1 /* SSA Jump Threading
2    Copyright (C) 2005-2018 Free Software Foundation, Inc.
3    Contributed by Jeff Law  <law@redhat.com>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11 
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "predict.h"
28 #include "ssa.h"
29 #include "fold-const.h"
30 #include "cfgloop.h"
31 #include "gimple-iterator.h"
32 #include "tree-cfg.h"
33 #include "tree-ssa-threadupdate.h"
34 #include "params.h"
35 #include "tree-ssa-scopedtables.h"
36 #include "tree-ssa-threadedge.h"
37 #include "tree-ssa-dom.h"
38 #include "gimple-fold.h"
39 #include "cfganal.h"
40 #include "alloc-pool.h"
41 #include "vr-values.h"
42 #include "gimple-ssa-evrp-analyze.h"
43 
44 /* To avoid code explosion due to jump threading, we limit the
45    number of statements we are going to copy.  This variable
46    holds the number of statements currently seen that we'll have
47    to copy as part of the jump threading process.  */
48 static int stmt_count;
49 
50 /* Array to record value-handles per SSA_NAME.  */
51 vec<tree> ssa_name_values;
52 
53 typedef tree (pfn_simplify) (gimple *, gimple *,
54 			     class avail_exprs_stack *,
55 			     basic_block);
56 
57 /* Set the value for the SSA name NAME to VALUE.  */
58 
59 void
60 set_ssa_name_value (tree name, tree value)
61 {
62   if (SSA_NAME_VERSION (name) >= ssa_name_values.length ())
63     ssa_name_values.safe_grow_cleared (SSA_NAME_VERSION (name) + 1);
64   if (value && TREE_OVERFLOW_P (value))
65     value = drop_tree_overflow (value);
66   ssa_name_values[SSA_NAME_VERSION (name)] = value;
67 }
68 
69 /* Initialize the per SSA_NAME value-handles array.  Returns it.  */
70 void
71 threadedge_initialize_values (void)
72 {
73   gcc_assert (!ssa_name_values.exists ());
74   ssa_name_values.create (num_ssa_names);
75 }
76 
77 /* Free the per SSA_NAME value-handle array.  */
78 void
79 threadedge_finalize_values (void)
80 {
81   ssa_name_values.release ();
82 }
83 
84 /* Return TRUE if we may be able to thread an incoming edge into
85    BB to an outgoing edge from BB.  Return FALSE otherwise.  */
86 
87 bool
88 potentially_threadable_block (basic_block bb)
89 {
90   gimple_stmt_iterator gsi;
91 
92   /* Special case.  We can get blocks that are forwarders, but are
93      not optimized away because they forward from outside a loop
94      to the loop header.   We want to thread through them as we can
95      sometimes thread to the loop exit, which is obviously profitable.
96      the interesting case here is when the block has PHIs.  */
97   if (gsi_end_p (gsi_start_nondebug_bb (bb))
98       && !gsi_end_p (gsi_start_phis (bb)))
99     return true;
100 
101   /* If BB has a single successor or a single predecessor, then
102      there is no threading opportunity.  */
103   if (single_succ_p (bb) || single_pred_p (bb))
104     return false;
105 
106   /* If BB does not end with a conditional, switch or computed goto,
107      then there is no threading opportunity.  */
108   gsi = gsi_last_bb (bb);
109   if (gsi_end_p (gsi)
110       || ! gsi_stmt (gsi)
111       || (gimple_code (gsi_stmt (gsi)) != GIMPLE_COND
112 	  && gimple_code (gsi_stmt (gsi)) != GIMPLE_GOTO
113 	  && gimple_code (gsi_stmt (gsi)) != GIMPLE_SWITCH))
114     return false;
115 
116   return true;
117 }
118 
119 /* Record temporary equivalences created by PHIs at the target of the
120    edge E.  Record unwind information for the equivalences into
121    CONST_AND_COPIES and EVRP_RANGE_DATA.
122 
123    If a PHI which prevents threading is encountered, then return FALSE
124    indicating we should not thread this edge, else return TRUE.  */
125 
126 static bool
127 record_temporary_equivalences_from_phis (edge e,
128     const_and_copies *const_and_copies,
129     evrp_range_analyzer *evrp_range_analyzer)
130 {
131   gphi_iterator gsi;
132 
133   /* Each PHI creates a temporary equivalence, record them.
134      These are context sensitive equivalences and will be removed
135      later.  */
136   for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
137     {
138       gphi *phi = gsi.phi ();
139       tree src = PHI_ARG_DEF_FROM_EDGE (phi, e);
140       tree dst = gimple_phi_result (phi);
141 
142       /* If the desired argument is not the same as this PHI's result
143 	 and it is set by a PHI in E->dest, then we can not thread
144 	 through E->dest.  */
145       if (src != dst
146 	  && TREE_CODE (src) == SSA_NAME
147 	  && gimple_code (SSA_NAME_DEF_STMT (src)) == GIMPLE_PHI
148 	  && gimple_bb (SSA_NAME_DEF_STMT (src)) == e->dest)
149 	return false;
150 
151       /* We consider any non-virtual PHI as a statement since it
152 	 count result in a constant assignment or copy operation.  */
153       if (!virtual_operand_p (dst))
154 	stmt_count++;
155 
156       const_and_copies->record_const_or_copy (dst, src);
157 
158       /* Also update the value range associated with DST, using
159 	 the range from SRC.
160 
161 	 Note that even if SRC is a constant we need to set a suitable
162 	 output range so that VR_UNDEFINED ranges do not leak through.  */
163       if (evrp_range_analyzer)
164 	{
165 	  /* Get an empty new VR we can pass to update_value_range and save
166 	     away in the VR stack.  */
167 	  vr_values *vr_values = evrp_range_analyzer->get_vr_values ();
168 	  value_range *new_vr = vr_values->allocate_value_range ();
169 	  memset (new_vr, 0, sizeof (value_range));
170 
171 	  /* There are three cases to consider:
172 
173 	       First if SRC is an SSA_NAME, then we can copy the value
174 	       range from SRC into NEW_VR.
175 
176 	       Second if SRC is an INTEGER_CST, then we can just wet
177 	       NEW_VR to a singleton range.
178 
179 	       Otherwise set NEW_VR to varying.  This may be overly
180 	       conservative.  */
181 	  if (TREE_CODE (src) == SSA_NAME)
182 	    copy_value_range (new_vr, vr_values->get_value_range (src));
183 	  else if (TREE_CODE (src) == INTEGER_CST)
184 	    set_value_range_to_value (new_vr, src,  NULL);
185 	  else
186 	    set_value_range_to_varying (new_vr);
187 
188 	  /* This is a temporary range for DST, so push it.  */
189 	  evrp_range_analyzer->push_value_range (dst, new_vr);
190 	}
191     }
192   return true;
193 }
194 
195 /* Valueize hook for gimple_fold_stmt_to_constant_1.  */
196 
197 static tree
198 threadedge_valueize (tree t)
199 {
200   if (TREE_CODE (t) == SSA_NAME)
201     {
202       tree tem = SSA_NAME_VALUE (t);
203       if (tem)
204 	return tem;
205     }
206   return t;
207 }
208 
209 /* Try to simplify each statement in E->dest, ultimately leading to
210    a simplification of the COND_EXPR at the end of E->dest.
211 
212    Record unwind information for temporary equivalences onto STACK.
213 
214    Use SIMPLIFY (a pointer to a callback function) to further simplify
215    statements using pass specific information.
216 
217    We might consider marking just those statements which ultimately
218    feed the COND_EXPR.  It's not clear if the overhead of bookkeeping
219    would be recovered by trying to simplify fewer statements.
220 
221    If we are able to simplify a statement into the form
222    SSA_NAME = (SSA_NAME | gimple invariant), then we can record
223    a context sensitive equivalence which may help us simplify
224    later statements in E->dest.  */
225 
226 static gimple *
227 record_temporary_equivalences_from_stmts_at_dest (edge e,
228     const_and_copies *const_and_copies,
229     avail_exprs_stack *avail_exprs_stack,
230     evrp_range_analyzer *evrp_range_analyzer,
231     pfn_simplify simplify)
232 {
233   gimple *stmt = NULL;
234   gimple_stmt_iterator gsi;
235   int max_stmt_count;
236 
237   max_stmt_count = PARAM_VALUE (PARAM_MAX_JUMP_THREAD_DUPLICATION_STMTS);
238 
239   /* Walk through each statement in the block recording equivalences
240      we discover.  Note any equivalences we discover are context
241      sensitive (ie, are dependent on traversing E) and must be unwound
242      when we're finished processing E.  */
243   for (gsi = gsi_start_bb (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
244     {
245       tree cached_lhs = NULL;
246 
247       stmt = gsi_stmt (gsi);
248 
249       /* Ignore empty statements and labels.  */
250       if (gimple_code (stmt) == GIMPLE_NOP
251 	  || gimple_code (stmt) == GIMPLE_LABEL
252 	  || is_gimple_debug (stmt))
253 	continue;
254 
255       /* If the statement has volatile operands, then we assume we
256 	 can not thread through this block.  This is overly
257 	 conservative in some ways.  */
258       if (gimple_code (stmt) == GIMPLE_ASM
259 	  && gimple_asm_volatile_p (as_a <gasm *> (stmt)))
260 	return NULL;
261 
262       /* If the statement is a unique builtin, we can not thread
263 	 through here.  */
264       if (gimple_code (stmt) == GIMPLE_CALL
265 	  && gimple_call_internal_p (stmt)
266 	  && gimple_call_internal_unique_p (stmt))
267 	return NULL;
268 
269       /* If duplicating this block is going to cause too much code
270 	 expansion, then do not thread through this block.  */
271       stmt_count++;
272       if (stmt_count > max_stmt_count)
273 	{
274 	  /* If any of the stmts in the PATH's dests are going to be
275 	     killed due to threading, grow the max count
276 	     accordingly.  */
277 	  if (max_stmt_count
278 	      == PARAM_VALUE (PARAM_MAX_JUMP_THREAD_DUPLICATION_STMTS))
279 	    {
280 	      max_stmt_count += estimate_threading_killed_stmts (e->dest);
281 	      if (dump_file)
282 		fprintf (dump_file, "threading bb %i up to %i stmts\n",
283 			 e->dest->index, max_stmt_count);
284 	    }
285 	  /* If we're still past the limit, we're done.  */
286 	  if (stmt_count > max_stmt_count)
287 	    return NULL;
288 	}
289 
290       /* These are temporary ranges, do nto reflect them back into
291 	 the global range data.  */
292       if (evrp_range_analyzer)
293 	evrp_range_analyzer->record_ranges_from_stmt (stmt, true);
294 
295       /* If this is not a statement that sets an SSA_NAME to a new
296 	 value, then do not try to simplify this statement as it will
297 	 not simplify in any way that is helpful for jump threading.  */
298       if ((gimple_code (stmt) != GIMPLE_ASSIGN
299            || TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
300           && (gimple_code (stmt) != GIMPLE_CALL
301               || gimple_call_lhs (stmt) == NULL_TREE
302               || TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME))
303 	continue;
304 
305       /* The result of __builtin_object_size depends on all the arguments
306 	 of a phi node. Temporarily using only one edge produces invalid
307 	 results. For example
308 
309 	 if (x < 6)
310 	   goto l;
311 	 else
312 	   goto l;
313 
314 	 l:
315 	 r = PHI <&w[2].a[1](2), &a.a[6](3)>
316 	 __builtin_object_size (r, 0)
317 
318 	 The result of __builtin_object_size is defined to be the maximum of
319 	 remaining bytes. If we use only one edge on the phi, the result will
320 	 change to be the remaining bytes for the corresponding phi argument.
321 
322 	 Similarly for __builtin_constant_p:
323 
324 	 r = PHI <1(2), 2(3)>
325 	 __builtin_constant_p (r)
326 
327 	 Both PHI arguments are constant, but x ? 1 : 2 is still not
328 	 constant.  */
329 
330       if (is_gimple_call (stmt))
331 	{
332 	  tree fndecl = gimple_call_fndecl (stmt);
333 	  if (fndecl
334 	      && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_OBJECT_SIZE
335 		  || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P))
336 	    continue;
337 	}
338 
339       /* At this point we have a statement which assigns an RHS to an
340 	 SSA_VAR on the LHS.  We want to try and simplify this statement
341 	 to expose more context sensitive equivalences which in turn may
342 	 allow us to simplify the condition at the end of the loop.
343 
344 	 Handle simple copy operations as well as implied copies from
345 	 ASSERT_EXPRs.  */
346       if (gimple_assign_single_p (stmt)
347           && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
348 	cached_lhs = gimple_assign_rhs1 (stmt);
349       else if (gimple_assign_single_p (stmt)
350                && TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR)
351 	cached_lhs = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
352       else
353 	{
354 	  /* A statement that is not a trivial copy or ASSERT_EXPR.
355 	     Try to fold the new expression.  Inserting the
356 	     expression into the hash table is unlikely to help.  */
357 	  /* ???  The DOM callback below can be changed to setting
358 	     the mprts_hook around the call to thread_across_edge,
359 	     avoiding the use substitution.  The VRP hook should be
360 	     changed to properly valueize operands itself using
361 	     SSA_NAME_VALUE in addition to its own lattice.  */
362 	  cached_lhs = gimple_fold_stmt_to_constant_1 (stmt,
363 						       threadedge_valueize);
364           if (NUM_SSA_OPERANDS (stmt, SSA_OP_ALL_USES) != 0
365 	      && (!cached_lhs
366                   || (TREE_CODE (cached_lhs) != SSA_NAME
367                       && !is_gimple_min_invariant (cached_lhs))))
368 	    {
369 	      /* We're going to temporarily copy propagate the operands
370 		 and see if that allows us to simplify this statement.  */
371 	      tree *copy;
372 	      ssa_op_iter iter;
373 	      use_operand_p use_p;
374 	      unsigned int num, i = 0;
375 
376 	      num = NUM_SSA_OPERANDS (stmt, SSA_OP_ALL_USES);
377 	      copy = XALLOCAVEC (tree, num);
378 
379 	      /* Make a copy of the uses & vuses into USES_COPY, then cprop into
380 		 the operands.  */
381 	      FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
382 		{
383 		  tree tmp = NULL;
384 		  tree use = USE_FROM_PTR (use_p);
385 
386 		  copy[i++] = use;
387 		  if (TREE_CODE (use) == SSA_NAME)
388 		    tmp = SSA_NAME_VALUE (use);
389 		  if (tmp)
390 		    SET_USE (use_p, tmp);
391 		}
392 
393 	      cached_lhs = (*simplify) (stmt, stmt, avail_exprs_stack, e->src);
394 
395 	      /* Restore the statement's original uses/defs.  */
396 	      i = 0;
397 	      FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
398 		SET_USE (use_p, copy[i++]);
399 	    }
400 	}
401 
402       /* Record the context sensitive equivalence if we were able
403 	 to simplify this statement.  */
404       if (cached_lhs
405 	  && (TREE_CODE (cached_lhs) == SSA_NAME
406 	      || is_gimple_min_invariant (cached_lhs)))
407 	const_and_copies->record_const_or_copy (gimple_get_lhs (stmt),
408 						cached_lhs);
409     }
410   return stmt;
411 }
412 
413 static tree simplify_control_stmt_condition_1 (edge, gimple *,
414 					       class avail_exprs_stack *,
415 					       tree, enum tree_code, tree,
416 					       gcond *, pfn_simplify,
417 					       unsigned);
418 
419 /* Simplify the control statement at the end of the block E->dest.
420 
421    To avoid allocating memory unnecessarily, a scratch GIMPLE_COND
422    is available to use/clobber in DUMMY_COND.
423 
424    Use SIMPLIFY (a pointer to a callback function) to further simplify
425    a condition using pass specific information.
426 
427    Return the simplified condition or NULL if simplification could
428    not be performed.  When simplifying a GIMPLE_SWITCH, we may return
429    the CASE_LABEL_EXPR that will be taken.
430 
431    The available expression table is referenced via AVAIL_EXPRS_STACK.  */
432 
433 static tree
434 simplify_control_stmt_condition (edge e,
435 				 gimple *stmt,
436 				 class avail_exprs_stack *avail_exprs_stack,
437 				 gcond *dummy_cond,
438 				 pfn_simplify simplify)
439 {
440   tree cond, cached_lhs;
441   enum gimple_code code = gimple_code (stmt);
442 
443   /* For comparisons, we have to update both operands, then try
444      to simplify the comparison.  */
445   if (code == GIMPLE_COND)
446     {
447       tree op0, op1;
448       enum tree_code cond_code;
449 
450       op0 = gimple_cond_lhs (stmt);
451       op1 = gimple_cond_rhs (stmt);
452       cond_code = gimple_cond_code (stmt);
453 
454       /* Get the current value of both operands.  */
455       if (TREE_CODE (op0) == SSA_NAME)
456 	{
457 	  for (int i = 0; i < 2; i++)
458 	    {
459 	      if (TREE_CODE (op0) == SSA_NAME
460 		  && SSA_NAME_VALUE (op0))
461 		op0 = SSA_NAME_VALUE (op0);
462 	      else
463 		break;
464 	    }
465 	}
466 
467       if (TREE_CODE (op1) == SSA_NAME)
468 	{
469 	  for (int i = 0; i < 2; i++)
470 	    {
471 	      if (TREE_CODE (op1) == SSA_NAME
472 		  && SSA_NAME_VALUE (op1))
473 		op1 = SSA_NAME_VALUE (op1);
474 	      else
475 		break;
476 	    }
477 	}
478 
479       const unsigned recursion_limit = 4;
480 
481       cached_lhs
482 	= simplify_control_stmt_condition_1 (e, stmt, avail_exprs_stack,
483 					     op0, cond_code, op1,
484 					     dummy_cond, simplify,
485 					     recursion_limit);
486 
487       /* If we were testing an integer/pointer against a constant, then
488 	 we can use the FSM code to trace the value of the SSA_NAME.  If
489 	 a value is found, then the condition will collapse to a constant.
490 
491 	 Return the SSA_NAME we want to trace back rather than the full
492 	 expression and give the FSM threader a chance to find its value.  */
493       if (cached_lhs == NULL)
494 	{
495 	  /* Recover the original operands.  They may have been simplified
496 	     using context sensitive equivalences.  Those context sensitive
497 	     equivalences may not be valid on paths found by the FSM optimizer.  */
498 	  tree op0 = gimple_cond_lhs (stmt);
499 	  tree op1 = gimple_cond_rhs (stmt);
500 
501 	  if ((INTEGRAL_TYPE_P (TREE_TYPE (op0))
502 	       || POINTER_TYPE_P (TREE_TYPE (op0)))
503 	      && TREE_CODE (op0) == SSA_NAME
504 	      && TREE_CODE (op1) == INTEGER_CST)
505 	    return op0;
506 	}
507 
508       return cached_lhs;
509     }
510 
511   if (code == GIMPLE_SWITCH)
512     cond = gimple_switch_index (as_a <gswitch *> (stmt));
513   else if (code == GIMPLE_GOTO)
514     cond = gimple_goto_dest (stmt);
515   else
516     gcc_unreachable ();
517 
518   /* We can have conditionals which just test the state of a variable
519      rather than use a relational operator.  These are simpler to handle.  */
520   if (TREE_CODE (cond) == SSA_NAME)
521     {
522       tree original_lhs = cond;
523       cached_lhs = cond;
524 
525       /* Get the variable's current value from the equivalence chains.
526 
527 	 It is possible to get loops in the SSA_NAME_VALUE chains
528 	 (consider threading the backedge of a loop where we have
529 	 a loop invariant SSA_NAME used in the condition).  */
530       if (cached_lhs)
531 	{
532 	  for (int i = 0; i < 2; i++)
533 	    {
534 	      if (TREE_CODE (cached_lhs) == SSA_NAME
535 		  && SSA_NAME_VALUE (cached_lhs))
536 		cached_lhs = SSA_NAME_VALUE (cached_lhs);
537 	      else
538 		break;
539 	    }
540 	}
541 
542       /* If we haven't simplified to an invariant yet, then use the
543 	 pass specific callback to try and simplify it further.  */
544       if (cached_lhs && ! is_gimple_min_invariant (cached_lhs))
545 	{
546 	  if (code == GIMPLE_SWITCH)
547 	    {
548 	      /* Replace the index operand of the GIMPLE_SWITCH with any LHS
549 		 we found before handing off to VRP.  If simplification is
550 	         possible, the simplified value will be a CASE_LABEL_EXPR of
551 		 the label that is proven to be taken.  */
552 	      gswitch *dummy_switch = as_a<gswitch *> (gimple_copy (stmt));
553 	      gimple_switch_set_index (dummy_switch, cached_lhs);
554 	      cached_lhs = (*simplify) (dummy_switch, stmt,
555 					avail_exprs_stack, e->src);
556 	      ggc_free (dummy_switch);
557 	    }
558 	  else
559 	    cached_lhs = (*simplify) (stmt, stmt, avail_exprs_stack, e->src);
560 	}
561 
562       /* We couldn't find an invariant.  But, callers of this
563 	 function may be able to do something useful with the
564 	 unmodified destination.  */
565       if (!cached_lhs)
566 	cached_lhs = original_lhs;
567     }
568   else
569     cached_lhs = NULL;
570 
571   return cached_lhs;
572 }
573 
574 /* Recursive helper for simplify_control_stmt_condition.  */
575 
576 static tree
577 simplify_control_stmt_condition_1 (edge e,
578 				   gimple *stmt,
579 				   class avail_exprs_stack *avail_exprs_stack,
580 				   tree op0,
581 				   enum tree_code cond_code,
582 				   tree op1,
583 				   gcond *dummy_cond,
584 				   pfn_simplify simplify,
585 				   unsigned limit)
586 {
587   if (limit == 0)
588     return NULL_TREE;
589 
590   /* We may need to canonicalize the comparison.  For
591      example, op0 might be a constant while op1 is an
592      SSA_NAME.  Failure to canonicalize will cause us to
593      miss threading opportunities.  */
594   if (tree_swap_operands_p (op0, op1))
595     {
596       cond_code = swap_tree_comparison (cond_code);
597       std::swap (op0, op1);
598     }
599 
600   /* If the condition has the form (A & B) CMP 0 or (A | B) CMP 0 then
601      recurse into the LHS to see if there is a dominating ASSERT_EXPR
602      of A or of B that makes this condition always true or always false
603      along the edge E.  */
604   if ((cond_code == EQ_EXPR || cond_code == NE_EXPR)
605       && TREE_CODE (op0) == SSA_NAME
606       && integer_zerop (op1))
607     {
608       gimple *def_stmt = SSA_NAME_DEF_STMT (op0);
609       if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
610         ;
611       else if (gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR
612 	       || gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR)
613 	{
614 	  enum tree_code rhs_code = gimple_assign_rhs_code (def_stmt);
615 	  const tree rhs1 = gimple_assign_rhs1 (def_stmt);
616 	  const tree rhs2 = gimple_assign_rhs2 (def_stmt);
617 
618 	  /* Is A != 0 ?  */
619 	  const tree res1
620 	    = simplify_control_stmt_condition_1 (e, def_stmt, avail_exprs_stack,
621 						 rhs1, NE_EXPR, op1,
622 						 dummy_cond, simplify,
623 						 limit - 1);
624 	  if (res1 == NULL_TREE)
625 	    ;
626 	  else if (rhs_code == BIT_AND_EXPR && integer_zerop (res1))
627 	    {
628 	      /* If A == 0 then (A & B) != 0 is always false.  */
629 	      if (cond_code == NE_EXPR)
630 	        return boolean_false_node;
631 	      /* If A == 0 then (A & B) == 0 is always true.  */
632 	      if (cond_code == EQ_EXPR)
633 		return boolean_true_node;
634 	    }
635 	  else if (rhs_code == BIT_IOR_EXPR && integer_nonzerop (res1))
636 	    {
637 	      /* If A != 0 then (A | B) != 0 is always true.  */
638 	      if (cond_code == NE_EXPR)
639 		return boolean_true_node;
640 	      /* If A != 0 then (A | B) == 0 is always false.  */
641 	      if (cond_code == EQ_EXPR)
642 		return boolean_false_node;
643 	    }
644 
645 	  /* Is B != 0 ?  */
646 	  const tree res2
647 	    = simplify_control_stmt_condition_1 (e, def_stmt, avail_exprs_stack,
648 						 rhs2, NE_EXPR, op1,
649 						 dummy_cond, simplify,
650 						 limit - 1);
651 	  if (res2 == NULL_TREE)
652 	    ;
653 	  else if (rhs_code == BIT_AND_EXPR && integer_zerop (res2))
654 	    {
655 	      /* If B == 0 then (A & B) != 0 is always false.  */
656 	      if (cond_code == NE_EXPR)
657 	        return boolean_false_node;
658 	      /* If B == 0 then (A & B) == 0 is always true.  */
659 	      if (cond_code == EQ_EXPR)
660 		return boolean_true_node;
661 	    }
662 	  else if (rhs_code == BIT_IOR_EXPR && integer_nonzerop (res2))
663 	    {
664 	      /* If B != 0 then (A | B) != 0 is always true.  */
665 	      if (cond_code == NE_EXPR)
666 		return boolean_true_node;
667 	      /* If B != 0 then (A | B) == 0 is always false.  */
668 	      if (cond_code == EQ_EXPR)
669 		return boolean_false_node;
670 	    }
671 
672 	  if (res1 != NULL_TREE && res2 != NULL_TREE)
673 	    {
674 	      if (rhs_code == BIT_AND_EXPR
675 		  && TYPE_PRECISION (TREE_TYPE (op0)) == 1
676 		  && integer_nonzerop (res1)
677 		  && integer_nonzerop (res2))
678 		{
679 		  /* If A != 0 and B != 0 then (bool)(A & B) != 0 is true.  */
680 		  if (cond_code == NE_EXPR)
681 		    return boolean_true_node;
682 		  /* If A != 0 and B != 0 then (bool)(A & B) == 0 is false.  */
683 		  if (cond_code == EQ_EXPR)
684 		    return boolean_false_node;
685 		}
686 
687 	      if (rhs_code == BIT_IOR_EXPR
688 		  && integer_zerop (res1)
689 		  && integer_zerop (res2))
690 		{
691 		  /* If A == 0 and B == 0 then (A | B) != 0 is false.  */
692 		  if (cond_code == NE_EXPR)
693 		    return boolean_false_node;
694 		  /* If A == 0 and B == 0 then (A | B) == 0 is true.  */
695 		  if (cond_code == EQ_EXPR)
696 		    return boolean_true_node;
697 		}
698 	    }
699 	}
700       /* Handle (A CMP B) CMP 0.  */
701       else if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt))
702 	       == tcc_comparison)
703 	{
704 	  tree rhs1 = gimple_assign_rhs1 (def_stmt);
705 	  tree rhs2 = gimple_assign_rhs2 (def_stmt);
706 
707 	  tree_code new_cond = gimple_assign_rhs_code (def_stmt);
708 	  if (cond_code == EQ_EXPR)
709 	    new_cond = invert_tree_comparison (new_cond, false);
710 
711 	  tree res
712 	    = simplify_control_stmt_condition_1 (e, def_stmt, avail_exprs_stack,
713 						 rhs1, new_cond, rhs2,
714 						 dummy_cond, simplify,
715 						 limit - 1);
716 	  if (res != NULL_TREE && is_gimple_min_invariant (res))
717 	    return res;
718 	}
719     }
720 
721   gimple_cond_set_code (dummy_cond, cond_code);
722   gimple_cond_set_lhs (dummy_cond, op0);
723   gimple_cond_set_rhs (dummy_cond, op1);
724 
725   /* We absolutely do not care about any type conversions
726      we only care about a zero/nonzero value.  */
727   fold_defer_overflow_warnings ();
728 
729   tree res = fold_binary (cond_code, boolean_type_node, op0, op1);
730   if (res)
731     while (CONVERT_EXPR_P (res))
732       res = TREE_OPERAND (res, 0);
733 
734   fold_undefer_overflow_warnings ((res && is_gimple_min_invariant (res)),
735 				  stmt, WARN_STRICT_OVERFLOW_CONDITIONAL);
736 
737   /* If we have not simplified the condition down to an invariant,
738      then use the pass specific callback to simplify the condition.  */
739   if (!res
740       || !is_gimple_min_invariant (res))
741     res = (*simplify) (dummy_cond, stmt, avail_exprs_stack, e->src);
742 
743   return res;
744 }
745 
746 /* Copy debug stmts from DEST's chain of single predecessors up to
747    SRC, so that we don't lose the bindings as PHI nodes are introduced
748    when DEST gains new predecessors.  */
749 void
750 propagate_threaded_block_debug_into (basic_block dest, basic_block src)
751 {
752   if (!MAY_HAVE_DEBUG_BIND_STMTS)
753     return;
754 
755   if (!single_pred_p (dest))
756     return;
757 
758   gcc_checking_assert (dest != src);
759 
760   gimple_stmt_iterator gsi = gsi_after_labels (dest);
761   int i = 0;
762   const int alloc_count = 16; // ?? Should this be a PARAM?
763 
764   /* Estimate the number of debug vars overridden in the beginning of
765      DEST, to tell how many we're going to need to begin with.  */
766   for (gimple_stmt_iterator si = gsi;
767        i * 4 <= alloc_count * 3 && !gsi_end_p (si); gsi_next (&si))
768     {
769       gimple *stmt = gsi_stmt (si);
770       if (!is_gimple_debug (stmt))
771 	break;
772       if (gimple_debug_nonbind_marker_p (stmt))
773 	continue;
774       i++;
775     }
776 
777   auto_vec<tree, alloc_count> fewvars;
778   hash_set<tree> *vars = NULL;
779 
780   /* If we're already starting with 3/4 of alloc_count, go for a
781      hash_set, otherwise start with an unordered stack-allocated
782      VEC.  */
783   if (i * 4 > alloc_count * 3)
784     vars = new hash_set<tree>;
785 
786   /* Now go through the initial debug stmts in DEST again, this time
787      actually inserting in VARS or FEWVARS.  Don't bother checking for
788      duplicates in FEWVARS.  */
789   for (gimple_stmt_iterator si = gsi; !gsi_end_p (si); gsi_next (&si))
790     {
791       gimple *stmt = gsi_stmt (si);
792       if (!is_gimple_debug (stmt))
793 	break;
794 
795       tree var;
796 
797       if (gimple_debug_bind_p (stmt))
798 	var = gimple_debug_bind_get_var (stmt);
799       else if (gimple_debug_source_bind_p (stmt))
800 	var = gimple_debug_source_bind_get_var (stmt);
801       else if (gimple_debug_nonbind_marker_p (stmt))
802 	continue;
803       else
804 	gcc_unreachable ();
805 
806       if (vars)
807 	vars->add (var);
808       else
809 	fewvars.quick_push (var);
810     }
811 
812   basic_block bb = dest;
813 
814   do
815     {
816       bb = single_pred (bb);
817       for (gimple_stmt_iterator si = gsi_last_bb (bb);
818 	   !gsi_end_p (si); gsi_prev (&si))
819 	{
820 	  gimple *stmt = gsi_stmt (si);
821 	  if (!is_gimple_debug (stmt))
822 	    continue;
823 
824 	  tree var;
825 
826 	  if (gimple_debug_bind_p (stmt))
827 	    var = gimple_debug_bind_get_var (stmt);
828 	  else if (gimple_debug_source_bind_p (stmt))
829 	    var = gimple_debug_source_bind_get_var (stmt);
830 	  else if (gimple_debug_nonbind_marker_p (stmt))
831 	    continue;
832 	  else
833 	    gcc_unreachable ();
834 
835 	  /* Discard debug bind overlaps.  Unlike stmts from src,
836 	     copied into a new block that will precede BB, debug bind
837 	     stmts in bypassed BBs may actually be discarded if
838 	     they're overwritten by subsequent debug bind stmts.  We
839 	     want to copy binds for all modified variables, so that we
840 	     retain a bind to the shared def if there is one, or to a
841 	     newly introduced PHI node if there is one.  Our bind will
842 	     end up reset if the value is dead, but that implies the
843 	     variable couldn't have survived, so it's fine.  We are
844 	     not actually running the code that performed the binds at
845 	     this point, we're just adding binds so that they survive
846 	     the new confluence, so markers should not be copied.  */
847 	  if (vars && vars->add (var))
848 	    continue;
849 	  else if (!vars)
850 	    {
851 	      int i = fewvars.length ();
852 	      while (i--)
853 		if (fewvars[i] == var)
854 		  break;
855 	      if (i >= 0)
856 		continue;
857 	      else if (fewvars.length () < (unsigned) alloc_count)
858 		fewvars.quick_push (var);
859 	      else
860 		{
861 		  vars = new hash_set<tree>;
862 		  for (i = 0; i < alloc_count; i++)
863 		    vars->add (fewvars[i]);
864 		  fewvars.release ();
865 		  vars->add (var);
866 		}
867 	    }
868 
869 	  stmt = gimple_copy (stmt);
870 	  /* ??? Should we drop the location of the copy to denote
871 	     they're artificial bindings?  */
872 	  gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
873 	}
874     }
875   while (bb != src && single_pred_p (bb));
876 
877   if (vars)
878     delete vars;
879   else if (fewvars.exists ())
880     fewvars.release ();
881 }
882 
883 /* See if TAKEN_EDGE->dest is a threadable block with no side effecs (ie, it
884    need not be duplicated as part of the CFG/SSA updating process).
885 
886    If it is threadable, add it to PATH and VISITED and recurse, ultimately
887    returning TRUE from the toplevel call.   Otherwise do nothing and
888    return false.
889 
890    DUMMY_COND, SIMPLIFY are used to try and simplify the condition at the
891    end of TAKEN_EDGE->dest.
892 
893    The available expression table is referenced via AVAIL_EXPRS_STACK.  */
894 
895 static bool
896 thread_around_empty_blocks (edge taken_edge,
897 			    gcond *dummy_cond,
898 			    class avail_exprs_stack *avail_exprs_stack,
899 			    pfn_simplify simplify,
900 			    bitmap visited,
901 			    vec<jump_thread_edge *> *path)
902 {
903   basic_block bb = taken_edge->dest;
904   gimple_stmt_iterator gsi;
905   gimple *stmt;
906   tree cond;
907 
908   /* The key property of these blocks is that they need not be duplicated
909      when threading.  Thus they can not have visible side effects such
910      as PHI nodes.  */
911   if (!gsi_end_p (gsi_start_phis (bb)))
912     return false;
913 
914   /* Skip over DEBUG statements at the start of the block.  */
915   gsi = gsi_start_nondebug_bb (bb);
916 
917   /* If the block has no statements, but does have a single successor, then
918      it's just a forwarding block and we can thread through it trivially.
919 
920      However, note that just threading through empty blocks with single
921      successors is not inherently profitable.  For the jump thread to
922      be profitable, we must avoid a runtime conditional.
923 
924      By taking the return value from the recursive call, we get the
925      desired effect of returning TRUE when we found a profitable jump
926      threading opportunity and FALSE otherwise.
927 
928      This is particularly important when this routine is called after
929      processing a joiner block.  Returning TRUE too aggressively in
930      that case results in pointless duplication of the joiner block.  */
931   if (gsi_end_p (gsi))
932     {
933       if (single_succ_p (bb))
934 	{
935 	  taken_edge = single_succ_edge (bb);
936 
937 	  if ((taken_edge->flags & EDGE_DFS_BACK) != 0)
938 	    return false;
939 
940 	  if (!bitmap_bit_p (visited, taken_edge->dest->index))
941 	    {
942 	      jump_thread_edge *x
943 		= new jump_thread_edge (taken_edge, EDGE_NO_COPY_SRC_BLOCK);
944 	      path->safe_push (x);
945 	      bitmap_set_bit (visited, taken_edge->dest->index);
946 	      return thread_around_empty_blocks (taken_edge,
947 						 dummy_cond,
948 						 avail_exprs_stack,
949 						 simplify,
950 						 visited,
951 						 path);
952 	    }
953 	}
954 
955       /* We have a block with no statements, but multiple successors?  */
956       return false;
957     }
958 
959   /* The only real statements this block can have are a control
960      flow altering statement.  Anything else stops the thread.  */
961   stmt = gsi_stmt (gsi);
962   if (gimple_code (stmt) != GIMPLE_COND
963       && gimple_code (stmt) != GIMPLE_GOTO
964       && gimple_code (stmt) != GIMPLE_SWITCH)
965     return false;
966 
967   /* Extract and simplify the condition.  */
968   cond = simplify_control_stmt_condition (taken_edge, stmt,
969 					  avail_exprs_stack, dummy_cond,
970 					  simplify);
971 
972   /* If the condition can be statically computed and we have not already
973      visited the destination edge, then add the taken edge to our thread
974      path.  */
975   if (cond != NULL_TREE
976       && (is_gimple_min_invariant (cond)
977 	  || TREE_CODE (cond) == CASE_LABEL_EXPR))
978     {
979       if (TREE_CODE (cond) == CASE_LABEL_EXPR)
980 	taken_edge = find_edge (bb, label_to_block (CASE_LABEL (cond)));
981       else
982 	taken_edge = find_taken_edge (bb, cond);
983 
984       if ((taken_edge->flags & EDGE_DFS_BACK) != 0)
985 	return false;
986 
987       if (bitmap_bit_p (visited, taken_edge->dest->index))
988 	return false;
989       bitmap_set_bit (visited, taken_edge->dest->index);
990 
991       jump_thread_edge *x
992 	= new jump_thread_edge (taken_edge, EDGE_NO_COPY_SRC_BLOCK);
993       path->safe_push (x);
994 
995       thread_around_empty_blocks (taken_edge,
996 				  dummy_cond,
997 				  avail_exprs_stack,
998 				  simplify,
999 				  visited,
1000 				  path);
1001       return true;
1002     }
1003 
1004   return false;
1005 }
1006 
1007 /* We are exiting E->src, see if E->dest ends with a conditional
1008    jump which has a known value when reached via E.
1009 
1010    E->dest can have arbitrary side effects which, if threading is
1011    successful, will be maintained.
1012 
1013    Special care is necessary if E is a back edge in the CFG as we
1014    may have already recorded equivalences for E->dest into our
1015    various tables, including the result of the conditional at
1016    the end of E->dest.  Threading opportunities are severely
1017    limited in that case to avoid short-circuiting the loop
1018    incorrectly.
1019 
1020    DUMMY_COND is a shared cond_expr used by condition simplification as scratch,
1021    to avoid allocating memory.
1022 
1023    STACK is used to undo temporary equivalences created during the walk of
1024    E->dest.
1025 
1026    SIMPLIFY is a pass-specific function used to simplify statements.
1027 
1028    Our caller is responsible for restoring the state of the expression
1029    and const_and_copies stacks.
1030 
1031    Positive return value is success.  Zero return value is failure, but
1032    the block can still be duplicated as a joiner in a jump thread path,
1033    negative indicates the block should not be duplicated and thus is not
1034    suitable for a joiner in a jump threading path.  */
1035 
1036 static int
1037 thread_through_normal_block (edge e,
1038 			     gcond *dummy_cond,
1039 			     const_and_copies *const_and_copies,
1040 			     avail_exprs_stack *avail_exprs_stack,
1041 			     evrp_range_analyzer *evrp_range_analyzer,
1042 			     pfn_simplify simplify,
1043 			     vec<jump_thread_edge *> *path,
1044 			     bitmap visited)
1045 {
1046   /* We want to record any equivalences created by traversing E.  */
1047   record_temporary_equivalences (e, const_and_copies, avail_exprs_stack);
1048 
1049   /* PHIs create temporary equivalences.
1050      Note that if we found a PHI that made the block non-threadable, then
1051      we need to bubble that up to our caller in the same manner we do
1052      when we prematurely stop processing statements below.  */
1053   if (!record_temporary_equivalences_from_phis (e, const_and_copies,
1054 					        evrp_range_analyzer))
1055     return -1;
1056 
1057   /* Now walk each statement recording any context sensitive
1058      temporary equivalences we can detect.  */
1059   gimple *stmt
1060     = record_temporary_equivalences_from_stmts_at_dest (e, const_and_copies,
1061 							avail_exprs_stack,
1062 							evrp_range_analyzer,
1063 							simplify);
1064 
1065   /* There's two reasons STMT might be null, and distinguishing
1066      between them is important.
1067 
1068      First the block may not have had any statements.  For example, it
1069      might have some PHIs and unconditionally transfer control elsewhere.
1070      Such blocks are suitable for jump threading, particularly as a
1071      joiner block.
1072 
1073      The second reason would be if we did not process all the statements
1074      in the block (because there were too many to make duplicating the
1075      block profitable.   If we did not look at all the statements, then
1076      we may not have invalidated everything needing invalidation.  Thus
1077      we must signal to our caller that this block is not suitable for
1078      use as a joiner in a threading path.  */
1079   if (!stmt)
1080     {
1081       /* First case.  The statement simply doesn't have any instructions, but
1082 	 does have PHIs.  */
1083       if (gsi_end_p (gsi_start_nondebug_bb (e->dest))
1084 	  && !gsi_end_p (gsi_start_phis (e->dest)))
1085 	return 0;
1086 
1087       /* Second case.  */
1088       return -1;
1089     }
1090 
1091   /* If we stopped at a COND_EXPR or SWITCH_EXPR, see if we know which arm
1092      will be taken.  */
1093   if (gimple_code (stmt) == GIMPLE_COND
1094       || gimple_code (stmt) == GIMPLE_GOTO
1095       || gimple_code (stmt) == GIMPLE_SWITCH)
1096     {
1097       tree cond;
1098 
1099       /* Extract and simplify the condition.  */
1100       cond = simplify_control_stmt_condition (e, stmt, avail_exprs_stack,
1101 					      dummy_cond, simplify);
1102 
1103       if (!cond)
1104 	return 0;
1105 
1106       if (is_gimple_min_invariant (cond)
1107 	  || TREE_CODE (cond) == CASE_LABEL_EXPR)
1108 	{
1109 	  edge taken_edge;
1110 	  if (TREE_CODE (cond) == CASE_LABEL_EXPR)
1111 	    taken_edge = find_edge (e->dest,
1112 				    label_to_block (CASE_LABEL (cond)));
1113 	  else
1114 	    taken_edge = find_taken_edge (e->dest, cond);
1115 
1116 	  basic_block dest = (taken_edge ? taken_edge->dest : NULL);
1117 
1118 	  /* DEST could be NULL for a computed jump to an absolute
1119 	     address.  */
1120 	  if (dest == NULL
1121 	      || dest == e->dest
1122 	      || (taken_edge->flags & EDGE_DFS_BACK) != 0
1123 	      || bitmap_bit_p (visited, dest->index))
1124 	    return 0;
1125 
1126 	  /* Only push the EDGE_START_JUMP_THREAD marker if this is
1127 	     first edge on the path.  */
1128 	  if (path->length () == 0)
1129 	    {
1130               jump_thread_edge *x
1131 	        = new jump_thread_edge (e, EDGE_START_JUMP_THREAD);
1132 	      path->safe_push (x);
1133 	    }
1134 
1135 	  jump_thread_edge *x
1136 	    = new jump_thread_edge (taken_edge, EDGE_COPY_SRC_BLOCK);
1137 	  path->safe_push (x);
1138 
1139 	  /* See if we can thread through DEST as well, this helps capture
1140 	     secondary effects of threading without having to re-run DOM or
1141 	     VRP.
1142 
1143 	     We don't want to thread back to a block we have already
1144  	     visited.  This may be overly conservative.  */
1145 	  bitmap_set_bit (visited, dest->index);
1146 	  bitmap_set_bit (visited, e->dest->index);
1147 	  thread_around_empty_blocks (taken_edge,
1148 				      dummy_cond,
1149 				      avail_exprs_stack,
1150 				      simplify,
1151 				      visited,
1152 				      path);
1153 	  return 1;
1154 	}
1155     }
1156   return 0;
1157 }
1158 
1159 /* We are exiting E->src, see if E->dest ends with a conditional
1160    jump which has a known value when reached via E.
1161 
1162    DUMMY_COND is a shared cond_expr used by condition simplification as scratch,
1163    to avoid allocating memory.
1164 
1165    CONST_AND_COPIES is used to undo temporary equivalences created during the
1166    walk of E->dest.
1167 
1168    The available expression table is referenced vai AVAIL_EXPRS_STACK.
1169 
1170    SIMPLIFY is a pass-specific function used to simplify statements.  */
1171 
1172 static void
1173 thread_across_edge (gcond *dummy_cond,
1174 		    edge e,
1175 		    class const_and_copies *const_and_copies,
1176 		    class avail_exprs_stack *avail_exprs_stack,
1177 		    class evrp_range_analyzer *evrp_range_analyzer,
1178 		    pfn_simplify simplify)
1179 {
1180   bitmap visited = BITMAP_ALLOC (NULL);
1181 
1182   const_and_copies->push_marker ();
1183   avail_exprs_stack->push_marker ();
1184   if (evrp_range_analyzer)
1185     evrp_range_analyzer->push_marker ();
1186 
1187   stmt_count = 0;
1188 
1189   vec<jump_thread_edge *> *path = new vec<jump_thread_edge *> ();
1190   bitmap_clear (visited);
1191   bitmap_set_bit (visited, e->src->index);
1192   bitmap_set_bit (visited, e->dest->index);
1193 
1194   int threaded;
1195   if ((e->flags & EDGE_DFS_BACK) == 0)
1196     threaded = thread_through_normal_block (e, dummy_cond,
1197 					    const_and_copies,
1198 					    avail_exprs_stack,
1199 					    evrp_range_analyzer,
1200 					    simplify, path,
1201 					    visited);
1202   else
1203     threaded = 0;
1204 
1205   if (threaded > 0)
1206     {
1207       propagate_threaded_block_debug_into (path->last ()->e->dest,
1208 					   e->dest);
1209       const_and_copies->pop_to_marker ();
1210       avail_exprs_stack->pop_to_marker ();
1211       if (evrp_range_analyzer)
1212 	evrp_range_analyzer->pop_to_marker ();
1213       BITMAP_FREE (visited);
1214       register_jump_thread (path);
1215       return;
1216     }
1217   else
1218     {
1219       /* Negative and zero return values indicate no threading was possible,
1220 	 thus there should be no edges on the thread path and no need to walk
1221 	 through the vector entries.  */
1222       gcc_assert (path->length () == 0);
1223       path->release ();
1224       delete path;
1225 
1226       /* A negative status indicates the target block was deemed too big to
1227 	 duplicate.  Just quit now rather than trying to use the block as
1228 	 a joiner in a jump threading path.
1229 
1230 	 This prevents unnecessary code growth, but more importantly if we
1231 	 do not look at all the statements in the block, then we may have
1232 	 missed some invalidations if we had traversed a backedge!  */
1233       if (threaded < 0)
1234 	{
1235 	  BITMAP_FREE (visited);
1236 	  const_and_copies->pop_to_marker ();
1237           avail_exprs_stack->pop_to_marker ();
1238 	  if (evrp_range_analyzer)
1239 	    evrp_range_analyzer->pop_to_marker ();
1240 	  return;
1241 	}
1242     }
1243 
1244  /* We were unable to determine what out edge from E->dest is taken.  However,
1245     we might still be able to thread through successors of E->dest.  This
1246     often occurs when E->dest is a joiner block which then fans back out
1247     based on redundant tests.
1248 
1249     If so, we'll copy E->dest and redirect the appropriate predecessor to
1250     the copy.  Within the copy of E->dest, we'll thread one or more edges
1251     to points deeper in the CFG.
1252 
1253     This is a stopgap until we have a more structured approach to path
1254     isolation.  */
1255   {
1256     edge taken_edge;
1257     edge_iterator ei;
1258     bool found;
1259 
1260     /* If E->dest has abnormal outgoing edges, then there's no guarantee
1261        we can safely redirect any of the edges.  Just punt those cases.  */
1262     FOR_EACH_EDGE (taken_edge, ei, e->dest->succs)
1263       if (taken_edge->flags & EDGE_ABNORMAL)
1264 	{
1265 	  const_and_copies->pop_to_marker ();
1266           avail_exprs_stack->pop_to_marker ();
1267 	  if (evrp_range_analyzer)
1268 	    evrp_range_analyzer->pop_to_marker ();
1269 	  BITMAP_FREE (visited);
1270 	  return;
1271 	}
1272 
1273     /* Look at each successor of E->dest to see if we can thread through it.  */
1274     FOR_EACH_EDGE (taken_edge, ei, e->dest->succs)
1275       {
1276 	if ((e->flags & EDGE_DFS_BACK) != 0
1277 	    || (taken_edge->flags & EDGE_DFS_BACK) != 0)
1278 	  continue;
1279 
1280 	/* Push a fresh marker so we can unwind the equivalences created
1281 	   for each of E->dest's successors.  */
1282 	const_and_copies->push_marker ();
1283 	avail_exprs_stack->push_marker ();
1284 	if (evrp_range_analyzer)
1285 	  evrp_range_analyzer->push_marker ();
1286 
1287 	/* Avoid threading to any block we have already visited.  */
1288 	bitmap_clear (visited);
1289 	bitmap_set_bit (visited, e->src->index);
1290 	bitmap_set_bit (visited, e->dest->index);
1291 	bitmap_set_bit (visited, taken_edge->dest->index);
1292         vec<jump_thread_edge *> *path = new vec<jump_thread_edge *> ();
1293 
1294 	/* Record whether or not we were able to thread through a successor
1295 	   of E->dest.  */
1296         jump_thread_edge *x = new jump_thread_edge (e, EDGE_START_JUMP_THREAD);
1297 	path->safe_push (x);
1298 
1299         x = new jump_thread_edge (taken_edge, EDGE_COPY_SRC_JOINER_BLOCK);
1300 	path->safe_push (x);
1301 	found = false;
1302 	found = thread_around_empty_blocks (taken_edge,
1303 					    dummy_cond,
1304 					    avail_exprs_stack,
1305 					    simplify,
1306 					    visited,
1307 					    path);
1308 
1309 	if (!found)
1310 	  found = thread_through_normal_block (path->last ()->e, dummy_cond,
1311 					       const_and_copies,
1312 					       avail_exprs_stack,
1313 					       evrp_range_analyzer,
1314 					       simplify, path,
1315 					       visited) > 0;
1316 
1317 	/* If we were able to thread through a successor of E->dest, then
1318 	   record the jump threading opportunity.  */
1319 	if (found)
1320 	  {
1321 	    propagate_threaded_block_debug_into (path->last ()->e->dest,
1322 						 taken_edge->dest);
1323 	    register_jump_thread (path);
1324 	  }
1325 	else
1326 	  delete_jump_thread_path (path);
1327 
1328 	/* And unwind the equivalence table.  */
1329 	if (evrp_range_analyzer)
1330 	  evrp_range_analyzer->pop_to_marker ();
1331 	avail_exprs_stack->pop_to_marker ();
1332 	const_and_copies->pop_to_marker ();
1333       }
1334     BITMAP_FREE (visited);
1335   }
1336 
1337   if (evrp_range_analyzer)
1338     evrp_range_analyzer->pop_to_marker ();
1339   const_and_copies->pop_to_marker ();
1340   avail_exprs_stack->pop_to_marker ();
1341 }
1342 
1343 /* Examine the outgoing edges from BB and conditionally
1344    try to thread them.
1345 
1346    DUMMY_COND is a shared cond_expr used by condition simplification as scratch,
1347    to avoid allocating memory.
1348 
1349    CONST_AND_COPIES is used to undo temporary equivalences created during the
1350    walk of E->dest.
1351 
1352    The available expression table is referenced vai AVAIL_EXPRS_STACK.
1353 
1354    SIMPLIFY is a pass-specific function used to simplify statements.  */
1355 
1356 void
1357 thread_outgoing_edges (basic_block bb, gcond *dummy_cond,
1358 		       class const_and_copies *const_and_copies,
1359 		       class avail_exprs_stack *avail_exprs_stack,
1360 		       class evrp_range_analyzer *evrp_range_analyzer,
1361 		       tree (*simplify) (gimple *, gimple *,
1362 					 class avail_exprs_stack *,
1363 					 basic_block))
1364 {
1365   int flags = (EDGE_IGNORE | EDGE_COMPLEX | EDGE_ABNORMAL);
1366   gimple *last;
1367 
1368   /* If we have an outgoing edge to a block with multiple incoming and
1369      outgoing edges, then we may be able to thread the edge, i.e., we
1370      may be able to statically determine which of the outgoing edges
1371      will be traversed when the incoming edge from BB is traversed.  */
1372   if (single_succ_p (bb)
1373       && (single_succ_edge (bb)->flags & flags) == 0
1374       && potentially_threadable_block (single_succ (bb)))
1375     {
1376       thread_across_edge (dummy_cond, single_succ_edge (bb),
1377 			  const_and_copies, avail_exprs_stack,
1378 			  evrp_range_analyzer, simplify);
1379     }
1380   else if ((last = last_stmt (bb))
1381 	   && gimple_code (last) == GIMPLE_COND
1382 	   && EDGE_COUNT (bb->succs) == 2
1383 	   && (EDGE_SUCC (bb, 0)->flags & flags) == 0
1384 	   && (EDGE_SUCC (bb, 1)->flags & flags) == 0)
1385     {
1386       edge true_edge, false_edge;
1387 
1388       extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1389 
1390       /* Only try to thread the edge if it reaches a target block with
1391 	 more than one predecessor and more than one successor.  */
1392       if (potentially_threadable_block (true_edge->dest))
1393 	thread_across_edge (dummy_cond, true_edge,
1394 			    const_and_copies, avail_exprs_stack,
1395 			    evrp_range_analyzer, simplify);
1396 
1397       /* Similarly for the ELSE arm.  */
1398       if (potentially_threadable_block (false_edge->dest))
1399 	thread_across_edge (dummy_cond, false_edge,
1400 			    const_and_copies, avail_exprs_stack,
1401 			    evrp_range_analyzer, simplify);
1402     }
1403 }
1404