type); })))))))))
3697
3698/* Simplify pointer equality compares using PTA.  */
3699(for neeq (ne eq)
3700 (simplify
3701  (neeq @0 @1)
3702  (if (POINTER_TYPE_P (TREE_TYPE (@0))
3703       && ptrs_compare_unequal (@0, @1))
3704   { constant_boolean_node (neeq != EQ_EXPR, type); })))
3705
3706/* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
3707   and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
3708   Disable the transform if either operand is pointer to function.
3709   This broke pr22051-2.c for arm where function pointer
3710   canonicalizaion is not wanted.  */
3711
3712(for cmp (ne eq)
3713 (simplify
3714  (cmp (convert @0) INTEGER_CST@1)
3715  (if (((POINTER_TYPE_P (TREE_TYPE (@0))
3716	 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
3717	 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3718	|| (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3719	    && POINTER_TYPE_P (TREE_TYPE (@1))
3720	    && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
3721       && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
3722   (cmp @0 (convert @1)))))
3723
3724/* Non-equality compare simplifications from fold_binary  */
3725(for cmp (lt gt le ge)
3726 /* Comparisons with the highest or lowest possible integer of
3727    the specified precision will have known values.  */
3728 (simplify
3729  (cmp (convert?@2 @0) INTEGER_CST@1)
3730  (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3731       && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
3732   (with
3733    {
3734      tree arg1_type = TREE_TYPE (@1);
3735      unsigned int prec = TYPE_PRECISION (arg1_type);
3736      wide_int max = wi::max_value (arg1_type);
3737      wide_int signed_max = wi::max_value (prec, SIGNED);
3738      wide_int min = wi::min_value (arg1_type);
3739    }
3740    (switch
3741     (if (wi::to_wide (@1) == max)
3742      (switch
3743       (if (cmp == GT_EXPR)
3744	{ constant_boolean_node (false, type); })
3745       (if (cmp == GE_EXPR)
3746	(eq @2 @1))
3747       (if (cmp == LE_EXPR)
3748	{ constant_boolean_node (true, type); })
3749       (if (cmp == LT_EXPR)
3750	(ne @2 @1))))
3751     (if (wi::to_wide (@1) == min)
3752      (switch
3753       (if (cmp == LT_EXPR)
3754        { constant_boolean_node (false, type); })
3755       (if (cmp == LE_EXPR)
3756        (eq @2 @1))
3757       (if (cmp == GE_EXPR)
3758        { constant_boolean_node (true, type); })
3759       (if (cmp == GT_EXPR)
3760        (ne @2 @1))))
3761     (if (wi::to_wide (@1) == max - 1)
3762      (switch
3763       (if (cmp == GT_EXPR)
3764	(eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))
3765       (if (cmp == LE_EXPR)
3766	(ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
3767     (if (wi::to_wide (@1) == min + 1)
3768      (switch
3769       (if (cmp == GE_EXPR)
3770        (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))
3771       (if (cmp == LT_EXPR)
3772        (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
3773     (if (wi::to_wide (@1) == signed_max
3774	  && TYPE_UNSIGNED (arg1_type)
3775	  /* We will flip the signedness of the comparison operator
3776	     associated with the mode of @1, so the sign bit is
3777	     specified by this mode.  Check that @1 is the signed
3778	     max associated with this sign bit.  */
3779	  && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
3780	  /* signed_type does not work on pointer types.  */
3781	  && INTEGRAL_TYPE_P (arg1_type))
3782      /* The following case also applies to X < signed_max+1
3783	 and X >= signed_max+1 because previous transformations.  */
3784      (if (cmp == LE_EXPR || cmp == GT_EXPR)
3785       (with { tree st = signed_type_for (arg1_type); }
3786        (if (cmp == LE_EXPR)
3787	 (ge (convert:st @0) { build_zero_cst (st); })
3788	 (lt (convert:st @0) { build_zero_cst (st); }))))))))))
3789
3790(for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
3791 /* If the second operand is NaN, the result is constant.  */
3792 (simplify
3793  (cmp @0 REAL_CST@1)
3794  (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3795       && (cmp != LTGT_EXPR || ! flag_trapping_math))
3796   { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
3797			    ? false : true, type); })))
3798
3799/* bool_var != 0 becomes bool_var.  */
3800(simplify
3801 (ne @0 integer_zerop)
3802 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3803      && types_match (type, TREE_TYPE (@0)))
3804  (non_lvalue @0)))
3805/* bool_var == 1 becomes bool_var.  */
3806(simplify
3807 (eq @0 integer_onep)
3808 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3809      && types_match (type, TREE_TYPE (@0)))
3810  (non_lvalue @0)))
3811/* Do not handle
3812   bool_var == 0 becomes !bool_var or
3813   bool_var != 1 becomes !bool_var
3814   here because that only is good in assignment context as long
3815   as we require a tcc_comparison in GIMPLE_CONDs where we'd
3816   replace if (x == 0) with tem = ~x; if (tem != 0) which is
3817   clearly less optimal and which we'll transform again in forwprop.  */
3818
3819/* When one argument is a constant, overflow detection can be simplified.
3820   Currently restricted to single use so as not to interfere too much with
3821   ADD_OVERFLOW detection in tree-ssa-math-opts.c.
3822   A + CST CMP A  ->  A CMP' CST' */
3823(for cmp (lt le ge gt)
3824     out (gt gt le le)
3825 (simplify
3826  (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
3827  (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3828       && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
3829       && wi::to_wide (@1) != 0
3830       && single_use (@2))
3831   (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
3832    (out @0 { wide_int_to_tree (TREE_TYPE (@0),
3833			        wi::max_value (prec, UNSIGNED)
3834				- wi::to_wide (@1)); })))))
3835
3836/* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
3837   However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
3838   expects the long form, so we restrict the transformation for now.  */
3839(for cmp (gt le)
3840 (simplify
3841  (cmp:c (minus@2 @0 @1) @0)
3842  (if (single_use (@2)
3843       && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3844       && TYPE_UNSIGNED (TREE_TYPE (@0))
3845       && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3846   (cmp @1 @0))))
3847
3848/* Testing for overflow is unnecessary if we already know the result.  */
3849/* A - B > A  */
3850(for cmp (gt le)
3851     out (ne eq)
3852 (simplify
3853  (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
3854  (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3855       && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3856   (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3857/* A + B < A  */
3858(for cmp (lt ge)
3859     out (ne eq)
3860 (simplify
3861  (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
3862  (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3863       && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3864   (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3865
3866/* For unsigned operands, -1 / B < A checks whether A * B would overflow.
3867   Simplify it to __builtin_mul_overflow (A, B, <unused>).  */
3868(for cmp (lt ge)
3869     out (ne eq)
3870 (simplify
3871  (cmp:c (trunc_div:s integer_all_onesp @1) @0)
3872  (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
3873   (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
3874    (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
3875
3876/* Simplification of math builtins.  These rules must all be optimizations
3877   as well as IL simplifications.  If there is a possibility that the new
3878   form could be a pessimization, the rule should go in the canonicalization
3879   section that follows this one.
3880
3881   Rules can generally go in this section if they satisfy one of
3882   the following:
3883
3884   - the rule describes an identity
3885
3886   - the rule replaces calls with something as simple as addition or
3887     multiplication
3888
3889   - the rule contains unary calls only and simplifies the surrounding
3890     arithmetic.  (The idea here is to exclude non-unary calls in which
3891     one operand is constant and in which the call is known to be cheap
3892     when the operand has that value.)  */
3893
3894(if (flag_unsafe_math_optimizations)
3895 /* Simplify sqrt(x) * sqrt(x) -> x.  */
3896 (simplify
3897  (mult (SQRT_ALL@1 @0) @1)
3898  (if (!HONOR_SNANS (type))
3899   @0))
3900
3901 (for op (plus minus)
3902  /* Simplify (A / C) +- (B / C) -> (A +- B) / C.  */
3903  (simplify
3904   (op (rdiv @0 @1)
3905       (rdiv @2 @1))
3906   (rdiv (op @0 @2) @1)))
3907
3908 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y).  */
3909 (for root (SQRT CBRT)
3910  (simplify
3911   (mult (root:s @0) (root:s @1))
3912    (root (mult @0 @1))))
3913
3914 /* Simplify expN(x) * expN(y) -> expN(x+y). */
3915 (for exps (EXP EXP2 EXP10 POW10)
3916  (simplify
3917   (mult (exps:s @0) (exps:s @1))
3918    (exps (plus @0 @1))))
3919
3920 /* Simplify a/root(b/c) into a*root(c/b).  */
3921 (for root (SQRT CBRT)
3922  (simplify
3923   (rdiv @0 (root:s (rdiv:s @1 @2)))
3924    (mult @0 (root (rdiv @2 @1)))))
3925
3926 /* Simplify x/expN(y) into x*expN(-y).  */
3927 (for exps (EXP EXP2 EXP10 POW10)
3928  (simplify
3929   (rdiv @0 (exps:s @1))
3930    (mult @0 (exps (negate @1)))))
3931
3932 (for logs (LOG LOG2 LOG10 LOG10)
3933      exps (EXP EXP2 EXP10 POW10)
3934  /* logN(expN(x)) -> x.  */
3935  (simplify
3936   (logs (exps @0))
3937   @0)
3938  /* expN(logN(x)) -> x.  */
3939  (simplify
3940   (exps (logs @0))
3941   @0))
3942
3943 /* Optimize logN(func()) for various exponential functions.  We
3944    want to determine the value "x" and the power "exponent" in
3945    order to transform logN(x**exponent) into exponent*logN(x).  */
3946 (for logs (LOG  LOG   LOG   LOG2 LOG2  LOG2  LOG10 LOG10)
3947      exps (EXP2 EXP10 POW10 EXP  EXP10 POW10 EXP   EXP2)
3948  (simplify
3949   (logs (exps @0))
3950   (if (SCALAR_FLOAT_TYPE_P (type))
3951    (with {
3952      tree x;
3953      switch (exps)
3954	{
3955	CASE_CFN_EXP:
3956	  /* Prepare to do logN(exp(exponent)) -> exponent*logN(e).  */
3957	  x = build_real_truncate (type, dconst_e ());
3958	  break;
3959	CASE_CFN_EXP2:
3960	  /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2).  */
3961	  x = build_real (type, dconst2);
3962	  break;
3963	CASE_CFN_EXP10:
3964	CASE_CFN_POW10:
3965	  /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10).  */
3966	  {
3967	    REAL_VALUE_TYPE dconst10;
3968	    real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
3969	    x = build_real (type, dconst10);
3970	  }
3971	  break;
3972	default:
3973	  gcc_unreachable ();
3974	}
3975      }
3976     (mult (logs { x; }) @0)))))
3977
3978 (for logs (LOG LOG
3979            LOG2 LOG2
3980	    LOG10 LOG10)
3981      exps (SQRT CBRT)
3982  (simplify
3983   (logs (exps @0))
3984   (if (SCALAR_FLOAT_TYPE_P (type))
3985    (with {
3986      tree x;
3987      switch (exps)
3988	{
3989	CASE_CFN_SQRT:
3990	  /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x).  */
3991	  x = build_real (type, dconsthalf);
3992	  break;
3993	CASE_CFN_CBRT:
3994	  /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x).  */
3995	  x = build_real_truncate (type, dconst_third ());
3996	  break;
3997	default:
3998	  gcc_unreachable ();
3999	}
4000      }
4001     (mult { x; } (logs @0))))))
4002
4003 /* logN(pow(x,exponent)) -> exponent*logN(x).  */
4004 (for logs (LOG LOG2 LOG10)
4005      pows (POW)
4006  (simplify
4007   (logs (pows @0 @1))
4008   (mult @1 (logs @0))))
4009
4010 /* pow(C,x) -> exp(log(C)*x) if C > 0,
4011    or if C is a positive power of 2,
4012    pow(C,x) -> exp2(log2(C)*x).  */
4013#if GIMPLE
4014 (for pows (POW)
4015      exps (EXP)
4016      logs (LOG)
4017      exp2s (EXP2)
4018      log2s (LOG2)
4019  (simplify
4020   (pows REAL_CST@0 @1)
4021   (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4022	&& real_isfinite (TREE_REAL_CST_PTR (@0))
4023	/* As libmvec doesn't have a vectorized exp2, defer optimizing
4024	   the use_exp2 case until after vectorization.  It seems actually
4025	   beneficial for all constants to postpone this until later,
4026	   because exp(log(C)*x), while faster, will have worse precision
4027	   and if x folds into a constant too, that is unnecessary
4028	   pessimization.  */
4029	&& canonicalize_math_after_vectorization_p ())
4030    (with {
4031       const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
4032       bool use_exp2 = false;
4033       if (targetm.libc_has_function (function_c99_misc)
4034	   && value->cl == rvc_normal)
4035	 {
4036	   REAL_VALUE_TYPE frac_rvt = *value;
4037	   SET_REAL_EXP (&frac_rvt, 1);
4038	   if (real_equal (&frac_rvt, &dconst1))
4039	     use_exp2 = true;
4040	 }
4041     }
4042     (if (!use_exp2)
4043      (if (optimize_pow_to_exp (@0, @1))
4044       (exps (mult (logs @0) @1)))
4045      (exp2s (mult (log2s @0) @1)))))))
4046#endif
4047
4048 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0.  */
4049 (for pows (POW)
4050      exps (EXP EXP2 EXP10 POW10)
4051      logs (LOG LOG2 LOG10 LOG10)
4052  (simplify
4053   (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
4054   (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4055	&& real_isfinite (TREE_REAL_CST_PTR (@0)))
4056    (exps (plus (mult (logs @0) @1) @2)))))
4057
4058 (for sqrts (SQRT)
4059      cbrts (CBRT)
4060      pows (POW)
4061      exps (EXP EXP2 EXP10 POW10)
4062  /* sqrt(expN(x)) -> expN(x*0.5).  */
4063  (simplify
4064   (sqrts (exps @0))
4065   (exps (mult @0 { build_real (type, dconsthalf); })))
4066  /* cbrt(expN(x)) -> expN(x/3).  */
4067  (simplify
4068   (cbrts (exps @0))
4069   (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
4070  /* pow(expN(x), y) -> expN(x*y).  */
4071  (simplify
4072   (pows (exps @0) @1)
4073   (exps (mult @0 @1))))
4074
4075 /* tan(atan(x)) -> x.  */
4076 (for tans (TAN)
4077      atans (ATAN)
4078  (simplify
4079   (tans (atans @0))
4080   @0)))
4081
4082/* cabs(x+0i) or cabs(0+xi) -> abs(x).  */
4083(simplify
4084 (CABS (complex:C @0 real_zerop@1))
4085 (abs @0))
4086
4087/* trunc(trunc(x)) -> trunc(x), etc.  */
4088(for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4089 (simplify
4090  (fns (fns @0))
4091  (fns @0)))
4092/* f(x) -> x if x is integer valued and f does nothing for such values.  */
4093(for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4094 (simplify
4095  (fns integer_valued_real_p@0)
4096  @0))
4097
4098/* hypot(x,0) and hypot(0,x) -> abs(x).  */
4099(simplify
4100 (HYPOT:c @0 real_zerop@1)
4101 (abs @0))
4102
4103/* pow(1,x) -> 1.  */
4104(simplify
4105 (POW real_onep@0 @1)
4106 @0)
4107
4108(simplify
4109 /* copysign(x,x) -> x.  */
4110 (COPYSIGN_ALL @0 @0)
4111 @0)
4112
4113(simplify
4114 /* copysign(x,y) -> fabs(x) if y is nonnegative.  */
4115 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
4116 (abs @0))
4117
4118(for scale (LDEXP SCALBN SCALBLN)
4119 /* ldexp(0, x) -> 0.  */
4120 (simplify
4121  (scale real_zerop@0 @1)
4122  @0)
4123 /* ldexp(x, 0) -> x.  */
4124 (simplify
4125  (scale @0 integer_zerop@1)
4126  @0)
4127 /* ldexp(x, y) -> x if x is +-Inf or NaN.  */
4128 (simplify
4129  (scale REAL_CST@0 @1)
4130  (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
4131   @0)))
4132
4133/* Canonicalization of sequences of math builtins.  These rules represent
4134   IL simplifications but are not necessarily optimizations.
4135
4136   The sincos pass is responsible for picking "optimal" implementations
4137   of math builtins, which may be more complicated and can sometimes go
4138   the other way, e.g. converting pow into a sequence of sqrts.
4139   We only want to do these canonicalizations before the pass has run.  */
4140
4141(if (flag_unsafe_math_optimizations && canonicalize_math_p ())
4142 /* Simplify tan(x) * cos(x) -> sin(x). */
4143 (simplify
4144  (mult:c (TAN:s @0) (COS:s @0))
4145   (SIN @0))
4146
4147 /* Simplify x * pow(x,c) -> pow(x,c+1). */
4148 (simplify
4149  (mult:c @0 (POW:s @0 REAL_CST@1))
4150  (if (!TREE_OVERFLOW (@1))
4151   (POW @0 (plus @1 { build_one_cst (type); }))))
4152
4153 /* Simplify sin(x) / cos(x) -> tan(x). */
4154 (simplify
4155  (rdiv (SIN:s @0) (COS:s @0))
4156   (TAN @0))
4157
4158 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
4159 (simplify
4160  (rdiv (COS:s @0) (SIN:s @0))
4161   (rdiv { build_one_cst (type); } (TAN @0)))
4162
4163 /* Simplify sin(x) / tan(x) -> cos(x). */
4164 (simplify
4165  (rdiv (SIN:s @0) (TAN:s @0))
4166  (if (! HONOR_NANS (@0)
4167       && ! HONOR_INFINITIES (@0))
4168   (COS @0)))
4169
4170 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
4171 (simplify
4172  (rdiv (TAN:s @0) (SIN:s @0))
4173  (if (! HONOR_NANS (@0)
4174       && ! HONOR_INFINITIES (@0))
4175   (rdiv { build_one_cst (type); } (COS @0))))
4176
4177 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
4178 (simplify
4179  (mult (POW:s @0 @1) (POW:s @0 @2))
4180   (POW @0 (plus @1 @2)))
4181
4182 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
4183 (simplify
4184  (mult (POW:s @0 @1) (POW:s @2 @1))
4185   (POW (mult @0 @2) @1))
4186
4187 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
4188 (simplify
4189  (mult (POWI:s @0 @1) (POWI:s @2 @1))
4190   (POWI (mult @0 @2) @1))
4191
4192 /* Simplify pow(x,c) / x -> pow(x,c-1). */
4193 (simplify
4194  (rdiv (POW:s @0 REAL_CST@1) @0)
4195  (if (!TREE_OVERFLOW (@1))
4196   (POW @0 (minus @1 { build_one_cst (type); }))))
4197
4198 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
4199 (simplify
4200  (rdiv @0 (POW:s @1 @2))
4201   (mult @0 (POW @1 (negate @2))))
4202
4203 (for sqrts (SQRT)
4204      cbrts (CBRT)
4205      pows (POW)
4206  /* sqrt(sqrt(x)) -> pow(x,1/4).  */
4207  (simplify
4208   (sqrts (sqrts @0))
4209   (pows @0 { build_real (type, dconst_quarter ()); }))
4210  /* sqrt(cbrt(x)) -> pow(x,1/6).  */
4211  (simplify
4212   (sqrts (cbrts @0))
4213   (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4214  /* cbrt(sqrt(x)) -> pow(x,1/6).  */
4215  (simplify
4216   (cbrts (sqrts @0))
4217   (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4218  /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative.  */
4219  (simplify
4220   (cbrts (cbrts tree_expr_nonnegative_p@0))
4221   (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
4222  /* sqrt(pow(x,y)) -> pow(|x|,y*0.5).  */
4223  (simplify
4224   (sqrts (pows @0 @1))
4225   (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
4226  /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative.  */
4227  (simplify
4228   (cbrts (pows tree_expr_nonnegative_p@0 @1))
4229   (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4230  /* pow(sqrt(x),y) -> pow(x,y*0.5).  */
4231  (simplify
4232   (pows (sqrts @0) @1)
4233   (pows @0 (mult @1 { build_real (type, dconsthalf); })))
4234  /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative.  */
4235  (simplify
4236   (pows (cbrts tree_expr_nonnegative_p@0) @1)
4237   (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4238  /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative.  */
4239  (simplify
4240   (pows (pows tree_expr_nonnegative_p@0 @1) @2)
4241   (pows @0 (mult @1 @2))))
4242
4243 /* cabs(x+xi) -> fabs(x)*sqrt(2).  */
4244 (simplify
4245  (CABS (complex @0 @0))
4246  (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4247
4248 /* hypot(x,x) -> fabs(x)*sqrt(2).  */
4249 (simplify
4250  (HYPOT @0 @0)
4251  (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4252
4253 /* cexp(x+yi) -> exp(x)*cexpi(y).  */
4254 (for cexps (CEXP)
4255      exps (EXP)
4256      cexpis (CEXPI)
4257  (simplify
4258   (cexps compositional_complex@0)
4259   (if (targetm.libc_has_function (function_c99_math_complex))
4260    (complex
4261     (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
4262     (mult @1 (imagpart @2)))))))
4263
4264(if (canonicalize_math_p ())
4265 /* floor(x) -> trunc(x) if x is nonnegative.  */
4266 (for floors (FLOOR_ALL)
4267      truncs (TRUNC_ALL)
4268  (simplify
4269   (floors tree_expr_nonnegative_p@0)
4270   (truncs @0))))
4271
4272(match double_value_p
4273 @0
4274 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
4275(for froms (BUILT_IN_TRUNCL
4276	    BUILT_IN_FLOORL
4277	    BUILT_IN_CEILL
4278	    BUILT_IN_ROUNDL
4279	    BUILT_IN_NEARBYINTL
4280	    BUILT_IN_RINTL)
4281     tos (BUILT_IN_TRUNC
4282	  BUILT_IN_FLOOR
4283	  BUILT_IN_CEIL
4284	  BUILT_IN_ROUND
4285	  BUILT_IN_NEARBYINT
4286	  BUILT_IN_RINT)
4287 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double.  */
4288 (if (optimize && canonicalize_math_p ())
4289  (simplify
4290   (froms (convert double_value_p@0))
4291   (convert (tos @0)))))
4292
4293(match float_value_p
4294 @0
4295 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
4296(for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
4297	    BUILT_IN_FLOORL BUILT_IN_FLOOR
4298	    BUILT_IN_CEILL BUILT_IN_CEIL
4299	    BUILT_IN_ROUNDL BUILT_IN_ROUND
4300	    BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
4301	    BUILT_IN_RINTL BUILT_IN_RINT)
4302     tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
4303	  BUILT_IN_FLOORF BUILT_IN_FLOORF
4304	  BUILT_IN_CEILF BUILT_IN_CEILF
4305	  BUILT_IN_ROUNDF BUILT_IN_ROUNDF
4306	  BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
4307	  BUILT_IN_RINTF BUILT_IN_RINTF)
4308 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
4309    if x is a float.  */
4310 (if (optimize && canonicalize_math_p ()
4311      && targetm.libc_has_function (function_c99_misc))
4312  (simplify
4313   (froms (convert float_value_p@0))
4314   (convert (tos @0)))))
4315
4316(for froms (XFLOORL XCEILL XROUNDL XRINTL)
4317     tos (XFLOOR XCEIL XROUND XRINT)
4318 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double.  */
4319 (if (optimize && canonicalize_math_p ())
4320  (simplify
4321   (froms (convert double_value_p@0))
4322   (tos @0))))
4323
4324(for froms (XFLOORL XCEILL XROUNDL XRINTL
4325	    XFLOOR XCEIL XROUND XRINT)
4326     tos (XFLOORF XCEILF XROUNDF XRINTF)
4327 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
4328    if x is a float.  */
4329 (if (optimize && canonicalize_math_p ())
4330  (simplify
4331   (froms (convert float_value_p@0))
4332   (tos @0))))
4333
4334(if (canonicalize_math_p ())
4335 /* xfloor(x) -> fix_trunc(x) if x is nonnegative.  */
4336 (for floors (IFLOOR LFLOOR LLFLOOR)
4337  (simplify
4338   (floors tree_expr_nonnegative_p@0)
4339   (fix_trunc @0))))
4340
4341(if (canonicalize_math_p ())
4342 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued.  */
4343 (for fns (IFLOOR LFLOOR LLFLOOR
4344	   ICEIL LCEIL LLCEIL
4345	   IROUND LROUND LLROUND)
4346  (simplify
4347   (fns integer_valued_real_p@0)
4348   (fix_trunc @0)))
4349 (if (!flag_errno_math)
4350  /* xrint(x) -> fix_trunc(x), etc., if x is integer valued.  */
4351  (for rints (IRINT LRINT LLRINT)
4352   (simplify
4353    (rints integer_valued_real_p@0)
4354    (fix_trunc @0)))))
4355
4356(if (canonicalize_math_p ())
4357 (for ifn (IFLOOR ICEIL IROUND IRINT)
4358      lfn (LFLOOR LCEIL LROUND LRINT)
4359      llfn (LLFLOOR LLCEIL LLROUND LLRINT)
4360  /* Canonicalize iround (x) to lround (x) on ILP32 targets where
4361     sizeof (int) == sizeof (long).  */
4362  (if (TYPE_PRECISION (integer_type_node)
4363       == TYPE_PRECISION (long_integer_type_node))
4364   (simplify
4365    (ifn @0)
4366    (lfn:long_integer_type_node @0)))
4367  /* Canonicalize llround (x) to lround (x) on LP64 targets where
4368     sizeof (long long) == sizeof (long).  */
4369  (if (TYPE_PRECISION (long_long_integer_type_node)
4370       == TYPE_PRECISION (long_integer_type_node))
4371   (simplify
4372    (llfn @0)
4373    (lfn:long_integer_type_node @0)))))
4374
4375/* cproj(x) -> x if we're ignoring infinities.  */
4376(simplify
4377 (CPROJ @0)
4378 (if (!HONOR_INFINITIES (type))
4379   @0))
4380
4381/* If the real part is inf and the imag part is known to be
4382   nonnegative, return (inf + 0i).  */
4383(simplify
4384 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
4385 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
4386  { build_complex_inf (type, false); }))
4387
4388/* If the imag part is inf, return (inf+I*copysign(0,imag)).  */
4389(simplify
4390 (CPROJ (complex @0 REAL_CST@1))
4391 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
4392  { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4393
4394(for pows (POW)
4395     sqrts (SQRT)
4396     cbrts (CBRT)
4397 (simplify
4398  (pows @0 REAL_CST@1)
4399  (with {
4400    const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
4401    REAL_VALUE_TYPE tmp;
4402   }
4403   (switch
4404    /* pow(x,0) -> 1.  */
4405    (if (real_equal (value, &dconst0))
4406     { build_real (type, dconst1); })
4407    /* pow(x,1) -> x.  */
4408    (if (real_equal (value, &dconst1))
4409     @0)
4410    /* pow(x,-1) -> 1/x.  */
4411    (if (real_equal (value, &dconstm1))
4412     (rdiv { build_real (type, dconst1); } @0))
4413    /* pow(x,0.5) -> sqrt(x).  */
4414    (if (flag_unsafe_math_optimizations
4415	 && canonicalize_math_p ()
4416	 && real_equal (value, &dconsthalf))
4417     (sqrts @0))
4418    /* pow(x,1/3) -> cbrt(x).  */
4419    (if (flag_unsafe_math_optimizations
4420	 && canonicalize_math_p ()
4421	 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
4422	     real_equal (value, &tmp)))
4423     (cbrts @0))))))
4424
4425/* powi(1,x) -> 1.  */
4426(simplify
4427 (POWI real_onep@0 @1)
4428 @0)
4429
4430(simplify
4431 (POWI @0 INTEGER_CST@1)
4432 (switch
4433  /* powi(x,0) -> 1.  */
4434  (if (wi::to_wide (@1) == 0)
4435   { build_real (type, dconst1); })
4436  /* powi(x,1) -> x.  */
4437  (if (wi::to_wide (@1) == 1)
4438   @0)
4439  /* powi(x,-1) -> 1/x.  */
4440  (if (wi::to_wide (@1) == -1)
4441   (rdiv { build_real (type, dconst1); } @0))))
4442
4443/* Narrowing of arithmetic and logical operations.
4444
4445   These are conceptually similar to the transformations performed for
4446   the C/C++ front-ends by shorten_binary_op and shorten_compare.  Long
4447   term we want to move all that code out of the front-ends into here.  */
4448
4449/* If we have a narrowing conversion of an arithmetic operation where
4450   both operands are widening conversions from the same type as the outer
4451   narrowing conversion.  Then convert the innermost operands to a suitable
4452   unsigned type (to avoid introducing undefined behavior), perform the
4453   operation and convert the result to the desired type.  */
4454(for op (plus minus)
4455  (simplify
4456    (convert (op:s (convert@2 @0) (convert?@3 @1)))
4457    (if (INTEGRAL_TYPE_P (type)
4458	 /* We check for type compatibility between @0 and @1 below,
4459	    so there's no need to check that @1/@3 are integral types.  */
4460	 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4461	 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4462	 /* The precision of the type of each operand must match the
4463	    precision of the mode of each operand, similarly for the
4464	    result.  */
4465	 && type_has_mode_precision_p (TREE_TYPE (@0))
4466	 && type_has_mode_precision_p (TREE_TYPE (@1))
4467	 && type_has_mode_precision_p (type)
4468	 /* The inner conversion must be a widening conversion.  */
4469	 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4470	 && types_match (@0, type)
4471	 && (types_match (@0, @1)
4472	     /* Or the second operand is const integer or converted const
4473		integer from valueize.  */
4474	     || TREE_CODE (@1) == INTEGER_CST))
4475      (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4476	(op @0 (convert @1))
4477	(with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4478	 (convert (op (convert:utype @0)
4479		      (convert:utype @1))))))))
4480
4481/* This is another case of narrowing, specifically when there's an outer
4482   BIT_AND_EXPR which masks off bits outside the type of the innermost
4483   operands.   Like the previous case we have to convert the operands
4484   to unsigned types to avoid introducing undefined behavior for the
4485   arithmetic operation.  */
4486(for op (minus plus)
4487 (simplify
4488  (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
4489  (if (INTEGRAL_TYPE_P (type)
4490       /* We check for type compatibility between @0 and @1 below,
4491	  so there's no need to check that @1/@3 are integral types.  */
4492       && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4493       && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4494       /* The precision of the type of each operand must match the
4495	  precision of the mode of each operand, similarly for the
4496	  result.  */
4497       && type_has_mode_precision_p (TREE_TYPE (@0))
4498       && type_has_mode_precision_p (TREE_TYPE (@1))
4499       && type_has_mode_precision_p (type)
4500       /* The inner conversion must be a widening conversion.  */
4501       && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4502       && types_match (@0, @1)
4503       && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
4504	   <= TYPE_PRECISION (TREE_TYPE (@0)))
4505       && (wi::to_wide (@4)
4506	   & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
4507		       true, TYPE_PRECISION (type))) == 0)
4508   (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4509    (with { tree ntype = TREE_TYPE (@0); }
4510     (convert (bit_and (op @0 @1) (convert:ntype @4))))
4511    (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4512     (convert (bit_and (op (convert:utype @0) (convert:utype @1))
4513	       (convert:utype @4))))))))
4514
4515/* Transform (@0 < @1 and @0 < @2) to use min,
4516   (@0 > @1 and @0 > @2) to use max */
4517(for op (lt le gt ge)
4518     ext (min min max max)
4519 (simplify
4520  (bit_and (op:cs @0 @1) (op:cs @0 @2))
4521  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4522       && TREE_CODE (@0) != INTEGER_CST)
4523   (op @0 (ext @1 @2)))))
4524
4525(simplify
4526 /* signbit(x) -> 0 if x is nonnegative.  */
4527 (SIGNBIT tree_expr_nonnegative_p@0)
4528 { integer_zero_node; })
4529
4530(simplify
4531 /* signbit(x) -> x<0 if x doesn't have signed zeros.  */
4532 (SIGNBIT @0)
4533 (if (!HONOR_SIGNED_ZEROS (@0))
4534  (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
4535
4536/* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1.  */
4537(for cmp (eq ne)
4538 (for op (plus minus)
4539      rop (minus plus)
4540  (simplify
4541   (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4542   (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4543	&& !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
4544	&& !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
4545	&& !TYPE_SATURATING (TREE_TYPE (@0)))
4546    (with { tree res = int_const_binop (rop, @2, @1); }
4547     (if (TREE_OVERFLOW (res)
4548	  && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4549      { constant_boolean_node (cmp == NE_EXPR, type); }
4550      (if (single_use (@3))
4551       (cmp @0 { TREE_OVERFLOW (res)
4552		 ? drop_tree_overflow (res) : res; }))))))))
4553(for cmp (lt le gt ge)
4554 (for op (plus minus)
4555      rop (minus plus)
4556  (simplify
4557   (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4558   (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4559	&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4560    (with { tree res = int_const_binop (rop, @2, @1); }
4561     (if (TREE_OVERFLOW (res))
4562      {
4563	fold_overflow_warning (("assuming signed overflow does not occur "
4564				"when simplifying conditional to constant"),
4565			       WARN_STRICT_OVERFLOW_CONDITIONAL);
4566        bool less = cmp == LE_EXPR || cmp == LT_EXPR;
4567	/* wi::ges_p (@2, 0) should be sufficient for a signed type.  */
4568	bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
4569				  TYPE_SIGN (TREE_TYPE (@1)))
4570			!= (op == MINUS_EXPR);
4571	constant_boolean_node (less == ovf_high, type);
4572      }
4573      (if (single_use (@3))
4574       (with
4575	{
4576	  fold_overflow_warning (("assuming signed overflow does not occur "
4577				  "when changing X +- C1 cmp C2 to "
4578				  "X cmp C2 -+ C1"),
4579				 WARN_STRICT_OVERFLOW_COMPARISON);
4580	}
4581	(cmp @0 { res; })))))))))
4582
4583/* Canonicalizations of BIT_FIELD_REFs.  */
4584
4585(simplify
4586 (BIT_FIELD_REF @0 @1 @2)
4587 (switch
4588  (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
4589       && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4590   (switch
4591    (if (integer_zerop (@2))
4592     (view_convert (realpart @0)))
4593    (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4594     (view_convert (imagpart @0)))))
4595  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4596       && INTEGRAL_TYPE_P (type)
4597       /* On GIMPLE this should only apply to register arguments.  */
4598       && (! GIMPLE || is_gimple_reg (@0))
4599       /* A bit-field-ref that referenced the full argument can be stripped.  */
4600       && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
4601	    && integer_zerop (@2))
4602	   /* Low-parts can be reduced to integral conversions.
4603	      ???  The following doesn't work for PDP endian.  */
4604	   || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
4605	       /* Don't even think about BITS_BIG_ENDIAN.  */
4606	       && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
4607	       && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
4608	       && compare_tree_int (@2, (BYTES_BIG_ENDIAN
4609					 ? (TYPE_PRECISION (TREE_TYPE (@0))
4610					    - TYPE_PRECISION (type))
4611					 : 0)) == 0)))
4612   (convert @0))))
4613
4614/* Simplify vector extracts.  */
4615
4616(simplify
4617 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
4618 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
4619      && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
4620          || (VECTOR_TYPE_P (type)
4621	      && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
4622  (with
4623   {
4624     tree ctor = (TREE_CODE (@0) == SSA_NAME
4625		  ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
4626     tree eltype = TREE_TYPE (TREE_TYPE (ctor));
4627     unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
4628     unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
4629     unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
4630   }
4631   (if (n != 0
4632	&& (idx % width) == 0
4633	&& (n % width) == 0
4634	&& known_le ((idx + n) / width,
4635		     TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
4636    (with
4637     {
4638       idx = idx / width;
4639       n = n / width;
4640       /* Constructor elements can be subvectors.  */
4641       poly_uint64 k = 1;
4642       if (CONSTRUCTOR_NELTS (ctor) != 0)
4643         {
4644           tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
4645	   if (TREE_CODE (cons_elem) == VECTOR_TYPE)
4646	     k = TYPE_VECTOR_SUBPARTS (cons_elem);
4647	 }
4648       unsigned HOST_WIDE_INT elt, count, const_k;
4649     }
4650     (switch
4651      /* We keep an exact subset of the constructor elements.  */
4652      (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
4653       (if (CONSTRUCTOR_NELTS (ctor) == 0)
4654        { build_constructor (type, NULL); }
4655	(if (count == 1)
4656	 (if (elt < CONSTRUCTOR_NELTS (ctor))
4657	  (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
4658	  { build_zero_cst (type); })
4659	 {
4660	   vec<constructor_elt, va_gc> *vals;
4661	   vec_alloc (vals, count);
4662	   for (unsigned i = 0;
4663		i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
4664	     CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
4665				     CONSTRUCTOR_ELT (ctor, elt + i)->value);
4666	   build_constructor (type, vals);
4667	 })))
4668      /* The bitfield references a single constructor element.  */
4669      (if (k.is_constant (&const_k)
4670	   && idx + n <= (idx / const_k + 1) * const_k)
4671       (switch
4672	(if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
4673	 { build_zero_cst (type); })
4674	(if (n == const_k)
4675	 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
4676	(BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
4677		       @1 { bitsize_int ((idx % const_k) * width); })))))))))
4678
4679/* Simplify a bit extraction from a bit insertion for the cases with
4680   the inserted element fully covering the extraction or the insertion
4681   not touching the extraction.  */
4682(simplify
4683 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
4684 (with
4685  {
4686    unsigned HOST_WIDE_INT isize;
4687    if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4688      isize = TYPE_PRECISION (TREE_TYPE (@1));
4689    else
4690      isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
4691  }
4692  (switch
4693   (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
4694	&& wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
4695		      wi::to_wide (@ipos) + isize))
4696    (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
4697                                                 wi::to_wide (@rpos)
4698						 - wi::to_wide (@ipos)); }))
4699   (if (wi::geu_p (wi::to_wide (@ipos),
4700		   wi::to_wide (@rpos) + wi::to_wide (@rsize))
4701	|| wi::geu_p (wi::to_wide (@rpos),
4702		      wi::to_wide (@ipos) + isize))
4703    (BIT_FIELD_REF @0 @rsize @rpos)))))
4704