1 /* Instruction scheduling pass.  Selective scheduler and pipeliner.
2    Copyright (C) 2006-2018 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "cfghooks.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "df.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "cfgrtl.h"
31 #include "cfganal.h"
32 #include "cfgbuild.h"
33 #include "insn-config.h"
34 #include "insn-attr.h"
35 #include "recog.h"
36 #include "params.h"
37 #include "target.h"
38 #include "sched-int.h"
39 #include "emit-rtl.h"  /* FIXME: Can go away once crtl is moved to rtl.h.  */
40 
41 #ifdef INSN_SCHEDULING
42 #include "regset.h"
43 #include "cfgloop.h"
44 #include "sel-sched-ir.h"
45 /* We don't have to use it except for sel_print_insn.  */
46 #include "sel-sched-dump.h"
47 
48 /* A vector holding bb info for whole scheduling pass.  */
49 vec<sel_global_bb_info_def> sel_global_bb_info;
50 
51 /* A vector holding bb info.  */
52 vec<sel_region_bb_info_def> sel_region_bb_info;
53 
54 /* A pool for allocating all lists.  */
55 object_allocator<_list_node> sched_lists_pool ("sel-sched-lists");
56 
57 /* This contains information about successors for compute_av_set.  */
58 struct succs_info current_succs;
59 
60 /* Data structure to describe interaction with the generic scheduler utils.  */
61 static struct common_sched_info_def sel_common_sched_info;
62 
63 /* The loop nest being pipelined.  */
64 struct loop *current_loop_nest;
65 
66 /* LOOP_NESTS is a vector containing the corresponding loop nest for
67    each region.  */
68 static vec<loop_p> loop_nests;
69 
70 /* Saves blocks already in loop regions, indexed by bb->index.  */
71 static sbitmap bbs_in_loop_rgns = NULL;
72 
73 /* CFG hooks that are saved before changing create_basic_block hook.  */
74 static struct cfg_hooks orig_cfg_hooks;
75 
76 
77 /* Array containing reverse topological index of function basic blocks,
78    indexed by BB->INDEX.  */
79 static int *rev_top_order_index = NULL;
80 
81 /* Length of the above array.  */
82 static int rev_top_order_index_len = -1;
83 
84 /* A regset pool structure.  */
85 static struct
86 {
87   /* The stack to which regsets are returned.  */
88   regset *v;
89 
90   /* Its pointer.  */
91   int n;
92 
93   /* Its size.  */
94   int s;
95 
96   /* In VV we save all generated regsets so that, when destructing the
97      pool, we can compare it with V and check that every regset was returned
98      back to pool.  */
99   regset *vv;
100 
101   /* The pointer of VV stack.  */
102   int nn;
103 
104   /* Its size.  */
105   int ss;
106 
107   /* The difference between allocated and returned regsets.  */
108   int diff;
109 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
110 
111 /* This represents the nop pool.  */
112 static struct
113 {
114   /* The vector which holds previously emitted nops.  */
115   insn_t *v;
116 
117   /* Its pointer.  */
118   int n;
119 
120   /* Its size.  */
121   int s;
122 } nop_pool = { NULL, 0, 0 };
123 
124 /* The pool for basic block notes.  */
125 static vec<rtx_note *> bb_note_pool;
126 
127 /* A NOP pattern used to emit placeholder insns.  */
128 rtx nop_pattern = NULL_RTX;
129 /* A special instruction that resides in EXIT_BLOCK.
130    EXIT_INSN is successor of the insns that lead to EXIT_BLOCK.  */
131 rtx_insn *exit_insn = NULL;
132 
133 /* TRUE if while scheduling current region, which is loop, its preheader
134    was removed.  */
135 bool preheader_removed = false;
136 
137 
138 /* Forward static declarations.  */
139 static void fence_clear (fence_t);
140 
141 static void deps_init_id (idata_t, insn_t, bool);
142 static void init_id_from_df (idata_t, insn_t, bool);
143 static expr_t set_insn_init (expr_t, vinsn_t, int);
144 
145 static void cfg_preds (basic_block, insn_t **, int *);
146 static void prepare_insn_expr (insn_t, int);
147 static void free_history_vect (vec<expr_history_def> &);
148 
149 static void move_bb_info (basic_block, basic_block);
150 static void remove_empty_bb (basic_block, bool);
151 static void sel_merge_blocks (basic_block, basic_block);
152 static void sel_remove_loop_preheader (void);
153 static bool bb_has_removable_jump_to_p (basic_block, basic_block);
154 
155 static bool insn_is_the_only_one_in_bb_p (insn_t);
156 static void create_initial_data_sets (basic_block);
157 
158 static void free_av_set (basic_block);
159 static void invalidate_av_set (basic_block);
160 static void extend_insn_data (void);
161 static void sel_init_new_insn (insn_t, int, int = -1);
162 static void finish_insns (void);
163 
164 /* Various list functions.  */
165 
166 /* Copy an instruction list L.  */
167 ilist_t
168 ilist_copy (ilist_t l)
169 {
170   ilist_t head = NULL, *tailp = &head;
171 
172   while (l)
173     {
174       ilist_add (tailp, ILIST_INSN (l));
175       tailp = &ILIST_NEXT (*tailp);
176       l = ILIST_NEXT (l);
177     }
178 
179   return head;
180 }
181 
182 /* Invert an instruction list L.  */
183 ilist_t
184 ilist_invert (ilist_t l)
185 {
186   ilist_t res = NULL;
187 
188   while (l)
189     {
190       ilist_add (&res, ILIST_INSN (l));
191       l = ILIST_NEXT (l);
192     }
193 
194   return res;
195 }
196 
197 /* Add a new boundary to the LP list with parameters TO, PTR, and DC.  */
198 void
199 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
200 {
201   bnd_t bnd;
202 
203   _list_add (lp);
204   bnd = BLIST_BND (*lp);
205 
206   BND_TO (bnd) = to;
207   BND_PTR (bnd) = ptr;
208   BND_AV (bnd) = NULL;
209   BND_AV1 (bnd) = NULL;
210   BND_DC (bnd) = dc;
211 }
212 
213 /* Remove the list note pointed to by LP.  */
214 void
215 blist_remove (blist_t *lp)
216 {
217   bnd_t b = BLIST_BND (*lp);
218 
219   av_set_clear (&BND_AV (b));
220   av_set_clear (&BND_AV1 (b));
221   ilist_clear (&BND_PTR (b));
222 
223   _list_remove (lp);
224 }
225 
226 /* Init a fence tail L.  */
227 void
228 flist_tail_init (flist_tail_t l)
229 {
230   FLIST_TAIL_HEAD (l) = NULL;
231   FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
232 }
233 
234 /* Try to find fence corresponding to INSN in L.  */
235 fence_t
236 flist_lookup (flist_t l, insn_t insn)
237 {
238   while (l)
239     {
240       if (FENCE_INSN (FLIST_FENCE (l)) == insn)
241 	return FLIST_FENCE (l);
242 
243       l = FLIST_NEXT (l);
244     }
245 
246   return NULL;
247 }
248 
249 /* Init the fields of F before running fill_insns.  */
250 static void
251 init_fence_for_scheduling (fence_t f)
252 {
253   FENCE_BNDS (f) = NULL;
254   FENCE_PROCESSED_P (f) = false;
255   FENCE_SCHEDULED_P (f) = false;
256 }
257 
258 /* Add new fence consisting of INSN and STATE to the list pointed to by LP.  */
259 static void
260 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
261            insn_t last_scheduled_insn, vec<rtx_insn *, va_gc> *executing_insns,
262            int *ready_ticks, int ready_ticks_size, insn_t sched_next,
263            int cycle, int cycle_issued_insns, int issue_more,
264            bool starts_cycle_p, bool after_stall_p)
265 {
266   fence_t f;
267 
268   _list_add (lp);
269   f = FLIST_FENCE (*lp);
270 
271   FENCE_INSN (f) = insn;
272 
273   gcc_assert (state != NULL);
274   FENCE_STATE (f) = state;
275 
276   FENCE_CYCLE (f) = cycle;
277   FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
278   FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
279   FENCE_AFTER_STALL_P (f) = after_stall_p;
280 
281   gcc_assert (dc != NULL);
282   FENCE_DC (f) = dc;
283 
284   gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
285   FENCE_TC (f) = tc;
286 
287   FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
288   FENCE_ISSUE_MORE (f) = issue_more;
289   FENCE_EXECUTING_INSNS (f) = executing_insns;
290   FENCE_READY_TICKS (f) = ready_ticks;
291   FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
292   FENCE_SCHED_NEXT (f) = sched_next;
293 
294   init_fence_for_scheduling (f);
295 }
296 
297 /* Remove the head node of the list pointed to by LP.  */
298 static void
299 flist_remove (flist_t *lp)
300 {
301   if (FENCE_INSN (FLIST_FENCE (*lp)))
302     fence_clear (FLIST_FENCE (*lp));
303   _list_remove (lp);
304 }
305 
306 /* Clear the fence list pointed to by LP.  */
307 void
308 flist_clear (flist_t *lp)
309 {
310   while (*lp)
311     flist_remove (lp);
312 }
313 
314 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL.  */
315 void
316 def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
317 {
318   def_t d;
319 
320   _list_add (dl);
321   d = DEF_LIST_DEF (*dl);
322 
323   d->orig_insn = original_insn;
324   d->crosses_call = crosses_call;
325 }
326 
327 
328 /* Functions to work with target contexts.  */
329 
330 /* Bulk target context.  It is convenient for debugging purposes to ensure
331    that there are no uninitialized (null) target contexts.  */
332 static tc_t bulk_tc = (tc_t) 1;
333 
334 /* Target hooks wrappers.  In the future we can provide some default
335    implementations for them.  */
336 
337 /* Allocate a store for the target context.  */
338 static tc_t
339 alloc_target_context (void)
340 {
341   return (targetm.sched.alloc_sched_context
342 	  ? targetm.sched.alloc_sched_context () : bulk_tc);
343 }
344 
345 /* Init target context TC.
346    If CLEAN_P is true, then make TC as it is beginning of the scheduler.
347    Overwise, copy current backend context to TC.  */
348 static void
349 init_target_context (tc_t tc, bool clean_p)
350 {
351   if (targetm.sched.init_sched_context)
352     targetm.sched.init_sched_context (tc, clean_p);
353 }
354 
355 /* Allocate and initialize a target context.  Meaning of CLEAN_P is the same as
356    int init_target_context ().  */
357 tc_t
358 create_target_context (bool clean_p)
359 {
360   tc_t tc = alloc_target_context ();
361 
362   init_target_context (tc, clean_p);
363   return tc;
364 }
365 
366 /* Copy TC to the current backend context.  */
367 void
368 set_target_context (tc_t tc)
369 {
370   if (targetm.sched.set_sched_context)
371     targetm.sched.set_sched_context (tc);
372 }
373 
374 /* TC is about to be destroyed.  Free any internal data.  */
375 static void
376 clear_target_context (tc_t tc)
377 {
378   if (targetm.sched.clear_sched_context)
379     targetm.sched.clear_sched_context (tc);
380 }
381 
382 /*  Clear and free it.  */
383 static void
384 delete_target_context (tc_t tc)
385 {
386   clear_target_context (tc);
387 
388   if (targetm.sched.free_sched_context)
389     targetm.sched.free_sched_context (tc);
390 }
391 
392 /* Make a copy of FROM in TO.
393    NB: May be this should be a hook.  */
394 static void
395 copy_target_context (tc_t to, tc_t from)
396 {
397   tc_t tmp = create_target_context (false);
398 
399   set_target_context (from);
400   init_target_context (to, false);
401 
402   set_target_context (tmp);
403   delete_target_context (tmp);
404 }
405 
406 /* Create a copy of TC.  */
407 static tc_t
408 create_copy_of_target_context (tc_t tc)
409 {
410   tc_t copy = alloc_target_context ();
411 
412   copy_target_context (copy, tc);
413 
414   return copy;
415 }
416 
417 /* Clear TC and initialize it according to CLEAN_P.  The meaning of CLEAN_P
418    is the same as in init_target_context ().  */
419 void
420 reset_target_context (tc_t tc, bool clean_p)
421 {
422   clear_target_context (tc);
423   init_target_context (tc, clean_p);
424 }
425 
426 /* Functions to work with dependence contexts.
427    Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
428    context.  It accumulates information about processed insns to decide if
429    current insn is dependent on the processed ones.  */
430 
431 /* Make a copy of FROM in TO.  */
432 static void
433 copy_deps_context (deps_t to, deps_t from)
434 {
435   init_deps (to, false);
436   deps_join (to, from);
437 }
438 
439 /* Allocate store for dep context.  */
440 static deps_t
441 alloc_deps_context (void)
442 {
443   return XNEW (struct deps_desc);
444 }
445 
446 /* Allocate and initialize dep context.  */
447 static deps_t
448 create_deps_context (void)
449 {
450   deps_t dc = alloc_deps_context ();
451 
452   init_deps (dc, false);
453   return dc;
454 }
455 
456 /* Create a copy of FROM.  */
457 static deps_t
458 create_copy_of_deps_context (deps_t from)
459 {
460   deps_t to = alloc_deps_context ();
461 
462   copy_deps_context (to, from);
463   return to;
464 }
465 
466 /* Clean up internal data of DC.  */
467 static void
468 clear_deps_context (deps_t dc)
469 {
470   free_deps (dc);
471 }
472 
473 /* Clear and free DC.  */
474 static void
475 delete_deps_context (deps_t dc)
476 {
477   clear_deps_context (dc);
478   free (dc);
479 }
480 
481 /* Clear and init DC.  */
482 static void
483 reset_deps_context (deps_t dc)
484 {
485   clear_deps_context (dc);
486   init_deps (dc, false);
487 }
488 
489 /* This structure describes the dependence analysis hooks for advancing
490    dependence context.  */
491 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
492   {
493     NULL,
494 
495     NULL, /* start_insn */
496     NULL, /* finish_insn */
497     NULL, /* start_lhs */
498     NULL, /* finish_lhs */
499     NULL, /* start_rhs */
500     NULL, /* finish_rhs */
501     haifa_note_reg_set,
502     haifa_note_reg_clobber,
503     haifa_note_reg_use,
504     NULL, /* note_mem_dep */
505     NULL, /* note_dep */
506 
507     0, 0, 0
508   };
509 
510 /* Process INSN and add its impact on DC.  */
511 void
512 advance_deps_context (deps_t dc, insn_t insn)
513 {
514   sched_deps_info = &advance_deps_context_sched_deps_info;
515   deps_analyze_insn (dc, insn);
516 }
517 
518 
519 /* Functions to work with DFA states.  */
520 
521 /* Allocate store for a DFA state.  */
522 static state_t
523 state_alloc (void)
524 {
525   return xmalloc (dfa_state_size);
526 }
527 
528 /* Allocate and initialize DFA state.  */
529 static state_t
530 state_create (void)
531 {
532   state_t state = state_alloc ();
533 
534   state_reset (state);
535   advance_state (state);
536   return state;
537 }
538 
539 /* Free DFA state.  */
540 static void
541 state_free (state_t state)
542 {
543   free (state);
544 }
545 
546 /* Make a copy of FROM in TO.  */
547 static void
548 state_copy (state_t to, state_t from)
549 {
550   memcpy (to, from, dfa_state_size);
551 }
552 
553 /* Create a copy of FROM.  */
554 static state_t
555 state_create_copy (state_t from)
556 {
557   state_t to = state_alloc ();
558 
559   state_copy (to, from);
560   return to;
561 }
562 
563 
564 /* Functions to work with fences.  */
565 
566 /* Clear the fence.  */
567 static void
568 fence_clear (fence_t f)
569 {
570   state_t s = FENCE_STATE (f);
571   deps_t dc = FENCE_DC (f);
572   void *tc = FENCE_TC (f);
573 
574   ilist_clear (&FENCE_BNDS (f));
575 
576   gcc_assert ((s != NULL && dc != NULL && tc != NULL)
577 	      || (s == NULL && dc == NULL && tc == NULL));
578 
579   free (s);
580 
581   if (dc != NULL)
582     delete_deps_context (dc);
583 
584   if (tc != NULL)
585     delete_target_context (tc);
586   vec_free (FENCE_EXECUTING_INSNS (f));
587   free (FENCE_READY_TICKS (f));
588   FENCE_READY_TICKS (f) = NULL;
589 }
590 
591 /* Init a list of fences with successors of OLD_FENCE.  */
592 void
593 init_fences (insn_t old_fence)
594 {
595   insn_t succ;
596   succ_iterator si;
597   bool first = true;
598   int ready_ticks_size = get_max_uid () + 1;
599 
600   FOR_EACH_SUCC_1 (succ, si, old_fence,
601                    SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
602     {
603 
604       if (first)
605         first = false;
606       else
607         gcc_assert (flag_sel_sched_pipelining_outer_loops);
608 
609       flist_add (&fences, succ,
610 		 state_create (),
611 		 create_deps_context () /* dc */,
612 		 create_target_context (true) /* tc */,
613 		 NULL /* last_scheduled_insn */,
614                  NULL, /* executing_insns */
615                  XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
616                  ready_ticks_size,
617                  NULL /* sched_next */,
618 		 1 /* cycle */, 0 /* cycle_issued_insns */,
619 		 issue_rate, /* issue_more */
620 		 1 /* starts_cycle_p */, 0 /* after_stall_p */);
621     }
622 }
623 
624 /* Merges two fences (filling fields of fence F with resulting values) by
625    following rules: 1) state, target context and last scheduled insn are
626    propagated from fallthrough edge if it is available;
627    2) deps context and cycle is propagated from more probable edge;
628    3) all other fields are set to corresponding constant values.
629 
630    INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
631    READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
632    and AFTER_STALL_P are the corresponding fields of the second fence.  */
633 static void
634 merge_fences (fence_t f, insn_t insn,
635 	      state_t state, deps_t dc, void *tc,
636               rtx_insn *last_scheduled_insn,
637 	      vec<rtx_insn *, va_gc> *executing_insns,
638               int *ready_ticks, int ready_ticks_size,
639 	      rtx sched_next, int cycle, int issue_more, bool after_stall_p)
640 {
641   insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
642 
643   gcc_assert (sel_bb_head_p (FENCE_INSN (f))
644               && !sched_next && !FENCE_SCHED_NEXT (f));
645 
646   /* Check if we can decide which path fences came.
647      If we can't (or don't want to) - reset all.  */
648   if (last_scheduled_insn == NULL
649       || last_scheduled_insn_old == NULL
650       /* This is a case when INSN is reachable on several paths from
651          one insn (this can happen when pipelining of outer loops is on and
652          there are two edges: one going around of inner loop and the other -
653          right through it; in such case just reset everything).  */
654       || last_scheduled_insn == last_scheduled_insn_old)
655     {
656       state_reset (FENCE_STATE (f));
657       state_free (state);
658 
659       reset_deps_context (FENCE_DC (f));
660       delete_deps_context (dc);
661 
662       reset_target_context (FENCE_TC (f), true);
663       delete_target_context (tc);
664 
665       if (cycle > FENCE_CYCLE (f))
666         FENCE_CYCLE (f) = cycle;
667 
668       FENCE_LAST_SCHEDULED_INSN (f) = NULL;
669       FENCE_ISSUE_MORE (f) = issue_rate;
670       vec_free (executing_insns);
671       free (ready_ticks);
672       if (FENCE_EXECUTING_INSNS (f))
673         FENCE_EXECUTING_INSNS (f)->block_remove (0,
674 					  FENCE_EXECUTING_INSNS (f)->length ());
675       if (FENCE_READY_TICKS (f))
676         memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
677     }
678   else
679     {
680       edge edge_old = NULL, edge_new = NULL;
681       edge candidate;
682       succ_iterator si;
683       insn_t succ;
684 
685       /* Find fallthrough edge.  */
686       gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
687       candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
688 
689       if (!candidate
690           || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
691               && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
692         {
693           /* No fallthrough edge leading to basic block of INSN.  */
694           state_reset (FENCE_STATE (f));
695           state_free (state);
696 
697           reset_target_context (FENCE_TC (f), true);
698           delete_target_context (tc);
699 
700           FENCE_LAST_SCHEDULED_INSN (f) = NULL;
701 	  FENCE_ISSUE_MORE (f) = issue_rate;
702         }
703       else
704         if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
705           {
706             /* Would be weird if same insn is successor of several fallthrough
707                edges.  */
708             gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
709                         != BLOCK_FOR_INSN (last_scheduled_insn_old));
710 
711             state_free (FENCE_STATE (f));
712             FENCE_STATE (f) = state;
713 
714             delete_target_context (FENCE_TC (f));
715             FENCE_TC (f) = tc;
716 
717             FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
718 	    FENCE_ISSUE_MORE (f) = issue_more;
719           }
720         else
721           {
722             /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched.  */
723             state_free (state);
724             delete_target_context (tc);
725 
726             gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
727                         != BLOCK_FOR_INSN (last_scheduled_insn));
728           }
729 
730         /* Find edge of first predecessor (last_scheduled_insn_old->insn).  */
731         FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
732                          SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
733           {
734             if (succ == insn)
735               {
736                 /* No same successor allowed from several edges.  */
737                 gcc_assert (!edge_old);
738                 edge_old = si.e1;
739               }
740           }
741         /* Find edge of second predecessor (last_scheduled_insn->insn).  */
742         FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
743                          SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
744           {
745             if (succ == insn)
746               {
747                 /* No same successor allowed from several edges.  */
748                 gcc_assert (!edge_new);
749                 edge_new = si.e1;
750               }
751           }
752 
753         /* Check if we can choose most probable predecessor.  */
754         if (edge_old == NULL || edge_new == NULL)
755           {
756             reset_deps_context (FENCE_DC (f));
757             delete_deps_context (dc);
758             vec_free (executing_insns);
759             free (ready_ticks);
760 
761             FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
762             if (FENCE_EXECUTING_INSNS (f))
763               FENCE_EXECUTING_INSNS (f)->block_remove (0,
764                                 FENCE_EXECUTING_INSNS (f)->length ());
765             if (FENCE_READY_TICKS (f))
766               memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
767           }
768         else
769           if (edge_new->probability > edge_old->probability)
770             {
771               delete_deps_context (FENCE_DC (f));
772               FENCE_DC (f) = dc;
773               vec_free (FENCE_EXECUTING_INSNS (f));
774               FENCE_EXECUTING_INSNS (f) = executing_insns;
775               free (FENCE_READY_TICKS (f));
776               FENCE_READY_TICKS (f) = ready_ticks;
777               FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
778               FENCE_CYCLE (f) = cycle;
779             }
780           else
781             {
782               /* Leave DC and CYCLE untouched.  */
783               delete_deps_context (dc);
784               vec_free (executing_insns);
785               free (ready_ticks);
786             }
787     }
788 
789   /* Fill remaining invariant fields.  */
790   if (after_stall_p)
791     FENCE_AFTER_STALL_P (f) = 1;
792 
793   FENCE_ISSUED_INSNS (f) = 0;
794   FENCE_STARTS_CYCLE_P (f) = 1;
795   FENCE_SCHED_NEXT (f) = NULL;
796 }
797 
798 /* Add a new fence to NEW_FENCES list, initializing it from all
799    other parameters.  */
800 static void
801 add_to_fences (flist_tail_t new_fences, insn_t insn,
802                state_t state, deps_t dc, void *tc,
803 	       rtx_insn *last_scheduled_insn,
804                vec<rtx_insn *, va_gc> *executing_insns, int *ready_ticks,
805                int ready_ticks_size, rtx_insn *sched_next, int cycle,
806                int cycle_issued_insns, int issue_rate,
807 	       bool starts_cycle_p, bool after_stall_p)
808 {
809   fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
810 
811   if (! f)
812     {
813       flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
814 		 last_scheduled_insn, executing_insns, ready_ticks,
815                  ready_ticks_size, sched_next, cycle, cycle_issued_insns,
816 		 issue_rate, starts_cycle_p, after_stall_p);
817 
818       FLIST_TAIL_TAILP (new_fences)
819 	= &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
820     }
821   else
822     {
823       merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
824                     executing_insns, ready_ticks, ready_ticks_size,
825                     sched_next, cycle, issue_rate, after_stall_p);
826     }
827 }
828 
829 /* Move the first fence in the OLD_FENCES list to NEW_FENCES.  */
830 void
831 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
832 {
833   fence_t f, old;
834   flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
835 
836   old = FLIST_FENCE (old_fences);
837   f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
838                     FENCE_INSN (FLIST_FENCE (old_fences)));
839   if (f)
840     {
841       merge_fences (f, old->insn, old->state, old->dc, old->tc,
842                     old->last_scheduled_insn, old->executing_insns,
843                     old->ready_ticks, old->ready_ticks_size,
844                     old->sched_next, old->cycle, old->issue_more,
845                     old->after_stall_p);
846     }
847   else
848     {
849       _list_add (tailp);
850       FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
851       *FLIST_FENCE (*tailp) = *old;
852       init_fence_for_scheduling (FLIST_FENCE (*tailp));
853     }
854   FENCE_INSN (old) = NULL;
855 }
856 
857 /* Add a new fence to NEW_FENCES list and initialize most of its data
858    as a clean one.  */
859 void
860 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
861 {
862   int ready_ticks_size = get_max_uid () + 1;
863 
864   add_to_fences (new_fences,
865                  succ, state_create (), create_deps_context (),
866                  create_target_context (true),
867                  NULL, NULL,
868                  XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
869                  NULL, FENCE_CYCLE (fence) + 1,
870                  0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
871 }
872 
873 /* Add a new fence to NEW_FENCES list and initialize all of its data
874    from FENCE and SUCC.  */
875 void
876 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
877 {
878   int * new_ready_ticks
879     = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
880 
881   memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
882           FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
883   add_to_fences (new_fences,
884                  succ, state_create_copy (FENCE_STATE (fence)),
885                  create_copy_of_deps_context (FENCE_DC (fence)),
886                  create_copy_of_target_context (FENCE_TC (fence)),
887                  FENCE_LAST_SCHEDULED_INSN (fence),
888 		 vec_safe_copy (FENCE_EXECUTING_INSNS (fence)),
889                  new_ready_ticks,
890                  FENCE_READY_TICKS_SIZE (fence),
891                  FENCE_SCHED_NEXT (fence),
892                  FENCE_CYCLE (fence),
893                  FENCE_ISSUED_INSNS (fence),
894 		 FENCE_ISSUE_MORE (fence),
895                  FENCE_STARTS_CYCLE_P (fence),
896                  FENCE_AFTER_STALL_P (fence));
897 }
898 
899 
900 /* Functions to work with regset and nop pools.  */
901 
902 /* Returns the new regset from pool.  It might have some of the bits set
903    from the previous usage.  */
904 regset
905 get_regset_from_pool (void)
906 {
907   regset rs;
908 
909   if (regset_pool.n != 0)
910     rs = regset_pool.v[--regset_pool.n];
911   else
912     /* We need to create the regset.  */
913     {
914       rs = ALLOC_REG_SET (&reg_obstack);
915 
916       if (regset_pool.nn == regset_pool.ss)
917 	regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
918                                      (regset_pool.ss = 2 * regset_pool.ss + 1));
919       regset_pool.vv[regset_pool.nn++] = rs;
920     }
921 
922   regset_pool.diff++;
923 
924   return rs;
925 }
926 
927 /* Same as above, but returns the empty regset.  */
928 regset
929 get_clear_regset_from_pool (void)
930 {
931   regset rs = get_regset_from_pool ();
932 
933   CLEAR_REG_SET (rs);
934   return rs;
935 }
936 
937 /* Return regset RS to the pool for future use.  */
938 void
939 return_regset_to_pool (regset rs)
940 {
941   gcc_assert (rs);
942   regset_pool.diff--;
943 
944   if (regset_pool.n == regset_pool.s)
945     regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
946                                 (regset_pool.s = 2 * regset_pool.s + 1));
947   regset_pool.v[regset_pool.n++] = rs;
948 }
949 
950 /* This is used as a qsort callback for sorting regset pool stacks.
951    X and XX are addresses of two regsets.  They are never equal.  */
952 static int
953 cmp_v_in_regset_pool (const void *x, const void *xx)
954 {
955   uintptr_t r1 = (uintptr_t) *((const regset *) x);
956   uintptr_t r2 = (uintptr_t) *((const regset *) xx);
957   if (r1 > r2)
958     return 1;
959   else if (r1 < r2)
960     return -1;
961   gcc_unreachable ();
962 }
963 
964 /* Free the regset pool possibly checking for memory leaks.  */
965 void
966 free_regset_pool (void)
967 {
968   if (flag_checking)
969     {
970       regset *v = regset_pool.v;
971       int i = 0;
972       int n = regset_pool.n;
973 
974       regset *vv = regset_pool.vv;
975       int ii = 0;
976       int nn = regset_pool.nn;
977 
978       int diff = 0;
979 
980       gcc_assert (n <= nn);
981 
982       /* Sort both vectors so it will be possible to compare them.  */
983       qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
984       qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
985 
986       while (ii < nn)
987 	{
988 	  if (v[i] == vv[ii])
989 	    i++;
990 	  else
991 	    /* VV[II] was lost.  */
992 	    diff++;
993 
994 	  ii++;
995 	}
996 
997       gcc_assert (diff == regset_pool.diff);
998     }
999 
1000   /* If not true - we have a memory leak.  */
1001   gcc_assert (regset_pool.diff == 0);
1002 
1003   while (regset_pool.n)
1004     {
1005       --regset_pool.n;
1006       FREE_REG_SET (regset_pool.v[regset_pool.n]);
1007     }
1008 
1009   free (regset_pool.v);
1010   regset_pool.v = NULL;
1011   regset_pool.s = 0;
1012 
1013   free (regset_pool.vv);
1014   regset_pool.vv = NULL;
1015   regset_pool.nn = 0;
1016   regset_pool.ss = 0;
1017 
1018   regset_pool.diff = 0;
1019 }
1020 
1021 
1022 /* Functions to work with nop pools.  NOP insns are used as temporary
1023    placeholders of the insns being scheduled to allow correct update of
1024    the data sets.  When update is finished, NOPs are deleted.  */
1025 
1026 /* A vinsn that is used to represent a nop.  This vinsn is shared among all
1027    nops sel-sched generates.  */
1028 static vinsn_t nop_vinsn = NULL;
1029 
1030 /* Emit a nop before INSN, taking it from pool.  */
1031 insn_t
1032 get_nop_from_pool (insn_t insn)
1033 {
1034   rtx nop_pat;
1035   insn_t nop;
1036   bool old_p = nop_pool.n != 0;
1037   int flags;
1038 
1039   if (old_p)
1040     nop_pat = nop_pool.v[--nop_pool.n];
1041   else
1042     nop_pat = nop_pattern;
1043 
1044   nop = emit_insn_before (nop_pat, insn);
1045 
1046   if (old_p)
1047     flags = INSN_INIT_TODO_SSID;
1048   else
1049     flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1050 
1051   set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1052   sel_init_new_insn (nop, flags);
1053 
1054   return nop;
1055 }
1056 
1057 /* Remove NOP from the instruction stream and return it to the pool.  */
1058 void
1059 return_nop_to_pool (insn_t nop, bool full_tidying)
1060 {
1061   gcc_assert (INSN_IN_STREAM_P (nop));
1062   sel_remove_insn (nop, false, full_tidying);
1063 
1064   /* We'll recycle this nop.  */
1065   nop->set_undeleted ();
1066 
1067   if (nop_pool.n == nop_pool.s)
1068     nop_pool.v = XRESIZEVEC (rtx_insn *, nop_pool.v,
1069                              (nop_pool.s = 2 * nop_pool.s + 1));
1070   nop_pool.v[nop_pool.n++] = nop;
1071 }
1072 
1073 /* Free the nop pool.  */
1074 void
1075 free_nop_pool (void)
1076 {
1077   nop_pool.n = 0;
1078   nop_pool.s = 0;
1079   free (nop_pool.v);
1080   nop_pool.v = NULL;
1081 }
1082 
1083 
1084 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1085    The callback is given two rtxes XX and YY and writes the new rtxes
1086    to NX and NY in case some needs to be skipped.  */
1087 static int
1088 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1089 {
1090   const_rtx x = *xx;
1091   const_rtx y = *yy;
1092 
1093   if (GET_CODE (x) == UNSPEC
1094       && (targetm.sched.skip_rtx_p == NULL
1095           || targetm.sched.skip_rtx_p (x)))
1096     {
1097       *nx = XVECEXP (x, 0, 0);
1098       *ny = CONST_CAST_RTX (y);
1099       return 1;
1100     }
1101 
1102   if (GET_CODE (y) == UNSPEC
1103       && (targetm.sched.skip_rtx_p == NULL
1104           || targetm.sched.skip_rtx_p (y)))
1105     {
1106       *nx = CONST_CAST_RTX (x);
1107       *ny = XVECEXP (y, 0, 0);
1108       return 1;
1109     }
1110 
1111   return 0;
1112 }
1113 
1114 /* Callback, called from hash_rtx_cb.  Helps to hash UNSPEC rtx X in a correct way
1115    to support ia64 speculation.  When changes are needed, new rtx X and new mode
1116    NMODE are written, and the callback returns true.  */
1117 static int
1118 hash_with_unspec_callback (const_rtx x, machine_mode mode ATTRIBUTE_UNUSED,
1119                            rtx *nx, machine_mode* nmode)
1120 {
1121   if (GET_CODE (x) == UNSPEC
1122       && targetm.sched.skip_rtx_p
1123       && targetm.sched.skip_rtx_p (x))
1124     {
1125       *nx = XVECEXP (x, 0 ,0);
1126       *nmode = VOIDmode;
1127       return 1;
1128     }
1129 
1130   return 0;
1131 }
1132 
1133 /* Returns LHS and RHS are ok to be scheduled separately.  */
1134 static bool
1135 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1136 {
1137   if (lhs == NULL || rhs == NULL)
1138     return false;
1139 
1140   /* Do not schedule constants as rhs: no point to use reg, if const
1141      can be used.  Moreover, scheduling const as rhs may lead to mode
1142      mismatch cause consts don't have modes but they could be merged
1143      from branches where the same const used in different modes.  */
1144   if (CONSTANT_P (rhs))
1145     return false;
1146 
1147   /* ??? Do not rename predicate registers to avoid ICEs in bundling.  */
1148   if (COMPARISON_P (rhs))
1149       return false;
1150 
1151   /* Do not allow single REG to be an rhs.  */
1152   if (REG_P (rhs))
1153     return false;
1154 
1155   /* See comment at find_used_regs_1 (*1) for explanation of this
1156      restriction.  */
1157   /* FIXME: remove this later.  */
1158   if (MEM_P (lhs))
1159     return false;
1160 
1161   /* This will filter all tricky things like ZERO_EXTRACT etc.
1162      For now we don't handle it.  */
1163   if (!REG_P (lhs) && !MEM_P (lhs))
1164     return false;
1165 
1166   return true;
1167 }
1168 
1169 /* Initialize vinsn VI for INSN.  Only for use from vinsn_create ().  When
1170    FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable.  This is
1171    used e.g. for insns from recovery blocks.  */
1172 static void
1173 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1174 {
1175   hash_rtx_callback_function hrcf;
1176   int insn_class;
1177 
1178   VINSN_INSN_RTX (vi) = insn;
1179   VINSN_COUNT (vi) = 0;
1180   vi->cost = -1;
1181 
1182   if (INSN_NOP_P (insn))
1183     return;
1184 
1185   if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1186     init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1187   else
1188     deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1189 
1190   /* Hash vinsn depending on whether it is separable or not.  */
1191   hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1192   if (VINSN_SEPARABLE_P (vi))
1193     {
1194       rtx rhs = VINSN_RHS (vi);
1195 
1196       VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1197                                      NULL, NULL, false, hrcf);
1198       VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1199                                          VOIDmode, NULL, NULL,
1200                                          false, hrcf);
1201     }
1202   else
1203     {
1204       VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1205                                      NULL, NULL, false, hrcf);
1206       VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1207     }
1208 
1209   insn_class = haifa_classify_insn (insn);
1210   if (insn_class >= 2
1211       && (!targetm.sched.get_insn_spec_ds
1212           || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1213               == 0)))
1214     VINSN_MAY_TRAP_P (vi) = true;
1215   else
1216     VINSN_MAY_TRAP_P (vi) = false;
1217 }
1218 
1219 /* Indicate that VI has become the part of an rtx object.  */
1220 void
1221 vinsn_attach (vinsn_t vi)
1222 {
1223   /* Assert that VI is not pending for deletion.  */
1224   gcc_assert (VINSN_INSN_RTX (vi));
1225 
1226   VINSN_COUNT (vi)++;
1227 }
1228 
1229 /* Create and init VI from the INSN.  Use UNIQUE_P for determining the correct
1230    VINSN_TYPE (VI).  */
1231 static vinsn_t
1232 vinsn_create (insn_t insn, bool force_unique_p)
1233 {
1234   vinsn_t vi = XCNEW (struct vinsn_def);
1235 
1236   vinsn_init (vi, insn, force_unique_p);
1237   return vi;
1238 }
1239 
1240 /* Return a copy of VI.  When REATTACH_P is true, detach VI and attach
1241    the copy.  */
1242 vinsn_t
1243 vinsn_copy (vinsn_t vi, bool reattach_p)
1244 {
1245   rtx_insn *copy;
1246   bool unique = VINSN_UNIQUE_P (vi);
1247   vinsn_t new_vi;
1248 
1249   copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1250   new_vi = create_vinsn_from_insn_rtx (copy, unique);
1251   if (reattach_p)
1252     {
1253       vinsn_detach (vi);
1254       vinsn_attach (new_vi);
1255     }
1256 
1257   return new_vi;
1258 }
1259 
1260 /* Delete the VI vinsn and free its data.  */
1261 static void
1262 vinsn_delete (vinsn_t vi)
1263 {
1264   gcc_assert (VINSN_COUNT (vi) == 0);
1265 
1266   if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1267     {
1268       return_regset_to_pool (VINSN_REG_SETS (vi));
1269       return_regset_to_pool (VINSN_REG_USES (vi));
1270       return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1271     }
1272 
1273   free (vi);
1274 }
1275 
1276 /* Indicate that VI is no longer a part of some rtx object.
1277    Remove VI if it is no longer needed.  */
1278 void
1279 vinsn_detach (vinsn_t vi)
1280 {
1281   gcc_assert (VINSN_COUNT (vi) > 0);
1282 
1283   if (--VINSN_COUNT (vi) == 0)
1284     vinsn_delete (vi);
1285 }
1286 
1287 /* Returns TRUE if VI is a branch.  */
1288 bool
1289 vinsn_cond_branch_p (vinsn_t vi)
1290 {
1291   insn_t insn;
1292 
1293   if (!VINSN_UNIQUE_P (vi))
1294     return false;
1295 
1296   insn = VINSN_INSN_RTX (vi);
1297   if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1298     return false;
1299 
1300   return control_flow_insn_p (insn);
1301 }
1302 
1303 /* Return latency of INSN.  */
1304 static int
1305 sel_insn_rtx_cost (rtx_insn *insn)
1306 {
1307   int cost;
1308 
1309   /* A USE insn, or something else we don't need to
1310      understand.  We can't pass these directly to
1311      result_ready_cost or insn_default_latency because it will
1312      trigger a fatal error for unrecognizable insns.  */
1313   if (recog_memoized (insn) < 0)
1314     cost = 0;
1315   else
1316     {
1317       cost = insn_default_latency (insn);
1318 
1319       if (cost < 0)
1320 	cost = 0;
1321     }
1322 
1323   return cost;
1324 }
1325 
1326 /* Return the cost of the VI.
1327    !!! FIXME: Unify with haifa-sched.c: insn_sched_cost ().  */
1328 int
1329 sel_vinsn_cost (vinsn_t vi)
1330 {
1331   int cost = vi->cost;
1332 
1333   if (cost < 0)
1334     {
1335       cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1336       vi->cost = cost;
1337     }
1338 
1339   return cost;
1340 }
1341 
1342 
1343 /* Functions for insn emitting.  */
1344 
1345 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1346    EXPR and SEQNO.  */
1347 insn_t
1348 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1349 {
1350   insn_t new_insn;
1351 
1352   gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1353 
1354   new_insn = emit_insn_after (pattern, after);
1355   set_insn_init (expr, NULL, seqno);
1356   sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1357 
1358   return new_insn;
1359 }
1360 
1361 /* Force newly generated vinsns to be unique.  */
1362 static bool init_insn_force_unique_p = false;
1363 
1364 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1365    initialize its data from EXPR and SEQNO.  */
1366 insn_t
1367 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1368 				      insn_t after)
1369 {
1370   insn_t insn;
1371 
1372   gcc_assert (!init_insn_force_unique_p);
1373 
1374   init_insn_force_unique_p = true;
1375   insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1376   CANT_MOVE (insn) = 1;
1377   init_insn_force_unique_p = false;
1378 
1379   return insn;
1380 }
1381 
1382 /* Emit new insn after AFTER based on EXPR and SEQNO.  If VINSN is not NULL,
1383    take it as a new vinsn instead of EXPR's vinsn.
1384    We simplify insns later, after scheduling region in
1385    simplify_changed_insns.  */
1386 insn_t
1387 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1388                               insn_t after)
1389 {
1390   expr_t emit_expr;
1391   insn_t insn;
1392   int flags;
1393 
1394   emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1395                              seqno);
1396   insn = EXPR_INSN_RTX (emit_expr);
1397 
1398   /* The insn may come from the transformation cache, which may hold already
1399      deleted insns, so mark it as not deleted.  */
1400   insn->set_undeleted ();
1401 
1402   add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1403 
1404   flags = INSN_INIT_TODO_SSID;
1405   if (INSN_LUID (insn) == 0)
1406     flags |= INSN_INIT_TODO_LUID;
1407   sel_init_new_insn (insn, flags);
1408 
1409   return insn;
1410 }
1411 
1412 /* Move insn from EXPR after AFTER.  */
1413 insn_t
1414 sel_move_insn (expr_t expr, int seqno, insn_t after)
1415 {
1416   insn_t insn = EXPR_INSN_RTX (expr);
1417   basic_block bb = BLOCK_FOR_INSN (after);
1418   insn_t next = NEXT_INSN (after);
1419 
1420   /* Assert that in move_op we disconnected this insn properly.  */
1421   gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1422   SET_PREV_INSN (insn) = after;
1423   SET_NEXT_INSN (insn) = next;
1424 
1425   SET_NEXT_INSN (after) = insn;
1426   SET_PREV_INSN (next) = insn;
1427 
1428   /* Update links from insn to bb and vice versa.  */
1429   df_insn_change_bb (insn, bb);
1430   if (BB_END (bb) == after)
1431     BB_END (bb) = insn;
1432 
1433   prepare_insn_expr (insn, seqno);
1434   return insn;
1435 }
1436 
1437 
1438 /* Functions to work with right-hand sides.  */
1439 
1440 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1441    VECT and return true when found.  Use NEW_VINSN for comparison only when
1442    COMPARE_VINSNS is true.  Write to INDP the index on which
1443    the search has stopped, such that inserting the new element at INDP will
1444    retain VECT's sort order.  */
1445 static bool
1446 find_in_history_vect_1 (vec<expr_history_def> vect,
1447                         unsigned uid, vinsn_t new_vinsn,
1448                         bool compare_vinsns, int *indp)
1449 {
1450   expr_history_def *arr;
1451   int i, j, len = vect.length ();
1452 
1453   if (len == 0)
1454     {
1455       *indp = 0;
1456       return false;
1457     }
1458 
1459   arr = vect.address ();
1460   i = 0, j = len - 1;
1461 
1462   while (i <= j)
1463     {
1464       unsigned auid = arr[i].uid;
1465       vinsn_t avinsn = arr[i].new_expr_vinsn;
1466 
1467       if (auid == uid
1468           /* When undoing transformation on a bookkeeping copy, the new vinsn
1469              may not be exactly equal to the one that is saved in the vector.
1470              This is because the insn whose copy we're checking was possibly
1471              substituted itself.  */
1472           && (! compare_vinsns
1473               || vinsn_equal_p (avinsn, new_vinsn)))
1474         {
1475           *indp = i;
1476           return true;
1477         }
1478       else if (auid > uid)
1479         break;
1480       i++;
1481     }
1482 
1483   *indp = i;
1484   return false;
1485 }
1486 
1487 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT.  Return
1488    the position found or -1, if no such value is in vector.
1489    Search also for UIDs of insn's originators, if ORIGINATORS_P is true.  */
1490 int
1491 find_in_history_vect (vec<expr_history_def> vect, rtx insn,
1492                       vinsn_t new_vinsn, bool originators_p)
1493 {
1494   int ind;
1495 
1496   if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1497                               false, &ind))
1498     return ind;
1499 
1500   if (INSN_ORIGINATORS (insn) && originators_p)
1501     {
1502       unsigned uid;
1503       bitmap_iterator bi;
1504 
1505       EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1506         if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1507           return ind;
1508     }
1509 
1510   return -1;
1511 }
1512 
1513 /* Insert new element in a sorted history vector pointed to by PVECT,
1514    if it is not there already.  The element is searched using
1515    UID/NEW_EXPR_VINSN pair.  TYPE, OLD_EXPR_VINSN and SPEC_DS save
1516    the history of a transformation.  */
1517 void
1518 insert_in_history_vect (vec<expr_history_def> *pvect,
1519                         unsigned uid, enum local_trans_type type,
1520                         vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1521                         ds_t spec_ds)
1522 {
1523   vec<expr_history_def> vect = *pvect;
1524   expr_history_def temp;
1525   bool res;
1526   int ind;
1527 
1528   res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1529 
1530   if (res)
1531     {
1532       expr_history_def *phist = &vect[ind];
1533 
1534       /* It is possible that speculation types of expressions that were
1535          propagated through different paths will be different here.  In this
1536          case, merge the status to get the correct check later.  */
1537       if (phist->spec_ds != spec_ds)
1538         phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1539       return;
1540     }
1541 
1542   temp.uid = uid;
1543   temp.old_expr_vinsn = old_expr_vinsn;
1544   temp.new_expr_vinsn = new_expr_vinsn;
1545   temp.spec_ds = spec_ds;
1546   temp.type = type;
1547 
1548   vinsn_attach (old_expr_vinsn);
1549   vinsn_attach (new_expr_vinsn);
1550   vect.safe_insert (ind, temp);
1551   *pvect = vect;
1552 }
1553 
1554 /* Free history vector PVECT.  */
1555 static void
1556 free_history_vect (vec<expr_history_def> &pvect)
1557 {
1558   unsigned i;
1559   expr_history_def *phist;
1560 
1561   if (! pvect.exists ())
1562     return;
1563 
1564   for (i = 0; pvect.iterate (i, &phist); i++)
1565     {
1566       vinsn_detach (phist->old_expr_vinsn);
1567       vinsn_detach (phist->new_expr_vinsn);
1568     }
1569 
1570   pvect.release ();
1571 }
1572 
1573 /* Merge vector FROM to PVECT.  */
1574 static void
1575 merge_history_vect (vec<expr_history_def> *pvect,
1576 		    vec<expr_history_def> from)
1577 {
1578   expr_history_def *phist;
1579   int i;
1580 
1581   /* We keep this vector sorted.  */
1582   for (i = 0; from.iterate (i, &phist); i++)
1583     insert_in_history_vect (pvect, phist->uid, phist->type,
1584                             phist->old_expr_vinsn, phist->new_expr_vinsn,
1585                             phist->spec_ds);
1586 }
1587 
1588 /* Compare two vinsns as rhses if possible and as vinsns otherwise.  */
1589 bool
1590 vinsn_equal_p (vinsn_t x, vinsn_t y)
1591 {
1592   rtx_equal_p_callback_function repcf;
1593 
1594   if (x == y)
1595     return true;
1596 
1597   if (VINSN_TYPE (x) != VINSN_TYPE (y))
1598     return false;
1599 
1600   if (VINSN_HASH (x) != VINSN_HASH (y))
1601     return false;
1602 
1603   repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1604   if (VINSN_SEPARABLE_P (x))
1605     {
1606       /* Compare RHSes of VINSNs.  */
1607       gcc_assert (VINSN_RHS (x));
1608       gcc_assert (VINSN_RHS (y));
1609 
1610       return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1611     }
1612 
1613   return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1614 }
1615 
1616 
1617 /* Functions for working with expressions.  */
1618 
1619 /* Initialize EXPR.  */
1620 static void
1621 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1622 	   int sched_times, int orig_bb_index, ds_t spec_done_ds,
1623 	   ds_t spec_to_check_ds, int orig_sched_cycle,
1624 	   vec<expr_history_def> history,
1625 	   signed char target_available,
1626            bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1627            bool cant_move)
1628 {
1629   vinsn_attach (vi);
1630 
1631   EXPR_VINSN (expr) = vi;
1632   EXPR_SPEC (expr) = spec;
1633   EXPR_USEFULNESS (expr) = use;
1634   EXPR_PRIORITY (expr) = priority;
1635   EXPR_PRIORITY_ADJ (expr) = 0;
1636   EXPR_SCHED_TIMES (expr) = sched_times;
1637   EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1638   EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1639   EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1640   EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1641 
1642   if (history.exists ())
1643     EXPR_HISTORY_OF_CHANGES (expr) = history;
1644   else
1645     EXPR_HISTORY_OF_CHANGES (expr).create (0);
1646 
1647   EXPR_TARGET_AVAILABLE (expr) = target_available;
1648   EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1649   EXPR_WAS_RENAMED (expr) = was_renamed;
1650   EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1651   EXPR_CANT_MOVE (expr) = cant_move;
1652 }
1653 
1654 /* Make a copy of the expr FROM into the expr TO.  */
1655 void
1656 copy_expr (expr_t to, expr_t from)
1657 {
1658   vec<expr_history_def> temp = vNULL;
1659 
1660   if (EXPR_HISTORY_OF_CHANGES (from).exists ())
1661     {
1662       unsigned i;
1663       expr_history_def *phist;
1664 
1665       temp = EXPR_HISTORY_OF_CHANGES (from).copy ();
1666       for (i = 0;
1667            temp.iterate (i, &phist);
1668            i++)
1669         {
1670           vinsn_attach (phist->old_expr_vinsn);
1671           vinsn_attach (phist->new_expr_vinsn);
1672         }
1673     }
1674 
1675   init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1676              EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1677 	     EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1678 	     EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1679 	     EXPR_ORIG_SCHED_CYCLE (from), temp,
1680              EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1681              EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1682              EXPR_CANT_MOVE (from));
1683 }
1684 
1685 /* Same, but the final expr will not ever be in av sets, so don't copy
1686    "uninteresting" data such as bitmap cache.  */
1687 void
1688 copy_expr_onside (expr_t to, expr_t from)
1689 {
1690   init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1691 	     EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1692 	     EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0,
1693 	     vNULL,
1694 	     EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1695 	     EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1696              EXPR_CANT_MOVE (from));
1697 }
1698 
1699 /* Prepare the expr of INSN for scheduling.  Used when moving insn and when
1700    initializing new insns.  */
1701 static void
1702 prepare_insn_expr (insn_t insn, int seqno)
1703 {
1704   expr_t expr = INSN_EXPR (insn);
1705   ds_t ds;
1706 
1707   INSN_SEQNO (insn) = seqno;
1708   EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1709   EXPR_SPEC (expr) = 0;
1710   EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1711   EXPR_WAS_SUBSTITUTED (expr) = 0;
1712   EXPR_WAS_RENAMED (expr) = 0;
1713   EXPR_TARGET_AVAILABLE (expr) = 1;
1714   INSN_LIVE_VALID_P (insn) = false;
1715 
1716   /* ??? If this expression is speculative, make its dependence
1717      as weak as possible.  We can filter this expression later
1718      in process_spec_exprs, because we do not distinguish
1719      between the status we got during compute_av_set and the
1720      existing status.  To be fixed.  */
1721   ds = EXPR_SPEC_DONE_DS (expr);
1722   if (ds)
1723     EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1724 
1725   free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1726 }
1727 
1728 /* Update target_available bits when merging exprs TO and FROM.  SPLIT_POINT
1729    is non-null when expressions are merged from different successors at
1730    a split point.  */
1731 static void
1732 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1733 {
1734   if (EXPR_TARGET_AVAILABLE (to) < 0
1735       || EXPR_TARGET_AVAILABLE (from) < 0)
1736     EXPR_TARGET_AVAILABLE (to) = -1;
1737   else
1738     {
1739       /* We try to detect the case when one of the expressions
1740          can only be reached through another one.  In this case,
1741          we can do better.  */
1742       if (split_point == NULL)
1743         {
1744           int toind, fromind;
1745 
1746           toind = EXPR_ORIG_BB_INDEX (to);
1747           fromind = EXPR_ORIG_BB_INDEX (from);
1748 
1749           if (toind && toind == fromind)
1750             /* Do nothing -- everything is done in
1751                merge_with_other_exprs.  */
1752             ;
1753           else
1754             EXPR_TARGET_AVAILABLE (to) = -1;
1755         }
1756       else if (EXPR_TARGET_AVAILABLE (from) == 0
1757 	       && EXPR_LHS (from)
1758 	       && REG_P (EXPR_LHS (from))
1759 	       && REGNO (EXPR_LHS (to)) != REGNO (EXPR_LHS (from)))
1760 	EXPR_TARGET_AVAILABLE (to) = -1;
1761       else
1762         EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1763     }
1764 }
1765 
1766 /* Update speculation bits when merging exprs TO and FROM.  SPLIT_POINT
1767    is non-null when expressions are merged from different successors at
1768    a split point.  */
1769 static void
1770 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1771 {
1772   ds_t old_to_ds, old_from_ds;
1773 
1774   old_to_ds = EXPR_SPEC_DONE_DS (to);
1775   old_from_ds = EXPR_SPEC_DONE_DS (from);
1776 
1777   EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1778   EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1779   EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1780 
1781   /* When merging e.g. control & data speculative exprs, or a control
1782      speculative with a control&data speculative one, we really have
1783      to change vinsn too.  Also, when speculative status is changed,
1784      we also need to record this as a transformation in expr's history.  */
1785   if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1786     {
1787       old_to_ds = ds_get_speculation_types (old_to_ds);
1788       old_from_ds = ds_get_speculation_types (old_from_ds);
1789 
1790       if (old_to_ds != old_from_ds)
1791         {
1792           ds_t record_ds;
1793 
1794           /* When both expressions are speculative, we need to change
1795              the vinsn first.  */
1796           if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1797             {
1798               int res;
1799 
1800               res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1801               gcc_assert (res >= 0);
1802             }
1803 
1804           if (split_point != NULL)
1805             {
1806               /* Record the change with proper status.  */
1807               record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1808               record_ds &= ~(old_to_ds & SPECULATIVE);
1809               record_ds &= ~(old_from_ds & SPECULATIVE);
1810 
1811               insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1812                                       INSN_UID (split_point), TRANS_SPECULATION,
1813                                       EXPR_VINSN (from), EXPR_VINSN (to),
1814                                       record_ds);
1815             }
1816         }
1817     }
1818 }
1819 
1820 
1821 /* Merge bits of FROM expr to TO expr.  When SPLIT_POINT is not NULL,
1822    this is done along different paths.  */
1823 void
1824 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1825 {
1826   /* Choose the maximum of the specs of merged exprs.  This is required
1827      for correctness of bookkeeping.  */
1828   if (EXPR_SPEC (to) < EXPR_SPEC (from))
1829     EXPR_SPEC (to) = EXPR_SPEC (from);
1830 
1831   if (split_point)
1832     EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1833   else
1834     EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1835                                 EXPR_USEFULNESS (from));
1836 
1837   if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1838     EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1839 
1840   /* We merge sched-times half-way to the larger value to avoid the endless
1841      pipelining of unneeded insns.  The average seems to be good compromise
1842      between pipelining opportunities and avoiding extra work.  */
1843   if (EXPR_SCHED_TIMES (to) != EXPR_SCHED_TIMES (from))
1844     EXPR_SCHED_TIMES (to) = ((EXPR_SCHED_TIMES (from) + EXPR_SCHED_TIMES (to)
1845                              + 1) / 2);
1846 
1847   if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1848     EXPR_ORIG_BB_INDEX (to) = 0;
1849 
1850   EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1851                                     EXPR_ORIG_SCHED_CYCLE (from));
1852 
1853   EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1854   EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1855   EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1856 
1857   merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1858 		      EXPR_HISTORY_OF_CHANGES (from));
1859   update_target_availability (to, from, split_point);
1860   update_speculative_bits (to, from, split_point);
1861 }
1862 
1863 /* Merge bits of FROM expr to TO expr.  Vinsns in the exprs should be equal
1864    in terms of vinsn_equal_p.  SPLIT_POINT is non-null when expressions
1865    are merged from different successors at a split point.  */
1866 void
1867 merge_expr (expr_t to, expr_t from, insn_t split_point)
1868 {
1869   vinsn_t to_vi = EXPR_VINSN (to);
1870   vinsn_t from_vi = EXPR_VINSN (from);
1871 
1872   gcc_assert (vinsn_equal_p (to_vi, from_vi));
1873 
1874   /* Make sure that speculative pattern is propagated into exprs that
1875      have non-speculative one.  This will provide us with consistent
1876      speculative bits and speculative patterns inside expr.  */
1877   if (EXPR_SPEC_DONE_DS (to) == 0
1878       && (EXPR_SPEC_DONE_DS (from) != 0
1879 	  /* Do likewise for volatile insns, so that we always retain
1880 	     the may_trap_p bit on the resulting expression.  However,
1881 	     avoid propagating the trapping bit into the instructions
1882 	     already speculated.  This would result in replacing the
1883 	     speculative pattern with the non-speculative one and breaking
1884 	     the speculation support.  */
1885 	  || (!VINSN_MAY_TRAP_P (EXPR_VINSN (to))
1886 	      && VINSN_MAY_TRAP_P (EXPR_VINSN (from)))))
1887     change_vinsn_in_expr (to, EXPR_VINSN (from));
1888 
1889   merge_expr_data (to, from, split_point);
1890   gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1891 }
1892 
1893 /* Clear the information of this EXPR.  */
1894 void
1895 clear_expr (expr_t expr)
1896 {
1897 
1898   vinsn_detach (EXPR_VINSN (expr));
1899   EXPR_VINSN (expr) = NULL;
1900 
1901   free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1902 }
1903 
1904 /* For a given LV_SET, mark EXPR having unavailable target register.  */
1905 static void
1906 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1907 {
1908   if (EXPR_SEPARABLE_P (expr))
1909     {
1910       if (REG_P (EXPR_LHS (expr))
1911           && register_unavailable_p (lv_set, EXPR_LHS (expr)))
1912 	{
1913 	  /* If it's an insn like r1 = use (r1, ...), and it exists in
1914 	     different forms in each of the av_sets being merged, we can't say
1915 	     whether original destination register is available or not.
1916 	     However, this still works if destination register is not used
1917 	     in the original expression: if the branch at which LV_SET we're
1918 	     looking here is not actually 'other branch' in sense that same
1919 	     expression is available through it (but it can't be determined
1920 	     at computation stage because of transformations on one of the
1921 	     branches), it still won't affect the availability.
1922 	     Liveness of a register somewhere on a code motion path means
1923 	     it's either read somewhere on a codemotion path, live on
1924 	     'other' branch, live at the point immediately following
1925 	     the original operation, or is read by the original operation.
1926 	     The latter case is filtered out in the condition below.
1927 	     It still doesn't cover the case when register is defined and used
1928 	     somewhere within the code motion path, and in this case we could
1929 	     miss a unifying code motion along both branches using a renamed
1930 	     register, but it won't affect a code correctness since upon
1931 	     an actual code motion a bookkeeping code would be generated.  */
1932 	  if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1933 				      EXPR_LHS (expr)))
1934 	    EXPR_TARGET_AVAILABLE (expr) = -1;
1935 	  else
1936 	    EXPR_TARGET_AVAILABLE (expr) = false;
1937 	}
1938     }
1939   else
1940     {
1941       unsigned regno;
1942       reg_set_iterator rsi;
1943 
1944       EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1945                                  0, regno, rsi)
1946         if (bitmap_bit_p (lv_set, regno))
1947           {
1948             EXPR_TARGET_AVAILABLE (expr) = false;
1949             break;
1950           }
1951 
1952       EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1953                                  0, regno, rsi)
1954         if (bitmap_bit_p (lv_set, regno))
1955           {
1956             EXPR_TARGET_AVAILABLE (expr) = false;
1957             break;
1958           }
1959     }
1960 }
1961 
1962 /* Try to make EXPR speculative.  Return 1 when EXPR's pattern
1963    or dependence status have changed, 2 when also the target register
1964    became unavailable, 0 if nothing had to be changed.  */
1965 int
1966 speculate_expr (expr_t expr, ds_t ds)
1967 {
1968   int res;
1969   rtx_insn *orig_insn_rtx;
1970   rtx spec_pat;
1971   ds_t target_ds, current_ds;
1972 
1973   /* Obtain the status we need to put on EXPR.   */
1974   target_ds = (ds & SPECULATIVE);
1975   current_ds = EXPR_SPEC_DONE_DS (expr);
1976   ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1977 
1978   orig_insn_rtx = EXPR_INSN_RTX (expr);
1979 
1980   res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1981 
1982   switch (res)
1983     {
1984     case 0:
1985       EXPR_SPEC_DONE_DS (expr) = ds;
1986       return current_ds != ds ? 1 : 0;
1987 
1988     case 1:
1989       {
1990 	rtx_insn *spec_insn_rtx =
1991 	  create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1992 	vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1993 
1994 	change_vinsn_in_expr (expr, spec_vinsn);
1995 	EXPR_SPEC_DONE_DS (expr) = ds;
1996         EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1997 
1998         /* Do not allow clobbering the address register of speculative
1999            insns.  */
2000         if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
2001 				    expr_dest_reg (expr)))
2002           {
2003             EXPR_TARGET_AVAILABLE (expr) = false;
2004             return 2;
2005           }
2006 
2007 	return 1;
2008       }
2009 
2010     case -1:
2011       return -1;
2012 
2013     default:
2014       gcc_unreachable ();
2015       return -1;
2016     }
2017 }
2018 
2019 /* Return a destination register, if any, of EXPR.  */
2020 rtx
2021 expr_dest_reg (expr_t expr)
2022 {
2023   rtx dest = VINSN_LHS (EXPR_VINSN (expr));
2024 
2025   if (dest != NULL_RTX && REG_P (dest))
2026     return dest;
2027 
2028   return NULL_RTX;
2029 }
2030 
2031 /* Returns the REGNO of the R's destination.  */
2032 unsigned
2033 expr_dest_regno (expr_t expr)
2034 {
2035   rtx dest = expr_dest_reg (expr);
2036 
2037   gcc_assert (dest != NULL_RTX);
2038   return REGNO (dest);
2039 }
2040 
2041 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2042    AV_SET having unavailable target register.  */
2043 void
2044 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2045 {
2046   expr_t expr;
2047   av_set_iterator avi;
2048 
2049   FOR_EACH_EXPR (expr, avi, join_set)
2050     if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2051       set_unavailable_target_for_expr (expr, lv_set);
2052 }
2053 
2054 
2055 /* Returns true if REG (at least partially) is present in REGS.  */
2056 bool
2057 register_unavailable_p (regset regs, rtx reg)
2058 {
2059   unsigned regno, end_regno;
2060 
2061   regno = REGNO (reg);
2062   if (bitmap_bit_p (regs, regno))
2063     return true;
2064 
2065   end_regno = END_REGNO (reg);
2066 
2067   while (++regno < end_regno)
2068     if (bitmap_bit_p (regs, regno))
2069       return true;
2070 
2071   return false;
2072 }
2073 
2074 /* Av set functions.  */
2075 
2076 /* Add a new element to av set SETP.
2077    Return the element added.  */
2078 static av_set_t
2079 av_set_add_element (av_set_t *setp)
2080 {
2081   /* Insert at the beginning of the list.  */
2082   _list_add (setp);
2083   return *setp;
2084 }
2085 
2086 /* Add EXPR to SETP.  */
2087 void
2088 av_set_add (av_set_t *setp, expr_t expr)
2089 {
2090   av_set_t elem;
2091 
2092   gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2093   elem = av_set_add_element (setp);
2094   copy_expr (_AV_SET_EXPR (elem), expr);
2095 }
2096 
2097 /* Same, but do not copy EXPR.  */
2098 static void
2099 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2100 {
2101   av_set_t elem;
2102 
2103   elem = av_set_add_element (setp);
2104   *_AV_SET_EXPR (elem) = *expr;
2105 }
2106 
2107 /* Remove expr pointed to by IP from the av_set.  */
2108 void
2109 av_set_iter_remove (av_set_iterator *ip)
2110 {
2111   clear_expr (_AV_SET_EXPR (*ip->lp));
2112   _list_iter_remove (ip);
2113 }
2114 
2115 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2116    sense of vinsn_equal_p function. Return NULL if no such expr is
2117    in SET was found.  */
2118 expr_t
2119 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2120 {
2121   expr_t expr;
2122   av_set_iterator i;
2123 
2124   FOR_EACH_EXPR (expr, i, set)
2125     if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2126       return expr;
2127   return NULL;
2128 }
2129 
2130 /* Same, but also remove the EXPR found.   */
2131 static expr_t
2132 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2133 {
2134   expr_t expr;
2135   av_set_iterator i;
2136 
2137   FOR_EACH_EXPR_1 (expr, i, setp)
2138     if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2139       {
2140         _list_iter_remove_nofree (&i);
2141         return expr;
2142       }
2143   return NULL;
2144 }
2145 
2146 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2147    sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2148    Returns NULL if no such expr is in SET was found.  */
2149 static expr_t
2150 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2151 {
2152   expr_t cur_expr;
2153   av_set_iterator i;
2154 
2155   FOR_EACH_EXPR (cur_expr, i, set)
2156     {
2157       if (cur_expr == expr)
2158         continue;
2159       if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2160         return cur_expr;
2161     }
2162 
2163   return NULL;
2164 }
2165 
2166 /* If other expression is already in AVP, remove one of them.  */
2167 expr_t
2168 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2169 {
2170   expr_t expr2;
2171 
2172   expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2173   if (expr2 != NULL)
2174     {
2175       /* Reset target availability on merge, since taking it only from one
2176 	 of the exprs would be controversial for different code.  */
2177       EXPR_TARGET_AVAILABLE (expr2) = -1;
2178       EXPR_USEFULNESS (expr2) = 0;
2179 
2180       merge_expr (expr2, expr, NULL);
2181 
2182       /* Fix usefulness as it should be now REG_BR_PROB_BASE.  */
2183       EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2184 
2185       av_set_iter_remove (ip);
2186       return expr2;
2187     }
2188 
2189   return expr;
2190 }
2191 
2192 /* Return true if there is an expr that correlates to VI in SET.  */
2193 bool
2194 av_set_is_in_p (av_set_t set, vinsn_t vi)
2195 {
2196   return av_set_lookup (set, vi) != NULL;
2197 }
2198 
2199 /* Return a copy of SET.  */
2200 av_set_t
2201 av_set_copy (av_set_t set)
2202 {
2203   expr_t expr;
2204   av_set_iterator i;
2205   av_set_t res = NULL;
2206 
2207   FOR_EACH_EXPR (expr, i, set)
2208     av_set_add (&res, expr);
2209 
2210   return res;
2211 }
2212 
2213 /* Join two av sets that do not have common elements by attaching second set
2214    (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2215    _AV_SET_NEXT of first set's last element).  */
2216 static void
2217 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2218 {
2219   gcc_assert (*to_tailp == NULL);
2220   *to_tailp = *fromp;
2221   *fromp = NULL;
2222 }
2223 
2224 /* Makes set pointed to by TO to be the union of TO and FROM.  Clear av_set
2225    pointed to by FROMP afterwards.  */
2226 void
2227 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2228 {
2229   expr_t expr1;
2230   av_set_iterator i;
2231 
2232   /* Delete from TOP all exprs, that present in FROMP.  */
2233   FOR_EACH_EXPR_1 (expr1, i, top)
2234     {
2235       expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2236 
2237       if (expr2)
2238 	{
2239           merge_expr (expr2, expr1, insn);
2240 	  av_set_iter_remove (&i);
2241 	}
2242     }
2243 
2244   join_distinct_sets (i.lp, fromp);
2245 }
2246 
2247 /* Same as above, but also update availability of target register in
2248    TOP judging by TO_LV_SET and FROM_LV_SET.  */
2249 void
2250 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2251                        regset from_lv_set, insn_t insn)
2252 {
2253   expr_t expr1;
2254   av_set_iterator i;
2255   av_set_t *to_tailp, in_both_set = NULL;
2256 
2257   /* Delete from TOP all expres, that present in FROMP.  */
2258   FOR_EACH_EXPR_1 (expr1, i, top)
2259     {
2260       expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2261 
2262       if (expr2)
2263 	{
2264           /* It may be that the expressions have different destination
2265              registers, in which case we need to check liveness here.  */
2266           if (EXPR_SEPARABLE_P (expr1))
2267             {
2268               int regno1 = (REG_P (EXPR_LHS (expr1))
2269                             ? (int) expr_dest_regno (expr1) : -1);
2270               int regno2 = (REG_P (EXPR_LHS (expr2))
2271                             ? (int) expr_dest_regno (expr2) : -1);
2272 
2273               /* ??? We don't have a way to check restrictions for
2274                *other* register on the current path, we did it only
2275                for the current target register.  Give up.  */
2276               if (regno1 != regno2)
2277                 EXPR_TARGET_AVAILABLE (expr2) = -1;
2278             }
2279           else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2280             EXPR_TARGET_AVAILABLE (expr2) = -1;
2281 
2282           merge_expr (expr2, expr1, insn);
2283           av_set_add_nocopy (&in_both_set, expr2);
2284 	  av_set_iter_remove (&i);
2285 	}
2286       else
2287         /* EXPR1 is present in TOP, but not in FROMP.  Check it on
2288            FROM_LV_SET.  */
2289         set_unavailable_target_for_expr (expr1, from_lv_set);
2290     }
2291   to_tailp = i.lp;
2292 
2293   /* These expressions are not present in TOP.  Check liveness
2294      restrictions on TO_LV_SET.  */
2295   FOR_EACH_EXPR (expr1, i, *fromp)
2296     set_unavailable_target_for_expr (expr1, to_lv_set);
2297 
2298   join_distinct_sets (i.lp, &in_both_set);
2299   join_distinct_sets (to_tailp, fromp);
2300 }
2301 
2302 /* Clear av_set pointed to by SETP.  */
2303 void
2304 av_set_clear (av_set_t *setp)
2305 {
2306   expr_t expr;
2307   av_set_iterator i;
2308 
2309   FOR_EACH_EXPR_1 (expr, i, setp)
2310     av_set_iter_remove (&i);
2311 
2312   gcc_assert (*setp == NULL);
2313 }
2314 
2315 /* Leave only one non-speculative element in the SETP.  */
2316 void
2317 av_set_leave_one_nonspec (av_set_t *setp)
2318 {
2319   expr_t expr;
2320   av_set_iterator i;
2321   bool has_one_nonspec = false;
2322 
2323   /* Keep all speculative exprs, and leave one non-speculative
2324      (the first one).  */
2325   FOR_EACH_EXPR_1 (expr, i, setp)
2326     {
2327       if (!EXPR_SPEC_DONE_DS (expr))
2328 	{
2329   	  if (has_one_nonspec)
2330 	    av_set_iter_remove (&i);
2331 	  else
2332 	    has_one_nonspec = true;
2333 	}
2334     }
2335 }
2336 
2337 /* Return the N'th element of the SET.  */
2338 expr_t
2339 av_set_element (av_set_t set, int n)
2340 {
2341   expr_t expr;
2342   av_set_iterator i;
2343 
2344   FOR_EACH_EXPR (expr, i, set)
2345     if (n-- == 0)
2346       return expr;
2347 
2348   gcc_unreachable ();
2349   return NULL;
2350 }
2351 
2352 /* Deletes all expressions from AVP that are conditional branches (IFs).  */
2353 void
2354 av_set_substract_cond_branches (av_set_t *avp)
2355 {
2356   av_set_iterator i;
2357   expr_t expr;
2358 
2359   FOR_EACH_EXPR_1 (expr, i, avp)
2360     if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2361       av_set_iter_remove (&i);
2362 }
2363 
2364 /* Multiplies usefulness attribute of each member of av-set *AVP by
2365    value PROB / ALL_PROB.  */
2366 void
2367 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2368 {
2369   av_set_iterator i;
2370   expr_t expr;
2371 
2372   FOR_EACH_EXPR (expr, i, av)
2373     EXPR_USEFULNESS (expr) = (all_prob
2374                               ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2375                               : 0);
2376 }
2377 
2378 /* Leave in AVP only those expressions, which are present in AV,
2379    and return it, merging history expressions.  */
2380 void
2381 av_set_code_motion_filter (av_set_t *avp, av_set_t av)
2382 {
2383   av_set_iterator i;
2384   expr_t expr, expr2;
2385 
2386   FOR_EACH_EXPR_1 (expr, i, avp)
2387     if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
2388       av_set_iter_remove (&i);
2389     else
2390       /* When updating av sets in bookkeeping blocks, we can add more insns
2391 	 there which will be transformed but the upper av sets will not
2392 	 reflect those transformations.  We then fail to undo those
2393 	 when searching for such insns.  So merge the history saved
2394 	 in the av set of the block we are processing.  */
2395       merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2396 			  EXPR_HISTORY_OF_CHANGES (expr2));
2397 }
2398 
2399 
2400 
2401 /* Dependence hooks to initialize insn data.  */
2402 
2403 /* This is used in hooks callable from dependence analysis when initializing
2404    instruction's data.  */
2405 static struct
2406 {
2407   /* Where the dependence was found (lhs/rhs).  */
2408   deps_where_t where;
2409 
2410   /* The actual data object to initialize.  */
2411   idata_t id;
2412 
2413   /* True when the insn should not be made clonable.  */
2414   bool force_unique_p;
2415 
2416   /* True when insn should be treated as of type USE, i.e. never renamed.  */
2417   bool force_use_p;
2418 } deps_init_id_data;
2419 
2420 
2421 /* Setup ID for INSN.  FORCE_UNIQUE_P is true when INSN should not be
2422    clonable.  */
2423 static void
2424 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2425 {
2426   int type;
2427 
2428   /* Determine whether INSN could be cloned and return appropriate vinsn type.
2429      That clonable insns which can be separated into lhs and rhs have type SET.
2430      Other clonable insns have type USE.  */
2431   type = GET_CODE (insn);
2432 
2433   /* Only regular insns could be cloned.  */
2434   if (type == INSN && !force_unique_p)
2435     type = SET;
2436   else if (type == JUMP_INSN && simplejump_p (insn))
2437     type = PC;
2438   else if (type == DEBUG_INSN)
2439     type = !force_unique_p ? USE : INSN;
2440 
2441   IDATA_TYPE (id) = type;
2442   IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2443   IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2444   IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2445 }
2446 
2447 /* Start initializing insn data.  */
2448 static void
2449 deps_init_id_start_insn (insn_t insn)
2450 {
2451   gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2452 
2453   setup_id_for_insn (deps_init_id_data.id, insn,
2454                      deps_init_id_data.force_unique_p);
2455   deps_init_id_data.where = DEPS_IN_INSN;
2456 }
2457 
2458 /* Start initializing lhs data.  */
2459 static void
2460 deps_init_id_start_lhs (rtx lhs)
2461 {
2462   gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2463   gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2464 
2465   if (IDATA_TYPE (deps_init_id_data.id) == SET)
2466     {
2467       IDATA_LHS (deps_init_id_data.id) = lhs;
2468       deps_init_id_data.where = DEPS_IN_LHS;
2469     }
2470 }
2471 
2472 /* Finish initializing lhs data.  */
2473 static void
2474 deps_init_id_finish_lhs (void)
2475 {
2476   deps_init_id_data.where = DEPS_IN_INSN;
2477 }
2478 
2479 /* Note a set of REGNO.  */
2480 static void
2481 deps_init_id_note_reg_set (int regno)
2482 {
2483   haifa_note_reg_set (regno);
2484 
2485   if (deps_init_id_data.where == DEPS_IN_RHS)
2486     deps_init_id_data.force_use_p = true;
2487 
2488   if (IDATA_TYPE (deps_init_id_data.id) != PC)
2489     SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2490 
2491 #ifdef STACK_REGS
2492   /* Make instructions that set stack registers to be ineligible for
2493      renaming to avoid issues with find_used_regs.  */
2494   if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2495     deps_init_id_data.force_use_p = true;
2496 #endif
2497 }
2498 
2499 /* Note a clobber of REGNO.  */
2500 static void
2501 deps_init_id_note_reg_clobber (int regno)
2502 {
2503   haifa_note_reg_clobber (regno);
2504 
2505   if (deps_init_id_data.where == DEPS_IN_RHS)
2506     deps_init_id_data.force_use_p = true;
2507 
2508   if (IDATA_TYPE (deps_init_id_data.id) != PC)
2509     SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2510 }
2511 
2512 /* Note a use of REGNO.  */
2513 static void
2514 deps_init_id_note_reg_use (int regno)
2515 {
2516   haifa_note_reg_use (regno);
2517 
2518   if (IDATA_TYPE (deps_init_id_data.id) != PC)
2519     SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2520 }
2521 
2522 /* Start initializing rhs data.  */
2523 static void
2524 deps_init_id_start_rhs (rtx rhs)
2525 {
2526   gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2527 
2528   /* And there was no sel_deps_reset_to_insn ().  */
2529   if (IDATA_LHS (deps_init_id_data.id) != NULL)
2530     {
2531       IDATA_RHS (deps_init_id_data.id) = rhs;
2532       deps_init_id_data.where = DEPS_IN_RHS;
2533     }
2534 }
2535 
2536 /* Finish initializing rhs data.  */
2537 static void
2538 deps_init_id_finish_rhs (void)
2539 {
2540   gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2541 	      || deps_init_id_data.where == DEPS_IN_INSN);
2542   deps_init_id_data.where = DEPS_IN_INSN;
2543 }
2544 
2545 /* Finish initializing insn data.  */
2546 static void
2547 deps_init_id_finish_insn (void)
2548 {
2549   gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2550 
2551   if (IDATA_TYPE (deps_init_id_data.id) == SET)
2552     {
2553       rtx lhs = IDATA_LHS (deps_init_id_data.id);
2554       rtx rhs = IDATA_RHS (deps_init_id_data.id);
2555 
2556       if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2557 	  || deps_init_id_data.force_use_p)
2558 	{
2559           /* This should be a USE, as we don't want to schedule its RHS
2560              separately.  However, we still want to have them recorded
2561              for the purposes of substitution.  That's why we don't
2562              simply call downgrade_to_use () here.  */
2563 	  gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2564 	  gcc_assert (!lhs == !rhs);
2565 
2566 	  IDATA_TYPE (deps_init_id_data.id) = USE;
2567 	}
2568     }
2569 
2570   deps_init_id_data.where = DEPS_IN_NOWHERE;
2571 }
2572 
2573 /* This is dependence info used for initializing insn's data.  */
2574 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2575 
2576 /* This initializes most of the static part of the above structure.  */
2577 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2578   {
2579     NULL,
2580 
2581     deps_init_id_start_insn,
2582     deps_init_id_finish_insn,
2583     deps_init_id_start_lhs,
2584     deps_init_id_finish_lhs,
2585     deps_init_id_start_rhs,
2586     deps_init_id_finish_rhs,
2587     deps_init_id_note_reg_set,
2588     deps_init_id_note_reg_clobber,
2589     deps_init_id_note_reg_use,
2590     NULL, /* note_mem_dep */
2591     NULL, /* note_dep */
2592 
2593     0, /* use_cselib */
2594     0, /* use_deps_list */
2595     0 /* generate_spec_deps */
2596   };
2597 
2598 /* Initialize INSN's lhs and rhs in ID.  When FORCE_UNIQUE_P is true,
2599    we don't actually need information about lhs and rhs.  */
2600 static void
2601 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2602 {
2603   rtx pat = PATTERN (insn);
2604 
2605   if (NONJUMP_INSN_P (insn)
2606       && GET_CODE (pat) == SET
2607       && !force_unique_p)
2608     {
2609       IDATA_RHS (id) = SET_SRC (pat);
2610       IDATA_LHS (id) = SET_DEST (pat);
2611     }
2612   else
2613     IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2614 }
2615 
2616 /* Possibly downgrade INSN to USE.  */
2617 static void
2618 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2619 {
2620   bool must_be_use = false;
2621   df_ref def;
2622   rtx lhs = IDATA_LHS (id);
2623   rtx rhs = IDATA_RHS (id);
2624 
2625   /* We downgrade only SETs.  */
2626   if (IDATA_TYPE (id) != SET)
2627     return;
2628 
2629   if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2630     {
2631       IDATA_TYPE (id) = USE;
2632       return;
2633     }
2634 
2635   FOR_EACH_INSN_DEF (def, insn)
2636     {
2637       if (DF_REF_INSN (def)
2638           && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2639           && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2640         {
2641           must_be_use = true;
2642           break;
2643         }
2644 
2645 #ifdef STACK_REGS
2646       /* Make instructions that set stack registers to be ineligible for
2647 	 renaming to avoid issues with find_used_regs.  */
2648       if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2649 	{
2650 	  must_be_use = true;
2651 	  break;
2652 	}
2653 #endif
2654     }
2655 
2656   if (must_be_use)
2657     IDATA_TYPE (id) = USE;
2658 }
2659 
2660 /* Setup implicit register clobbers calculated by sched-deps for INSN
2661    before reload and save them in ID.  */
2662 static void
2663 setup_id_implicit_regs (idata_t id, insn_t insn)
2664 {
2665   if (reload_completed)
2666     return;
2667 
2668   HARD_REG_SET temp;
2669   unsigned regno;
2670   hard_reg_set_iterator hrsi;
2671 
2672   get_implicit_reg_pending_clobbers (&temp, insn);
2673   EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2674     SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2675 }
2676 
2677 /* Setup register sets describing INSN in ID.  */
2678 static void
2679 setup_id_reg_sets (idata_t id, insn_t insn)
2680 {
2681   struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2682   df_ref def, use;
2683   regset tmp = get_clear_regset_from_pool ();
2684 
2685   FOR_EACH_INSN_INFO_DEF (def, insn_info)
2686     {
2687       unsigned int regno = DF_REF_REGNO (def);
2688 
2689       /* Post modifies are treated like clobbers by sched-deps.c.  */
2690       if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2691                                      | DF_REF_PRE_POST_MODIFY)))
2692         SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2693       else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2694         {
2695 	  SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2696 
2697 #ifdef STACK_REGS
2698 	  /* For stack registers, treat writes to them as writes
2699 	     to the first one to be consistent with sched-deps.c.  */
2700 	  if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2701 	    SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2702 #endif
2703 	}
2704       /* Mark special refs that generate read/write def pair.  */
2705       if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2706           || regno == STACK_POINTER_REGNUM)
2707         bitmap_set_bit (tmp, regno);
2708     }
2709 
2710   FOR_EACH_INSN_INFO_USE (use, insn_info)
2711     {
2712       unsigned int regno = DF_REF_REGNO (use);
2713 
2714       /* When these refs are met for the first time, skip them, as
2715          these uses are just counterparts of some defs.  */
2716       if (bitmap_bit_p (tmp, regno))
2717         bitmap_clear_bit (tmp, regno);
2718       else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2719 	{
2720 	  SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2721 
2722 #ifdef STACK_REGS
2723 	  /* For stack registers, treat reads from them as reads from
2724 	     the first one to be consistent with sched-deps.c.  */
2725 	  if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2726 	    SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2727 #endif
2728 	}
2729     }
2730 
2731   /* Also get implicit reg clobbers from sched-deps.  */
2732   setup_id_implicit_regs (id, insn);
2733 
2734   return_regset_to_pool (tmp);
2735 }
2736 
2737 /* Initialize instruction data for INSN in ID using DF's data.  */
2738 static void
2739 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2740 {
2741   gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2742 
2743   setup_id_for_insn (id, insn, force_unique_p);
2744   setup_id_lhs_rhs (id, insn, force_unique_p);
2745 
2746   if (INSN_NOP_P (insn))
2747     return;
2748 
2749   maybe_downgrade_id_to_use (id, insn);
2750   setup_id_reg_sets (id, insn);
2751 }
2752 
2753 /* Initialize instruction data for INSN in ID.  */
2754 static void
2755 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2756 {
2757   struct deps_desc _dc, *dc = &_dc;
2758 
2759   deps_init_id_data.where = DEPS_IN_NOWHERE;
2760   deps_init_id_data.id = id;
2761   deps_init_id_data.force_unique_p = force_unique_p;
2762   deps_init_id_data.force_use_p = false;
2763 
2764   init_deps (dc, false);
2765   memcpy (&deps_init_id_sched_deps_info,
2766 	  &const_deps_init_id_sched_deps_info,
2767 	  sizeof (deps_init_id_sched_deps_info));
2768   if (spec_info != NULL)
2769     deps_init_id_sched_deps_info.generate_spec_deps = 1;
2770   sched_deps_info = &deps_init_id_sched_deps_info;
2771 
2772   deps_analyze_insn (dc, insn);
2773   /* Implicit reg clobbers received from sched-deps separately.  */
2774   setup_id_implicit_regs (id, insn);
2775 
2776   free_deps (dc);
2777   deps_init_id_data.id = NULL;
2778 }
2779 
2780 
2781 struct sched_scan_info_def
2782 {
2783   /* This hook notifies scheduler frontend to extend its internal per basic
2784      block data structures.  This hook should be called once before a series of
2785      calls to bb_init ().  */
2786   void (*extend_bb) (void);
2787 
2788   /* This hook makes scheduler frontend to initialize its internal data
2789      structures for the passed basic block.  */
2790   void (*init_bb) (basic_block);
2791 
2792   /* This hook notifies scheduler frontend to extend its internal per insn data
2793      structures.  This hook should be called once before a series of calls to
2794      insn_init ().  */
2795   void (*extend_insn) (void);
2796 
2797   /* This hook makes scheduler frontend to initialize its internal data
2798      structures for the passed insn.  */
2799   void (*init_insn) (insn_t);
2800 };
2801 
2802 /* A driver function to add a set of basic blocks (BBS) to the
2803    scheduling region.  */
2804 static void
2805 sched_scan (const struct sched_scan_info_def *ssi, bb_vec_t bbs)
2806 {
2807   unsigned i;
2808   basic_block bb;
2809 
2810   if (ssi->extend_bb)
2811     ssi->extend_bb ();
2812 
2813   if (ssi->init_bb)
2814     FOR_EACH_VEC_ELT (bbs, i, bb)
2815       ssi->init_bb (bb);
2816 
2817   if (ssi->extend_insn)
2818     ssi->extend_insn ();
2819 
2820   if (ssi->init_insn)
2821     FOR_EACH_VEC_ELT (bbs, i, bb)
2822       {
2823 	rtx_insn *insn;
2824 
2825 	FOR_BB_INSNS (bb, insn)
2826 	  ssi->init_insn (insn);
2827       }
2828 }
2829 
2830 /* Implement hooks for collecting fundamental insn properties like if insn is
2831    an ASM or is within a SCHED_GROUP.  */
2832 
2833 /* True when a "one-time init" data for INSN was already inited.  */
2834 static bool
2835 first_time_insn_init (insn_t insn)
2836 {
2837   return INSN_LIVE (insn) == NULL;
2838 }
2839 
2840 /* Hash an entry in a transformed_insns hashtable.  */
2841 static hashval_t
2842 hash_transformed_insns (const void *p)
2843 {
2844   return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2845 }
2846 
2847 /* Compare the entries in a transformed_insns hashtable.  */
2848 static int
2849 eq_transformed_insns (const void *p, const void *q)
2850 {
2851   rtx_insn *i1 =
2852     VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2853   rtx_insn *i2 =
2854     VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2855 
2856   if (INSN_UID (i1) == INSN_UID (i2))
2857     return 1;
2858   return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2859 }
2860 
2861 /* Free an entry in a transformed_insns hashtable.  */
2862 static void
2863 free_transformed_insns (void *p)
2864 {
2865   struct transformed_insns *pti = (struct transformed_insns *) p;
2866 
2867   vinsn_detach (pti->vinsn_old);
2868   vinsn_detach (pti->vinsn_new);
2869   free (pti);
2870 }
2871 
2872 /* Init the s_i_d data for INSN which should be inited just once, when
2873    we first see the insn.  */
2874 static void
2875 init_first_time_insn_data (insn_t insn)
2876 {
2877   /* This should not be set if this is the first time we init data for
2878      insn.  */
2879   gcc_assert (first_time_insn_init (insn));
2880 
2881   /* These are needed for nops too.  */
2882   INSN_LIVE (insn) = get_regset_from_pool ();
2883   INSN_LIVE_VALID_P (insn) = false;
2884 
2885   if (!INSN_NOP_P (insn))
2886     {
2887       INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2888       INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2889       INSN_TRANSFORMED_INSNS (insn)
2890         = htab_create (16, hash_transformed_insns,
2891                        eq_transformed_insns, free_transformed_insns);
2892       init_deps (&INSN_DEPS_CONTEXT (insn), true);
2893     }
2894 }
2895 
2896 /* Free almost all above data for INSN that is scheduled already.
2897    Used for extra-large basic blocks.  */
2898 void
2899 free_data_for_scheduled_insn (insn_t insn)
2900 {
2901   gcc_assert (! first_time_insn_init (insn));
2902 
2903   if (! INSN_ANALYZED_DEPS (insn))
2904     return;
2905 
2906   BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2907   BITMAP_FREE (INSN_FOUND_DEPS (insn));
2908   htab_delete (INSN_TRANSFORMED_INSNS (insn));
2909 
2910   /* This is allocated only for bookkeeping insns.  */
2911   if (INSN_ORIGINATORS (insn))
2912     BITMAP_FREE (INSN_ORIGINATORS (insn));
2913   free_deps (&INSN_DEPS_CONTEXT (insn));
2914 
2915   INSN_ANALYZED_DEPS (insn) = NULL;
2916 
2917   /* Clear the readonly flag so we would ICE when trying to recalculate
2918      the deps context (as we believe that it should not happen).  */
2919   (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2920 }
2921 
2922 /* Free the same data as above for INSN.  */
2923 static void
2924 free_first_time_insn_data (insn_t insn)
2925 {
2926   gcc_assert (! first_time_insn_init (insn));
2927 
2928   free_data_for_scheduled_insn (insn);
2929   return_regset_to_pool (INSN_LIVE (insn));
2930   INSN_LIVE (insn) = NULL;
2931   INSN_LIVE_VALID_P (insn) = false;
2932 }
2933 
2934 /* Initialize region-scope data structures for basic blocks.  */
2935 static void
2936 init_global_and_expr_for_bb (basic_block bb)
2937 {
2938   if (sel_bb_empty_p (bb))
2939     return;
2940 
2941   invalidate_av_set (bb);
2942 }
2943 
2944 /* Data for global dependency analysis (to initialize CANT_MOVE and
2945    SCHED_GROUP_P).  */
2946 static struct
2947 {
2948   /* Previous insn.  */
2949   insn_t prev_insn;
2950 } init_global_data;
2951 
2952 /* Determine if INSN is in the sched_group, is an asm or should not be
2953    cloned.  After that initialize its expr.  */
2954 static void
2955 init_global_and_expr_for_insn (insn_t insn)
2956 {
2957   if (LABEL_P (insn))
2958     return;
2959 
2960   if (NOTE_INSN_BASIC_BLOCK_P (insn))
2961     {
2962       init_global_data.prev_insn = NULL;
2963       return;
2964     }
2965 
2966   gcc_assert (INSN_P (insn));
2967 
2968   if (SCHED_GROUP_P (insn))
2969     /* Setup a sched_group.  */
2970     {
2971       insn_t prev_insn = init_global_data.prev_insn;
2972 
2973       if (prev_insn)
2974 	INSN_SCHED_NEXT (prev_insn) = insn;
2975 
2976       init_global_data.prev_insn = insn;
2977     }
2978   else
2979     init_global_data.prev_insn = NULL;
2980 
2981   if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2982       || asm_noperands (PATTERN (insn)) >= 0)
2983     /* Mark INSN as an asm.  */
2984     INSN_ASM_P (insn) = true;
2985 
2986   {
2987     bool force_unique_p;
2988     ds_t spec_done_ds;
2989 
2990     /* Certain instructions cannot be cloned, and frame related insns and
2991        the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2992        their block.  */
2993     if (prologue_epilogue_contains (insn))
2994       {
2995         if (RTX_FRAME_RELATED_P (insn))
2996           CANT_MOVE (insn) = 1;
2997         else
2998           {
2999             rtx note;
3000             for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3001               if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
3002                   && ((enum insn_note) INTVAL (XEXP (note, 0))
3003                       == NOTE_INSN_EPILOGUE_BEG))
3004                 {
3005                   CANT_MOVE (insn) = 1;
3006                   break;
3007                 }
3008           }
3009         force_unique_p = true;
3010       }
3011     else
3012       if (CANT_MOVE (insn)
3013           || INSN_ASM_P (insn)
3014           || SCHED_GROUP_P (insn)
3015 	  || CALL_P (insn)
3016           /* Exception handling insns are always unique.  */
3017           || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
3018           /* TRAP_IF though have an INSN code is control_flow_insn_p ().  */
3019           || control_flow_insn_p (insn)
3020           || volatile_insn_p (PATTERN (insn))
3021           || (targetm.cannot_copy_insn_p
3022               && targetm.cannot_copy_insn_p (insn)))
3023         force_unique_p = true;
3024       else
3025         force_unique_p = false;
3026 
3027     if (targetm.sched.get_insn_spec_ds)
3028       {
3029 	spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
3030 	spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
3031       }
3032     else
3033       spec_done_ds = 0;
3034 
3035     /* Initialize INSN's expr.  */
3036     init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
3037 	       REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
3038 	       spec_done_ds, 0, 0, vNULL, true,
3039 	       false, false, false, CANT_MOVE (insn));
3040   }
3041 
3042   init_first_time_insn_data (insn);
3043 }
3044 
3045 /* Scan the region and initialize instruction data for basic blocks BBS.  */
3046 void
3047 sel_init_global_and_expr (bb_vec_t bbs)
3048 {
3049   /* ??? It would be nice to implement push / pop scheme for sched_infos.  */
3050   const struct sched_scan_info_def ssi =
3051     {
3052       NULL, /* extend_bb */
3053       init_global_and_expr_for_bb, /* init_bb */
3054       extend_insn_data, /* extend_insn */
3055       init_global_and_expr_for_insn /* init_insn */
3056     };
3057 
3058   sched_scan (&ssi, bbs);
3059 }
3060 
3061 /* Finalize region-scope data structures for basic blocks.  */
3062 static void
3063 finish_global_and_expr_for_bb (basic_block bb)
3064 {
3065   av_set_clear (&BB_AV_SET (bb));
3066   BB_AV_LEVEL (bb) = 0;
3067 }
3068 
3069 /* Finalize INSN's data.  */
3070 static void
3071 finish_global_and_expr_insn (insn_t insn)
3072 {
3073   if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
3074     return;
3075 
3076   gcc_assert (INSN_P (insn));
3077 
3078   if (INSN_LUID (insn) > 0)
3079     {
3080       free_first_time_insn_data (insn);
3081       INSN_WS_LEVEL (insn) = 0;
3082       CANT_MOVE (insn) = 0;
3083 
3084       /* We can no longer assert this, as vinsns of this insn could be
3085          easily live in other insn's caches.  This should be changed to
3086          a counter-like approach among all vinsns.  */
3087       gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
3088       clear_expr (INSN_EXPR (insn));
3089     }
3090 }
3091 
3092 /* Finalize per instruction data for the whole region.  */
3093 void
3094 sel_finish_global_and_expr (void)
3095 {
3096   {
3097     bb_vec_t bbs;
3098     int i;
3099 
3100     bbs.create (current_nr_blocks);
3101 
3102     for (i = 0; i < current_nr_blocks; i++)
3103       bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
3104 
3105     /* Clear AV_SETs and INSN_EXPRs.  */
3106     {
3107       const struct sched_scan_info_def ssi =
3108 	{
3109 	  NULL, /* extend_bb */
3110 	  finish_global_and_expr_for_bb, /* init_bb */
3111 	  NULL, /* extend_insn */
3112 	  finish_global_and_expr_insn /* init_insn */
3113 	};
3114 
3115       sched_scan (&ssi, bbs);
3116     }
3117 
3118     bbs.release ();
3119   }
3120 
3121   finish_insns ();
3122 }
3123 
3124 
3125 /* In the below hooks, we merely calculate whether or not a dependence
3126    exists, and in what part of insn.  However, we will need more data
3127    when we'll start caching dependence requests.  */
3128 
3129 /* Container to hold information for dependency analysis.  */
3130 static struct
3131 {
3132   deps_t dc;
3133 
3134   /* A variable to track which part of rtx we are scanning in
3135      sched-deps.c: sched_analyze_insn ().  */
3136   deps_where_t where;
3137 
3138   /* Current producer.  */
3139   insn_t pro;
3140 
3141   /* Current consumer.  */
3142   vinsn_t con;
3143 
3144   /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3145      X is from { INSN, LHS, RHS }.  */
3146   ds_t has_dep_p[DEPS_IN_NOWHERE];
3147 } has_dependence_data;
3148 
3149 /* Start analyzing dependencies of INSN.  */
3150 static void
3151 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3152 {
3153   gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3154 
3155   has_dependence_data.where = DEPS_IN_INSN;
3156 }
3157 
3158 /* Finish analyzing dependencies of an insn.  */
3159 static void
3160 has_dependence_finish_insn (void)
3161 {
3162   gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3163 
3164   has_dependence_data.where = DEPS_IN_NOWHERE;
3165 }
3166 
3167 /* Start analyzing dependencies of LHS.  */
3168 static void
3169 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3170 {
3171   gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3172 
3173   if (VINSN_LHS (has_dependence_data.con) != NULL)
3174     has_dependence_data.where = DEPS_IN_LHS;
3175 }
3176 
3177 /* Finish analyzing dependencies of an lhs.  */
3178 static void
3179 has_dependence_finish_lhs (void)
3180 {
3181   has_dependence_data.where = DEPS_IN_INSN;
3182 }
3183 
3184 /* Start analyzing dependencies of RHS.  */
3185 static void
3186 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3187 {
3188   gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3189 
3190   if (VINSN_RHS (has_dependence_data.con) != NULL)
3191     has_dependence_data.where = DEPS_IN_RHS;
3192 }
3193 
3194 /* Start analyzing dependencies of an rhs.  */
3195 static void
3196 has_dependence_finish_rhs (void)
3197 {
3198   gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3199 	      || has_dependence_data.where == DEPS_IN_INSN);
3200 
3201   has_dependence_data.where = DEPS_IN_INSN;
3202 }
3203 
3204 /* Note a set of REGNO.  */
3205 static void
3206 has_dependence_note_reg_set (int regno)
3207 {
3208   struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3209 
3210   if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3211 				       VINSN_INSN_RTX
3212 				       (has_dependence_data.con)))
3213     {
3214       ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3215 
3216       if (reg_last->sets != NULL
3217 	  || reg_last->clobbers != NULL)
3218 	*dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3219 
3220       if (reg_last->uses || reg_last->implicit_sets)
3221 	*dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3222     }
3223 }
3224 
3225 /* Note a clobber of REGNO.  */
3226 static void
3227 has_dependence_note_reg_clobber (int regno)
3228 {
3229   struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3230 
3231   if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3232 				       VINSN_INSN_RTX
3233 				       (has_dependence_data.con)))
3234     {
3235       ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3236 
3237       if (reg_last->sets)
3238 	*dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3239 
3240       if (reg_last->uses || reg_last->implicit_sets)
3241 	*dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3242     }
3243 }
3244 
3245 /* Note a use of REGNO.  */
3246 static void
3247 has_dependence_note_reg_use (int regno)
3248 {
3249   struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3250 
3251   if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3252 				       VINSN_INSN_RTX
3253 				       (has_dependence_data.con)))
3254     {
3255       ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3256 
3257       if (reg_last->sets)
3258 	*dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3259 
3260       if (reg_last->clobbers || reg_last->implicit_sets)
3261 	*dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3262 
3263       /* Merge BE_IN_SPEC bits into *DSP when the dependency producer
3264 	 is actually a check insn.  We need to do this for any register
3265 	 read-read dependency with the check unless we track properly
3266 	 all registers written by BE_IN_SPEC-speculated insns, as
3267 	 we don't have explicit dependence lists.  See PR 53975.  */
3268       if (reg_last->uses)
3269 	{
3270 	  ds_t pro_spec_checked_ds;
3271 
3272 	  pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3273 	  pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3274 
3275 	  if (pro_spec_checked_ds != 0)
3276 	    *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3277 				  NULL_RTX, NULL_RTX);
3278 	}
3279     }
3280 }
3281 
3282 /* Note a memory dependence.  */
3283 static void
3284 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3285 			     rtx pending_mem ATTRIBUTE_UNUSED,
3286 			     insn_t pending_insn ATTRIBUTE_UNUSED,
3287 			     ds_t ds ATTRIBUTE_UNUSED)
3288 {
3289   if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3290 				       VINSN_INSN_RTX (has_dependence_data.con)))
3291     {
3292       ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3293 
3294       *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3295     }
3296 }
3297 
3298 /* Note a dependence.  */
3299 static void
3300 has_dependence_note_dep (insn_t pro, ds_t ds ATTRIBUTE_UNUSED)
3301 {
3302   insn_t real_pro = has_dependence_data.pro;
3303   insn_t real_con = VINSN_INSN_RTX (has_dependence_data.con);
3304 
3305   /* We do not allow for debug insns to move through others unless they
3306      are at the start of bb.  This movement may create bookkeeping copies
3307      that later would not be able to move up, violating the invariant
3308      that a bookkeeping copy should be movable as the original insn.
3309      Detect that here and allow that movement if we allowed it before
3310      in the first place.  */
3311   if (DEBUG_INSN_P (real_con) && !DEBUG_INSN_P (real_pro)
3312       && INSN_UID (NEXT_INSN (pro)) == INSN_UID (real_con))
3313     return;
3314 
3315   if (!sched_insns_conditions_mutex_p (real_pro, real_con))
3316     {
3317       ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3318 
3319       *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3320     }
3321 }
3322 
3323 /* Mark the insn as having a hard dependence that prevents speculation.  */
3324 void
3325 sel_mark_hard_insn (rtx insn)
3326 {
3327   int i;
3328 
3329   /* Only work when we're in has_dependence_p mode.
3330      ??? This is a hack, this should actually be a hook.  */
3331   if (!has_dependence_data.dc || !has_dependence_data.pro)
3332     return;
3333 
3334   gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3335   gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3336 
3337   for (i = 0; i < DEPS_IN_NOWHERE; i++)
3338     has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3339 }
3340 
3341 /* This structure holds the hooks for the dependency analysis used when
3342    actually processing dependencies in the scheduler.  */
3343 static struct sched_deps_info_def has_dependence_sched_deps_info;
3344 
3345 /* This initializes most of the fields of the above structure.  */
3346 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3347   {
3348     NULL,
3349 
3350     has_dependence_start_insn,
3351     has_dependence_finish_insn,
3352     has_dependence_start_lhs,
3353     has_dependence_finish_lhs,
3354     has_dependence_start_rhs,
3355     has_dependence_finish_rhs,
3356     has_dependence_note_reg_set,
3357     has_dependence_note_reg_clobber,
3358     has_dependence_note_reg_use,
3359     has_dependence_note_mem_dep,
3360     has_dependence_note_dep,
3361 
3362     0, /* use_cselib */
3363     0, /* use_deps_list */
3364     0 /* generate_spec_deps */
3365   };
3366 
3367 /* Initialize has_dependence_sched_deps_info with extra spec field.  */
3368 static void
3369 setup_has_dependence_sched_deps_info (void)
3370 {
3371   memcpy (&has_dependence_sched_deps_info,
3372 	  &const_has_dependence_sched_deps_info,
3373 	  sizeof (has_dependence_sched_deps_info));
3374 
3375   if (spec_info != NULL)
3376     has_dependence_sched_deps_info.generate_spec_deps = 1;
3377 
3378   sched_deps_info = &has_dependence_sched_deps_info;
3379 }
3380 
3381 /* Remove all dependences found and recorded in has_dependence_data array.  */
3382 void
3383 sel_clear_has_dependence (void)
3384 {
3385   int i;
3386 
3387   for (i = 0; i < DEPS_IN_NOWHERE; i++)
3388     has_dependence_data.has_dep_p[i] = 0;
3389 }
3390 
3391 /* Return nonzero if EXPR has is dependent upon PRED.  Return the pointer
3392    to the dependence information array in HAS_DEP_PP.  */
3393 ds_t
3394 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3395 {
3396   int i;
3397   ds_t ds;
3398   struct deps_desc *dc;
3399 
3400   if (INSN_SIMPLEJUMP_P (pred))
3401     /* Unconditional jump is just a transfer of control flow.
3402        Ignore it.  */
3403     return false;
3404 
3405   dc = &INSN_DEPS_CONTEXT (pred);
3406 
3407   /* We init this field lazily.  */
3408   if (dc->reg_last == NULL)
3409     init_deps_reg_last (dc);
3410 
3411   if (!dc->readonly)
3412     {
3413       has_dependence_data.pro = NULL;
3414       /* Initialize empty dep context with information about PRED.  */
3415       advance_deps_context (dc, pred);
3416       dc->readonly = 1;
3417     }
3418 
3419   has_dependence_data.where = DEPS_IN_NOWHERE;
3420   has_dependence_data.pro = pred;
3421   has_dependence_data.con = EXPR_VINSN (expr);
3422   has_dependence_data.dc = dc;
3423 
3424   sel_clear_has_dependence ();
3425 
3426   /* Now catch all dependencies that would be generated between PRED and
3427      INSN.  */
3428   setup_has_dependence_sched_deps_info ();
3429   deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3430   has_dependence_data.dc = NULL;
3431 
3432   /* When a barrier was found, set DEPS_IN_INSN bits.  */
3433   if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3434     has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3435   else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3436     has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3437 
3438   /* Do not allow stores to memory to move through checks.  Currently
3439      we don't move this to sched-deps.c as the check doesn't have
3440      obvious places to which this dependence can be attached.
3441      FIMXE: this should go to a hook.  */
3442   if (EXPR_LHS (expr)
3443       && MEM_P (EXPR_LHS (expr))
3444       && sel_insn_is_speculation_check (pred))
3445     has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3446 
3447   *has_dep_pp = has_dependence_data.has_dep_p;
3448   ds = 0;
3449   for (i = 0; i < DEPS_IN_NOWHERE; i++)
3450     ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3451 			NULL_RTX, NULL_RTX);
3452 
3453   return ds;
3454 }
3455 
3456 
3457 /* Dependence hooks implementation that checks dependence latency constraints
3458    on the insns being scheduled.  The entry point for these routines is
3459    tick_check_p predicate.  */
3460 
3461 static struct
3462 {
3463   /* An expr we are currently checking.  */
3464   expr_t expr;
3465 
3466   /* A minimal cycle for its scheduling.  */
3467   int cycle;
3468 
3469   /* Whether we have seen a true dependence while checking.  */
3470   bool seen_true_dep_p;
3471 } tick_check_data;
3472 
3473 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3474    on PRO with status DS and weight DW.  */
3475 static void
3476 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3477 {
3478   expr_t con_expr = tick_check_data.expr;
3479   insn_t con_insn = EXPR_INSN_RTX (con_expr);
3480 
3481   if (con_insn != pro_insn)
3482     {
3483       enum reg_note dt;
3484       int tick;
3485 
3486       if (/* PROducer was removed from above due to pipelining.  */
3487 	  !INSN_IN_STREAM_P (pro_insn)
3488 	  /* Or PROducer was originally on the next iteration regarding the
3489 	     CONsumer.  */
3490 	  || (INSN_SCHED_TIMES (pro_insn)
3491 	      - EXPR_SCHED_TIMES (con_expr)) > 1)
3492 	/* Don't count this dependence.  */
3493         return;
3494 
3495       dt = ds_to_dt (ds);
3496       if (dt == REG_DEP_TRUE)
3497         tick_check_data.seen_true_dep_p = true;
3498 
3499       gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3500 
3501       {
3502 	dep_def _dep, *dep = &_dep;
3503 
3504 	init_dep (dep, pro_insn, con_insn, dt);
3505 
3506 	tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3507       }
3508 
3509       /* When there are several kinds of dependencies between pro and con,
3510          only REG_DEP_TRUE should be taken into account.  */
3511       if (tick > tick_check_data.cycle
3512 	  && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3513 	tick_check_data.cycle = tick;
3514     }
3515 }
3516 
3517 /* An implementation of note_dep hook.  */
3518 static void
3519 tick_check_note_dep (insn_t pro, ds_t ds)
3520 {
3521   tick_check_dep_with_dw (pro, ds, 0);
3522 }
3523 
3524 /* An implementation of note_mem_dep hook.  */
3525 static void
3526 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3527 {
3528   dw_t dw;
3529 
3530   dw = (ds_to_dt (ds) == REG_DEP_TRUE
3531         ? estimate_dep_weak (mem1, mem2)
3532         : 0);
3533 
3534   tick_check_dep_with_dw (pro, ds, dw);
3535 }
3536 
3537 /* This structure contains hooks for dependence analysis used when determining
3538    whether an insn is ready for scheduling.  */
3539 static struct sched_deps_info_def tick_check_sched_deps_info =
3540   {
3541     NULL,
3542 
3543     NULL,
3544     NULL,
3545     NULL,
3546     NULL,
3547     NULL,
3548     NULL,
3549     haifa_note_reg_set,
3550     haifa_note_reg_clobber,
3551     haifa_note_reg_use,
3552     tick_check_note_mem_dep,
3553     tick_check_note_dep,
3554 
3555     0, 0, 0
3556   };
3557 
3558 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3559    scheduled.  Return 0 if all data from producers in DC is ready.  */
3560 int
3561 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3562 {
3563   int cycles_left;
3564   /* Initialize variables.  */
3565   tick_check_data.expr = expr;
3566   tick_check_data.cycle = 0;
3567   tick_check_data.seen_true_dep_p = false;
3568   sched_deps_info = &tick_check_sched_deps_info;
3569 
3570   gcc_assert (!dc->readonly);
3571   dc->readonly = 1;
3572   deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3573   dc->readonly = 0;
3574 
3575   cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3576 
3577   return cycles_left >= 0 ? cycles_left : 0;
3578 }
3579 
3580 
3581 /* Functions to work with insns.  */
3582 
3583 /* Returns true if LHS of INSN is the same as DEST of an insn
3584    being moved.  */
3585 bool
3586 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3587 {
3588   rtx lhs = INSN_LHS (insn);
3589 
3590   if (lhs == NULL || dest == NULL)
3591     return false;
3592 
3593   return rtx_equal_p (lhs, dest);
3594 }
3595 
3596 /* Return s_i_d entry of INSN.  Callable from debugger.  */
3597 sel_insn_data_def
3598 insn_sid (insn_t insn)
3599 {
3600   return *SID (insn);
3601 }
3602 
3603 /* True when INSN is a speculative check.  We can tell this by looking
3604    at the data structures of the selective scheduler, not by examining
3605    the pattern.  */
3606 bool
3607 sel_insn_is_speculation_check (rtx insn)
3608 {
3609   return s_i_d.exists () && !! INSN_SPEC_CHECKED_DS (insn);
3610 }
3611 
3612 /* Extracts machine mode MODE and destination location DST_LOC
3613    for given INSN.  */
3614 void
3615 get_dest_and_mode (rtx insn, rtx *dst_loc, machine_mode *mode)
3616 {
3617   rtx pat = PATTERN (insn);
3618 
3619   gcc_assert (dst_loc);
3620   gcc_assert (GET_CODE (pat) == SET);
3621 
3622   *dst_loc = SET_DEST (pat);
3623 
3624   gcc_assert (*dst_loc);
3625   gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3626 
3627   if (mode)
3628     *mode = GET_MODE (*dst_loc);
3629 }
3630 
3631 /* Returns true when moving through JUMP will result in bookkeeping
3632    creation.  */
3633 bool
3634 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3635 {
3636   insn_t succ;
3637   succ_iterator si;
3638 
3639   FOR_EACH_SUCC (succ, si, jump)
3640     if (sel_num_cfg_preds_gt_1 (succ))
3641       return true;
3642 
3643   return false;
3644 }
3645 
3646 /* Return 'true' if INSN is the only one in its basic block.  */
3647 static bool
3648 insn_is_the_only_one_in_bb_p (insn_t insn)
3649 {
3650   return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3651 }
3652 
3653 /* Check that the region we're scheduling still has at most one
3654    backedge.  */
3655 static void
3656 verify_backedges (void)
3657 {
3658   if (pipelining_p)
3659     {
3660       int i, n = 0;
3661       edge e;
3662       edge_iterator ei;
3663 
3664       for (i = 0; i < current_nr_blocks; i++)
3665         FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))->succs)
3666           if (in_current_region_p (e->dest)
3667               && BLOCK_TO_BB (e->dest->index) < i)
3668             n++;
3669 
3670       gcc_assert (n <= 1);
3671     }
3672 }
3673 
3674 
3675 /* Functions to work with control flow.  */
3676 
3677 /* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3678    are sorted in topological order (it might have been invalidated by
3679    redirecting an edge).  */
3680 static void
3681 sel_recompute_toporder (void)
3682 {
3683   int i, n, rgn;
3684   int *postorder, n_blocks;
3685 
3686   postorder = XALLOCAVEC (int, n_basic_blocks_for_fn (cfun));
3687   n_blocks = post_order_compute (postorder, false, false);
3688 
3689   rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3690   for (n = 0, i = n_blocks - 1; i >= 0; i--)
3691     if (CONTAINING_RGN (postorder[i]) == rgn)
3692       {
3693 	BLOCK_TO_BB (postorder[i]) = n;
3694 	BB_TO_BLOCK (n) = postorder[i];
3695 	n++;
3696       }
3697 
3698   /* Assert that we updated info for all blocks.  We may miss some blocks if
3699      this function is called when redirecting an edge made a block
3700      unreachable, but that block is not deleted yet.  */
3701   gcc_assert (n == RGN_NR_BLOCKS (rgn));
3702 }
3703 
3704 /* Tidy the possibly empty block BB.  */
3705 static bool
3706 maybe_tidy_empty_bb (basic_block bb)
3707 {
3708   basic_block succ_bb, pred_bb, note_bb;
3709   vec<basic_block> dom_bbs;
3710   edge e;
3711   edge_iterator ei;
3712   bool rescan_p;
3713 
3714   /* Keep empty bb only if this block immediately precedes EXIT and
3715      has incoming non-fallthrough edge, or it has no predecessors or
3716      successors.  Otherwise remove it.  */
3717   if (!sel_bb_empty_p (bb)
3718       || (single_succ_p (bb)
3719 	  && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
3720           && (!single_pred_p (bb)
3721               || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3722       || EDGE_COUNT (bb->preds) == 0
3723       || EDGE_COUNT (bb->succs) == 0)
3724     return false;
3725 
3726   /* Do not attempt to redirect complex edges.  */
3727   FOR_EACH_EDGE (e, ei, bb->preds)
3728     if (e->flags & EDGE_COMPLEX)
3729       return false;
3730     else if (e->flags & EDGE_FALLTHRU)
3731       {
3732 	rtx note;
3733 	/* If prev bb ends with asm goto, see if any of the
3734 	   ASM_OPERANDS_LABELs don't point to the fallthru
3735 	   label.  Do not attempt to redirect it in that case.  */
3736 	if (JUMP_P (BB_END (e->src))
3737 	    && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
3738 	  {
3739 	    int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
3740 
3741 	    for (i = 0; i < n; ++i)
3742 	      if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (bb))
3743 		return false;
3744 	  }
3745       }
3746 
3747   free_data_sets (bb);
3748 
3749   /* Do not delete BB if it has more than one successor.
3750      That can occur when we moving a jump.  */
3751   if (!single_succ_p (bb))
3752     {
3753       gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3754       sel_merge_blocks (bb->prev_bb, bb);
3755       return true;
3756     }
3757 
3758   succ_bb = single_succ (bb);
3759   rescan_p = true;
3760   pred_bb = NULL;
3761   dom_bbs.create (0);
3762 
3763   /* Save a pred/succ from the current region to attach the notes to.  */
3764   note_bb = NULL;
3765   FOR_EACH_EDGE (e, ei, bb->preds)
3766     if (in_current_region_p (e->src))
3767       {
3768 	note_bb = e->src;
3769 	break;
3770       }
3771   if (note_bb == NULL)
3772     note_bb = succ_bb;
3773 
3774   /* Redirect all non-fallthru edges to the next bb.  */
3775   while (rescan_p)
3776     {
3777       rescan_p = false;
3778 
3779       FOR_EACH_EDGE (e, ei, bb->preds)
3780         {
3781           pred_bb = e->src;
3782 
3783           if (!(e->flags & EDGE_FALLTHRU))
3784             {
3785 	      /* We can not invalidate computed topological order by moving
3786 	         the edge destination block (E->SUCC) along a fallthru edge.
3787 
3788 		 We will update dominators here only when we'll get
3789 		 an unreachable block when redirecting, otherwise
3790 		 sel_redirect_edge_and_branch will take care of it.  */
3791 	      if (e->dest != bb
3792 		  && single_pred_p (e->dest))
3793 		dom_bbs.safe_push (e->dest);
3794               sel_redirect_edge_and_branch (e, succ_bb);
3795               rescan_p = true;
3796               break;
3797             }
3798 	  /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3799 	     to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3800 	     still have to adjust it.  */
3801 	  else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3802 	    {
3803 	      /* If possible, try to remove the unneeded conditional jump.  */
3804 	      if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3805 		  && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3806 		{
3807 		  if (!sel_remove_insn (BB_END (pred_bb), false, false))
3808 		    tidy_fallthru_edge (e);
3809 		}
3810 	      else
3811 		sel_redirect_edge_and_branch (e, succ_bb);
3812 	      rescan_p = true;
3813 	      break;
3814 	    }
3815         }
3816     }
3817 
3818   if (can_merge_blocks_p (bb->prev_bb, bb))
3819     sel_merge_blocks (bb->prev_bb, bb);
3820   else
3821     {
3822       /* This is a block without fallthru predecessor.  Just delete it.  */
3823       gcc_assert (note_bb);
3824       move_bb_info (note_bb, bb);
3825       remove_empty_bb (bb, true);
3826     }
3827 
3828   if (!dom_bbs.is_empty ())
3829     {
3830       dom_bbs.safe_push (succ_bb);
3831       iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3832       dom_bbs.release ();
3833     }
3834 
3835   return true;
3836 }
3837 
3838 /* Tidy the control flow after we have removed original insn from
3839    XBB.  Return true if we have removed some blocks.  When FULL_TIDYING
3840    is true, also try to optimize control flow on non-empty blocks.  */
3841 bool
3842 tidy_control_flow (basic_block xbb, bool full_tidying)
3843 {
3844   bool changed = true;
3845   insn_t first, last;
3846 
3847   /* First check whether XBB is empty.  */
3848   changed = maybe_tidy_empty_bb (xbb);
3849   if (changed || !full_tidying)
3850     return changed;
3851 
3852   /* Check if there is a unnecessary jump after insn left.  */
3853   if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
3854       && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3855       && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3856     {
3857       /* We used to call sel_remove_insn here that can trigger tidy_control_flow
3858          before we fix up the fallthru edge.  Correct that ordering by
3859 	 explicitly doing the latter before the former.  */
3860       clear_expr (INSN_EXPR (BB_END (xbb)));
3861       tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3862       if (tidy_control_flow (xbb, false))
3863 	return true;
3864     }
3865 
3866   first = sel_bb_head (xbb);
3867   last = sel_bb_end (xbb);
3868   if (MAY_HAVE_DEBUG_INSNS)
3869     {
3870       if (first != last && DEBUG_INSN_P (first))
3871 	do
3872 	  first = NEXT_INSN (first);
3873 	while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3874 
3875       if (first != last && DEBUG_INSN_P (last))
3876 	do
3877 	  last = PREV_INSN (last);
3878 	while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3879     }
3880   /* Check if there is an unnecessary jump in previous basic block leading
3881      to next basic block left after removing INSN from stream.
3882      If it is so, remove that jump and redirect edge to current
3883      basic block (where there was INSN before deletion).  This way
3884      when NOP will be deleted several instructions later with its
3885      basic block we will not get a jump to next instruction, which
3886      can be harmful.  */
3887   if (first == last
3888       && !sel_bb_empty_p (xbb)
3889       && INSN_NOP_P (last)
3890       /* Flow goes fallthru from current block to the next.  */
3891       && EDGE_COUNT (xbb->succs) == 1
3892       && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3893       /* When successor is an EXIT block, it may not be the next block.  */
3894       && single_succ (xbb) != EXIT_BLOCK_PTR_FOR_FN (cfun)
3895       /* And unconditional jump in previous basic block leads to
3896          next basic block of XBB and this jump can be safely removed.  */
3897       && in_current_region_p (xbb->prev_bb)
3898       && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
3899       && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3900       /* Also this jump is not at the scheduling boundary.  */
3901       && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3902     {
3903       bool recompute_toporder_p;
3904       /* Clear data structures of jump - jump itself will be removed
3905          by sel_redirect_edge_and_branch.  */
3906       clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3907       recompute_toporder_p
3908         = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3909 
3910       gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3911 
3912       /* We could have skipped some debug insns which did not get removed with the block,
3913          and the seqnos could become incorrect.  Fix them up here.  */
3914       if (MAY_HAVE_DEBUG_INSNS && (sel_bb_head (xbb) != first || sel_bb_end (xbb) != last))
3915        {
3916          if (!sel_bb_empty_p (xbb->prev_bb))
3917            {
3918              int prev_seqno = INSN_SEQNO (sel_bb_end (xbb->prev_bb));
3919              if (prev_seqno > INSN_SEQNO (sel_bb_head (xbb)))
3920                for (insn_t insn = sel_bb_head (xbb); insn != first; insn = NEXT_INSN (insn))
3921                  INSN_SEQNO (insn) = prev_seqno + 1;
3922            }
3923        }
3924 
3925       /* It can turn out that after removing unused jump, basic block
3926          that contained that jump, becomes empty too.  In such case
3927          remove it too.  */
3928       if (sel_bb_empty_p (xbb->prev_bb))
3929         changed = maybe_tidy_empty_bb (xbb->prev_bb);
3930       if (recompute_toporder_p)
3931 	sel_recompute_toporder ();
3932     }
3933 
3934   /* TODO: use separate flag for CFG checking.  */
3935   if (flag_checking)
3936     {
3937       verify_backedges ();
3938       verify_dominators (CDI_DOMINATORS);
3939     }
3940 
3941   return changed;
3942 }
3943 
3944 /* Purge meaningless empty blocks in the middle of a region.  */
3945 void
3946 purge_empty_blocks (void)
3947 {
3948   int i;
3949 
3950   /* Do not attempt to delete the first basic block in the region.  */
3951   for (i = 1; i < current_nr_blocks; )
3952     {
3953       basic_block b = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
3954 
3955       if (maybe_tidy_empty_bb (b))
3956 	continue;
3957 
3958       i++;
3959     }
3960 }
3961 
3962 /* Rip-off INSN from the insn stream.  When ONLY_DISCONNECT is true,
3963    do not delete insn's data, because it will be later re-emitted.
3964    Return true if we have removed some blocks afterwards.  */
3965 bool
3966 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3967 {
3968   basic_block bb = BLOCK_FOR_INSN (insn);
3969 
3970   gcc_assert (INSN_IN_STREAM_P (insn));
3971 
3972   if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3973     {
3974       expr_t expr;
3975       av_set_iterator i;
3976 
3977       /* When we remove a debug insn that is head of a BB, it remains
3978 	 in the AV_SET of the block, but it shouldn't.  */
3979       FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3980 	if (EXPR_INSN_RTX (expr) == insn)
3981 	  {
3982 	    av_set_iter_remove (&i);
3983 	    break;
3984 	  }
3985     }
3986 
3987   if (only_disconnect)
3988     remove_insn (insn);
3989   else
3990     {
3991       delete_insn (insn);
3992       clear_expr (INSN_EXPR (insn));
3993     }
3994 
3995   /* It is necessary to NULL these fields in case we are going to re-insert
3996      INSN into the insns stream, as will usually happen in the ONLY_DISCONNECT
3997      case, but also for NOPs that we will return to the nop pool.  */
3998   SET_PREV_INSN (insn) = NULL_RTX;
3999   SET_NEXT_INSN (insn) = NULL_RTX;
4000   set_block_for_insn (insn, NULL);
4001 
4002   return tidy_control_flow (bb, full_tidying);
4003 }
4004 
4005 /* Estimate number of the insns in BB.  */
4006 static int
4007 sel_estimate_number_of_insns (basic_block bb)
4008 {
4009   int res = 0;
4010   insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
4011 
4012   for (; insn != next_tail; insn = NEXT_INSN (insn))
4013     if (NONDEBUG_INSN_P (insn))
4014       res++;
4015 
4016   return res;
4017 }
4018 
4019 /* We don't need separate luids for notes or labels.  */
4020 static int
4021 sel_luid_for_non_insn (rtx x)
4022 {
4023   gcc_assert (NOTE_P (x) || LABEL_P (x));
4024 
4025   return -1;
4026 }
4027 
4028 /*  Find the proper seqno for inserting at INSN by successors.
4029     Return -1 if no successors with positive seqno exist.  */
4030 static int
4031 get_seqno_by_succs (rtx_insn *insn)
4032 {
4033   basic_block bb = BLOCK_FOR_INSN (insn);
4034   rtx_insn *tmp = insn, *end = BB_END (bb);
4035   int seqno;
4036   insn_t succ = NULL;
4037   succ_iterator si;
4038 
4039   while (tmp != end)
4040     {
4041       tmp = NEXT_INSN (tmp);
4042       if (INSN_P (tmp))
4043         return INSN_SEQNO (tmp);
4044     }
4045 
4046   seqno = INT_MAX;
4047 
4048   FOR_EACH_SUCC_1 (succ, si, end, SUCCS_NORMAL)
4049     if (INSN_SEQNO (succ) > 0)
4050       seqno = MIN (seqno, INSN_SEQNO (succ));
4051 
4052   if (seqno == INT_MAX)
4053     return -1;
4054 
4055   return seqno;
4056 }
4057 
4058 /* Compute seqno for INSN by its preds or succs.  Use OLD_SEQNO to compute
4059    seqno in corner cases.  */
4060 static int
4061 get_seqno_for_a_jump (insn_t insn, int old_seqno)
4062 {
4063   int seqno;
4064 
4065   gcc_assert (INSN_SIMPLEJUMP_P (insn));
4066 
4067   if (!sel_bb_head_p (insn))
4068     seqno = INSN_SEQNO (PREV_INSN (insn));
4069   else
4070     {
4071       basic_block bb = BLOCK_FOR_INSN (insn);
4072 
4073       if (single_pred_p (bb)
4074 	  && !in_current_region_p (single_pred (bb)))
4075 	{
4076           /* We can have preds outside a region when splitting edges
4077              for pipelining of an outer loop.  Use succ instead.
4078              There should be only one of them.  */
4079 	  insn_t succ = NULL;
4080           succ_iterator si;
4081           bool first = true;
4082 
4083 	  gcc_assert (flag_sel_sched_pipelining_outer_loops
4084 		      && current_loop_nest);
4085           FOR_EACH_SUCC_1 (succ, si, insn,
4086                            SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
4087             {
4088               gcc_assert (first);
4089               first = false;
4090             }
4091 
4092 	  gcc_assert (succ != NULL);
4093 	  seqno = INSN_SEQNO (succ);
4094 	}
4095       else
4096 	{
4097 	  insn_t *preds;
4098 	  int n;
4099 
4100 	  cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
4101 
4102 	  gcc_assert (n > 0);
4103 	  /* For one predecessor, use simple method.  */
4104 	  if (n == 1)
4105 	    seqno = INSN_SEQNO (preds[0]);
4106 	  else
4107 	    seqno = get_seqno_by_preds (insn);
4108 
4109 	  free (preds);
4110 	}
4111     }
4112 
4113   /* We were unable to find a good seqno among preds.  */
4114   if (seqno < 0)
4115     seqno = get_seqno_by_succs (insn);
4116 
4117   if (seqno < 0)
4118     {
4119       /* The only case where this could be here legally is that the only
4120 	 unscheduled insn was a conditional jump that got removed and turned
4121 	 into this unconditional one.  Initialize from the old seqno
4122 	 of that jump passed down to here.  */
4123       seqno = old_seqno;
4124     }
4125 
4126   gcc_assert (seqno >= 0);
4127   return seqno;
4128 }
4129 
4130 /*  Find the proper seqno for inserting at INSN.  Returns -1 if no predecessors
4131     with positive seqno exist.  */
4132 int
4133 get_seqno_by_preds (rtx_insn *insn)
4134 {
4135   basic_block bb = BLOCK_FOR_INSN (insn);
4136   rtx_insn *tmp = insn, *head = BB_HEAD (bb);
4137   insn_t *preds;
4138   int n, i, seqno;
4139 
4140   /* Loop backwards from INSN to HEAD including both.  */
4141   while (1)
4142     {
4143       if (INSN_P (tmp))
4144 	return INSN_SEQNO (tmp);
4145       if (tmp == head)
4146 	break;
4147       tmp = PREV_INSN (tmp);
4148     }
4149 
4150   cfg_preds (bb, &preds, &n);
4151   for (i = 0, seqno = -1; i < n; i++)
4152     seqno = MAX (seqno, INSN_SEQNO (preds[i]));
4153 
4154   return seqno;
4155 }
4156 
4157 
4158 
4159 /* Extend pass-scope data structures for basic blocks.  */
4160 void
4161 sel_extend_global_bb_info (void)
4162 {
4163   sel_global_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
4164 }
4165 
4166 /* Extend region-scope data structures for basic blocks.  */
4167 static void
4168 extend_region_bb_info (void)
4169 {
4170   sel_region_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
4171 }
4172 
4173 /* Extend all data structures to fit for all basic blocks.  */
4174 static void
4175 extend_bb_info (void)
4176 {
4177   sel_extend_global_bb_info ();
4178   extend_region_bb_info ();
4179 }
4180 
4181 /* Finalize pass-scope data structures for basic blocks.  */
4182 void
4183 sel_finish_global_bb_info (void)
4184 {
4185   sel_global_bb_info.release ();
4186 }
4187 
4188 /* Finalize region-scope data structures for basic blocks.  */
4189 static void
4190 finish_region_bb_info (void)
4191 {
4192   sel_region_bb_info.release ();
4193 }
4194 
4195 
4196 /* Data for each insn in current region.  */
4197 vec<sel_insn_data_def> s_i_d;
4198 
4199 /* Extend data structures for insns from current region.  */
4200 static void
4201 extend_insn_data (void)
4202 {
4203   int reserve;
4204 
4205   sched_extend_target ();
4206   sched_deps_init (false);
4207 
4208   /* Extend data structures for insns from current region.  */
4209   reserve = (sched_max_luid + 1 - s_i_d.length ());
4210   if (reserve > 0 && ! s_i_d.space (reserve))
4211     {
4212       int size;
4213 
4214       if (sched_max_luid / 2 > 1024)
4215         size = sched_max_luid + 1024;
4216       else
4217         size = 3 * sched_max_luid / 2;
4218 
4219 
4220       s_i_d.safe_grow_cleared (size);
4221     }
4222 }
4223 
4224 /* Finalize data structures for insns from current region.  */
4225 static void
4226 finish_insns (void)
4227 {
4228   unsigned i;
4229 
4230   /* Clear here all dependence contexts that may have left from insns that were
4231      removed during the scheduling.  */
4232   for (i = 0; i < s_i_d.length (); i++)
4233     {
4234       sel_insn_data_def *sid_entry = &s_i_d[i];
4235 
4236       if (sid_entry->live)
4237         return_regset_to_pool (sid_entry->live);
4238       if (sid_entry->analyzed_deps)
4239 	{
4240 	  BITMAP_FREE (sid_entry->analyzed_deps);
4241 	  BITMAP_FREE (sid_entry->found_deps);
4242           htab_delete (sid_entry->transformed_insns);
4243 	  free_deps (&sid_entry->deps_context);
4244 	}
4245       if (EXPR_VINSN (&sid_entry->expr))
4246         {
4247           clear_expr (&sid_entry->expr);
4248 
4249           /* Also, clear CANT_MOVE bit here, because we really don't want it
4250              to be passed to the next region.  */
4251           CANT_MOVE_BY_LUID (i) = 0;
4252         }
4253     }
4254 
4255   s_i_d.release ();
4256 }
4257 
4258 /* A proxy to pass initialization data to init_insn ().  */
4259 static sel_insn_data_def _insn_init_ssid;
4260 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4261 
4262 /* If true create a new vinsn.  Otherwise use the one from EXPR.  */
4263 static bool insn_init_create_new_vinsn_p;
4264 
4265 /* Set all necessary data for initialization of the new insn[s].  */
4266 static expr_t
4267 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4268 {
4269   expr_t x = &insn_init_ssid->expr;
4270 
4271   copy_expr_onside (x, expr);
4272   if (vi != NULL)
4273     {
4274       insn_init_create_new_vinsn_p = false;
4275       change_vinsn_in_expr (x, vi);
4276     }
4277   else
4278     insn_init_create_new_vinsn_p = true;
4279 
4280   insn_init_ssid->seqno = seqno;
4281   return x;
4282 }
4283 
4284 /* Init data for INSN.  */
4285 static void
4286 init_insn_data (insn_t insn)
4287 {
4288   expr_t expr;
4289   sel_insn_data_t ssid = insn_init_ssid;
4290 
4291   /* The fields mentioned below are special and hence are not being
4292      propagated to the new insns.  */
4293   gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4294 	      && !ssid->after_stall_p && ssid->sched_cycle == 0);
4295   gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4296 
4297   expr = INSN_EXPR (insn);
4298   copy_expr (expr, &ssid->expr);
4299   prepare_insn_expr (insn, ssid->seqno);
4300 
4301   if (insn_init_create_new_vinsn_p)
4302     change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
4303 
4304   if (first_time_insn_init (insn))
4305     init_first_time_insn_data (insn);
4306 }
4307 
4308 /* This is used to initialize spurious jumps generated by
4309    sel_redirect_edge ().  OLD_SEQNO is used for initializing seqnos
4310    in corner cases within get_seqno_for_a_jump.  */
4311 static void
4312 init_simplejump_data (insn_t insn, int old_seqno)
4313 {
4314   init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
4315 	     REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0,
4316 	     vNULL, true, false, false,
4317 	     false, true);
4318   INSN_SEQNO (insn) = get_seqno_for_a_jump (insn, old_seqno);
4319   init_first_time_insn_data (insn);
4320 }
4321 
4322 /* Perform deferred initialization of insns.  This is used to process
4323    a new jump that may be created by redirect_edge.  OLD_SEQNO is used
4324    for initializing simplejumps in init_simplejump_data.  */
4325 static void
4326 sel_init_new_insn (insn_t insn, int flags, int old_seqno)
4327 {
4328   /* We create data structures for bb when the first insn is emitted in it.  */
4329   if (INSN_P (insn)
4330       && INSN_IN_STREAM_P (insn)
4331       && insn_is_the_only_one_in_bb_p (insn))
4332     {
4333       extend_bb_info ();
4334       create_initial_data_sets (BLOCK_FOR_INSN (insn));
4335     }
4336 
4337   if (flags & INSN_INIT_TODO_LUID)
4338     {
4339       sched_extend_luids ();
4340       sched_init_insn_luid (insn);
4341     }
4342 
4343   if (flags & INSN_INIT_TODO_SSID)
4344     {
4345       extend_insn_data ();
4346       init_insn_data (insn);
4347       clear_expr (&insn_init_ssid->expr);
4348     }
4349 
4350   if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4351     {
4352       extend_insn_data ();
4353       init_simplejump_data (insn, old_seqno);
4354     }
4355 
4356   gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4357               == CONTAINING_RGN (BB_TO_BLOCK (0)));
4358 }
4359 
4360 
4361 /* Functions to init/finish work with lv sets.  */
4362 
4363 /* Init BB_LV_SET of BB from DF_LR_IN set of BB.  */
4364 static void
4365 init_lv_set (basic_block bb)
4366 {
4367   gcc_assert (!BB_LV_SET_VALID_P (bb));
4368 
4369   BB_LV_SET (bb) = get_regset_from_pool ();
4370   COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4371   BB_LV_SET_VALID_P (bb) = true;
4372 }
4373 
4374 /* Copy liveness information to BB from FROM_BB.  */
4375 static void
4376 copy_lv_set_from (basic_block bb, basic_block from_bb)
4377 {
4378   gcc_assert (!BB_LV_SET_VALID_P (bb));
4379 
4380   COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4381   BB_LV_SET_VALID_P (bb) = true;
4382 }
4383 
4384 /* Initialize lv set of all bb headers.  */
4385 void
4386 init_lv_sets (void)
4387 {
4388   basic_block bb;
4389 
4390   /* Initialize of LV sets.  */
4391   FOR_EACH_BB_FN (bb, cfun)
4392     init_lv_set (bb);
4393 
4394   /* Don't forget EXIT_BLOCK.  */
4395   init_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4396 }
4397 
4398 /* Release lv set of HEAD.  */
4399 static void
4400 free_lv_set (basic_block bb)
4401 {
4402   gcc_assert (BB_LV_SET (bb) != NULL);
4403 
4404   return_regset_to_pool (BB_LV_SET (bb));
4405   BB_LV_SET (bb) = NULL;
4406   BB_LV_SET_VALID_P (bb) = false;
4407 }
4408 
4409 /* Finalize lv sets of all bb headers.  */
4410 void
4411 free_lv_sets (void)
4412 {
4413   basic_block bb;
4414 
4415   /* Don't forget EXIT_BLOCK.  */
4416   free_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4417 
4418   /* Free LV sets.  */
4419   FOR_EACH_BB_FN (bb, cfun)
4420     if (BB_LV_SET (bb))
4421       free_lv_set (bb);
4422 }
4423 
4424 /* Mark AV_SET for BB as invalid, so this set will be updated the next time
4425    compute_av() processes BB.  This function is called when creating new basic
4426    blocks, as well as for blocks (either new or existing) where new jumps are
4427    created when the control flow is being updated.  */
4428 static void
4429 invalidate_av_set (basic_block bb)
4430 {
4431   BB_AV_LEVEL (bb) = -1;
4432 }
4433 
4434 /* Create initial data sets for BB (they will be invalid).  */
4435 static void
4436 create_initial_data_sets (basic_block bb)
4437 {
4438   if (BB_LV_SET (bb))
4439     BB_LV_SET_VALID_P (bb) = false;
4440   else
4441     BB_LV_SET (bb) = get_regset_from_pool ();
4442   invalidate_av_set (bb);
4443 }
4444 
4445 /* Free av set of BB.  */
4446 static void
4447 free_av_set (basic_block bb)
4448 {
4449   av_set_clear (&BB_AV_SET (bb));
4450   BB_AV_LEVEL (bb) = 0;
4451 }
4452 
4453 /* Free data sets of BB.  */
4454 void
4455 free_data_sets (basic_block bb)
4456 {
4457   free_lv_set (bb);
4458   free_av_set (bb);
4459 }
4460 
4461 /* Exchange data sets of TO and FROM.  */
4462 void
4463 exchange_data_sets (basic_block to, basic_block from)
4464 {
4465   /* Exchange lv sets of TO and FROM.  */
4466   std::swap (BB_LV_SET (from), BB_LV_SET (to));
4467   std::swap (BB_LV_SET_VALID_P (from), BB_LV_SET_VALID_P (to));
4468 
4469   /* Exchange av sets of TO and FROM.  */
4470   std::swap (BB_AV_SET (from), BB_AV_SET (to));
4471   std::swap (BB_AV_LEVEL (from), BB_AV_LEVEL (to));
4472 }
4473 
4474 /* Copy data sets of FROM to TO.  */
4475 void
4476 copy_data_sets (basic_block to, basic_block from)
4477 {
4478   gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4479   gcc_assert (BB_AV_SET (to) == NULL);
4480 
4481   BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4482   BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4483 
4484   if (BB_AV_SET_VALID_P (from))
4485     {
4486       BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4487     }
4488   if (BB_LV_SET_VALID_P (from))
4489     {
4490       gcc_assert (BB_LV_SET (to) != NULL);
4491       COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4492     }
4493 }
4494 
4495 /* Return an av set for INSN, if any.  */
4496 av_set_t
4497 get_av_set (insn_t insn)
4498 {
4499   av_set_t av_set;
4500 
4501   gcc_assert (AV_SET_VALID_P (insn));
4502 
4503   if (sel_bb_head_p (insn))
4504     av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4505   else
4506     av_set = NULL;
4507 
4508   return av_set;
4509 }
4510 
4511 /* Implementation of AV_LEVEL () macro.  Return AV_LEVEL () of INSN.  */
4512 int
4513 get_av_level (insn_t insn)
4514 {
4515   int av_level;
4516 
4517   gcc_assert (INSN_P (insn));
4518 
4519   if (sel_bb_head_p (insn))
4520     av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4521   else
4522     av_level = INSN_WS_LEVEL (insn);
4523 
4524   return av_level;
4525 }
4526 
4527 
4528 
4529 /* Variables to work with control-flow graph.  */
4530 
4531 /* The basic block that already has been processed by the sched_data_update (),
4532    but hasn't been in sel_add_bb () yet.  */
4533 static vec<basic_block> last_added_blocks;
4534 
4535 /* A pool for allocating successor infos.  */
4536 static struct
4537 {
4538   /* A stack for saving succs_info structures.  */
4539   struct succs_info *stack;
4540 
4541   /* Its size.  */
4542   int size;
4543 
4544   /* Top of the stack.  */
4545   int top;
4546 
4547   /* Maximal value of the top.  */
4548   int max_top;
4549 }  succs_info_pool;
4550 
4551 /* Functions to work with control-flow graph.  */
4552 
4553 /* Return basic block note of BB.  */
4554 rtx_insn *
4555 sel_bb_head (basic_block bb)
4556 {
4557   rtx_insn *head;
4558 
4559   if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4560     {
4561       gcc_assert (exit_insn != NULL_RTX);
4562       head = exit_insn;
4563     }
4564   else
4565     {
4566       rtx_note *note = bb_note (bb);
4567       head = next_nonnote_insn (note);
4568 
4569       if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
4570 	head = NULL;
4571     }
4572 
4573   return head;
4574 }
4575 
4576 /* Return true if INSN is a basic block header.  */
4577 bool
4578 sel_bb_head_p (insn_t insn)
4579 {
4580   return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4581 }
4582 
4583 /* Return last insn of BB.  */
4584 rtx_insn *
4585 sel_bb_end (basic_block bb)
4586 {
4587   if (sel_bb_empty_p (bb))
4588     return NULL;
4589 
4590   gcc_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
4591 
4592   return BB_END (bb);
4593 }
4594 
4595 /* Return true if INSN is the last insn in its basic block.  */
4596 bool
4597 sel_bb_end_p (insn_t insn)
4598 {
4599   return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4600 }
4601 
4602 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK.  */
4603 bool
4604 sel_bb_empty_p (basic_block bb)
4605 {
4606   return sel_bb_head (bb) == NULL;
4607 }
4608 
4609 /* True when BB belongs to the current scheduling region.  */
4610 bool
4611 in_current_region_p (basic_block bb)
4612 {
4613   if (bb->index < NUM_FIXED_BLOCKS)
4614     return false;
4615 
4616   return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4617 }
4618 
4619 /* Return the block which is a fallthru bb of a conditional jump JUMP.  */
4620 basic_block
4621 fallthru_bb_of_jump (const rtx_insn *jump)
4622 {
4623   if (!JUMP_P (jump))
4624     return NULL;
4625 
4626   if (!any_condjump_p (jump))
4627     return NULL;
4628 
4629   /* A basic block that ends with a conditional jump may still have one successor
4630      (and be followed by a barrier), we are not interested.  */
4631   if (single_succ_p (BLOCK_FOR_INSN (jump)))
4632     return NULL;
4633 
4634   return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4635 }
4636 
4637 /* Remove all notes from BB.  */
4638 static void
4639 init_bb (basic_block bb)
4640 {
4641   remove_notes (bb_note (bb), BB_END (bb));
4642   BB_NOTE_LIST (bb) = note_list;
4643 }
4644 
4645 void
4646 sel_init_bbs (bb_vec_t bbs)
4647 {
4648   const struct sched_scan_info_def ssi =
4649     {
4650       extend_bb_info, /* extend_bb */
4651       init_bb, /* init_bb */
4652       NULL, /* extend_insn */
4653       NULL /* init_insn */
4654     };
4655 
4656   sched_scan (&ssi, bbs);
4657 }
4658 
4659 /* Restore notes for the whole region.  */
4660 static void
4661 sel_restore_notes (void)
4662 {
4663   int bb;
4664   insn_t insn;
4665 
4666   for (bb = 0; bb < current_nr_blocks; bb++)
4667     {
4668       basic_block first, last;
4669 
4670       first = EBB_FIRST_BB (bb);
4671       last = EBB_LAST_BB (bb)->next_bb;
4672 
4673       do
4674 	{
4675 	  note_list = BB_NOTE_LIST (first);
4676 	  restore_other_notes (NULL, first);
4677 	  BB_NOTE_LIST (first) = NULL;
4678 
4679 	  FOR_BB_INSNS (first, insn)
4680 	    if (NONDEBUG_INSN_P (insn))
4681 	      reemit_notes (insn);
4682 
4683           first = first->next_bb;
4684 	}
4685       while (first != last);
4686     }
4687 }
4688 
4689 /* Free per-bb data structures.  */
4690 void
4691 sel_finish_bbs (void)
4692 {
4693   sel_restore_notes ();
4694 
4695   /* Remove current loop preheader from this loop.  */
4696   if (current_loop_nest)
4697     sel_remove_loop_preheader ();
4698 
4699   finish_region_bb_info ();
4700 }
4701 
4702 /* Return true if INSN has a single successor of type FLAGS.  */
4703 bool
4704 sel_insn_has_single_succ_p (insn_t insn, int flags)
4705 {
4706   insn_t succ;
4707   succ_iterator si;
4708   bool first_p = true;
4709 
4710   FOR_EACH_SUCC_1 (succ, si, insn, flags)
4711     {
4712       if (first_p)
4713 	first_p = false;
4714       else
4715 	return false;
4716     }
4717 
4718   return true;
4719 }
4720 
4721 /* Allocate successor's info.  */
4722 static struct succs_info *
4723 alloc_succs_info (void)
4724 {
4725   if (succs_info_pool.top == succs_info_pool.max_top)
4726     {
4727       int i;
4728 
4729       if (++succs_info_pool.max_top >= succs_info_pool.size)
4730         gcc_unreachable ();
4731 
4732       i = ++succs_info_pool.top;
4733       succs_info_pool.stack[i].succs_ok.create (10);
4734       succs_info_pool.stack[i].succs_other.create (10);
4735       succs_info_pool.stack[i].probs_ok.create (10);
4736     }
4737   else
4738     succs_info_pool.top++;
4739 
4740   return &succs_info_pool.stack[succs_info_pool.top];
4741 }
4742 
4743 /* Free successor's info.  */
4744 void
4745 free_succs_info (struct succs_info * sinfo)
4746 {
4747   gcc_assert (succs_info_pool.top >= 0
4748               && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4749   succs_info_pool.top--;
4750 
4751   /* Clear stale info.  */
4752   sinfo->succs_ok.block_remove (0, sinfo->succs_ok.length ());
4753   sinfo->succs_other.block_remove (0, sinfo->succs_other.length ());
4754   sinfo->probs_ok.block_remove (0, sinfo->probs_ok.length ());
4755   sinfo->all_prob = 0;
4756   sinfo->succs_ok_n = 0;
4757   sinfo->all_succs_n = 0;
4758 }
4759 
4760 /* Compute successor info for INSN.  FLAGS are the flags passed
4761    to the FOR_EACH_SUCC_1 iterator.  */
4762 struct succs_info *
4763 compute_succs_info (insn_t insn, short flags)
4764 {
4765   succ_iterator si;
4766   insn_t succ;
4767   struct succs_info *sinfo = alloc_succs_info ();
4768 
4769   /* Traverse *all* successors and decide what to do with each.  */
4770   FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4771     {
4772       /* FIXME: this doesn't work for skipping to loop exits, as we don't
4773          perform code motion through inner loops.  */
4774       short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4775 
4776       if (current_flags & flags)
4777         {
4778           sinfo->succs_ok.safe_push (succ);
4779           sinfo->probs_ok.safe_push (
4780 		    /* FIXME: Improve calculation when skipping
4781                        inner loop to exits.  */
4782                     si.bb_end
4783 		    ? (si.e1->probability.initialized_p ()
4784                        ? si.e1->probability.to_reg_br_prob_base ()
4785                        : 0)
4786 		    : REG_BR_PROB_BASE);
4787           sinfo->succs_ok_n++;
4788         }
4789       else
4790         sinfo->succs_other.safe_push (succ);
4791 
4792       /* Compute all_prob.  */
4793       if (!si.bb_end)
4794         sinfo->all_prob = REG_BR_PROB_BASE;
4795       else if (si.e1->probability.initialized_p ())
4796         sinfo->all_prob += si.e1->probability.to_reg_br_prob_base ();
4797 
4798       sinfo->all_succs_n++;
4799     }
4800 
4801   return sinfo;
4802 }
4803 
4804 /* Return the predecessors of BB in PREDS and their number in N.
4805    Empty blocks are skipped.  SIZE is used to allocate PREDS.  */
4806 static void
4807 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4808 {
4809   edge e;
4810   edge_iterator ei;
4811 
4812   gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4813 
4814   FOR_EACH_EDGE (e, ei, bb->preds)
4815     {
4816       basic_block pred_bb = e->src;
4817       insn_t bb_end = BB_END (pred_bb);
4818 
4819       if (!in_current_region_p (pred_bb))
4820 	{
4821 	  gcc_assert (flag_sel_sched_pipelining_outer_loops
4822 		      && current_loop_nest);
4823 	  continue;
4824 	}
4825 
4826       if (sel_bb_empty_p (pred_bb))
4827 	cfg_preds_1 (pred_bb, preds, n, size);
4828       else
4829 	{
4830 	  if (*n == *size)
4831 	    *preds = XRESIZEVEC (insn_t, *preds,
4832                                  (*size = 2 * *size + 1));
4833 	  (*preds)[(*n)++] = bb_end;
4834 	}
4835     }
4836 
4837   gcc_assert (*n != 0
4838 	      || (flag_sel_sched_pipelining_outer_loops
4839 		  && current_loop_nest));
4840 }
4841 
4842 /* Find all predecessors of BB and record them in PREDS and their number
4843    in N.  Empty blocks are skipped, and only normal (forward in-region)
4844    edges are processed.  */
4845 static void
4846 cfg_preds (basic_block bb, insn_t **preds, int *n)
4847 {
4848   int size = 0;
4849 
4850   *preds = NULL;
4851   *n = 0;
4852   cfg_preds_1 (bb, preds, n, &size);
4853 }
4854 
4855 /* Returns true if we are moving INSN through join point.  */
4856 bool
4857 sel_num_cfg_preds_gt_1 (insn_t insn)
4858 {
4859   basic_block bb;
4860 
4861   if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4862     return false;
4863 
4864   bb = BLOCK_FOR_INSN (insn);
4865 
4866   while (1)
4867     {
4868       if (EDGE_COUNT (bb->preds) > 1)
4869 	return true;
4870 
4871       gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4872       bb = EDGE_PRED (bb, 0)->src;
4873 
4874       if (!sel_bb_empty_p (bb))
4875 	break;
4876     }
4877 
4878   return false;
4879 }
4880 
4881 /* Returns true when BB should be the end of an ebb.  Adapted from the
4882    code in sched-ebb.c.  */
4883 bool
4884 bb_ends_ebb_p (basic_block bb)
4885 {
4886   basic_block next_bb = bb_next_bb (bb);
4887   edge e;
4888 
4889   if (next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4890       || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4891       || (LABEL_P (BB_HEAD (next_bb))
4892 	  /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4893 	     Work around that.  */
4894 	  && !single_pred_p (next_bb)))
4895     return true;
4896 
4897   if (!in_current_region_p (next_bb))
4898     return true;
4899 
4900   e = find_fallthru_edge (bb->succs);
4901   if (e)
4902     {
4903       gcc_assert (e->dest == next_bb);
4904 
4905       return false;
4906     }
4907 
4908   return true;
4909 }
4910 
4911 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4912    successor of INSN.  */
4913 bool
4914 in_same_ebb_p (insn_t insn, insn_t succ)
4915 {
4916   basic_block ptr = BLOCK_FOR_INSN (insn);
4917 
4918   for (;;)
4919     {
4920       if (ptr == BLOCK_FOR_INSN (succ))
4921         return true;
4922 
4923       if (bb_ends_ebb_p (ptr))
4924         return false;
4925 
4926       ptr = bb_next_bb (ptr);
4927     }
4928 
4929   gcc_unreachable ();
4930   return false;
4931 }
4932 
4933 /* Recomputes the reverse topological order for the function and
4934    saves it in REV_TOP_ORDER_INDEX.  REV_TOP_ORDER_INDEX_LEN is also
4935    modified appropriately.  */
4936 static void
4937 recompute_rev_top_order (void)
4938 {
4939   int *postorder;
4940   int n_blocks, i;
4941 
4942   if (!rev_top_order_index
4943       || rev_top_order_index_len < last_basic_block_for_fn (cfun))
4944     {
4945       rev_top_order_index_len = last_basic_block_for_fn (cfun);
4946       rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4947                                         rev_top_order_index_len);
4948     }
4949 
4950   postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
4951 
4952   n_blocks = post_order_compute (postorder, true, false);
4953   gcc_assert (n_basic_blocks_for_fn (cfun) == n_blocks);
4954 
4955   /* Build reverse function: for each basic block with BB->INDEX == K
4956      rev_top_order_index[K] is it's reverse topological sort number.  */
4957   for (i = 0; i < n_blocks; i++)
4958     {
4959       gcc_assert (postorder[i] < rev_top_order_index_len);
4960       rev_top_order_index[postorder[i]] = i;
4961     }
4962 
4963   free (postorder);
4964 }
4965 
4966 /* Clear all flags from insns in BB that could spoil its rescheduling.  */
4967 void
4968 clear_outdated_rtx_info (basic_block bb)
4969 {
4970   rtx_insn *insn;
4971 
4972   FOR_BB_INSNS (bb, insn)
4973     if (INSN_P (insn))
4974       {
4975 	SCHED_GROUP_P (insn) = 0;
4976 	INSN_AFTER_STALL_P (insn) = 0;
4977 	INSN_SCHED_TIMES (insn) = 0;
4978 	EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4979 
4980         /* We cannot use the changed caches, as previously we could ignore
4981            the LHS dependence due to enabled renaming and transform
4982            the expression, and currently we'll be unable to do this.  */
4983         htab_empty (INSN_TRANSFORMED_INSNS (insn));
4984       }
4985 }
4986 
4987 /* Add BB_NOTE to the pool of available basic block notes.  */
4988 static void
4989 return_bb_to_pool (basic_block bb)
4990 {
4991   rtx_note *note = bb_note (bb);
4992 
4993   gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4994 	      && bb->aux == NULL);
4995 
4996   /* It turns out that current cfg infrastructure does not support
4997      reuse of basic blocks.  Don't bother for now.  */
4998   /*bb_note_pool.safe_push (note);*/
4999 }
5000 
5001 /* Get a bb_note from pool or return NULL_RTX if pool is empty.  */
5002 static rtx_note *
5003 get_bb_note_from_pool (void)
5004 {
5005   if (bb_note_pool.is_empty ())
5006     return NULL;
5007   else
5008     {
5009       rtx_note *note = bb_note_pool.pop ();
5010 
5011       SET_PREV_INSN (note) = NULL_RTX;
5012       SET_NEXT_INSN (note) = NULL_RTX;
5013 
5014       return note;
5015     }
5016 }
5017 
5018 /* Free bb_note_pool.  */
5019 void
5020 free_bb_note_pool (void)
5021 {
5022   bb_note_pool.release ();
5023 }
5024 
5025 /* Setup scheduler pool and successor structure.  */
5026 void
5027 alloc_sched_pools (void)
5028 {
5029   int succs_size;
5030 
5031   succs_size = MAX_WS + 1;
5032   succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
5033   succs_info_pool.size = succs_size;
5034   succs_info_pool.top = -1;
5035   succs_info_pool.max_top = -1;
5036 }
5037 
5038 /* Free the pools.  */
5039 void
5040 free_sched_pools (void)
5041 {
5042   int i;
5043 
5044   sched_lists_pool.release ();
5045   gcc_assert (succs_info_pool.top == -1);
5046   for (i = 0; i <= succs_info_pool.max_top; i++)
5047     {
5048       succs_info_pool.stack[i].succs_ok.release ();
5049       succs_info_pool.stack[i].succs_other.release ();
5050       succs_info_pool.stack[i].probs_ok.release ();
5051     }
5052   free (succs_info_pool.stack);
5053 }
5054 
5055 
5056 /* Returns a position in RGN where BB can be inserted retaining
5057    topological order.  */
5058 static int
5059 find_place_to_insert_bb (basic_block bb, int rgn)
5060 {
5061   bool has_preds_outside_rgn = false;
5062   edge e;
5063   edge_iterator ei;
5064 
5065   /* Find whether we have preds outside the region.  */
5066   FOR_EACH_EDGE (e, ei, bb->preds)
5067     if (!in_current_region_p (e->src))
5068       {
5069         has_preds_outside_rgn = true;
5070         break;
5071       }
5072 
5073   /* Recompute the top order -- needed when we have > 1 pred
5074      and in case we don't have preds outside.  */
5075   if (flag_sel_sched_pipelining_outer_loops
5076       && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
5077     {
5078       int i, bbi = bb->index, cur_bbi;
5079 
5080       recompute_rev_top_order ();
5081       for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
5082         {
5083           cur_bbi = BB_TO_BLOCK (i);
5084           if (rev_top_order_index[bbi]
5085               < rev_top_order_index[cur_bbi])
5086             break;
5087         }
5088 
5089       /* We skipped the right block, so we increase i.  We accommodate
5090          it for increasing by step later, so we decrease i.  */
5091       return (i + 1) - 1;
5092     }
5093   else if (has_preds_outside_rgn)
5094     {
5095       /* This is the case when we generate an extra empty block
5096          to serve as region head during pipelining.  */
5097       e = EDGE_SUCC (bb, 0);
5098       gcc_assert (EDGE_COUNT (bb->succs) == 1
5099                   && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
5100                   && (BLOCK_TO_BB (e->dest->index) == 0));
5101       return -1;
5102     }
5103 
5104   /* We don't have preds outside the region.  We should have
5105      the only pred, because the multiple preds case comes from
5106      the pipelining of outer loops, and that is handled above.
5107      Just take the bbi of this single pred.  */
5108   if (EDGE_COUNT (bb->succs) > 0)
5109     {
5110       int pred_bbi;
5111 
5112       gcc_assert (EDGE_COUNT (bb->preds) == 1);
5113 
5114       pred_bbi = EDGE_PRED (bb, 0)->src->index;
5115       return BLOCK_TO_BB (pred_bbi);
5116     }
5117   else
5118     /* BB has no successors.  It is safe to put it in the end.  */
5119     return current_nr_blocks - 1;
5120 }
5121 
5122 /* Deletes an empty basic block freeing its data.  */
5123 static void
5124 delete_and_free_basic_block (basic_block bb)
5125 {
5126   gcc_assert (sel_bb_empty_p (bb));
5127 
5128   if (BB_LV_SET (bb))
5129     free_lv_set (bb);
5130 
5131   bitmap_clear_bit (blocks_to_reschedule, bb->index);
5132 
5133   /* Can't assert av_set properties because we use sel_aremove_bb
5134      when removing loop preheader from the region.  At the point of
5135      removing the preheader we already have deallocated sel_region_bb_info.  */
5136   gcc_assert (BB_LV_SET (bb) == NULL
5137               && !BB_LV_SET_VALID_P (bb)
5138               && BB_AV_LEVEL (bb) == 0
5139               && BB_AV_SET (bb) == NULL);
5140 
5141   delete_basic_block (bb);
5142 }
5143 
5144 /* Add BB to the current region and update the region data.  */
5145 static void
5146 add_block_to_current_region (basic_block bb)
5147 {
5148   int i, pos, bbi = -2, rgn;
5149 
5150   rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5151   bbi = find_place_to_insert_bb (bb, rgn);
5152   bbi += 1;
5153   pos = RGN_BLOCKS (rgn) + bbi;
5154 
5155   gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5156               && ebb_head[bbi] == pos);
5157 
5158   /* Make a place for the new block.  */
5159   extend_regions ();
5160 
5161   for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5162     BLOCK_TO_BB (rgn_bb_table[i])++;
5163 
5164   memmove (rgn_bb_table + pos + 1,
5165            rgn_bb_table + pos,
5166            (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5167 
5168   /* Initialize data for BB.  */
5169   rgn_bb_table[pos] = bb->index;
5170   BLOCK_TO_BB (bb->index) = bbi;
5171   CONTAINING_RGN (bb->index) = rgn;
5172 
5173   RGN_NR_BLOCKS (rgn)++;
5174 
5175   for (i = rgn + 1; i <= nr_regions; i++)
5176     RGN_BLOCKS (i)++;
5177 }
5178 
5179 /* Remove BB from the current region and update the region data.  */
5180 static void
5181 remove_bb_from_region (basic_block bb)
5182 {
5183   int i, pos, bbi = -2, rgn;
5184 
5185   rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5186   bbi = BLOCK_TO_BB (bb->index);
5187   pos = RGN_BLOCKS (rgn) + bbi;
5188 
5189   gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5190               && ebb_head[bbi] == pos);
5191 
5192   for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5193     BLOCK_TO_BB (rgn_bb_table[i])--;
5194 
5195   memmove (rgn_bb_table + pos,
5196            rgn_bb_table + pos + 1,
5197            (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5198 
5199   RGN_NR_BLOCKS (rgn)--;
5200   for (i = rgn + 1; i <= nr_regions; i++)
5201     RGN_BLOCKS (i)--;
5202 }
5203 
5204 /* Add BB to the current region  and update all data.  If BB is NULL, add all
5205    blocks from last_added_blocks vector.  */
5206 static void
5207 sel_add_bb (basic_block bb)
5208 {
5209   /* Extend luids so that new notes will receive zero luids.  */
5210   sched_extend_luids ();
5211   sched_init_bbs ();
5212   sel_init_bbs (last_added_blocks);
5213 
5214   /* When bb is passed explicitly, the vector should contain
5215      the only element that equals to bb; otherwise, the vector
5216      should not be NULL.  */
5217   gcc_assert (last_added_blocks.exists ());
5218 
5219   if (bb != NULL)
5220     {
5221       gcc_assert (last_added_blocks.length () == 1
5222                   && last_added_blocks[0] == bb);
5223       add_block_to_current_region (bb);
5224 
5225       /* We associate creating/deleting data sets with the first insn
5226          appearing / disappearing in the bb.  */
5227       if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5228 	create_initial_data_sets (bb);
5229 
5230       last_added_blocks.release ();
5231     }
5232   else
5233     /* BB is NULL - process LAST_ADDED_BLOCKS instead.  */
5234     {
5235       int i;
5236       basic_block temp_bb = NULL;
5237 
5238       for (i = 0;
5239            last_added_blocks.iterate (i, &bb); i++)
5240         {
5241           add_block_to_current_region (bb);
5242           temp_bb = bb;
5243         }
5244 
5245       /* We need to fetch at least one bb so we know the region
5246          to update.  */
5247       gcc_assert (temp_bb != NULL);
5248       bb = temp_bb;
5249 
5250       last_added_blocks.release ();
5251     }
5252 
5253   rgn_setup_region (CONTAINING_RGN (bb->index));
5254 }
5255 
5256 /* Remove BB from the current region and update all data.
5257    If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg.  */
5258 static void
5259 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5260 {
5261   unsigned idx = bb->index;
5262 
5263   gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
5264 
5265   remove_bb_from_region (bb);
5266   return_bb_to_pool (bb);
5267   bitmap_clear_bit (blocks_to_reschedule, idx);
5268 
5269   if (remove_from_cfg_p)
5270     {
5271       basic_block succ = single_succ (bb);
5272       delete_and_free_basic_block (bb);
5273       set_immediate_dominator (CDI_DOMINATORS, succ,
5274                                recompute_dominator (CDI_DOMINATORS, succ));
5275     }
5276 
5277   rgn_setup_region (CONTAINING_RGN (idx));
5278 }
5279 
5280 /* Concatenate info of EMPTY_BB to info of MERGE_BB.  */
5281 static void
5282 move_bb_info (basic_block merge_bb, basic_block empty_bb)
5283 {
5284   if (in_current_region_p (merge_bb))
5285     concat_note_lists (BB_NOTE_LIST (empty_bb),
5286 		       &BB_NOTE_LIST (merge_bb));
5287   BB_NOTE_LIST (empty_bb) = NULL;
5288 
5289 }
5290 
5291 /* Remove EMPTY_BB.  If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5292    region, but keep it in CFG.  */
5293 static void
5294 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5295 {
5296   /* The block should contain just a note or a label.
5297      We try to check whether it is unused below.  */
5298   gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5299               || LABEL_P (BB_HEAD (empty_bb)));
5300 
5301   /* If basic block has predecessors or successors, redirect them.  */
5302   if (remove_from_cfg_p
5303       && (EDGE_COUNT (empty_bb->preds) > 0
5304 	  || EDGE_COUNT (empty_bb->succs) > 0))
5305     {
5306       basic_block pred;
5307       basic_block succ;
5308 
5309       /* We need to init PRED and SUCC before redirecting edges.  */
5310       if (EDGE_COUNT (empty_bb->preds) > 0)
5311 	{
5312 	  edge e;
5313 
5314 	  gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5315 
5316 	  e = EDGE_PRED (empty_bb, 0);
5317           gcc_assert (e->src == empty_bb->prev_bb
5318 		      && (e->flags & EDGE_FALLTHRU));
5319 
5320 	  pred = empty_bb->prev_bb;
5321 	}
5322       else
5323 	pred = NULL;
5324 
5325       if (EDGE_COUNT (empty_bb->succs) > 0)
5326 	{
5327           /* We do not check fallthruness here as above, because
5328              after removing a jump the edge may actually be not fallthru.  */
5329 	  gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5330 	  succ = EDGE_SUCC (empty_bb, 0)->dest;
5331 	}
5332       else
5333 	succ = NULL;
5334 
5335       if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5336         {
5337           edge e = EDGE_PRED (empty_bb, 0);
5338 
5339           if (e->flags & EDGE_FALLTHRU)
5340             redirect_edge_succ_nodup (e, succ);
5341           else
5342             sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5343         }
5344 
5345       if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5346 	{
5347 	  edge e = EDGE_SUCC (empty_bb, 0);
5348 
5349 	  if (find_edge (pred, e->dest) == NULL)
5350 	    redirect_edge_pred (e, pred);
5351 	}
5352     }
5353 
5354   /* Finish removing.  */
5355   sel_remove_bb (empty_bb, remove_from_cfg_p);
5356 }
5357 
5358 /* An implementation of create_basic_block hook, which additionally updates
5359    per-bb data structures.  */
5360 static basic_block
5361 sel_create_basic_block (void *headp, void *endp, basic_block after)
5362 {
5363   basic_block new_bb;
5364   rtx_note *new_bb_note;
5365 
5366   gcc_assert (flag_sel_sched_pipelining_outer_loops
5367               || !last_added_blocks.exists ());
5368 
5369   new_bb_note = get_bb_note_from_pool ();
5370 
5371   if (new_bb_note == NULL_RTX)
5372     new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5373   else
5374     {
5375       new_bb = create_basic_block_structure ((rtx_insn *) headp,
5376 					     (rtx_insn *) endp,
5377 					     new_bb_note, after);
5378       new_bb->aux = NULL;
5379     }
5380 
5381   last_added_blocks.safe_push (new_bb);
5382 
5383   return new_bb;
5384 }
5385 
5386 /* Implement sched_init_only_bb ().  */
5387 static void
5388 sel_init_only_bb (basic_block bb, basic_block after)
5389 {
5390   gcc_assert (after == NULL);
5391 
5392   extend_regions ();
5393   rgn_make_new_region_out_of_new_block (bb);
5394 }
5395 
5396 /* Update the latch when we've splitted or merged it from FROM block to TO.
5397    This should be checked for all outer loops, too.  */
5398 static void
5399 change_loops_latches (basic_block from, basic_block to)
5400 {
5401   gcc_assert (from != to);
5402 
5403   if (current_loop_nest)
5404     {
5405       struct loop *loop;
5406 
5407       for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5408         if (considered_for_pipelining_p (loop) && loop->latch == from)
5409           {
5410             gcc_assert (loop == current_loop_nest);
5411             loop->latch = to;
5412             gcc_assert (loop_latch_edge (loop));
5413           }
5414     }
5415 }
5416 
5417 /* Splits BB on two basic blocks, adding it to the region and extending
5418    per-bb data structures.  Returns the newly created bb.  */
5419 static basic_block
5420 sel_split_block (basic_block bb, rtx after)
5421 {
5422   basic_block new_bb;
5423   insn_t insn;
5424 
5425   new_bb = sched_split_block_1 (bb, after);
5426   sel_add_bb (new_bb);
5427 
5428   /* This should be called after sel_add_bb, because this uses
5429      CONTAINING_RGN for the new block, which is not yet initialized.
5430      FIXME: this function may be a no-op now.  */
5431   change_loops_latches (bb, new_bb);
5432 
5433   /* Update ORIG_BB_INDEX for insns moved into the new block.  */
5434   FOR_BB_INSNS (new_bb, insn)
5435    if (INSN_P (insn))
5436      EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5437 
5438   if (sel_bb_empty_p (bb))
5439     {
5440       gcc_assert (!sel_bb_empty_p (new_bb));
5441 
5442       /* NEW_BB has data sets that need to be updated and BB holds
5443 	 data sets that should be removed.  Exchange these data sets
5444 	 so that we won't lose BB's valid data sets.  */
5445       exchange_data_sets (new_bb, bb);
5446       free_data_sets (bb);
5447     }
5448 
5449   if (!sel_bb_empty_p (new_bb)
5450       && bitmap_bit_p (blocks_to_reschedule, bb->index))
5451     bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5452 
5453   return new_bb;
5454 }
5455 
5456 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5457    Otherwise returns NULL.  */
5458 static rtx_insn *
5459 check_for_new_jump (basic_block bb, int prev_max_uid)
5460 {
5461   rtx_insn *end;
5462 
5463   end = sel_bb_end (bb);
5464   if (end && INSN_UID (end) >= prev_max_uid)
5465     return end;
5466   return NULL;
5467 }
5468 
5469 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5470    New means having UID at least equal to PREV_MAX_UID.  */
5471 static rtx_insn *
5472 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5473 {
5474   rtx_insn *jump;
5475 
5476   /* Return immediately if no new insns were emitted.  */
5477   if (get_max_uid () == prev_max_uid)
5478     return NULL;
5479 
5480   /* Now check both blocks for new jumps.  It will ever be only one.  */
5481   if ((jump = check_for_new_jump (from, prev_max_uid)))
5482     return jump;
5483 
5484   if (jump_bb != NULL
5485       && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5486     return jump;
5487   return NULL;
5488 }
5489 
5490 /* Splits E and adds the newly created basic block to the current region.
5491    Returns this basic block.  */
5492 basic_block
5493 sel_split_edge (edge e)
5494 {
5495   basic_block new_bb, src, other_bb = NULL;
5496   int prev_max_uid;
5497   rtx_insn *jump;
5498 
5499   src = e->src;
5500   prev_max_uid = get_max_uid ();
5501   new_bb = split_edge (e);
5502 
5503   if (flag_sel_sched_pipelining_outer_loops
5504       && current_loop_nest)
5505     {
5506       int i;
5507       basic_block bb;
5508 
5509       /* Some of the basic blocks might not have been added to the loop.
5510          Add them here, until this is fixed in force_fallthru.  */
5511       for (i = 0;
5512            last_added_blocks.iterate (i, &bb); i++)
5513         if (!bb->loop_father)
5514           {
5515             add_bb_to_loop (bb, e->dest->loop_father);
5516 
5517             gcc_assert (!other_bb && (new_bb->index != bb->index));
5518             other_bb = bb;
5519           }
5520     }
5521 
5522   /* Add all last_added_blocks to the region.  */
5523   sel_add_bb (NULL);
5524 
5525   jump = find_new_jump (src, new_bb, prev_max_uid);
5526   if (jump)
5527     sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5528 
5529   /* Put the correct lv set on this block.  */
5530   if (other_bb && !sel_bb_empty_p (other_bb))
5531     compute_live (sel_bb_head (other_bb));
5532 
5533   return new_bb;
5534 }
5535 
5536 /* Implement sched_create_empty_bb ().  */
5537 static basic_block
5538 sel_create_empty_bb (basic_block after)
5539 {
5540   basic_block new_bb;
5541 
5542   new_bb = sched_create_empty_bb_1 (after);
5543 
5544   /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5545      later.  */
5546   gcc_assert (last_added_blocks.length () == 1
5547 	      && last_added_blocks[0] == new_bb);
5548 
5549   last_added_blocks.release ();
5550   return new_bb;
5551 }
5552 
5553 /* Implement sched_create_recovery_block.  ORIG_INSN is where block
5554    will be splitted to insert a check.  */
5555 basic_block
5556 sel_create_recovery_block (insn_t orig_insn)
5557 {
5558   basic_block first_bb, second_bb, recovery_block;
5559   basic_block before_recovery = NULL;
5560   rtx_insn *jump;
5561 
5562   first_bb = BLOCK_FOR_INSN (orig_insn);
5563   if (sel_bb_end_p (orig_insn))
5564     {
5565       /* Avoid introducing an empty block while splitting.  */
5566       gcc_assert (single_succ_p (first_bb));
5567       second_bb = single_succ (first_bb);
5568     }
5569   else
5570     second_bb = sched_split_block (first_bb, orig_insn);
5571 
5572   recovery_block = sched_create_recovery_block (&before_recovery);
5573   if (before_recovery)
5574     copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR_FOR_FN (cfun));
5575 
5576   gcc_assert (sel_bb_empty_p (recovery_block));
5577   sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5578   if (current_loops != NULL)
5579     add_bb_to_loop (recovery_block, first_bb->loop_father);
5580 
5581   sel_add_bb (recovery_block);
5582 
5583   jump = BB_END (recovery_block);
5584   gcc_assert (sel_bb_head (recovery_block) == jump);
5585   sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5586 
5587   return recovery_block;
5588 }
5589 
5590 /* Merge basic block B into basic block A.  */
5591 static void
5592 sel_merge_blocks (basic_block a, basic_block b)
5593 {
5594   gcc_assert (sel_bb_empty_p (b)
5595               && EDGE_COUNT (b->preds) == 1
5596               && EDGE_PRED (b, 0)->src == b->prev_bb);
5597 
5598   move_bb_info (b->prev_bb, b);
5599   remove_empty_bb (b, false);
5600   merge_blocks (a, b);
5601   change_loops_latches (b, a);
5602 }
5603 
5604 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5605    data structures for possibly created bb and insns.  */
5606 void
5607 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5608 {
5609   basic_block jump_bb, src, orig_dest = e->dest;
5610   int prev_max_uid;
5611   rtx_insn *jump;
5612   int old_seqno = -1;
5613 
5614   /* This function is now used only for bookkeeping code creation, where
5615      we'll never get the single pred of orig_dest block and thus will not
5616      hit unreachable blocks when updating dominator info.  */
5617   gcc_assert (!sel_bb_empty_p (e->src)
5618               && !single_pred_p (orig_dest));
5619   src = e->src;
5620   prev_max_uid = get_max_uid ();
5621   /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5622      when the conditional jump being redirected may become unconditional.  */
5623   if (any_condjump_p (BB_END (src))
5624       && INSN_SEQNO (BB_END (src)) >= 0)
5625     old_seqno = INSN_SEQNO (BB_END (src));
5626 
5627   jump_bb = redirect_edge_and_branch_force (e, to);
5628   if (jump_bb != NULL)
5629     sel_add_bb (jump_bb);
5630 
5631   /* This function could not be used to spoil the loop structure by now,
5632      thus we don't care to update anything.  But check it to be sure.  */
5633   if (current_loop_nest
5634       && pipelining_p)
5635     gcc_assert (loop_latch_edge (current_loop_nest));
5636 
5637   jump = find_new_jump (src, jump_bb, prev_max_uid);
5638   if (jump)
5639     sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP,
5640 		       old_seqno);
5641   set_immediate_dominator (CDI_DOMINATORS, to,
5642 			   recompute_dominator (CDI_DOMINATORS, to));
5643   set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5644 			   recompute_dominator (CDI_DOMINATORS, orig_dest));
5645 }
5646 
5647 /* A wrapper for redirect_edge_and_branch.  Return TRUE if blocks connected by
5648    redirected edge are in reverse topological order.  */
5649 bool
5650 sel_redirect_edge_and_branch (edge e, basic_block to)
5651 {
5652   bool latch_edge_p;
5653   basic_block src, orig_dest = e->dest;
5654   int prev_max_uid;
5655   rtx_insn *jump;
5656   edge redirected;
5657   bool recompute_toporder_p = false;
5658   bool maybe_unreachable = single_pred_p (orig_dest);
5659   int old_seqno = -1;
5660 
5661   latch_edge_p = (pipelining_p
5662                   && current_loop_nest
5663                   && e == loop_latch_edge (current_loop_nest));
5664 
5665   src = e->src;
5666   prev_max_uid = get_max_uid ();
5667 
5668   /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5669      when the conditional jump being redirected may become unconditional.  */
5670   if (any_condjump_p (BB_END (src))
5671       && INSN_SEQNO (BB_END (src)) >= 0)
5672     old_seqno = INSN_SEQNO (BB_END (src));
5673 
5674   redirected = redirect_edge_and_branch (e, to);
5675 
5676   gcc_assert (redirected && !last_added_blocks.exists ());
5677 
5678   /* When we've redirected a latch edge, update the header.  */
5679   if (latch_edge_p)
5680     {
5681       current_loop_nest->header = to;
5682       gcc_assert (loop_latch_edge (current_loop_nest));
5683     }
5684 
5685   /* In rare situations, the topological relation between the blocks connected
5686      by the redirected edge can change (see PR42245 for an example).  Update
5687      block_to_bb/bb_to_block.  */
5688   if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5689       && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5690     recompute_toporder_p = true;
5691 
5692   jump = find_new_jump (src, NULL, prev_max_uid);
5693   if (jump)
5694     sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP, old_seqno);
5695 
5696   /* Only update dominator info when we don't have unreachable blocks.
5697      Otherwise we'll update in maybe_tidy_empty_bb.  */
5698   if (!maybe_unreachable)
5699     {
5700       set_immediate_dominator (CDI_DOMINATORS, to,
5701                                recompute_dominator (CDI_DOMINATORS, to));
5702       set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5703                                recompute_dominator (CDI_DOMINATORS, orig_dest));
5704     }
5705   return recompute_toporder_p;
5706 }
5707 
5708 /* This variable holds the cfg hooks used by the selective scheduler.  */
5709 static struct cfg_hooks sel_cfg_hooks;
5710 
5711 /* Register sel-sched cfg hooks.  */
5712 void
5713 sel_register_cfg_hooks (void)
5714 {
5715   sched_split_block = sel_split_block;
5716 
5717   orig_cfg_hooks = get_cfg_hooks ();
5718   sel_cfg_hooks = orig_cfg_hooks;
5719 
5720   sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5721 
5722   set_cfg_hooks (sel_cfg_hooks);
5723 
5724   sched_init_only_bb = sel_init_only_bb;
5725   sched_split_block = sel_split_block;
5726   sched_create_empty_bb = sel_create_empty_bb;
5727 }
5728 
5729 /* Unregister sel-sched cfg hooks.  */
5730 void
5731 sel_unregister_cfg_hooks (void)
5732 {
5733   sched_create_empty_bb = NULL;
5734   sched_split_block = NULL;
5735   sched_init_only_bb = NULL;
5736 
5737   set_cfg_hooks (orig_cfg_hooks);
5738 }
5739 
5740 
5741 /* Emit an insn rtx based on PATTERN.  If a jump insn is wanted,
5742    LABEL is where this jump should be directed.  */
5743 rtx_insn *
5744 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5745 {
5746   rtx_insn *insn_rtx;
5747 
5748   gcc_assert (!INSN_P (pattern));
5749 
5750   start_sequence ();
5751 
5752   if (label == NULL_RTX)
5753     insn_rtx = emit_insn (pattern);
5754   else if (DEBUG_INSN_P (label))
5755     insn_rtx = emit_debug_insn (pattern);
5756   else
5757     {
5758       insn_rtx = emit_jump_insn (pattern);
5759       JUMP_LABEL (insn_rtx) = label;
5760       ++LABEL_NUSES (label);
5761     }
5762 
5763   end_sequence ();
5764 
5765   sched_extend_luids ();
5766   sched_extend_target ();
5767   sched_deps_init (false);
5768 
5769   /* Initialize INSN_CODE now.  */
5770   recog_memoized (insn_rtx);
5771   return insn_rtx;
5772 }
5773 
5774 /* Create a new vinsn for INSN_RTX.  FORCE_UNIQUE_P is true when the vinsn
5775    must not be clonable.  */
5776 vinsn_t
5777 create_vinsn_from_insn_rtx (rtx_insn *insn_rtx, bool force_unique_p)
5778 {
5779   gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5780 
5781   /* If VINSN_TYPE is not USE, retain its uniqueness.  */
5782   return vinsn_create (insn_rtx, force_unique_p);
5783 }
5784 
5785 /* Create a copy of INSN_RTX.  */
5786 rtx_insn *
5787 create_copy_of_insn_rtx (rtx insn_rtx)
5788 {
5789   rtx_insn *res;
5790   rtx link;
5791 
5792   if (DEBUG_INSN_P (insn_rtx))
5793     return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5794 					 insn_rtx);
5795 
5796   gcc_assert (NONJUMP_INSN_P (insn_rtx));
5797 
5798   res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5799                                       NULL_RTX);
5800 
5801   /* Locate the end of existing REG_NOTES in NEW_RTX.  */
5802   rtx *ptail = &REG_NOTES (res);
5803   while (*ptail != NULL_RTX)
5804     ptail = &XEXP (*ptail, 1);
5805 
5806   /* Copy all REG_NOTES except REG_EQUAL/REG_EQUIV and REG_LABEL_OPERAND
5807      since mark_jump_label will make them.  REG_LABEL_TARGETs are created
5808      there too, but are supposed to be sticky, so we copy them.  */
5809   for (link = REG_NOTES (insn_rtx); link; link = XEXP (link, 1))
5810     if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND
5811 	&& REG_NOTE_KIND (link) != REG_EQUAL
5812 	&& REG_NOTE_KIND (link) != REG_EQUIV)
5813       {
5814 	*ptail = duplicate_reg_note (link);
5815 	ptail = &XEXP (*ptail, 1);
5816       }
5817 
5818   return res;
5819 }
5820 
5821 /* Change vinsn field of EXPR to hold NEW_VINSN.  */
5822 void
5823 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5824 {
5825   vinsn_detach (EXPR_VINSN (expr));
5826 
5827   EXPR_VINSN (expr) = new_vinsn;
5828   vinsn_attach (new_vinsn);
5829 }
5830 
5831 /* Helpers for global init.  */
5832 /* This structure is used to be able to call existing bundling mechanism
5833    and calculate insn priorities.  */
5834 static struct haifa_sched_info sched_sel_haifa_sched_info =
5835 {
5836   NULL, /* init_ready_list */
5837   NULL, /* can_schedule_ready_p */
5838   NULL, /* schedule_more_p */
5839   NULL, /* new_ready */
5840   NULL, /* rgn_rank */
5841   sel_print_insn, /* rgn_print_insn */
5842   contributes_to_priority,
5843   NULL, /* insn_finishes_block_p */
5844 
5845   NULL, NULL,
5846   NULL, NULL,
5847   0, 0,
5848 
5849   NULL, /* add_remove_insn */
5850   NULL, /* begin_schedule_ready */
5851   NULL, /* begin_move_insn */
5852   NULL, /* advance_target_bb */
5853 
5854   NULL,
5855   NULL,
5856 
5857   SEL_SCHED | NEW_BBS
5858 };
5859 
5860 /* Setup special insns used in the scheduler.  */
5861 void
5862 setup_nop_and_exit_insns (void)
5863 {
5864   gcc_assert (nop_pattern == NULL_RTX
5865 	      && exit_insn == NULL_RTX);
5866 
5867   nop_pattern = constm1_rtx;
5868 
5869   start_sequence ();
5870   emit_insn (nop_pattern);
5871   exit_insn = get_insns ();
5872   end_sequence ();
5873   set_block_for_insn (exit_insn, EXIT_BLOCK_PTR_FOR_FN (cfun));
5874 }
5875 
5876 /* Free special insns used in the scheduler.  */
5877 void
5878 free_nop_and_exit_insns (void)
5879 {
5880   exit_insn = NULL;
5881   nop_pattern = NULL_RTX;
5882 }
5883 
5884 /* Setup a special vinsn used in new insns initialization.  */
5885 void
5886 setup_nop_vinsn (void)
5887 {
5888   nop_vinsn = vinsn_create (exit_insn, false);
5889   vinsn_attach (nop_vinsn);
5890 }
5891 
5892 /* Free a special vinsn used in new insns initialization.  */
5893 void
5894 free_nop_vinsn (void)
5895 {
5896   gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5897   vinsn_detach (nop_vinsn);
5898   nop_vinsn = NULL;
5899 }
5900 
5901 /* Call a set_sched_flags hook.  */
5902 void
5903 sel_set_sched_flags (void)
5904 {
5905   /* ??? This means that set_sched_flags were called, and we decided to
5906      support speculation.  However, set_sched_flags also modifies flags
5907      on current_sched_info, doing this only at global init.  And we
5908      sometimes change c_s_i later.  So put the correct flags again.  */
5909   if (spec_info && targetm.sched.set_sched_flags)
5910     targetm.sched.set_sched_flags (spec_info);
5911 }
5912 
5913 /* Setup pointers to global sched info structures.  */
5914 void
5915 sel_setup_sched_infos (void)
5916 {
5917   rgn_setup_common_sched_info ();
5918 
5919   memcpy (&sel_common_sched_info, common_sched_info,
5920 	  sizeof (sel_common_sched_info));
5921 
5922   sel_common_sched_info.fix_recovery_cfg = NULL;
5923   sel_common_sched_info.add_block = NULL;
5924   sel_common_sched_info.estimate_number_of_insns
5925     = sel_estimate_number_of_insns;
5926   sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5927   sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5928 
5929   common_sched_info = &sel_common_sched_info;
5930 
5931   current_sched_info = &sched_sel_haifa_sched_info;
5932   current_sched_info->sched_max_insns_priority =
5933     get_rgn_sched_max_insns_priority ();
5934 
5935   sel_set_sched_flags ();
5936 }
5937 
5938 
5939 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5940    *BB_ORD_INDEX after that is increased.  */
5941 static void
5942 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5943 {
5944   RGN_NR_BLOCKS (rgn) += 1;
5945   RGN_DONT_CALC_DEPS (rgn) = 0;
5946   RGN_HAS_REAL_EBB (rgn) = 0;
5947   CONTAINING_RGN (bb->index) = rgn;
5948   BLOCK_TO_BB (bb->index) = *bb_ord_index;
5949   rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5950   (*bb_ord_index)++;
5951 
5952   /* FIXME: it is true only when not scheduling ebbs.  */
5953   RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5954 }
5955 
5956 /* Functions to support pipelining of outer loops.  */
5957 
5958 /* Creates a new empty region and returns it's number.  */
5959 static int
5960 sel_create_new_region (void)
5961 {
5962   int new_rgn_number = nr_regions;
5963 
5964   RGN_NR_BLOCKS (new_rgn_number) = 0;
5965 
5966   /* FIXME: This will work only when EBBs are not created.  */
5967   if (new_rgn_number != 0)
5968     RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5969       RGN_NR_BLOCKS (new_rgn_number - 1);
5970   else
5971     RGN_BLOCKS (new_rgn_number) = 0;
5972 
5973   /* Set the blocks of the next region so the other functions may
5974      calculate the number of blocks in the region.  */
5975   RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5976     RGN_NR_BLOCKS (new_rgn_number);
5977 
5978   nr_regions++;
5979 
5980   return new_rgn_number;
5981 }
5982 
5983 /* If X has a smaller topological sort number than Y, returns -1;
5984    if greater, returns 1.  */
5985 static int
5986 bb_top_order_comparator (const void *x, const void *y)
5987 {
5988   basic_block bb1 = *(const basic_block *) x;
5989   basic_block bb2 = *(const basic_block *) y;
5990 
5991   gcc_assert (bb1 == bb2
5992 	      || rev_top_order_index[bb1->index]
5993 		 != rev_top_order_index[bb2->index]);
5994 
5995   /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5996      bbs with greater number should go earlier.  */
5997   if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5998     return -1;
5999   else
6000     return 1;
6001 }
6002 
6003 /* Create a region for LOOP and return its number.  If we don't want
6004    to pipeline LOOP, return -1.  */
6005 static int
6006 make_region_from_loop (struct loop *loop)
6007 {
6008   unsigned int i;
6009   int new_rgn_number = -1;
6010   struct loop *inner;
6011 
6012   /* Basic block index, to be assigned to BLOCK_TO_BB.  */
6013   int bb_ord_index = 0;
6014   basic_block *loop_blocks;
6015   basic_block preheader_block;
6016 
6017   if (loop->num_nodes
6018       > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
6019     return -1;
6020 
6021   /* Don't pipeline loops whose latch belongs to some of its inner loops.  */
6022   for (inner = loop->inner; inner; inner = inner->inner)
6023     if (flow_bb_inside_loop_p (inner, loop->latch))
6024       return -1;
6025 
6026   loop->ninsns = num_loop_insns (loop);
6027   if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
6028     return -1;
6029 
6030   loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
6031 
6032   for (i = 0; i < loop->num_nodes; i++)
6033     if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
6034       {
6035 	free (loop_blocks);
6036 	return -1;
6037       }
6038 
6039   preheader_block = loop_preheader_edge (loop)->src;
6040   gcc_assert (preheader_block);
6041   gcc_assert (loop_blocks[0] == loop->header);
6042 
6043   new_rgn_number = sel_create_new_region ();
6044 
6045   sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
6046   bitmap_set_bit (bbs_in_loop_rgns, preheader_block->index);
6047 
6048   for (i = 0; i < loop->num_nodes; i++)
6049     {
6050       /* Add only those blocks that haven't been scheduled in the inner loop.
6051 	 The exception is the basic blocks with bookkeeping code - they should
6052 	 be added to the region (and they actually don't belong to the loop
6053 	 body, but to the region containing that loop body).  */
6054 
6055       gcc_assert (new_rgn_number >= 0);
6056 
6057       if (! bitmap_bit_p (bbs_in_loop_rgns, loop_blocks[i]->index))
6058 	{
6059 	  sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
6060                                    new_rgn_number);
6061 	  bitmap_set_bit (bbs_in_loop_rgns, loop_blocks[i]->index);
6062 	}
6063     }
6064 
6065   free (loop_blocks);
6066   MARK_LOOP_FOR_PIPELINING (loop);
6067 
6068   return new_rgn_number;
6069 }
6070 
6071 /* Create a new region from preheader blocks LOOP_BLOCKS.  */
6072 void
6073 make_region_from_loop_preheader (vec<basic_block> *&loop_blocks)
6074 {
6075   unsigned int i;
6076   int new_rgn_number = -1;
6077   basic_block bb;
6078 
6079   /* Basic block index, to be assigned to BLOCK_TO_BB.  */
6080   int bb_ord_index = 0;
6081 
6082   new_rgn_number = sel_create_new_region ();
6083 
6084   FOR_EACH_VEC_ELT (*loop_blocks, i, bb)
6085     {
6086       gcc_assert (new_rgn_number >= 0);
6087 
6088       sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
6089     }
6090 
6091   vec_free (loop_blocks);
6092 }
6093 
6094 
6095 /* Create region(s) from loop nest LOOP, such that inner loops will be
6096    pipelined before outer loops.  Returns true when a region for LOOP
6097    is created.  */
6098 static bool
6099 make_regions_from_loop_nest (struct loop *loop)
6100 {
6101   struct loop *cur_loop;
6102   int rgn_number;
6103 
6104   /* Traverse all inner nodes of the loop.  */
6105   for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
6106     if (! bitmap_bit_p (bbs_in_loop_rgns, cur_loop->header->index))
6107       return false;
6108 
6109   /* At this moment all regular inner loops should have been pipelined.
6110      Try to create a region from this loop.  */
6111   rgn_number = make_region_from_loop (loop);
6112 
6113   if (rgn_number < 0)
6114     return false;
6115 
6116   loop_nests.safe_push (loop);
6117   return true;
6118 }
6119 
6120 /* Initalize data structures needed.  */
6121 void
6122 sel_init_pipelining (void)
6123 {
6124   /* Collect loop information to be used in outer loops pipelining.  */
6125   loop_optimizer_init (LOOPS_HAVE_PREHEADERS
6126                        | LOOPS_HAVE_FALLTHRU_PREHEADERS
6127 		       | LOOPS_HAVE_RECORDED_EXITS
6128 		       | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
6129   current_loop_nest = NULL;
6130 
6131   bbs_in_loop_rgns = sbitmap_alloc (last_basic_block_for_fn (cfun));
6132   bitmap_clear (bbs_in_loop_rgns);
6133 
6134   recompute_rev_top_order ();
6135 }
6136 
6137 /* Returns a struct loop for region RGN.  */
6138 loop_p
6139 get_loop_nest_for_rgn (unsigned int rgn)
6140 {
6141   /* Regions created with extend_rgns don't have corresponding loop nests,
6142      because they don't represent loops.  */
6143   if (rgn < loop_nests.length ())
6144     return loop_nests[rgn];
6145   else
6146     return NULL;
6147 }
6148 
6149 /* True when LOOP was included into pipelining regions.   */
6150 bool
6151 considered_for_pipelining_p (struct loop *loop)
6152 {
6153   if (loop_depth (loop) == 0)
6154     return false;
6155 
6156   /* Now, the loop could be too large or irreducible.  Check whether its
6157      region is in LOOP_NESTS.
6158      We determine the region number of LOOP as the region number of its
6159      latch.  We can't use header here, because this header could be
6160      just removed preheader and it will give us the wrong region number.
6161      Latch can't be used because it could be in the inner loop too.  */
6162   if (LOOP_MARKED_FOR_PIPELINING_P (loop))
6163     {
6164       int rgn = CONTAINING_RGN (loop->latch->index);
6165 
6166       gcc_assert ((unsigned) rgn < loop_nests.length ());
6167       return true;
6168     }
6169 
6170   return false;
6171 }
6172 
6173 /* Makes regions from the rest of the blocks, after loops are chosen
6174    for pipelining.  */
6175 static void
6176 make_regions_from_the_rest (void)
6177 {
6178   int cur_rgn_blocks;
6179   int *loop_hdr;
6180   int i;
6181 
6182   basic_block bb;
6183   edge e;
6184   edge_iterator ei;
6185   int *degree;
6186 
6187   /* Index in rgn_bb_table where to start allocating new regions.  */
6188   cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
6189 
6190   /* Make regions from all the rest basic blocks - those that don't belong to
6191      any loop or belong to irreducible loops.  Prepare the data structures
6192      for extend_rgns.  */
6193 
6194   /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
6195      LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
6196      loop.  */
6197   loop_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
6198   degree = XCNEWVEC (int, last_basic_block_for_fn (cfun));
6199 
6200 
6201   /* For each basic block that belongs to some loop assign the number
6202      of innermost loop it belongs to.  */
6203   for (i = 0; i < last_basic_block_for_fn (cfun); i++)
6204     loop_hdr[i] = -1;
6205 
6206   FOR_EACH_BB_FN (bb, cfun)
6207     {
6208       if (bb->loop_father && bb->loop_father->num != 0
6209 	  && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6210 	loop_hdr[bb->index] = bb->loop_father->num;
6211     }
6212 
6213   /* For each basic block degree is calculated as the number of incoming
6214      edges, that are going out of bbs that are not yet scheduled.
6215      The basic blocks that are scheduled have degree value of zero.  */
6216   FOR_EACH_BB_FN (bb, cfun)
6217     {
6218       degree[bb->index] = 0;
6219 
6220       if (!bitmap_bit_p (bbs_in_loop_rgns, bb->index))
6221 	{
6222 	  FOR_EACH_EDGE (e, ei, bb->preds)
6223 	    if (!bitmap_bit_p (bbs_in_loop_rgns, e->src->index))
6224 	      degree[bb->index]++;
6225 	}
6226       else
6227 	degree[bb->index] = -1;
6228     }
6229 
6230   extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6231 
6232   /* Any block that did not end up in a region is placed into a region
6233      by itself.  */
6234   FOR_EACH_BB_FN (bb, cfun)
6235     if (degree[bb->index] >= 0)
6236       {
6237 	rgn_bb_table[cur_rgn_blocks] = bb->index;
6238 	RGN_NR_BLOCKS (nr_regions) = 1;
6239 	RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6240         RGN_DONT_CALC_DEPS (nr_regions) = 0;
6241 	RGN_HAS_REAL_EBB (nr_regions) = 0;
6242 	CONTAINING_RGN (bb->index) = nr_regions++;
6243 	BLOCK_TO_BB (bb->index) = 0;
6244       }
6245 
6246   free (degree);
6247   free (loop_hdr);
6248 }
6249 
6250 /* Free data structures used in pipelining of loops.  */
6251 void sel_finish_pipelining (void)
6252 {
6253   struct loop *loop;
6254 
6255   /* Release aux fields so we don't free them later by mistake.  */
6256   FOR_EACH_LOOP (loop, 0)
6257     loop->aux = NULL;
6258 
6259   loop_optimizer_finalize ();
6260 
6261   loop_nests.release ();
6262 
6263   free (rev_top_order_index);
6264   rev_top_order_index = NULL;
6265 }
6266 
6267 /* This function replaces the find_rgns when
6268    FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set.  */
6269 void
6270 sel_find_rgns (void)
6271 {
6272   sel_init_pipelining ();
6273   extend_regions ();
6274 
6275   if (current_loops)
6276     {
6277       loop_p loop;
6278 
6279       FOR_EACH_LOOP (loop, (flag_sel_sched_pipelining_outer_loops
6280 			    ? LI_FROM_INNERMOST
6281 			    : LI_ONLY_INNERMOST))
6282 	make_regions_from_loop_nest (loop);
6283     }
6284 
6285   /* Make regions from all the rest basic blocks and schedule them.
6286      These blocks include blocks that don't belong to any loop or belong
6287      to irreducible loops.  */
6288   make_regions_from_the_rest ();
6289 
6290   /* We don't need bbs_in_loop_rgns anymore.  */
6291   sbitmap_free (bbs_in_loop_rgns);
6292   bbs_in_loop_rgns = NULL;
6293 }
6294 
6295 /* Add the preheader blocks from previous loop to current region taking
6296    it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
6297    This function is only used with -fsel-sched-pipelining-outer-loops.  */
6298 void
6299 sel_add_loop_preheaders (bb_vec_t *bbs)
6300 {
6301   int i;
6302   basic_block bb;
6303   vec<basic_block> *preheader_blocks
6304     = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6305 
6306   if (!preheader_blocks)
6307     return;
6308 
6309   for (i = 0; preheader_blocks->iterate (i, &bb); i++)
6310     {
6311       bbs->safe_push (bb);
6312       last_added_blocks.safe_push (bb);
6313       sel_add_bb (bb);
6314     }
6315 
6316   vec_free (preheader_blocks);
6317 }
6318 
6319 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6320    Please note that the function should also work when pipelining_p is
6321    false, because it is used when deciding whether we should or should
6322    not reschedule pipelined code.  */
6323 bool
6324 sel_is_loop_preheader_p (basic_block bb)
6325 {
6326   if (current_loop_nest)
6327     {
6328       struct loop *outer;
6329 
6330       if (preheader_removed)
6331         return false;
6332 
6333       /* Preheader is the first block in the region.  */
6334       if (BLOCK_TO_BB (bb->index) == 0)
6335         return true;
6336 
6337       /* We used to find a preheader with the topological information.
6338          Check that the above code is equivalent to what we did before.  */
6339 
6340       if (in_current_region_p (current_loop_nest->header))
6341 	gcc_assert (!(BLOCK_TO_BB (bb->index)
6342 		      < BLOCK_TO_BB (current_loop_nest->header->index)));
6343 
6344       /* Support the situation when the latch block of outer loop
6345          could be from here.  */
6346       for (outer = loop_outer (current_loop_nest);
6347 	   outer;
6348 	   outer = loop_outer (outer))
6349         if (considered_for_pipelining_p (outer) && outer->latch == bb)
6350           gcc_unreachable ();
6351     }
6352 
6353   return false;
6354 }
6355 
6356 /* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6357    can be removed, making the corresponding edge fallthrough (assuming that
6358    all basic blocks between JUMP_BB and DEST_BB are empty).  */
6359 static bool
6360 bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
6361 {
6362   if (!onlyjump_p (BB_END (jump_bb))
6363       || tablejump_p (BB_END (jump_bb), NULL, NULL))
6364     return false;
6365 
6366   /* Several outgoing edges, abnormal edge or destination of jump is
6367      not DEST_BB.  */
6368   if (EDGE_COUNT (jump_bb->succs) != 1
6369       || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
6370       || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6371     return false;
6372 
6373   /* If not anything of the upper.  */
6374   return true;
6375 }
6376 
6377 /* Removes the loop preheader from the current region and saves it in
6378    PREHEADER_BLOCKS of the father loop, so they will be added later to
6379    region that represents an outer loop.  */
6380 static void
6381 sel_remove_loop_preheader (void)
6382 {
6383   int i, old_len;
6384   int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6385   basic_block bb;
6386   bool all_empty_p = true;
6387   vec<basic_block> *preheader_blocks
6388     = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6389 
6390   vec_check_alloc (preheader_blocks, 0);
6391 
6392   gcc_assert (current_loop_nest);
6393   old_len = preheader_blocks->length ();
6394 
6395   /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS.  */
6396   for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6397     {
6398       bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6399 
6400       /* If the basic block belongs to region, but doesn't belong to
6401 	 corresponding loop, then it should be a preheader.  */
6402       if (sel_is_loop_preheader_p (bb))
6403         {
6404           preheader_blocks->safe_push (bb);
6405           if (BB_END (bb) != bb_note (bb))
6406             all_empty_p = false;
6407         }
6408     }
6409 
6410   /* Remove these blocks only after iterating over the whole region.  */
6411   for (i = preheader_blocks->length () - 1; i >= old_len; i--)
6412     {
6413       bb =  (*preheader_blocks)[i];
6414       sel_remove_bb (bb, false);
6415     }
6416 
6417   if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6418     {
6419       if (!all_empty_p)
6420         /* Immediately create new region from preheader.  */
6421         make_region_from_loop_preheader (preheader_blocks);
6422       else
6423         {
6424           /* If all preheader blocks are empty - dont create new empty region.
6425              Instead, remove them completely.  */
6426           FOR_EACH_VEC_ELT (*preheader_blocks, i, bb)
6427             {
6428               edge e;
6429               edge_iterator ei;
6430               basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6431 
6432               /* Redirect all incoming edges to next basic block.  */
6433               for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6434                 {
6435                   if (! (e->flags & EDGE_FALLTHRU))
6436                     redirect_edge_and_branch (e, bb->next_bb);
6437                   else
6438                     redirect_edge_succ (e, bb->next_bb);
6439                 }
6440               gcc_assert (BB_NOTE_LIST (bb) == NULL);
6441               delete_and_free_basic_block (bb);
6442 
6443               /* Check if after deleting preheader there is a nonconditional
6444                  jump in PREV_BB that leads to the next basic block NEXT_BB.
6445                  If it is so - delete this jump and clear data sets of its
6446                  basic block if it becomes empty.  */
6447 	      if (next_bb->prev_bb == prev_bb
6448 		  && prev_bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)
6449                   && bb_has_removable_jump_to_p (prev_bb, next_bb))
6450                 {
6451                   redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6452                   if (BB_END (prev_bb) == bb_note (prev_bb))
6453                     free_data_sets (prev_bb);
6454                 }
6455 
6456               set_immediate_dominator (CDI_DOMINATORS, next_bb,
6457                                        recompute_dominator (CDI_DOMINATORS,
6458                                                             next_bb));
6459             }
6460         }
6461       vec_free (preheader_blocks);
6462     }
6463   else
6464     /* Store preheader within the father's loop structure.  */
6465     SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6466 			       preheader_blocks);
6467 }
6468 
6469 #endif
6470