1 /* Combining of if-expressions on trees.
2    Copyright (C) 2007-2018 Free Software Foundation, Inc.
3    Contributed by Richard Guenther <rguenther@suse.de>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11 
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "ssa.h"
33 #include "tree-pretty-print.h"
34 /* rtl is needed only because arm back-end requires it for
35    BRANCH_COST.  */
36 #include "fold-const.h"
37 #include "cfganal.h"
38 #include "gimple-fold.h"
39 #include "gimple-iterator.h"
40 #include "gimplify-me.h"
41 #include "tree-cfg.h"
42 #include "tree-ssa.h"
43 
44 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
45 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
46   (BRANCH_COST (optimize_function_for_speed_p (cfun), \
47                 false) >= 2)
48 #endif
49 
50 /* This pass combines COND_EXPRs to simplify control flow.  It
51    currently recognizes bit tests and comparisons in chains that
52    represent logical and or logical or of two COND_EXPRs.
53 
54    It does so by walking basic blocks in a approximate reverse
55    post-dominator order and trying to match CFG patterns that
56    represent logical and or logical or of two COND_EXPRs.
57    Transformations are done if the COND_EXPR conditions match
58    either
59 
60      1. two single bit tests X & (1 << Yn) (for logical and)
61 
62      2. two bit tests X & Yn (for logical or)
63 
64      3. two comparisons X OPn Y (for logical or)
65 
66    To simplify this pass, removing basic blocks and dead code
67    is left to CFG cleanup and DCE.  */
68 
69 
70 /* Recognize a if-then-else CFG pattern starting to match with the
71    COND_BB basic-block containing the COND_EXPR.  The recognized
72    then end else blocks are stored to *THEN_BB and *ELSE_BB.  If
73    *THEN_BB and/or *ELSE_BB are already set, they are required to
74    match the then and else basic-blocks to make the pattern match.
75    Returns true if the pattern matched, false otherwise.  */
76 
77 static bool
78 recognize_if_then_else (basic_block cond_bb,
79 			basic_block *then_bb, basic_block *else_bb)
80 {
81   edge t, e;
82 
83   if (EDGE_COUNT (cond_bb->succs) != 2)
84     return false;
85 
86   /* Find the then/else edges.  */
87   t = EDGE_SUCC (cond_bb, 0);
88   e = EDGE_SUCC (cond_bb, 1);
89   if (!(t->flags & EDGE_TRUE_VALUE))
90     std::swap (t, e);
91   if (!(t->flags & EDGE_TRUE_VALUE)
92       || !(e->flags & EDGE_FALSE_VALUE))
93     return false;
94 
95   /* Check if the edge destinations point to the required block.  */
96   if (*then_bb
97       && t->dest != *then_bb)
98     return false;
99   if (*else_bb
100       && e->dest != *else_bb)
101     return false;
102 
103   if (!*then_bb)
104     *then_bb = t->dest;
105   if (!*else_bb)
106     *else_bb = e->dest;
107 
108   return true;
109 }
110 
111 /* Verify if the basic block BB does not have side-effects.  Return
112    true in this case, else false.  */
113 
114 static bool
115 bb_no_side_effects_p (basic_block bb)
116 {
117   gimple_stmt_iterator gsi;
118 
119   for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
120     {
121       gimple *stmt = gsi_stmt (gsi);
122 
123       if (is_gimple_debug (stmt))
124 	continue;
125 
126       if (gimple_has_side_effects (stmt)
127 	  || gimple_uses_undefined_value_p (stmt)
128 	  || gimple_could_trap_p (stmt)
129 	  || gimple_vuse (stmt)
130 	  /* const calls don't match any of the above, yet they could
131 	     still have some side-effects - they could contain
132 	     gimple_could_trap_p statements, like floating point
133 	     exceptions or integer division by zero.  See PR70586.
134 	     FIXME: perhaps gimple_has_side_effects or gimple_could_trap_p
135 	     should handle this.  */
136 	  || is_gimple_call (stmt))
137 	return false;
138     }
139 
140   return true;
141 }
142 
143 /* Return true if BB is an empty forwarder block to TO_BB.  */
144 
145 static bool
146 forwarder_block_to (basic_block bb, basic_block to_bb)
147 {
148   return empty_block_p (bb)
149 	 && single_succ_p (bb)
150 	 && single_succ (bb) == to_bb;
151 }
152 
153 /* Verify if all PHI node arguments in DEST for edges from BB1 or
154    BB2 to DEST are the same.  This makes the CFG merge point
155    free from side-effects.  Return true in this case, else false.  */
156 
157 static bool
158 same_phi_args_p (basic_block bb1, basic_block bb2, basic_block dest)
159 {
160   edge e1 = find_edge (bb1, dest);
161   edge e2 = find_edge (bb2, dest);
162   gphi_iterator gsi;
163   gphi *phi;
164 
165   for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
166     {
167       phi = gsi.phi ();
168       if (!operand_equal_p (PHI_ARG_DEF_FROM_EDGE (phi, e1),
169 			    PHI_ARG_DEF_FROM_EDGE (phi, e2), 0))
170         return false;
171     }
172 
173   return true;
174 }
175 
176 /* Return the best representative SSA name for CANDIDATE which is used
177    in a bit test.  */
178 
179 static tree
180 get_name_for_bit_test (tree candidate)
181 {
182   /* Skip single-use names in favor of using the name from a
183      non-widening conversion definition.  */
184   if (TREE_CODE (candidate) == SSA_NAME
185       && has_single_use (candidate))
186     {
187       gimple *def_stmt = SSA_NAME_DEF_STMT (candidate);
188       if (is_gimple_assign (def_stmt)
189 	  && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
190 	{
191 	  if (TYPE_PRECISION (TREE_TYPE (candidate))
192 	      <= TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
193 	    return gimple_assign_rhs1 (def_stmt);
194 	}
195     }
196 
197   return candidate;
198 }
199 
200 /* Recognize a single bit test pattern in GIMPLE_COND and its defining
201    statements.  Store the name being tested in *NAME and the bit
202    in *BIT.  The GIMPLE_COND computes *NAME & (1 << *BIT).
203    Returns true if the pattern matched, false otherwise.  */
204 
205 static bool
206 recognize_single_bit_test (gcond *cond, tree *name, tree *bit, bool inv)
207 {
208   gimple *stmt;
209 
210   /* Get at the definition of the result of the bit test.  */
211   if (gimple_cond_code (cond) != (inv ? EQ_EXPR : NE_EXPR)
212       || TREE_CODE (gimple_cond_lhs (cond)) != SSA_NAME
213       || !integer_zerop (gimple_cond_rhs (cond)))
214     return false;
215   stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond));
216   if (!is_gimple_assign (stmt))
217     return false;
218 
219   /* Look at which bit is tested.  One form to recognize is
220      D.1985_5 = state_3(D) >> control1_4(D);
221      D.1986_6 = (int) D.1985_5;
222      D.1987_7 = op0 & 1;
223      if (D.1987_7 != 0)  */
224   if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
225       && integer_onep (gimple_assign_rhs2 (stmt))
226       && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
227     {
228       tree orig_name = gimple_assign_rhs1 (stmt);
229 
230       /* Look through copies and conversions to eventually
231 	 find the stmt that computes the shift.  */
232       stmt = SSA_NAME_DEF_STMT (orig_name);
233 
234       while (is_gimple_assign (stmt)
235 	     && ((CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt))
236 		  && (TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (stmt)))
237 		      <= TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt))))
238 		  && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
239 		 || gimple_assign_ssa_name_copy_p (stmt)))
240 	stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
241 
242       /* If we found such, decompose it.  */
243       if (is_gimple_assign (stmt)
244 	  && gimple_assign_rhs_code (stmt) == RSHIFT_EXPR)
245 	{
246 	  /* op0 & (1 << op1) */
247 	  *bit = gimple_assign_rhs2 (stmt);
248 	  *name = gimple_assign_rhs1 (stmt);
249 	}
250       else
251 	{
252 	  /* t & 1 */
253 	  *bit = integer_zero_node;
254 	  *name = get_name_for_bit_test (orig_name);
255 	}
256 
257       return true;
258     }
259 
260   /* Another form is
261      D.1987_7 = op0 & (1 << CST)
262      if (D.1987_7 != 0)  */
263   if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
264       && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
265       && integer_pow2p (gimple_assign_rhs2 (stmt)))
266     {
267       *name = gimple_assign_rhs1 (stmt);
268       *bit = build_int_cst (integer_type_node,
269 			    tree_log2 (gimple_assign_rhs2 (stmt)));
270       return true;
271     }
272 
273   /* Another form is
274      D.1986_6 = 1 << control1_4(D)
275      D.1987_7 = op0 & D.1986_6
276      if (D.1987_7 != 0)  */
277   if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
278       && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
279       && TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME)
280     {
281       gimple *tmp;
282 
283       /* Both arguments of the BIT_AND_EXPR can be the single-bit
284 	 specifying expression.  */
285       tmp = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
286       if (is_gimple_assign (tmp)
287 	  && gimple_assign_rhs_code (tmp) == LSHIFT_EXPR
288 	  && integer_onep (gimple_assign_rhs1 (tmp)))
289 	{
290 	  *name = gimple_assign_rhs2 (stmt);
291 	  *bit = gimple_assign_rhs2 (tmp);
292 	  return true;
293 	}
294 
295       tmp = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
296       if (is_gimple_assign (tmp)
297 	  && gimple_assign_rhs_code (tmp) == LSHIFT_EXPR
298 	  && integer_onep (gimple_assign_rhs1 (tmp)))
299 	{
300 	  *name = gimple_assign_rhs1 (stmt);
301 	  *bit = gimple_assign_rhs2 (tmp);
302 	  return true;
303 	}
304     }
305 
306   return false;
307 }
308 
309 /* Recognize a bit test pattern in a GIMPLE_COND and its defining
310    statements.  Store the name being tested in *NAME and the bits
311    in *BITS.  The COND_EXPR computes *NAME & *BITS.
312    Returns true if the pattern matched, false otherwise.  */
313 
314 static bool
315 recognize_bits_test (gcond *cond, tree *name, tree *bits, bool inv)
316 {
317   gimple *stmt;
318 
319   /* Get at the definition of the result of the bit test.  */
320   if (gimple_cond_code (cond) != (inv ? EQ_EXPR : NE_EXPR)
321       || TREE_CODE (gimple_cond_lhs (cond)) != SSA_NAME
322       || !integer_zerop (gimple_cond_rhs (cond)))
323     return false;
324   stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond));
325   if (!is_gimple_assign (stmt)
326       || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR)
327     return false;
328 
329   *name = get_name_for_bit_test (gimple_assign_rhs1 (stmt));
330   *bits = gimple_assign_rhs2 (stmt);
331 
332   return true;
333 }
334 
335 
336 /* Update profile after code in outer_cond_bb was adjusted so
337    outer_cond_bb has no condition.  */
338 
339 static void
340 update_profile_after_ifcombine (basic_block inner_cond_bb,
341 			        basic_block outer_cond_bb)
342 {
343   edge outer_to_inner = find_edge (outer_cond_bb, inner_cond_bb);
344   edge outer2 = (EDGE_SUCC (outer_cond_bb, 0) == outer_to_inner
345 		 ? EDGE_SUCC (outer_cond_bb, 1)
346 		 : EDGE_SUCC (outer_cond_bb, 0));
347   edge inner_taken = EDGE_SUCC (inner_cond_bb, 0);
348   edge inner_not_taken = EDGE_SUCC (inner_cond_bb, 1);
349 
350   if (inner_taken->dest != outer2->dest)
351     std::swap (inner_taken, inner_not_taken);
352   gcc_assert (inner_taken->dest == outer2->dest);
353 
354   /* In the following we assume that inner_cond_bb has single predecessor.  */
355   gcc_assert (single_pred_p (inner_cond_bb));
356 
357   /* Path outer_cond_bb->(outer2) needs to be merged into path
358      outer_cond_bb->(outer_to_inner)->inner_cond_bb->(inner_taken)
359      and probability of inner_not_taken updated.  */
360 
361   inner_cond_bb->count = outer_cond_bb->count;
362 
363   inner_taken->probability = outer2->probability + outer_to_inner->probability
364 			     * inner_taken->probability;
365   inner_not_taken->probability = profile_probability::always ()
366 				 - inner_taken->probability;
367 
368   outer_to_inner->probability = profile_probability::always ();
369   outer2->probability = profile_probability::never ();
370 }
371 
372 /* If-convert on a and pattern with a common else block.  The inner
373    if is specified by its INNER_COND_BB, the outer by OUTER_COND_BB.
374    inner_inv, outer_inv and result_inv indicate whether the conditions
375    are inverted.
376    Returns true if the edges to the common else basic-block were merged.  */
377 
378 static bool
379 ifcombine_ifandif (basic_block inner_cond_bb, bool inner_inv,
380 		   basic_block outer_cond_bb, bool outer_inv, bool result_inv)
381 {
382   gimple_stmt_iterator gsi;
383   gimple *inner_stmt, *outer_stmt;
384   gcond *inner_cond, *outer_cond;
385   tree name1, name2, bit1, bit2, bits1, bits2;
386 
387   inner_stmt = last_stmt (inner_cond_bb);
388   if (!inner_stmt
389       || gimple_code (inner_stmt) != GIMPLE_COND)
390     return false;
391   inner_cond = as_a <gcond *> (inner_stmt);
392 
393   outer_stmt = last_stmt (outer_cond_bb);
394   if (!outer_stmt
395       || gimple_code (outer_stmt) != GIMPLE_COND)
396     return false;
397   outer_cond = as_a <gcond *> (outer_stmt);
398 
399   /* See if we test a single bit of the same name in both tests.  In
400      that case remove the outer test, merging both else edges,
401      and change the inner one to test for
402      name & (bit1 | bit2) == (bit1 | bit2).  */
403   if (recognize_single_bit_test (inner_cond, &name1, &bit1, inner_inv)
404       && recognize_single_bit_test (outer_cond, &name2, &bit2, outer_inv)
405       && name1 == name2)
406     {
407       tree t, t2;
408 
409       /* Do it.  */
410       gsi = gsi_for_stmt (inner_cond);
411       t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (name1),
412 		       build_int_cst (TREE_TYPE (name1), 1), bit1);
413       t2 = fold_build2 (LSHIFT_EXPR, TREE_TYPE (name1),
414 		        build_int_cst (TREE_TYPE (name1), 1), bit2);
415       t = fold_build2 (BIT_IOR_EXPR, TREE_TYPE (name1), t, t2);
416       t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
417 				    true, GSI_SAME_STMT);
418       t2 = fold_build2 (BIT_AND_EXPR, TREE_TYPE (name1), name1, t);
419       t2 = force_gimple_operand_gsi (&gsi, t2, true, NULL_TREE,
420 				     true, GSI_SAME_STMT);
421       t = fold_build2 (result_inv ? NE_EXPR : EQ_EXPR,
422 		       boolean_type_node, t2, t);
423       t = canonicalize_cond_expr_cond (t);
424       if (!t)
425 	return false;
426       gimple_cond_set_condition_from_tree (inner_cond, t);
427       update_stmt (inner_cond);
428 
429       /* Leave CFG optimization to cfg_cleanup.  */
430       gimple_cond_set_condition_from_tree (outer_cond,
431 	outer_inv ? boolean_false_node : boolean_true_node);
432       update_stmt (outer_cond);
433 
434       update_profile_after_ifcombine (inner_cond_bb, outer_cond_bb);
435 
436       if (dump_file)
437 	{
438 	  fprintf (dump_file, "optimizing double bit test to ");
439 	  print_generic_expr (dump_file, name1);
440 	  fprintf (dump_file, " & T == T\nwith temporary T = (1 << ");
441 	  print_generic_expr (dump_file, bit1);
442 	  fprintf (dump_file, ") | (1 << ");
443 	  print_generic_expr (dump_file, bit2);
444 	  fprintf (dump_file, ")\n");
445 	}
446 
447       return true;
448     }
449 
450   /* See if we have two bit tests of the same name in both tests.
451      In that case remove the outer test and change the inner one to
452      test for name & (bits1 | bits2) != 0.  */
453   else if (recognize_bits_test (inner_cond, &name1, &bits1, !inner_inv)
454       && recognize_bits_test (outer_cond, &name2, &bits2, !outer_inv))
455     {
456       gimple_stmt_iterator gsi;
457       tree t;
458 
459       /* Find the common name which is bit-tested.  */
460       if (name1 == name2)
461 	;
462       else if (bits1 == bits2)
463 	{
464 	  std::swap (name2, bits2);
465 	  std::swap (name1, bits1);
466 	}
467       else if (name1 == bits2)
468 	std::swap (name2, bits2);
469       else if (bits1 == name2)
470 	std::swap (name1, bits1);
471       else
472 	return false;
473 
474       /* As we strip non-widening conversions in finding a common
475          name that is tested make sure to end up with an integral
476 	 type for building the bit operations.  */
477       if (TYPE_PRECISION (TREE_TYPE (bits1))
478 	  >= TYPE_PRECISION (TREE_TYPE (bits2)))
479 	{
480 	  bits1 = fold_convert (unsigned_type_for (TREE_TYPE (bits1)), bits1);
481 	  name1 = fold_convert (TREE_TYPE (bits1), name1);
482 	  bits2 = fold_convert (unsigned_type_for (TREE_TYPE (bits2)), bits2);
483 	  bits2 = fold_convert (TREE_TYPE (bits1), bits2);
484 	}
485       else
486 	{
487 	  bits2 = fold_convert (unsigned_type_for (TREE_TYPE (bits2)), bits2);
488 	  name1 = fold_convert (TREE_TYPE (bits2), name1);
489 	  bits1 = fold_convert (unsigned_type_for (TREE_TYPE (bits1)), bits1);
490 	  bits1 = fold_convert (TREE_TYPE (bits2), bits1);
491 	}
492 
493       /* Do it.  */
494       gsi = gsi_for_stmt (inner_cond);
495       t = fold_build2 (BIT_IOR_EXPR, TREE_TYPE (name1), bits1, bits2);
496       t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
497 				    true, GSI_SAME_STMT);
498       t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (name1), name1, t);
499       t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
500 				    true, GSI_SAME_STMT);
501       t = fold_build2 (result_inv ? NE_EXPR : EQ_EXPR, boolean_type_node, t,
502 		       build_int_cst (TREE_TYPE (t), 0));
503       t = canonicalize_cond_expr_cond (t);
504       if (!t)
505 	return false;
506       gimple_cond_set_condition_from_tree (inner_cond, t);
507       update_stmt (inner_cond);
508 
509       /* Leave CFG optimization to cfg_cleanup.  */
510       gimple_cond_set_condition_from_tree (outer_cond,
511 	outer_inv ? boolean_false_node : boolean_true_node);
512       update_stmt (outer_cond);
513       update_profile_after_ifcombine (inner_cond_bb, outer_cond_bb);
514 
515       if (dump_file)
516 	{
517 	  fprintf (dump_file, "optimizing bits or bits test to ");
518 	  print_generic_expr (dump_file, name1);
519 	  fprintf (dump_file, " & T != 0\nwith temporary T = ");
520 	  print_generic_expr (dump_file, bits1);
521 	  fprintf (dump_file, " | ");
522 	  print_generic_expr (dump_file, bits2);
523 	  fprintf (dump_file, "\n");
524 	}
525 
526       return true;
527     }
528 
529   /* See if we have two comparisons that we can merge into one.  */
530   else if (TREE_CODE_CLASS (gimple_cond_code (inner_cond)) == tcc_comparison
531 	   && TREE_CODE_CLASS (gimple_cond_code (outer_cond)) == tcc_comparison)
532     {
533       tree t;
534       enum tree_code inner_cond_code = gimple_cond_code (inner_cond);
535       enum tree_code outer_cond_code = gimple_cond_code (outer_cond);
536 
537       /* Invert comparisons if necessary (and possible).  */
538       if (inner_inv)
539 	inner_cond_code = invert_tree_comparison (inner_cond_code,
540 	  HONOR_NANS (gimple_cond_lhs (inner_cond)));
541       if (inner_cond_code == ERROR_MARK)
542 	return false;
543       if (outer_inv)
544 	outer_cond_code = invert_tree_comparison (outer_cond_code,
545 	  HONOR_NANS (gimple_cond_lhs (outer_cond)));
546       if (outer_cond_code == ERROR_MARK)
547 	return false;
548       /* Don't return false so fast, try maybe_fold_or_comparisons?  */
549 
550       if (!(t = maybe_fold_and_comparisons (inner_cond_code,
551 					    gimple_cond_lhs (inner_cond),
552 					    gimple_cond_rhs (inner_cond),
553 					    outer_cond_code,
554 					    gimple_cond_lhs (outer_cond),
555 					    gimple_cond_rhs (outer_cond))))
556 	{
557 	  tree t1, t2;
558 	  gimple_stmt_iterator gsi;
559 	  if (!LOGICAL_OP_NON_SHORT_CIRCUIT || flag_sanitize_coverage)
560 	    return false;
561 	  /* Only do this optimization if the inner bb contains only the conditional. */
562 	  if (!gsi_one_before_end_p (gsi_start_nondebug_after_labels_bb (inner_cond_bb)))
563 	    return false;
564 	  t1 = fold_build2_loc (gimple_location (inner_cond),
565 				inner_cond_code,
566 				boolean_type_node,
567 				gimple_cond_lhs (inner_cond),
568 				gimple_cond_rhs (inner_cond));
569 	  t2 = fold_build2_loc (gimple_location (outer_cond),
570 				outer_cond_code,
571 				boolean_type_node,
572 				gimple_cond_lhs (outer_cond),
573 				gimple_cond_rhs (outer_cond));
574 	  t = fold_build2_loc (gimple_location (inner_cond),
575 			       TRUTH_AND_EXPR, boolean_type_node, t1, t2);
576 	  if (result_inv)
577 	    {
578 	      t = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (t), t);
579 	      result_inv = false;
580 	    }
581 	  gsi = gsi_for_stmt (inner_cond);
582 	  t = force_gimple_operand_gsi_1 (&gsi, t, is_gimple_condexpr, NULL, true,
583 					  GSI_SAME_STMT);
584         }
585       if (result_inv)
586 	t = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (t), t);
587       t = canonicalize_cond_expr_cond (t);
588       if (!t)
589 	return false;
590       gimple_cond_set_condition_from_tree (inner_cond, t);
591       update_stmt (inner_cond);
592 
593       /* Leave CFG optimization to cfg_cleanup.  */
594       gimple_cond_set_condition_from_tree (outer_cond,
595 	outer_inv ? boolean_false_node : boolean_true_node);
596       update_stmt (outer_cond);
597       update_profile_after_ifcombine (inner_cond_bb, outer_cond_bb);
598 
599       if (dump_file)
600 	{
601 	  fprintf (dump_file, "optimizing two comparisons to ");
602 	  print_generic_expr (dump_file, t);
603 	  fprintf (dump_file, "\n");
604 	}
605 
606       return true;
607     }
608 
609   return false;
610 }
611 
612 /* Helper function for tree_ssa_ifcombine_bb.  Recognize a CFG pattern and
613    dispatch to the appropriate if-conversion helper for a particular
614    set of INNER_COND_BB, OUTER_COND_BB, THEN_BB and ELSE_BB.
615    PHI_PRED_BB should be one of INNER_COND_BB, THEN_BB or ELSE_BB.  */
616 
617 static bool
618 tree_ssa_ifcombine_bb_1 (basic_block inner_cond_bb, basic_block outer_cond_bb,
619 			 basic_block then_bb, basic_block else_bb,
620 			 basic_block phi_pred_bb)
621 {
622   /* The && form is characterized by a common else_bb with
623      the two edges leading to it mergable.  The latter is
624      guaranteed by matching PHI arguments in the else_bb and
625      the inner cond_bb having no side-effects.  */
626   if (phi_pred_bb != else_bb
627       && recognize_if_then_else (outer_cond_bb, &inner_cond_bb, &else_bb)
628       && same_phi_args_p (outer_cond_bb, phi_pred_bb, else_bb))
629     {
630       /* We have
631 	   <outer_cond_bb>
632 	     if (q) goto inner_cond_bb; else goto else_bb;
633 	   <inner_cond_bb>
634 	     if (p) goto ...; else goto else_bb;
635 	     ...
636 	   <else_bb>
637 	     ...
638        */
639       return ifcombine_ifandif (inner_cond_bb, false, outer_cond_bb, false,
640 				false);
641     }
642 
643   /* And a version where the outer condition is negated.  */
644   if (phi_pred_bb != else_bb
645       && recognize_if_then_else (outer_cond_bb, &else_bb, &inner_cond_bb)
646       && same_phi_args_p (outer_cond_bb, phi_pred_bb, else_bb))
647     {
648       /* We have
649 	   <outer_cond_bb>
650 	     if (q) goto else_bb; else goto inner_cond_bb;
651 	   <inner_cond_bb>
652 	     if (p) goto ...; else goto else_bb;
653 	     ...
654 	   <else_bb>
655 	     ...
656        */
657       return ifcombine_ifandif (inner_cond_bb, false, outer_cond_bb, true,
658 				false);
659     }
660 
661   /* The || form is characterized by a common then_bb with the
662      two edges leading to it mergable.  The latter is guaranteed
663      by matching PHI arguments in the then_bb and the inner cond_bb
664      having no side-effects.  */
665   if (phi_pred_bb != then_bb
666       && recognize_if_then_else (outer_cond_bb, &then_bb, &inner_cond_bb)
667       && same_phi_args_p (outer_cond_bb, phi_pred_bb, then_bb))
668     {
669       /* We have
670 	   <outer_cond_bb>
671 	     if (q) goto then_bb; else goto inner_cond_bb;
672 	   <inner_cond_bb>
673 	     if (q) goto then_bb; else goto ...;
674 	   <then_bb>
675 	     ...
676        */
677       return ifcombine_ifandif (inner_cond_bb, true, outer_cond_bb, true,
678 				true);
679     }
680 
681   /* And a version where the outer condition is negated.  */
682   if (phi_pred_bb != then_bb
683       && recognize_if_then_else (outer_cond_bb, &inner_cond_bb, &then_bb)
684       && same_phi_args_p (outer_cond_bb, phi_pred_bb, then_bb))
685     {
686       /* We have
687 	   <outer_cond_bb>
688 	     if (q) goto inner_cond_bb; else goto then_bb;
689 	   <inner_cond_bb>
690 	     if (q) goto then_bb; else goto ...;
691 	   <then_bb>
692 	     ...
693        */
694       return ifcombine_ifandif (inner_cond_bb, true, outer_cond_bb, false,
695 				true);
696     }
697 
698   return false;
699 }
700 
701 /* Recognize a CFG pattern and dispatch to the appropriate
702    if-conversion helper.  We start with BB as the innermost
703    worker basic-block.  Returns true if a transformation was done.  */
704 
705 static bool
706 tree_ssa_ifcombine_bb (basic_block inner_cond_bb)
707 {
708   basic_block then_bb = NULL, else_bb = NULL;
709 
710   if (!recognize_if_then_else (inner_cond_bb, &then_bb, &else_bb))
711     return false;
712 
713   /* Recognize && and || of two conditions with a common
714      then/else block which entry edges we can merge.  That is:
715        if (a || b)
716 	 ;
717      and
718        if (a && b)
719 	 ;
720      This requires a single predecessor of the inner cond_bb.  */
721   if (single_pred_p (inner_cond_bb)
722       && bb_no_side_effects_p (inner_cond_bb))
723     {
724       basic_block outer_cond_bb = single_pred (inner_cond_bb);
725 
726       if (tree_ssa_ifcombine_bb_1 (inner_cond_bb, outer_cond_bb,
727 				   then_bb, else_bb, inner_cond_bb))
728 	return true;
729 
730       if (forwarder_block_to (else_bb, then_bb))
731 	{
732 	  /* Other possibilities for the && form, if else_bb is
733 	     empty forwarder block to then_bb.  Compared to the above simpler
734 	     forms this can be treated as if then_bb and else_bb were swapped,
735 	     and the corresponding inner_cond_bb not inverted because of that.
736 	     For same_phi_args_p we look at equality of arguments between
737 	     edge from outer_cond_bb and the forwarder block.  */
738 	  if (tree_ssa_ifcombine_bb_1 (inner_cond_bb, outer_cond_bb, else_bb,
739 				       then_bb, else_bb))
740 	    return true;
741 	}
742       else if (forwarder_block_to (then_bb, else_bb))
743 	{
744 	  /* Other possibilities for the || form, if then_bb is
745 	     empty forwarder block to else_bb.  Compared to the above simpler
746 	     forms this can be treated as if then_bb and else_bb were swapped,
747 	     and the corresponding inner_cond_bb not inverted because of that.
748 	     For same_phi_args_p we look at equality of arguments between
749 	     edge from outer_cond_bb and the forwarder block.  */
750 	  if (tree_ssa_ifcombine_bb_1 (inner_cond_bb, outer_cond_bb, else_bb,
751 				       then_bb, then_bb))
752 	    return true;
753 	}
754     }
755 
756   return false;
757 }
758 
759 /* Main entry for the tree if-conversion pass.  */
760 
761 namespace {
762 
763 const pass_data pass_data_tree_ifcombine =
764 {
765   GIMPLE_PASS, /* type */
766   "ifcombine", /* name */
767   OPTGROUP_NONE, /* optinfo_flags */
768   TV_TREE_IFCOMBINE, /* tv_id */
769   ( PROP_cfg | PROP_ssa ), /* properties_required */
770   0, /* properties_provided */
771   0, /* properties_destroyed */
772   0, /* todo_flags_start */
773   TODO_update_ssa, /* todo_flags_finish */
774 };
775 
776 class pass_tree_ifcombine : public gimple_opt_pass
777 {
778 public:
779   pass_tree_ifcombine (gcc::context *ctxt)
780     : gimple_opt_pass (pass_data_tree_ifcombine, ctxt)
781   {}
782 
783   /* opt_pass methods: */
784   virtual unsigned int execute (function *);
785 
786 }; // class pass_tree_ifcombine
787 
788 unsigned int
789 pass_tree_ifcombine::execute (function *fun)
790 {
791   basic_block *bbs;
792   bool cfg_changed = false;
793   int i;
794 
795   bbs = single_pred_before_succ_order ();
796   calculate_dominance_info (CDI_DOMINATORS);
797 
798   /* Search every basic block for COND_EXPR we may be able to optimize.
799 
800      We walk the blocks in order that guarantees that a block with
801      a single predecessor is processed after the predecessor.
802      This ensures that we collapse outter ifs before visiting the
803      inner ones, and also that we do not try to visit a removed
804      block.  This is opposite of PHI-OPT, because we cascade the
805      combining rather than cascading PHIs. */
806   for (i = n_basic_blocks_for_fn (fun) - NUM_FIXED_BLOCKS - 1; i >= 0; i--)
807     {
808       basic_block bb = bbs[i];
809       gimple *stmt = last_stmt (bb);
810 
811       if (stmt
812 	  && gimple_code (stmt) == GIMPLE_COND)
813 	if (tree_ssa_ifcombine_bb (bb))
814 	  {
815 	    /* Clear range info from all stmts in BB which is now executed
816 	       conditional on a always true/false condition.  */
817 	    reset_flow_sensitive_info_in_bb (bb);
818 	    cfg_changed |= true;
819 	  }
820     }
821 
822   free (bbs);
823 
824   return cfg_changed ? TODO_cleanup_cfg : 0;
825 }
826 
827 } // anon namespace
828 
829 gimple_opt_pass *
830 make_pass_tree_ifcombine (gcc::context *ctxt)
831 {
832   return new pass_tree_ifcombine (ctxt);
833 }
834