xref: /dragonfly/contrib/gcc-8.0/gcc/stor-layout.c (revision 50b09fda)
1 /* C-compiler utilities for types and variables storage layout
2    Copyright (C) 1987-2018 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "stringpool.h"
31 #include "regs.h"
32 #include "emit-rtl.h"
33 #include "cgraph.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "varasm.h"
38 #include "print-tree.h"
39 #include "langhooks.h"
40 #include "tree-inline.h"
41 #include "dumpfile.h"
42 #include "gimplify.h"
43 #include "attribs.h"
44 #include "debug.h"
45 
46 /* Data type for the expressions representing sizes of data types.
47    It is the first integer type laid out.  */
48 tree sizetype_tab[(int) stk_type_kind_last];
49 
50 /* If nonzero, this is an upper limit on alignment of structure fields.
51    The value is measured in bits.  */
52 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
53 
54 static tree self_referential_size (tree);
55 static void finalize_record_size (record_layout_info);
56 static void finalize_type_size (tree);
57 static void place_union_field (record_layout_info, tree);
58 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
59 			     HOST_WIDE_INT, tree);
60 extern void debug_rli (record_layout_info);
61 
62 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
63    to serve as the actual size-expression for a type or decl.  */
64 
65 tree
66 variable_size (tree size)
67 {
68   /* Obviously.  */
69   if (TREE_CONSTANT (size))
70     return size;
71 
72   /* If the size is self-referential, we can't make a SAVE_EXPR (see
73      save_expr for the rationale).  But we can do something else.  */
74   if (CONTAINS_PLACEHOLDER_P (size))
75     return self_referential_size (size);
76 
77   /* If we are in the global binding level, we can't make a SAVE_EXPR
78      since it may end up being shared across functions, so it is up
79      to the front-end to deal with this case.  */
80   if (lang_hooks.decls.global_bindings_p ())
81     return size;
82 
83   return save_expr (size);
84 }
85 
86 /* An array of functions used for self-referential size computation.  */
87 static GTY(()) vec<tree, va_gc> *size_functions;
88 
89 /* Return true if T is a self-referential component reference.  */
90 
91 static bool
92 self_referential_component_ref_p (tree t)
93 {
94   if (TREE_CODE (t) != COMPONENT_REF)
95     return false;
96 
97   while (REFERENCE_CLASS_P (t))
98     t = TREE_OPERAND (t, 0);
99 
100   return (TREE_CODE (t) == PLACEHOLDER_EXPR);
101 }
102 
103 /* Similar to copy_tree_r but do not copy component references involving
104    PLACEHOLDER_EXPRs.  These nodes are spotted in find_placeholder_in_expr
105    and substituted in substitute_in_expr.  */
106 
107 static tree
108 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
109 {
110   enum tree_code code = TREE_CODE (*tp);
111 
112   /* Stop at types, decls, constants like copy_tree_r.  */
113   if (TREE_CODE_CLASS (code) == tcc_type
114       || TREE_CODE_CLASS (code) == tcc_declaration
115       || TREE_CODE_CLASS (code) == tcc_constant)
116     {
117       *walk_subtrees = 0;
118       return NULL_TREE;
119     }
120 
121   /* This is the pattern built in ada/make_aligning_type.  */
122   else if (code == ADDR_EXPR
123 	   && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
124     {
125       *walk_subtrees = 0;
126       return NULL_TREE;
127     }
128 
129   /* Default case: the component reference.  */
130   else if (self_referential_component_ref_p (*tp))
131     {
132       *walk_subtrees = 0;
133       return NULL_TREE;
134     }
135 
136   /* We're not supposed to have them in self-referential size trees
137      because we wouldn't properly control when they are evaluated.
138      However, not creating superfluous SAVE_EXPRs requires accurate
139      tracking of readonly-ness all the way down to here, which we
140      cannot always guarantee in practice.  So punt in this case.  */
141   else if (code == SAVE_EXPR)
142     return error_mark_node;
143 
144   else if (code == STATEMENT_LIST)
145     gcc_unreachable ();
146 
147   return copy_tree_r (tp, walk_subtrees, data);
148 }
149 
150 /* Given a SIZE expression that is self-referential, return an equivalent
151    expression to serve as the actual size expression for a type.  */
152 
153 static tree
154 self_referential_size (tree size)
155 {
156   static unsigned HOST_WIDE_INT fnno = 0;
157   vec<tree> self_refs = vNULL;
158   tree param_type_list = NULL, param_decl_list = NULL;
159   tree t, ref, return_type, fntype, fnname, fndecl;
160   unsigned int i;
161   char buf[128];
162   vec<tree, va_gc> *args = NULL;
163 
164   /* Do not factor out simple operations.  */
165   t = skip_simple_constant_arithmetic (size);
166   if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
167     return size;
168 
169   /* Collect the list of self-references in the expression.  */
170   find_placeholder_in_expr (size, &self_refs);
171   gcc_assert (self_refs.length () > 0);
172 
173   /* Obtain a private copy of the expression.  */
174   t = size;
175   if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
176     return size;
177   size = t;
178 
179   /* Build the parameter and argument lists in parallel; also
180      substitute the former for the latter in the expression.  */
181   vec_alloc (args, self_refs.length ());
182   FOR_EACH_VEC_ELT (self_refs, i, ref)
183     {
184       tree subst, param_name, param_type, param_decl;
185 
186       if (DECL_P (ref))
187 	{
188 	  /* We shouldn't have true variables here.  */
189 	  gcc_assert (TREE_READONLY (ref));
190 	  subst = ref;
191 	}
192       /* This is the pattern built in ada/make_aligning_type.  */
193       else if (TREE_CODE (ref) == ADDR_EXPR)
194         subst = ref;
195       /* Default case: the component reference.  */
196       else
197 	subst = TREE_OPERAND (ref, 1);
198 
199       sprintf (buf, "p%d", i);
200       param_name = get_identifier (buf);
201       param_type = TREE_TYPE (ref);
202       param_decl
203 	= build_decl (input_location, PARM_DECL, param_name, param_type);
204       DECL_ARG_TYPE (param_decl) = param_type;
205       DECL_ARTIFICIAL (param_decl) = 1;
206       TREE_READONLY (param_decl) = 1;
207 
208       size = substitute_in_expr (size, subst, param_decl);
209 
210       param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
211       param_decl_list = chainon (param_decl, param_decl_list);
212       args->quick_push (ref);
213     }
214 
215   self_refs.release ();
216 
217   /* Append 'void' to indicate that the number of parameters is fixed.  */
218   param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
219 
220   /* The 3 lists have been created in reverse order.  */
221   param_type_list = nreverse (param_type_list);
222   param_decl_list = nreverse (param_decl_list);
223 
224   /* Build the function type.  */
225   return_type = TREE_TYPE (size);
226   fntype = build_function_type (return_type, param_type_list);
227 
228   /* Build the function declaration.  */
229   sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
230   fnname = get_file_function_name (buf);
231   fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
232   for (t = param_decl_list; t; t = DECL_CHAIN (t))
233     DECL_CONTEXT (t) = fndecl;
234   DECL_ARGUMENTS (fndecl) = param_decl_list;
235   DECL_RESULT (fndecl)
236     = build_decl (input_location, RESULT_DECL, 0, return_type);
237   DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
238 
239   /* The function has been created by the compiler and we don't
240      want to emit debug info for it.  */
241   DECL_ARTIFICIAL (fndecl) = 1;
242   DECL_IGNORED_P (fndecl) = 1;
243 
244   /* It is supposed to be "const" and never throw.  */
245   TREE_READONLY (fndecl) = 1;
246   TREE_NOTHROW (fndecl) = 1;
247 
248   /* We want it to be inlined when this is deemed profitable, as
249      well as discarded if every call has been integrated.  */
250   DECL_DECLARED_INLINE_P (fndecl) = 1;
251 
252   /* It is made up of a unique return statement.  */
253   DECL_INITIAL (fndecl) = make_node (BLOCK);
254   BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
255   t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
256   DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
257   TREE_STATIC (fndecl) = 1;
258 
259   /* Put it onto the list of size functions.  */
260   vec_safe_push (size_functions, fndecl);
261 
262   /* Replace the original expression with a call to the size function.  */
263   return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
264 }
265 
266 /* Take, queue and compile all the size functions.  It is essential that
267    the size functions be gimplified at the very end of the compilation
268    in order to guarantee transparent handling of self-referential sizes.
269    Otherwise the GENERIC inliner would not be able to inline them back
270    at each of their call sites, thus creating artificial non-constant
271    size expressions which would trigger nasty problems later on.  */
272 
273 void
274 finalize_size_functions (void)
275 {
276   unsigned int i;
277   tree fndecl;
278 
279   for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
280     {
281       allocate_struct_function (fndecl, false);
282       set_cfun (NULL);
283       dump_function (TDI_original, fndecl);
284 
285       /* As these functions are used to describe the layout of variable-length
286          structures, debug info generation needs their implementation.  */
287       debug_hooks->size_function (fndecl);
288       gimplify_function_tree (fndecl);
289       cgraph_node::finalize_function (fndecl, false);
290     }
291 
292   vec_free (size_functions);
293 }
294 
295 /* Return a machine mode of class MCLASS with SIZE bits of precision,
296    if one exists.  The mode may have padding bits as well the SIZE
297    value bits.  If LIMIT is nonzero, disregard modes wider than
298    MAX_FIXED_MODE_SIZE.  */
299 
300 opt_machine_mode
301 mode_for_size (poly_uint64 size, enum mode_class mclass, int limit)
302 {
303   machine_mode mode;
304   int i;
305 
306   if (limit && maybe_gt (size, (unsigned int) MAX_FIXED_MODE_SIZE))
307     return opt_machine_mode ();
308 
309   /* Get the first mode which has this size, in the specified class.  */
310   FOR_EACH_MODE_IN_CLASS (mode, mclass)
311     if (known_eq (GET_MODE_PRECISION (mode), size))
312       return mode;
313 
314   if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
315     for (i = 0; i < NUM_INT_N_ENTS; i ++)
316       if (known_eq (int_n_data[i].bitsize, size)
317 	  && int_n_enabled_p[i])
318 	return int_n_data[i].m;
319 
320   return opt_machine_mode ();
321 }
322 
323 /* Similar, except passed a tree node.  */
324 
325 opt_machine_mode
326 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
327 {
328   unsigned HOST_WIDE_INT uhwi;
329   unsigned int ui;
330 
331   if (!tree_fits_uhwi_p (size))
332     return opt_machine_mode ();
333   uhwi = tree_to_uhwi (size);
334   ui = uhwi;
335   if (uhwi != ui)
336     return opt_machine_mode ();
337   return mode_for_size (ui, mclass, limit);
338 }
339 
340 /* Return the narrowest mode of class MCLASS that contains at least
341    SIZE bits.  Abort if no such mode exists.  */
342 
343 machine_mode
344 smallest_mode_for_size (poly_uint64 size, enum mode_class mclass)
345 {
346   machine_mode mode = VOIDmode;
347   int i;
348 
349   /* Get the first mode which has at least this size, in the
350      specified class.  */
351   FOR_EACH_MODE_IN_CLASS (mode, mclass)
352     if (known_ge (GET_MODE_PRECISION (mode), size))
353       break;
354 
355   gcc_assert (mode != VOIDmode);
356 
357   if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
358     for (i = 0; i < NUM_INT_N_ENTS; i ++)
359       if (known_ge (int_n_data[i].bitsize, size)
360 	  && known_lt (int_n_data[i].bitsize, GET_MODE_PRECISION (mode))
361 	  && int_n_enabled_p[i])
362 	mode = int_n_data[i].m;
363 
364   return mode;
365 }
366 
367 /* Return an integer mode of exactly the same size as MODE, if one exists.  */
368 
369 opt_scalar_int_mode
370 int_mode_for_mode (machine_mode mode)
371 {
372   switch (GET_MODE_CLASS (mode))
373     {
374     case MODE_INT:
375     case MODE_PARTIAL_INT:
376       return as_a <scalar_int_mode> (mode);
377 
378     case MODE_COMPLEX_INT:
379     case MODE_COMPLEX_FLOAT:
380     case MODE_FLOAT:
381     case MODE_DECIMAL_FLOAT:
382     case MODE_FRACT:
383     case MODE_ACCUM:
384     case MODE_UFRACT:
385     case MODE_UACCUM:
386     case MODE_VECTOR_BOOL:
387     case MODE_VECTOR_INT:
388     case MODE_VECTOR_FLOAT:
389     case MODE_VECTOR_FRACT:
390     case MODE_VECTOR_ACCUM:
391     case MODE_VECTOR_UFRACT:
392     case MODE_VECTOR_UACCUM:
393     case MODE_POINTER_BOUNDS:
394       return int_mode_for_size (GET_MODE_BITSIZE (mode), 0);
395 
396     case MODE_RANDOM:
397       if (mode == BLKmode)
398 	return opt_scalar_int_mode ();
399 
400       /* fall through */
401 
402     case MODE_CC:
403     default:
404       gcc_unreachable ();
405     }
406 }
407 
408 /* Find a mode that can be used for efficient bitwise operations on MODE,
409    if one exists.  */
410 
411 opt_machine_mode
412 bitwise_mode_for_mode (machine_mode mode)
413 {
414   /* Quick exit if we already have a suitable mode.  */
415   scalar_int_mode int_mode;
416   if (is_a <scalar_int_mode> (mode, &int_mode)
417       && GET_MODE_BITSIZE (int_mode) <= MAX_FIXED_MODE_SIZE)
418     return int_mode;
419 
420   /* Reuse the sanity checks from int_mode_for_mode.  */
421   gcc_checking_assert ((int_mode_for_mode (mode), true));
422 
423   poly_int64 bitsize = GET_MODE_BITSIZE (mode);
424 
425   /* Try to replace complex modes with complex modes.  In general we
426      expect both components to be processed independently, so we only
427      care whether there is a register for the inner mode.  */
428   if (COMPLEX_MODE_P (mode))
429     {
430       machine_mode trial = mode;
431       if ((GET_MODE_CLASS (trial) == MODE_COMPLEX_INT
432 	   || mode_for_size (bitsize, MODE_COMPLEX_INT, false).exists (&trial))
433 	  && have_regs_of_mode[GET_MODE_INNER (trial)])
434 	return trial;
435     }
436 
437   /* Try to replace vector modes with vector modes.  Also try using vector
438      modes if an integer mode would be too big.  */
439   if (VECTOR_MODE_P (mode)
440       || maybe_gt (bitsize, MAX_FIXED_MODE_SIZE))
441     {
442       machine_mode trial = mode;
443       if ((GET_MODE_CLASS (trial) == MODE_VECTOR_INT
444 	   || mode_for_size (bitsize, MODE_VECTOR_INT, 0).exists (&trial))
445 	  && have_regs_of_mode[trial]
446 	  && targetm.vector_mode_supported_p (trial))
447 	return trial;
448     }
449 
450   /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE.  */
451   return mode_for_size (bitsize, MODE_INT, true);
452 }
453 
454 /* Find a type that can be used for efficient bitwise operations on MODE.
455    Return null if no such mode exists.  */
456 
457 tree
458 bitwise_type_for_mode (machine_mode mode)
459 {
460   if (!bitwise_mode_for_mode (mode).exists (&mode))
461     return NULL_TREE;
462 
463   unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
464   tree inner_type = build_nonstandard_integer_type (inner_size, true);
465 
466   if (VECTOR_MODE_P (mode))
467     return build_vector_type_for_mode (inner_type, mode);
468 
469   if (COMPLEX_MODE_P (mode))
470     return build_complex_type (inner_type);
471 
472   gcc_checking_assert (GET_MODE_INNER (mode) == mode);
473   return inner_type;
474 }
475 
476 /* Find a mode that is suitable for representing a vector with NUNITS
477    elements of mode INNERMODE, if one exists.  The returned mode can be
478    either an integer mode or a vector mode.  */
479 
480 opt_machine_mode
481 mode_for_vector (scalar_mode innermode, poly_uint64 nunits)
482 {
483   machine_mode mode;
484 
485   /* First, look for a supported vector type.  */
486   if (SCALAR_FLOAT_MODE_P (innermode))
487     mode = MIN_MODE_VECTOR_FLOAT;
488   else if (SCALAR_FRACT_MODE_P (innermode))
489     mode = MIN_MODE_VECTOR_FRACT;
490   else if (SCALAR_UFRACT_MODE_P (innermode))
491     mode = MIN_MODE_VECTOR_UFRACT;
492   else if (SCALAR_ACCUM_MODE_P (innermode))
493     mode = MIN_MODE_VECTOR_ACCUM;
494   else if (SCALAR_UACCUM_MODE_P (innermode))
495     mode = MIN_MODE_VECTOR_UACCUM;
496   else
497     mode = MIN_MODE_VECTOR_INT;
498 
499   /* Do not check vector_mode_supported_p here.  We'll do that
500      later in vector_type_mode.  */
501   FOR_EACH_MODE_FROM (mode, mode)
502     if (known_eq (GET_MODE_NUNITS (mode), nunits)
503 	&& GET_MODE_INNER (mode) == innermode)
504       return mode;
505 
506   /* For integers, try mapping it to a same-sized scalar mode.  */
507   if (GET_MODE_CLASS (innermode) == MODE_INT)
508     {
509       poly_uint64 nbits = nunits * GET_MODE_BITSIZE (innermode);
510       if (int_mode_for_size (nbits, 0).exists (&mode)
511 	  && have_regs_of_mode[mode])
512 	return mode;
513     }
514 
515   return opt_machine_mode ();
516 }
517 
518 /* Return the mode for a vector that has NUNITS integer elements of
519    INT_BITS bits each, if such a mode exists.  The mode can be either
520    an integer mode or a vector mode.  */
521 
522 opt_machine_mode
523 mode_for_int_vector (unsigned int int_bits, poly_uint64 nunits)
524 {
525   scalar_int_mode int_mode;
526   machine_mode vec_mode;
527   if (int_mode_for_size (int_bits, 0).exists (&int_mode)
528       && mode_for_vector (int_mode, nunits).exists (&vec_mode))
529     return vec_mode;
530   return opt_machine_mode ();
531 }
532 
533 /* Return the alignment of MODE. This will be bounded by 1 and
534    BIGGEST_ALIGNMENT.  */
535 
536 unsigned int
537 get_mode_alignment (machine_mode mode)
538 {
539   return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
540 }
541 
542 /* Return the natural mode of an array, given that it is SIZE bytes in
543    total and has elements of type ELEM_TYPE.  */
544 
545 static machine_mode
546 mode_for_array (tree elem_type, tree size)
547 {
548   tree elem_size;
549   poly_uint64 int_size, int_elem_size;
550   unsigned HOST_WIDE_INT num_elems;
551   bool limit_p;
552 
553   /* One-element arrays get the component type's mode.  */
554   elem_size = TYPE_SIZE (elem_type);
555   if (simple_cst_equal (size, elem_size))
556     return TYPE_MODE (elem_type);
557 
558   limit_p = true;
559   if (poly_int_tree_p (size, &int_size)
560       && poly_int_tree_p (elem_size, &int_elem_size)
561       && maybe_ne (int_elem_size, 0U)
562       && constant_multiple_p (int_size, int_elem_size, &num_elems))
563     {
564       machine_mode elem_mode = TYPE_MODE (elem_type);
565       machine_mode mode;
566       if (targetm.array_mode (elem_mode, num_elems).exists (&mode))
567 	return mode;
568       if (targetm.array_mode_supported_p (elem_mode, num_elems))
569 	limit_p = false;
570     }
571   return mode_for_size_tree (size, MODE_INT, limit_p).else_blk ();
572 }
573 
574 /* Subroutine of layout_decl: Force alignment required for the data type.
575    But if the decl itself wants greater alignment, don't override that.  */
576 
577 static inline void
578 do_type_align (tree type, tree decl)
579 {
580   if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
581     {
582       SET_DECL_ALIGN (decl, TYPE_ALIGN (type));
583       if (TREE_CODE (decl) == FIELD_DECL)
584 	DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
585     }
586   if (TYPE_WARN_IF_NOT_ALIGN (type) > DECL_WARN_IF_NOT_ALIGN (decl))
587     SET_DECL_WARN_IF_NOT_ALIGN (decl, TYPE_WARN_IF_NOT_ALIGN (type));
588 }
589 
590 /* Set the size, mode and alignment of a ..._DECL node.
591    TYPE_DECL does need this for C++.
592    Note that LABEL_DECL and CONST_DECL nodes do not need this,
593    and FUNCTION_DECL nodes have them set up in a special (and simple) way.
594    Don't call layout_decl for them.
595 
596    KNOWN_ALIGN is the amount of alignment we can assume this
597    decl has with no special effort.  It is relevant only for FIELD_DECLs
598    and depends on the previous fields.
599    All that matters about KNOWN_ALIGN is which powers of 2 divide it.
600    If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
601    the record will be aligned to suit.  */
602 
603 void
604 layout_decl (tree decl, unsigned int known_align)
605 {
606   tree type = TREE_TYPE (decl);
607   enum tree_code code = TREE_CODE (decl);
608   rtx rtl = NULL_RTX;
609   location_t loc = DECL_SOURCE_LOCATION (decl);
610 
611   if (code == CONST_DECL)
612     return;
613 
614   gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
615 	      || code == TYPE_DECL || code == FIELD_DECL);
616 
617   rtl = DECL_RTL_IF_SET (decl);
618 
619   if (type == error_mark_node)
620     type = void_type_node;
621 
622   /* Usually the size and mode come from the data type without change,
623      however, the front-end may set the explicit width of the field, so its
624      size may not be the same as the size of its type.  This happens with
625      bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
626      also happens with other fields.  For example, the C++ front-end creates
627      zero-sized fields corresponding to empty base classes, and depends on
628      layout_type setting DECL_FIELD_BITPOS correctly for the field.  Set the
629      size in bytes from the size in bits.  If we have already set the mode,
630      don't set it again since we can be called twice for FIELD_DECLs.  */
631 
632   DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
633   if (DECL_MODE (decl) == VOIDmode)
634     SET_DECL_MODE (decl, TYPE_MODE (type));
635 
636   if (DECL_SIZE (decl) == 0)
637     {
638       DECL_SIZE (decl) = TYPE_SIZE (type);
639       DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
640     }
641   else if (DECL_SIZE_UNIT (decl) == 0)
642     DECL_SIZE_UNIT (decl)
643       = fold_convert_loc (loc, sizetype,
644 			  size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
645 					  bitsize_unit_node));
646 
647   if (code != FIELD_DECL)
648     /* For non-fields, update the alignment from the type.  */
649     do_type_align (type, decl);
650   else
651     /* For fields, it's a bit more complicated...  */
652     {
653       bool old_user_align = DECL_USER_ALIGN (decl);
654       bool zero_bitfield = false;
655       bool packed_p = DECL_PACKED (decl);
656       unsigned int mfa;
657 
658       if (DECL_BIT_FIELD (decl))
659 	{
660 	  DECL_BIT_FIELD_TYPE (decl) = type;
661 
662 	  /* A zero-length bit-field affects the alignment of the next
663 	     field.  In essence such bit-fields are not influenced by
664 	     any packing due to #pragma pack or attribute packed.  */
665 	  if (integer_zerop (DECL_SIZE (decl))
666 	      && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
667 	    {
668 	      zero_bitfield = true;
669 	      packed_p = false;
670 	      if (PCC_BITFIELD_TYPE_MATTERS)
671 		do_type_align (type, decl);
672 	      else
673 		{
674 #ifdef EMPTY_FIELD_BOUNDARY
675 		  if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
676 		    {
677 		      SET_DECL_ALIGN (decl, EMPTY_FIELD_BOUNDARY);
678 		      DECL_USER_ALIGN (decl) = 0;
679 		    }
680 #endif
681 		}
682 	    }
683 
684 	  /* See if we can use an ordinary integer mode for a bit-field.
685 	     Conditions are: a fixed size that is correct for another mode,
686 	     occupying a complete byte or bytes on proper boundary.  */
687 	  if (TYPE_SIZE (type) != 0
688 	      && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
689 	      && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
690 	    {
691 	      machine_mode xmode;
692 	      if (mode_for_size_tree (DECL_SIZE (decl),
693 				      MODE_INT, 1).exists (&xmode))
694 		{
695 		  unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
696 		  if (!(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
697 		      && (known_align == 0 || known_align >= xalign))
698 		    {
699 		      SET_DECL_ALIGN (decl, MAX (xalign, DECL_ALIGN (decl)));
700 		      SET_DECL_MODE (decl, xmode);
701 		      DECL_BIT_FIELD (decl) = 0;
702 		    }
703 		}
704 	    }
705 
706 	  /* Turn off DECL_BIT_FIELD if we won't need it set.  */
707 	  if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
708 	      && known_align >= TYPE_ALIGN (type)
709 	      && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
710 	    DECL_BIT_FIELD (decl) = 0;
711 	}
712       else if (packed_p && DECL_USER_ALIGN (decl))
713 	/* Don't touch DECL_ALIGN.  For other packed fields, go ahead and
714 	   round up; we'll reduce it again below.  We want packing to
715 	   supersede USER_ALIGN inherited from the type, but defer to
716 	   alignment explicitly specified on the field decl.  */;
717       else
718 	do_type_align (type, decl);
719 
720       /* If the field is packed and not explicitly aligned, give it the
721 	 minimum alignment.  Note that do_type_align may set
722 	 DECL_USER_ALIGN, so we need to check old_user_align instead.  */
723       if (packed_p
724 	  && !old_user_align)
725 	SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), BITS_PER_UNIT));
726 
727       if (! packed_p && ! DECL_USER_ALIGN (decl))
728 	{
729 	  /* Some targets (i.e. i386, VMS) limit struct field alignment
730 	     to a lower boundary than alignment of variables unless
731 	     it was overridden by attribute aligned.  */
732 #ifdef BIGGEST_FIELD_ALIGNMENT
733 	  SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl),
734 				     (unsigned) BIGGEST_FIELD_ALIGNMENT));
735 #endif
736 #ifdef ADJUST_FIELD_ALIGN
737 	  SET_DECL_ALIGN (decl, ADJUST_FIELD_ALIGN (decl, TREE_TYPE (decl),
738 						    DECL_ALIGN (decl)));
739 #endif
740 	}
741 
742       if (zero_bitfield)
743         mfa = initial_max_fld_align * BITS_PER_UNIT;
744       else
745 	mfa = maximum_field_alignment;
746       /* Should this be controlled by DECL_USER_ALIGN, too?  */
747       if (mfa != 0)
748 	SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), mfa));
749     }
750 
751   /* Evaluate nonconstant size only once, either now or as soon as safe.  */
752   if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
753     DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
754   if (DECL_SIZE_UNIT (decl) != 0
755       && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
756     DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
757 
758   /* If requested, warn about definitions of large data objects.  */
759   if (warn_larger_than
760       && (code == VAR_DECL || code == PARM_DECL)
761       && ! DECL_EXTERNAL (decl))
762     {
763       tree size = DECL_SIZE_UNIT (decl);
764 
765       if (size != 0 && TREE_CODE (size) == INTEGER_CST
766 	  && compare_tree_int (size, larger_than_size) > 0)
767 	{
768 	  int size_as_int = TREE_INT_CST_LOW (size);
769 
770 	  if (compare_tree_int (size, size_as_int) == 0)
771 	    warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
772 	  else
773 	    warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
774                      decl, larger_than_size);
775 	}
776     }
777 
778   /* If the RTL was already set, update its mode and mem attributes.  */
779   if (rtl)
780     {
781       PUT_MODE (rtl, DECL_MODE (decl));
782       SET_DECL_RTL (decl, 0);
783       if (MEM_P (rtl))
784 	set_mem_attributes (rtl, decl, 1);
785       SET_DECL_RTL (decl, rtl);
786     }
787 }
788 
789 /* Given a VAR_DECL, PARM_DECL, RESULT_DECL, or FIELD_DECL, clears the
790    results of a previous call to layout_decl and calls it again.  */
791 
792 void
793 relayout_decl (tree decl)
794 {
795   DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
796   SET_DECL_MODE (decl, VOIDmode);
797   if (!DECL_USER_ALIGN (decl))
798     SET_DECL_ALIGN (decl, 0);
799   if (DECL_RTL_SET_P (decl))
800     SET_DECL_RTL (decl, 0);
801 
802   layout_decl (decl, 0);
803 }
804 
805 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
806    QUAL_UNION_TYPE.  Return a pointer to a struct record_layout_info which
807    is to be passed to all other layout functions for this record.  It is the
808    responsibility of the caller to call `free' for the storage returned.
809    Note that garbage collection is not permitted until we finish laying
810    out the record.  */
811 
812 record_layout_info
813 start_record_layout (tree t)
814 {
815   record_layout_info rli = XNEW (struct record_layout_info_s);
816 
817   rli->t = t;
818 
819   /* If the type has a minimum specified alignment (via an attribute
820      declaration, for example) use it -- otherwise, start with a
821      one-byte alignment.  */
822   rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
823   rli->unpacked_align = rli->record_align;
824   rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
825 
826 #ifdef STRUCTURE_SIZE_BOUNDARY
827   /* Packed structures don't need to have minimum size.  */
828   if (! TYPE_PACKED (t))
829     {
830       unsigned tmp;
831 
832       /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY.  */
833       tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
834       if (maximum_field_alignment != 0)
835 	tmp = MIN (tmp, maximum_field_alignment);
836       rli->record_align = MAX (rli->record_align, tmp);
837     }
838 #endif
839 
840   rli->offset = size_zero_node;
841   rli->bitpos = bitsize_zero_node;
842   rli->prev_field = 0;
843   rli->pending_statics = 0;
844   rli->packed_maybe_necessary = 0;
845   rli->remaining_in_alignment = 0;
846 
847   return rli;
848 }
849 
850 /* Fold sizetype value X to bitsizetype, given that X represents a type
851    size or offset.  */
852 
853 static tree
854 bits_from_bytes (tree x)
855 {
856   if (POLY_INT_CST_P (x))
857     /* The runtime calculation isn't allowed to overflow sizetype;
858        increasing the runtime values must always increase the size
859        or offset of the object.  This means that the object imposes
860        a maximum value on the runtime parameters, but we don't record
861        what that is.  */
862     return build_poly_int_cst
863       (bitsizetype,
864        poly_wide_int::from (poly_int_cst_value (x),
865 			    TYPE_PRECISION (bitsizetype),
866 			    TYPE_SIGN (TREE_TYPE (x))));
867   x = fold_convert (bitsizetype, x);
868   gcc_checking_assert (x);
869   return x;
870 }
871 
872 /* Return the combined bit position for the byte offset OFFSET and the
873    bit position BITPOS.
874 
875    These functions operate on byte and bit positions present in FIELD_DECLs
876    and assume that these expressions result in no (intermediate) overflow.
877    This assumption is necessary to fold the expressions as much as possible,
878    so as to avoid creating artificially variable-sized types in languages
879    supporting variable-sized types like Ada.  */
880 
881 tree
882 bit_from_pos (tree offset, tree bitpos)
883 {
884   return size_binop (PLUS_EXPR, bitpos,
885 		     size_binop (MULT_EXPR, bits_from_bytes (offset),
886 				 bitsize_unit_node));
887 }
888 
889 /* Return the combined truncated byte position for the byte offset OFFSET and
890    the bit position BITPOS.  */
891 
892 tree
893 byte_from_pos (tree offset, tree bitpos)
894 {
895   tree bytepos;
896   if (TREE_CODE (bitpos) == MULT_EXPR
897       && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
898     bytepos = TREE_OPERAND (bitpos, 0);
899   else
900     bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
901   return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
902 }
903 
904 /* Split the bit position POS into a byte offset *POFFSET and a bit
905    position *PBITPOS with the byte offset aligned to OFF_ALIGN bits.  */
906 
907 void
908 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
909 	      tree pos)
910 {
911   tree toff_align = bitsize_int (off_align);
912   if (TREE_CODE (pos) == MULT_EXPR
913       && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
914     {
915       *poffset = size_binop (MULT_EXPR,
916 			     fold_convert (sizetype, TREE_OPERAND (pos, 0)),
917 			     size_int (off_align / BITS_PER_UNIT));
918       *pbitpos = bitsize_zero_node;
919     }
920   else
921     {
922       *poffset = size_binop (MULT_EXPR,
923 			     fold_convert (sizetype,
924 					   size_binop (FLOOR_DIV_EXPR, pos,
925 						       toff_align)),
926 			     size_int (off_align / BITS_PER_UNIT));
927       *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
928     }
929 }
930 
931 /* Given a pointer to bit and byte offsets and an offset alignment,
932    normalize the offsets so they are within the alignment.  */
933 
934 void
935 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
936 {
937   /* If the bit position is now larger than it should be, adjust it
938      downwards.  */
939   if (compare_tree_int (*pbitpos, off_align) >= 0)
940     {
941       tree offset, bitpos;
942       pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
943       *poffset = size_binop (PLUS_EXPR, *poffset, offset);
944       *pbitpos = bitpos;
945     }
946 }
947 
948 /* Print debugging information about the information in RLI.  */
949 
950 DEBUG_FUNCTION void
951 debug_rli (record_layout_info rli)
952 {
953   print_node_brief (stderr, "type", rli->t, 0);
954   print_node_brief (stderr, "\noffset", rli->offset, 0);
955   print_node_brief (stderr, " bitpos", rli->bitpos, 0);
956 
957   fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
958 	   rli->record_align, rli->unpacked_align,
959 	   rli->offset_align);
960 
961   /* The ms_struct code is the only that uses this.  */
962   if (targetm.ms_bitfield_layout_p (rli->t))
963     fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
964 
965   if (rli->packed_maybe_necessary)
966     fprintf (stderr, "packed may be necessary\n");
967 
968   if (!vec_safe_is_empty (rli->pending_statics))
969     {
970       fprintf (stderr, "pending statics:\n");
971       debug (rli->pending_statics);
972     }
973 }
974 
975 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
976    BITPOS if necessary to keep BITPOS below OFFSET_ALIGN.  */
977 
978 void
979 normalize_rli (record_layout_info rli)
980 {
981   normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
982 }
983 
984 /* Returns the size in bytes allocated so far.  */
985 
986 tree
987 rli_size_unit_so_far (record_layout_info rli)
988 {
989   return byte_from_pos (rli->offset, rli->bitpos);
990 }
991 
992 /* Returns the size in bits allocated so far.  */
993 
994 tree
995 rli_size_so_far (record_layout_info rli)
996 {
997   return bit_from_pos (rli->offset, rli->bitpos);
998 }
999 
1000 /* FIELD is about to be added to RLI->T.  The alignment (in bits) of
1001    the next available location within the record is given by KNOWN_ALIGN.
1002    Update the variable alignment fields in RLI, and return the alignment
1003    to give the FIELD.  */
1004 
1005 unsigned int
1006 update_alignment_for_field (record_layout_info rli, tree field,
1007 			    unsigned int known_align)
1008 {
1009   /* The alignment required for FIELD.  */
1010   unsigned int desired_align;
1011   /* The type of this field.  */
1012   tree type = TREE_TYPE (field);
1013   /* True if the field was explicitly aligned by the user.  */
1014   bool user_align;
1015   bool is_bitfield;
1016 
1017   /* Do not attempt to align an ERROR_MARK node */
1018   if (TREE_CODE (type) == ERROR_MARK)
1019     return 0;
1020 
1021   /* Lay out the field so we know what alignment it needs.  */
1022   layout_decl (field, known_align);
1023   desired_align = DECL_ALIGN (field);
1024   user_align = DECL_USER_ALIGN (field);
1025 
1026   is_bitfield = (type != error_mark_node
1027 		 && DECL_BIT_FIELD_TYPE (field)
1028 		 && ! integer_zerop (TYPE_SIZE (type)));
1029 
1030   /* Record must have at least as much alignment as any field.
1031      Otherwise, the alignment of the field within the record is
1032      meaningless.  */
1033   if (targetm.ms_bitfield_layout_p (rli->t))
1034     {
1035       /* Here, the alignment of the underlying type of a bitfield can
1036 	 affect the alignment of a record; even a zero-sized field
1037 	 can do this.  The alignment should be to the alignment of
1038 	 the type, except that for zero-size bitfields this only
1039 	 applies if there was an immediately prior, nonzero-size
1040 	 bitfield.  (That's the way it is, experimentally.) */
1041       if (!is_bitfield
1042 	  || ((DECL_SIZE (field) == NULL_TREE
1043 	       || !integer_zerop (DECL_SIZE (field)))
1044 	      ? !DECL_PACKED (field)
1045 	      : (rli->prev_field
1046 		 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1047 		 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1048 	{
1049 	  unsigned int type_align = TYPE_ALIGN (type);
1050 	  if (!is_bitfield && DECL_PACKED (field))
1051 	    type_align = desired_align;
1052 	  else
1053 	    type_align = MAX (type_align, desired_align);
1054 	  if (maximum_field_alignment != 0)
1055 	    type_align = MIN (type_align, maximum_field_alignment);
1056 	  rli->record_align = MAX (rli->record_align, type_align);
1057 	  rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1058 	}
1059     }
1060   else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1061     {
1062       /* Named bit-fields cause the entire structure to have the
1063 	 alignment implied by their type.  Some targets also apply the same
1064 	 rules to unnamed bitfields.  */
1065       if (DECL_NAME (field) != 0
1066 	  || targetm.align_anon_bitfield ())
1067 	{
1068 	  unsigned int type_align = TYPE_ALIGN (type);
1069 
1070 #ifdef ADJUST_FIELD_ALIGN
1071 	  if (! TYPE_USER_ALIGN (type))
1072 	    type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1073 #endif
1074 
1075 	  /* Targets might chose to handle unnamed and hence possibly
1076 	     zero-width bitfield.  Those are not influenced by #pragmas
1077 	     or packed attributes.  */
1078 	  if (integer_zerop (DECL_SIZE (field)))
1079 	    {
1080 	      if (initial_max_fld_align)
1081 	        type_align = MIN (type_align,
1082 				  initial_max_fld_align * BITS_PER_UNIT);
1083 	    }
1084 	  else if (maximum_field_alignment != 0)
1085 	    type_align = MIN (type_align, maximum_field_alignment);
1086 	  else if (DECL_PACKED (field))
1087 	    type_align = MIN (type_align, BITS_PER_UNIT);
1088 
1089 	  /* The alignment of the record is increased to the maximum
1090 	     of the current alignment, the alignment indicated on the
1091 	     field (i.e., the alignment specified by an __aligned__
1092 	     attribute), and the alignment indicated by the type of
1093 	     the field.  */
1094 	  rli->record_align = MAX (rli->record_align, desired_align);
1095 	  rli->record_align = MAX (rli->record_align, type_align);
1096 
1097 	  if (warn_packed)
1098 	    rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1099 	  user_align |= TYPE_USER_ALIGN (type);
1100 	}
1101     }
1102   else
1103     {
1104       rli->record_align = MAX (rli->record_align, desired_align);
1105       rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1106     }
1107 
1108   TYPE_USER_ALIGN (rli->t) |= user_align;
1109 
1110   return desired_align;
1111 }
1112 
1113 /* Issue a warning if the record alignment, RECORD_ALIGN, is less than
1114    the field alignment of FIELD or FIELD isn't aligned. */
1115 
1116 static void
1117 handle_warn_if_not_align (tree field, unsigned int record_align)
1118 {
1119   tree type = TREE_TYPE (field);
1120 
1121   if (type == error_mark_node)
1122     return;
1123 
1124   unsigned int warn_if_not_align = 0;
1125 
1126   int opt_w = 0;
1127 
1128   if (warn_if_not_aligned)
1129     {
1130       warn_if_not_align = DECL_WARN_IF_NOT_ALIGN (field);
1131       if (!warn_if_not_align)
1132 	warn_if_not_align = TYPE_WARN_IF_NOT_ALIGN (type);
1133       if (warn_if_not_align)
1134 	opt_w = OPT_Wif_not_aligned;
1135     }
1136 
1137   if (!warn_if_not_align
1138       && warn_packed_not_aligned
1139       && lookup_attribute ("aligned", TYPE_ATTRIBUTES (type)))
1140     {
1141       warn_if_not_align = TYPE_ALIGN (type);
1142       opt_w = OPT_Wpacked_not_aligned;
1143     }
1144 
1145   if (!warn_if_not_align)
1146     return;
1147 
1148   tree context = DECL_CONTEXT (field);
1149 
1150   warn_if_not_align /= BITS_PER_UNIT;
1151   record_align /= BITS_PER_UNIT;
1152   if ((record_align % warn_if_not_align) != 0)
1153     warning (opt_w, "alignment %u of %qT is less than %u",
1154 	     record_align, context, warn_if_not_align);
1155 
1156   tree off = byte_position (field);
1157   if (!multiple_of_p (TREE_TYPE (off), off, size_int (warn_if_not_align)))
1158     {
1159       if (TREE_CODE (off) == INTEGER_CST)
1160 	warning (opt_w, "%q+D offset %E in %qT isn%'t aligned to %u",
1161 		 field, off, context, warn_if_not_align);
1162       else
1163 	warning (opt_w, "%q+D offset %E in %qT may not be aligned to %u",
1164 		 field, off, context, warn_if_not_align);
1165     }
1166 }
1167 
1168 /* Called from place_field to handle unions.  */
1169 
1170 static void
1171 place_union_field (record_layout_info rli, tree field)
1172 {
1173   update_alignment_for_field (rli, field, /*known_align=*/0);
1174 
1175   DECL_FIELD_OFFSET (field) = size_zero_node;
1176   DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1177   SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1178   handle_warn_if_not_align (field, rli->record_align);
1179 
1180   /* If this is an ERROR_MARK return *after* having set the
1181      field at the start of the union. This helps when parsing
1182      invalid fields. */
1183   if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1184     return;
1185 
1186   if (AGGREGATE_TYPE_P (TREE_TYPE (field))
1187       && TYPE_TYPELESS_STORAGE (TREE_TYPE (field)))
1188     TYPE_TYPELESS_STORAGE (rli->t) = 1;
1189 
1190   /* We assume the union's size will be a multiple of a byte so we don't
1191      bother with BITPOS.  */
1192   if (TREE_CODE (rli->t) == UNION_TYPE)
1193     rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1194   else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1195     rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1196 			       DECL_SIZE_UNIT (field), rli->offset);
1197 }
1198 
1199 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1200    at BYTE_OFFSET / BIT_OFFSET.  Return nonzero if the field would span more
1201    units of alignment than the underlying TYPE.  */
1202 static int
1203 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1204 		  HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1205 {
1206   /* Note that the calculation of OFFSET might overflow; we calculate it so
1207      that we still get the right result as long as ALIGN is a power of two.  */
1208   unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1209 
1210   offset = offset % align;
1211   return ((offset + size + align - 1) / align
1212 	  > tree_to_uhwi (TYPE_SIZE (type)) / align);
1213 }
1214 
1215 /* RLI contains information about the layout of a RECORD_TYPE.  FIELD
1216    is a FIELD_DECL to be added after those fields already present in
1217    T.  (FIELD is not actually added to the TYPE_FIELDS list here;
1218    callers that desire that behavior must manually perform that step.)  */
1219 
1220 void
1221 place_field (record_layout_info rli, tree field)
1222 {
1223   /* The alignment required for FIELD.  */
1224   unsigned int desired_align;
1225   /* The alignment FIELD would have if we just dropped it into the
1226      record as it presently stands.  */
1227   unsigned int known_align;
1228   unsigned int actual_align;
1229   /* The type of this field.  */
1230   tree type = TREE_TYPE (field);
1231 
1232   gcc_assert (TREE_CODE (field) != ERROR_MARK);
1233 
1234   /* If FIELD is static, then treat it like a separate variable, not
1235      really like a structure field.  If it is a FUNCTION_DECL, it's a
1236      method.  In both cases, all we do is lay out the decl, and we do
1237      it *after* the record is laid out.  */
1238   if (VAR_P (field))
1239     {
1240       vec_safe_push (rli->pending_statics, field);
1241       return;
1242     }
1243 
1244   /* Enumerators and enum types which are local to this class need not
1245      be laid out.  Likewise for initialized constant fields.  */
1246   else if (TREE_CODE (field) != FIELD_DECL)
1247     return;
1248 
1249   /* Unions are laid out very differently than records, so split
1250      that code off to another function.  */
1251   else if (TREE_CODE (rli->t) != RECORD_TYPE)
1252     {
1253       place_union_field (rli, field);
1254       return;
1255     }
1256 
1257   else if (TREE_CODE (type) == ERROR_MARK)
1258     {
1259       /* Place this field at the current allocation position, so we
1260 	 maintain monotonicity.  */
1261       DECL_FIELD_OFFSET (field) = rli->offset;
1262       DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1263       SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1264       handle_warn_if_not_align (field, rli->record_align);
1265       return;
1266     }
1267 
1268   if (AGGREGATE_TYPE_P (type)
1269       && TYPE_TYPELESS_STORAGE (type))
1270     TYPE_TYPELESS_STORAGE (rli->t) = 1;
1271 
1272   /* Work out the known alignment so far.  Note that A & (-A) is the
1273      value of the least-significant bit in A that is one.  */
1274   if (! integer_zerop (rli->bitpos))
1275     known_align = least_bit_hwi (tree_to_uhwi (rli->bitpos));
1276   else if (integer_zerop (rli->offset))
1277     known_align = 0;
1278   else if (tree_fits_uhwi_p (rli->offset))
1279     known_align = (BITS_PER_UNIT
1280 		   * least_bit_hwi (tree_to_uhwi (rli->offset)));
1281   else
1282     known_align = rli->offset_align;
1283 
1284   desired_align = update_alignment_for_field (rli, field, known_align);
1285   if (known_align == 0)
1286     known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1287 
1288   if (warn_packed && DECL_PACKED (field))
1289     {
1290       if (known_align >= TYPE_ALIGN (type))
1291 	{
1292 	  if (TYPE_ALIGN (type) > desired_align)
1293 	    {
1294 	      if (STRICT_ALIGNMENT)
1295 		warning (OPT_Wattributes, "packed attribute causes "
1296                          "inefficient alignment for %q+D", field);
1297 	      /* Don't warn if DECL_PACKED was set by the type.  */
1298 	      else if (!TYPE_PACKED (rli->t))
1299 		warning (OPT_Wattributes, "packed attribute is "
1300 			 "unnecessary for %q+D", field);
1301 	    }
1302 	}
1303       else
1304 	rli->packed_maybe_necessary = 1;
1305     }
1306 
1307   /* Does this field automatically have alignment it needs by virtue
1308      of the fields that precede it and the record's own alignment?  */
1309   if (known_align < desired_align
1310       && (! targetm.ms_bitfield_layout_p (rli->t)
1311 	  || rli->prev_field == NULL))
1312     {
1313       /* No, we need to skip space before this field.
1314 	 Bump the cumulative size to multiple of field alignment.  */
1315 
1316       if (!targetm.ms_bitfield_layout_p (rli->t)
1317           && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1318 	warning (OPT_Wpadded, "padding struct to align %q+D", field);
1319 
1320       /* If the alignment is still within offset_align, just align
1321 	 the bit position.  */
1322       if (desired_align < rli->offset_align)
1323 	rli->bitpos = round_up (rli->bitpos, desired_align);
1324       else
1325 	{
1326 	  /* First adjust OFFSET by the partial bits, then align.  */
1327 	  rli->offset
1328 	    = size_binop (PLUS_EXPR, rli->offset,
1329 			  fold_convert (sizetype,
1330 					size_binop (CEIL_DIV_EXPR, rli->bitpos,
1331 						    bitsize_unit_node)));
1332 	  rli->bitpos = bitsize_zero_node;
1333 
1334 	  rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1335 	}
1336 
1337       if (! TREE_CONSTANT (rli->offset))
1338 	rli->offset_align = desired_align;
1339     }
1340 
1341   /* Handle compatibility with PCC.  Note that if the record has any
1342      variable-sized fields, we need not worry about compatibility.  */
1343   if (PCC_BITFIELD_TYPE_MATTERS
1344       && ! targetm.ms_bitfield_layout_p (rli->t)
1345       && TREE_CODE (field) == FIELD_DECL
1346       && type != error_mark_node
1347       && DECL_BIT_FIELD (field)
1348       && (! DECL_PACKED (field)
1349 	  /* Enter for these packed fields only to issue a warning.  */
1350 	  || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1351       && maximum_field_alignment == 0
1352       && ! integer_zerop (DECL_SIZE (field))
1353       && tree_fits_uhwi_p (DECL_SIZE (field))
1354       && tree_fits_uhwi_p (rli->offset)
1355       && tree_fits_uhwi_p (TYPE_SIZE (type)))
1356     {
1357       unsigned int type_align = TYPE_ALIGN (type);
1358       tree dsize = DECL_SIZE (field);
1359       HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1360       HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1361       HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1362 
1363 #ifdef ADJUST_FIELD_ALIGN
1364       if (! TYPE_USER_ALIGN (type))
1365 	type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1366 #endif
1367 
1368       /* A bit field may not span more units of alignment of its type
1369 	 than its type itself.  Advance to next boundary if necessary.  */
1370       if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1371 	{
1372 	  if (DECL_PACKED (field))
1373 	    {
1374 	      if (warn_packed_bitfield_compat == 1)
1375 		inform
1376 		  (input_location,
1377 		   "offset of packed bit-field %qD has changed in GCC 4.4",
1378 		   field);
1379 	    }
1380 	  else
1381 	    rli->bitpos = round_up (rli->bitpos, type_align);
1382 	}
1383 
1384       if (! DECL_PACKED (field))
1385 	TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1386 
1387       SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1388 				  TYPE_WARN_IF_NOT_ALIGN (type));
1389     }
1390 
1391 #ifdef BITFIELD_NBYTES_LIMITED
1392   if (BITFIELD_NBYTES_LIMITED
1393       && ! targetm.ms_bitfield_layout_p (rli->t)
1394       && TREE_CODE (field) == FIELD_DECL
1395       && type != error_mark_node
1396       && DECL_BIT_FIELD_TYPE (field)
1397       && ! DECL_PACKED (field)
1398       && ! integer_zerop (DECL_SIZE (field))
1399       && tree_fits_uhwi_p (DECL_SIZE (field))
1400       && tree_fits_uhwi_p (rli->offset)
1401       && tree_fits_uhwi_p (TYPE_SIZE (type)))
1402     {
1403       unsigned int type_align = TYPE_ALIGN (type);
1404       tree dsize = DECL_SIZE (field);
1405       HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1406       HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1407       HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1408 
1409 #ifdef ADJUST_FIELD_ALIGN
1410       if (! TYPE_USER_ALIGN (type))
1411 	type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1412 #endif
1413 
1414       if (maximum_field_alignment != 0)
1415 	type_align = MIN (type_align, maximum_field_alignment);
1416       /* ??? This test is opposite the test in the containing if
1417 	 statement, so this code is unreachable currently.  */
1418       else if (DECL_PACKED (field))
1419 	type_align = MIN (type_align, BITS_PER_UNIT);
1420 
1421       /* A bit field may not span the unit of alignment of its type.
1422 	 Advance to next boundary if necessary.  */
1423       if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1424 	rli->bitpos = round_up (rli->bitpos, type_align);
1425 
1426       TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1427       SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1428 				  TYPE_WARN_IF_NOT_ALIGN (type));
1429     }
1430 #endif
1431 
1432   /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1433      A subtlety:
1434 	When a bit field is inserted into a packed record, the whole
1435 	size of the underlying type is used by one or more same-size
1436 	adjacent bitfields.  (That is, if its long:3, 32 bits is
1437 	used in the record, and any additional adjacent long bitfields are
1438 	packed into the same chunk of 32 bits. However, if the size
1439 	changes, a new field of that size is allocated.)  In an unpacked
1440 	record, this is the same as using alignment, but not equivalent
1441 	when packing.
1442 
1443      Note: for compatibility, we use the type size, not the type alignment
1444      to determine alignment, since that matches the documentation */
1445 
1446   if (targetm.ms_bitfield_layout_p (rli->t))
1447     {
1448       tree prev_saved = rli->prev_field;
1449       tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1450 
1451       /* This is a bitfield if it exists.  */
1452       if (rli->prev_field)
1453 	{
1454 	  bool realign_p = known_align < desired_align;
1455 
1456 	  /* If both are bitfields, nonzero, and the same size, this is
1457 	     the middle of a run.  Zero declared size fields are special
1458 	     and handled as "end of run". (Note: it's nonzero declared
1459 	     size, but equal type sizes!) (Since we know that both
1460 	     the current and previous fields are bitfields by the
1461 	     time we check it, DECL_SIZE must be present for both.) */
1462 	  if (DECL_BIT_FIELD_TYPE (field)
1463 	      && !integer_zerop (DECL_SIZE (field))
1464 	      && !integer_zerop (DECL_SIZE (rli->prev_field))
1465 	      && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1466 	      && tree_fits_uhwi_p (TYPE_SIZE (type))
1467 	      && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1468 	    {
1469 	      /* We're in the middle of a run of equal type size fields; make
1470 		 sure we realign if we run out of bits.  (Not decl size,
1471 		 type size!) */
1472 	      HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1473 
1474 	      if (rli->remaining_in_alignment < bitsize)
1475 		{
1476 		  HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1477 
1478 		  /* out of bits; bump up to next 'word'.  */
1479 		  rli->bitpos
1480 		    = size_binop (PLUS_EXPR, rli->bitpos,
1481 				  bitsize_int (rli->remaining_in_alignment));
1482 		  rli->prev_field = field;
1483 		  if (typesize < bitsize)
1484 		    rli->remaining_in_alignment = 0;
1485 		  else
1486 		    rli->remaining_in_alignment = typesize - bitsize;
1487 		}
1488 	      else
1489 		{
1490 		  rli->remaining_in_alignment -= bitsize;
1491 		  realign_p = false;
1492 		}
1493 	    }
1494 	  else
1495 	    {
1496 	      /* End of a run: if leaving a run of bitfields of the same type
1497 		 size, we have to "use up" the rest of the bits of the type
1498 		 size.
1499 
1500 		 Compute the new position as the sum of the size for the prior
1501 		 type and where we first started working on that type.
1502 		 Note: since the beginning of the field was aligned then
1503 		 of course the end will be too.  No round needed.  */
1504 
1505 	      if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1506 		{
1507 		  rli->bitpos
1508 		    = size_binop (PLUS_EXPR, rli->bitpos,
1509 				  bitsize_int (rli->remaining_in_alignment));
1510 		}
1511 	      else
1512 		/* We "use up" size zero fields; the code below should behave
1513 		   as if the prior field was not a bitfield.  */
1514 		prev_saved = NULL;
1515 
1516 	      /* Cause a new bitfield to be captured, either this time (if
1517 		 currently a bitfield) or next time we see one.  */
1518 	      if (!DECL_BIT_FIELD_TYPE (field)
1519 		  || integer_zerop (DECL_SIZE (field)))
1520 		rli->prev_field = NULL;
1521 	    }
1522 
1523 	  /* Does this field automatically have alignment it needs by virtue
1524 	     of the fields that precede it and the record's own alignment?  */
1525 	  if (realign_p)
1526 	    {
1527 	      /* If the alignment is still within offset_align, just align
1528 		 the bit position.  */
1529 	      if (desired_align < rli->offset_align)
1530 		rli->bitpos = round_up (rli->bitpos, desired_align);
1531 	      else
1532 		{
1533 		  /* First adjust OFFSET by the partial bits, then align.  */
1534 		  tree d = size_binop (CEIL_DIV_EXPR, rli->bitpos,
1535 				       bitsize_unit_node);
1536 		  rli->offset = size_binop (PLUS_EXPR, rli->offset,
1537 					    fold_convert (sizetype, d));
1538 		  rli->bitpos = bitsize_zero_node;
1539 
1540 		  rli->offset = round_up (rli->offset,
1541 					  desired_align / BITS_PER_UNIT);
1542 		}
1543 
1544 	      if (! TREE_CONSTANT (rli->offset))
1545 		rli->offset_align = desired_align;
1546 	    }
1547 
1548 	  normalize_rli (rli);
1549         }
1550 
1551       /* If we're starting a new run of same type size bitfields
1552 	 (or a run of non-bitfields), set up the "first of the run"
1553 	 fields.
1554 
1555 	 That is, if the current field is not a bitfield, or if there
1556 	 was a prior bitfield the type sizes differ, or if there wasn't
1557 	 a prior bitfield the size of the current field is nonzero.
1558 
1559 	 Note: we must be sure to test ONLY the type size if there was
1560 	 a prior bitfield and ONLY for the current field being zero if
1561 	 there wasn't.  */
1562 
1563       if (!DECL_BIT_FIELD_TYPE (field)
1564 	  || (prev_saved != NULL
1565 	      ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1566 	      : !integer_zerop (DECL_SIZE (field))))
1567 	{
1568 	  /* Never smaller than a byte for compatibility.  */
1569 	  unsigned int type_align = BITS_PER_UNIT;
1570 
1571 	  /* (When not a bitfield), we could be seeing a flex array (with
1572 	     no DECL_SIZE).  Since we won't be using remaining_in_alignment
1573 	     until we see a bitfield (and come by here again) we just skip
1574 	     calculating it.  */
1575 	  if (DECL_SIZE (field) != NULL
1576 	      && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1577 	      && tree_fits_uhwi_p (DECL_SIZE (field)))
1578 	    {
1579 	      unsigned HOST_WIDE_INT bitsize
1580 		= tree_to_uhwi (DECL_SIZE (field));
1581 	      unsigned HOST_WIDE_INT typesize
1582 		= tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1583 
1584 	      if (typesize < bitsize)
1585 		rli->remaining_in_alignment = 0;
1586 	      else
1587 		rli->remaining_in_alignment = typesize - bitsize;
1588 	    }
1589 
1590 	  /* Now align (conventionally) for the new type.  */
1591 	  if (! DECL_PACKED (field))
1592 	    type_align = TYPE_ALIGN (TREE_TYPE (field));
1593 
1594 	  if (maximum_field_alignment != 0)
1595 	    type_align = MIN (type_align, maximum_field_alignment);
1596 
1597 	  rli->bitpos = round_up (rli->bitpos, type_align);
1598 
1599           /* If we really aligned, don't allow subsequent bitfields
1600 	     to undo that.  */
1601 	  rli->prev_field = NULL;
1602 	}
1603     }
1604 
1605   /* Offset so far becomes the position of this field after normalizing.  */
1606   normalize_rli (rli);
1607   DECL_FIELD_OFFSET (field) = rli->offset;
1608   DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1609   SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1610   handle_warn_if_not_align (field, rli->record_align);
1611 
1612   /* Evaluate nonconstant offsets only once, either now or as soon as safe.  */
1613   if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1614     DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1615 
1616   /* If this field ended up more aligned than we thought it would be (we
1617      approximate this by seeing if its position changed), lay out the field
1618      again; perhaps we can use an integral mode for it now.  */
1619   if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1620     actual_align = least_bit_hwi (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1621   else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1622     actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1623   else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1624     actual_align = (BITS_PER_UNIT
1625 		    * least_bit_hwi (tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1626   else
1627     actual_align = DECL_OFFSET_ALIGN (field);
1628   /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1629      store / extract bit field operations will check the alignment of the
1630      record against the mode of bit fields.  */
1631 
1632   if (known_align != actual_align)
1633     layout_decl (field, actual_align);
1634 
1635   if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1636     rli->prev_field = field;
1637 
1638   /* Now add size of this field to the size of the record.  If the size is
1639      not constant, treat the field as being a multiple of bytes and just
1640      adjust the offset, resetting the bit position.  Otherwise, apportion the
1641      size amongst the bit position and offset.  First handle the case of an
1642      unspecified size, which can happen when we have an invalid nested struct
1643      definition, such as struct j { struct j { int i; } }.  The error message
1644      is printed in finish_struct.  */
1645   if (DECL_SIZE (field) == 0)
1646     /* Do nothing.  */;
1647   else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1648 	   || TREE_OVERFLOW (DECL_SIZE (field)))
1649     {
1650       rli->offset
1651 	= size_binop (PLUS_EXPR, rli->offset,
1652 		      fold_convert (sizetype,
1653 				    size_binop (CEIL_DIV_EXPR, rli->bitpos,
1654 						bitsize_unit_node)));
1655       rli->offset
1656 	= size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1657       rli->bitpos = bitsize_zero_node;
1658       rli->offset_align = MIN (rli->offset_align, desired_align);
1659 
1660       if (!multiple_of_p (bitsizetype, DECL_SIZE (field),
1661 			  bitsize_int (rli->offset_align)))
1662 	{
1663 	  tree type = strip_array_types (TREE_TYPE (field));
1664 	  /* The above adjusts offset_align just based on the start of the
1665 	     field.  The field might not have a size that is a multiple of
1666 	     that offset_align though.  If the field is an array of fixed
1667 	     sized elements, assume there can be any multiple of those
1668 	     sizes.  If it is a variable length aggregate or array of
1669 	     variable length aggregates, assume worst that the end is
1670 	     just BITS_PER_UNIT aligned.  */
1671 	  if (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
1672 	    {
1673 	      if (TREE_INT_CST_LOW (TYPE_SIZE (type)))
1674 		{
1675 		  unsigned HOST_WIDE_INT sz
1676 		    = least_bit_hwi (TREE_INT_CST_LOW (TYPE_SIZE (type)));
1677 		  rli->offset_align = MIN (rli->offset_align, sz);
1678 		}
1679 	    }
1680 	  else
1681 	    rli->offset_align = MIN (rli->offset_align, BITS_PER_UNIT);
1682 	}
1683     }
1684   else if (targetm.ms_bitfield_layout_p (rli->t))
1685     {
1686       rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1687 
1688       /* If we ended a bitfield before the full length of the type then
1689 	 pad the struct out to the full length of the last type.  */
1690       if ((DECL_CHAIN (field) == NULL
1691 	   || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1692 	  && DECL_BIT_FIELD_TYPE (field)
1693 	  && !integer_zerop (DECL_SIZE (field)))
1694 	rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1695 				  bitsize_int (rli->remaining_in_alignment));
1696 
1697       normalize_rli (rli);
1698     }
1699   else
1700     {
1701       rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1702       normalize_rli (rli);
1703     }
1704 }
1705 
1706 /* Assuming that all the fields have been laid out, this function uses
1707    RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1708    indicated by RLI.  */
1709 
1710 static void
1711 finalize_record_size (record_layout_info rli)
1712 {
1713   tree unpadded_size, unpadded_size_unit;
1714 
1715   /* Now we want just byte and bit offsets, so set the offset alignment
1716      to be a byte and then normalize.  */
1717   rli->offset_align = BITS_PER_UNIT;
1718   normalize_rli (rli);
1719 
1720   /* Determine the desired alignment.  */
1721 #ifdef ROUND_TYPE_ALIGN
1722   SET_TYPE_ALIGN (rli->t, ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1723 					    rli->record_align));
1724 #else
1725   SET_TYPE_ALIGN (rli->t, MAX (TYPE_ALIGN (rli->t), rli->record_align));
1726 #endif
1727 
1728   /* Compute the size so far.  Be sure to allow for extra bits in the
1729      size in bytes.  We have guaranteed above that it will be no more
1730      than a single byte.  */
1731   unpadded_size = rli_size_so_far (rli);
1732   unpadded_size_unit = rli_size_unit_so_far (rli);
1733   if (! integer_zerop (rli->bitpos))
1734     unpadded_size_unit
1735       = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1736 
1737   /* Round the size up to be a multiple of the required alignment.  */
1738   TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1739   TYPE_SIZE_UNIT (rli->t)
1740     = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1741 
1742   if (TREE_CONSTANT (unpadded_size)
1743       && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1744       && input_location != BUILTINS_LOCATION)
1745     warning (OPT_Wpadded, "padding struct size to alignment boundary");
1746 
1747   if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1748       && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1749       && TREE_CONSTANT (unpadded_size))
1750     {
1751       tree unpacked_size;
1752 
1753 #ifdef ROUND_TYPE_ALIGN
1754       rli->unpacked_align
1755 	= ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1756 #else
1757       rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1758 #endif
1759 
1760       unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1761       if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1762 	{
1763 	  if (TYPE_NAME (rli->t))
1764 	    {
1765 	      tree name;
1766 
1767 	      if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1768 		name = TYPE_NAME (rli->t);
1769 	      else
1770 		name = DECL_NAME (TYPE_NAME (rli->t));
1771 
1772 	      if (STRICT_ALIGNMENT)
1773 		warning (OPT_Wpacked, "packed attribute causes inefficient "
1774 			 "alignment for %qE", name);
1775 	      else
1776 		warning (OPT_Wpacked,
1777 			 "packed attribute is unnecessary for %qE", name);
1778 	    }
1779 	  else
1780 	    {
1781 	      if (STRICT_ALIGNMENT)
1782 		warning (OPT_Wpacked,
1783 			 "packed attribute causes inefficient alignment");
1784 	      else
1785 		warning (OPT_Wpacked, "packed attribute is unnecessary");
1786 	    }
1787 	}
1788     }
1789 }
1790 
1791 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE).  */
1792 
1793 void
1794 compute_record_mode (tree type)
1795 {
1796   tree field;
1797   machine_mode mode = VOIDmode;
1798 
1799   /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1800      However, if possible, we use a mode that fits in a register
1801      instead, in order to allow for better optimization down the
1802      line.  */
1803   SET_TYPE_MODE (type, BLKmode);
1804 
1805   if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1806     return;
1807 
1808   /* A record which has any BLKmode members must itself be
1809      BLKmode; it can't go in a register.  Unless the member is
1810      BLKmode only because it isn't aligned.  */
1811   for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1812     {
1813       if (TREE_CODE (field) != FIELD_DECL)
1814 	continue;
1815 
1816       if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1817 	  || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1818 	      && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1819 	      && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1820 		   && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1821 	  || ! tree_fits_uhwi_p (bit_position (field))
1822 	  || DECL_SIZE (field) == 0
1823 	  || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1824 	return;
1825 
1826       /* If this field is the whole struct, remember its mode so
1827 	 that, say, we can put a double in a class into a DF
1828 	 register instead of forcing it to live in the stack.  */
1829       if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1830 	mode = DECL_MODE (field);
1831 
1832       /* With some targets, it is sub-optimal to access an aligned
1833 	 BLKmode structure as a scalar.  */
1834       if (targetm.member_type_forces_blk (field, mode))
1835 	return;
1836     }
1837 
1838   /* If we only have one real field; use its mode if that mode's size
1839      matches the type's size.  This only applies to RECORD_TYPE.  This
1840      does not apply to unions.  */
1841   if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1842       && tree_fits_uhwi_p (TYPE_SIZE (type))
1843       && known_eq (GET_MODE_BITSIZE (mode), tree_to_uhwi (TYPE_SIZE (type))))
1844     ;
1845   else
1846     mode = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1).else_blk ();
1847 
1848   /* If structure's known alignment is less than what the scalar
1849      mode would need, and it matters, then stick with BLKmode.  */
1850   if (mode != BLKmode
1851       && STRICT_ALIGNMENT
1852       && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1853 	    || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (mode)))
1854     {
1855       /* If this is the only reason this type is BLKmode, then
1856 	 don't force containing types to be BLKmode.  */
1857       TYPE_NO_FORCE_BLK (type) = 1;
1858       mode = BLKmode;
1859     }
1860 
1861   SET_TYPE_MODE (type, mode);
1862 }
1863 
1864 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1865    out.  */
1866 
1867 static void
1868 finalize_type_size (tree type)
1869 {
1870   /* Normally, use the alignment corresponding to the mode chosen.
1871      However, where strict alignment is not required, avoid
1872      over-aligning structures, since most compilers do not do this
1873      alignment.  */
1874   if (TYPE_MODE (type) != BLKmode
1875       && TYPE_MODE (type) != VOIDmode
1876       && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
1877     {
1878       unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1879 
1880       /* Don't override a larger alignment requirement coming from a user
1881 	 alignment of one of the fields.  */
1882       if (mode_align >= TYPE_ALIGN (type))
1883 	{
1884 	  SET_TYPE_ALIGN (type, mode_align);
1885 	  TYPE_USER_ALIGN (type) = 0;
1886 	}
1887     }
1888 
1889   /* Do machine-dependent extra alignment.  */
1890 #ifdef ROUND_TYPE_ALIGN
1891   SET_TYPE_ALIGN (type,
1892                   ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT));
1893 #endif
1894 
1895   /* If we failed to find a simple way to calculate the unit size
1896      of the type, find it by division.  */
1897   if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1898     /* TYPE_SIZE (type) is computed in bitsizetype.  After the division, the
1899        result will fit in sizetype.  We will get more efficient code using
1900        sizetype, so we force a conversion.  */
1901     TYPE_SIZE_UNIT (type)
1902       = fold_convert (sizetype,
1903 		      size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1904 				  bitsize_unit_node));
1905 
1906   if (TYPE_SIZE (type) != 0)
1907     {
1908       TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1909       TYPE_SIZE_UNIT (type)
1910 	= round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1911     }
1912 
1913   /* Evaluate nonconstant sizes only once, either now or as soon as safe.  */
1914   if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1915     TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1916   if (TYPE_SIZE_UNIT (type) != 0
1917       && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1918     TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1919 
1920   /* Handle empty records as per the x86-64 psABI.  */
1921   TYPE_EMPTY_P (type) = targetm.calls.empty_record_p (type);
1922 
1923   /* Also layout any other variants of the type.  */
1924   if (TYPE_NEXT_VARIANT (type)
1925       || type != TYPE_MAIN_VARIANT (type))
1926     {
1927       tree variant;
1928       /* Record layout info of this variant.  */
1929       tree size = TYPE_SIZE (type);
1930       tree size_unit = TYPE_SIZE_UNIT (type);
1931       unsigned int align = TYPE_ALIGN (type);
1932       unsigned int precision = TYPE_PRECISION (type);
1933       unsigned int user_align = TYPE_USER_ALIGN (type);
1934       machine_mode mode = TYPE_MODE (type);
1935       bool empty_p = TYPE_EMPTY_P (type);
1936 
1937       /* Copy it into all variants.  */
1938       for (variant = TYPE_MAIN_VARIANT (type);
1939 	   variant != 0;
1940 	   variant = TYPE_NEXT_VARIANT (variant))
1941 	{
1942 	  TYPE_SIZE (variant) = size;
1943 	  TYPE_SIZE_UNIT (variant) = size_unit;
1944 	  unsigned valign = align;
1945 	  if (TYPE_USER_ALIGN (variant))
1946 	    valign = MAX (valign, TYPE_ALIGN (variant));
1947 	  else
1948 	    TYPE_USER_ALIGN (variant) = user_align;
1949 	  SET_TYPE_ALIGN (variant, valign);
1950 	  TYPE_PRECISION (variant) = precision;
1951 	  SET_TYPE_MODE (variant, mode);
1952 	  TYPE_EMPTY_P (variant) = empty_p;
1953 	}
1954     }
1955 }
1956 
1957 /* Return a new underlying object for a bitfield started with FIELD.  */
1958 
1959 static tree
1960 start_bitfield_representative (tree field)
1961 {
1962   tree repr = make_node (FIELD_DECL);
1963   DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1964   /* Force the representative to begin at a BITS_PER_UNIT aligned
1965      boundary - C++ may use tail-padding of a base object to
1966      continue packing bits so the bitfield region does not start
1967      at bit zero (see g++.dg/abi/bitfield5.C for example).
1968      Unallocated bits may happen for other reasons as well,
1969      for example Ada which allows explicit bit-granular structure layout.  */
1970   DECL_FIELD_BIT_OFFSET (repr)
1971     = size_binop (BIT_AND_EXPR,
1972 		  DECL_FIELD_BIT_OFFSET (field),
1973 		  bitsize_int (~(BITS_PER_UNIT - 1)));
1974   SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1975   DECL_SIZE (repr) = DECL_SIZE (field);
1976   DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1977   DECL_PACKED (repr) = DECL_PACKED (field);
1978   DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1979   /* There are no indirect accesses to this field.  If we introduce
1980      some then they have to use the record alias set.  This makes
1981      sure to properly conflict with [indirect] accesses to addressable
1982      fields of the bitfield group.  */
1983   DECL_NONADDRESSABLE_P (repr) = 1;
1984   return repr;
1985 }
1986 
1987 /* Finish up a bitfield group that was started by creating the underlying
1988    object REPR with the last field in the bitfield group FIELD.  */
1989 
1990 static void
1991 finish_bitfield_representative (tree repr, tree field)
1992 {
1993   unsigned HOST_WIDE_INT bitsize, maxbitsize;
1994   tree nextf, size;
1995 
1996   size = size_diffop (DECL_FIELD_OFFSET (field),
1997 		      DECL_FIELD_OFFSET (repr));
1998   while (TREE_CODE (size) == COMPOUND_EXPR)
1999     size = TREE_OPERAND (size, 1);
2000   gcc_assert (tree_fits_uhwi_p (size));
2001   bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
2002 	     + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2003 	     - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
2004 	     + tree_to_uhwi (DECL_SIZE (field)));
2005 
2006   /* Round up bitsize to multiples of BITS_PER_UNIT.  */
2007   bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
2008 
2009   /* Now nothing tells us how to pad out bitsize ...  */
2010   nextf = DECL_CHAIN (field);
2011   while (nextf && TREE_CODE (nextf) != FIELD_DECL)
2012     nextf = DECL_CHAIN (nextf);
2013   if (nextf)
2014     {
2015       tree maxsize;
2016       /* If there was an error, the field may be not laid out
2017          correctly.  Don't bother to do anything.  */
2018       if (TREE_TYPE (nextf) == error_mark_node)
2019 	return;
2020       maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
2021 			     DECL_FIELD_OFFSET (repr));
2022       if (tree_fits_uhwi_p (maxsize))
2023 	{
2024 	  maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
2025 			+ tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
2026 			- tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
2027 	  /* If the group ends within a bitfield nextf does not need to be
2028 	     aligned to BITS_PER_UNIT.  Thus round up.  */
2029 	  maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
2030 	}
2031       else
2032 	maxbitsize = bitsize;
2033     }
2034   else
2035     {
2036       /* Note that if the C++ FE sets up tail-padding to be re-used it
2037          creates a as-base variant of the type with TYPE_SIZE adjusted
2038 	 accordingly.  So it is safe to include tail-padding here.  */
2039       tree aggsize = lang_hooks.types.unit_size_without_reusable_padding
2040 							(DECL_CONTEXT (field));
2041       tree maxsize = size_diffop (aggsize, DECL_FIELD_OFFSET (repr));
2042       /* We cannot generally rely on maxsize to fold to an integer constant,
2043 	 so use bitsize as fallback for this case.  */
2044       if (tree_fits_uhwi_p (maxsize))
2045 	maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
2046 		      - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
2047       else
2048 	maxbitsize = bitsize;
2049     }
2050 
2051   /* Only if we don't artificially break up the representative in
2052      the middle of a large bitfield with different possibly
2053      overlapping representatives.  And all representatives start
2054      at byte offset.  */
2055   gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
2056 
2057   /* Find the smallest nice mode to use.  */
2058   opt_scalar_int_mode mode_iter;
2059   FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2060     if (GET_MODE_BITSIZE (mode_iter.require ()) >= bitsize)
2061       break;
2062 
2063   scalar_int_mode mode;
2064   if (!mode_iter.exists (&mode)
2065       || GET_MODE_BITSIZE (mode) > maxbitsize
2066       || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE)
2067     {
2068       /* We really want a BLKmode representative only as a last resort,
2069          considering the member b in
2070 	   struct { int a : 7; int b : 17; int c; } __attribute__((packed));
2071 	 Otherwise we simply want to split the representative up
2072 	 allowing for overlaps within the bitfield region as required for
2073 	   struct { int a : 7; int b : 7;
2074 		    int c : 10; int d; } __attribute__((packed));
2075 	 [0, 15] HImode for a and b, [8, 23] HImode for c.  */
2076       DECL_SIZE (repr) = bitsize_int (bitsize);
2077       DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
2078       SET_DECL_MODE (repr, BLKmode);
2079       TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
2080 						 bitsize / BITS_PER_UNIT);
2081     }
2082   else
2083     {
2084       unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
2085       DECL_SIZE (repr) = bitsize_int (modesize);
2086       DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
2087       SET_DECL_MODE (repr, mode);
2088       TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
2089     }
2090 
2091   /* Remember whether the bitfield group is at the end of the
2092      structure or not.  */
2093   DECL_CHAIN (repr) = nextf;
2094 }
2095 
2096 /* Compute and set FIELD_DECLs for the underlying objects we should
2097    use for bitfield access for the structure T.  */
2098 
2099 void
2100 finish_bitfield_layout (tree t)
2101 {
2102   tree field, prev;
2103   tree repr = NULL_TREE;
2104 
2105   /* Unions would be special, for the ease of type-punning optimizations
2106      we could use the underlying type as hint for the representative
2107      if the bitfield would fit and the representative would not exceed
2108      the union in size.  */
2109   if (TREE_CODE (t) != RECORD_TYPE)
2110     return;
2111 
2112   for (prev = NULL_TREE, field = TYPE_FIELDS (t);
2113        field; field = DECL_CHAIN (field))
2114     {
2115       if (TREE_CODE (field) != FIELD_DECL)
2116 	continue;
2117 
2118       /* In the C++ memory model, consecutive bit fields in a structure are
2119 	 considered one memory location and updating a memory location
2120 	 may not store into adjacent memory locations.  */
2121       if (!repr
2122 	  && DECL_BIT_FIELD_TYPE (field))
2123 	{
2124 	  /* Start new representative.  */
2125 	  repr = start_bitfield_representative (field);
2126 	}
2127       else if (repr
2128 	       && ! DECL_BIT_FIELD_TYPE (field))
2129 	{
2130 	  /* Finish off new representative.  */
2131 	  finish_bitfield_representative (repr, prev);
2132 	  repr = NULL_TREE;
2133 	}
2134       else if (DECL_BIT_FIELD_TYPE (field))
2135 	{
2136 	  gcc_assert (repr != NULL_TREE);
2137 
2138 	  /* Zero-size bitfields finish off a representative and
2139 	     do not have a representative themselves.  This is
2140 	     required by the C++ memory model.  */
2141 	  if (integer_zerop (DECL_SIZE (field)))
2142 	    {
2143 	      finish_bitfield_representative (repr, prev);
2144 	      repr = NULL_TREE;
2145 	    }
2146 
2147 	  /* We assume that either DECL_FIELD_OFFSET of the representative
2148 	     and each bitfield member is a constant or they are equal.
2149 	     This is because we need to be able to compute the bit-offset
2150 	     of each field relative to the representative in get_bit_range
2151 	     during RTL expansion.
2152 	     If these constraints are not met, simply force a new
2153 	     representative to be generated.  That will at most
2154 	     generate worse code but still maintain correctness with
2155 	     respect to the C++ memory model.  */
2156 	  else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
2157 		      && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
2158 		     || operand_equal_p (DECL_FIELD_OFFSET (repr),
2159 					 DECL_FIELD_OFFSET (field), 0)))
2160 	    {
2161 	      finish_bitfield_representative (repr, prev);
2162 	      repr = start_bitfield_representative (field);
2163 	    }
2164 	}
2165       else
2166 	continue;
2167 
2168       if (repr)
2169 	DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2170 
2171       prev = field;
2172     }
2173 
2174   if (repr)
2175     finish_bitfield_representative (repr, prev);
2176 }
2177 
2178 /* Do all of the work required to layout the type indicated by RLI,
2179    once the fields have been laid out.  This function will call `free'
2180    for RLI, unless FREE_P is false.  Passing a value other than false
2181    for FREE_P is bad practice; this option only exists to support the
2182    G++ 3.2 ABI.  */
2183 
2184 void
2185 finish_record_layout (record_layout_info rli, int free_p)
2186 {
2187   tree variant;
2188 
2189   /* Compute the final size.  */
2190   finalize_record_size (rli);
2191 
2192   /* Compute the TYPE_MODE for the record.  */
2193   compute_record_mode (rli->t);
2194 
2195   /* Perform any last tweaks to the TYPE_SIZE, etc.  */
2196   finalize_type_size (rli->t);
2197 
2198   /* Compute bitfield representatives.  */
2199   finish_bitfield_layout (rli->t);
2200 
2201   /* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants.
2202      With C++ templates, it is too early to do this when the attribute
2203      is being parsed.  */
2204   for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2205        variant = TYPE_NEXT_VARIANT (variant))
2206     {
2207       TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2208       TYPE_REVERSE_STORAGE_ORDER (variant)
2209 	= TYPE_REVERSE_STORAGE_ORDER (rli->t);
2210     }
2211 
2212   /* Lay out any static members.  This is done now because their type
2213      may use the record's type.  */
2214   while (!vec_safe_is_empty (rli->pending_statics))
2215     layout_decl (rli->pending_statics->pop (), 0);
2216 
2217   /* Clean up.  */
2218   if (free_p)
2219     {
2220       vec_free (rli->pending_statics);
2221       free (rli);
2222     }
2223 }
2224 
2225 
2226 /* Finish processing a builtin RECORD_TYPE type TYPE.  It's name is
2227    NAME, its fields are chained in reverse on FIELDS.
2228 
2229    If ALIGN_TYPE is non-null, it is given the same alignment as
2230    ALIGN_TYPE.  */
2231 
2232 void
2233 finish_builtin_struct (tree type, const char *name, tree fields,
2234 		       tree align_type)
2235 {
2236   tree tail, next;
2237 
2238   for (tail = NULL_TREE; fields; tail = fields, fields = next)
2239     {
2240       DECL_FIELD_CONTEXT (fields) = type;
2241       next = DECL_CHAIN (fields);
2242       DECL_CHAIN (fields) = tail;
2243     }
2244   TYPE_FIELDS (type) = tail;
2245 
2246   if (align_type)
2247     {
2248       SET_TYPE_ALIGN (type, TYPE_ALIGN (align_type));
2249       TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2250       SET_TYPE_WARN_IF_NOT_ALIGN (type,
2251 				  TYPE_WARN_IF_NOT_ALIGN (align_type));
2252     }
2253 
2254   layout_type (type);
2255 #if 0 /* not yet, should get fixed properly later */
2256   TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2257 #else
2258   TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2259 				 TYPE_DECL, get_identifier (name), type);
2260 #endif
2261   TYPE_STUB_DECL (type) = TYPE_NAME (type);
2262   layout_decl (TYPE_NAME (type), 0);
2263 }
2264 
2265 /* Calculate the mode, size, and alignment for TYPE.
2266    For an array type, calculate the element separation as well.
2267    Record TYPE on the chain of permanent or temporary types
2268    so that dbxout will find out about it.
2269 
2270    TYPE_SIZE of a type is nonzero if the type has been laid out already.
2271    layout_type does nothing on such a type.
2272 
2273    If the type is incomplete, its TYPE_SIZE remains zero.  */
2274 
2275 void
2276 layout_type (tree type)
2277 {
2278   gcc_assert (type);
2279 
2280   if (type == error_mark_node)
2281     return;
2282 
2283   /* We don't want finalize_type_size to copy an alignment attribute to
2284      variants that don't have it.  */
2285   type = TYPE_MAIN_VARIANT (type);
2286 
2287   /* Do nothing if type has been laid out before.  */
2288   if (TYPE_SIZE (type))
2289     return;
2290 
2291   switch (TREE_CODE (type))
2292     {
2293     case LANG_TYPE:
2294       /* This kind of type is the responsibility
2295 	 of the language-specific code.  */
2296       gcc_unreachable ();
2297 
2298     case BOOLEAN_TYPE:
2299     case INTEGER_TYPE:
2300     case ENUMERAL_TYPE:
2301       {
2302 	scalar_int_mode mode
2303 	  = smallest_int_mode_for_size (TYPE_PRECISION (type));
2304 	SET_TYPE_MODE (type, mode);
2305 	TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2306 	/* Don't set TYPE_PRECISION here, as it may be set by a bitfield.  */
2307 	TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2308 	break;
2309       }
2310 
2311     case REAL_TYPE:
2312       {
2313 	/* Allow the caller to choose the type mode, which is how decimal
2314 	   floats are distinguished from binary ones.  */
2315 	if (TYPE_MODE (type) == VOIDmode)
2316 	  SET_TYPE_MODE
2317 	    (type, float_mode_for_size (TYPE_PRECISION (type)).require ());
2318 	scalar_float_mode mode = as_a <scalar_float_mode> (TYPE_MODE (type));
2319 	TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2320 	TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2321 	break;
2322       }
2323 
2324    case FIXED_POINT_TYPE:
2325      {
2326        /* TYPE_MODE (type) has been set already.  */
2327        scalar_mode mode = SCALAR_TYPE_MODE (type);
2328        TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2329        TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2330        break;
2331      }
2332 
2333     case COMPLEX_TYPE:
2334       TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2335       SET_TYPE_MODE (type,
2336 		     GET_MODE_COMPLEX_MODE (TYPE_MODE (TREE_TYPE (type))));
2337 
2338       TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2339       TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2340       break;
2341 
2342     case VECTOR_TYPE:
2343       {
2344 	poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (type);
2345 	tree innertype = TREE_TYPE (type);
2346 
2347 	/* Find an appropriate mode for the vector type.  */
2348 	if (TYPE_MODE (type) == VOIDmode)
2349 	  SET_TYPE_MODE (type,
2350 			 mode_for_vector (SCALAR_TYPE_MODE (innertype),
2351 					  nunits).else_blk ());
2352 
2353 	TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2354         TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2355 	/* Several boolean vector elements may fit in a single unit.  */
2356 	if (VECTOR_BOOLEAN_TYPE_P (type)
2357 	    && type->type_common.mode != BLKmode)
2358 	  TYPE_SIZE_UNIT (type)
2359 	    = size_int (GET_MODE_SIZE (type->type_common.mode));
2360 	else
2361 	  TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2362 						   TYPE_SIZE_UNIT (innertype),
2363 						   size_int (nunits));
2364 	TYPE_SIZE (type) = int_const_binop
2365 	  (MULT_EXPR,
2366 	   bits_from_bytes (TYPE_SIZE_UNIT (type)),
2367 	   bitsize_int (BITS_PER_UNIT));
2368 
2369 	/* For vector types, we do not default to the mode's alignment.
2370 	   Instead, query a target hook, defaulting to natural alignment.
2371 	   This prevents ABI changes depending on whether or not native
2372 	   vector modes are supported.  */
2373 	SET_TYPE_ALIGN (type, targetm.vector_alignment (type));
2374 
2375 	/* However, if the underlying mode requires a bigger alignment than
2376 	   what the target hook provides, we cannot use the mode.  For now,
2377 	   simply reject that case.  */
2378 	gcc_assert (TYPE_ALIGN (type)
2379 		    >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2380         break;
2381       }
2382 
2383     case VOID_TYPE:
2384       /* This is an incomplete type and so doesn't have a size.  */
2385       SET_TYPE_ALIGN (type, 1);
2386       TYPE_USER_ALIGN (type) = 0;
2387       SET_TYPE_MODE (type, VOIDmode);
2388       break;
2389 
2390     case POINTER_BOUNDS_TYPE:
2391       TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2392       TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2393       break;
2394 
2395     case OFFSET_TYPE:
2396       TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2397       TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2398       /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2399 	 integral, which may be an __intN.  */
2400       SET_TYPE_MODE (type, int_mode_for_size (POINTER_SIZE, 0).require ());
2401       TYPE_PRECISION (type) = POINTER_SIZE;
2402       break;
2403 
2404     case FUNCTION_TYPE:
2405     case METHOD_TYPE:
2406       /* It's hard to see what the mode and size of a function ought to
2407 	 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2408 	 make it consistent with that.  */
2409       SET_TYPE_MODE (type,
2410 		     int_mode_for_size (FUNCTION_BOUNDARY, 0).else_blk ());
2411       TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2412       TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2413       break;
2414 
2415     case POINTER_TYPE:
2416     case REFERENCE_TYPE:
2417       {
2418 	scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
2419 	TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2420 	TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2421 	TYPE_UNSIGNED (type) = 1;
2422 	TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2423       }
2424       break;
2425 
2426     case ARRAY_TYPE:
2427       {
2428 	tree index = TYPE_DOMAIN (type);
2429 	tree element = TREE_TYPE (type);
2430 
2431 	/* We need to know both bounds in order to compute the size.  */
2432 	if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2433 	    && TYPE_SIZE (element))
2434 	  {
2435 	    tree ub = TYPE_MAX_VALUE (index);
2436 	    tree lb = TYPE_MIN_VALUE (index);
2437 	    tree element_size = TYPE_SIZE (element);
2438 	    tree length;
2439 
2440 	    /* Make sure that an array of zero-sized element is zero-sized
2441 	       regardless of its extent.  */
2442 	    if (integer_zerop (element_size))
2443 	      length = size_zero_node;
2444 
2445 	    /* The computation should happen in the original signedness so
2446 	       that (possible) negative values are handled appropriately
2447 	       when determining overflow.  */
2448 	    else
2449 	      {
2450 		/* ???  When it is obvious that the range is signed
2451 		   represent it using ssizetype.  */
2452 		if (TREE_CODE (lb) == INTEGER_CST
2453 		    && TREE_CODE (ub) == INTEGER_CST
2454 		    && TYPE_UNSIGNED (TREE_TYPE (lb))
2455 		    && tree_int_cst_lt (ub, lb))
2456 		  {
2457 		    lb = wide_int_to_tree (ssizetype,
2458 					   offset_int::from (wi::to_wide (lb),
2459 							     SIGNED));
2460 		    ub = wide_int_to_tree (ssizetype,
2461 					   offset_int::from (wi::to_wide (ub),
2462 							     SIGNED));
2463 		  }
2464 		length
2465 		  = fold_convert (sizetype,
2466 				  size_binop (PLUS_EXPR,
2467 					      build_int_cst (TREE_TYPE (lb), 1),
2468 					      size_binop (MINUS_EXPR, ub, lb)));
2469 	      }
2470 
2471 	    /* ??? We have no way to distinguish a null-sized array from an
2472 	       array spanning the whole sizetype range, so we arbitrarily
2473 	       decide that [0, -1] is the only valid representation.  */
2474 	    if (integer_zerop (length)
2475 	        && TREE_OVERFLOW (length)
2476 		&& integer_zerop (lb))
2477 	      length = size_zero_node;
2478 
2479 	    TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2480 					   bits_from_bytes (length));
2481 
2482 	    /* If we know the size of the element, calculate the total size
2483 	       directly, rather than do some division thing below.  This
2484 	       optimization helps Fortran assumed-size arrays (where the
2485 	       size of the array is determined at runtime) substantially.  */
2486 	    if (TYPE_SIZE_UNIT (element))
2487 	      TYPE_SIZE_UNIT (type)
2488 		= size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2489 	  }
2490 
2491 	/* Now round the alignment and size,
2492 	   using machine-dependent criteria if any.  */
2493 
2494 	unsigned align = TYPE_ALIGN (element);
2495 	if (TYPE_USER_ALIGN (type))
2496 	  align = MAX (align, TYPE_ALIGN (type));
2497 	else
2498 	  TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2499 	if (!TYPE_WARN_IF_NOT_ALIGN (type))
2500 	  SET_TYPE_WARN_IF_NOT_ALIGN (type,
2501 				      TYPE_WARN_IF_NOT_ALIGN (element));
2502 #ifdef ROUND_TYPE_ALIGN
2503 	align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
2504 #else
2505 	align = MAX (align, BITS_PER_UNIT);
2506 #endif
2507 	SET_TYPE_ALIGN (type, align);
2508 	SET_TYPE_MODE (type, BLKmode);
2509 	if (TYPE_SIZE (type) != 0
2510 	    && ! targetm.member_type_forces_blk (type, VOIDmode)
2511 	    /* BLKmode elements force BLKmode aggregate;
2512 	       else extract/store fields may lose.  */
2513 	    && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2514 		|| TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2515 	  {
2516 	    SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2517 						 TYPE_SIZE (type)));
2518 	    if (TYPE_MODE (type) != BLKmode
2519 		&& STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2520 		&& TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2521 	      {
2522 		TYPE_NO_FORCE_BLK (type) = 1;
2523 		SET_TYPE_MODE (type, BLKmode);
2524 	      }
2525 	  }
2526 	if (AGGREGATE_TYPE_P (element))
2527 	  TYPE_TYPELESS_STORAGE (type) = TYPE_TYPELESS_STORAGE (element);
2528 	/* When the element size is constant, check that it is at least as
2529 	   large as the element alignment.  */
2530 	if (TYPE_SIZE_UNIT (element)
2531 	    && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2532 	    /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2533 	       TYPE_ALIGN_UNIT.  */
2534 	    && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2535 	    && !integer_zerop (TYPE_SIZE_UNIT (element))
2536 	    && compare_tree_int (TYPE_SIZE_UNIT (element),
2537 			  	 TYPE_ALIGN_UNIT (element)) < 0)
2538 	  error ("alignment of array elements is greater than element size");
2539 	break;
2540       }
2541 
2542     case RECORD_TYPE:
2543     case UNION_TYPE:
2544     case QUAL_UNION_TYPE:
2545       {
2546 	tree field;
2547 	record_layout_info rli;
2548 
2549 	/* Initialize the layout information.  */
2550 	rli = start_record_layout (type);
2551 
2552 	/* If this is a QUAL_UNION_TYPE, we want to process the fields
2553 	   in the reverse order in building the COND_EXPR that denotes
2554 	   its size.  We reverse them again later.  */
2555 	if (TREE_CODE (type) == QUAL_UNION_TYPE)
2556 	  TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2557 
2558 	/* Place all the fields.  */
2559 	for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2560 	  place_field (rli, field);
2561 
2562 	if (TREE_CODE (type) == QUAL_UNION_TYPE)
2563 	  TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2564 
2565 	/* Finish laying out the record.  */
2566 	finish_record_layout (rli, /*free_p=*/true);
2567       }
2568       break;
2569 
2570     default:
2571       gcc_unreachable ();
2572     }
2573 
2574   /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE.  For
2575      records and unions, finish_record_layout already called this
2576      function.  */
2577   if (!RECORD_OR_UNION_TYPE_P (type))
2578     finalize_type_size (type);
2579 
2580   /* We should never see alias sets on incomplete aggregates.  And we
2581      should not call layout_type on not incomplete aggregates.  */
2582   if (AGGREGATE_TYPE_P (type))
2583     gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2584 }
2585 
2586 /* Return the least alignment required for type TYPE.  */
2587 
2588 unsigned int
2589 min_align_of_type (tree type)
2590 {
2591   unsigned int align = TYPE_ALIGN (type);
2592   if (!TYPE_USER_ALIGN (type))
2593     {
2594       align = MIN (align, BIGGEST_ALIGNMENT);
2595 #ifdef BIGGEST_FIELD_ALIGNMENT
2596       align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2597 #endif
2598       unsigned int field_align = align;
2599 #ifdef ADJUST_FIELD_ALIGN
2600       field_align = ADJUST_FIELD_ALIGN (NULL_TREE, type, field_align);
2601 #endif
2602       align = MIN (align, field_align);
2603     }
2604   return align / BITS_PER_UNIT;
2605 }
2606 
2607 /* Create and return a type for signed integers of PRECISION bits.  */
2608 
2609 tree
2610 make_signed_type (int precision)
2611 {
2612   tree type = make_node (INTEGER_TYPE);
2613 
2614   TYPE_PRECISION (type) = precision;
2615 
2616   fixup_signed_type (type);
2617   return type;
2618 }
2619 
2620 /* Create and return a type for unsigned integers of PRECISION bits.  */
2621 
2622 tree
2623 make_unsigned_type (int precision)
2624 {
2625   tree type = make_node (INTEGER_TYPE);
2626 
2627   TYPE_PRECISION (type) = precision;
2628 
2629   fixup_unsigned_type (type);
2630   return type;
2631 }
2632 
2633 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2634    and SATP.  */
2635 
2636 tree
2637 make_fract_type (int precision, int unsignedp, int satp)
2638 {
2639   tree type = make_node (FIXED_POINT_TYPE);
2640 
2641   TYPE_PRECISION (type) = precision;
2642 
2643   if (satp)
2644     TYPE_SATURATING (type) = 1;
2645 
2646   /* Lay out the type: set its alignment, size, etc.  */
2647   TYPE_UNSIGNED (type) = unsignedp;
2648   enum mode_class mclass = unsignedp ? MODE_UFRACT : MODE_FRACT;
2649   SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2650   layout_type (type);
2651 
2652   return type;
2653 }
2654 
2655 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2656    and SATP.  */
2657 
2658 tree
2659 make_accum_type (int precision, int unsignedp, int satp)
2660 {
2661   tree type = make_node (FIXED_POINT_TYPE);
2662 
2663   TYPE_PRECISION (type) = precision;
2664 
2665   if (satp)
2666     TYPE_SATURATING (type) = 1;
2667 
2668   /* Lay out the type: set its alignment, size, etc.  */
2669   TYPE_UNSIGNED (type) = unsignedp;
2670   enum mode_class mclass = unsignedp ? MODE_UACCUM : MODE_ACCUM;
2671   SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2672   layout_type (type);
2673 
2674   return type;
2675 }
2676 
2677 /* Initialize sizetypes so layout_type can use them.  */
2678 
2679 void
2680 initialize_sizetypes (void)
2681 {
2682   int precision, bprecision;
2683 
2684   /* Get sizetypes precision from the SIZE_TYPE target macro.  */
2685   if (strcmp (SIZETYPE, "unsigned int") == 0)
2686     precision = INT_TYPE_SIZE;
2687   else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2688     precision = LONG_TYPE_SIZE;
2689   else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2690     precision = LONG_LONG_TYPE_SIZE;
2691   else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2692     precision = SHORT_TYPE_SIZE;
2693   else
2694     {
2695       int i;
2696 
2697       precision = -1;
2698       for (i = 0; i < NUM_INT_N_ENTS; i++)
2699 	if (int_n_enabled_p[i])
2700 	  {
2701 	    char name[50];
2702 	    sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2703 
2704 	    if (strcmp (name, SIZETYPE) == 0)
2705 	      {
2706 		precision = int_n_data[i].bitsize;
2707 	      }
2708 	  }
2709       if (precision == -1)
2710 	gcc_unreachable ();
2711     }
2712 
2713   bprecision
2714     = MIN (precision + LOG2_BITS_PER_UNIT + 1, MAX_FIXED_MODE_SIZE);
2715   bprecision = GET_MODE_PRECISION (smallest_int_mode_for_size (bprecision));
2716   if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2717     bprecision = HOST_BITS_PER_DOUBLE_INT;
2718 
2719   /* Create stubs for sizetype and bitsizetype so we can create constants.  */
2720   sizetype = make_node (INTEGER_TYPE);
2721   TYPE_NAME (sizetype) = get_identifier ("sizetype");
2722   TYPE_PRECISION (sizetype) = precision;
2723   TYPE_UNSIGNED (sizetype) = 1;
2724   bitsizetype = make_node (INTEGER_TYPE);
2725   TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2726   TYPE_PRECISION (bitsizetype) = bprecision;
2727   TYPE_UNSIGNED (bitsizetype) = 1;
2728 
2729   /* Now layout both types manually.  */
2730   scalar_int_mode mode = smallest_int_mode_for_size (precision);
2731   SET_TYPE_MODE (sizetype, mode);
2732   SET_TYPE_ALIGN (sizetype, GET_MODE_ALIGNMENT (TYPE_MODE (sizetype)));
2733   TYPE_SIZE (sizetype) = bitsize_int (precision);
2734   TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (mode));
2735   set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2736 
2737   mode = smallest_int_mode_for_size (bprecision);
2738   SET_TYPE_MODE (bitsizetype, mode);
2739   SET_TYPE_ALIGN (bitsizetype, GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype)));
2740   TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2741   TYPE_SIZE_UNIT (bitsizetype) = size_int (GET_MODE_SIZE (mode));
2742   set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2743 
2744   /* Create the signed variants of *sizetype.  */
2745   ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2746   TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2747   sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2748   TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2749 }
2750 
2751 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2752    or BOOLEAN_TYPE.  Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2753    for TYPE, based on the PRECISION and whether or not the TYPE
2754    IS_UNSIGNED.  PRECISION need not correspond to a width supported
2755    natively by the hardware; for example, on a machine with 8-bit,
2756    16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2757    61.  */
2758 
2759 void
2760 set_min_and_max_values_for_integral_type (tree type,
2761 					  int precision,
2762 					  signop sgn)
2763 {
2764   /* For bitfields with zero width we end up creating integer types
2765      with zero precision.  Don't assign any minimum/maximum values
2766      to those types, they don't have any valid value.  */
2767   if (precision < 1)
2768     return;
2769 
2770   TYPE_MIN_VALUE (type)
2771     = wide_int_to_tree (type, wi::min_value (precision, sgn));
2772   TYPE_MAX_VALUE (type)
2773     = wide_int_to_tree (type, wi::max_value (precision, sgn));
2774 }
2775 
2776 /* Set the extreme values of TYPE based on its precision in bits,
2777    then lay it out.  Used when make_signed_type won't do
2778    because the tree code is not INTEGER_TYPE.  */
2779 
2780 void
2781 fixup_signed_type (tree type)
2782 {
2783   int precision = TYPE_PRECISION (type);
2784 
2785   set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2786 
2787   /* Lay out the type: set its alignment, size, etc.  */
2788   layout_type (type);
2789 }
2790 
2791 /* Set the extreme values of TYPE based on its precision in bits,
2792    then lay it out.  This is used both in `make_unsigned_type'
2793    and for enumeral types.  */
2794 
2795 void
2796 fixup_unsigned_type (tree type)
2797 {
2798   int precision = TYPE_PRECISION (type);
2799 
2800   TYPE_UNSIGNED (type) = 1;
2801 
2802   set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2803 
2804   /* Lay out the type: set its alignment, size, etc.  */
2805   layout_type (type);
2806 }
2807 
2808 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2809    starting at BITPOS.
2810 
2811    BITREGION_START is the bit position of the first bit in this
2812    sequence of bit fields.  BITREGION_END is the last bit in this
2813    sequence.  If these two fields are non-zero, we should restrict the
2814    memory access to that range.  Otherwise, we are allowed to touch
2815    any adjacent non bit-fields.
2816 
2817    ALIGN is the alignment of the underlying object in bits.
2818    VOLATILEP says whether the bitfield is volatile.  */
2819 
2820 bit_field_mode_iterator
2821 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2822 			   poly_int64 bitregion_start,
2823 			   poly_int64 bitregion_end,
2824 			   unsigned int align, bool volatilep)
2825 : m_mode (NARROWEST_INT_MODE), m_bitsize (bitsize),
2826   m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2827   m_bitregion_end (bitregion_end), m_align (align),
2828   m_volatilep (volatilep), m_count (0)
2829 {
2830   if (known_eq (m_bitregion_end, 0))
2831     {
2832       /* We can assume that any aligned chunk of ALIGN bits that overlaps
2833 	 the bitfield is mapped and won't trap, provided that ALIGN isn't
2834 	 too large.  The cap is the biggest required alignment for data,
2835 	 or at least the word size.  And force one such chunk at least.  */
2836       unsigned HOST_WIDE_INT units
2837 	= MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2838       if (bitsize <= 0)
2839 	bitsize = 1;
2840       HOST_WIDE_INT end = bitpos + bitsize + units - 1;
2841       m_bitregion_end = end - end % units - 1;
2842     }
2843 }
2844 
2845 /* Calls to this function return successively larger modes that can be used
2846    to represent the bitfield.  Return true if another bitfield mode is
2847    available, storing it in *OUT_MODE if so.  */
2848 
2849 bool
2850 bit_field_mode_iterator::next_mode (scalar_int_mode *out_mode)
2851 {
2852   scalar_int_mode mode;
2853   for (; m_mode.exists (&mode); m_mode = GET_MODE_WIDER_MODE (mode))
2854     {
2855       unsigned int unit = GET_MODE_BITSIZE (mode);
2856 
2857       /* Skip modes that don't have full precision.  */
2858       if (unit != GET_MODE_PRECISION (mode))
2859 	continue;
2860 
2861       /* Stop if the mode is too wide to handle efficiently.  */
2862       if (unit > MAX_FIXED_MODE_SIZE)
2863 	break;
2864 
2865       /* Don't deliver more than one multiword mode; the smallest one
2866 	 should be used.  */
2867       if (m_count > 0 && unit > BITS_PER_WORD)
2868 	break;
2869 
2870       /* Skip modes that are too small.  */
2871       unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2872       unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2873       if (subend > unit)
2874 	continue;
2875 
2876       /* Stop if the mode goes outside the bitregion.  */
2877       HOST_WIDE_INT start = m_bitpos - substart;
2878       if (maybe_ne (m_bitregion_start, 0)
2879 	  && maybe_lt (start, m_bitregion_start))
2880 	break;
2881       HOST_WIDE_INT end = start + unit;
2882       if (maybe_gt (end, m_bitregion_end + 1))
2883 	break;
2884 
2885       /* Stop if the mode requires too much alignment.  */
2886       if (GET_MODE_ALIGNMENT (mode) > m_align
2887 	  && targetm.slow_unaligned_access (mode, m_align))
2888 	break;
2889 
2890       *out_mode = mode;
2891       m_mode = GET_MODE_WIDER_MODE (mode);
2892       m_count++;
2893       return true;
2894     }
2895   return false;
2896 }
2897 
2898 /* Return true if smaller modes are generally preferred for this kind
2899    of bitfield.  */
2900 
2901 bool
2902 bit_field_mode_iterator::prefer_smaller_modes ()
2903 {
2904   return (m_volatilep
2905 	  ? targetm.narrow_volatile_bitfield ()
2906 	  : !SLOW_BYTE_ACCESS);
2907 }
2908 
2909 /* Find the best machine mode to use when referencing a bit field of length
2910    BITSIZE bits starting at BITPOS.
2911 
2912    BITREGION_START is the bit position of the first bit in this
2913    sequence of bit fields.  BITREGION_END is the last bit in this
2914    sequence.  If these two fields are non-zero, we should restrict the
2915    memory access to that range.  Otherwise, we are allowed to touch
2916    any adjacent non bit-fields.
2917 
2918    The chosen mode must have no more than LARGEST_MODE_BITSIZE bits.
2919    INT_MAX is a suitable value for LARGEST_MODE_BITSIZE if the caller
2920    doesn't want to apply a specific limit.
2921 
2922    If no mode meets all these conditions, we return VOIDmode.
2923 
2924    The underlying object is known to be aligned to a boundary of ALIGN bits.
2925 
2926    If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2927    smallest mode meeting these conditions.
2928 
2929    If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2930    largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2931    all the conditions.
2932 
2933    If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2934    decide which of the above modes should be used.  */
2935 
2936 bool
2937 get_best_mode (int bitsize, int bitpos,
2938 	       poly_uint64 bitregion_start, poly_uint64 bitregion_end,
2939 	       unsigned int align,
2940 	       unsigned HOST_WIDE_INT largest_mode_bitsize, bool volatilep,
2941 	       scalar_int_mode *best_mode)
2942 {
2943   bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2944 				bitregion_end, align, volatilep);
2945   scalar_int_mode mode;
2946   bool found = false;
2947   while (iter.next_mode (&mode)
2948 	 /* ??? For historical reasons, reject modes that would normally
2949 	    receive greater alignment, even if unaligned accesses are
2950 	    acceptable.  This has both advantages and disadvantages.
2951 	    Removing this check means that something like:
2952 
2953 	       struct s { unsigned int x; unsigned int y; };
2954 	       int f (struct s *s) { return s->x == 0 && s->y == 0; }
2955 
2956 	    can be implemented using a single load and compare on
2957 	    64-bit machines that have no alignment restrictions.
2958 	    For example, on powerpc64-linux-gnu, we would generate:
2959 
2960 		    ld 3,0(3)
2961 		    cntlzd 3,3
2962 		    srdi 3,3,6
2963 		    blr
2964 
2965 	    rather than:
2966 
2967 		    lwz 9,0(3)
2968 		    cmpwi 7,9,0
2969 		    bne 7,.L3
2970 		    lwz 3,4(3)
2971 		    cntlzw 3,3
2972 		    srwi 3,3,5
2973 		    extsw 3,3
2974 		    blr
2975 		    .p2align 4,,15
2976 	    .L3:
2977 		    li 3,0
2978 		    blr
2979 
2980 	    However, accessing more than one field can make life harder
2981 	    for the gimple optimizers.  For example, gcc.dg/vect/bb-slp-5.c
2982 	    has a series of unsigned short copies followed by a series of
2983 	    unsigned short comparisons.  With this check, both the copies
2984 	    and comparisons remain 16-bit accesses and FRE is able
2985 	    to eliminate the latter.  Without the check, the comparisons
2986 	    can be done using 2 64-bit operations, which FRE isn't able
2987 	    to handle in the same way.
2988 
2989 	    Either way, it would probably be worth disabling this check
2990 	    during expand.  One particular example where removing the
2991 	    check would help is the get_best_mode call in store_bit_field.
2992 	    If we are given a memory bitregion of 128 bits that is aligned
2993 	    to a 64-bit boundary, and the bitfield we want to modify is
2994 	    in the second half of the bitregion, this check causes
2995 	    store_bitfield to turn the memory into a 64-bit reference
2996 	    to the _first_ half of the region.  We later use
2997 	    adjust_bitfield_address to get a reference to the correct half,
2998 	    but doing so looks to adjust_bitfield_address as though we are
2999 	    moving past the end of the original object, so it drops the
3000 	    associated MEM_EXPR and MEM_OFFSET.  Removing the check
3001 	    causes store_bit_field to keep a 128-bit memory reference,
3002 	    so that the final bitfield reference still has a MEM_EXPR
3003 	    and MEM_OFFSET.  */
3004 	 && GET_MODE_ALIGNMENT (mode) <= align
3005 	 && GET_MODE_BITSIZE (mode) <= largest_mode_bitsize)
3006     {
3007       *best_mode = mode;
3008       found = true;
3009       if (iter.prefer_smaller_modes ())
3010 	break;
3011     }
3012 
3013   return found;
3014 }
3015 
3016 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
3017    SIGN).  The returned constants are made to be usable in TARGET_MODE.  */
3018 
3019 void
3020 get_mode_bounds (scalar_int_mode mode, int sign,
3021 		 scalar_int_mode target_mode,
3022 		 rtx *mmin, rtx *mmax)
3023 {
3024   unsigned size = GET_MODE_PRECISION (mode);
3025   unsigned HOST_WIDE_INT min_val, max_val;
3026 
3027   gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
3028 
3029   /* Special case BImode, which has values 0 and STORE_FLAG_VALUE.  */
3030   if (mode == BImode)
3031     {
3032       if (STORE_FLAG_VALUE < 0)
3033 	{
3034 	  min_val = STORE_FLAG_VALUE;
3035 	  max_val = 0;
3036 	}
3037       else
3038 	{
3039 	  min_val = 0;
3040 	  max_val = STORE_FLAG_VALUE;
3041 	}
3042     }
3043   else if (sign)
3044     {
3045       min_val = -(HOST_WIDE_INT_1U << (size - 1));
3046       max_val = (HOST_WIDE_INT_1U << (size - 1)) - 1;
3047     }
3048   else
3049     {
3050       min_val = 0;
3051       max_val = (HOST_WIDE_INT_1U << (size - 1) << 1) - 1;
3052     }
3053 
3054   *mmin = gen_int_mode (min_val, target_mode);
3055   *mmax = gen_int_mode (max_val, target_mode);
3056 }
3057 
3058 #include "gt-stor-layout.h"
3059