1 /* Global, SSA-based optimizations using mathematical identities.
2    Copyright (C) 2005-2018 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21    operations.  These are common in sequences such as this one:
22 
23 	modulus = sqrt(x*x + y*y + z*z);
24 	x = x / modulus;
25 	y = y / modulus;
26 	z = z / modulus;
27 
28    that can be optimized to
29 
30 	modulus = sqrt(x*x + y*y + z*z);
31         rmodulus = 1.0 / modulus;
32 	x = x * rmodulus;
33 	y = y * rmodulus;
34 	z = z * rmodulus;
35 
36    We do this for loop invariant divisors, and with this pass whenever
37    we notice that a division has the same divisor multiple times.
38 
39    Of course, like in PRE, we don't insert a division if a dominator
40    already has one.  However, this cannot be done as an extension of
41    PRE for several reasons.
42 
43    First of all, with some experiments it was found out that the
44    transformation is not always useful if there are only two divisions
45    by the same divisor.  This is probably because modern processors
46    can pipeline the divisions; on older, in-order processors it should
47    still be effective to optimize two divisions by the same number.
48    We make this a param, and it shall be called N in the remainder of
49    this comment.
50 
51    Second, if trapping math is active, we have less freedom on where
52    to insert divisions: we can only do so in basic blocks that already
53    contain one.  (If divisions don't trap, instead, we can insert
54    divisions elsewhere, which will be in blocks that are common dominators
55    of those that have the division).
56 
57    We really don't want to compute the reciprocal unless a division will
58    be found.  To do this, we won't insert the division in a basic block
59    that has less than N divisions *post-dominating* it.
60 
61    The algorithm constructs a subset of the dominator tree, holding the
62    blocks containing the divisions and the common dominators to them,
63    and walk it twice.  The first walk is in post-order, and it annotates
64    each block with the number of divisions that post-dominate it: this
65    gives information on where divisions can be inserted profitably.
66    The second walk is in pre-order, and it inserts divisions as explained
67    above, and replaces divisions by multiplications.
68 
69    In the best case, the cost of the pass is O(n_statements).  In the
70    worst-case, the cost is due to creating the dominator tree subset,
71    with a cost of O(n_basic_blocks ^ 2); however this can only happen
72    for n_statements / n_basic_blocks statements.  So, the amortized cost
73    of creating the dominator tree subset is O(n_basic_blocks) and the
74    worst-case cost of the pass is O(n_statements * n_basic_blocks).
75 
76    More practically, the cost will be small because there are few
77    divisions, and they tend to be in the same basic block, so insert_bb
78    is called very few times.
79 
80    If we did this using domwalk.c, an efficient implementation would have
81    to work on all the variables in a single pass, because we could not
82    work on just a subset of the dominator tree, as we do now, and the
83    cost would also be something like O(n_statements * n_basic_blocks).
84    The data structures would be more complex in order to work on all the
85    variables in a single pass.  */
86 
87 #include "config.h"
88 #include "system.h"
89 #include "coretypes.h"
90 #include "backend.h"
91 #include "target.h"
92 #include "rtl.h"
93 #include "tree.h"
94 #include "gimple.h"
95 #include "predict.h"
96 #include "alloc-pool.h"
97 #include "tree-pass.h"
98 #include "ssa.h"
99 #include "optabs-tree.h"
100 #include "gimple-pretty-print.h"
101 #include "alias.h"
102 #include "fold-const.h"
103 #include "gimple-fold.h"
104 #include "gimple-iterator.h"
105 #include "gimplify.h"
106 #include "gimplify-me.h"
107 #include "stor-layout.h"
108 #include "tree-cfg.h"
109 #include "tree-dfa.h"
110 #include "tree-ssa.h"
111 #include "builtins.h"
112 #include "params.h"
113 #include "internal-fn.h"
114 #include "case-cfn-macros.h"
115 #include "optabs-libfuncs.h"
116 #include "tree-eh.h"
117 #include "targhooks.h"
118 #include "domwalk.h"
119 
120 /* This structure represents one basic block that either computes a
121    division, or is a common dominator for basic block that compute a
122    division.  */
123 struct occurrence {
124   /* The basic block represented by this structure.  */
125   basic_block bb;
126 
127   /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
128      inserted in BB.  */
129   tree recip_def;
130 
131   /* If non-NULL, the SSA_NAME holding the definition for a squared
132      reciprocal inserted in BB.  */
133   tree square_recip_def;
134 
135   /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
136      was inserted in BB.  */
137   gimple *recip_def_stmt;
138 
139   /* Pointer to a list of "struct occurrence"s for blocks dominated
140      by BB.  */
141   struct occurrence *children;
142 
143   /* Pointer to the next "struct occurrence"s in the list of blocks
144      sharing a common dominator.  */
145   struct occurrence *next;
146 
147   /* The number of divisions that are in BB before compute_merit.  The
148      number of divisions that are in BB or post-dominate it after
149      compute_merit.  */
150   int num_divisions;
151 
152   /* True if the basic block has a division, false if it is a common
153      dominator for basic blocks that do.  If it is false and trapping
154      math is active, BB is not a candidate for inserting a reciprocal.  */
155   bool bb_has_division;
156 };
157 
158 static struct
159 {
160   /* Number of 1.0/X ops inserted.  */
161   int rdivs_inserted;
162 
163   /* Number of 1.0/FUNC ops inserted.  */
164   int rfuncs_inserted;
165 } reciprocal_stats;
166 
167 static struct
168 {
169   /* Number of cexpi calls inserted.  */
170   int inserted;
171 } sincos_stats;
172 
173 static struct
174 {
175   /* Number of widening multiplication ops inserted.  */
176   int widen_mults_inserted;
177 
178   /* Number of integer multiply-and-accumulate ops inserted.  */
179   int maccs_inserted;
180 
181   /* Number of fp fused multiply-add ops inserted.  */
182   int fmas_inserted;
183 
184   /* Number of divmod calls inserted.  */
185   int divmod_calls_inserted;
186 } widen_mul_stats;
187 
188 /* The instance of "struct occurrence" representing the highest
189    interesting block in the dominator tree.  */
190 static struct occurrence *occ_head;
191 
192 /* Allocation pool for getting instances of "struct occurrence".  */
193 static object_allocator<occurrence> *occ_pool;
194 
195 
196 
197 /* Allocate and return a new struct occurrence for basic block BB, and
198    whose children list is headed by CHILDREN.  */
199 static struct occurrence *
200 occ_new (basic_block bb, struct occurrence *children)
201 {
202   struct occurrence *occ;
203 
204   bb->aux = occ = occ_pool->allocate ();
205   memset (occ, 0, sizeof (struct occurrence));
206 
207   occ->bb = bb;
208   occ->children = children;
209   return occ;
210 }
211 
212 
213 /* Insert NEW_OCC into our subset of the dominator tree.  P_HEAD points to a
214    list of "struct occurrence"s, one per basic block, having IDOM as
215    their common dominator.
216 
217    We try to insert NEW_OCC as deep as possible in the tree, and we also
218    insert any other block that is a common dominator for BB and one
219    block already in the tree.  */
220 
221 static void
222 insert_bb (struct occurrence *new_occ, basic_block idom,
223 	   struct occurrence **p_head)
224 {
225   struct occurrence *occ, **p_occ;
226 
227   for (p_occ = p_head; (occ = *p_occ) != NULL; )
228     {
229       basic_block bb = new_occ->bb, occ_bb = occ->bb;
230       basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
231       if (dom == bb)
232 	{
233 	  /* BB dominates OCC_BB.  OCC becomes NEW_OCC's child: remove OCC
234 	     from its list.  */
235 	  *p_occ = occ->next;
236 	  occ->next = new_occ->children;
237 	  new_occ->children = occ;
238 
239 	  /* Try the next block (it may as well be dominated by BB).  */
240 	}
241 
242       else if (dom == occ_bb)
243 	{
244 	  /* OCC_BB dominates BB.  Tail recurse to look deeper.  */
245 	  insert_bb (new_occ, dom, &occ->children);
246 	  return;
247 	}
248 
249       else if (dom != idom)
250 	{
251 	  gcc_assert (!dom->aux);
252 
253 	  /* There is a dominator between IDOM and BB, add it and make
254 	     two children out of NEW_OCC and OCC.  First, remove OCC from
255 	     its list.	*/
256 	  *p_occ = occ->next;
257 	  new_occ->next = occ;
258 	  occ->next = NULL;
259 
260 	  /* None of the previous blocks has DOM as a dominator: if we tail
261 	     recursed, we would reexamine them uselessly. Just switch BB with
262 	     DOM, and go on looking for blocks dominated by DOM.  */
263           new_occ = occ_new (dom, new_occ);
264 	}
265 
266       else
267 	{
268 	  /* Nothing special, go on with the next element.  */
269 	  p_occ = &occ->next;
270 	}
271     }
272 
273   /* No place was found as a child of IDOM.  Make BB a sibling of IDOM.  */
274   new_occ->next = *p_head;
275   *p_head = new_occ;
276 }
277 
278 /* Register that we found a division in BB.
279    IMPORTANCE is a measure of how much weighting to give
280    that division.  Use IMPORTANCE = 2 to register a single
281    division.  If the division is going to be found multiple
282    times use 1 (as it is with squares).  */
283 
284 static inline void
285 register_division_in (basic_block bb, int importance)
286 {
287   struct occurrence *occ;
288 
289   occ = (struct occurrence *) bb->aux;
290   if (!occ)
291     {
292       occ = occ_new (bb, NULL);
293       insert_bb (occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), &occ_head);
294     }
295 
296   occ->bb_has_division = true;
297   occ->num_divisions += importance;
298 }
299 
300 
301 /* Compute the number of divisions that postdominate each block in OCC and
302    its children.  */
303 
304 static void
305 compute_merit (struct occurrence *occ)
306 {
307   struct occurrence *occ_child;
308   basic_block dom = occ->bb;
309 
310   for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
311     {
312       basic_block bb;
313       if (occ_child->children)
314         compute_merit (occ_child);
315 
316       if (flag_exceptions)
317 	bb = single_noncomplex_succ (dom);
318       else
319 	bb = dom;
320 
321       if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
322         occ->num_divisions += occ_child->num_divisions;
323     }
324 }
325 
326 
327 /* Return whether USE_STMT is a floating-point division by DEF.  */
328 static inline bool
329 is_division_by (gimple *use_stmt, tree def)
330 {
331   return is_gimple_assign (use_stmt)
332 	 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
333 	 && gimple_assign_rhs2 (use_stmt) == def
334 	 /* Do not recognize x / x as valid division, as we are getting
335 	    confused later by replacing all immediate uses x in such
336 	    a stmt.  */
337 	 && gimple_assign_rhs1 (use_stmt) != def;
338 }
339 
340 /* Return whether USE_STMT is DEF * DEF.  */
341 static inline bool
342 is_square_of (gimple *use_stmt, tree def)
343 {
344   if (gimple_code (use_stmt) == GIMPLE_ASSIGN
345       && gimple_assign_rhs_code (use_stmt) == MULT_EXPR)
346     {
347       tree op0 = gimple_assign_rhs1 (use_stmt);
348       tree op1 = gimple_assign_rhs2 (use_stmt);
349 
350       return op0 == op1 && op0 == def;
351     }
352   return 0;
353 }
354 
355 /* Return whether USE_STMT is a floating-point division by
356    DEF * DEF.  */
357 static inline bool
358 is_division_by_square (gimple *use_stmt, tree def)
359 {
360   if (gimple_code (use_stmt) == GIMPLE_ASSIGN
361       && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
362       && gimple_assign_rhs1 (use_stmt) != gimple_assign_rhs2 (use_stmt))
363     {
364       tree denominator = gimple_assign_rhs2 (use_stmt);
365       if (TREE_CODE (denominator) == SSA_NAME)
366 	{
367 	  return is_square_of (SSA_NAME_DEF_STMT (denominator), def);
368 	}
369     }
370   return 0;
371 }
372 
373 /* Walk the subset of the dominator tree rooted at OCC, setting the
374    RECIP_DEF field to a definition of 1.0 / DEF that can be used in
375    the given basic block.  The field may be left NULL, of course,
376    if it is not possible or profitable to do the optimization.
377 
378    DEF_BSI is an iterator pointing at the statement defining DEF.
379    If RECIP_DEF is set, a dominator already has a computation that can
380    be used.
381 
382    If should_insert_square_recip is set, then this also inserts
383    the square of the reciprocal immediately after the definition
384    of the reciprocal.  */
385 
386 static void
387 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
388 		    tree def, tree recip_def, tree square_recip_def,
389 		    int should_insert_square_recip, int threshold)
390 {
391   tree type;
392   gassign *new_stmt, *new_square_stmt;
393   gimple_stmt_iterator gsi;
394   struct occurrence *occ_child;
395 
396   if (!recip_def
397       && (occ->bb_has_division || !flag_trapping_math)
398       /* Divide by two as all divisions are counted twice in
399 	 the costing loop.  */
400       && occ->num_divisions / 2 >= threshold)
401     {
402       /* Make a variable with the replacement and substitute it.  */
403       type = TREE_TYPE (def);
404       recip_def = create_tmp_reg (type, "reciptmp");
405       new_stmt = gimple_build_assign (recip_def, RDIV_EXPR,
406 				      build_one_cst (type), def);
407 
408       if (should_insert_square_recip)
409 	{
410 	  square_recip_def = create_tmp_reg (type, "powmult_reciptmp");
411 	  new_square_stmt = gimple_build_assign (square_recip_def, MULT_EXPR,
412 						 recip_def, recip_def);
413 	}
414 
415       if (occ->bb_has_division)
416 	{
417 	  /* Case 1: insert before an existing division.  */
418 	  gsi = gsi_after_labels (occ->bb);
419 	  while (!gsi_end_p (gsi)
420 		 && (!is_division_by (gsi_stmt (gsi), def))
421 		 && (!is_division_by_square (gsi_stmt (gsi), def)))
422 	    gsi_next (&gsi);
423 
424 	  gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
425 	}
426       else if (def_gsi && occ->bb == def_gsi->bb)
427 	{
428 	  /* Case 2: insert right after the definition.  Note that this will
429 	     never happen if the definition statement can throw, because in
430 	     that case the sole successor of the statement's basic block will
431 	     dominate all the uses as well.  */
432 	  gsi = *def_gsi;
433 	  gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
434 	}
435       else
436 	{
437 	  /* Case 3: insert in a basic block not containing defs/uses.  */
438 	  gsi = gsi_after_labels (occ->bb);
439 	  gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
440 	}
441 
442       /* Regardless of which case the reciprocal as inserted in,
443 	 we insert the square immediately after the reciprocal.  */
444       if (should_insert_square_recip)
445 	gsi_insert_before (&gsi, new_square_stmt, GSI_SAME_STMT);
446 
447       reciprocal_stats.rdivs_inserted++;
448 
449       occ->recip_def_stmt = new_stmt;
450     }
451 
452   occ->recip_def = recip_def;
453   occ->square_recip_def = square_recip_def;
454   for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
455     insert_reciprocals (def_gsi, occ_child, def, recip_def,
456 			square_recip_def, should_insert_square_recip,
457 			threshold);
458 }
459 
460 /* Replace occurrences of expr / (x * x) with expr * ((1 / x) * (1 / x)).
461    Take as argument the use for (x * x).  */
462 static inline void
463 replace_reciprocal_squares (use_operand_p use_p)
464 {
465   gimple *use_stmt = USE_STMT (use_p);
466   basic_block bb = gimple_bb (use_stmt);
467   struct occurrence *occ = (struct occurrence *) bb->aux;
468 
469   if (optimize_bb_for_speed_p (bb) && occ->square_recip_def
470       && occ->recip_def)
471     {
472       gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
473       gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
474       gimple_assign_set_rhs2 (use_stmt, occ->square_recip_def);
475       SET_USE (use_p, occ->square_recip_def);
476       fold_stmt_inplace (&gsi);
477       update_stmt (use_stmt);
478     }
479 }
480 
481 
482 /* Replace the division at USE_P with a multiplication by the reciprocal, if
483    possible.  */
484 
485 static inline void
486 replace_reciprocal (use_operand_p use_p)
487 {
488   gimple *use_stmt = USE_STMT (use_p);
489   basic_block bb = gimple_bb (use_stmt);
490   struct occurrence *occ = (struct occurrence *) bb->aux;
491 
492   if (optimize_bb_for_speed_p (bb)
493       && occ->recip_def && use_stmt != occ->recip_def_stmt)
494     {
495       gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
496       gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
497       SET_USE (use_p, occ->recip_def);
498       fold_stmt_inplace (&gsi);
499       update_stmt (use_stmt);
500     }
501 }
502 
503 
504 /* Free OCC and return one more "struct occurrence" to be freed.  */
505 
506 static struct occurrence *
507 free_bb (struct occurrence *occ)
508 {
509   struct occurrence *child, *next;
510 
511   /* First get the two pointers hanging off OCC.  */
512   next = occ->next;
513   child = occ->children;
514   occ->bb->aux = NULL;
515   occ_pool->remove (occ);
516 
517   /* Now ensure that we don't recurse unless it is necessary.  */
518   if (!child)
519     return next;
520   else
521     {
522       while (next)
523 	next = free_bb (next);
524 
525       return child;
526     }
527 }
528 
529 
530 /* Look for floating-point divisions among DEF's uses, and try to
531    replace them by multiplications with the reciprocal.  Add
532    as many statements computing the reciprocal as needed.
533 
534    DEF must be a GIMPLE register of a floating-point type.  */
535 
536 static void
537 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
538 {
539   use_operand_p use_p, square_use_p;
540   imm_use_iterator use_iter, square_use_iter;
541   tree square_def;
542   struct occurrence *occ;
543   int count = 0;
544   int threshold;
545   int square_recip_count = 0;
546   int sqrt_recip_count = 0;
547 
548   gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && TREE_CODE (def) == SSA_NAME);
549   threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
550 
551   /* If DEF is a square (x * x), count the number of divisions by x.
552      If there are more divisions by x than by (DEF * DEF), prefer to optimize
553      the reciprocal of x instead of DEF.  This improves cases like:
554        def = x * x
555        t0 = a / def
556        t1 = b / def
557        t2 = c / x
558      Reciprocal optimization of x results in 1 division rather than 2 or 3.  */
559   gimple *def_stmt = SSA_NAME_DEF_STMT (def);
560 
561   if (is_gimple_assign (def_stmt)
562       && gimple_assign_rhs_code (def_stmt) == MULT_EXPR
563       && TREE_CODE (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
564       && gimple_assign_rhs1 (def_stmt) == gimple_assign_rhs2 (def_stmt))
565     {
566       tree op0 = gimple_assign_rhs1 (def_stmt);
567 
568       FOR_EACH_IMM_USE_FAST (use_p, use_iter, op0)
569 	{
570 	  gimple *use_stmt = USE_STMT (use_p);
571 	  if (is_division_by (use_stmt, op0))
572 	    sqrt_recip_count++;
573 	}
574     }
575 
576   FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
577     {
578       gimple *use_stmt = USE_STMT (use_p);
579       if (is_division_by (use_stmt, def))
580 	{
581 	  register_division_in (gimple_bb (use_stmt), 2);
582 	  count++;
583 	}
584 
585       if (is_square_of (use_stmt, def))
586 	{
587 	  square_def = gimple_assign_lhs (use_stmt);
588 	  FOR_EACH_IMM_USE_FAST (square_use_p, square_use_iter, square_def)
589 	    {
590 	      gimple *square_use_stmt = USE_STMT (square_use_p);
591 	      if (is_division_by (square_use_stmt, square_def))
592 		{
593 		  /* This is executed twice for each division by a square.  */
594 		  register_division_in (gimple_bb (square_use_stmt), 1);
595 		  square_recip_count++;
596 		}
597 	    }
598 	}
599     }
600 
601   /* Square reciprocals were counted twice above.  */
602   square_recip_count /= 2;
603 
604   /* If it is more profitable to optimize 1 / x, don't optimize 1 / (x * x).  */
605   if (sqrt_recip_count > square_recip_count)
606     return;
607 
608   /* Do the expensive part only if we can hope to optimize something.  */
609   if (count + square_recip_count >= threshold && count >= 1)
610     {
611       gimple *use_stmt;
612       for (occ = occ_head; occ; occ = occ->next)
613 	{
614 	  compute_merit (occ);
615 	  insert_reciprocals (def_gsi, occ, def, NULL, NULL,
616 			      square_recip_count, threshold);
617 	}
618 
619       FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
620 	{
621 	  if (is_division_by (use_stmt, def))
622 	    {
623 	      FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
624 		replace_reciprocal (use_p);
625 	    }
626 	  else if (square_recip_count > 0 && is_square_of (use_stmt, def))
627 	    {
628 	      FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
629 		{
630 		  /* Find all uses of the square that are divisions and
631 		   * replace them by multiplications with the inverse.  */
632 		  imm_use_iterator square_iterator;
633 		  gimple *powmult_use_stmt = USE_STMT (use_p);
634 		  tree powmult_def_name = gimple_assign_lhs (powmult_use_stmt);
635 
636 		  FOR_EACH_IMM_USE_STMT (powmult_use_stmt,
637 					 square_iterator, powmult_def_name)
638 		    FOR_EACH_IMM_USE_ON_STMT (square_use_p, square_iterator)
639 		      {
640 			gimple *powmult_use_stmt = USE_STMT (square_use_p);
641 			if (is_division_by (powmult_use_stmt, powmult_def_name))
642 			  replace_reciprocal_squares (square_use_p);
643 		      }
644 		}
645 	    }
646 	}
647     }
648 
649   for (occ = occ_head; occ; )
650     occ = free_bb (occ);
651 
652   occ_head = NULL;
653 }
654 
655 /* Return an internal function that implements the reciprocal of CALL,
656    or IFN_LAST if there is no such function that the target supports.  */
657 
658 internal_fn
659 internal_fn_reciprocal (gcall *call)
660 {
661   internal_fn ifn;
662 
663   switch (gimple_call_combined_fn (call))
664     {
665     CASE_CFN_SQRT:
666     CASE_CFN_SQRT_FN:
667       ifn = IFN_RSQRT;
668       break;
669 
670     default:
671       return IFN_LAST;
672     }
673 
674   tree_pair types = direct_internal_fn_types (ifn, call);
675   if (!direct_internal_fn_supported_p (ifn, types, OPTIMIZE_FOR_SPEED))
676     return IFN_LAST;
677 
678   return ifn;
679 }
680 
681 /* Go through all the floating-point SSA_NAMEs, and call
682    execute_cse_reciprocals_1 on each of them.  */
683 namespace {
684 
685 const pass_data pass_data_cse_reciprocals =
686 {
687   GIMPLE_PASS, /* type */
688   "recip", /* name */
689   OPTGROUP_NONE, /* optinfo_flags */
690   TV_TREE_RECIP, /* tv_id */
691   PROP_ssa, /* properties_required */
692   0, /* properties_provided */
693   0, /* properties_destroyed */
694   0, /* todo_flags_start */
695   TODO_update_ssa, /* todo_flags_finish */
696 };
697 
698 class pass_cse_reciprocals : public gimple_opt_pass
699 {
700 public:
701   pass_cse_reciprocals (gcc::context *ctxt)
702     : gimple_opt_pass (pass_data_cse_reciprocals, ctxt)
703   {}
704 
705   /* opt_pass methods: */
706   virtual bool gate (function *) { return optimize && flag_reciprocal_math; }
707   virtual unsigned int execute (function *);
708 
709 }; // class pass_cse_reciprocals
710 
711 unsigned int
712 pass_cse_reciprocals::execute (function *fun)
713 {
714   basic_block bb;
715   tree arg;
716 
717   occ_pool = new object_allocator<occurrence> ("dominators for recip");
718 
719   memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
720   calculate_dominance_info (CDI_DOMINATORS);
721   calculate_dominance_info (CDI_POST_DOMINATORS);
722 
723   if (flag_checking)
724     FOR_EACH_BB_FN (bb, fun)
725       gcc_assert (!bb->aux);
726 
727   for (arg = DECL_ARGUMENTS (fun->decl); arg; arg = DECL_CHAIN (arg))
728     if (FLOAT_TYPE_P (TREE_TYPE (arg))
729 	&& is_gimple_reg (arg))
730       {
731 	tree name = ssa_default_def (fun, arg);
732 	if (name)
733 	  execute_cse_reciprocals_1 (NULL, name);
734       }
735 
736   FOR_EACH_BB_FN (bb, fun)
737     {
738       tree def;
739 
740       for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
741 	   gsi_next (&gsi))
742 	{
743 	  gphi *phi = gsi.phi ();
744 	  def = PHI_RESULT (phi);
745 	  if (! virtual_operand_p (def)
746 	      && FLOAT_TYPE_P (TREE_TYPE (def)))
747 	    execute_cse_reciprocals_1 (NULL, def);
748 	}
749 
750       for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
751 	   gsi_next (&gsi))
752         {
753 	  gimple *stmt = gsi_stmt (gsi);
754 
755 	  if (gimple_has_lhs (stmt)
756 	      && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
757 	      && FLOAT_TYPE_P (TREE_TYPE (def))
758 	      && TREE_CODE (def) == SSA_NAME)
759 	    execute_cse_reciprocals_1 (&gsi, def);
760 	}
761 
762       if (optimize_bb_for_size_p (bb))
763         continue;
764 
765       /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b).  */
766       for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
767 	   gsi_next (&gsi))
768         {
769 	  gimple *stmt = gsi_stmt (gsi);
770 
771 	  if (is_gimple_assign (stmt)
772 	      && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
773 	    {
774 	      tree arg1 = gimple_assign_rhs2 (stmt);
775 	      gimple *stmt1;
776 
777 	      if (TREE_CODE (arg1) != SSA_NAME)
778 		continue;
779 
780 	      stmt1 = SSA_NAME_DEF_STMT (arg1);
781 
782 	      if (is_gimple_call (stmt1)
783 		  && gimple_call_lhs (stmt1))
784 		{
785 		  bool fail;
786 		  imm_use_iterator ui;
787 		  use_operand_p use_p;
788 		  tree fndecl = NULL_TREE;
789 
790 		  gcall *call = as_a <gcall *> (stmt1);
791 		  internal_fn ifn = internal_fn_reciprocal (call);
792 		  if (ifn == IFN_LAST)
793 		    {
794 		      fndecl = gimple_call_fndecl (call);
795 		      if (!fndecl
796 			  || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_MD)
797 			continue;
798 		      fndecl = targetm.builtin_reciprocal (fndecl);
799 		      if (!fndecl)
800 			continue;
801 		    }
802 
803 		  /* Check that all uses of the SSA name are divisions,
804 		     otherwise replacing the defining statement will do
805 		     the wrong thing.  */
806 		  fail = false;
807 		  FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
808 		    {
809 		      gimple *stmt2 = USE_STMT (use_p);
810 		      if (is_gimple_debug (stmt2))
811 			continue;
812 		      if (!is_gimple_assign (stmt2)
813 			  || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
814 			  || gimple_assign_rhs1 (stmt2) == arg1
815 			  || gimple_assign_rhs2 (stmt2) != arg1)
816 			{
817 			  fail = true;
818 			  break;
819 			}
820 		    }
821 		  if (fail)
822 		    continue;
823 
824 		  gimple_replace_ssa_lhs (call, arg1);
825 		  if (gimple_call_internal_p (call) != (ifn != IFN_LAST))
826 		    {
827 		      auto_vec<tree, 4> args;
828 		      for (unsigned int i = 0;
829 			   i < gimple_call_num_args (call); i++)
830 			args.safe_push (gimple_call_arg (call, i));
831 		      gcall *stmt2;
832 		      if (ifn == IFN_LAST)
833 			stmt2 = gimple_build_call_vec (fndecl, args);
834 		      else
835 			stmt2 = gimple_build_call_internal_vec (ifn, args);
836 		      gimple_call_set_lhs (stmt2, arg1);
837 		      if (gimple_vdef (call))
838 			{
839 			  gimple_set_vdef (stmt2, gimple_vdef (call));
840 			  SSA_NAME_DEF_STMT (gimple_vdef (stmt2)) = stmt2;
841 			}
842 		      gimple_call_set_nothrow (stmt2,
843 					       gimple_call_nothrow_p (call));
844 		      gimple_set_vuse (stmt2, gimple_vuse (call));
845 		      gimple_stmt_iterator gsi2 = gsi_for_stmt (call);
846 		      gsi_replace (&gsi2, stmt2, true);
847 		    }
848 		  else
849 		    {
850 		      if (ifn == IFN_LAST)
851 			gimple_call_set_fndecl (call, fndecl);
852 		      else
853 			gimple_call_set_internal_fn (call, ifn);
854 		      update_stmt (call);
855 		    }
856 		  reciprocal_stats.rfuncs_inserted++;
857 
858 		  FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
859 		    {
860 		      gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
861 		      gimple_assign_set_rhs_code (stmt, MULT_EXPR);
862 		      fold_stmt_inplace (&gsi);
863 		      update_stmt (stmt);
864 		    }
865 		}
866 	    }
867 	}
868     }
869 
870   statistics_counter_event (fun, "reciprocal divs inserted",
871 			    reciprocal_stats.rdivs_inserted);
872   statistics_counter_event (fun, "reciprocal functions inserted",
873 			    reciprocal_stats.rfuncs_inserted);
874 
875   free_dominance_info (CDI_DOMINATORS);
876   free_dominance_info (CDI_POST_DOMINATORS);
877   delete occ_pool;
878   return 0;
879 }
880 
881 } // anon namespace
882 
883 gimple_opt_pass *
884 make_pass_cse_reciprocals (gcc::context *ctxt)
885 {
886   return new pass_cse_reciprocals (ctxt);
887 }
888 
889 /* Records an occurrence at statement USE_STMT in the vector of trees
890    STMTS if it is dominated by *TOP_BB or dominates it or this basic block
891    is not yet initialized.  Returns true if the occurrence was pushed on
892    the vector.  Adjusts *TOP_BB to be the basic block dominating all
893    statements in the vector.  */
894 
895 static bool
896 maybe_record_sincos (vec<gimple *> *stmts,
897 		     basic_block *top_bb, gimple *use_stmt)
898 {
899   basic_block use_bb = gimple_bb (use_stmt);
900   if (*top_bb
901       && (*top_bb == use_bb
902 	  || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
903     stmts->safe_push (use_stmt);
904   else if (!*top_bb
905 	   || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
906     {
907       stmts->safe_push (use_stmt);
908       *top_bb = use_bb;
909     }
910   else
911     return false;
912 
913   return true;
914 }
915 
916 /* Look for sin, cos and cexpi calls with the same argument NAME and
917    create a single call to cexpi CSEing the result in this case.
918    We first walk over all immediate uses of the argument collecting
919    statements that we can CSE in a vector and in a second pass replace
920    the statement rhs with a REALPART or IMAGPART expression on the
921    result of the cexpi call we insert before the use statement that
922    dominates all other candidates.  */
923 
924 static bool
925 execute_cse_sincos_1 (tree name)
926 {
927   gimple_stmt_iterator gsi;
928   imm_use_iterator use_iter;
929   tree fndecl, res, type;
930   gimple *def_stmt, *use_stmt, *stmt;
931   int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
932   auto_vec<gimple *> stmts;
933   basic_block top_bb = NULL;
934   int i;
935   bool cfg_changed = false;
936 
937   type = TREE_TYPE (name);
938   FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
939     {
940       if (gimple_code (use_stmt) != GIMPLE_CALL
941 	  || !gimple_call_lhs (use_stmt))
942 	continue;
943 
944       switch (gimple_call_combined_fn (use_stmt))
945 	{
946 	CASE_CFN_COS:
947 	  seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
948 	  break;
949 
950 	CASE_CFN_SIN:
951 	  seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
952 	  break;
953 
954 	CASE_CFN_CEXPI:
955 	  seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
956 	  break;
957 
958 	default:;
959 	}
960     }
961 
962   if (seen_cos + seen_sin + seen_cexpi <= 1)
963     return false;
964 
965   /* Simply insert cexpi at the beginning of top_bb but not earlier than
966      the name def statement.  */
967   fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
968   if (!fndecl)
969     return false;
970   stmt = gimple_build_call (fndecl, 1, name);
971   res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
972   gimple_call_set_lhs (stmt, res);
973 
974   def_stmt = SSA_NAME_DEF_STMT (name);
975   if (!SSA_NAME_IS_DEFAULT_DEF (name)
976       && gimple_code (def_stmt) != GIMPLE_PHI
977       && gimple_bb (def_stmt) == top_bb)
978     {
979       gsi = gsi_for_stmt (def_stmt);
980       gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
981     }
982   else
983     {
984       gsi = gsi_after_labels (top_bb);
985       gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
986     }
987   sincos_stats.inserted++;
988 
989   /* And adjust the recorded old call sites.  */
990   for (i = 0; stmts.iterate (i, &use_stmt); ++i)
991     {
992       tree rhs = NULL;
993 
994       switch (gimple_call_combined_fn (use_stmt))
995 	{
996 	CASE_CFN_COS:
997 	  rhs = fold_build1 (REALPART_EXPR, type, res);
998 	  break;
999 
1000 	CASE_CFN_SIN:
1001 	  rhs = fold_build1 (IMAGPART_EXPR, type, res);
1002 	  break;
1003 
1004 	CASE_CFN_CEXPI:
1005 	  rhs = res;
1006 	  break;
1007 
1008 	default:;
1009 	  gcc_unreachable ();
1010 	}
1011 
1012 	/* Replace call with a copy.  */
1013 	stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
1014 
1015 	gsi = gsi_for_stmt (use_stmt);
1016 	gsi_replace (&gsi, stmt, true);
1017 	if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
1018 	  cfg_changed = true;
1019     }
1020 
1021   return cfg_changed;
1022 }
1023 
1024 /* To evaluate powi(x,n), the floating point value x raised to the
1025    constant integer exponent n, we use a hybrid algorithm that
1026    combines the "window method" with look-up tables.  For an
1027    introduction to exponentiation algorithms and "addition chains",
1028    see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
1029    "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
1030    3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
1031    Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998.  */
1032 
1033 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
1034    multiplications to inline before calling the system library's pow
1035    function.  powi(x,n) requires at worst 2*bits(n)-2 multiplications,
1036    so this default never requires calling pow, powf or powl.  */
1037 
1038 #ifndef POWI_MAX_MULTS
1039 #define POWI_MAX_MULTS  (2*HOST_BITS_PER_WIDE_INT-2)
1040 #endif
1041 
1042 /* The size of the "optimal power tree" lookup table.  All
1043    exponents less than this value are simply looked up in the
1044    powi_table below.  This threshold is also used to size the
1045    cache of pseudo registers that hold intermediate results.  */
1046 #define POWI_TABLE_SIZE 256
1047 
1048 /* The size, in bits of the window, used in the "window method"
1049    exponentiation algorithm.  This is equivalent to a radix of
1050    (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method".  */
1051 #define POWI_WINDOW_SIZE 3
1052 
1053 /* The following table is an efficient representation of an
1054    "optimal power tree".  For each value, i, the corresponding
1055    value, j, in the table states than an optimal evaluation
1056    sequence for calculating pow(x,i) can be found by evaluating
1057    pow(x,j)*pow(x,i-j).  An optimal power tree for the first
1058    100 integers is given in Knuth's "Seminumerical algorithms".  */
1059 
1060 static const unsigned char powi_table[POWI_TABLE_SIZE] =
1061   {
1062       0,   1,   1,   2,   2,   3,   3,   4,  /*   0 -   7 */
1063       4,   6,   5,   6,   6,  10,   7,   9,  /*   8 -  15 */
1064       8,  16,   9,  16,  10,  12,  11,  13,  /*  16 -  23 */
1065      12,  17,  13,  18,  14,  24,  15,  26,  /*  24 -  31 */
1066      16,  17,  17,  19,  18,  33,  19,  26,  /*  32 -  39 */
1067      20,  25,  21,  40,  22,  27,  23,  44,  /*  40 -  47 */
1068      24,  32,  25,  34,  26,  29,  27,  44,  /*  48 -  55 */
1069      28,  31,  29,  34,  30,  60,  31,  36,  /*  56 -  63 */
1070      32,  64,  33,  34,  34,  46,  35,  37,  /*  64 -  71 */
1071      36,  65,  37,  50,  38,  48,  39,  69,  /*  72 -  79 */
1072      40,  49,  41,  43,  42,  51,  43,  58,  /*  80 -  87 */
1073      44,  64,  45,  47,  46,  59,  47,  76,  /*  88 -  95 */
1074      48,  65,  49,  66,  50,  67,  51,  66,  /*  96 - 103 */
1075      52,  70,  53,  74,  54, 104,  55,  74,  /* 104 - 111 */
1076      56,  64,  57,  69,  58,  78,  59,  68,  /* 112 - 119 */
1077      60,  61,  61,  80,  62,  75,  63,  68,  /* 120 - 127 */
1078      64,  65,  65, 128,  66, 129,  67,  90,  /* 128 - 135 */
1079      68,  73,  69, 131,  70,  94,  71,  88,  /* 136 - 143 */
1080      72, 128,  73,  98,  74, 132,  75, 121,  /* 144 - 151 */
1081      76, 102,  77, 124,  78, 132,  79, 106,  /* 152 - 159 */
1082      80,  97,  81, 160,  82,  99,  83, 134,  /* 160 - 167 */
1083      84,  86,  85,  95,  86, 160,  87, 100,  /* 168 - 175 */
1084      88, 113,  89,  98,  90, 107,  91, 122,  /* 176 - 183 */
1085      92, 111,  93, 102,  94, 126,  95, 150,  /* 184 - 191 */
1086      96, 128,  97, 130,  98, 133,  99, 195,  /* 192 - 199 */
1087     100, 128, 101, 123, 102, 164, 103, 138,  /* 200 - 207 */
1088     104, 145, 105, 146, 106, 109, 107, 149,  /* 208 - 215 */
1089     108, 200, 109, 146, 110, 170, 111, 157,  /* 216 - 223 */
1090     112, 128, 113, 130, 114, 182, 115, 132,  /* 224 - 231 */
1091     116, 200, 117, 132, 118, 158, 119, 206,  /* 232 - 239 */
1092     120, 240, 121, 162, 122, 147, 123, 152,  /* 240 - 247 */
1093     124, 166, 125, 214, 126, 138, 127, 153,  /* 248 - 255 */
1094   };
1095 
1096 
1097 /* Return the number of multiplications required to calculate
1098    powi(x,n) where n is less than POWI_TABLE_SIZE.  This is a
1099    subroutine of powi_cost.  CACHE is an array indicating
1100    which exponents have already been calculated.  */
1101 
1102 static int
1103 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
1104 {
1105   /* If we've already calculated this exponent, then this evaluation
1106      doesn't require any additional multiplications.  */
1107   if (cache[n])
1108     return 0;
1109 
1110   cache[n] = true;
1111   return powi_lookup_cost (n - powi_table[n], cache)
1112 	 + powi_lookup_cost (powi_table[n], cache) + 1;
1113 }
1114 
1115 /* Return the number of multiplications required to calculate
1116    powi(x,n) for an arbitrary x, given the exponent N.  This
1117    function needs to be kept in sync with powi_as_mults below.  */
1118 
1119 static int
1120 powi_cost (HOST_WIDE_INT n)
1121 {
1122   bool cache[POWI_TABLE_SIZE];
1123   unsigned HOST_WIDE_INT digit;
1124   unsigned HOST_WIDE_INT val;
1125   int result;
1126 
1127   if (n == 0)
1128     return 0;
1129 
1130   /* Ignore the reciprocal when calculating the cost.  */
1131   val = (n < 0) ? -n : n;
1132 
1133   /* Initialize the exponent cache.  */
1134   memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
1135   cache[1] = true;
1136 
1137   result = 0;
1138 
1139   while (val >= POWI_TABLE_SIZE)
1140     {
1141       if (val & 1)
1142 	{
1143 	  digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
1144 	  result += powi_lookup_cost (digit, cache)
1145 		    + POWI_WINDOW_SIZE + 1;
1146 	  val >>= POWI_WINDOW_SIZE;
1147 	}
1148       else
1149 	{
1150 	  val >>= 1;
1151 	  result++;
1152 	}
1153     }
1154 
1155   return result + powi_lookup_cost (val, cache);
1156 }
1157 
1158 /* Recursive subroutine of powi_as_mults.  This function takes the
1159    array, CACHE, of already calculated exponents and an exponent N and
1160    returns a tree that corresponds to CACHE[1]**N, with type TYPE.  */
1161 
1162 static tree
1163 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
1164 		 HOST_WIDE_INT n, tree *cache)
1165 {
1166   tree op0, op1, ssa_target;
1167   unsigned HOST_WIDE_INT digit;
1168   gassign *mult_stmt;
1169 
1170   if (n < POWI_TABLE_SIZE && cache[n])
1171     return cache[n];
1172 
1173   ssa_target = make_temp_ssa_name (type, NULL, "powmult");
1174 
1175   if (n < POWI_TABLE_SIZE)
1176     {
1177       cache[n] = ssa_target;
1178       op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
1179       op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
1180     }
1181   else if (n & 1)
1182     {
1183       digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
1184       op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
1185       op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
1186     }
1187   else
1188     {
1189       op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
1190       op1 = op0;
1191     }
1192 
1193   mult_stmt = gimple_build_assign (ssa_target, MULT_EXPR, op0, op1);
1194   gimple_set_location (mult_stmt, loc);
1195   gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
1196 
1197   return ssa_target;
1198 }
1199 
1200 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1201    This function needs to be kept in sync with powi_cost above.  */
1202 
1203 static tree
1204 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
1205 	       tree arg0, HOST_WIDE_INT n)
1206 {
1207   tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
1208   gassign *div_stmt;
1209   tree target;
1210 
1211   if (n == 0)
1212     return build_real (type, dconst1);
1213 
1214   memset (cache, 0,  sizeof (cache));
1215   cache[1] = arg0;
1216 
1217   result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
1218   if (n >= 0)
1219     return result;
1220 
1221   /* If the original exponent was negative, reciprocate the result.  */
1222   target = make_temp_ssa_name (type, NULL, "powmult");
1223   div_stmt = gimple_build_assign (target, RDIV_EXPR,
1224 				  build_real (type, dconst1), result);
1225   gimple_set_location (div_stmt, loc);
1226   gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1227 
1228   return target;
1229 }
1230 
1231 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1232    location info LOC.  If the arguments are appropriate, create an
1233    equivalent sequence of statements prior to GSI using an optimal
1234    number of multiplications, and return an expession holding the
1235    result.  */
1236 
1237 static tree
1238 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1239 			    tree arg0, HOST_WIDE_INT n)
1240 {
1241   /* Avoid largest negative number.  */
1242   if (n != -n
1243       && ((n >= -1 && n <= 2)
1244 	  || (optimize_function_for_speed_p (cfun)
1245 	      && powi_cost (n) <= POWI_MAX_MULTS)))
1246     return powi_as_mults (gsi, loc, arg0, n);
1247 
1248   return NULL_TREE;
1249 }
1250 
1251 /* Build a gimple call statement that calls FN with argument ARG.
1252    Set the lhs of the call statement to a fresh SSA name.  Insert the
1253    statement prior to GSI's current position, and return the fresh
1254    SSA name.  */
1255 
1256 static tree
1257 build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1258 		       tree fn, tree arg)
1259 {
1260   gcall *call_stmt;
1261   tree ssa_target;
1262 
1263   call_stmt = gimple_build_call (fn, 1, arg);
1264   ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
1265   gimple_set_lhs (call_stmt, ssa_target);
1266   gimple_set_location (call_stmt, loc);
1267   gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1268 
1269   return ssa_target;
1270 }
1271 
1272 /* Build a gimple binary operation with the given CODE and arguments
1273    ARG0, ARG1, assigning the result to a new SSA name for variable
1274    TARGET.  Insert the statement prior to GSI's current position, and
1275    return the fresh SSA name.*/
1276 
1277 static tree
1278 build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1279 			const char *name, enum tree_code code,
1280 			tree arg0, tree arg1)
1281 {
1282   tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
1283   gassign *stmt = gimple_build_assign (result, code, arg0, arg1);
1284   gimple_set_location (stmt, loc);
1285   gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1286   return result;
1287 }
1288 
1289 /* Build a gimple reference operation with the given CODE and argument
1290    ARG, assigning the result to a new SSA name of TYPE with NAME.
1291    Insert the statement prior to GSI's current position, and return
1292    the fresh SSA name.  */
1293 
1294 static inline tree
1295 build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1296 		      const char *name, enum tree_code code, tree arg0)
1297 {
1298   tree result = make_temp_ssa_name (type, NULL, name);
1299   gimple *stmt = gimple_build_assign (result, build1 (code, type, arg0));
1300   gimple_set_location (stmt, loc);
1301   gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1302   return result;
1303 }
1304 
1305 /* Build a gimple assignment to cast VAL to TYPE.  Insert the statement
1306    prior to GSI's current position, and return the fresh SSA name.  */
1307 
1308 static tree
1309 build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
1310 		       tree type, tree val)
1311 {
1312   tree result = make_ssa_name (type);
1313   gassign *stmt = gimple_build_assign (result, NOP_EXPR, val);
1314   gimple_set_location (stmt, loc);
1315   gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1316   return result;
1317 }
1318 
1319 struct pow_synth_sqrt_info
1320 {
1321   bool *factors;
1322   unsigned int deepest;
1323   unsigned int num_mults;
1324 };
1325 
1326 /* Return true iff the real value C can be represented as a
1327    sum of powers of 0.5 up to N.  That is:
1328    C == SUM<i from 1..N> (a[i]*(0.5**i)) where a[i] is either 0 or 1.
1329    Record in INFO the various parameters of the synthesis algorithm such
1330    as the factors a[i], the maximum 0.5 power and the number of
1331    multiplications that will be required.  */
1332 
1333 bool
1334 representable_as_half_series_p (REAL_VALUE_TYPE c, unsigned n,
1335 				 struct pow_synth_sqrt_info *info)
1336 {
1337   REAL_VALUE_TYPE factor = dconsthalf;
1338   REAL_VALUE_TYPE remainder = c;
1339 
1340   info->deepest = 0;
1341   info->num_mults = 0;
1342   memset (info->factors, 0, n * sizeof (bool));
1343 
1344   for (unsigned i = 0; i < n; i++)
1345     {
1346       REAL_VALUE_TYPE res;
1347 
1348       /* If something inexact happened bail out now.  */
1349       if (real_arithmetic (&res, MINUS_EXPR, &remainder, &factor))
1350 	return false;
1351 
1352       /* We have hit zero.  The number is representable as a sum
1353          of powers of 0.5.  */
1354       if (real_equal (&res, &dconst0))
1355 	{
1356 	  info->factors[i] = true;
1357 	  info->deepest = i + 1;
1358 	  return true;
1359 	}
1360       else if (!REAL_VALUE_NEGATIVE (res))
1361 	{
1362 	  remainder = res;
1363 	  info->factors[i] = true;
1364 	  info->num_mults++;
1365 	}
1366       else
1367 	info->factors[i] = false;
1368 
1369       real_arithmetic (&factor, MULT_EXPR, &factor, &dconsthalf);
1370     }
1371   return false;
1372 }
1373 
1374 /* Return the tree corresponding to FN being applied
1375    to ARG N times at GSI and LOC.
1376    Look up previous results from CACHE if need be.
1377    cache[0] should contain just plain ARG i.e. FN applied to ARG 0 times.  */
1378 
1379 static tree
1380 get_fn_chain (tree arg, unsigned int n, gimple_stmt_iterator *gsi,
1381 	      tree fn, location_t loc, tree *cache)
1382 {
1383   tree res = cache[n];
1384   if (!res)
1385     {
1386       tree prev = get_fn_chain (arg, n - 1, gsi, fn, loc, cache);
1387       res = build_and_insert_call (gsi, loc, fn, prev);
1388       cache[n] = res;
1389     }
1390 
1391   return res;
1392 }
1393 
1394 /* Print to STREAM the repeated application of function FNAME to ARG
1395    N times.  So, for FNAME = "foo", ARG = "x", N = 2 it would print:
1396    "foo (foo (x))".  */
1397 
1398 static void
1399 print_nested_fn (FILE* stream, const char *fname, const char* arg,
1400 		 unsigned int n)
1401 {
1402   if (n == 0)
1403     fprintf (stream, "%s", arg);
1404   else
1405     {
1406       fprintf (stream, "%s (", fname);
1407       print_nested_fn (stream, fname, arg, n - 1);
1408       fprintf (stream, ")");
1409     }
1410 }
1411 
1412 /* Print to STREAM the fractional sequence of sqrt chains
1413    applied to ARG, described by INFO.  Used for the dump file.  */
1414 
1415 static void
1416 dump_fractional_sqrt_sequence (FILE *stream, const char *arg,
1417 			        struct pow_synth_sqrt_info *info)
1418 {
1419   for (unsigned int i = 0; i < info->deepest; i++)
1420     {
1421       bool is_set = info->factors[i];
1422       if (is_set)
1423 	{
1424 	  print_nested_fn (stream, "sqrt", arg, i + 1);
1425 	  if (i != info->deepest - 1)
1426 	    fprintf (stream, " * ");
1427 	}
1428     }
1429 }
1430 
1431 /* Print to STREAM a representation of raising ARG to an integer
1432    power N.  Used for the dump file.  */
1433 
1434 static void
1435 dump_integer_part (FILE *stream, const char* arg, HOST_WIDE_INT n)
1436 {
1437   if (n > 1)
1438     fprintf (stream, "powi (%s, " HOST_WIDE_INT_PRINT_DEC ")", arg, n);
1439   else if (n == 1)
1440     fprintf (stream, "%s", arg);
1441 }
1442 
1443 /* Attempt to synthesize a POW[F] (ARG0, ARG1) call using chains of
1444    square roots.  Place at GSI and LOC.  Limit the maximum depth
1445    of the sqrt chains to MAX_DEPTH.  Return the tree holding the
1446    result of the expanded sequence or NULL_TREE if the expansion failed.
1447 
1448    This routine assumes that ARG1 is a real number with a fractional part
1449    (the integer exponent case will have been handled earlier in
1450    gimple_expand_builtin_pow).
1451 
1452    For ARG1 > 0.0:
1453    * For ARG1 composed of a whole part WHOLE_PART and a fractional part
1454      FRAC_PART i.e. WHOLE_PART == floor (ARG1) and
1455                     FRAC_PART == ARG1 - WHOLE_PART:
1456      Produce POWI (ARG0, WHOLE_PART) * POW (ARG0, FRAC_PART) where
1457      POW (ARG0, FRAC_PART) is expanded as a product of square root chains
1458      if it can be expressed as such, that is if FRAC_PART satisfies:
1459      FRAC_PART == <SUM from i = 1 until MAX_DEPTH> (a[i] * (0.5**i))
1460      where integer a[i] is either 0 or 1.
1461 
1462      Example:
1463      POW (x, 3.625) == POWI (x, 3) * POW (x, 0.625)
1464        --> POWI (x, 3) * SQRT (x) * SQRT (SQRT (SQRT (x)))
1465 
1466    For ARG1 < 0.0 there are two approaches:
1467    * (A) Expand to 1.0 / POW (ARG0, -ARG1) where POW (ARG0, -ARG1)
1468          is calculated as above.
1469 
1470      Example:
1471      POW (x, -5.625) == 1.0 / POW (x, 5.625)
1472        -->  1.0 / (POWI (x, 5) * SQRT (x) * SQRT (SQRT (SQRT (x))))
1473 
1474    * (B) : WHOLE_PART := - ceil (abs (ARG1))
1475            FRAC_PART  := ARG1 - WHOLE_PART
1476      and expand to POW (x, FRAC_PART) / POWI (x, WHOLE_PART).
1477      Example:
1478      POW (x, -5.875) == POW (x, 0.125) / POWI (X, 6)
1479        --> SQRT (SQRT (SQRT (x))) / (POWI (x, 6))
1480 
1481    For ARG1 < 0.0 we choose between (A) and (B) depending on
1482    how many multiplications we'd have to do.
1483    So, for the example in (B): POW (x, -5.875), if we were to
1484    follow algorithm (A) we would produce:
1485    1.0 / POWI (X, 5) * SQRT (X) * SQRT (SQRT (X)) * SQRT (SQRT (SQRT (X)))
1486    which contains more multiplications than approach (B).
1487 
1488    Hopefully, this approach will eliminate potentially expensive POW library
1489    calls when unsafe floating point math is enabled and allow the compiler to
1490    further optimise the multiplies, square roots and divides produced by this
1491    function.  */
1492 
1493 static tree
1494 expand_pow_as_sqrts (gimple_stmt_iterator *gsi, location_t loc,
1495 		     tree arg0, tree arg1, HOST_WIDE_INT max_depth)
1496 {
1497   tree type = TREE_TYPE (arg0);
1498   machine_mode mode = TYPE_MODE (type);
1499   tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1500   bool one_over = true;
1501 
1502   if (!sqrtfn)
1503     return NULL_TREE;
1504 
1505   if (TREE_CODE (arg1) != REAL_CST)
1506     return NULL_TREE;
1507 
1508   REAL_VALUE_TYPE exp_init = TREE_REAL_CST (arg1);
1509 
1510   gcc_assert (max_depth > 0);
1511   tree *cache = XALLOCAVEC (tree, max_depth + 1);
1512 
1513   struct pow_synth_sqrt_info synth_info;
1514   synth_info.factors = XALLOCAVEC (bool, max_depth + 1);
1515   synth_info.deepest = 0;
1516   synth_info.num_mults = 0;
1517 
1518   bool neg_exp = REAL_VALUE_NEGATIVE (exp_init);
1519   REAL_VALUE_TYPE exp = real_value_abs (&exp_init);
1520 
1521   /* The whole and fractional parts of exp.  */
1522   REAL_VALUE_TYPE whole_part;
1523   REAL_VALUE_TYPE frac_part;
1524 
1525   real_floor (&whole_part, mode, &exp);
1526   real_arithmetic (&frac_part, MINUS_EXPR, &exp, &whole_part);
1527 
1528 
1529   REAL_VALUE_TYPE ceil_whole = dconst0;
1530   REAL_VALUE_TYPE ceil_fract = dconst0;
1531 
1532   if (neg_exp)
1533     {
1534       real_ceil (&ceil_whole, mode, &exp);
1535       real_arithmetic (&ceil_fract, MINUS_EXPR, &ceil_whole, &exp);
1536     }
1537 
1538   if (!representable_as_half_series_p (frac_part, max_depth, &synth_info))
1539     return NULL_TREE;
1540 
1541   /* Check whether it's more profitable to not use 1.0 / ...  */
1542   if (neg_exp)
1543     {
1544       struct pow_synth_sqrt_info alt_synth_info;
1545       alt_synth_info.factors = XALLOCAVEC (bool, max_depth + 1);
1546       alt_synth_info.deepest = 0;
1547       alt_synth_info.num_mults = 0;
1548 
1549       if (representable_as_half_series_p (ceil_fract, max_depth,
1550 					   &alt_synth_info)
1551 	  && alt_synth_info.deepest <= synth_info.deepest
1552 	  && alt_synth_info.num_mults < synth_info.num_mults)
1553 	{
1554 	  whole_part = ceil_whole;
1555 	  frac_part = ceil_fract;
1556 	  synth_info.deepest = alt_synth_info.deepest;
1557 	  synth_info.num_mults = alt_synth_info.num_mults;
1558 	  memcpy (synth_info.factors, alt_synth_info.factors,
1559 		  (max_depth + 1) * sizeof (bool));
1560 	  one_over = false;
1561 	}
1562     }
1563 
1564   HOST_WIDE_INT n = real_to_integer (&whole_part);
1565   REAL_VALUE_TYPE cint;
1566   real_from_integer (&cint, VOIDmode, n, SIGNED);
1567 
1568   if (!real_identical (&whole_part, &cint))
1569     return NULL_TREE;
1570 
1571   if (powi_cost (n) + synth_info.num_mults > POWI_MAX_MULTS)
1572     return NULL_TREE;
1573 
1574   memset (cache, 0, (max_depth + 1) * sizeof (tree));
1575 
1576   tree integer_res = n == 0 ? build_real (type, dconst1) : arg0;
1577 
1578   /* Calculate the integer part of the exponent.  */
1579   if (n > 1)
1580     {
1581       integer_res = gimple_expand_builtin_powi (gsi, loc, arg0, n);
1582       if (!integer_res)
1583 	return NULL_TREE;
1584     }
1585 
1586   if (dump_file)
1587     {
1588       char string[64];
1589 
1590       real_to_decimal (string, &exp_init, sizeof (string), 0, 1);
1591       fprintf (dump_file, "synthesizing pow (x, %s) as:\n", string);
1592 
1593       if (neg_exp)
1594 	{
1595 	  if (one_over)
1596 	    {
1597 	      fprintf (dump_file, "1.0 / (");
1598 	      dump_integer_part (dump_file, "x", n);
1599 	      if (n > 0)
1600 	        fprintf (dump_file, " * ");
1601 	      dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1602 	      fprintf (dump_file, ")");
1603 	    }
1604 	  else
1605 	    {
1606 	      dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1607 	      fprintf (dump_file, " / (");
1608 	      dump_integer_part (dump_file, "x", n);
1609 	      fprintf (dump_file, ")");
1610 	    }
1611 	}
1612       else
1613 	{
1614 	  dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1615 	  if (n > 0)
1616 	    fprintf (dump_file, " * ");
1617 	  dump_integer_part (dump_file, "x", n);
1618 	}
1619 
1620       fprintf (dump_file, "\ndeepest sqrt chain: %d\n", synth_info.deepest);
1621     }
1622 
1623 
1624   tree fract_res = NULL_TREE;
1625   cache[0] = arg0;
1626 
1627   /* Calculate the fractional part of the exponent.  */
1628   for (unsigned i = 0; i < synth_info.deepest; i++)
1629     {
1630       if (synth_info.factors[i])
1631 	{
1632 	  tree sqrt_chain = get_fn_chain (arg0, i + 1, gsi, sqrtfn, loc, cache);
1633 
1634 	  if (!fract_res)
1635 	      fract_res = sqrt_chain;
1636 
1637 	  else
1638 	    fract_res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1639 					   fract_res, sqrt_chain);
1640 	}
1641     }
1642 
1643   tree res = NULL_TREE;
1644 
1645   if (neg_exp)
1646     {
1647       if (one_over)
1648 	{
1649 	  if (n > 0)
1650 	    res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1651 					   fract_res, integer_res);
1652 	  else
1653 	    res = fract_res;
1654 
1655 	  res = build_and_insert_binop (gsi, loc, "powrootrecip", RDIV_EXPR,
1656 					  build_real (type, dconst1), res);
1657 	}
1658       else
1659 	{
1660 	  res = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1661 					 fract_res, integer_res);
1662 	}
1663     }
1664   else
1665     res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1666 				   fract_res, integer_res);
1667   return res;
1668 }
1669 
1670 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1671    with location info LOC.  If possible, create an equivalent and
1672    less expensive sequence of statements prior to GSI, and return an
1673    expession holding the result.  */
1674 
1675 static tree
1676 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1677 			   tree arg0, tree arg1)
1678 {
1679   REAL_VALUE_TYPE c, cint, dconst1_3, dconst1_4, dconst1_6;
1680   REAL_VALUE_TYPE c2, dconst3;
1681   HOST_WIDE_INT n;
1682   tree type, sqrtfn, cbrtfn, sqrt_arg0, result, cbrt_x, powi_cbrt_x;
1683   machine_mode mode;
1684   bool speed_p = optimize_bb_for_speed_p (gsi_bb (*gsi));
1685   bool hw_sqrt_exists, c_is_int, c2_is_int;
1686 
1687   dconst1_4 = dconst1;
1688   SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1689 
1690   /* If the exponent isn't a constant, there's nothing of interest
1691      to be done.  */
1692   if (TREE_CODE (arg1) != REAL_CST)
1693     return NULL_TREE;
1694 
1695   /* Don't perform the operation if flag_signaling_nans is on
1696      and the operand is a signaling NaN.  */
1697   if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1)))
1698       && ((TREE_CODE (arg0) == REAL_CST
1699 	   && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0)))
1700 	  || REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1))))
1701     return NULL_TREE;
1702 
1703   /* If the exponent is equivalent to an integer, expand to an optimal
1704      multiplication sequence when profitable.  */
1705   c = TREE_REAL_CST (arg1);
1706   n = real_to_integer (&c);
1707   real_from_integer (&cint, VOIDmode, n, SIGNED);
1708   c_is_int = real_identical (&c, &cint);
1709 
1710   if (c_is_int
1711       && ((n >= -1 && n <= 2)
1712 	  || (flag_unsafe_math_optimizations
1713 	      && speed_p
1714 	      && powi_cost (n) <= POWI_MAX_MULTS)))
1715     return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1716 
1717   /* Attempt various optimizations using sqrt and cbrt.  */
1718   type = TREE_TYPE (arg0);
1719   mode = TYPE_MODE (type);
1720   sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1721 
1722   /* Optimize pow(x,0.5) = sqrt(x).  This replacement is always safe
1723      unless signed zeros must be maintained.  pow(-0,0.5) = +0, while
1724      sqrt(-0) = -0.  */
1725   if (sqrtfn
1726       && real_equal (&c, &dconsthalf)
1727       && !HONOR_SIGNED_ZEROS (mode))
1728     return build_and_insert_call (gsi, loc, sqrtfn, arg0);
1729 
1730   hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
1731 
1732   /* Optimize pow(x,1./3.) = cbrt(x).  This requires unsafe math
1733      optimizations since 1./3. is not exactly representable.  If x
1734      is negative and finite, the correct value of pow(x,1./3.) is
1735      a NaN with the "invalid" exception raised, because the value
1736      of 1./3. actually has an even denominator.  The correct value
1737      of cbrt(x) is a negative real value.  */
1738   cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1739   dconst1_3 = real_value_truncate (mode, dconst_third ());
1740 
1741   if (flag_unsafe_math_optimizations
1742       && cbrtfn
1743       && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
1744       && real_equal (&c, &dconst1_3))
1745     return build_and_insert_call (gsi, loc, cbrtfn, arg0);
1746 
1747   /* Optimize pow(x,1./6.) = cbrt(sqrt(x)).  Don't do this optimization
1748      if we don't have a hardware sqrt insn.  */
1749   dconst1_6 = dconst1_3;
1750   SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1751 
1752   if (flag_unsafe_math_optimizations
1753       && sqrtfn
1754       && cbrtfn
1755       && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
1756       && speed_p
1757       && hw_sqrt_exists
1758       && real_equal (&c, &dconst1_6))
1759     {
1760       /* sqrt(x)  */
1761       sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1762 
1763       /* cbrt(sqrt(x))  */
1764       return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
1765     }
1766 
1767 
1768   /* Attempt to expand the POW as a product of square root chains.
1769      Expand the 0.25 case even when otpimising for size.  */
1770   if (flag_unsafe_math_optimizations
1771       && sqrtfn
1772       && hw_sqrt_exists
1773       && (speed_p || real_equal (&c, &dconst1_4))
1774       && !HONOR_SIGNED_ZEROS (mode))
1775     {
1776       unsigned int max_depth = speed_p
1777 				? PARAM_VALUE (PARAM_MAX_POW_SQRT_DEPTH)
1778 				: 2;
1779 
1780       tree expand_with_sqrts
1781 	= expand_pow_as_sqrts (gsi, loc, arg0, arg1, max_depth);
1782 
1783       if (expand_with_sqrts)
1784 	return expand_with_sqrts;
1785     }
1786 
1787   real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1788   n = real_to_integer (&c2);
1789   real_from_integer (&cint, VOIDmode, n, SIGNED);
1790   c2_is_int = real_identical (&c2, &cint);
1791 
1792   /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1793 
1794      powi(x, n/3) * powi(cbrt(x), n%3),                    n > 0;
1795      1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)),  n < 0.
1796 
1797      Do not calculate the first factor when n/3 = 0.  As cbrt(x) is
1798      different from pow(x, 1./3.) due to rounding and behavior with
1799      negative x, we need to constrain this transformation to unsafe
1800      math and positive x or finite math.  */
1801   real_from_integer (&dconst3, VOIDmode, 3, SIGNED);
1802   real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1803   real_round (&c2, mode, &c2);
1804   n = real_to_integer (&c2);
1805   real_from_integer (&cint, VOIDmode, n, SIGNED);
1806   real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1807   real_convert (&c2, mode, &c2);
1808 
1809   if (flag_unsafe_math_optimizations
1810       && cbrtfn
1811       && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
1812       && real_identical (&c2, &c)
1813       && !c2_is_int
1814       && optimize_function_for_speed_p (cfun)
1815       && powi_cost (n / 3) <= POWI_MAX_MULTS)
1816     {
1817       tree powi_x_ndiv3 = NULL_TREE;
1818 
1819       /* Attempt to fold powi(arg0, abs(n/3)) into multiplies.  If not
1820          possible or profitable, give up.  Skip the degenerate case when
1821          abs(n) < 3, where the result is always 1.  */
1822       if (absu_hwi (n) >= 3)
1823 	{
1824 	  powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
1825 						     abs_hwi (n / 3));
1826 	  if (!powi_x_ndiv3)
1827 	    return NULL_TREE;
1828 	}
1829 
1830       /* Calculate powi(cbrt(x), n%3).  Don't use gimple_expand_builtin_powi
1831          as that creates an unnecessary variable.  Instead, just produce
1832          either cbrt(x) or cbrt(x) * cbrt(x).  */
1833       cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
1834 
1835       if (absu_hwi (n) % 3 == 1)
1836 	powi_cbrt_x = cbrt_x;
1837       else
1838 	powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1839 					      cbrt_x, cbrt_x);
1840 
1841       /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1.  */
1842       if (absu_hwi (n) < 3)
1843 	result = powi_cbrt_x;
1844       else
1845 	result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1846 					 powi_x_ndiv3, powi_cbrt_x);
1847 
1848       /* If n is negative, reciprocate the result.  */
1849       if (n < 0)
1850 	result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1851 					 build_real (type, dconst1), result);
1852 
1853       return result;
1854     }
1855 
1856   /* No optimizations succeeded.  */
1857   return NULL_TREE;
1858 }
1859 
1860 /* ARG is the argument to a cabs builtin call in GSI with location info
1861    LOC.  Create a sequence of statements prior to GSI that calculates
1862    sqrt(R*R + I*I), where R and I are the real and imaginary components
1863    of ARG, respectively.  Return an expression holding the result.  */
1864 
1865 static tree
1866 gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1867 {
1868   tree real_part, imag_part, addend1, addend2, sum, result;
1869   tree type = TREE_TYPE (TREE_TYPE (arg));
1870   tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1871   machine_mode mode = TYPE_MODE (type);
1872 
1873   if (!flag_unsafe_math_optimizations
1874       || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1875       || !sqrtfn
1876       || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1877     return NULL_TREE;
1878 
1879   real_part = build_and_insert_ref (gsi, loc, type, "cabs",
1880 				    REALPART_EXPR, arg);
1881   addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1882 				    real_part, real_part);
1883   imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
1884 				    IMAGPART_EXPR, arg);
1885   addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1886 				    imag_part, imag_part);
1887   sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1888   result = build_and_insert_call (gsi, loc, sqrtfn, sum);
1889 
1890   return result;
1891 }
1892 
1893 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1894    on the SSA_NAME argument of each of them.  Also expand powi(x,n) into
1895    an optimal number of multiplies, when n is a constant.  */
1896 
1897 namespace {
1898 
1899 const pass_data pass_data_cse_sincos =
1900 {
1901   GIMPLE_PASS, /* type */
1902   "sincos", /* name */
1903   OPTGROUP_NONE, /* optinfo_flags */
1904   TV_TREE_SINCOS, /* tv_id */
1905   PROP_ssa, /* properties_required */
1906   PROP_gimple_opt_math, /* properties_provided */
1907   0, /* properties_destroyed */
1908   0, /* todo_flags_start */
1909   TODO_update_ssa, /* todo_flags_finish */
1910 };
1911 
1912 class pass_cse_sincos : public gimple_opt_pass
1913 {
1914 public:
1915   pass_cse_sincos (gcc::context *ctxt)
1916     : gimple_opt_pass (pass_data_cse_sincos, ctxt)
1917   {}
1918 
1919   /* opt_pass methods: */
1920   virtual bool gate (function *)
1921     {
1922       /* We no longer require either sincos or cexp, since powi expansion
1923 	 piggybacks on this pass.  */
1924       return optimize;
1925     }
1926 
1927   virtual unsigned int execute (function *);
1928 
1929 }; // class pass_cse_sincos
1930 
1931 unsigned int
1932 pass_cse_sincos::execute (function *fun)
1933 {
1934   basic_block bb;
1935   bool cfg_changed = false;
1936 
1937   calculate_dominance_info (CDI_DOMINATORS);
1938   memset (&sincos_stats, 0, sizeof (sincos_stats));
1939 
1940   FOR_EACH_BB_FN (bb, fun)
1941     {
1942       gimple_stmt_iterator gsi;
1943       bool cleanup_eh = false;
1944 
1945       for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1946         {
1947 	  gimple *stmt = gsi_stmt (gsi);
1948 
1949 	  /* Only the last stmt in a bb could throw, no need to call
1950 	     gimple_purge_dead_eh_edges if we change something in the middle
1951 	     of a basic block.  */
1952 	  cleanup_eh = false;
1953 
1954 	  if (is_gimple_call (stmt)
1955 	      && gimple_call_lhs (stmt))
1956 	    {
1957 	      tree arg, arg0, arg1, result;
1958 	      HOST_WIDE_INT n;
1959 	      location_t loc;
1960 
1961 	      switch (gimple_call_combined_fn (stmt))
1962 		{
1963 		CASE_CFN_COS:
1964 		CASE_CFN_SIN:
1965 		CASE_CFN_CEXPI:
1966 		  /* Make sure we have either sincos or cexp.  */
1967 		  if (!targetm.libc_has_function (function_c99_math_complex)
1968 		      && !targetm.libc_has_function (function_sincos))
1969 		    break;
1970 
1971 		  arg = gimple_call_arg (stmt, 0);
1972 		  if (TREE_CODE (arg) == SSA_NAME)
1973 		    cfg_changed |= execute_cse_sincos_1 (arg);
1974 		  break;
1975 
1976 		CASE_CFN_POW:
1977 		  arg0 = gimple_call_arg (stmt, 0);
1978 		  arg1 = gimple_call_arg (stmt, 1);
1979 
1980 		  loc = gimple_location (stmt);
1981 		  result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1982 
1983 		  if (result)
1984 		    {
1985 		      tree lhs = gimple_get_lhs (stmt);
1986 		      gassign *new_stmt = gimple_build_assign (lhs, result);
1987 		      gimple_set_location (new_stmt, loc);
1988 		      unlink_stmt_vdef (stmt);
1989 		      gsi_replace (&gsi, new_stmt, true);
1990 		      cleanup_eh = true;
1991 		      if (gimple_vdef (stmt))
1992 			release_ssa_name (gimple_vdef (stmt));
1993 		    }
1994 		  break;
1995 
1996 		CASE_CFN_POWI:
1997 		  arg0 = gimple_call_arg (stmt, 0);
1998 		  arg1 = gimple_call_arg (stmt, 1);
1999 		  loc = gimple_location (stmt);
2000 
2001 		  if (real_minus_onep (arg0))
2002 		    {
2003                       tree t0, t1, cond, one, minus_one;
2004 		      gassign *stmt;
2005 
2006 		      t0 = TREE_TYPE (arg0);
2007 		      t1 = TREE_TYPE (arg1);
2008 		      one = build_real (t0, dconst1);
2009 		      minus_one = build_real (t0, dconstm1);
2010 
2011 		      cond = make_temp_ssa_name (t1, NULL, "powi_cond");
2012 		      stmt = gimple_build_assign (cond, BIT_AND_EXPR,
2013 						  arg1, build_int_cst (t1, 1));
2014 		      gimple_set_location (stmt, loc);
2015 		      gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
2016 
2017 		      result = make_temp_ssa_name (t0, NULL, "powi");
2018 		      stmt = gimple_build_assign (result, COND_EXPR, cond,
2019 						  minus_one, one);
2020 		      gimple_set_location (stmt, loc);
2021 		      gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
2022 		    }
2023 		  else
2024 		    {
2025 		      if (!tree_fits_shwi_p (arg1))
2026 			break;
2027 
2028 		      n = tree_to_shwi (arg1);
2029 		      result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
2030 		    }
2031 
2032 		  if (result)
2033 		    {
2034 		      tree lhs = gimple_get_lhs (stmt);
2035 		      gassign *new_stmt = gimple_build_assign (lhs, result);
2036 		      gimple_set_location (new_stmt, loc);
2037 		      unlink_stmt_vdef (stmt);
2038 		      gsi_replace (&gsi, new_stmt, true);
2039 		      cleanup_eh = true;
2040 		      if (gimple_vdef (stmt))
2041 			release_ssa_name (gimple_vdef (stmt));
2042 		    }
2043 		  break;
2044 
2045 		CASE_CFN_CABS:
2046 		  arg0 = gimple_call_arg (stmt, 0);
2047 		  loc = gimple_location (stmt);
2048 		  result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
2049 
2050 		  if (result)
2051 		    {
2052 		      tree lhs = gimple_get_lhs (stmt);
2053 		      gassign *new_stmt = gimple_build_assign (lhs, result);
2054 		      gimple_set_location (new_stmt, loc);
2055 		      unlink_stmt_vdef (stmt);
2056 		      gsi_replace (&gsi, new_stmt, true);
2057 		      cleanup_eh = true;
2058 		      if (gimple_vdef (stmt))
2059 			release_ssa_name (gimple_vdef (stmt));
2060 		    }
2061 		  break;
2062 
2063 		default:;
2064 		}
2065 	    }
2066 	}
2067       if (cleanup_eh)
2068 	cfg_changed |= gimple_purge_dead_eh_edges (bb);
2069     }
2070 
2071   statistics_counter_event (fun, "sincos statements inserted",
2072 			    sincos_stats.inserted);
2073 
2074   return cfg_changed ? TODO_cleanup_cfg : 0;
2075 }
2076 
2077 } // anon namespace
2078 
2079 gimple_opt_pass *
2080 make_pass_cse_sincos (gcc::context *ctxt)
2081 {
2082   return new pass_cse_sincos (ctxt);
2083 }
2084 
2085 /* Return true if stmt is a type conversion operation that can be stripped
2086    when used in a widening multiply operation.  */
2087 static bool
2088 widening_mult_conversion_strippable_p (tree result_type, gimple *stmt)
2089 {
2090   enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
2091 
2092   if (TREE_CODE (result_type) == INTEGER_TYPE)
2093     {
2094       tree op_type;
2095       tree inner_op_type;
2096 
2097       if (!CONVERT_EXPR_CODE_P (rhs_code))
2098 	return false;
2099 
2100       op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2101 
2102       /* If the type of OP has the same precision as the result, then
2103 	 we can strip this conversion.  The multiply operation will be
2104 	 selected to create the correct extension as a by-product.  */
2105       if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2106 	return true;
2107 
2108       /* We can also strip a conversion if it preserves the signed-ness of
2109 	 the operation and doesn't narrow the range.  */
2110       inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2111 
2112       /* If the inner-most type is unsigned, then we can strip any
2113 	 intermediate widening operation.  If it's signed, then the
2114 	 intermediate widening operation must also be signed.  */
2115       if ((TYPE_UNSIGNED (inner_op_type)
2116 	   || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
2117 	  && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2118 	return true;
2119 
2120       return false;
2121     }
2122 
2123   return rhs_code == FIXED_CONVERT_EXPR;
2124 }
2125 
2126 /* Return true if RHS is a suitable operand for a widening multiplication,
2127    assuming a target type of TYPE.
2128    There are two cases:
2129 
2130      - RHS makes some value at least twice as wide.  Store that value
2131        in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2132 
2133      - RHS is an integer constant.  Store that value in *NEW_RHS_OUT if so,
2134        but leave *TYPE_OUT untouched.  */
2135 
2136 static bool
2137 is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2138 			tree *new_rhs_out)
2139 {
2140   gimple *stmt;
2141   tree type1, rhs1;
2142 
2143   if (TREE_CODE (rhs) == SSA_NAME)
2144     {
2145       stmt = SSA_NAME_DEF_STMT (rhs);
2146       if (is_gimple_assign (stmt))
2147 	{
2148 	  if (! widening_mult_conversion_strippable_p (type, stmt))
2149 	    rhs1 = rhs;
2150 	  else
2151 	    {
2152 	      rhs1 = gimple_assign_rhs1 (stmt);
2153 
2154 	      if (TREE_CODE (rhs1) == INTEGER_CST)
2155 		{
2156 		  *new_rhs_out = rhs1;
2157 		  *type_out = NULL;
2158 		  return true;
2159 		}
2160 	    }
2161 	}
2162       else
2163 	rhs1 = rhs;
2164 
2165       type1 = TREE_TYPE (rhs1);
2166 
2167       if (TREE_CODE (type1) != TREE_CODE (type)
2168 	  || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
2169 	return false;
2170 
2171       *new_rhs_out = rhs1;
2172       *type_out = type1;
2173       return true;
2174     }
2175 
2176   if (TREE_CODE (rhs) == INTEGER_CST)
2177     {
2178       *new_rhs_out = rhs;
2179       *type_out = NULL;
2180       return true;
2181     }
2182 
2183   return false;
2184 }
2185 
2186 /* Return true if STMT performs a widening multiplication, assuming the
2187    output type is TYPE.  If so, store the unwidened types of the operands
2188    in *TYPE1_OUT and *TYPE2_OUT respectively.  Also fill *RHS1_OUT and
2189    *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2190    and *TYPE2_OUT would give the operands of the multiplication.  */
2191 
2192 static bool
2193 is_widening_mult_p (gimple *stmt,
2194 		    tree *type1_out, tree *rhs1_out,
2195 		    tree *type2_out, tree *rhs2_out)
2196 {
2197   tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2198 
2199   if (TREE_CODE (type) == INTEGER_TYPE)
2200     {
2201       if (TYPE_OVERFLOW_TRAPS (type))
2202 	return false;
2203     }
2204   else if (TREE_CODE (type) != FIXED_POINT_TYPE)
2205     return false;
2206 
2207   if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
2208 			       rhs1_out))
2209     return false;
2210 
2211   if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
2212 			       rhs2_out))
2213     return false;
2214 
2215   if (*type1_out == NULL)
2216     {
2217       if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
2218 	return false;
2219       *type1_out = *type2_out;
2220     }
2221 
2222   if (*type2_out == NULL)
2223     {
2224       if (!int_fits_type_p (*rhs2_out, *type1_out))
2225 	return false;
2226       *type2_out = *type1_out;
2227     }
2228 
2229   /* Ensure that the larger of the two operands comes first. */
2230   if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
2231     {
2232       std::swap (*type1_out, *type2_out);
2233       std::swap (*rhs1_out, *rhs2_out);
2234     }
2235 
2236   return true;
2237 }
2238 
2239 /* Check to see if the CALL statement is an invocation of copysign
2240    with 1. being the first argument.  */
2241 static bool
2242 is_copysign_call_with_1 (gimple *call)
2243 {
2244   gcall *c = dyn_cast <gcall *> (call);
2245   if (! c)
2246     return false;
2247 
2248   enum combined_fn code = gimple_call_combined_fn (c);
2249 
2250   if (code == CFN_LAST)
2251     return false;
2252 
2253   if (builtin_fn_p (code))
2254     {
2255       switch (as_builtin_fn (code))
2256 	{
2257 	CASE_FLT_FN (BUILT_IN_COPYSIGN):
2258 	CASE_FLT_FN_FLOATN_NX (BUILT_IN_COPYSIGN):
2259 	  return real_onep (gimple_call_arg (c, 0));
2260 	default:
2261 	  return false;
2262 	}
2263     }
2264 
2265   if (internal_fn_p (code))
2266     {
2267       switch (as_internal_fn (code))
2268 	{
2269 	case IFN_COPYSIGN:
2270 	  return real_onep (gimple_call_arg (c, 0));
2271 	default:
2272 	  return false;
2273 	}
2274     }
2275 
2276    return false;
2277 }
2278 
2279 /* Try to expand the pattern x * copysign (1, y) into xorsign (x, y).
2280    This only happens when the the xorsign optab is defined, if the
2281    pattern is not a xorsign pattern or if expansion fails FALSE is
2282    returned, otherwise TRUE is returned.  */
2283 static bool
2284 convert_expand_mult_copysign (gimple *stmt, gimple_stmt_iterator *gsi)
2285 {
2286   tree treeop0, treeop1, lhs, type;
2287   location_t loc = gimple_location (stmt);
2288   lhs = gimple_assign_lhs (stmt);
2289   treeop0 = gimple_assign_rhs1 (stmt);
2290   treeop1 = gimple_assign_rhs2 (stmt);
2291   type = TREE_TYPE (lhs);
2292   machine_mode mode = TYPE_MODE (type);
2293 
2294   if (HONOR_SNANS (type))
2295     return false;
2296 
2297   if (TREE_CODE (treeop0) == SSA_NAME && TREE_CODE (treeop1) == SSA_NAME)
2298     {
2299       gimple *call0 = SSA_NAME_DEF_STMT (treeop0);
2300       if (!has_single_use (treeop0) || !is_copysign_call_with_1 (call0))
2301 	{
2302 	  call0 = SSA_NAME_DEF_STMT (treeop1);
2303 	  if (!has_single_use (treeop1) || !is_copysign_call_with_1 (call0))
2304 	    return false;
2305 
2306 	  treeop1 = treeop0;
2307 	}
2308 	if (optab_handler (xorsign_optab, mode) == CODE_FOR_nothing)
2309 	  return false;
2310 
2311 	gcall *c = as_a<gcall*> (call0);
2312 	treeop0 = gimple_call_arg (c, 1);
2313 
2314 	gcall *call_stmt
2315 	  = gimple_build_call_internal (IFN_XORSIGN, 2, treeop1, treeop0);
2316 	gimple_set_lhs (call_stmt, lhs);
2317 	gimple_set_location (call_stmt, loc);
2318 	gsi_replace (gsi, call_stmt, true);
2319 	return true;
2320     }
2321 
2322   return false;
2323 }
2324 
2325 /* Process a single gimple statement STMT, which has a MULT_EXPR as
2326    its rhs, and try to convert it into a WIDEN_MULT_EXPR.  The return
2327    value is true iff we converted the statement.  */
2328 
2329 static bool
2330 convert_mult_to_widen (gimple *stmt, gimple_stmt_iterator *gsi)
2331 {
2332   tree lhs, rhs1, rhs2, type, type1, type2;
2333   enum insn_code handler;
2334   scalar_int_mode to_mode, from_mode, actual_mode;
2335   optab op;
2336   int actual_precision;
2337   location_t loc = gimple_location (stmt);
2338   bool from_unsigned1, from_unsigned2;
2339 
2340   lhs = gimple_assign_lhs (stmt);
2341   type = TREE_TYPE (lhs);
2342   if (TREE_CODE (type) != INTEGER_TYPE)
2343     return false;
2344 
2345   if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
2346     return false;
2347 
2348   to_mode = SCALAR_INT_TYPE_MODE (type);
2349   from_mode = SCALAR_INT_TYPE_MODE (type1);
2350   if (to_mode == from_mode)
2351     return false;
2352 
2353   from_unsigned1 = TYPE_UNSIGNED (type1);
2354   from_unsigned2 = TYPE_UNSIGNED (type2);
2355 
2356   if (from_unsigned1 && from_unsigned2)
2357     op = umul_widen_optab;
2358   else if (!from_unsigned1 && !from_unsigned2)
2359     op = smul_widen_optab;
2360   else
2361     op = usmul_widen_optab;
2362 
2363   handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
2364 						  &actual_mode);
2365 
2366   if (handler == CODE_FOR_nothing)
2367     {
2368       if (op != smul_widen_optab)
2369 	{
2370 	  /* We can use a signed multiply with unsigned types as long as
2371 	     there is a wider mode to use, or it is the smaller of the two
2372 	     types that is unsigned.  Note that type1 >= type2, always.  */
2373 	  if ((TYPE_UNSIGNED (type1)
2374 	       && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2375 	      || (TYPE_UNSIGNED (type2)
2376 		  && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2377 	    {
2378 	      if (!GET_MODE_WIDER_MODE (from_mode).exists (&from_mode)
2379 		  || GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
2380 		return false;
2381 	    }
2382 
2383 	  op = smul_widen_optab;
2384 	  handler = find_widening_optab_handler_and_mode (op, to_mode,
2385 							  from_mode,
2386 							  &actual_mode);
2387 
2388 	  if (handler == CODE_FOR_nothing)
2389 	    return false;
2390 
2391 	  from_unsigned1 = from_unsigned2 = false;
2392 	}
2393       else
2394 	return false;
2395     }
2396 
2397   /* Ensure that the inputs to the handler are in the correct precison
2398      for the opcode.  This will be the full mode size.  */
2399   actual_precision = GET_MODE_PRECISION (actual_mode);
2400   if (2 * actual_precision > TYPE_PRECISION (type))
2401     return false;
2402   if (actual_precision != TYPE_PRECISION (type1)
2403       || from_unsigned1 != TYPE_UNSIGNED (type1))
2404     rhs1 = build_and_insert_cast (gsi, loc,
2405 				  build_nonstandard_integer_type
2406 				    (actual_precision, from_unsigned1), rhs1);
2407   if (actual_precision != TYPE_PRECISION (type2)
2408       || from_unsigned2 != TYPE_UNSIGNED (type2))
2409     rhs2 = build_and_insert_cast (gsi, loc,
2410 				  build_nonstandard_integer_type
2411 				    (actual_precision, from_unsigned2), rhs2);
2412 
2413   /* Handle constants.  */
2414   if (TREE_CODE (rhs1) == INTEGER_CST)
2415     rhs1 = fold_convert (type1, rhs1);
2416   if (TREE_CODE (rhs2) == INTEGER_CST)
2417     rhs2 = fold_convert (type2, rhs2);
2418 
2419   gimple_assign_set_rhs1 (stmt, rhs1);
2420   gimple_assign_set_rhs2 (stmt, rhs2);
2421   gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
2422   update_stmt (stmt);
2423   widen_mul_stats.widen_mults_inserted++;
2424   return true;
2425 }
2426 
2427 /* Process a single gimple statement STMT, which is found at the
2428    iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2429    rhs (given by CODE), and try to convert it into a
2430    WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR.  The return value
2431    is true iff we converted the statement.  */
2432 
2433 static bool
2434 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple *stmt,
2435 			    enum tree_code code)
2436 {
2437   gimple *rhs1_stmt = NULL, *rhs2_stmt = NULL;
2438   gimple *conv1_stmt = NULL, *conv2_stmt = NULL, *conv_stmt;
2439   tree type, type1, type2, optype;
2440   tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
2441   enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
2442   optab this_optab;
2443   enum tree_code wmult_code;
2444   enum insn_code handler;
2445   scalar_mode to_mode, from_mode, actual_mode;
2446   location_t loc = gimple_location (stmt);
2447   int actual_precision;
2448   bool from_unsigned1, from_unsigned2;
2449 
2450   lhs = gimple_assign_lhs (stmt);
2451   type = TREE_TYPE (lhs);
2452   if (TREE_CODE (type) != INTEGER_TYPE
2453       && TREE_CODE (type) != FIXED_POINT_TYPE)
2454     return false;
2455 
2456   if (code == MINUS_EXPR)
2457     wmult_code = WIDEN_MULT_MINUS_EXPR;
2458   else
2459     wmult_code = WIDEN_MULT_PLUS_EXPR;
2460 
2461   rhs1 = gimple_assign_rhs1 (stmt);
2462   rhs2 = gimple_assign_rhs2 (stmt);
2463 
2464   if (TREE_CODE (rhs1) == SSA_NAME)
2465     {
2466       rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2467       if (is_gimple_assign (rhs1_stmt))
2468 	rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2469     }
2470 
2471   if (TREE_CODE (rhs2) == SSA_NAME)
2472     {
2473       rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2474       if (is_gimple_assign (rhs2_stmt))
2475 	rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2476     }
2477 
2478   /* Allow for one conversion statement between the multiply
2479      and addition/subtraction statement.  If there are more than
2480      one conversions then we assume they would invalidate this
2481      transformation.  If that's not the case then they should have
2482      been folded before now.  */
2483   if (CONVERT_EXPR_CODE_P (rhs1_code))
2484     {
2485       conv1_stmt = rhs1_stmt;
2486       rhs1 = gimple_assign_rhs1 (rhs1_stmt);
2487       if (TREE_CODE (rhs1) == SSA_NAME)
2488 	{
2489 	  rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2490 	  if (is_gimple_assign (rhs1_stmt))
2491 	    rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2492 	}
2493       else
2494 	return false;
2495     }
2496   if (CONVERT_EXPR_CODE_P (rhs2_code))
2497     {
2498       conv2_stmt = rhs2_stmt;
2499       rhs2 = gimple_assign_rhs1 (rhs2_stmt);
2500       if (TREE_CODE (rhs2) == SSA_NAME)
2501 	{
2502 	  rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2503 	  if (is_gimple_assign (rhs2_stmt))
2504 	    rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2505 	}
2506       else
2507 	return false;
2508     }
2509 
2510   /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
2511      is_widening_mult_p, but we still need the rhs returns.
2512 
2513      It might also appear that it would be sufficient to use the existing
2514      operands of the widening multiply, but that would limit the choice of
2515      multiply-and-accumulate instructions.
2516 
2517      If the widened-multiplication result has more than one uses, it is
2518      probably wiser not to do the conversion.  */
2519   if (code == PLUS_EXPR
2520       && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
2521     {
2522       if (!has_single_use (rhs1)
2523 	  || !is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
2524 				  &type2, &mult_rhs2))
2525 	return false;
2526       add_rhs = rhs2;
2527       conv_stmt = conv1_stmt;
2528     }
2529   else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
2530     {
2531       if (!has_single_use (rhs2)
2532 	  || !is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
2533 				  &type2, &mult_rhs2))
2534 	return false;
2535       add_rhs = rhs1;
2536       conv_stmt = conv2_stmt;
2537     }
2538   else
2539     return false;
2540 
2541   to_mode = SCALAR_TYPE_MODE (type);
2542   from_mode = SCALAR_TYPE_MODE (type1);
2543   if (to_mode == from_mode)
2544     return false;
2545 
2546   from_unsigned1 = TYPE_UNSIGNED (type1);
2547   from_unsigned2 = TYPE_UNSIGNED (type2);
2548   optype = type1;
2549 
2550   /* There's no such thing as a mixed sign madd yet, so use a wider mode.  */
2551   if (from_unsigned1 != from_unsigned2)
2552     {
2553       if (!INTEGRAL_TYPE_P (type))
2554 	return false;
2555       /* We can use a signed multiply with unsigned types as long as
2556 	 there is a wider mode to use, or it is the smaller of the two
2557 	 types that is unsigned.  Note that type1 >= type2, always.  */
2558       if ((from_unsigned1
2559 	   && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2560 	  || (from_unsigned2
2561 	      && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2562 	{
2563 	  if (!GET_MODE_WIDER_MODE (from_mode).exists (&from_mode)
2564 	      || GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
2565 	    return false;
2566 	}
2567 
2568       from_unsigned1 = from_unsigned2 = false;
2569       optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
2570 					       false);
2571     }
2572 
2573   /* If there was a conversion between the multiply and addition
2574      then we need to make sure it fits a multiply-and-accumulate.
2575      The should be a single mode change which does not change the
2576      value.  */
2577   if (conv_stmt)
2578     {
2579       /* We use the original, unmodified data types for this.  */
2580       tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
2581       tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
2582       int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
2583       bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
2584 
2585       if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
2586 	{
2587 	  /* Conversion is a truncate.  */
2588 	  if (TYPE_PRECISION (to_type) < data_size)
2589 	    return false;
2590 	}
2591       else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
2592 	{
2593 	  /* Conversion is an extend.  Check it's the right sort.  */
2594 	  if (TYPE_UNSIGNED (from_type) != is_unsigned
2595 	      && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
2596 	    return false;
2597 	}
2598       /* else convert is a no-op for our purposes.  */
2599     }
2600 
2601   /* Verify that the machine can perform a widening multiply
2602      accumulate in this mode/signedness combination, otherwise
2603      this transformation is likely to pessimize code.  */
2604   this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
2605   handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
2606 						  from_mode, &actual_mode);
2607 
2608   if (handler == CODE_FOR_nothing)
2609     return false;
2610 
2611   /* Ensure that the inputs to the handler are in the correct precison
2612      for the opcode.  This will be the full mode size.  */
2613   actual_precision = GET_MODE_PRECISION (actual_mode);
2614   if (actual_precision != TYPE_PRECISION (type1)
2615       || from_unsigned1 != TYPE_UNSIGNED (type1))
2616     mult_rhs1 = build_and_insert_cast (gsi, loc,
2617 				       build_nonstandard_integer_type
2618 				         (actual_precision, from_unsigned1),
2619 				       mult_rhs1);
2620   if (actual_precision != TYPE_PRECISION (type2)
2621       || from_unsigned2 != TYPE_UNSIGNED (type2))
2622     mult_rhs2 = build_and_insert_cast (gsi, loc,
2623 				       build_nonstandard_integer_type
2624 					 (actual_precision, from_unsigned2),
2625 				       mult_rhs2);
2626 
2627   if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
2628     add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
2629 
2630   /* Handle constants.  */
2631   if (TREE_CODE (mult_rhs1) == INTEGER_CST)
2632     mult_rhs1 = fold_convert (type1, mult_rhs1);
2633   if (TREE_CODE (mult_rhs2) == INTEGER_CST)
2634     mult_rhs2 = fold_convert (type2, mult_rhs2);
2635 
2636   gimple_assign_set_rhs_with_ops (gsi, wmult_code, mult_rhs1, mult_rhs2,
2637 				  add_rhs);
2638   update_stmt (gsi_stmt (*gsi));
2639   widen_mul_stats.maccs_inserted++;
2640   return true;
2641 }
2642 
2643 /* Given a result MUL_RESULT which is a result of a multiplication of OP1 and
2644    OP2 and which we know is used in statements that can be, together with the
2645    multiplication, converted to FMAs, perform the transformation.  */
2646 
2647 static void
2648 convert_mult_to_fma_1 (tree mul_result, tree op1, tree op2)
2649 {
2650   tree type = TREE_TYPE (mul_result);
2651   gimple *use_stmt;
2652   imm_use_iterator imm_iter;
2653   gassign *fma_stmt;
2654 
2655   FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
2656     {
2657       gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
2658       enum tree_code use_code;
2659       tree addop, mulop1 = op1, result = mul_result;
2660       bool negate_p = false;
2661 
2662       if (is_gimple_debug (use_stmt))
2663 	continue;
2664 
2665       use_code = gimple_assign_rhs_code (use_stmt);
2666       if (use_code == NEGATE_EXPR)
2667 	{
2668 	  result = gimple_assign_lhs (use_stmt);
2669 	  use_operand_p use_p;
2670 	  gimple *neguse_stmt;
2671 	  single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
2672 	  gsi_remove (&gsi, true);
2673 	  release_defs (use_stmt);
2674 
2675 	  use_stmt = neguse_stmt;
2676 	  gsi = gsi_for_stmt (use_stmt);
2677 	  use_code = gimple_assign_rhs_code (use_stmt);
2678 	  negate_p = true;
2679 	}
2680 
2681       if (gimple_assign_rhs1 (use_stmt) == result)
2682 	{
2683 	  addop = gimple_assign_rhs2 (use_stmt);
2684 	  /* a * b - c -> a * b + (-c)  */
2685 	  if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
2686 	    addop = force_gimple_operand_gsi (&gsi,
2687 					      build1 (NEGATE_EXPR,
2688 						      type, addop),
2689 					      true, NULL_TREE, true,
2690 					      GSI_SAME_STMT);
2691 	}
2692       else
2693 	{
2694 	  addop = gimple_assign_rhs1 (use_stmt);
2695 	  /* a - b * c -> (-b) * c + a */
2696 	  if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
2697 	    negate_p = !negate_p;
2698 	}
2699 
2700       if (negate_p)
2701 	mulop1 = force_gimple_operand_gsi (&gsi,
2702 					   build1 (NEGATE_EXPR,
2703 						   type, mulop1),
2704 					   true, NULL_TREE, true,
2705 					   GSI_SAME_STMT);
2706 
2707       fma_stmt = gimple_build_assign (gimple_assign_lhs (use_stmt),
2708 				      FMA_EXPR, mulop1, op2, addop);
2709 
2710       if (dump_file && (dump_flags & TDF_DETAILS))
2711 	{
2712 	  fprintf (dump_file, "Generated FMA ");
2713 	  print_gimple_stmt (dump_file, fma_stmt, 0, 0);
2714 	  fprintf (dump_file, "\n");
2715 	}
2716 
2717       gsi_replace (&gsi, fma_stmt, true);
2718       widen_mul_stats.fmas_inserted++;
2719     }
2720 }
2721 
2722 /* Data necessary to perform the actual transformation from a multiplication
2723    and an addition to an FMA after decision is taken it should be done and to
2724    then delete the multiplication statement from the function IL.  */
2725 
2726 struct fma_transformation_info
2727 {
2728   gimple *mul_stmt;
2729   tree mul_result;
2730   tree op1;
2731   tree op2;
2732 };
2733 
2734 /* Structure containing the current state of FMA deferring, i.e. whether we are
2735    deferring, whether to continue deferring, and all data necessary to come
2736    back and perform all deferred transformations.  */
2737 
2738 class fma_deferring_state
2739 {
2740 public:
2741   /* Class constructor.  Pass true as PERFORM_DEFERRING in order to actually
2742      do any deferring.  */
2743 
2744   fma_deferring_state (bool perform_deferring)
2745     : m_candidates (), m_mul_result_set (), m_initial_phi (NULL),
2746       m_last_result (NULL_TREE), m_deferring_p (perform_deferring) {}
2747 
2748   /* List of FMA candidates for which we the transformation has been determined
2749      possible but we at this point in BB analysis we do not consider them
2750      beneficial.  */
2751   auto_vec<fma_transformation_info, 8> m_candidates;
2752 
2753   /* Set of results of multiplication that are part of an already deferred FMA
2754      candidates.  */
2755   hash_set<tree> m_mul_result_set;
2756 
2757   /* The PHI that supposedly feeds back result of a FMA to another over loop
2758      boundary.  */
2759   gphi *m_initial_phi;
2760 
2761   /* Result of the last produced FMA candidate or NULL if there has not been
2762      one.  */
2763   tree m_last_result;
2764 
2765   /* If true, deferring might still be profitable.  If false, transform all
2766      candidates and no longer defer.  */
2767   bool m_deferring_p;
2768 };
2769 
2770 /* Transform all deferred FMA candidates and mark STATE as no longer
2771    deferring.  */
2772 
2773 static void
2774 cancel_fma_deferring (fma_deferring_state *state)
2775 {
2776   if (!state->m_deferring_p)
2777     return;
2778 
2779   for (unsigned i = 0; i < state->m_candidates.length (); i++)
2780     {
2781       if (dump_file && (dump_flags & TDF_DETAILS))
2782 	fprintf (dump_file, "Generating deferred FMA\n");
2783 
2784       const fma_transformation_info &fti = state->m_candidates[i];
2785       convert_mult_to_fma_1 (fti.mul_result, fti.op1, fti.op2);
2786 
2787       gimple_stmt_iterator gsi = gsi_for_stmt (fti.mul_stmt);
2788       gsi_remove (&gsi, true);
2789       release_defs (fti.mul_stmt);
2790     }
2791   state->m_deferring_p = false;
2792 }
2793 
2794 /* If OP is an SSA name defined by a PHI node, return the PHI statement.
2795    Otherwise return NULL.  */
2796 
2797 static gphi *
2798 result_of_phi (tree op)
2799 {
2800   if (TREE_CODE (op) != SSA_NAME)
2801     return NULL;
2802 
2803   return dyn_cast <gphi *> (SSA_NAME_DEF_STMT (op));
2804 }
2805 
2806 /* After processing statements of a BB and recording STATE, return true if the
2807    initial phi is fed by the last FMA candidate result ore one such result from
2808    previously processed BBs marked in LAST_RESULT_SET.  */
2809 
2810 static bool
2811 last_fma_candidate_feeds_initial_phi (fma_deferring_state *state,
2812 				      hash_set<tree> *last_result_set)
2813 {
2814   ssa_op_iter iter;
2815   use_operand_p use;
2816   FOR_EACH_PHI_ARG (use, state->m_initial_phi, iter, SSA_OP_USE)
2817     {
2818       tree t = USE_FROM_PTR (use);
2819       if (t == state->m_last_result
2820 	  || last_result_set->contains (t))
2821 	return true;
2822     }
2823 
2824   return false;
2825 }
2826 
2827 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
2828    with uses in additions and subtractions to form fused multiply-add
2829    operations.  Returns true if successful and MUL_STMT should be removed.
2830 
2831    If STATE indicates that we are deferring FMA transformation, that means
2832    that we do not produce FMAs for basic blocks which look like:
2833 
2834     <bb 6>
2835     # accumulator_111 = PHI <0.0(5), accumulator_66(6)>
2836     _65 = _14 * _16;
2837     accumulator_66 = _65 + accumulator_111;
2838 
2839   or its unrolled version, i.e. with several FMA candidates that feed result
2840   of one into the addend of another.  Instead, we add them to a list in STATE
2841   and if we later discover an FMA candidate that is not part of such a chain,
2842   we go back and perform all deferred past candidates.  */
2843 
2844 static bool
2845 convert_mult_to_fma (gimple *mul_stmt, tree op1, tree op2,
2846 		     fma_deferring_state *state)
2847 {
2848   tree mul_result = gimple_get_lhs (mul_stmt);
2849   tree type = TREE_TYPE (mul_result);
2850   gimple *use_stmt, *neguse_stmt;
2851   use_operand_p use_p;
2852   imm_use_iterator imm_iter;
2853 
2854   if (FLOAT_TYPE_P (type)
2855       && flag_fp_contract_mode == FP_CONTRACT_OFF)
2856     return false;
2857 
2858   /* We don't want to do bitfield reduction ops.  */
2859   if (INTEGRAL_TYPE_P (type)
2860       && (!type_has_mode_precision_p (type) || TYPE_OVERFLOW_TRAPS (type)))
2861     return false;
2862 
2863   /* If the target doesn't support it, don't generate it.  We assume that
2864      if fma isn't available then fms, fnma or fnms are not either.  */
2865   if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
2866     return false;
2867 
2868   /* If the multiplication has zero uses, it is kept around probably because
2869      of -fnon-call-exceptions.  Don't optimize it away in that case,
2870      it is DCE job.  */
2871   if (has_zero_uses (mul_result))
2872     return false;
2873 
2874   bool check_defer
2875     = (state->m_deferring_p
2876        && (tree_to_shwi (TYPE_SIZE (type))
2877 	   <= PARAM_VALUE (PARAM_AVOID_FMA_MAX_BITS)));
2878   bool defer = check_defer;
2879   /* Make sure that the multiplication statement becomes dead after
2880      the transformation, thus that all uses are transformed to FMAs.
2881      This means we assume that an FMA operation has the same cost
2882      as an addition.  */
2883   FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
2884     {
2885       enum tree_code use_code;
2886       tree result = mul_result;
2887       bool negate_p = false;
2888 
2889       use_stmt = USE_STMT (use_p);
2890 
2891       if (is_gimple_debug (use_stmt))
2892 	continue;
2893 
2894       /* For now restrict this operations to single basic blocks.  In theory
2895 	 we would want to support sinking the multiplication in
2896 	 m = a*b;
2897 	 if ()
2898 	   ma = m + c;
2899 	 else
2900 	   d = m;
2901 	 to form a fma in the then block and sink the multiplication to the
2902 	 else block.  */
2903       if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2904 	return false;
2905 
2906       if (!is_gimple_assign (use_stmt))
2907 	return false;
2908 
2909       use_code = gimple_assign_rhs_code (use_stmt);
2910 
2911       /* A negate on the multiplication leads to FNMA.  */
2912       if (use_code == NEGATE_EXPR)
2913 	{
2914 	  ssa_op_iter iter;
2915 	  use_operand_p usep;
2916 
2917 	  result = gimple_assign_lhs (use_stmt);
2918 
2919 	  /* Make sure the negate statement becomes dead with this
2920 	     single transformation.  */
2921 	  if (!single_imm_use (gimple_assign_lhs (use_stmt),
2922 			       &use_p, &neguse_stmt))
2923 	    return false;
2924 
2925 	  /* Make sure the multiplication isn't also used on that stmt.  */
2926 	  FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
2927 	    if (USE_FROM_PTR (usep) == mul_result)
2928 	      return false;
2929 
2930 	  /* Re-validate.  */
2931 	  use_stmt = neguse_stmt;
2932 	  if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2933 	    return false;
2934 	  if (!is_gimple_assign (use_stmt))
2935 	    return false;
2936 
2937 	  use_code = gimple_assign_rhs_code (use_stmt);
2938 	  negate_p = true;
2939 	}
2940 
2941       switch (use_code)
2942 	{
2943 	case MINUS_EXPR:
2944 	  if (gimple_assign_rhs2 (use_stmt) == result)
2945 	    negate_p = !negate_p;
2946 	  break;
2947 	case PLUS_EXPR:
2948 	  break;
2949 	default:
2950 	  /* FMA can only be formed from PLUS and MINUS.  */
2951 	  return false;
2952 	}
2953 
2954       /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
2955 	 by a MULT_EXPR that we'll visit later, we might be able to
2956 	 get a more profitable match with fnma.
2957 	 OTOH, if we don't, a negate / fma pair has likely lower latency
2958 	 that a mult / subtract pair.  */
2959       if (use_code == MINUS_EXPR && !negate_p
2960 	  && gimple_assign_rhs1 (use_stmt) == result
2961 	  && optab_handler (fms_optab, TYPE_MODE (type)) == CODE_FOR_nothing
2962 	  && optab_handler (fnma_optab, TYPE_MODE (type)) != CODE_FOR_nothing)
2963 	{
2964 	  tree rhs2 = gimple_assign_rhs2 (use_stmt);
2965 
2966 	  if (TREE_CODE (rhs2) == SSA_NAME)
2967 	    {
2968 	      gimple *stmt2 = SSA_NAME_DEF_STMT (rhs2);
2969 	      if (has_single_use (rhs2)
2970 		  && is_gimple_assign (stmt2)
2971 		  && gimple_assign_rhs_code (stmt2) == MULT_EXPR)
2972 	      return false;
2973 	    }
2974 	}
2975 
2976       tree use_rhs1 = gimple_assign_rhs1 (use_stmt);
2977       tree use_rhs2 = gimple_assign_rhs2 (use_stmt);
2978       /* We can't handle a * b + a * b.  */
2979       if (use_rhs1 == use_rhs2)
2980 	return false;
2981       /* If deferring, make sure we are not looking at an instruction that
2982 	 wouldn't have existed if we were not.  */
2983       if (state->m_deferring_p
2984 	  && (state->m_mul_result_set.contains (use_rhs1)
2985 	      || state->m_mul_result_set.contains (use_rhs2)))
2986 	return false;
2987 
2988       if (check_defer)
2989 	{
2990 	  tree use_lhs = gimple_assign_lhs (use_stmt);
2991 	  if (state->m_last_result)
2992 	    {
2993 	      if (use_rhs2 == state->m_last_result
2994 		  || use_rhs1 == state->m_last_result)
2995 		defer = true;
2996 	      else
2997 		defer = false;
2998 	    }
2999 	  else
3000 	    {
3001 	      gcc_checking_assert (!state->m_initial_phi);
3002 	      gphi *phi;
3003 	      if (use_rhs1 == result)
3004 		phi = result_of_phi (use_rhs2);
3005 	      else
3006 		{
3007 		  gcc_assert (use_rhs2 == result);
3008 		  phi = result_of_phi (use_rhs1);
3009 		}
3010 
3011 	      if (phi)
3012 		{
3013 		  state->m_initial_phi = phi;
3014 		  defer = true;
3015 		}
3016 	      else
3017 		defer = false;
3018 	    }
3019 
3020 	  state->m_last_result = use_lhs;
3021 	  check_defer = false;
3022 	}
3023       else
3024 	defer = false;
3025 
3026       /* While it is possible to validate whether or not the exact form that
3027 	 we've recognized is available in the backend, the assumption is that
3028 	 if the deferring logic above did not trigger, the transformation is
3029 	 never a loss.  For instance, suppose the target only has the plain FMA
3030 	 pattern available.  Consider a*b-c -> fma(a,b,-c): we've exchanged
3031 	 MUL+SUB for FMA+NEG, which is still two operations.  Consider
3032          -(a*b)-c -> fma(-a,b,-c): we still have 3 operations, but in the FMA
3033 	 form the two NEGs are independent and could be run in parallel.  */
3034     }
3035 
3036   if (defer)
3037     {
3038       fma_transformation_info fti;
3039       fti.mul_stmt = mul_stmt;
3040       fti.mul_result = mul_result;
3041       fti.op1 = op1;
3042       fti.op2 = op2;
3043       state->m_candidates.safe_push (fti);
3044       state->m_mul_result_set.add (mul_result);
3045 
3046       if (dump_file && (dump_flags & TDF_DETAILS))
3047 	{
3048 	  fprintf (dump_file, "Deferred generating FMA for multiplication ");
3049 	  print_gimple_stmt (dump_file, mul_stmt, 0, 0);
3050 	  fprintf (dump_file, "\n");
3051 	}
3052 
3053       return false;
3054     }
3055   else
3056     {
3057       if (state->m_deferring_p)
3058 	cancel_fma_deferring (state);
3059       convert_mult_to_fma_1 (mul_result, op1, op2);
3060       return true;
3061     }
3062 }
3063 
3064 
3065 /* Helper function of match_uaddsub_overflow.  Return 1
3066    if USE_STMT is unsigned overflow check ovf != 0 for
3067    STMT, -1 if USE_STMT is unsigned overflow check ovf == 0
3068    and 0 otherwise.  */
3069 
3070 static int
3071 uaddsub_overflow_check_p (gimple *stmt, gimple *use_stmt)
3072 {
3073   enum tree_code ccode = ERROR_MARK;
3074   tree crhs1 = NULL_TREE, crhs2 = NULL_TREE;
3075   if (gimple_code (use_stmt) == GIMPLE_COND)
3076     {
3077       ccode = gimple_cond_code (use_stmt);
3078       crhs1 = gimple_cond_lhs (use_stmt);
3079       crhs2 = gimple_cond_rhs (use_stmt);
3080     }
3081   else if (is_gimple_assign (use_stmt))
3082     {
3083       if (gimple_assign_rhs_class (use_stmt) == GIMPLE_BINARY_RHS)
3084 	{
3085 	  ccode = gimple_assign_rhs_code (use_stmt);
3086 	  crhs1 = gimple_assign_rhs1 (use_stmt);
3087 	  crhs2 = gimple_assign_rhs2 (use_stmt);
3088 	}
3089       else if (gimple_assign_rhs_code (use_stmt) == COND_EXPR)
3090 	{
3091 	  tree cond = gimple_assign_rhs1 (use_stmt);
3092 	  if (COMPARISON_CLASS_P (cond))
3093 	    {
3094 	      ccode = TREE_CODE (cond);
3095 	      crhs1 = TREE_OPERAND (cond, 0);
3096 	      crhs2 = TREE_OPERAND (cond, 1);
3097 	    }
3098 	  else
3099 	    return 0;
3100 	}
3101       else
3102 	return 0;
3103     }
3104   else
3105     return 0;
3106 
3107   if (TREE_CODE_CLASS (ccode) != tcc_comparison)
3108     return 0;
3109 
3110   enum tree_code code = gimple_assign_rhs_code (stmt);
3111   tree lhs = gimple_assign_lhs (stmt);
3112   tree rhs1 = gimple_assign_rhs1 (stmt);
3113   tree rhs2 = gimple_assign_rhs2 (stmt);
3114 
3115   switch (ccode)
3116     {
3117     case GT_EXPR:
3118     case LE_EXPR:
3119       /* r = a - b; r > a or r <= a
3120 	 r = a + b; a > r or a <= r or b > r or b <= r.  */
3121       if ((code == MINUS_EXPR && crhs1 == lhs && crhs2 == rhs1)
3122 	  || (code == PLUS_EXPR && (crhs1 == rhs1 || crhs1 == rhs2)
3123 	      && crhs2 == lhs))
3124 	return ccode == GT_EXPR ? 1 : -1;
3125       break;
3126     case LT_EXPR:
3127     case GE_EXPR:
3128       /* r = a - b; a < r or a >= r
3129 	 r = a + b; r < a or r >= a or r < b or r >= b.  */
3130       if ((code == MINUS_EXPR && crhs1 == rhs1 && crhs2 == lhs)
3131 	  || (code == PLUS_EXPR && crhs1 == lhs
3132 	      && (crhs2 == rhs1 || crhs2 == rhs2)))
3133 	return ccode == LT_EXPR ? 1 : -1;
3134       break;
3135     default:
3136       break;
3137     }
3138   return 0;
3139 }
3140 
3141 /* Recognize for unsigned x
3142    x = y - z;
3143    if (x > y)
3144    where there are other uses of x and replace it with
3145    _7 = SUB_OVERFLOW (y, z);
3146    x = REALPART_EXPR <_7>;
3147    _8 = IMAGPART_EXPR <_7>;
3148    if (_8)
3149    and similarly for addition.  */
3150 
3151 static bool
3152 match_uaddsub_overflow (gimple_stmt_iterator *gsi, gimple *stmt,
3153 			enum tree_code code)
3154 {
3155   tree lhs = gimple_assign_lhs (stmt);
3156   tree type = TREE_TYPE (lhs);
3157   use_operand_p use_p;
3158   imm_use_iterator iter;
3159   bool use_seen = false;
3160   bool ovf_use_seen = false;
3161   gimple *use_stmt;
3162 
3163   gcc_checking_assert (code == PLUS_EXPR || code == MINUS_EXPR);
3164   if (!INTEGRAL_TYPE_P (type)
3165       || !TYPE_UNSIGNED (type)
3166       || has_zero_uses (lhs)
3167       || has_single_use (lhs)
3168       || optab_handler (code == PLUS_EXPR ? uaddv4_optab : usubv4_optab,
3169 			TYPE_MODE (type)) == CODE_FOR_nothing)
3170     return false;
3171 
3172   FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
3173     {
3174       use_stmt = USE_STMT (use_p);
3175       if (is_gimple_debug (use_stmt))
3176 	continue;
3177 
3178       if (uaddsub_overflow_check_p (stmt, use_stmt))
3179 	ovf_use_seen = true;
3180       else
3181 	use_seen = true;
3182       if (ovf_use_seen && use_seen)
3183 	break;
3184     }
3185 
3186   if (!ovf_use_seen || !use_seen)
3187     return false;
3188 
3189   tree ctype = build_complex_type (type);
3190   tree rhs1 = gimple_assign_rhs1 (stmt);
3191   tree rhs2 = gimple_assign_rhs2 (stmt);
3192   gcall *g = gimple_build_call_internal (code == PLUS_EXPR
3193 					 ? IFN_ADD_OVERFLOW : IFN_SUB_OVERFLOW,
3194 					 2, rhs1, rhs2);
3195   tree ctmp = make_ssa_name (ctype);
3196   gimple_call_set_lhs (g, ctmp);
3197   gsi_insert_before (gsi, g, GSI_SAME_STMT);
3198   gassign *g2 = gimple_build_assign (lhs, REALPART_EXPR,
3199 				     build1 (REALPART_EXPR, type, ctmp));
3200   gsi_replace (gsi, g2, true);
3201   tree ovf = make_ssa_name (type);
3202   g2 = gimple_build_assign (ovf, IMAGPART_EXPR,
3203 			    build1 (IMAGPART_EXPR, type, ctmp));
3204   gsi_insert_after (gsi, g2, GSI_NEW_STMT);
3205 
3206   FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
3207     {
3208       if (is_gimple_debug (use_stmt))
3209 	continue;
3210 
3211       int ovf_use = uaddsub_overflow_check_p (stmt, use_stmt);
3212       if (ovf_use == 0)
3213 	continue;
3214       if (gimple_code (use_stmt) == GIMPLE_COND)
3215 	{
3216 	  gcond *cond_stmt = as_a <gcond *> (use_stmt);
3217 	  gimple_cond_set_lhs (cond_stmt, ovf);
3218 	  gimple_cond_set_rhs (cond_stmt, build_int_cst (type, 0));
3219 	  gimple_cond_set_code (cond_stmt, ovf_use == 1 ? NE_EXPR : EQ_EXPR);
3220 	}
3221       else
3222 	{
3223 	  gcc_checking_assert (is_gimple_assign (use_stmt));
3224 	  if (gimple_assign_rhs_class (use_stmt) == GIMPLE_BINARY_RHS)
3225 	    {
3226 	      gimple_assign_set_rhs1 (use_stmt, ovf);
3227 	      gimple_assign_set_rhs2 (use_stmt, build_int_cst (type, 0));
3228 	      gimple_assign_set_rhs_code (use_stmt,
3229 					  ovf_use == 1 ? NE_EXPR : EQ_EXPR);
3230 	    }
3231 	  else
3232 	    {
3233 	      gcc_checking_assert (gimple_assign_rhs_code (use_stmt)
3234 				   == COND_EXPR);
3235 	      tree cond = build2 (ovf_use == 1 ? NE_EXPR : EQ_EXPR,
3236 				  boolean_type_node, ovf,
3237 				  build_int_cst (type, 0));
3238 	      gimple_assign_set_rhs1 (use_stmt, cond);
3239 	    }
3240 	}
3241       update_stmt (use_stmt);
3242     }
3243   return true;
3244 }
3245 
3246 /* Return true if target has support for divmod.  */
3247 
3248 static bool
3249 target_supports_divmod_p (optab divmod_optab, optab div_optab, machine_mode mode)
3250 {
3251   /* If target supports hardware divmod insn, use it for divmod.  */
3252   if (optab_handler (divmod_optab, mode) != CODE_FOR_nothing)
3253     return true;
3254 
3255   /* Check if libfunc for divmod is available.  */
3256   rtx libfunc = optab_libfunc (divmod_optab, mode);
3257   if (libfunc != NULL_RTX)
3258     {
3259       /* If optab_handler exists for div_optab, perhaps in a wider mode,
3260 	 we don't want to use the libfunc even if it exists for given mode.  */
3261       machine_mode div_mode;
3262       FOR_EACH_MODE_FROM (div_mode, mode)
3263 	if (optab_handler (div_optab, div_mode) != CODE_FOR_nothing)
3264 	  return false;
3265 
3266       return targetm.expand_divmod_libfunc != NULL;
3267     }
3268 
3269   return false;
3270 }
3271 
3272 /* Check if stmt is candidate for divmod transform.  */
3273 
3274 static bool
3275 divmod_candidate_p (gassign *stmt)
3276 {
3277   tree type = TREE_TYPE (gimple_assign_lhs (stmt));
3278   machine_mode mode = TYPE_MODE (type);
3279   optab divmod_optab, div_optab;
3280 
3281   if (TYPE_UNSIGNED (type))
3282     {
3283       divmod_optab = udivmod_optab;
3284       div_optab = udiv_optab;
3285     }
3286   else
3287     {
3288       divmod_optab = sdivmod_optab;
3289       div_optab = sdiv_optab;
3290     }
3291 
3292   tree op1 = gimple_assign_rhs1 (stmt);
3293   tree op2 = gimple_assign_rhs2 (stmt);
3294 
3295   /* Disable the transform if either is a constant, since division-by-constant
3296      may have specialized expansion.  */
3297   if (CONSTANT_CLASS_P (op1) || CONSTANT_CLASS_P (op2))
3298     return false;
3299 
3300   /* Exclude the case where TYPE_OVERFLOW_TRAPS (type) as that should
3301      expand using the [su]divv optabs.  */
3302   if (TYPE_OVERFLOW_TRAPS (type))
3303     return false;
3304 
3305   if (!target_supports_divmod_p (divmod_optab, div_optab, mode))
3306     return false;
3307 
3308   return true;
3309 }
3310 
3311 /* This function looks for:
3312    t1 = a TRUNC_DIV_EXPR b;
3313    t2 = a TRUNC_MOD_EXPR b;
3314    and transforms it to the following sequence:
3315    complex_tmp = DIVMOD (a, b);
3316    t1 = REALPART_EXPR(a);
3317    t2 = IMAGPART_EXPR(b);
3318    For conditions enabling the transform see divmod_candidate_p().
3319 
3320    The pass has three parts:
3321    1) Find top_stmt which is trunc_div or trunc_mod stmt and dominates all
3322       other trunc_div_expr and trunc_mod_expr stmts.
3323    2) Add top_stmt and all trunc_div and trunc_mod stmts dominated by top_stmt
3324       to stmts vector.
3325    3) Insert DIVMOD call just before top_stmt and update entries in
3326       stmts vector to use return value of DIMOVD (REALEXPR_PART for div,
3327       IMAGPART_EXPR for mod).  */
3328 
3329 static bool
3330 convert_to_divmod (gassign *stmt)
3331 {
3332   if (stmt_can_throw_internal (stmt)
3333       || !divmod_candidate_p (stmt))
3334     return false;
3335 
3336   tree op1 = gimple_assign_rhs1 (stmt);
3337   tree op2 = gimple_assign_rhs2 (stmt);
3338 
3339   imm_use_iterator use_iter;
3340   gimple *use_stmt;
3341   auto_vec<gimple *> stmts;
3342 
3343   gimple *top_stmt = stmt;
3344   basic_block top_bb = gimple_bb (stmt);
3345 
3346   /* Part 1: Try to set top_stmt to "topmost" stmt that dominates
3347      at-least stmt and possibly other trunc_div/trunc_mod stmts
3348      having same operands as stmt.  */
3349 
3350   FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, op1)
3351     {
3352       if (is_gimple_assign (use_stmt)
3353 	  && (gimple_assign_rhs_code (use_stmt) == TRUNC_DIV_EXPR
3354 	      || gimple_assign_rhs_code (use_stmt) == TRUNC_MOD_EXPR)
3355 	  && operand_equal_p (op1, gimple_assign_rhs1 (use_stmt), 0)
3356 	  && operand_equal_p (op2, gimple_assign_rhs2 (use_stmt), 0))
3357 	{
3358 	  if (stmt_can_throw_internal (use_stmt))
3359 	    continue;
3360 
3361 	  basic_block bb = gimple_bb (use_stmt);
3362 
3363 	  if (bb == top_bb)
3364 	    {
3365 	      if (gimple_uid (use_stmt) < gimple_uid (top_stmt))
3366 		top_stmt = use_stmt;
3367 	    }
3368 	  else if (dominated_by_p (CDI_DOMINATORS, top_bb, bb))
3369 	    {
3370 	      top_bb = bb;
3371 	      top_stmt = use_stmt;
3372 	    }
3373 	}
3374     }
3375 
3376   tree top_op1 = gimple_assign_rhs1 (top_stmt);
3377   tree top_op2 = gimple_assign_rhs2 (top_stmt);
3378 
3379   stmts.safe_push (top_stmt);
3380   bool div_seen = (gimple_assign_rhs_code (top_stmt) == TRUNC_DIV_EXPR);
3381 
3382   /* Part 2: Add all trunc_div/trunc_mod statements domianted by top_bb
3383      to stmts vector. The 2nd loop will always add stmt to stmts vector, since
3384      gimple_bb (top_stmt) dominates gimple_bb (stmt), so the
3385      2nd loop ends up adding at-least single trunc_mod_expr stmt.  */
3386 
3387   FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, top_op1)
3388     {
3389       if (is_gimple_assign (use_stmt)
3390 	  && (gimple_assign_rhs_code (use_stmt) == TRUNC_DIV_EXPR
3391 	      || gimple_assign_rhs_code (use_stmt) == TRUNC_MOD_EXPR)
3392 	  && operand_equal_p (top_op1, gimple_assign_rhs1 (use_stmt), 0)
3393 	  && operand_equal_p (top_op2, gimple_assign_rhs2 (use_stmt), 0))
3394 	{
3395 	  if (use_stmt == top_stmt
3396 	      || stmt_can_throw_internal (use_stmt)
3397 	      || !dominated_by_p (CDI_DOMINATORS, gimple_bb (use_stmt), top_bb))
3398 	    continue;
3399 
3400 	  stmts.safe_push (use_stmt);
3401 	  if (gimple_assign_rhs_code (use_stmt) == TRUNC_DIV_EXPR)
3402 	    div_seen = true;
3403 	}
3404     }
3405 
3406   if (!div_seen)
3407     return false;
3408 
3409   /* Part 3: Create libcall to internal fn DIVMOD:
3410      divmod_tmp = DIVMOD (op1, op2).  */
3411 
3412   gcall *call_stmt = gimple_build_call_internal (IFN_DIVMOD, 2, op1, op2);
3413   tree res = make_temp_ssa_name (build_complex_type (TREE_TYPE (op1)),
3414 				 call_stmt, "divmod_tmp");
3415   gimple_call_set_lhs (call_stmt, res);
3416   /* We rejected throwing statements above.  */
3417   gimple_call_set_nothrow (call_stmt, true);
3418 
3419   /* Insert the call before top_stmt.  */
3420   gimple_stmt_iterator top_stmt_gsi = gsi_for_stmt (top_stmt);
3421   gsi_insert_before (&top_stmt_gsi, call_stmt, GSI_SAME_STMT);
3422 
3423   widen_mul_stats.divmod_calls_inserted++;
3424 
3425   /* Update all statements in stmts vector:
3426      lhs = op1 TRUNC_DIV_EXPR op2 -> lhs = REALPART_EXPR<divmod_tmp>
3427      lhs = op1 TRUNC_MOD_EXPR op2 -> lhs = IMAGPART_EXPR<divmod_tmp>.  */
3428 
3429   for (unsigned i = 0; stmts.iterate (i, &use_stmt); ++i)
3430     {
3431       tree new_rhs;
3432 
3433       switch (gimple_assign_rhs_code (use_stmt))
3434 	{
3435 	  case TRUNC_DIV_EXPR:
3436 	    new_rhs = fold_build1 (REALPART_EXPR, TREE_TYPE (op1), res);
3437 	    break;
3438 
3439 	  case TRUNC_MOD_EXPR:
3440 	    new_rhs = fold_build1 (IMAGPART_EXPR, TREE_TYPE (op1), res);
3441 	    break;
3442 
3443 	  default:
3444 	    gcc_unreachable ();
3445 	}
3446 
3447       gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
3448       gimple_assign_set_rhs_from_tree (&gsi, new_rhs);
3449       update_stmt (use_stmt);
3450     }
3451 
3452   return true;
3453 }
3454 
3455 /* Find integer multiplications where the operands are extended from
3456    smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
3457    where appropriate.  */
3458 
3459 namespace {
3460 
3461 const pass_data pass_data_optimize_widening_mul =
3462 {
3463   GIMPLE_PASS, /* type */
3464   "widening_mul", /* name */
3465   OPTGROUP_NONE, /* optinfo_flags */
3466   TV_TREE_WIDEN_MUL, /* tv_id */
3467   PROP_ssa, /* properties_required */
3468   0, /* properties_provided */
3469   0, /* properties_destroyed */
3470   0, /* todo_flags_start */
3471   TODO_update_ssa, /* todo_flags_finish */
3472 };
3473 
3474 class pass_optimize_widening_mul : public gimple_opt_pass
3475 {
3476 public:
3477   pass_optimize_widening_mul (gcc::context *ctxt)
3478     : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt)
3479   {}
3480 
3481   /* opt_pass methods: */
3482   virtual bool gate (function *)
3483     {
3484       return flag_expensive_optimizations && optimize;
3485     }
3486 
3487   virtual unsigned int execute (function *);
3488 
3489 }; // class pass_optimize_widening_mul
3490 
3491 /* Walker class to perform the transformation in reverse dominance order. */
3492 
3493 class math_opts_dom_walker : public dom_walker
3494 {
3495 public:
3496   /* Constructor, CFG_CHANGED is a pointer to a boolean flag that will be set
3497      if walking modidifes the CFG.  */
3498 
3499   math_opts_dom_walker (bool *cfg_changed_p)
3500     : dom_walker (CDI_DOMINATORS), m_last_result_set (),
3501       m_cfg_changed_p (cfg_changed_p) {}
3502 
3503   /* The actual actions performed in the walk.  */
3504 
3505   virtual void after_dom_children (basic_block);
3506 
3507   /* Set of results of chains of multiply and add statement combinations that
3508      were not transformed into FMAs because of active deferring.  */
3509   hash_set<tree> m_last_result_set;
3510 
3511   /* Pointer to a flag of the user that needs to be set if CFG has been
3512      modified.  */
3513   bool *m_cfg_changed_p;
3514 };
3515 
3516 void
3517 math_opts_dom_walker::after_dom_children (basic_block bb)
3518 {
3519   gimple_stmt_iterator gsi;
3520 
3521   fma_deferring_state fma_state (PARAM_VALUE (PARAM_AVOID_FMA_MAX_BITS) > 0);
3522 
3523   for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
3524     {
3525       gimple *stmt = gsi_stmt (gsi);
3526       enum tree_code code;
3527 
3528       if (is_gimple_assign (stmt))
3529 	{
3530 	  code = gimple_assign_rhs_code (stmt);
3531 	  switch (code)
3532 	    {
3533 	    case MULT_EXPR:
3534 	      if (!convert_mult_to_widen (stmt, &gsi)
3535 		  && !convert_expand_mult_copysign (stmt, &gsi)
3536 		  && convert_mult_to_fma (stmt,
3537 					  gimple_assign_rhs1 (stmt),
3538 					  gimple_assign_rhs2 (stmt),
3539 					  &fma_state))
3540 		{
3541 		  gsi_remove (&gsi, true);
3542 		  release_defs (stmt);
3543 		  continue;
3544 		}
3545 	      break;
3546 
3547 	    case PLUS_EXPR:
3548 	    case MINUS_EXPR:
3549 	      if (!convert_plusminus_to_widen (&gsi, stmt, code))
3550 		match_uaddsub_overflow (&gsi, stmt, code);
3551 	      break;
3552 
3553 	    case TRUNC_MOD_EXPR:
3554 	      convert_to_divmod (as_a<gassign *> (stmt));
3555 	      break;
3556 
3557 	    default:;
3558 	    }
3559 	}
3560       else if (is_gimple_call (stmt))
3561 	{
3562 	  tree fndecl = gimple_call_fndecl (stmt);
3563 	  if (fndecl && gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
3564 	    {
3565 	      switch (DECL_FUNCTION_CODE (fndecl))
3566 		{
3567 		case BUILT_IN_POWF:
3568 		case BUILT_IN_POW:
3569 		case BUILT_IN_POWL:
3570 		  if (gimple_call_lhs (stmt)
3571 		      && TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
3572 		      && real_equal
3573 		      (&TREE_REAL_CST (gimple_call_arg (stmt, 1)),
3574 		       &dconst2)
3575 		      && convert_mult_to_fma (stmt,
3576 					      gimple_call_arg (stmt, 0),
3577 					      gimple_call_arg (stmt, 0),
3578 					      &fma_state))
3579 		    {
3580 		      unlink_stmt_vdef (stmt);
3581 		      if (gsi_remove (&gsi, true)
3582 			  && gimple_purge_dead_eh_edges (bb))
3583 			*m_cfg_changed_p = true;
3584 		      release_defs (stmt);
3585 		      continue;
3586 		    }
3587 		  break;
3588 
3589 		default:;
3590 		}
3591 	    }
3592 	  else
3593 	    cancel_fma_deferring (&fma_state);
3594 	}
3595       gsi_next (&gsi);
3596     }
3597   if (fma_state.m_deferring_p
3598       && fma_state.m_initial_phi)
3599     {
3600       gcc_checking_assert (fma_state.m_last_result);
3601       if (!last_fma_candidate_feeds_initial_phi (&fma_state,
3602 						 &m_last_result_set))
3603 	cancel_fma_deferring (&fma_state);
3604       else
3605 	m_last_result_set.add (fma_state.m_last_result);
3606     }
3607 }
3608 
3609 
3610 unsigned int
3611 pass_optimize_widening_mul::execute (function *fun)
3612 {
3613   bool cfg_changed = false;
3614 
3615   memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
3616   calculate_dominance_info (CDI_DOMINATORS);
3617   renumber_gimple_stmt_uids ();
3618 
3619   math_opts_dom_walker (&cfg_changed).walk (ENTRY_BLOCK_PTR_FOR_FN (cfun));
3620 
3621   statistics_counter_event (fun, "widening multiplications inserted",
3622 			    widen_mul_stats.widen_mults_inserted);
3623   statistics_counter_event (fun, "widening maccs inserted",
3624 			    widen_mul_stats.maccs_inserted);
3625   statistics_counter_event (fun, "fused multiply-adds inserted",
3626 			    widen_mul_stats.fmas_inserted);
3627   statistics_counter_event (fun, "divmod calls inserted",
3628 			    widen_mul_stats.divmod_calls_inserted);
3629 
3630   return cfg_changed ? TODO_cleanup_cfg : 0;
3631 }
3632 
3633 } // anon namespace
3634 
3635 gimple_opt_pass *
3636 make_pass_optimize_widening_mul (gcc::context *ctxt)
3637 {
3638   return new pass_optimize_widening_mul (ctxt);
3639 }
3640