xref: /dragonfly/contrib/gcc-8.0/gcc/postreload.c (revision 3d33658b)
1 /* Perform simple optimizations to clean up the result of reload.
2    Copyright (C) 1987-2018 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
35 
36 #include "cfgrtl.h"
37 #include "cfgbuild.h"
38 #include "cfgcleanup.h"
39 #include "reload.h"
40 #include "cselib.h"
41 #include "tree-pass.h"
42 #include "dbgcnt.h"
43 
44 static int reload_cse_noop_set_p (rtx);
45 static bool reload_cse_simplify (rtx_insn *, rtx);
46 static void reload_cse_regs_1 (void);
47 static int reload_cse_simplify_set (rtx, rtx_insn *);
48 static int reload_cse_simplify_operands (rtx_insn *, rtx);
49 
50 static void reload_combine (void);
51 static void reload_combine_note_use (rtx *, rtx_insn *, int, rtx);
52 static void reload_combine_note_store (rtx, const_rtx, void *);
53 
54 static bool reload_cse_move2add (rtx_insn *);
55 static void move2add_note_store (rtx, const_rtx, void *);
56 
57 /* Call cse / combine like post-reload optimization phases.
58    FIRST is the first instruction.  */
59 
60 static void
61 reload_cse_regs (rtx_insn *first ATTRIBUTE_UNUSED)
62 {
63   bool moves_converted;
64   reload_cse_regs_1 ();
65   reload_combine ();
66   moves_converted = reload_cse_move2add (first);
67   if (flag_expensive_optimizations)
68     {
69       if (moves_converted)
70 	reload_combine ();
71       reload_cse_regs_1 ();
72     }
73 }
74 
75 /* See whether a single set SET is a noop.  */
76 static int
77 reload_cse_noop_set_p (rtx set)
78 {
79   if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
80     return 0;
81 
82   return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
83 }
84 
85 /* Try to simplify INSN.  Return true if the CFG may have changed.  */
86 static bool
87 reload_cse_simplify (rtx_insn *insn, rtx testreg)
88 {
89   rtx body = PATTERN (insn);
90   basic_block insn_bb = BLOCK_FOR_INSN (insn);
91   unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
92 
93   /* If NO_FUNCTION_CSE has been set by the target, then we should not try
94      to cse function calls.  */
95   if (NO_FUNCTION_CSE && CALL_P (insn))
96     return false;
97 
98   if (GET_CODE (body) == SET)
99     {
100       int count = 0;
101 
102       /* Simplify even if we may think it is a no-op.
103          We may think a memory load of a value smaller than WORD_SIZE
104          is redundant because we haven't taken into account possible
105          implicit extension.  reload_cse_simplify_set() will bring
106          this out, so it's safer to simplify before we delete.  */
107       count += reload_cse_simplify_set (body, insn);
108 
109       if (!count && reload_cse_noop_set_p (body))
110 	{
111 	  if (check_for_inc_dec (insn))
112 	    delete_insn_and_edges (insn);
113 	  /* We're done with this insn.  */
114 	  goto done;
115 	}
116 
117       if (count > 0)
118 	apply_change_group ();
119       else
120 	reload_cse_simplify_operands (insn, testreg);
121     }
122   else if (GET_CODE (body) == PARALLEL)
123     {
124       int i;
125       int count = 0;
126       rtx value = NULL_RTX;
127 
128       /* Registers mentioned in the clobber list for an asm cannot be reused
129 	 within the body of the asm.  Invalidate those registers now so that
130 	 we don't try to substitute values for them.  */
131       if (asm_noperands (body) >= 0)
132 	{
133 	  for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
134 	    {
135 	      rtx part = XVECEXP (body, 0, i);
136 	      if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
137 		cselib_invalidate_rtx (XEXP (part, 0));
138 	    }
139 	}
140 
141       /* If every action in a PARALLEL is a noop, we can delete
142 	 the entire PARALLEL.  */
143       for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
144 	{
145 	  rtx part = XVECEXP (body, 0, i);
146 	  if (GET_CODE (part) == SET)
147 	    {
148 	      if (! reload_cse_noop_set_p (part))
149 		break;
150 	      if (REG_P (SET_DEST (part))
151 		  && REG_FUNCTION_VALUE_P (SET_DEST (part)))
152 		{
153 		  if (value)
154 		    break;
155 		  value = SET_DEST (part);
156 		}
157 	    }
158 	  else if (GET_CODE (part) != CLOBBER
159 		   && GET_CODE (part) != USE)
160 	    break;
161 	}
162 
163       if (i < 0)
164 	{
165 	  if (check_for_inc_dec (insn))
166 	    delete_insn_and_edges (insn);
167 	  /* We're done with this insn.  */
168 	  goto done;
169 	}
170 
171       /* It's not a no-op, but we can try to simplify it.  */
172       for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
173 	if (GET_CODE (XVECEXP (body, 0, i)) == SET)
174 	  count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
175 
176       if (count > 0)
177 	apply_change_group ();
178       else
179 	reload_cse_simplify_operands (insn, testreg);
180     }
181 
182 done:
183   return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
184 }
185 
186 /* Do a very simple CSE pass over the hard registers.
187 
188    This function detects no-op moves where we happened to assign two
189    different pseudo-registers to the same hard register, and then
190    copied one to the other.  Reload will generate a useless
191    instruction copying a register to itself.
192 
193    This function also detects cases where we load a value from memory
194    into two different registers, and (if memory is more expensive than
195    registers) changes it to simply copy the first register into the
196    second register.
197 
198    Another optimization is performed that scans the operands of each
199    instruction to see whether the value is already available in a
200    hard register.  It then replaces the operand with the hard register
201    if possible, much like an optional reload would.  */
202 
203 static void
204 reload_cse_regs_1 (void)
205 {
206   bool cfg_changed = false;
207   basic_block bb;
208   rtx_insn *insn;
209   rtx testreg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
210 
211   cselib_init (CSELIB_RECORD_MEMORY);
212   init_alias_analysis ();
213 
214   FOR_EACH_BB_FN (bb, cfun)
215     FOR_BB_INSNS (bb, insn)
216       {
217 	if (INSN_P (insn))
218 	  cfg_changed |= reload_cse_simplify (insn, testreg);
219 
220 	cselib_process_insn (insn);
221       }
222 
223   /* Clean up.  */
224   end_alias_analysis ();
225   cselib_finish ();
226   if (cfg_changed)
227     cleanup_cfg (0);
228 }
229 
230 /* Try to simplify a single SET instruction.  SET is the set pattern.
231    INSN is the instruction it came from.
232    This function only handles one case: if we set a register to a value
233    which is not a register, we try to find that value in some other register
234    and change the set into a register copy.  */
235 
236 static int
237 reload_cse_simplify_set (rtx set, rtx_insn *insn)
238 {
239   int did_change = 0;
240   int dreg;
241   rtx src;
242   reg_class_t dclass;
243   int old_cost;
244   cselib_val *val;
245   struct elt_loc_list *l;
246   enum rtx_code extend_op = UNKNOWN;
247   bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
248 
249   dreg = true_regnum (SET_DEST (set));
250   if (dreg < 0)
251     return 0;
252 
253   src = SET_SRC (set);
254   if (side_effects_p (src) || true_regnum (src) >= 0)
255     return 0;
256 
257   dclass = REGNO_REG_CLASS (dreg);
258 
259   /* When replacing a memory with a register, we need to honor assumptions
260      that combine made wrt the contents of sign bits.  We'll do this by
261      generating an extend instruction instead of a reg->reg copy.  Thus
262      the destination must be a register that we can widen.  */
263   if (MEM_P (src)
264       && (extend_op = load_extend_op (GET_MODE (src))) != UNKNOWN
265       && !REG_P (SET_DEST (set)))
266     return 0;
267 
268   val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
269   if (! val)
270     return 0;
271 
272   /* If memory loads are cheaper than register copies, don't change them.  */
273   if (MEM_P (src))
274     old_cost = memory_move_cost (GET_MODE (src), dclass, true);
275   else if (REG_P (src))
276     old_cost = register_move_cost (GET_MODE (src),
277 				   REGNO_REG_CLASS (REGNO (src)), dclass);
278   else
279     old_cost = set_src_cost (src, GET_MODE (SET_DEST (set)), speed);
280 
281   for (l = val->locs; l; l = l->next)
282     {
283       rtx this_rtx = l->loc;
284       int this_cost;
285 
286       if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
287 	{
288 	  if (extend_op != UNKNOWN)
289 	    {
290 	      wide_int result;
291 
292 	      if (!CONST_SCALAR_INT_P (this_rtx))
293 		continue;
294 
295 	      switch (extend_op)
296 		{
297 		case ZERO_EXTEND:
298 		  result = wide_int::from (rtx_mode_t (this_rtx,
299 						       GET_MODE (src)),
300 					   BITS_PER_WORD, UNSIGNED);
301 		  break;
302 		case SIGN_EXTEND:
303 		  result = wide_int::from (rtx_mode_t (this_rtx,
304 						       GET_MODE (src)),
305 					   BITS_PER_WORD, SIGNED);
306 		  break;
307 		default:
308 		  gcc_unreachable ();
309 		}
310 	      this_rtx = immed_wide_int_const (result, word_mode);
311 	    }
312 
313 	  this_cost = set_src_cost (this_rtx, GET_MODE (SET_DEST (set)), speed);
314 	}
315       else if (REG_P (this_rtx))
316 	{
317 	  if (extend_op != UNKNOWN)
318 	    {
319 	      this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
320 	      this_cost = set_src_cost (this_rtx, word_mode, speed);
321 	    }
322 	  else
323 	    this_cost = register_move_cost (GET_MODE (this_rtx),
324 					    REGNO_REG_CLASS (REGNO (this_rtx)),
325 					    dclass);
326 	}
327       else
328 	continue;
329 
330       /* If equal costs, prefer registers over anything else.  That
331 	 tends to lead to smaller instructions on some machines.  */
332       if (this_cost < old_cost
333 	  || (this_cost == old_cost
334 	      && REG_P (this_rtx)
335 	      && !REG_P (SET_SRC (set))))
336 	{
337 	  if (extend_op != UNKNOWN
338 	      && REG_CAN_CHANGE_MODE_P (REGNO (SET_DEST (set)),
339 					GET_MODE (SET_DEST (set)), word_mode))
340 	    {
341 	      rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
342 	      ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
343 	      validate_change (insn, &SET_DEST (set), wide_dest, 1);
344 	    }
345 
346 	  validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
347 	  old_cost = this_cost, did_change = 1;
348 	}
349     }
350 
351   return did_change;
352 }
353 
354 /* Try to replace operands in INSN with equivalent values that are already
355    in registers.  This can be viewed as optional reloading.
356 
357    For each non-register operand in the insn, see if any hard regs are
358    known to be equivalent to that operand.  Record the alternatives which
359    can accept these hard registers.  Among all alternatives, select the
360    ones which are better or equal to the one currently matching, where
361    "better" is in terms of '?' and '!' constraints.  Among the remaining
362    alternatives, select the one which replaces most operands with
363    hard registers.  */
364 
365 static int
366 reload_cse_simplify_operands (rtx_insn *insn, rtx testreg)
367 {
368   int i, j;
369 
370   /* For each operand, all registers that are equivalent to it.  */
371   HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
372 
373   const char *constraints[MAX_RECOG_OPERANDS];
374 
375   /* Vector recording how bad an alternative is.  */
376   int *alternative_reject;
377   /* Vector recording how many registers can be introduced by choosing
378      this alternative.  */
379   int *alternative_nregs;
380   /* Array of vectors recording, for each operand and each alternative,
381      which hard register to substitute, or -1 if the operand should be
382      left as it is.  */
383   int *op_alt_regno[MAX_RECOG_OPERANDS];
384   /* Array of alternatives, sorted in order of decreasing desirability.  */
385   int *alternative_order;
386 
387   extract_constrain_insn (insn);
388 
389   if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
390     return 0;
391 
392   alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
393   alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
394   alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
395   memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
396   memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
397 
398   /* For each operand, find out which regs are equivalent.  */
399   for (i = 0; i < recog_data.n_operands; i++)
400     {
401       cselib_val *v;
402       struct elt_loc_list *l;
403       rtx op;
404 
405       CLEAR_HARD_REG_SET (equiv_regs[i]);
406 
407       /* cselib blows up on CODE_LABELs.  Trying to fix that doesn't seem
408 	 right, so avoid the problem here.  Similarly NOTE_INSN_DELETED_LABEL.
409 	 Likewise if we have a constant and the insn pattern doesn't tell us
410 	 the mode we need.  */
411       if (LABEL_P (recog_data.operand[i])
412 	  || (NOTE_P (recog_data.operand[i])
413 	      && NOTE_KIND (recog_data.operand[i]) == NOTE_INSN_DELETED_LABEL)
414 	  || (CONSTANT_P (recog_data.operand[i])
415 	      && recog_data.operand_mode[i] == VOIDmode))
416 	continue;
417 
418       op = recog_data.operand[i];
419       if (MEM_P (op) && load_extend_op (GET_MODE (op)) != UNKNOWN)
420 	{
421 	  rtx set = single_set (insn);
422 
423 	  /* We might have multiple sets, some of which do implicit
424 	     extension.  Punt on this for now.  */
425 	  if (! set)
426 	    continue;
427 	  /* If the destination is also a MEM or a STRICT_LOW_PART, no
428 	     extension applies.
429 	     Also, if there is an explicit extension, we don't have to
430 	     worry about an implicit one.  */
431 	  else if (MEM_P (SET_DEST (set))
432 		   || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
433 		   || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
434 		   || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
435 	    ; /* Continue ordinary processing.  */
436 	  /* If the register cannot change mode to word_mode, it follows that
437 	     it cannot have been used in word_mode.  */
438 	  else if (REG_P (SET_DEST (set))
439 		   && !REG_CAN_CHANGE_MODE_P (REGNO (SET_DEST (set)),
440 					      GET_MODE (SET_DEST (set)),
441 					      word_mode))
442 	    ; /* Continue ordinary processing.  */
443 	  /* If this is a straight load, make the extension explicit.  */
444 	  else if (REG_P (SET_DEST (set))
445 		   && recog_data.n_operands == 2
446 		   && SET_SRC (set) == op
447 		   && SET_DEST (set) == recog_data.operand[1-i])
448 	    {
449 	      validate_change (insn, recog_data.operand_loc[i],
450 			       gen_rtx_fmt_e (load_extend_op (GET_MODE (op)),
451 					      word_mode, op),
452 			       1);
453 	      validate_change (insn, recog_data.operand_loc[1-i],
454 			       gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
455 			       1);
456 	      if (! apply_change_group ())
457 		return 0;
458 	      return reload_cse_simplify_operands (insn, testreg);
459 	    }
460 	  else
461 	    /* ??? There might be arithmetic operations with memory that are
462 	       safe to optimize, but is it worth the trouble?  */
463 	    continue;
464 	}
465 
466       if (side_effects_p (op))
467 	continue;
468       v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
469       if (! v)
470 	continue;
471 
472       for (l = v->locs; l; l = l->next)
473 	if (REG_P (l->loc))
474 	  SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
475     }
476 
477   alternative_mask preferred = get_preferred_alternatives (insn);
478   for (i = 0; i < recog_data.n_operands; i++)
479     {
480       machine_mode mode;
481       int regno;
482       const char *p;
483 
484       op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
485       for (j = 0; j < recog_data.n_alternatives; j++)
486 	op_alt_regno[i][j] = -1;
487 
488       p = constraints[i] = recog_data.constraints[i];
489       mode = recog_data.operand_mode[i];
490 
491       /* Add the reject values for each alternative given by the constraints
492 	 for this operand.  */
493       j = 0;
494       while (*p != '\0')
495 	{
496 	  char c = *p++;
497 	  if (c == ',')
498 	    j++;
499 	  else if (c == '?')
500 	    alternative_reject[j] += 3;
501 	  else if (c == '!')
502 	    alternative_reject[j] += 300;
503 	}
504 
505       /* We won't change operands which are already registers.  We
506 	 also don't want to modify output operands.  */
507       regno = true_regnum (recog_data.operand[i]);
508       if (regno >= 0
509 	  || constraints[i][0] == '='
510 	  || constraints[i][0] == '+')
511 	continue;
512 
513       for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
514 	{
515 	  enum reg_class rclass = NO_REGS;
516 
517 	  if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
518 	    continue;
519 
520 	  set_mode_and_regno (testreg, mode, regno);
521 
522 	  /* We found a register equal to this operand.  Now look for all
523 	     alternatives that can accept this register and have not been
524 	     assigned a register they can use yet.  */
525 	  j = 0;
526 	  p = constraints[i];
527 	  for (;;)
528 	    {
529 	      char c = *p;
530 
531 	      switch (c)
532 		{
533 		case 'g':
534 		  rclass = reg_class_subunion[rclass][GENERAL_REGS];
535 		  break;
536 
537 		default:
538 		  rclass
539 		    = (reg_class_subunion
540 		       [rclass]
541 		       [reg_class_for_constraint (lookup_constraint (p))]);
542 		  break;
543 
544 		case ',': case '\0':
545 		  /* See if REGNO fits this alternative, and set it up as the
546 		     replacement register if we don't have one for this
547 		     alternative yet and the operand being replaced is not
548 		     a cheap CONST_INT.  */
549 		  if (op_alt_regno[i][j] == -1
550 		      && TEST_BIT (preferred, j)
551 		      && reg_fits_class_p (testreg, rclass, 0, mode)
552 		      && (!CONST_INT_P (recog_data.operand[i])
553 			  || (set_src_cost (recog_data.operand[i], mode,
554 					    optimize_bb_for_speed_p
555 					     (BLOCK_FOR_INSN (insn)))
556 			      > set_src_cost (testreg, mode,
557 					      optimize_bb_for_speed_p
558 					       (BLOCK_FOR_INSN (insn))))))
559 		    {
560 		      alternative_nregs[j]++;
561 		      op_alt_regno[i][j] = regno;
562 		    }
563 		  j++;
564 		  rclass = NO_REGS;
565 		  break;
566 		}
567 	      p += CONSTRAINT_LEN (c, p);
568 
569 	      if (c == '\0')
570 		break;
571 	    }
572 	}
573     }
574 
575   /* Record all alternatives which are better or equal to the currently
576      matching one in the alternative_order array.  */
577   for (i = j = 0; i < recog_data.n_alternatives; i++)
578     if (alternative_reject[i] <= alternative_reject[which_alternative])
579       alternative_order[j++] = i;
580   recog_data.n_alternatives = j;
581 
582   /* Sort it.  Given a small number of alternatives, a dumb algorithm
583      won't hurt too much.  */
584   for (i = 0; i < recog_data.n_alternatives - 1; i++)
585     {
586       int best = i;
587       int best_reject = alternative_reject[alternative_order[i]];
588       int best_nregs = alternative_nregs[alternative_order[i]];
589 
590       for (j = i + 1; j < recog_data.n_alternatives; j++)
591 	{
592 	  int this_reject = alternative_reject[alternative_order[j]];
593 	  int this_nregs = alternative_nregs[alternative_order[j]];
594 
595 	  if (this_reject < best_reject
596 	      || (this_reject == best_reject && this_nregs > best_nregs))
597 	    {
598 	      best = j;
599 	      best_reject = this_reject;
600 	      best_nregs = this_nregs;
601 	    }
602 	}
603 
604       std::swap (alternative_order[best], alternative_order[i]);
605     }
606 
607   /* Substitute the operands as determined by op_alt_regno for the best
608      alternative.  */
609   j = alternative_order[0];
610 
611   for (i = 0; i < recog_data.n_operands; i++)
612     {
613       machine_mode mode = recog_data.operand_mode[i];
614       if (op_alt_regno[i][j] == -1)
615 	continue;
616 
617       validate_change (insn, recog_data.operand_loc[i],
618 		       gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
619     }
620 
621   for (i = recog_data.n_dups - 1; i >= 0; i--)
622     {
623       int op = recog_data.dup_num[i];
624       machine_mode mode = recog_data.operand_mode[op];
625 
626       if (op_alt_regno[op][j] == -1)
627 	continue;
628 
629       validate_change (insn, recog_data.dup_loc[i],
630 		       gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
631     }
632 
633   return apply_change_group ();
634 }
635 
636 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
637    addressing now.
638    This code might also be useful when reload gave up on reg+reg addressing
639    because of clashes between the return register and INDEX_REG_CLASS.  */
640 
641 /* The maximum number of uses of a register we can keep track of to
642    replace them with reg+reg addressing.  */
643 #define RELOAD_COMBINE_MAX_USES 16
644 
645 /* Describes a recorded use of a register.  */
646 struct reg_use
647 {
648   /* The insn where a register has been used.  */
649   rtx_insn *insn;
650   /* Points to the memory reference enclosing the use, if any, NULL_RTX
651      otherwise.  */
652   rtx containing_mem;
653   /* Location of the register within INSN.  */
654   rtx *usep;
655   /* The reverse uid of the insn.  */
656   int ruid;
657 };
658 
659 /* If the register is used in some unknown fashion, USE_INDEX is negative.
660    If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
661    indicates where it is first set or clobbered.
662    Otherwise, USE_INDEX is the index of the last encountered use of the
663    register (which is first among these we have seen since we scan backwards).
664    USE_RUID indicates the first encountered, i.e. last, of these uses.
665    If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
666    with a constant offset; OFFSET contains this constant in that case.
667    STORE_RUID is always meaningful if we only want to use a value in a
668    register in a different place: it denotes the next insn in the insn
669    stream (i.e. the last encountered) that sets or clobbers the register.
670    REAL_STORE_RUID is similar, but clobbers are ignored when updating it.  */
671 static struct
672   {
673     struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
674     rtx offset;
675     int use_index;
676     int store_ruid;
677     int real_store_ruid;
678     int use_ruid;
679     bool all_offsets_match;
680   } reg_state[FIRST_PSEUDO_REGISTER];
681 
682 /* Reverse linear uid.  This is increased in reload_combine while scanning
683    the instructions from last to first.  It is used to set last_label_ruid
684    and the store_ruid / use_ruid fields in reg_state.  */
685 static int reload_combine_ruid;
686 
687 /* The RUID of the last label we encountered in reload_combine.  */
688 static int last_label_ruid;
689 
690 /* The RUID of the last jump we encountered in reload_combine.  */
691 static int last_jump_ruid;
692 
693 /* The register numbers of the first and last index register.  A value of
694    -1 in LAST_INDEX_REG indicates that we've previously computed these
695    values and found no suitable index registers.  */
696 static int first_index_reg = -1;
697 static int last_index_reg;
698 
699 #define LABEL_LIVE(LABEL) \
700   (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
701 
702 /* Subroutine of reload_combine_split_ruids, called to fix up a single
703    ruid pointed to by *PRUID if it is higher than SPLIT_RUID.  */
704 
705 static inline void
706 reload_combine_split_one_ruid (int *pruid, int split_ruid)
707 {
708   if (*pruid > split_ruid)
709     (*pruid)++;
710 }
711 
712 /* Called when we insert a new insn in a position we've already passed in
713    the scan.  Examine all our state, increasing all ruids that are higher
714    than SPLIT_RUID by one in order to make room for a new insn.  */
715 
716 static void
717 reload_combine_split_ruids (int split_ruid)
718 {
719   unsigned i;
720 
721   reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
722   reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
723   reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
724 
725   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
726     {
727       int j, idx = reg_state[i].use_index;
728       reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
729       reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
730       reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
731 				     split_ruid);
732       if (idx < 0)
733 	continue;
734       for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
735 	{
736 	  reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
737 					 split_ruid);
738 	}
739     }
740 }
741 
742 /* Called when we are about to rescan a previously encountered insn with
743    reload_combine_note_use after modifying some part of it.  This clears all
744    information about uses in that particular insn.  */
745 
746 static void
747 reload_combine_purge_insn_uses (rtx_insn *insn)
748 {
749   unsigned i;
750 
751   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
752     {
753       int j, k, idx = reg_state[i].use_index;
754       if (idx < 0)
755 	continue;
756       j = k = RELOAD_COMBINE_MAX_USES;
757       while (j-- > idx)
758 	{
759 	  if (reg_state[i].reg_use[j].insn != insn)
760 	    {
761 	      k--;
762 	      if (k != j)
763 		reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
764 	    }
765 	}
766       reg_state[i].use_index = k;
767     }
768 }
769 
770 /* Called when we need to forget about all uses of REGNO after an insn
771    which is identified by RUID.  */
772 
773 static void
774 reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
775 {
776   int j, k, idx = reg_state[regno].use_index;
777   if (idx < 0)
778     return;
779   j = k = RELOAD_COMBINE_MAX_USES;
780   while (j-- > idx)
781     {
782       if (reg_state[regno].reg_use[j].ruid >= ruid)
783 	{
784 	  k--;
785 	  if (k != j)
786 	    reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
787 	}
788     }
789   reg_state[regno].use_index = k;
790 }
791 
792 /* Find the use of REGNO with the ruid that is highest among those
793    lower than RUID_LIMIT, and return it if it is the only use of this
794    reg in the insn.  Return NULL otherwise.  */
795 
796 static struct reg_use *
797 reload_combine_closest_single_use (unsigned regno, int ruid_limit)
798 {
799   int i, best_ruid = 0;
800   int use_idx = reg_state[regno].use_index;
801   struct reg_use *retval;
802 
803   if (use_idx < 0)
804     return NULL;
805   retval = NULL;
806   for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
807     {
808       struct reg_use *use = reg_state[regno].reg_use + i;
809       int this_ruid = use->ruid;
810       if (this_ruid >= ruid_limit)
811 	continue;
812       if (this_ruid > best_ruid)
813 	{
814 	  best_ruid = this_ruid;
815 	  retval = use;
816 	}
817       else if (this_ruid == best_ruid)
818 	retval = NULL;
819     }
820   if (last_label_ruid >= best_ruid)
821     return NULL;
822   return retval;
823 }
824 
825 /* After we've moved an add insn, fix up any debug insns that occur
826    between the old location of the add and the new location.  REG is
827    the destination register of the add insn; REPLACEMENT is the
828    SET_SRC of the add.  FROM and TO specify the range in which we
829    should make this change on debug insns.  */
830 
831 static void
832 fixup_debug_insns (rtx reg, rtx replacement, rtx_insn *from, rtx_insn *to)
833 {
834   rtx_insn *insn;
835   for (insn = from; insn != to; insn = NEXT_INSN (insn))
836     {
837       rtx t;
838 
839       if (!DEBUG_BIND_INSN_P (insn))
840 	continue;
841 
842       t = INSN_VAR_LOCATION_LOC (insn);
843       t = simplify_replace_rtx (t, reg, replacement);
844       validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
845     }
846 }
847 
848 /* Subroutine of reload_combine_recognize_const_pattern.  Try to replace REG
849    with SRC in the insn described by USE, taking costs into account.  Return
850    true if we made the replacement.  */
851 
852 static bool
853 try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
854 {
855   rtx_insn *use_insn = use->insn;
856   rtx mem = use->containing_mem;
857   bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
858 
859   if (mem != NULL_RTX)
860     {
861       addr_space_t as = MEM_ADDR_SPACE (mem);
862       rtx oldaddr = XEXP (mem, 0);
863       rtx newaddr = NULL_RTX;
864       int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
865       int new_cost;
866 
867       newaddr = simplify_replace_rtx (oldaddr, reg, src);
868       if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
869 	{
870 	  XEXP (mem, 0) = newaddr;
871 	  new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
872 	  XEXP (mem, 0) = oldaddr;
873 	  if (new_cost <= old_cost
874 	      && validate_change (use_insn,
875 				  &XEXP (mem, 0), newaddr, 0))
876 	    return true;
877 	}
878     }
879   else
880     {
881       rtx new_set = single_set (use_insn);
882       if (new_set
883 	  && REG_P (SET_DEST (new_set))
884 	  && GET_CODE (SET_SRC (new_set)) == PLUS
885 	  && REG_P (XEXP (SET_SRC (new_set), 0))
886 	  && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
887 	{
888 	  rtx new_src;
889 	  machine_mode mode = GET_MODE (SET_DEST (new_set));
890 	  int old_cost = set_src_cost (SET_SRC (new_set), mode, speed);
891 
892 	  gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
893 	  new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
894 
895 	  if (set_src_cost (new_src, mode, speed) <= old_cost
896 	      && validate_change (use_insn, &SET_SRC (new_set),
897 				  new_src, 0))
898 	    return true;
899 	}
900     }
901   return false;
902 }
903 
904 /* Called by reload_combine when scanning INSN.  This function tries to detect
905    patterns where a constant is added to a register, and the result is used
906    in an address.
907    Return true if no further processing is needed on INSN; false if it wasn't
908    recognized and should be handled normally.  */
909 
910 static bool
911 reload_combine_recognize_const_pattern (rtx_insn *insn)
912 {
913   int from_ruid = reload_combine_ruid;
914   rtx set, pat, reg, src, addreg;
915   unsigned int regno;
916   struct reg_use *use;
917   bool must_move_add;
918   rtx_insn *add_moved_after_insn = NULL;
919   int add_moved_after_ruid = 0;
920   int clobbered_regno = -1;
921 
922   set = single_set (insn);
923   if (set == NULL_RTX)
924     return false;
925 
926   reg = SET_DEST (set);
927   src = SET_SRC (set);
928   if (!REG_P (reg)
929       || REG_NREGS (reg) != 1
930       || GET_MODE (reg) != Pmode
931       || reg == stack_pointer_rtx)
932     return false;
933 
934   regno = REGNO (reg);
935 
936   /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
937      uses of REG1 inside an address, or inside another add insn.  If
938      possible and profitable, merge the addition into subsequent
939      uses.  */
940   if (GET_CODE (src) != PLUS
941       || !REG_P (XEXP (src, 0))
942       || !CONSTANT_P (XEXP (src, 1)))
943     return false;
944 
945   addreg = XEXP (src, 0);
946   must_move_add = rtx_equal_p (reg, addreg);
947 
948   pat = PATTERN (insn);
949   if (must_move_add && set != pat)
950     {
951       /* We have to be careful when moving the add; apart from the
952 	 single_set there may also be clobbers.  Recognize one special
953 	 case, that of one clobber alongside the set (likely a clobber
954 	 of the CC register).  */
955       gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
956       if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
957 	  || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
958 	  || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
959 	return false;
960       clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
961     }
962 
963   do
964     {
965       use = reload_combine_closest_single_use (regno, from_ruid);
966 
967       if (use)
968 	/* Start the search for the next use from here.  */
969 	from_ruid = use->ruid;
970 
971       if (use && GET_MODE (*use->usep) == Pmode)
972 	{
973 	  bool delete_add = false;
974 	  rtx_insn *use_insn = use->insn;
975 	  int use_ruid = use->ruid;
976 
977 	  /* Avoid moving the add insn past a jump.  */
978 	  if (must_move_add && use_ruid <= last_jump_ruid)
979 	    break;
980 
981 	  /* If the add clobbers another hard reg in parallel, don't move
982 	     it past a real set of this hard reg.  */
983 	  if (must_move_add && clobbered_regno >= 0
984 	      && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
985 	    break;
986 
987 	  /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets.  */
988 	  if (HAVE_cc0 && must_move_add && sets_cc0_p (PATTERN (use_insn)))
989 	    break;
990 
991 	  gcc_assert (reg_state[regno].store_ruid <= use_ruid);
992 	  /* Avoid moving a use of ADDREG past a point where it is stored.  */
993 	  if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
994 	    break;
995 
996 	  /* We also must not move the addition past an insn that sets
997 	     the same register, unless we can combine two add insns.  */
998 	  if (must_move_add && reg_state[regno].store_ruid == use_ruid)
999 	    {
1000 	      if (use->containing_mem == NULL_RTX)
1001 		delete_add = true;
1002 	      else
1003 		break;
1004 	    }
1005 
1006 	  if (try_replace_in_use (use, reg, src))
1007 	    {
1008 	      reload_combine_purge_insn_uses (use_insn);
1009 	      reload_combine_note_use (&PATTERN (use_insn), use_insn,
1010 				       use_ruid, NULL_RTX);
1011 
1012 	      if (delete_add)
1013 		{
1014 		  fixup_debug_insns (reg, src, insn, use_insn);
1015 		  delete_insn (insn);
1016 		  return true;
1017 		}
1018 	      if (must_move_add)
1019 		{
1020 		  add_moved_after_insn = use_insn;
1021 		  add_moved_after_ruid = use_ruid;
1022 		}
1023 	      continue;
1024 	    }
1025 	}
1026       /* If we get here, we couldn't handle this use.  */
1027       if (must_move_add)
1028 	break;
1029     }
1030   while (use);
1031 
1032   if (!must_move_add || add_moved_after_insn == NULL_RTX)
1033     /* Process the add normally.  */
1034     return false;
1035 
1036   fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1037 
1038   reorder_insns (insn, insn, add_moved_after_insn);
1039   reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1040   reload_combine_split_ruids (add_moved_after_ruid - 1);
1041   reload_combine_note_use (&PATTERN (insn), insn,
1042 			   add_moved_after_ruid, NULL_RTX);
1043   reg_state[regno].store_ruid = add_moved_after_ruid;
1044 
1045   return true;
1046 }
1047 
1048 /* Called by reload_combine when scanning INSN.  Try to detect a pattern we
1049    can handle and improve.  Return true if no further processing is needed on
1050    INSN; false if it wasn't recognized and should be handled normally.  */
1051 
1052 static bool
1053 reload_combine_recognize_pattern (rtx_insn *insn)
1054 {
1055   rtx set, reg, src;
1056 
1057   set = single_set (insn);
1058   if (set == NULL_RTX)
1059     return false;
1060 
1061   reg = SET_DEST (set);
1062   src = SET_SRC (set);
1063   if (!REG_P (reg) || REG_NREGS (reg) != 1)
1064     return false;
1065 
1066   unsigned int regno = REGNO (reg);
1067   machine_mode mode = GET_MODE (reg);
1068 
1069   if (reg_state[regno].use_index < 0
1070       || reg_state[regno].use_index >= RELOAD_COMBINE_MAX_USES)
1071     return false;
1072 
1073   for (int i = reg_state[regno].use_index;
1074        i < RELOAD_COMBINE_MAX_USES; i++)
1075     {
1076       struct reg_use *use = reg_state[regno].reg_use + i;
1077       if (GET_MODE (*use->usep) != mode)
1078 	return false;
1079     }
1080 
1081   /* Look for (set (REGX) (CONST_INT))
1082      (set (REGX) (PLUS (REGX) (REGY)))
1083      ...
1084      ... (MEM (REGX)) ...
1085      and convert it to
1086      (set (REGZ) (CONST_INT))
1087      ...
1088      ... (MEM (PLUS (REGZ) (REGY)))... .
1089 
1090      First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1091      and that we know all uses of REGX before it dies.
1092      Also, explicitly check that REGX != REGY; our life information
1093      does not yet show whether REGY changes in this insn.  */
1094 
1095   if (GET_CODE (src) == PLUS
1096       && reg_state[regno].all_offsets_match
1097       && last_index_reg != -1
1098       && REG_P (XEXP (src, 1))
1099       && rtx_equal_p (XEXP (src, 0), reg)
1100       && !rtx_equal_p (XEXP (src, 1), reg)
1101       && last_label_ruid < reg_state[regno].use_ruid)
1102     {
1103       rtx base = XEXP (src, 1);
1104       rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
1105       rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1106       rtx index_reg = NULL_RTX;
1107       rtx reg_sum = NULL_RTX;
1108       int i;
1109 
1110       /* Now we need to set INDEX_REG to an index register (denoted as
1111 	 REGZ in the illustration above) and REG_SUM to the expression
1112 	 register+register that we want to use to substitute uses of REG
1113 	 (typically in MEMs) with.  First check REG and BASE for being
1114 	 index registers; we can use them even if they are not dead.  */
1115       if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1116 	  || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1117 				REGNO (base)))
1118 	{
1119 	  index_reg = reg;
1120 	  reg_sum = src;
1121 	}
1122       else
1123 	{
1124 	  /* Otherwise, look for a free index register.  Since we have
1125 	     checked above that neither REG nor BASE are index registers,
1126 	     if we find anything at all, it will be different from these
1127 	     two registers.  */
1128 	  for (i = first_index_reg; i <= last_index_reg; i++)
1129 	    {
1130 	      if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1131 		  && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1132 		  && reg_state[i].store_ruid <= reg_state[regno].use_ruid
1133 		  && (call_used_regs[i] || df_regs_ever_live_p (i))
1134 		  && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1135 		  && !fixed_regs[i] && !global_regs[i]
1136 		  && hard_regno_nregs (i, GET_MODE (reg)) == 1
1137 		  && targetm.hard_regno_scratch_ok (i))
1138 		{
1139 		  index_reg = gen_rtx_REG (GET_MODE (reg), i);
1140 		  reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1141 		  break;
1142 		}
1143 	    }
1144 	}
1145 
1146       /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1147 	 (REGY), i.e. BASE, is not clobbered before the last use we'll
1148 	 create.  */
1149       if (reg_sum
1150 	  && prev_set
1151 	  && CONST_INT_P (SET_SRC (prev_set))
1152 	  && rtx_equal_p (SET_DEST (prev_set), reg)
1153 	  && (reg_state[REGNO (base)].store_ruid
1154 	      <= reg_state[regno].use_ruid))
1155 	{
1156 	  /* Change destination register and, if necessary, the constant
1157 	     value in PREV, the constant loading instruction.  */
1158 	  validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1159 	  if (reg_state[regno].offset != const0_rtx)
1160 	    {
1161 	      HOST_WIDE_INT c
1162 		= trunc_int_for_mode (UINTVAL (SET_SRC (prev_set))
1163 				      + UINTVAL (reg_state[regno].offset),
1164 				      GET_MODE (index_reg));
1165 	      validate_change (prev, &SET_SRC (prev_set), GEN_INT (c), 1);
1166 	    }
1167 
1168 	  /* Now for every use of REG that we have recorded, replace REG
1169 	     with REG_SUM.  */
1170 	  for (i = reg_state[regno].use_index;
1171 	       i < RELOAD_COMBINE_MAX_USES; i++)
1172 	    validate_unshare_change (reg_state[regno].reg_use[i].insn,
1173 				     reg_state[regno].reg_use[i].usep,
1174 				     /* Each change must have its own
1175 					replacement.  */
1176 				     reg_sum, 1);
1177 
1178 	  if (apply_change_group ())
1179 	    {
1180 	      struct reg_use *lowest_ruid = NULL;
1181 
1182 	      /* For every new use of REG_SUM, we have to record the use
1183 		 of BASE therein, i.e. operand 1.  */
1184 	      for (i = reg_state[regno].use_index;
1185 		   i < RELOAD_COMBINE_MAX_USES; i++)
1186 		{
1187 		  struct reg_use *use = reg_state[regno].reg_use + i;
1188 		  reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1189 					   use->ruid, use->containing_mem);
1190 		  if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1191 		    lowest_ruid = use;
1192 		}
1193 
1194 	      fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
1195 
1196 	      /* Delete the reg-reg addition.  */
1197 	      delete_insn (insn);
1198 
1199 	      if (reg_state[regno].offset != const0_rtx
1200 		  /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1201 		     are now invalid.  */
1202 		  && remove_reg_equal_equiv_notes (prev))
1203 		df_notes_rescan (prev);
1204 
1205 	      reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
1206 	      return true;
1207 	    }
1208 	}
1209     }
1210   return false;
1211 }
1212 
1213 static void
1214 reload_combine (void)
1215 {
1216   rtx_insn *insn, *prev;
1217   basic_block bb;
1218   unsigned int r;
1219   int min_labelno, n_labels;
1220   HARD_REG_SET ever_live_at_start, *label_live;
1221 
1222   /* To avoid wasting too much time later searching for an index register,
1223      determine the minimum and maximum index register numbers.  */
1224   if (INDEX_REG_CLASS == NO_REGS)
1225     last_index_reg = -1;
1226   else if (first_index_reg == -1 && last_index_reg == 0)
1227     {
1228       for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1229 	if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1230 	  {
1231 	    if (first_index_reg == -1)
1232 	      first_index_reg = r;
1233 
1234 	    last_index_reg = r;
1235 	  }
1236 
1237       /* If no index register is available, we can quit now.  Set LAST_INDEX_REG
1238 	 to -1 so we'll know to quit early the next time we get here.  */
1239       if (first_index_reg == -1)
1240 	{
1241 	  last_index_reg = -1;
1242 	  return;
1243 	}
1244     }
1245 
1246   /* Set up LABEL_LIVE and EVER_LIVE_AT_START.  The register lifetime
1247      information is a bit fuzzy immediately after reload, but it's
1248      still good enough to determine which registers are live at a jump
1249      destination.  */
1250   min_labelno = get_first_label_num ();
1251   n_labels = max_label_num () - min_labelno;
1252   label_live = XNEWVEC (HARD_REG_SET, n_labels);
1253   CLEAR_HARD_REG_SET (ever_live_at_start);
1254 
1255   FOR_EACH_BB_REVERSE_FN (bb, cfun)
1256     {
1257       insn = BB_HEAD (bb);
1258       if (LABEL_P (insn))
1259 	{
1260 	  HARD_REG_SET live;
1261 	  bitmap live_in = df_get_live_in (bb);
1262 
1263 	  REG_SET_TO_HARD_REG_SET (live, live_in);
1264 	  compute_use_by_pseudos (&live, live_in);
1265 	  COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
1266 	  IOR_HARD_REG_SET (ever_live_at_start, live);
1267 	}
1268     }
1269 
1270   /* Initialize last_label_ruid, reload_combine_ruid and reg_state.  */
1271   last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
1272   for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1273     {
1274       reg_state[r].store_ruid = 0;
1275       reg_state[r].real_store_ruid = 0;
1276       if (fixed_regs[r])
1277 	reg_state[r].use_index = -1;
1278       else
1279 	reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1280     }
1281 
1282   for (insn = get_last_insn (); insn; insn = prev)
1283     {
1284       bool control_flow_insn;
1285       rtx note;
1286 
1287       prev = PREV_INSN (insn);
1288 
1289       /* We cannot do our optimization across labels.  Invalidating all the use
1290 	 information we have would be costly, so we just note where the label
1291 	 is and then later disable any optimization that would cross it.  */
1292       if (LABEL_P (insn))
1293 	last_label_ruid = reload_combine_ruid;
1294       else if (BARRIER_P (insn))
1295 	{
1296 	  /* Crossing a barrier resets all the use information.  */
1297 	  for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1298 	    if (! fixed_regs[r])
1299 	      reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1300 	}
1301       else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1302 	/* Optimizations across insns being marked as volatile must be
1303 	   prevented.  All the usage information is invalidated
1304 	   here.  */
1305 	for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1306 	  if (! fixed_regs[r]
1307 	      && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1308 	    reg_state[r].use_index = -1;
1309 
1310       if (! NONDEBUG_INSN_P (insn))
1311 	continue;
1312 
1313       reload_combine_ruid++;
1314 
1315       control_flow_insn = control_flow_insn_p (insn);
1316       if (control_flow_insn)
1317 	last_jump_ruid = reload_combine_ruid;
1318 
1319       if (reload_combine_recognize_const_pattern (insn)
1320 	  || reload_combine_recognize_pattern (insn))
1321 	continue;
1322 
1323       note_stores (PATTERN (insn), reload_combine_note_store, NULL);
1324 
1325       if (CALL_P (insn))
1326 	{
1327 	  rtx link;
1328 	  HARD_REG_SET used_regs;
1329 
1330 	  get_call_reg_set_usage (insn, &used_regs, call_used_reg_set);
1331 
1332 	  for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1333 	    if (TEST_HARD_REG_BIT (used_regs, r))
1334 	      {
1335 		reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1336 		reg_state[r].store_ruid = reload_combine_ruid;
1337 	      }
1338 
1339 	  for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1340 	       link = XEXP (link, 1))
1341 	    {
1342 	      rtx setuse = XEXP (link, 0);
1343 	      rtx usage_rtx = XEXP (setuse, 0);
1344 	      if ((GET_CODE (setuse) == USE || GET_CODE (setuse) == CLOBBER)
1345 		  && REG_P (usage_rtx))
1346 	        {
1347 		  unsigned int end_regno = END_REGNO (usage_rtx);
1348 		  for (unsigned int i = REGNO (usage_rtx); i < end_regno; ++i)
1349 		    if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1350 		      {
1351 		        reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1352 		        reg_state[i].store_ruid = reload_combine_ruid;
1353 		      }
1354 		    else
1355 		      reg_state[i].use_index = -1;
1356 	         }
1357 	     }
1358 	}
1359 
1360       if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
1361 	{
1362 	  /* Non-spill registers might be used at the call destination in
1363 	     some unknown fashion, so we have to mark the unknown use.  */
1364 	  HARD_REG_SET *live;
1365 
1366 	  if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1367 	      && JUMP_LABEL (insn))
1368 	    {
1369 	      if (ANY_RETURN_P (JUMP_LABEL (insn)))
1370 		live = NULL;
1371 	      else
1372 		live = &LABEL_LIVE (JUMP_LABEL (insn));
1373 	    }
1374 	  else
1375 	    live = &ever_live_at_start;
1376 
1377 	  if (live)
1378 	    for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1379 	      if (TEST_HARD_REG_BIT (*live, r))
1380 		reg_state[r].use_index = -1;
1381 	}
1382 
1383       reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1384 			       NULL_RTX);
1385 
1386       for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1387 	{
1388 	  if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
1389 	    {
1390 	      int regno = REGNO (XEXP (note, 0));
1391 	      reg_state[regno].store_ruid = reload_combine_ruid;
1392 	      reg_state[regno].real_store_ruid = reload_combine_ruid;
1393 	      reg_state[regno].use_index = -1;
1394 	    }
1395 	}
1396     }
1397 
1398   free (label_live);
1399 }
1400 
1401 /* Check if DST is a register or a subreg of a register; if it is,
1402    update store_ruid, real_store_ruid and use_index in the reg_state
1403    structure accordingly.  Called via note_stores from reload_combine.  */
1404 
1405 static void
1406 reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
1407 {
1408   int regno = 0;
1409   int i;
1410   machine_mode mode = GET_MODE (dst);
1411 
1412   if (GET_CODE (dst) == SUBREG)
1413     {
1414       regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1415 				   GET_MODE (SUBREG_REG (dst)),
1416 				   SUBREG_BYTE (dst),
1417 				   GET_MODE (dst));
1418       dst = SUBREG_REG (dst);
1419     }
1420 
1421   /* Some targets do argument pushes without adding REG_INC notes.  */
1422 
1423   if (MEM_P (dst))
1424     {
1425       dst = XEXP (dst, 0);
1426       if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1427 	  || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1428 	  || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
1429 	{
1430 	  unsigned int end_regno = END_REGNO (XEXP (dst, 0));
1431 	  for (unsigned int i = REGNO (XEXP (dst, 0)); i < end_regno; ++i)
1432 	    {
1433 	      /* We could probably do better, but for now mark the register
1434 		 as used in an unknown fashion and set/clobbered at this
1435 		 insn.  */
1436 	      reg_state[i].use_index = -1;
1437 	      reg_state[i].store_ruid = reload_combine_ruid;
1438 	      reg_state[i].real_store_ruid = reload_combine_ruid;
1439 	    }
1440 	}
1441       else
1442         return;
1443     }
1444 
1445   if (!REG_P (dst))
1446     return;
1447   regno += REGNO (dst);
1448 
1449   /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1450      careful with registers / register parts that are not full words.
1451      Similarly for ZERO_EXTRACT.  */
1452   if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1453       || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1454     {
1455       for (i = end_hard_regno (mode, regno) - 1; i >= regno; i--)
1456 	{
1457 	  reg_state[i].use_index = -1;
1458 	  reg_state[i].store_ruid = reload_combine_ruid;
1459 	  reg_state[i].real_store_ruid = reload_combine_ruid;
1460 	}
1461     }
1462   else
1463     {
1464       for (i = end_hard_regno (mode, regno) - 1; i >= regno; i--)
1465 	{
1466 	  reg_state[i].store_ruid = reload_combine_ruid;
1467 	  if (GET_CODE (set) == SET)
1468 	    reg_state[i].real_store_ruid = reload_combine_ruid;
1469 	  reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1470 	}
1471     }
1472 }
1473 
1474 /* XP points to a piece of rtl that has to be checked for any uses of
1475    registers.
1476    *XP is the pattern of INSN, or a part of it.
1477    Called from reload_combine, and recursively by itself.  */
1478 static void
1479 reload_combine_note_use (rtx *xp, rtx_insn *insn, int ruid, rtx containing_mem)
1480 {
1481   rtx x = *xp;
1482   enum rtx_code code = x->code;
1483   const char *fmt;
1484   int i, j;
1485   rtx offset = const0_rtx; /* For the REG case below.  */
1486 
1487   switch (code)
1488     {
1489     case SET:
1490       if (REG_P (SET_DEST (x)))
1491 	{
1492 	  reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
1493 	  return;
1494 	}
1495       break;
1496 
1497     case USE:
1498       /* If this is the USE of a return value, we can't change it.  */
1499       if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1500 	{
1501 	  /* Mark the return register as used in an unknown fashion.  */
1502 	  rtx reg = XEXP (x, 0);
1503 	  unsigned int end_regno = END_REGNO (reg);
1504 	  for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
1505 	    reg_state[regno].use_index = -1;
1506 	  return;
1507 	}
1508       break;
1509 
1510     case CLOBBER:
1511       if (REG_P (SET_DEST (x)))
1512 	{
1513 	  /* No spurious CLOBBERs of pseudo registers may remain.  */
1514 	  gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1515 	  return;
1516 	}
1517       break;
1518 
1519     case PLUS:
1520       /* We are interested in (plus (reg) (const_int)) .  */
1521       if (!REG_P (XEXP (x, 0))
1522 	  || !CONST_INT_P (XEXP (x, 1)))
1523 	break;
1524       offset = XEXP (x, 1);
1525       x = XEXP (x, 0);
1526       /* Fall through.  */
1527     case REG:
1528       {
1529 	int regno = REGNO (x);
1530 	int use_index;
1531 	int nregs;
1532 
1533 	/* No spurious USEs of pseudo registers may remain.  */
1534 	gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1535 
1536 	nregs = REG_NREGS (x);
1537 
1538 	/* We can't substitute into multi-hard-reg uses.  */
1539 	if (nregs > 1)
1540 	  {
1541 	    while (--nregs >= 0)
1542 	      reg_state[regno + nregs].use_index = -1;
1543 	    return;
1544 	  }
1545 
1546 	/* We may be called to update uses in previously seen insns.
1547 	   Don't add uses beyond the last store we saw.  */
1548 	if (ruid < reg_state[regno].store_ruid)
1549 	  return;
1550 
1551 	/* If this register is already used in some unknown fashion, we
1552 	   can't do anything.
1553 	   If we decrement the index from zero to -1, we can't store more
1554 	   uses, so this register becomes used in an unknown fashion.  */
1555 	use_index = --reg_state[regno].use_index;
1556 	if (use_index < 0)
1557 	  return;
1558 
1559 	if (use_index == RELOAD_COMBINE_MAX_USES - 1)
1560 	  {
1561 	    /* This is the first use of this register we have seen since we
1562 	       marked it as dead.  */
1563 	    reg_state[regno].offset = offset;
1564 	    reg_state[regno].all_offsets_match = true;
1565 	    reg_state[regno].use_ruid = ruid;
1566 	  }
1567 	else
1568 	  {
1569 	    if (reg_state[regno].use_ruid > ruid)
1570 	      reg_state[regno].use_ruid = ruid;
1571 
1572 	    if (! rtx_equal_p (offset, reg_state[regno].offset))
1573 	      reg_state[regno].all_offsets_match = false;
1574 	  }
1575 
1576 	reg_state[regno].reg_use[use_index].insn = insn;
1577 	reg_state[regno].reg_use[use_index].ruid = ruid;
1578 	reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
1579 	reg_state[regno].reg_use[use_index].usep = xp;
1580 	return;
1581       }
1582 
1583     case MEM:
1584       containing_mem = x;
1585       break;
1586 
1587     default:
1588       break;
1589     }
1590 
1591   /* Recursively process the components of X.  */
1592   fmt = GET_RTX_FORMAT (code);
1593   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1594     {
1595       if (fmt[i] == 'e')
1596 	reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
1597       else if (fmt[i] == 'E')
1598 	{
1599 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1600 	    reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1601 				     containing_mem);
1602 	}
1603     }
1604 }
1605 
1606 /* See if we can reduce the cost of a constant by replacing a move
1607    with an add.  We track situations in which a register is set to a
1608    constant or to a register plus a constant.  */
1609 /* We cannot do our optimization across labels.  Invalidating all the
1610    information about register contents we have would be costly, so we
1611    use move2add_last_label_luid to note where the label is and then
1612    later disable any optimization that would cross it.
1613    reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1614    are only valid if reg_set_luid[n] is greater than
1615    move2add_last_label_luid.
1616    For a set that established a new (potential) base register with
1617    non-constant value, we use move2add_luid from the place where the
1618    setting insn is encountered; registers based off that base then
1619    get the same reg_set_luid.  Constants all get
1620    move2add_last_label_luid + 1 as their reg_set_luid.  */
1621 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1622 
1623 /* If reg_base_reg[n] is negative, register n has been set to
1624    reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
1625    If reg_base_reg[n] is non-negative, register n has been set to the
1626    sum of reg_offset[n] and the value of register reg_base_reg[n]
1627    before reg_set_luid[n], calculated in mode reg_mode[n] .
1628    For multi-hard-register registers, all but the first one are
1629    recorded as BLKmode in reg_mode.  Setting reg_mode to VOIDmode
1630    marks it as invalid.  */
1631 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1632 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1633 static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
1634 static machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1635 
1636 /* move2add_luid is linearly increased while scanning the instructions
1637    from first to last.  It is used to set reg_set_luid in
1638    reload_cse_move2add and move2add_note_store.  */
1639 static int move2add_luid;
1640 
1641 /* move2add_last_label_luid is set whenever a label is found.  Labels
1642    invalidate all previously collected reg_offset data.  */
1643 static int move2add_last_label_luid;
1644 
1645 /* ??? We don't know how zero / sign extension is handled, hence we
1646    can't go from a narrower to a wider mode.  */
1647 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1648   (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1649    || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1650        && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
1651 
1652 /* Record that REG is being set to a value with the mode of REG.  */
1653 
1654 static void
1655 move2add_record_mode (rtx reg)
1656 {
1657   int regno, nregs;
1658   machine_mode mode = GET_MODE (reg);
1659 
1660   if (GET_CODE (reg) == SUBREG)
1661     {
1662       regno = subreg_regno (reg);
1663       nregs = subreg_nregs (reg);
1664     }
1665   else if (REG_P (reg))
1666     {
1667       regno = REGNO (reg);
1668       nregs = REG_NREGS (reg);
1669     }
1670   else
1671     gcc_unreachable ();
1672   for (int i = nregs - 1; i > 0; i--)
1673     reg_mode[regno + i] = BLKmode;
1674   reg_mode[regno] = mode;
1675 }
1676 
1677 /* Record that REG is being set to the sum of SYM and OFF.  */
1678 
1679 static void
1680 move2add_record_sym_value (rtx reg, rtx sym, rtx off)
1681 {
1682   int regno = REGNO (reg);
1683 
1684   move2add_record_mode (reg);
1685   reg_set_luid[regno] = move2add_luid;
1686   reg_base_reg[regno] = -1;
1687   reg_symbol_ref[regno] = sym;
1688   reg_offset[regno] = INTVAL (off);
1689 }
1690 
1691 /* Check if REGNO contains a valid value in MODE.  */
1692 
1693 static bool
1694 move2add_valid_value_p (int regno, scalar_int_mode mode)
1695 {
1696   if (reg_set_luid[regno] <= move2add_last_label_luid)
1697     return false;
1698 
1699   if (mode != reg_mode[regno])
1700     {
1701       scalar_int_mode old_mode;
1702       if (!is_a <scalar_int_mode> (reg_mode[regno], &old_mode)
1703 	  || !MODES_OK_FOR_MOVE2ADD (mode, old_mode))
1704 	return false;
1705       /* The value loaded into regno in reg_mode[regno] is also valid in
1706 	 mode after truncation only if (REG:mode regno) is the lowpart of
1707 	 (REG:reg_mode[regno] regno).  Now, for big endian, the starting
1708 	 regno of the lowpart might be different.  */
1709       poly_int64 s_off = subreg_lowpart_offset (mode, old_mode);
1710       s_off = subreg_regno_offset (regno, old_mode, s_off, mode);
1711       if (maybe_ne (s_off, 0))
1712 	/* We could in principle adjust regno, check reg_mode[regno] to be
1713 	   BLKmode, and return s_off to the caller (vs. -1 for failure),
1714 	   but we currently have no callers that could make use of this
1715 	   information.  */
1716 	return false;
1717     }
1718 
1719   for (int i = end_hard_regno (mode, regno) - 1; i > regno; i--)
1720     if (reg_mode[i] != BLKmode)
1721       return false;
1722   return true;
1723 }
1724 
1725 /* This function is called with INSN that sets REG (of mode MODE)
1726    to (SYM + OFF), while REG is known to already have value (SYM + offset).
1727    This function tries to change INSN into an add instruction
1728    (set (REG) (plus (REG) (OFF - offset))) using the known value.
1729    It also updates the information about REG's known value.
1730    Return true if we made a change.  */
1731 
1732 static bool
1733 move2add_use_add2_insn (scalar_int_mode mode, rtx reg, rtx sym, rtx off,
1734 			rtx_insn *insn)
1735 {
1736   rtx pat = PATTERN (insn);
1737   rtx src = SET_SRC (pat);
1738   int regno = REGNO (reg);
1739   rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno], mode);
1740   bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1741   bool changed = false;
1742 
1743   /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1744      use (set (reg) (reg)) instead.
1745      We don't delete this insn, nor do we convert it into a
1746      note, to avoid losing register notes or the return
1747      value flag.  jump2 already knows how to get rid of
1748      no-op moves.  */
1749   if (new_src == const0_rtx)
1750     {
1751       /* If the constants are different, this is a
1752 	 truncation, that, if turned into (set (reg)
1753 	 (reg)), would be discarded.  Maybe we should
1754 	 try a truncMN pattern?  */
1755       if (INTVAL (off) == reg_offset [regno])
1756 	changed = validate_change (insn, &SET_SRC (pat), reg, 0);
1757     }
1758   else
1759     {
1760       struct full_rtx_costs oldcst, newcst;
1761       rtx tem = gen_rtx_PLUS (mode, reg, new_src);
1762 
1763       get_full_set_rtx_cost (pat, &oldcst);
1764       SET_SRC (pat) = tem;
1765       get_full_set_rtx_cost (pat, &newcst);
1766       SET_SRC (pat) = src;
1767 
1768       if (costs_lt_p (&newcst, &oldcst, speed)
1769 	  && have_add2_insn (reg, new_src))
1770 	changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1771       else if (sym == NULL_RTX && mode != BImode)
1772 	{
1773 	  scalar_int_mode narrow_mode;
1774 	  FOR_EACH_MODE_UNTIL (narrow_mode, mode)
1775 	    {
1776 	      if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1777 		  && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1778 		      == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1779 		{
1780 		  rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
1781 		  rtx narrow_src = gen_int_mode (INTVAL (off),
1782 						 narrow_mode);
1783 		  rtx new_set
1784 		    = gen_rtx_SET (gen_rtx_STRICT_LOW_PART (VOIDmode,
1785 							    narrow_reg),
1786 				   narrow_src);
1787 		  get_full_set_rtx_cost (new_set, &newcst);
1788 		  if (costs_lt_p (&newcst, &oldcst, speed))
1789 		    {
1790 		      changed = validate_change (insn, &PATTERN (insn),
1791 						 new_set, 0);
1792 		      if (changed)
1793 			break;
1794 		    }
1795 		}
1796 	    }
1797 	}
1798     }
1799   move2add_record_sym_value (reg, sym, off);
1800   return changed;
1801 }
1802 
1803 
1804 /* This function is called with INSN that sets REG (of mode MODE) to
1805    (SYM + OFF), but REG doesn't have known value (SYM + offset).  This
1806    function tries to find another register which is known to already have
1807    value (SYM + offset) and change INSN into an add instruction
1808    (set (REG) (plus (the found register) (OFF - offset))) if such
1809    a register is found.  It also updates the information about
1810    REG's known value.
1811    Return true iff we made a change.  */
1812 
1813 static bool
1814 move2add_use_add3_insn (scalar_int_mode mode, rtx reg, rtx sym, rtx off,
1815 			rtx_insn *insn)
1816 {
1817   rtx pat = PATTERN (insn);
1818   rtx src = SET_SRC (pat);
1819   int regno = REGNO (reg);
1820   int min_regno = 0;
1821   bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1822   int i;
1823   bool changed = false;
1824   struct full_rtx_costs oldcst, newcst, mincst;
1825   rtx plus_expr;
1826 
1827   init_costs_to_max (&mincst);
1828   get_full_set_rtx_cost (pat, &oldcst);
1829 
1830   plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1831   SET_SRC (pat) = plus_expr;
1832 
1833   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1834     if (move2add_valid_value_p (i, mode)
1835 	&& reg_base_reg[i] < 0
1836 	&& reg_symbol_ref[i] != NULL_RTX
1837 	&& rtx_equal_p (sym, reg_symbol_ref[i]))
1838       {
1839 	rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
1840 				    GET_MODE (reg));
1841 	/* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1842 	   use (set (reg) (reg)) instead.
1843 	   We don't delete this insn, nor do we convert it into a
1844 	   note, to avoid losing register notes or the return
1845 	   value flag.  jump2 already knows how to get rid of
1846 	   no-op moves.  */
1847 	if (new_src == const0_rtx)
1848 	  {
1849 	    init_costs_to_zero (&mincst);
1850 	    min_regno = i;
1851 	    break;
1852 	  }
1853 	else
1854 	  {
1855 	    XEXP (plus_expr, 1) = new_src;
1856 	    get_full_set_rtx_cost (pat, &newcst);
1857 
1858 	    if (costs_lt_p (&newcst, &mincst, speed))
1859 	      {
1860 		mincst = newcst;
1861 		min_regno = i;
1862 	      }
1863 	  }
1864       }
1865   SET_SRC (pat) = src;
1866 
1867   if (costs_lt_p (&mincst, &oldcst, speed))
1868     {
1869       rtx tem;
1870 
1871       tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1872       if (i != min_regno)
1873 	{
1874 	  rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
1875 				      GET_MODE (reg));
1876 	  tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1877 	}
1878       if (validate_change (insn, &SET_SRC (pat), tem, 0))
1879 	changed = true;
1880     }
1881   reg_set_luid[regno] = move2add_luid;
1882   move2add_record_sym_value (reg, sym, off);
1883   return changed;
1884 }
1885 
1886 /* Convert move insns with constant inputs to additions if they are cheaper.
1887    Return true if any changes were made.  */
1888 static bool
1889 reload_cse_move2add (rtx_insn *first)
1890 {
1891   int i;
1892   rtx_insn *insn;
1893   bool changed = false;
1894 
1895   for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1896     {
1897       reg_set_luid[i] = 0;
1898       reg_offset[i] = 0;
1899       reg_base_reg[i] = 0;
1900       reg_symbol_ref[i] = NULL_RTX;
1901       reg_mode[i] = VOIDmode;
1902     }
1903 
1904   move2add_last_label_luid = 0;
1905   move2add_luid = 2;
1906   for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1907     {
1908       rtx pat, note;
1909 
1910       if (LABEL_P (insn))
1911 	{
1912 	  move2add_last_label_luid = move2add_luid;
1913 	  /* We're going to increment move2add_luid twice after a
1914 	     label, so that we can use move2add_last_label_luid + 1 as
1915 	     the luid for constants.  */
1916 	  move2add_luid++;
1917 	  continue;
1918 	}
1919       if (! INSN_P (insn))
1920 	continue;
1921       pat = PATTERN (insn);
1922       /* For simplicity, we only perform this optimization on
1923 	 straightforward SETs.  */
1924       scalar_int_mode mode;
1925       if (GET_CODE (pat) == SET
1926 	  && REG_P (SET_DEST (pat))
1927 	  && is_a <scalar_int_mode> (GET_MODE (SET_DEST (pat)), &mode))
1928 	{
1929 	  rtx reg = SET_DEST (pat);
1930 	  int regno = REGNO (reg);
1931 	  rtx src = SET_SRC (pat);
1932 
1933 	  /* Check if we have valid information on the contents of this
1934 	     register in the mode of REG.  */
1935 	  if (move2add_valid_value_p (regno, mode)
1936               && dbg_cnt (cse2_move2add))
1937 	    {
1938 	      /* Try to transform (set (REGX) (CONST_INT A))
1939 				  ...
1940 				  (set (REGX) (CONST_INT B))
1941 		 to
1942 				  (set (REGX) (CONST_INT A))
1943 				  ...
1944 				  (set (REGX) (plus (REGX) (CONST_INT B-A)))
1945 		 or
1946 				  (set (REGX) (CONST_INT A))
1947 				  ...
1948 				  (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1949 	      */
1950 
1951 	      if (CONST_INT_P (src)
1952 		  && reg_base_reg[regno] < 0
1953 		  && reg_symbol_ref[regno] == NULL_RTX)
1954 		{
1955 		  changed |= move2add_use_add2_insn (mode, reg, NULL_RTX,
1956 						     src, insn);
1957 		  continue;
1958 		}
1959 
1960 	      /* Try to transform (set (REGX) (REGY))
1961 				  (set (REGX) (PLUS (REGX) (CONST_INT A)))
1962 				  ...
1963 				  (set (REGX) (REGY))
1964 				  (set (REGX) (PLUS (REGX) (CONST_INT B)))
1965 		 to
1966 				  (set (REGX) (REGY))
1967 				  (set (REGX) (PLUS (REGX) (CONST_INT A)))
1968 				  ...
1969 				  (set (REGX) (plus (REGX) (CONST_INT B-A)))  */
1970 	      else if (REG_P (src)
1971 		       && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1972 		       && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1973 		       && move2add_valid_value_p (REGNO (src), mode))
1974 		{
1975 		  rtx_insn *next = next_nonnote_nondebug_insn (insn);
1976 		  rtx set = NULL_RTX;
1977 		  if (next)
1978 		    set = single_set (next);
1979 		  if (set
1980 		      && SET_DEST (set) == reg
1981 		      && GET_CODE (SET_SRC (set)) == PLUS
1982 		      && XEXP (SET_SRC (set), 0) == reg
1983 		      && CONST_INT_P (XEXP (SET_SRC (set), 1)))
1984 		    {
1985 		      rtx src3 = XEXP (SET_SRC (set), 1);
1986 		      unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
1987 		      HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
1988 		      HOST_WIDE_INT regno_offset = reg_offset[regno];
1989 		      rtx new_src =
1990 			gen_int_mode (added_offset
1991 				      + base_offset
1992 				      - regno_offset,
1993 				      mode);
1994 		      bool success = false;
1995 		      bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1996 
1997 		      if (new_src == const0_rtx)
1998 			/* See above why we create (set (reg) (reg)) here.  */
1999 			success
2000 			  = validate_change (next, &SET_SRC (set), reg, 0);
2001 		      else
2002 			{
2003 			  rtx old_src = SET_SRC (set);
2004 			  struct full_rtx_costs oldcst, newcst;
2005 			  rtx tem = gen_rtx_PLUS (mode, reg, new_src);
2006 
2007 			  get_full_set_rtx_cost (set, &oldcst);
2008 			  SET_SRC (set) = tem;
2009 			  get_full_set_src_cost (tem, mode, &newcst);
2010 			  SET_SRC (set) = old_src;
2011 			  costs_add_n_insns (&oldcst, 1);
2012 
2013 			  if (costs_lt_p (&newcst, &oldcst, speed)
2014 			      && have_add2_insn (reg, new_src))
2015 			    {
2016 			      rtx newpat = gen_rtx_SET (reg, tem);
2017 			      success
2018 				= validate_change (next, &PATTERN (next),
2019 						   newpat, 0);
2020 			    }
2021 			}
2022 		      if (success)
2023 			delete_insn (insn);
2024 		      changed |= success;
2025 		      insn = next;
2026 		      move2add_record_mode (reg);
2027 		      reg_offset[regno]
2028 			= trunc_int_for_mode (added_offset + base_offset,
2029 					      mode);
2030 		      continue;
2031 		    }
2032 		}
2033 	    }
2034 
2035 	  /* Try to transform
2036 	     (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2037 	     ...
2038 	     (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
2039 	     to
2040 	     (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2041 	     ...
2042 	     (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A))))  */
2043 	  if ((GET_CODE (src) == SYMBOL_REF
2044 	       || (GET_CODE (src) == CONST
2045 		   && GET_CODE (XEXP (src, 0)) == PLUS
2046 		   && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
2047 		   && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
2048 	      && dbg_cnt (cse2_move2add))
2049 	    {
2050 	      rtx sym, off;
2051 
2052 	      if (GET_CODE (src) == SYMBOL_REF)
2053 		{
2054 		  sym = src;
2055 		  off = const0_rtx;
2056 		}
2057 	      else
2058 		{
2059 		  sym = XEXP (XEXP (src, 0), 0);
2060 		  off = XEXP (XEXP (src, 0), 1);
2061 		}
2062 
2063 	      /* If the reg already contains the value which is sum of
2064 		 sym and some constant value, we can use an add2 insn.  */
2065 	      if (move2add_valid_value_p (regno, mode)
2066 		  && reg_base_reg[regno] < 0
2067 		  && reg_symbol_ref[regno] != NULL_RTX
2068 		  && rtx_equal_p (sym, reg_symbol_ref[regno]))
2069 		changed |= move2add_use_add2_insn (mode, reg, sym, off, insn);
2070 
2071 	      /* Otherwise, we have to find a register whose value is sum
2072 		 of sym and some constant value.  */
2073 	      else
2074 		changed |= move2add_use_add3_insn (mode, reg, sym, off, insn);
2075 
2076 	      continue;
2077 	    }
2078 	}
2079 
2080       for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2081 	{
2082 	  if (REG_NOTE_KIND (note) == REG_INC
2083 	      && REG_P (XEXP (note, 0)))
2084 	    {
2085 	      /* Reset the information about this register.  */
2086 	      int regno = REGNO (XEXP (note, 0));
2087 	      if (regno < FIRST_PSEUDO_REGISTER)
2088 		{
2089 		  move2add_record_mode (XEXP (note, 0));
2090 		  reg_mode[regno] = VOIDmode;
2091 		}
2092 	    }
2093 	}
2094       note_stores (PATTERN (insn), move2add_note_store, insn);
2095 
2096       /* If INSN is a conditional branch, we try to extract an
2097 	 implicit set out of it.  */
2098       if (any_condjump_p (insn))
2099 	{
2100 	  rtx cnd = fis_get_condition (insn);
2101 
2102 	  if (cnd != NULL_RTX
2103 	      && GET_CODE (cnd) == NE
2104 	      && REG_P (XEXP (cnd, 0))
2105 	      && !reg_set_p (XEXP (cnd, 0), insn)
2106 	      /* The following two checks, which are also in
2107 		 move2add_note_store, are intended to reduce the
2108 		 number of calls to gen_rtx_SET to avoid memory
2109 		 allocation if possible.  */
2110 	      && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
2111 	      && REG_NREGS (XEXP (cnd, 0)) == 1
2112 	      && CONST_INT_P (XEXP (cnd, 1)))
2113 	    {
2114 	      rtx implicit_set =
2115 		gen_rtx_SET (XEXP (cnd, 0), XEXP (cnd, 1));
2116 	      move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
2117 	    }
2118 	}
2119 
2120       /* If this is a CALL_INSN, all call used registers are stored with
2121 	 unknown values.  */
2122       if (CALL_P (insn))
2123 	{
2124 	  rtx link;
2125 
2126 	  for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2127 	    {
2128 	      if (call_used_regs[i])
2129 		/* Reset the information about this register.  */
2130 		reg_mode[i] = VOIDmode;
2131 	    }
2132 
2133 	  for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
2134 	       link = XEXP (link, 1))
2135 	    {
2136 	      rtx setuse = XEXP (link, 0);
2137 	      rtx usage_rtx = XEXP (setuse, 0);
2138 	      if (GET_CODE (setuse) == CLOBBER
2139 		  && REG_P (usage_rtx))
2140 	        {
2141 		  unsigned int end_regno = END_REGNO (usage_rtx);
2142 		  for (unsigned int r = REGNO (usage_rtx); r < end_regno; ++r)
2143 		    /* Reset the information about this register.  */
2144 		    reg_mode[r] = VOIDmode;
2145 		}
2146 	    }
2147 	}
2148     }
2149   return changed;
2150 }
2151 
2152 /* SET is a SET or CLOBBER that sets DST.  DATA is the insn which
2153    contains SET.
2154    Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2155    Called from reload_cse_move2add via note_stores.  */
2156 
2157 static void
2158 move2add_note_store (rtx dst, const_rtx set, void *data)
2159 {
2160   rtx_insn *insn = (rtx_insn *) data;
2161   unsigned int regno = 0;
2162   scalar_int_mode mode;
2163 
2164   /* Some targets do argument pushes without adding REG_INC notes.  */
2165 
2166   if (MEM_P (dst))
2167     {
2168       dst = XEXP (dst, 0);
2169       if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
2170 	  || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
2171 	reg_mode[REGNO (XEXP (dst, 0))] = VOIDmode;
2172       return;
2173     }
2174 
2175   if (GET_CODE (dst) == SUBREG)
2176     regno = subreg_regno (dst);
2177   else if (REG_P (dst))
2178     regno = REGNO (dst);
2179   else
2180     return;
2181 
2182   if (!is_a <scalar_int_mode> (GET_MODE (dst), &mode))
2183     goto invalidate;
2184 
2185   if (GET_CODE (set) == SET)
2186     {
2187       rtx note, sym = NULL_RTX;
2188       rtx off;
2189 
2190       note = find_reg_equal_equiv_note (insn);
2191       if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2192 	{
2193 	  sym = XEXP (note, 0);
2194 	  off = const0_rtx;
2195 	}
2196       else if (note && GET_CODE (XEXP (note, 0)) == CONST
2197 	       && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2198 	       && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2199 	       && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2200 	{
2201 	  sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
2202 	  off = XEXP (XEXP (XEXP (note, 0), 0), 1);
2203 	}
2204 
2205       if (sym != NULL_RTX)
2206 	{
2207 	  move2add_record_sym_value (dst, sym, off);
2208 	  return;
2209 	}
2210     }
2211 
2212   if (GET_CODE (set) == SET
2213       && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2214       && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2215     {
2216       rtx src = SET_SRC (set);
2217       rtx base_reg;
2218       unsigned HOST_WIDE_INT offset;
2219       int base_regno;
2220 
2221       switch (GET_CODE (src))
2222 	{
2223 	case PLUS:
2224 	  if (REG_P (XEXP (src, 0)))
2225 	    {
2226 	      base_reg = XEXP (src, 0);
2227 
2228 	      if (CONST_INT_P (XEXP (src, 1)))
2229 		offset = UINTVAL (XEXP (src, 1));
2230 	      else if (REG_P (XEXP (src, 1))
2231 		       && move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
2232 		{
2233 		  if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2234 		      && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
2235 		    offset = reg_offset[REGNO (XEXP (src, 1))];
2236 		  /* Maybe the first register is known to be a
2237 		     constant.  */
2238 		  else if (move2add_valid_value_p (REGNO (base_reg), mode)
2239 			   && reg_base_reg[REGNO (base_reg)] < 0
2240 			   && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
2241 		    {
2242 		      offset = reg_offset[REGNO (base_reg)];
2243 		      base_reg = XEXP (src, 1);
2244 		    }
2245 		  else
2246 		    goto invalidate;
2247 		}
2248 	      else
2249 		goto invalidate;
2250 
2251 	      break;
2252 	    }
2253 
2254 	  goto invalidate;
2255 
2256 	case REG:
2257 	  base_reg = src;
2258 	  offset = 0;
2259 	  break;
2260 
2261 	case CONST_INT:
2262 	  /* Start tracking the register as a constant.  */
2263 	  reg_base_reg[regno] = -1;
2264 	  reg_symbol_ref[regno] = NULL_RTX;
2265 	  reg_offset[regno] = INTVAL (SET_SRC (set));
2266 	  /* We assign the same luid to all registers set to constants.  */
2267 	  reg_set_luid[regno] = move2add_last_label_luid + 1;
2268 	  move2add_record_mode (dst);
2269 	  return;
2270 
2271 	default:
2272 	  goto invalidate;
2273 	}
2274 
2275       base_regno = REGNO (base_reg);
2276       /* If information about the base register is not valid, set it
2277 	 up as a new base register, pretending its value is known
2278 	 starting from the current insn.  */
2279       if (!move2add_valid_value_p (base_regno, mode))
2280 	{
2281 	  reg_base_reg[base_regno] = base_regno;
2282 	  reg_symbol_ref[base_regno] = NULL_RTX;
2283 	  reg_offset[base_regno] = 0;
2284 	  reg_set_luid[base_regno] = move2add_luid;
2285 	  gcc_assert (GET_MODE (base_reg) == mode);
2286 	  move2add_record_mode (base_reg);
2287 	}
2288 
2289       /* Copy base information from our base register.  */
2290       reg_set_luid[regno] = reg_set_luid[base_regno];
2291       reg_base_reg[regno] = reg_base_reg[base_regno];
2292       reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
2293 
2294       /* Compute the sum of the offsets or constants.  */
2295       reg_offset[regno]
2296 	= trunc_int_for_mode (offset + reg_offset[base_regno], mode);
2297 
2298       move2add_record_mode (dst);
2299     }
2300   else
2301     {
2302     invalidate:
2303       /* Invalidate the contents of the register.  */
2304       move2add_record_mode (dst);
2305       reg_mode[regno] = VOIDmode;
2306     }
2307 }
2308 
2309 namespace {
2310 
2311 const pass_data pass_data_postreload_cse =
2312 {
2313   RTL_PASS, /* type */
2314   "postreload", /* name */
2315   OPTGROUP_NONE, /* optinfo_flags */
2316   TV_RELOAD_CSE_REGS, /* tv_id */
2317   0, /* properties_required */
2318   0, /* properties_provided */
2319   0, /* properties_destroyed */
2320   0, /* todo_flags_start */
2321   TODO_df_finish, /* todo_flags_finish */
2322 };
2323 
2324 class pass_postreload_cse : public rtl_opt_pass
2325 {
2326 public:
2327   pass_postreload_cse (gcc::context *ctxt)
2328     : rtl_opt_pass (pass_data_postreload_cse, ctxt)
2329   {}
2330 
2331   /* opt_pass methods: */
2332   virtual bool gate (function *) { return (optimize > 0 && reload_completed); }
2333 
2334   virtual unsigned int execute (function *);
2335 
2336 }; // class pass_postreload_cse
2337 
2338 unsigned int
2339 pass_postreload_cse::execute (function *fun)
2340 {
2341   if (!dbg_cnt (postreload_cse))
2342     return 0;
2343 
2344   /* Do a very simple CSE pass over just the hard registers.  */
2345   reload_cse_regs (get_insns ());
2346   /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2347      Remove any EH edges associated with them.  */
2348   if (fun->can_throw_non_call_exceptions
2349       && purge_all_dead_edges ())
2350     cleanup_cfg (0);
2351 
2352   return 0;
2353 }
2354 
2355 } // anon namespace
2356 
2357 rtl_opt_pass *
2358 make_pass_postreload_cse (gcc::context *ctxt)
2359 {
2360   return new pass_postreload_cse (ctxt);
2361 }
2362