1 /* Routines for discovering and unpropagating edge equivalences.
2    Copyright (C) 2005-2018 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10 
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 GNU General Public License for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "gimple.h"
26 #include "tree-pass.h"
27 #include "ssa.h"
28 #include "fold-const.h"
29 #include "cfganal.h"
30 #include "gimple-iterator.h"
31 #include "tree-cfg.h"
32 #include "domwalk.h"
33 #include "tree-hash-traits.h"
34 #include "tree-ssa-live.h"
35 #include "tree-ssa-coalesce.h"
36 
37 /* The basic structure describing an equivalency created by traversing
38    an edge.  Traversing the edge effectively means that we can assume
39    that we've seen an assignment LHS = RHS.  */
40 struct edge_equivalency
41 {
42   tree rhs;
43   tree lhs;
44 };
45 
46 /* This routine finds and records edge equivalences for every edge
47    in the CFG.
48 
49    When complete, each edge that creates an equivalency will have an
50    EDGE_EQUIVALENCY structure hanging off the edge's AUX field.
51    The caller is responsible for freeing the AUX fields.  */
52 
53 static void
54 associate_equivalences_with_edges (void)
55 {
56   basic_block bb;
57 
58   /* Walk over each block.  If the block ends with a control statement,
59      then it might create a useful equivalence.  */
60   FOR_EACH_BB_FN (bb, cfun)
61     {
62       gimple_stmt_iterator gsi = gsi_last_bb (bb);
63       gimple *stmt;
64 
65       /* If the block does not end with a COND_EXPR or SWITCH_EXPR
66 	 then there is nothing to do.  */
67       if (gsi_end_p (gsi))
68 	continue;
69 
70       stmt = gsi_stmt (gsi);
71 
72       if (!stmt)
73 	continue;
74 
75       /* A COND_EXPR may create an equivalency in a variety of different
76 	 ways.  */
77       if (gimple_code (stmt) == GIMPLE_COND)
78 	{
79 	  edge true_edge;
80 	  edge false_edge;
81 	  struct edge_equivalency *equivalency;
82 	  enum tree_code code = gimple_cond_code (stmt);
83 
84 	  extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
85 
86 	  /* Equality tests may create one or two equivalences.  */
87 	  if (code == EQ_EXPR || code == NE_EXPR)
88 	    {
89 	      tree op0 = gimple_cond_lhs (stmt);
90 	      tree op1 = gimple_cond_rhs (stmt);
91 
92 	      /* Special case comparing booleans against a constant as we
93 		 know the value of OP0 on both arms of the branch.  i.e., we
94 		 can record an equivalence for OP0 rather than COND.  */
95 	      if (TREE_CODE (op0) == SSA_NAME
96 		  && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0)
97 		  && ssa_name_has_boolean_range (op0)
98 		  && is_gimple_min_invariant (op1)
99 		  && (integer_zerop (op1) || integer_onep (op1)))
100 		{
101 		  tree true_val = constant_boolean_node (true, TREE_TYPE (op0));
102 		  tree false_val = constant_boolean_node (false,
103 							  TREE_TYPE (op0));
104 		  if (code == EQ_EXPR)
105 		    {
106 		      equivalency = XNEW (struct edge_equivalency);
107 		      equivalency->lhs = op0;
108 		      equivalency->rhs = (integer_zerop (op1)
109 					  ? false_val
110 					  : true_val);
111 		      true_edge->aux = equivalency;
112 
113 		      equivalency = XNEW (struct edge_equivalency);
114 		      equivalency->lhs = op0;
115 		      equivalency->rhs = (integer_zerop (op1)
116 					  ? true_val
117 					  : false_val);
118 		      false_edge->aux = equivalency;
119 		    }
120 		  else
121 		    {
122 		      equivalency = XNEW (struct edge_equivalency);
123 		      equivalency->lhs = op0;
124 		      equivalency->rhs = (integer_zerop (op1)
125 					  ? true_val
126 					  : false_val);
127 		      true_edge->aux = equivalency;
128 
129 		      equivalency = XNEW (struct edge_equivalency);
130 		      equivalency->lhs = op0;
131 		      equivalency->rhs = (integer_zerop (op1)
132 					  ? false_val
133 					  : true_val);
134 		      false_edge->aux = equivalency;
135 		    }
136 		}
137 
138 	      else if (TREE_CODE (op0) == SSA_NAME
139 		       && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0)
140 		       && (is_gimple_min_invariant (op1)
141 			   || (TREE_CODE (op1) == SSA_NAME
142 			       && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op1))))
143 		{
144 		  /* For IEEE, -0.0 == 0.0, so we don't necessarily know
145 		     the sign of a variable compared against zero.  If
146 		     we're honoring signed zeros, then we cannot record
147 		     this value unless we know that the value is nonzero.  */
148 		  if (HONOR_SIGNED_ZEROS (op0)
149 		      && (TREE_CODE (op1) != REAL_CST
150 			  || real_equal (&dconst0, &TREE_REAL_CST (op1))))
151 		    continue;
152 
153 		  equivalency = XNEW (struct edge_equivalency);
154 		  equivalency->lhs = op0;
155 		  equivalency->rhs = op1;
156 		  if (code == EQ_EXPR)
157 		    true_edge->aux = equivalency;
158 		  else
159 		    false_edge->aux = equivalency;
160 
161 		}
162 	    }
163 
164 	  /* ??? TRUTH_NOT_EXPR can create an equivalence too.  */
165 	}
166 
167       /* For a SWITCH_EXPR, a case label which represents a single
168 	 value and which is the only case label which reaches the
169 	 target block creates an equivalence.  */
170       else if (gimple_code (stmt) == GIMPLE_SWITCH)
171 	{
172 	  gswitch *switch_stmt = as_a <gswitch *> (stmt);
173 	  tree cond = gimple_switch_index (switch_stmt);
174 
175 	  if (TREE_CODE (cond) == SSA_NAME
176 	      && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (cond))
177 	    {
178 	      int i, n_labels = gimple_switch_num_labels (switch_stmt);
179 	      tree *info = XCNEWVEC (tree, last_basic_block_for_fn (cfun));
180 
181 	      /* Walk over the case label vector.  Record blocks
182 		 which are reached by a single case label which represents
183 		 a single value.  */
184 	      for (i = 0; i < n_labels; i++)
185 		{
186 		  tree label = gimple_switch_label (switch_stmt, i);
187 		  basic_block bb = label_to_block (CASE_LABEL (label));
188 
189 		  if (CASE_HIGH (label)
190 		      || !CASE_LOW (label)
191 		      || info[bb->index])
192 		    info[bb->index] = error_mark_node;
193 		  else
194 		    info[bb->index] = label;
195 		}
196 
197 	      /* Now walk over the blocks to determine which ones were
198 		 marked as being reached by a useful case label.  */
199 	      for (i = 0; i < n_basic_blocks_for_fn (cfun); i++)
200 		{
201 		  tree node = info[i];
202 
203 		  if (node != NULL
204 		      && node != error_mark_node)
205 		    {
206 		      tree x = fold_convert (TREE_TYPE (cond), CASE_LOW (node));
207 		      struct edge_equivalency *equivalency;
208 
209 		      /* Record an equivalency on the edge from BB to basic
210 			 block I.  */
211 		      equivalency = XNEW (struct edge_equivalency);
212 		      equivalency->rhs = x;
213 		      equivalency->lhs = cond;
214 		      find_edge (bb, BASIC_BLOCK_FOR_FN (cfun, i))->aux =
215 			equivalency;
216 		    }
217 		}
218 	      free (info);
219 	    }
220 	}
221 
222     }
223 }
224 
225 
226 /* Translating out of SSA sometimes requires inserting copies and
227    constant initializations on edges to eliminate PHI nodes.
228 
229    In some cases those copies and constant initializations are
230    redundant because the target already has the value on the
231    RHS of the assignment.
232 
233    We previously tried to catch these cases after translating
234    out of SSA form.  However, that code often missed cases.  Worse
235    yet, the cases it missed were also often missed by the RTL
236    optimizers.  Thus the resulting code had redundant instructions.
237 
238    This pass attempts to detect these situations before translating
239    out of SSA form.
240 
241    The key concept that this pass is built upon is that these
242    redundant copies and constant initializations often occur
243    due to constant/copy propagating equivalences resulting from
244    COND_EXPRs and SWITCH_EXPRs.
245 
246    We want to do those propagations as they can sometimes allow
247    the SSA optimizers to do a better job.  However, in the cases
248    where such propagations do not result in further optimization,
249    we would like to "undo" the propagation to avoid the redundant
250    copies and constant initializations.
251 
252    This pass works by first associating equivalences with edges in
253    the CFG.  For example, the edge leading from a SWITCH_EXPR to
254    its associated CASE_LABEL will have an equivalency between
255    SWITCH_COND and the value in the case label.
256 
257    Once we have found the edge equivalences, we proceed to walk
258    the CFG in dominator order.  As we traverse edges we record
259    equivalences associated with those edges we traverse.
260 
261    When we encounter a PHI node, we walk its arguments to see if we
262    have an equivalence for the PHI argument.  If so, then we replace
263    the argument.
264 
265    Equivalences are looked up based on their value (think of it as
266    the RHS of an assignment).   A value may be an SSA_NAME or an
267    invariant.  We may have several SSA_NAMEs with the same value,
268    so with each value we have a list of SSA_NAMEs that have the
269    same value.  */
270 
271 
272 /* Main structure for recording equivalences into our hash table.  */
273 struct equiv_hash_elt
274 {
275   /* The value/key of this entry.  */
276   tree value;
277 
278   /* List of SSA_NAMEs which have the same value/key.  */
279   vec<tree> equivalences;
280 };
281 
282 /* Global hash table implementing a mapping from invariant values
283    to a list of SSA_NAMEs which have the same value.  We might be
284    able to reuse tree-vn for this code.  */
285 static hash_map<tree, auto_vec<tree> > *val_ssa_equiv;
286 
287 static void uncprop_into_successor_phis (basic_block);
288 
289 /* Remove the most recently recorded equivalency for VALUE.  */
290 
291 static void
292 remove_equivalence (tree value)
293 {
294     val_ssa_equiv->get (value)->pop ();
295 }
296 
297 /* Record EQUIVALENCE = VALUE into our hash table.  */
298 
299 static void
300 record_equiv (tree value, tree equivalence)
301 {
302   val_ssa_equiv->get_or_insert (value).safe_push (equivalence);
303 }
304 
305 class uncprop_dom_walker : public dom_walker
306 {
307 public:
308   uncprop_dom_walker (cdi_direction direction) : dom_walker (direction) {}
309 
310   virtual edge before_dom_children (basic_block);
311   virtual void after_dom_children (basic_block);
312 
313 private:
314 
315   /* As we enter each block we record the value for any edge equivalency
316      leading to this block.  If no such edge equivalency exists, then we
317      record NULL.  These equivalences are live until we leave the dominator
318      subtree rooted at the block where we record the equivalency.  */
319   auto_vec<tree, 2> m_equiv_stack;
320 };
321 
322 /* We have finished processing the dominator children of BB, perform
323    any finalization actions in preparation for leaving this node in
324    the dominator tree.  */
325 
326 void
327 uncprop_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
328 {
329   /* Pop the topmost value off the equiv stack.  */
330   tree value = m_equiv_stack.pop ();
331 
332   /* If that value was non-null, then pop the topmost equivalency off
333      its equivalency stack.  */
334   if (value != NULL)
335     remove_equivalence (value);
336 }
337 
338 /* Unpropagate values from PHI nodes in successor blocks of BB.  */
339 
340 static void
341 uncprop_into_successor_phis (basic_block bb)
342 {
343   edge e;
344   edge_iterator ei;
345 
346   /* For each successor edge, first temporarily record any equivalence
347      on that edge.  Then unpropagate values in any PHI nodes at the
348      destination of the edge.  Then remove the temporary equivalence.  */
349   FOR_EACH_EDGE (e, ei, bb->succs)
350     {
351       gimple_seq phis = phi_nodes (e->dest);
352       gimple_stmt_iterator gsi;
353 
354       /* If there are no PHI nodes in this destination, then there is
355 	 no sense in recording any equivalences.  */
356       if (gimple_seq_empty_p (phis))
357 	continue;
358 
359       /* Record any equivalency associated with E.  */
360       if (e->aux)
361 	{
362 	  struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
363 	  record_equiv (equiv->rhs, equiv->lhs);
364 	}
365 
366       /* Walk over the PHI nodes, unpropagating values.  */
367       for (gsi = gsi_start (phis) ; !gsi_end_p (gsi); gsi_next (&gsi))
368 	{
369 	  gimple *phi = gsi_stmt (gsi);
370 	  tree arg = PHI_ARG_DEF (phi, e->dest_idx);
371 	  tree res = PHI_RESULT (phi);
372 
373 	  /* If the argument is not an invariant and can be potentially
374 	     coalesced with the result, then there's no point in
375 	     un-propagating the argument.  */
376 	  if (!is_gimple_min_invariant (arg)
377 	      && gimple_can_coalesce_p (arg, res))
378 	    continue;
379 
380 	  /* Lookup this argument's value in the hash table.  */
381 	  vec<tree> *equivalences = val_ssa_equiv->get (arg);
382 	  if (equivalences)
383 	    {
384 	      /* Walk every equivalence with the same value.  If we find
385 		 one that can potentially coalesce with the PHI rsult,
386 		 then replace the value in the argument with its equivalent
387 		 SSA_NAME.  Use the most recent equivalence as hopefully
388 		 that results in shortest lifetimes.  */
389 	      for (int j = equivalences->length () - 1; j >= 0; j--)
390 		{
391 		  tree equiv = (*equivalences)[j];
392 
393 		  if (gimple_can_coalesce_p (equiv, res))
394 		    {
395 		      SET_PHI_ARG_DEF (phi, e->dest_idx, equiv);
396 		      break;
397 		    }
398 		}
399 	    }
400 	}
401 
402       /* If we had an equivalence associated with this edge, remove it.  */
403       if (e->aux)
404 	{
405 	  struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
406 	  remove_equivalence (equiv->rhs);
407 	}
408     }
409 }
410 
411 edge
412 uncprop_dom_walker::before_dom_children (basic_block bb)
413 {
414   basic_block parent;
415   bool recorded = false;
416 
417   /* If this block is dominated by a single incoming edge and that edge
418      has an equivalency, then record the equivalency and push the
419      VALUE onto EQUIV_STACK.  Else push a NULL entry on EQUIV_STACK.  */
420   parent = get_immediate_dominator (CDI_DOMINATORS, bb);
421   if (parent)
422     {
423       edge e = single_pred_edge_ignoring_loop_edges (bb, false);
424 
425       if (e && e->src == parent && e->aux)
426 	{
427 	  struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
428 
429 	  record_equiv (equiv->rhs, equiv->lhs);
430 	  m_equiv_stack.safe_push (equiv->rhs);
431 	  recorded = true;
432 	}
433     }
434 
435   if (!recorded)
436     m_equiv_stack.safe_push (NULL_TREE);
437 
438   uncprop_into_successor_phis (bb);
439   return NULL;
440 }
441 
442 namespace {
443 
444 const pass_data pass_data_uncprop =
445 {
446   GIMPLE_PASS, /* type */
447   "uncprop", /* name */
448   OPTGROUP_NONE, /* optinfo_flags */
449   TV_TREE_SSA_UNCPROP, /* tv_id */
450   ( PROP_cfg | PROP_ssa ), /* properties_required */
451   0, /* properties_provided */
452   0, /* properties_destroyed */
453   0, /* todo_flags_start */
454   0, /* todo_flags_finish */
455 };
456 
457 class pass_uncprop : public gimple_opt_pass
458 {
459 public:
460   pass_uncprop (gcc::context *ctxt)
461     : gimple_opt_pass (pass_data_uncprop, ctxt)
462   {}
463 
464   /* opt_pass methods: */
465   opt_pass * clone () { return new pass_uncprop (m_ctxt); }
466   virtual bool gate (function *) { return flag_tree_dom != 0; }
467   virtual unsigned int execute (function *);
468 
469 }; // class pass_uncprop
470 
471 unsigned int
472 pass_uncprop::execute (function *fun)
473 {
474   basic_block bb;
475 
476   associate_equivalences_with_edges ();
477 
478   /* Create our global data structures.  */
479   val_ssa_equiv = new hash_map<tree, auto_vec<tree> > (1024);
480 
481   /* We're going to do a dominator walk, so ensure that we have
482      dominance information.  */
483   calculate_dominance_info (CDI_DOMINATORS);
484 
485   /* Recursively walk the dominator tree undoing unprofitable
486      constant/copy propagations.  */
487   uncprop_dom_walker (CDI_DOMINATORS).walk (fun->cfg->x_entry_block_ptr);
488 
489   /* we just need to empty elements out of the hash table, and cleanup the
490     AUX field on the edges.  */
491   delete val_ssa_equiv;
492   val_ssa_equiv = NULL;
493   FOR_EACH_BB_FN (bb, fun)
494     {
495       edge e;
496       edge_iterator ei;
497 
498       FOR_EACH_EDGE (e, ei, bb->succs)
499 	{
500 	  if (e->aux)
501 	    {
502 	      free (e->aux);
503 	      e->aux = NULL;
504 	    }
505 	}
506     }
507   return 0;
508 }
509 
510 } // anon namespace
511 
512 gimple_opt_pass *
513 make_pass_uncprop (gcc::context *ctxt)
514 {
515   return new pass_uncprop (ctxt);
516 }
517