xref: /dragonfly/contrib/gcc-8.0/gcc/tree.c (revision 7bcb6caf)
1 /* Language-independent node constructors for parse phase of GNU compiler.
2    Copyright (C) 1987-2018 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 /* This file contains the low level primitives for operating on tree nodes,
21    including allocation, list operations, interning of identifiers,
22    construction of data type nodes and statement nodes,
23    and construction of type conversion nodes.  It also contains
24    tables index by tree code that describe how to take apart
25    nodes of that code.
26 
27    It is intended to be language-independent but can occasionally
28    calls language-dependent routines.  */
29 
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "backend.h"
34 #include "target.h"
35 #include "tree.h"
36 #include "gimple.h"
37 #include "tree-pass.h"
38 #include "ssa.h"
39 #include "cgraph.h"
40 #include "diagnostic.h"
41 #include "flags.h"
42 #include "alias.h"
43 #include "fold-const.h"
44 #include "stor-layout.h"
45 #include "calls.h"
46 #include "attribs.h"
47 #include "toplev.h" /* get_random_seed */
48 #include "output.h"
49 #include "common/common-target.h"
50 #include "langhooks.h"
51 #include "tree-inline.h"
52 #include "tree-iterator.h"
53 #include "internal-fn.h"
54 #include "gimple-iterator.h"
55 #include "gimplify.h"
56 #include "tree-dfa.h"
57 #include "params.h"
58 #include "langhooks-def.h"
59 #include "tree-diagnostic.h"
60 #include "except.h"
61 #include "builtins.h"
62 #include "print-tree.h"
63 #include "ipa-utils.h"
64 #include "selftest.h"
65 #include "stringpool.h"
66 #include "attribs.h"
67 #include "rtl.h"
68 #include "regs.h"
69 #include "tree-vector-builder.h"
70 
71 /* Tree code classes.  */
72 
73 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
74 #define END_OF_BASE_TREE_CODES tcc_exceptional,
75 
76 const enum tree_code_class tree_code_type[] = {
77 #include "all-tree.def"
78 };
79 
80 #undef DEFTREECODE
81 #undef END_OF_BASE_TREE_CODES
82 
83 /* Table indexed by tree code giving number of expression
84    operands beyond the fixed part of the node structure.
85    Not used for types or decls.  */
86 
87 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
88 #define END_OF_BASE_TREE_CODES 0,
89 
90 const unsigned char tree_code_length[] = {
91 #include "all-tree.def"
92 };
93 
94 #undef DEFTREECODE
95 #undef END_OF_BASE_TREE_CODES
96 
97 /* Names of tree components.
98    Used for printing out the tree and error messages.  */
99 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
100 #define END_OF_BASE_TREE_CODES "@dummy",
101 
102 static const char *const tree_code_name[] = {
103 #include "all-tree.def"
104 };
105 
106 #undef DEFTREECODE
107 #undef END_OF_BASE_TREE_CODES
108 
109 /* Each tree code class has an associated string representation.
110    These must correspond to the tree_code_class entries.  */
111 
112 const char *const tree_code_class_strings[] =
113 {
114   "exceptional",
115   "constant",
116   "type",
117   "declaration",
118   "reference",
119   "comparison",
120   "unary",
121   "binary",
122   "statement",
123   "vl_exp",
124   "expression"
125 };
126 
127 /* obstack.[ch] explicitly declined to prototype this.  */
128 extern int _obstack_allocated_p (struct obstack *h, void *obj);
129 
130 /* Statistics-gathering stuff.  */
131 
132 static uint64_t tree_code_counts[MAX_TREE_CODES];
133 uint64_t tree_node_counts[(int) all_kinds];
134 uint64_t tree_node_sizes[(int) all_kinds];
135 
136 /* Keep in sync with tree.h:enum tree_node_kind.  */
137 static const char * const tree_node_kind_names[] = {
138   "decls",
139   "types",
140   "blocks",
141   "stmts",
142   "refs",
143   "exprs",
144   "constants",
145   "identifiers",
146   "vecs",
147   "binfos",
148   "ssa names",
149   "constructors",
150   "random kinds",
151   "lang_decl kinds",
152   "lang_type kinds",
153   "omp clauses",
154 };
155 
156 /* Unique id for next decl created.  */
157 static GTY(()) int next_decl_uid;
158 /* Unique id for next type created.  */
159 static GTY(()) unsigned next_type_uid = 1;
160 /* Unique id for next debug decl created.  Use negative numbers,
161    to catch erroneous uses.  */
162 static GTY(()) int next_debug_decl_uid;
163 
164 /* Since we cannot rehash a type after it is in the table, we have to
165    keep the hash code.  */
166 
167 struct GTY((for_user)) type_hash {
168   unsigned long hash;
169   tree type;
170 };
171 
172 /* Initial size of the hash table (rounded to next prime).  */
173 #define TYPE_HASH_INITIAL_SIZE 1000
174 
175 struct type_cache_hasher : ggc_cache_ptr_hash<type_hash>
176 {
177   static hashval_t hash (type_hash *t) { return t->hash; }
178   static bool equal (type_hash *a, type_hash *b);
179 
180   static int
181   keep_cache_entry (type_hash *&t)
182   {
183     return ggc_marked_p (t->type);
184   }
185 };
186 
187 /* Now here is the hash table.  When recording a type, it is added to
188    the slot whose index is the hash code.  Note that the hash table is
189    used for several kinds of types (function types, array types and
190    array index range types, for now).  While all these live in the
191    same table, they are completely independent, and the hash code is
192    computed differently for each of these.  */
193 
194 static GTY ((cache)) hash_table<type_cache_hasher> *type_hash_table;
195 
196 /* Hash table and temporary node for larger integer const values.  */
197 static GTY (()) tree int_cst_node;
198 
199 struct int_cst_hasher : ggc_cache_ptr_hash<tree_node>
200 {
201   static hashval_t hash (tree t);
202   static bool equal (tree x, tree y);
203 };
204 
205 static GTY ((cache)) hash_table<int_cst_hasher> *int_cst_hash_table;
206 
207 /* Class and variable for making sure that there is a single POLY_INT_CST
208    for a given value.  */
209 struct poly_int_cst_hasher : ggc_cache_ptr_hash<tree_node>
210 {
211   typedef std::pair<tree, const poly_wide_int *> compare_type;
212   static hashval_t hash (tree t);
213   static bool equal (tree x, const compare_type &y);
214 };
215 
216 static GTY ((cache)) hash_table<poly_int_cst_hasher> *poly_int_cst_hash_table;
217 
218 /* Hash table for optimization flags and target option flags.  Use the same
219    hash table for both sets of options.  Nodes for building the current
220    optimization and target option nodes.  The assumption is most of the time
221    the options created will already be in the hash table, so we avoid
222    allocating and freeing up a node repeatably.  */
223 static GTY (()) tree cl_optimization_node;
224 static GTY (()) tree cl_target_option_node;
225 
226 struct cl_option_hasher : ggc_cache_ptr_hash<tree_node>
227 {
228   static hashval_t hash (tree t);
229   static bool equal (tree x, tree y);
230 };
231 
232 static GTY ((cache)) hash_table<cl_option_hasher> *cl_option_hash_table;
233 
234 /* General tree->tree mapping  structure for use in hash tables.  */
235 
236 
237 static GTY ((cache))
238      hash_table<tree_decl_map_cache_hasher> *debug_expr_for_decl;
239 
240 static GTY ((cache))
241      hash_table<tree_decl_map_cache_hasher> *value_expr_for_decl;
242 
243 struct tree_vec_map_cache_hasher : ggc_cache_ptr_hash<tree_vec_map>
244 {
245   static hashval_t hash (tree_vec_map *m) { return DECL_UID (m->base.from); }
246 
247   static bool
248   equal (tree_vec_map *a, tree_vec_map *b)
249   {
250     return a->base.from == b->base.from;
251   }
252 
253   static int
254   keep_cache_entry (tree_vec_map *&m)
255   {
256     return ggc_marked_p (m->base.from);
257   }
258 };
259 
260 static GTY ((cache))
261      hash_table<tree_vec_map_cache_hasher> *debug_args_for_decl;
262 
263 static void set_type_quals (tree, int);
264 static void print_type_hash_statistics (void);
265 static void print_debug_expr_statistics (void);
266 static void print_value_expr_statistics (void);
267 
268 tree global_trees[TI_MAX];
269 tree integer_types[itk_none];
270 
271 bool int_n_enabled_p[NUM_INT_N_ENTS];
272 struct int_n_trees_t int_n_trees [NUM_INT_N_ENTS];
273 
274 bool tree_contains_struct[MAX_TREE_CODES][64];
275 
276 /* Number of operands for each OpenMP clause.  */
277 unsigned const char omp_clause_num_ops[] =
278 {
279   0, /* OMP_CLAUSE_ERROR  */
280   1, /* OMP_CLAUSE_PRIVATE  */
281   1, /* OMP_CLAUSE_SHARED  */
282   1, /* OMP_CLAUSE_FIRSTPRIVATE  */
283   2, /* OMP_CLAUSE_LASTPRIVATE  */
284   5, /* OMP_CLAUSE_REDUCTION  */
285   1, /* OMP_CLAUSE_COPYIN  */
286   1, /* OMP_CLAUSE_COPYPRIVATE  */
287   3, /* OMP_CLAUSE_LINEAR  */
288   2, /* OMP_CLAUSE_ALIGNED  */
289   1, /* OMP_CLAUSE_DEPEND  */
290   1, /* OMP_CLAUSE_UNIFORM  */
291   1, /* OMP_CLAUSE_TO_DECLARE  */
292   1, /* OMP_CLAUSE_LINK  */
293   2, /* OMP_CLAUSE_FROM  */
294   2, /* OMP_CLAUSE_TO  */
295   2, /* OMP_CLAUSE_MAP  */
296   1, /* OMP_CLAUSE_USE_DEVICE_PTR  */
297   1, /* OMP_CLAUSE_IS_DEVICE_PTR  */
298   2, /* OMP_CLAUSE__CACHE_  */
299   2, /* OMP_CLAUSE_GANG  */
300   1, /* OMP_CLAUSE_ASYNC  */
301   1, /* OMP_CLAUSE_WAIT  */
302   0, /* OMP_CLAUSE_AUTO  */
303   0, /* OMP_CLAUSE_SEQ  */
304   1, /* OMP_CLAUSE__LOOPTEMP_  */
305   1, /* OMP_CLAUSE_IF  */
306   1, /* OMP_CLAUSE_NUM_THREADS  */
307   1, /* OMP_CLAUSE_SCHEDULE  */
308   0, /* OMP_CLAUSE_NOWAIT  */
309   1, /* OMP_CLAUSE_ORDERED  */
310   0, /* OMP_CLAUSE_DEFAULT  */
311   3, /* OMP_CLAUSE_COLLAPSE  */
312   0, /* OMP_CLAUSE_UNTIED   */
313   1, /* OMP_CLAUSE_FINAL  */
314   0, /* OMP_CLAUSE_MERGEABLE  */
315   1, /* OMP_CLAUSE_DEVICE  */
316   1, /* OMP_CLAUSE_DIST_SCHEDULE  */
317   0, /* OMP_CLAUSE_INBRANCH  */
318   0, /* OMP_CLAUSE_NOTINBRANCH  */
319   1, /* OMP_CLAUSE_NUM_TEAMS  */
320   1, /* OMP_CLAUSE_THREAD_LIMIT  */
321   0, /* OMP_CLAUSE_PROC_BIND  */
322   1, /* OMP_CLAUSE_SAFELEN  */
323   1, /* OMP_CLAUSE_SIMDLEN  */
324   0, /* OMP_CLAUSE_FOR  */
325   0, /* OMP_CLAUSE_PARALLEL  */
326   0, /* OMP_CLAUSE_SECTIONS  */
327   0, /* OMP_CLAUSE_TASKGROUP  */
328   1, /* OMP_CLAUSE_PRIORITY  */
329   1, /* OMP_CLAUSE_GRAINSIZE  */
330   1, /* OMP_CLAUSE_NUM_TASKS  */
331   0, /* OMP_CLAUSE_NOGROUP  */
332   0, /* OMP_CLAUSE_THREADS  */
333   0, /* OMP_CLAUSE_SIMD  */
334   1, /* OMP_CLAUSE_HINT  */
335   0, /* OMP_CLAUSE_DEFALTMAP  */
336   1, /* OMP_CLAUSE__SIMDUID_  */
337   0, /* OMP_CLAUSE__SIMT_  */
338   0, /* OMP_CLAUSE_INDEPENDENT  */
339   1, /* OMP_CLAUSE_WORKER  */
340   1, /* OMP_CLAUSE_VECTOR  */
341   1, /* OMP_CLAUSE_NUM_GANGS  */
342   1, /* OMP_CLAUSE_NUM_WORKERS  */
343   1, /* OMP_CLAUSE_VECTOR_LENGTH  */
344   3, /* OMP_CLAUSE_TILE  */
345   2, /* OMP_CLAUSE__GRIDDIM_  */
346 };
347 
348 const char * const omp_clause_code_name[] =
349 {
350   "error_clause",
351   "private",
352   "shared",
353   "firstprivate",
354   "lastprivate",
355   "reduction",
356   "copyin",
357   "copyprivate",
358   "linear",
359   "aligned",
360   "depend",
361   "uniform",
362   "to",
363   "link",
364   "from",
365   "to",
366   "map",
367   "use_device_ptr",
368   "is_device_ptr",
369   "_cache_",
370   "gang",
371   "async",
372   "wait",
373   "auto",
374   "seq",
375   "_looptemp_",
376   "if",
377   "num_threads",
378   "schedule",
379   "nowait",
380   "ordered",
381   "default",
382   "collapse",
383   "untied",
384   "final",
385   "mergeable",
386   "device",
387   "dist_schedule",
388   "inbranch",
389   "notinbranch",
390   "num_teams",
391   "thread_limit",
392   "proc_bind",
393   "safelen",
394   "simdlen",
395   "for",
396   "parallel",
397   "sections",
398   "taskgroup",
399   "priority",
400   "grainsize",
401   "num_tasks",
402   "nogroup",
403   "threads",
404   "simd",
405   "hint",
406   "defaultmap",
407   "_simduid_",
408   "_simt_",
409   "independent",
410   "worker",
411   "vector",
412   "num_gangs",
413   "num_workers",
414   "vector_length",
415   "tile",
416   "_griddim_"
417 };
418 
419 
420 /* Return the tree node structure used by tree code CODE.  */
421 
422 static inline enum tree_node_structure_enum
423 tree_node_structure_for_code (enum tree_code code)
424 {
425   switch (TREE_CODE_CLASS (code))
426     {
427     case tcc_declaration:
428       {
429 	switch (code)
430 	  {
431 	  case FIELD_DECL:
432 	    return TS_FIELD_DECL;
433 	  case PARM_DECL:
434 	    return TS_PARM_DECL;
435 	  case VAR_DECL:
436 	    return TS_VAR_DECL;
437 	  case LABEL_DECL:
438 	    return TS_LABEL_DECL;
439 	  case RESULT_DECL:
440 	    return TS_RESULT_DECL;
441 	  case DEBUG_EXPR_DECL:
442 	    return TS_DECL_WRTL;
443 	  case CONST_DECL:
444 	    return TS_CONST_DECL;
445 	  case TYPE_DECL:
446 	    return TS_TYPE_DECL;
447 	  case FUNCTION_DECL:
448 	    return TS_FUNCTION_DECL;
449 	  case TRANSLATION_UNIT_DECL:
450 	    return TS_TRANSLATION_UNIT_DECL;
451 	  default:
452 	    return TS_DECL_NON_COMMON;
453 	  }
454       }
455     case tcc_type:
456       return TS_TYPE_NON_COMMON;
457     case tcc_reference:
458     case tcc_comparison:
459     case tcc_unary:
460     case tcc_binary:
461     case tcc_expression:
462     case tcc_statement:
463     case tcc_vl_exp:
464       return TS_EXP;
465     default:  /* tcc_constant and tcc_exceptional */
466       break;
467     }
468   switch (code)
469     {
470       /* tcc_constant cases.  */
471     case VOID_CST:		return TS_TYPED;
472     case INTEGER_CST:		return TS_INT_CST;
473     case POLY_INT_CST:		return TS_POLY_INT_CST;
474     case REAL_CST:		return TS_REAL_CST;
475     case FIXED_CST:		return TS_FIXED_CST;
476     case COMPLEX_CST:		return TS_COMPLEX;
477     case VECTOR_CST:		return TS_VECTOR;
478     case STRING_CST:		return TS_STRING;
479       /* tcc_exceptional cases.  */
480     case ERROR_MARK:		return TS_COMMON;
481     case IDENTIFIER_NODE:	return TS_IDENTIFIER;
482     case TREE_LIST:		return TS_LIST;
483     case TREE_VEC:		return TS_VEC;
484     case SSA_NAME:		return TS_SSA_NAME;
485     case PLACEHOLDER_EXPR:	return TS_COMMON;
486     case STATEMENT_LIST:	return TS_STATEMENT_LIST;
487     case BLOCK:			return TS_BLOCK;
488     case CONSTRUCTOR:		return TS_CONSTRUCTOR;
489     case TREE_BINFO:		return TS_BINFO;
490     case OMP_CLAUSE:		return TS_OMP_CLAUSE;
491     case OPTIMIZATION_NODE:	return TS_OPTIMIZATION;
492     case TARGET_OPTION_NODE:	return TS_TARGET_OPTION;
493 
494     default:
495       gcc_unreachable ();
496     }
497 }
498 
499 
500 /* Initialize tree_contains_struct to describe the hierarchy of tree
501    nodes.  */
502 
503 static void
504 initialize_tree_contains_struct (void)
505 {
506   unsigned i;
507 
508   for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
509     {
510       enum tree_code code;
511       enum tree_node_structure_enum ts_code;
512 
513       code = (enum tree_code) i;
514       ts_code = tree_node_structure_for_code (code);
515 
516       /* Mark the TS structure itself.  */
517       tree_contains_struct[code][ts_code] = 1;
518 
519       /* Mark all the structures that TS is derived from.  */
520       switch (ts_code)
521 	{
522 	case TS_TYPED:
523 	case TS_BLOCK:
524 	case TS_OPTIMIZATION:
525 	case TS_TARGET_OPTION:
526 	  MARK_TS_BASE (code);
527 	  break;
528 
529 	case TS_COMMON:
530 	case TS_INT_CST:
531 	case TS_POLY_INT_CST:
532 	case TS_REAL_CST:
533 	case TS_FIXED_CST:
534 	case TS_VECTOR:
535 	case TS_STRING:
536 	case TS_COMPLEX:
537 	case TS_SSA_NAME:
538 	case TS_CONSTRUCTOR:
539 	case TS_EXP:
540 	case TS_STATEMENT_LIST:
541 	  MARK_TS_TYPED (code);
542 	  break;
543 
544 	case TS_IDENTIFIER:
545 	case TS_DECL_MINIMAL:
546 	case TS_TYPE_COMMON:
547 	case TS_LIST:
548 	case TS_VEC:
549 	case TS_BINFO:
550 	case TS_OMP_CLAUSE:
551 	  MARK_TS_COMMON (code);
552 	  break;
553 
554 	case TS_TYPE_WITH_LANG_SPECIFIC:
555 	  MARK_TS_TYPE_COMMON (code);
556 	  break;
557 
558 	case TS_TYPE_NON_COMMON:
559 	  MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
560 	  break;
561 
562 	case TS_DECL_COMMON:
563 	  MARK_TS_DECL_MINIMAL (code);
564 	  break;
565 
566 	case TS_DECL_WRTL:
567 	case TS_CONST_DECL:
568 	  MARK_TS_DECL_COMMON (code);
569 	  break;
570 
571 	case TS_DECL_NON_COMMON:
572 	  MARK_TS_DECL_WITH_VIS (code);
573 	  break;
574 
575 	case TS_DECL_WITH_VIS:
576 	case TS_PARM_DECL:
577 	case TS_LABEL_DECL:
578 	case TS_RESULT_DECL:
579 	  MARK_TS_DECL_WRTL (code);
580 	  break;
581 
582 	case TS_FIELD_DECL:
583 	  MARK_TS_DECL_COMMON (code);
584 	  break;
585 
586 	case TS_VAR_DECL:
587 	  MARK_TS_DECL_WITH_VIS (code);
588 	  break;
589 
590 	case TS_TYPE_DECL:
591 	case TS_FUNCTION_DECL:
592 	  MARK_TS_DECL_NON_COMMON (code);
593 	  break;
594 
595 	case TS_TRANSLATION_UNIT_DECL:
596 	  MARK_TS_DECL_COMMON (code);
597 	  break;
598 
599 	default:
600 	  gcc_unreachable ();
601 	}
602     }
603 
604   /* Basic consistency checks for attributes used in fold.  */
605   gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
606   gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
607   gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
608   gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
609   gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
610   gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
611   gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
612   gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
613   gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
614   gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
615   gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
616   gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
617   gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
618   gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
619   gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
620   gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
621   gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
622   gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
623   gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
624   gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
625   gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
626   gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
627   gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
628   gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
629   gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
630   gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
631   gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
632   gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
633   gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
634   gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
635   gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
636   gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
637   gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
638   gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
639   gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
640   gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
641   gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
642   gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
643   gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_MINIMAL]);
644   gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_COMMON]);
645 }
646 
647 
648 /* Init tree.c.  */
649 
650 void
651 init_ttree (void)
652 {
653   /* Initialize the hash table of types.  */
654   type_hash_table
655     = hash_table<type_cache_hasher>::create_ggc (TYPE_HASH_INITIAL_SIZE);
656 
657   debug_expr_for_decl
658     = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
659 
660   value_expr_for_decl
661     = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
662 
663   int_cst_hash_table = hash_table<int_cst_hasher>::create_ggc (1024);
664 
665   poly_int_cst_hash_table = hash_table<poly_int_cst_hasher>::create_ggc (64);
666 
667   int_cst_node = make_int_cst (1, 1);
668 
669   cl_option_hash_table = hash_table<cl_option_hasher>::create_ggc (64);
670 
671   cl_optimization_node = make_node (OPTIMIZATION_NODE);
672   cl_target_option_node = make_node (TARGET_OPTION_NODE);
673 
674   /* Initialize the tree_contains_struct array.  */
675   initialize_tree_contains_struct ();
676   lang_hooks.init_ts ();
677 }
678 
679 
680 /* The name of the object as the assembler will see it (but before any
681    translations made by ASM_OUTPUT_LABELREF).  Often this is the same
682    as DECL_NAME.  It is an IDENTIFIER_NODE.  */
683 tree
684 decl_assembler_name (tree decl)
685 {
686   if (!DECL_ASSEMBLER_NAME_SET_P (decl))
687     lang_hooks.set_decl_assembler_name (decl);
688   return DECL_ASSEMBLER_NAME_RAW (decl);
689 }
690 
691 /* The DECL_ASSEMBLER_NAME_RAW of DECL is being explicitly set to NAME
692    (either of which may be NULL).  Inform the FE, if this changes the
693    name.  */
694 
695 void
696 overwrite_decl_assembler_name (tree decl, tree name)
697 {
698   if (DECL_ASSEMBLER_NAME_RAW (decl) != name)
699     lang_hooks.overwrite_decl_assembler_name (decl, name);
700 }
701 
702 /* When the target supports COMDAT groups, this indicates which group the
703    DECL is associated with.  This can be either an IDENTIFIER_NODE or a
704    decl, in which case its DECL_ASSEMBLER_NAME identifies the group.  */
705 tree
706 decl_comdat_group (const_tree node)
707 {
708   struct symtab_node *snode = symtab_node::get (node);
709   if (!snode)
710     return NULL;
711   return snode->get_comdat_group ();
712 }
713 
714 /* Likewise, but make sure it's been reduced to an IDENTIFIER_NODE.  */
715 tree
716 decl_comdat_group_id (const_tree node)
717 {
718   struct symtab_node *snode = symtab_node::get (node);
719   if (!snode)
720     return NULL;
721   return snode->get_comdat_group_id ();
722 }
723 
724 /* When the target supports named section, return its name as IDENTIFIER_NODE
725    or NULL if it is in no section.  */
726 const char *
727 decl_section_name (const_tree node)
728 {
729   struct symtab_node *snode = symtab_node::get (node);
730   if (!snode)
731     return NULL;
732   return snode->get_section ();
733 }
734 
735 /* Set section name of NODE to VALUE (that is expected to be
736    identifier node) */
737 void
738 set_decl_section_name (tree node, const char *value)
739 {
740   struct symtab_node *snode;
741 
742   if (value == NULL)
743     {
744       snode = symtab_node::get (node);
745       if (!snode)
746 	return;
747     }
748   else if (VAR_P (node))
749     snode = varpool_node::get_create (node);
750   else
751     snode = cgraph_node::get_create (node);
752   snode->set_section (value);
753 }
754 
755 /* Return TLS model of a variable NODE.  */
756 enum tls_model
757 decl_tls_model (const_tree node)
758 {
759   struct varpool_node *snode = varpool_node::get (node);
760   if (!snode)
761     return TLS_MODEL_NONE;
762   return snode->tls_model;
763 }
764 
765 /* Set TLS model of variable NODE to MODEL.  */
766 void
767 set_decl_tls_model (tree node, enum tls_model model)
768 {
769   struct varpool_node *vnode;
770 
771   if (model == TLS_MODEL_NONE)
772     {
773       vnode = varpool_node::get (node);
774       if (!vnode)
775 	return;
776     }
777   else
778     vnode = varpool_node::get_create (node);
779   vnode->tls_model = model;
780 }
781 
782 /* Compute the number of bytes occupied by a tree with code CODE.
783    This function cannot be used for nodes that have variable sizes,
784    including TREE_VEC, INTEGER_CST, STRING_CST, and CALL_EXPR.  */
785 size_t
786 tree_code_size (enum tree_code code)
787 {
788   switch (TREE_CODE_CLASS (code))
789     {
790     case tcc_declaration:  /* A decl node */
791       switch (code)
792 	{
793 	case FIELD_DECL:	return sizeof (tree_field_decl);
794 	case PARM_DECL:		return sizeof (tree_parm_decl);
795 	case VAR_DECL:		return sizeof (tree_var_decl);
796 	case LABEL_DECL:	return sizeof (tree_label_decl);
797 	case RESULT_DECL:	return sizeof (tree_result_decl);
798 	case CONST_DECL:	return sizeof (tree_const_decl);
799 	case TYPE_DECL:		return sizeof (tree_type_decl);
800 	case FUNCTION_DECL:	return sizeof (tree_function_decl);
801 	case DEBUG_EXPR_DECL:	return sizeof (tree_decl_with_rtl);
802 	case TRANSLATION_UNIT_DECL: return sizeof (tree_translation_unit_decl);
803 	case NAMESPACE_DECL:
804 	case IMPORTED_DECL:
805 	case NAMELIST_DECL:	return sizeof (tree_decl_non_common);
806 	default:
807 	  gcc_checking_assert (code >= NUM_TREE_CODES);
808 	  return lang_hooks.tree_size (code);
809 	}
810 
811     case tcc_type:  /* a type node */
812       switch (code)
813 	{
814 	case OFFSET_TYPE:
815 	case ENUMERAL_TYPE:
816 	case BOOLEAN_TYPE:
817 	case INTEGER_TYPE:
818 	case REAL_TYPE:
819 	case POINTER_TYPE:
820 	case REFERENCE_TYPE:
821 	case NULLPTR_TYPE:
822 	case FIXED_POINT_TYPE:
823 	case COMPLEX_TYPE:
824 	case VECTOR_TYPE:
825 	case ARRAY_TYPE:
826 	case RECORD_TYPE:
827 	case UNION_TYPE:
828 	case QUAL_UNION_TYPE:
829 	case VOID_TYPE:
830 	case POINTER_BOUNDS_TYPE:
831 	case FUNCTION_TYPE:
832 	case METHOD_TYPE:
833 	case LANG_TYPE:		return sizeof (tree_type_non_common);
834 	default:
835 	  gcc_checking_assert (code >= NUM_TREE_CODES);
836 	  return lang_hooks.tree_size (code);
837 	}
838 
839     case tcc_reference:   /* a reference */
840     case tcc_expression:  /* an expression */
841     case tcc_statement:   /* an expression with side effects */
842     case tcc_comparison:  /* a comparison expression */
843     case tcc_unary:       /* a unary arithmetic expression */
844     case tcc_binary:      /* a binary arithmetic expression */
845       return (sizeof (struct tree_exp)
846 	      + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
847 
848     case tcc_constant:  /* a constant */
849       switch (code)
850 	{
851 	case VOID_CST:		return sizeof (tree_typed);
852 	case INTEGER_CST:	gcc_unreachable ();
853 	case POLY_INT_CST:	return sizeof (tree_poly_int_cst);
854 	case REAL_CST:		return sizeof (tree_real_cst);
855 	case FIXED_CST:		return sizeof (tree_fixed_cst);
856 	case COMPLEX_CST:	return sizeof (tree_complex);
857 	case VECTOR_CST:	gcc_unreachable ();
858 	case STRING_CST:	gcc_unreachable ();
859 	default:
860 	  gcc_checking_assert (code >= NUM_TREE_CODES);
861 	  return lang_hooks.tree_size (code);
862 	}
863 
864     case tcc_exceptional:  /* something random, like an identifier.  */
865       switch (code)
866 	{
867 	case IDENTIFIER_NODE:	return lang_hooks.identifier_size;
868 	case TREE_LIST:		return sizeof (tree_list);
869 
870 	case ERROR_MARK:
871 	case PLACEHOLDER_EXPR:	return sizeof (tree_common);
872 
873 	case TREE_VEC:		gcc_unreachable ();
874 	case OMP_CLAUSE:	gcc_unreachable ();
875 
876 	case SSA_NAME:		return sizeof (tree_ssa_name);
877 
878 	case STATEMENT_LIST:	return sizeof (tree_statement_list);
879 	case BLOCK:		return sizeof (struct tree_block);
880 	case CONSTRUCTOR:	return sizeof (tree_constructor);
881 	case OPTIMIZATION_NODE: return sizeof (tree_optimization_option);
882 	case TARGET_OPTION_NODE: return sizeof (tree_target_option);
883 
884 	default:
885 	  gcc_checking_assert (code >= NUM_TREE_CODES);
886 	  return lang_hooks.tree_size (code);
887 	}
888 
889     default:
890       gcc_unreachable ();
891     }
892 }
893 
894 /* Compute the number of bytes occupied by NODE.  This routine only
895    looks at TREE_CODE, except for those nodes that have variable sizes.  */
896 size_t
897 tree_size (const_tree node)
898 {
899   const enum tree_code code = TREE_CODE (node);
900   switch (code)
901     {
902     case INTEGER_CST:
903       return (sizeof (struct tree_int_cst)
904 	      + (TREE_INT_CST_EXT_NUNITS (node) - 1) * sizeof (HOST_WIDE_INT));
905 
906     case TREE_BINFO:
907       return (offsetof (struct tree_binfo, base_binfos)
908 	      + vec<tree, va_gc>
909 		  ::embedded_size (BINFO_N_BASE_BINFOS (node)));
910 
911     case TREE_VEC:
912       return (sizeof (struct tree_vec)
913 	      + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
914 
915     case VECTOR_CST:
916       return (sizeof (struct tree_vector)
917 	      + (vector_cst_encoded_nelts (node) - 1) * sizeof (tree));
918 
919     case STRING_CST:
920       return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
921 
922     case OMP_CLAUSE:
923       return (sizeof (struct tree_omp_clause)
924 	      + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
925 	        * sizeof (tree));
926 
927     default:
928       if (TREE_CODE_CLASS (code) == tcc_vl_exp)
929 	return (sizeof (struct tree_exp)
930 		+ (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
931       else
932 	return tree_code_size (code);
933     }
934 }
935 
936 /* Return tree node kind based on tree CODE.  */
937 
938 static tree_node_kind
939 get_stats_node_kind (enum tree_code code)
940 {
941   enum tree_code_class type = TREE_CODE_CLASS (code);
942 
943   switch (type)
944     {
945     case tcc_declaration:  /* A decl node */
946       return d_kind;
947     case tcc_type:  /* a type node */
948       return t_kind;
949     case tcc_statement:  /* an expression with side effects */
950       return s_kind;
951     case tcc_reference:  /* a reference */
952       return r_kind;
953     case tcc_expression:  /* an expression */
954     case tcc_comparison:  /* a comparison expression */
955     case tcc_unary:  /* a unary arithmetic expression */
956     case tcc_binary:  /* a binary arithmetic expression */
957       return e_kind;
958     case tcc_constant:  /* a constant */
959       return c_kind;
960     case tcc_exceptional:  /* something random, like an identifier.  */
961       switch (code)
962 	{
963 	case IDENTIFIER_NODE:
964 	  return id_kind;
965 	case TREE_VEC:
966 	  return vec_kind;
967 	case TREE_BINFO:
968 	  return binfo_kind;
969 	case SSA_NAME:
970 	  return ssa_name_kind;
971 	case BLOCK:
972 	  return b_kind;
973 	case CONSTRUCTOR:
974 	  return constr_kind;
975 	case OMP_CLAUSE:
976 	  return omp_clause_kind;
977 	default:
978 	  return x_kind;
979 	}
980       break;
981     case tcc_vl_exp:
982       return e_kind;
983     default:
984       gcc_unreachable ();
985     }
986 }
987 
988 /* Record interesting allocation statistics for a tree node with CODE
989    and LENGTH.  */
990 
991 static void
992 record_node_allocation_statistics (enum tree_code code, size_t length)
993 {
994   if (!GATHER_STATISTICS)
995     return;
996 
997   tree_node_kind kind = get_stats_node_kind (code);
998 
999   tree_code_counts[(int) code]++;
1000   tree_node_counts[(int) kind]++;
1001   tree_node_sizes[(int) kind] += length;
1002 }
1003 
1004 /* Allocate and return a new UID from the DECL_UID namespace.  */
1005 
1006 int
1007 allocate_decl_uid (void)
1008 {
1009   return next_decl_uid++;
1010 }
1011 
1012 /* Return a newly allocated node of code CODE.  For decl and type
1013    nodes, some other fields are initialized.  The rest of the node is
1014    initialized to zero.  This function cannot be used for TREE_VEC,
1015    INTEGER_CST or OMP_CLAUSE nodes, which is enforced by asserts in
1016    tree_code_size.
1017 
1018    Achoo!  I got a code in the node.  */
1019 
1020 tree
1021 make_node (enum tree_code code MEM_STAT_DECL)
1022 {
1023   tree t;
1024   enum tree_code_class type = TREE_CODE_CLASS (code);
1025   size_t length = tree_code_size (code);
1026 
1027   record_node_allocation_statistics (code, length);
1028 
1029   t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1030   TREE_SET_CODE (t, code);
1031 
1032   switch (type)
1033     {
1034     case tcc_statement:
1035       if (code != DEBUG_BEGIN_STMT)
1036 	TREE_SIDE_EFFECTS (t) = 1;
1037       break;
1038 
1039     case tcc_declaration:
1040       if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
1041 	{
1042 	  if (code == FUNCTION_DECL)
1043 	    {
1044 	      SET_DECL_ALIGN (t, FUNCTION_ALIGNMENT (FUNCTION_BOUNDARY));
1045 	      SET_DECL_MODE (t, FUNCTION_MODE);
1046 	    }
1047 	  else
1048 	    SET_DECL_ALIGN (t, 1);
1049 	}
1050       DECL_SOURCE_LOCATION (t) = input_location;
1051       if (TREE_CODE (t) == DEBUG_EXPR_DECL)
1052 	DECL_UID (t) = --next_debug_decl_uid;
1053       else
1054 	{
1055 	  DECL_UID (t) = allocate_decl_uid ();
1056 	  SET_DECL_PT_UID (t, -1);
1057 	}
1058       if (TREE_CODE (t) == LABEL_DECL)
1059 	LABEL_DECL_UID (t) = -1;
1060 
1061       break;
1062 
1063     case tcc_type:
1064       TYPE_UID (t) = next_type_uid++;
1065       SET_TYPE_ALIGN (t, BITS_PER_UNIT);
1066       TYPE_USER_ALIGN (t) = 0;
1067       TYPE_MAIN_VARIANT (t) = t;
1068       TYPE_CANONICAL (t) = t;
1069 
1070       /* Default to no attributes for type, but let target change that.  */
1071       TYPE_ATTRIBUTES (t) = NULL_TREE;
1072       targetm.set_default_type_attributes (t);
1073 
1074       /* We have not yet computed the alias set for this type.  */
1075       TYPE_ALIAS_SET (t) = -1;
1076       break;
1077 
1078     case tcc_constant:
1079       TREE_CONSTANT (t) = 1;
1080       break;
1081 
1082     case tcc_expression:
1083       switch (code)
1084 	{
1085 	case INIT_EXPR:
1086 	case MODIFY_EXPR:
1087 	case VA_ARG_EXPR:
1088 	case PREDECREMENT_EXPR:
1089 	case PREINCREMENT_EXPR:
1090 	case POSTDECREMENT_EXPR:
1091 	case POSTINCREMENT_EXPR:
1092 	  /* All of these have side-effects, no matter what their
1093 	     operands are.  */
1094 	  TREE_SIDE_EFFECTS (t) = 1;
1095 	  break;
1096 
1097 	default:
1098 	  break;
1099 	}
1100       break;
1101 
1102     case tcc_exceptional:
1103       switch (code)
1104         {
1105 	case TARGET_OPTION_NODE:
1106 	  TREE_TARGET_OPTION(t)
1107 			    = ggc_cleared_alloc<struct cl_target_option> ();
1108 	  break;
1109 
1110 	case OPTIMIZATION_NODE:
1111 	  TREE_OPTIMIZATION (t)
1112 			    = ggc_cleared_alloc<struct cl_optimization> ();
1113 	  break;
1114 
1115 	default:
1116 	  break;
1117 	}
1118       break;
1119 
1120     default:
1121       /* Other classes need no special treatment.  */
1122       break;
1123     }
1124 
1125   return t;
1126 }
1127 
1128 /* Free tree node.  */
1129 
1130 void
1131 free_node (tree node)
1132 {
1133   enum tree_code code = TREE_CODE (node);
1134   if (GATHER_STATISTICS)
1135     {
1136       enum tree_node_kind kind = get_stats_node_kind (code);
1137 
1138       gcc_checking_assert (tree_code_counts[(int) TREE_CODE (node)] != 0);
1139       gcc_checking_assert (tree_node_counts[(int) kind] != 0);
1140       gcc_checking_assert (tree_node_sizes[(int) kind] >= tree_size (node));
1141 
1142       tree_code_counts[(int) TREE_CODE (node)]--;
1143       tree_node_counts[(int) kind]--;
1144       tree_node_sizes[(int) kind] -= tree_size (node);
1145     }
1146   if (CODE_CONTAINS_STRUCT (code, TS_CONSTRUCTOR))
1147     vec_free (CONSTRUCTOR_ELTS (node));
1148   else if (code == BLOCK)
1149     vec_free (BLOCK_NONLOCALIZED_VARS (node));
1150   else if (code == TREE_BINFO)
1151     vec_free (BINFO_BASE_ACCESSES (node));
1152   ggc_free (node);
1153 }
1154 
1155 /* Return a new node with the same contents as NODE except that its
1156    TREE_CHAIN, if it has one, is zero and it has a fresh uid.  */
1157 
1158 tree
1159 copy_node (tree node MEM_STAT_DECL)
1160 {
1161   tree t;
1162   enum tree_code code = TREE_CODE (node);
1163   size_t length;
1164 
1165   gcc_assert (code != STATEMENT_LIST);
1166 
1167   length = tree_size (node);
1168   record_node_allocation_statistics (code, length);
1169   t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
1170   memcpy (t, node, length);
1171 
1172   if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
1173     TREE_CHAIN (t) = 0;
1174   TREE_ASM_WRITTEN (t) = 0;
1175   TREE_VISITED (t) = 0;
1176 
1177   if (TREE_CODE_CLASS (code) == tcc_declaration)
1178     {
1179       if (code == DEBUG_EXPR_DECL)
1180 	DECL_UID (t) = --next_debug_decl_uid;
1181       else
1182 	{
1183 	  DECL_UID (t) = allocate_decl_uid ();
1184 	  if (DECL_PT_UID_SET_P (node))
1185 	    SET_DECL_PT_UID (t, DECL_PT_UID (node));
1186 	}
1187       if ((TREE_CODE (node) == PARM_DECL || VAR_P (node))
1188 	  && DECL_HAS_VALUE_EXPR_P (node))
1189 	{
1190 	  SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
1191 	  DECL_HAS_VALUE_EXPR_P (t) = 1;
1192 	}
1193       /* DECL_DEBUG_EXPR is copied explicitely by callers.  */
1194       if (VAR_P (node))
1195 	{
1196 	  DECL_HAS_DEBUG_EXPR_P (t) = 0;
1197 	  t->decl_with_vis.symtab_node = NULL;
1198 	}
1199       if (VAR_P (node) && DECL_HAS_INIT_PRIORITY_P (node))
1200 	{
1201 	  SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
1202 	  DECL_HAS_INIT_PRIORITY_P (t) = 1;
1203 	}
1204       if (TREE_CODE (node) == FUNCTION_DECL)
1205 	{
1206 	  DECL_STRUCT_FUNCTION (t) = NULL;
1207 	  t->decl_with_vis.symtab_node = NULL;
1208 	}
1209     }
1210   else if (TREE_CODE_CLASS (code) == tcc_type)
1211     {
1212       TYPE_UID (t) = next_type_uid++;
1213       /* The following is so that the debug code for
1214 	 the copy is different from the original type.
1215 	 The two statements usually duplicate each other
1216 	 (because they clear fields of the same union),
1217 	 but the optimizer should catch that.  */
1218       TYPE_SYMTAB_ADDRESS (t) = 0;
1219       TYPE_SYMTAB_DIE (t) = 0;
1220 
1221       /* Do not copy the values cache.  */
1222       if (TYPE_CACHED_VALUES_P (t))
1223 	{
1224 	  TYPE_CACHED_VALUES_P (t) = 0;
1225 	  TYPE_CACHED_VALUES (t) = NULL_TREE;
1226 	}
1227     }
1228     else if (code == TARGET_OPTION_NODE)
1229       {
1230 	TREE_TARGET_OPTION (t) = ggc_alloc<struct cl_target_option>();
1231 	memcpy (TREE_TARGET_OPTION (t), TREE_TARGET_OPTION (node),
1232 		sizeof (struct cl_target_option));
1233       }
1234     else if (code == OPTIMIZATION_NODE)
1235       {
1236 	TREE_OPTIMIZATION (t) = ggc_alloc<struct cl_optimization>();
1237 	memcpy (TREE_OPTIMIZATION (t), TREE_OPTIMIZATION (node),
1238 		sizeof (struct cl_optimization));
1239       }
1240 
1241   return t;
1242 }
1243 
1244 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1245    For example, this can copy a list made of TREE_LIST nodes.  */
1246 
1247 tree
1248 copy_list (tree list)
1249 {
1250   tree head;
1251   tree prev, next;
1252 
1253   if (list == 0)
1254     return 0;
1255 
1256   head = prev = copy_node (list);
1257   next = TREE_CHAIN (list);
1258   while (next)
1259     {
1260       TREE_CHAIN (prev) = copy_node (next);
1261       prev = TREE_CHAIN (prev);
1262       next = TREE_CHAIN (next);
1263     }
1264   return head;
1265 }
1266 
1267 
1268 /* Return the value that TREE_INT_CST_EXT_NUNITS should have for an
1269    INTEGER_CST with value CST and type TYPE.   */
1270 
1271 static unsigned int
1272 get_int_cst_ext_nunits (tree type, const wide_int &cst)
1273 {
1274   gcc_checking_assert (cst.get_precision () == TYPE_PRECISION (type));
1275   /* We need extra HWIs if CST is an unsigned integer with its
1276      upper bit set.  */
1277   if (TYPE_UNSIGNED (type) && wi::neg_p (cst))
1278     return cst.get_precision () / HOST_BITS_PER_WIDE_INT + 1;
1279   return cst.get_len ();
1280 }
1281 
1282 /* Return a new INTEGER_CST with value CST and type TYPE.  */
1283 
1284 static tree
1285 build_new_int_cst (tree type, const wide_int &cst)
1286 {
1287   unsigned int len = cst.get_len ();
1288   unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1289   tree nt = make_int_cst (len, ext_len);
1290 
1291   if (len < ext_len)
1292     {
1293       --ext_len;
1294       TREE_INT_CST_ELT (nt, ext_len)
1295 	= zext_hwi (-1, cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1296       for (unsigned int i = len; i < ext_len; ++i)
1297 	TREE_INT_CST_ELT (nt, i) = -1;
1298     }
1299   else if (TYPE_UNSIGNED (type)
1300 	   && cst.get_precision () < len * HOST_BITS_PER_WIDE_INT)
1301     {
1302       len--;
1303       TREE_INT_CST_ELT (nt, len)
1304 	= zext_hwi (cst.elt (len),
1305 		    cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1306     }
1307 
1308   for (unsigned int i = 0; i < len; i++)
1309     TREE_INT_CST_ELT (nt, i) = cst.elt (i);
1310   TREE_TYPE (nt) = type;
1311   return nt;
1312 }
1313 
1314 /* Return a new POLY_INT_CST with coefficients COEFFS and type TYPE.  */
1315 
1316 static tree
1317 build_new_poly_int_cst (tree type, tree (&coeffs)[NUM_POLY_INT_COEFFS]
1318 			CXX_MEM_STAT_INFO)
1319 {
1320   size_t length = sizeof (struct tree_poly_int_cst);
1321   record_node_allocation_statistics (POLY_INT_CST, length);
1322 
1323   tree t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1324 
1325   TREE_SET_CODE (t, POLY_INT_CST);
1326   TREE_CONSTANT (t) = 1;
1327   TREE_TYPE (t) = type;
1328   for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1329     POLY_INT_CST_COEFF (t, i) = coeffs[i];
1330   return t;
1331 }
1332 
1333 /* Create a constant tree that contains CST sign-extended to TYPE.  */
1334 
1335 tree
1336 build_int_cst (tree type, poly_int64 cst)
1337 {
1338   /* Support legacy code.  */
1339   if (!type)
1340     type = integer_type_node;
1341 
1342   return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1343 }
1344 
1345 /* Create a constant tree that contains CST zero-extended to TYPE.  */
1346 
1347 tree
1348 build_int_cstu (tree type, poly_uint64 cst)
1349 {
1350   return wide_int_to_tree (type, wi::uhwi (cst, TYPE_PRECISION (type)));
1351 }
1352 
1353 /* Create a constant tree that contains CST sign-extended to TYPE.  */
1354 
1355 tree
1356 build_int_cst_type (tree type, poly_int64 cst)
1357 {
1358   gcc_assert (type);
1359   return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1360 }
1361 
1362 /* Constructs tree in type TYPE from with value given by CST.  Signedness
1363    of CST is assumed to be the same as the signedness of TYPE.  */
1364 
1365 tree
1366 double_int_to_tree (tree type, double_int cst)
1367 {
1368   return wide_int_to_tree (type, widest_int::from (cst, TYPE_SIGN (type)));
1369 }
1370 
1371 /* We force the wide_int CST to the range of the type TYPE by sign or
1372    zero extending it.  OVERFLOWABLE indicates if we are interested in
1373    overflow of the value, when >0 we are only interested in signed
1374    overflow, for <0 we are interested in any overflow.  OVERFLOWED
1375    indicates whether overflow has already occurred.  CONST_OVERFLOWED
1376    indicates whether constant overflow has already occurred.  We force
1377    T's value to be within range of T's type (by setting to 0 or 1 all
1378    the bits outside the type's range).  We set TREE_OVERFLOWED if,
1379         OVERFLOWED is nonzero,
1380         or OVERFLOWABLE is >0 and signed overflow occurs
1381         or OVERFLOWABLE is <0 and any overflow occurs
1382    We return a new tree node for the extended wide_int.  The node
1383    is shared if no overflow flags are set.  */
1384 
1385 
1386 tree
1387 force_fit_type (tree type, const poly_wide_int_ref &cst,
1388 		int overflowable, bool overflowed)
1389 {
1390   signop sign = TYPE_SIGN (type);
1391 
1392   /* If we need to set overflow flags, return a new unshared node.  */
1393   if (overflowed || !wi::fits_to_tree_p (cst, type))
1394     {
1395       if (overflowed
1396 	  || overflowable < 0
1397 	  || (overflowable > 0 && sign == SIGNED))
1398 	{
1399 	  poly_wide_int tmp = poly_wide_int::from (cst, TYPE_PRECISION (type),
1400 						   sign);
1401 	  tree t;
1402 	  if (tmp.is_constant ())
1403 	    t = build_new_int_cst (type, tmp.coeffs[0]);
1404 	  else
1405 	    {
1406 	      tree coeffs[NUM_POLY_INT_COEFFS];
1407 	      for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1408 		{
1409 		  coeffs[i] = build_new_int_cst (type, tmp.coeffs[i]);
1410 		  TREE_OVERFLOW (coeffs[i]) = 1;
1411 		}
1412 	      t = build_new_poly_int_cst (type, coeffs);
1413 	    }
1414 	  TREE_OVERFLOW (t) = 1;
1415 	  return t;
1416 	}
1417     }
1418 
1419   /* Else build a shared node.  */
1420   return wide_int_to_tree (type, cst);
1421 }
1422 
1423 /* These are the hash table functions for the hash table of INTEGER_CST
1424    nodes of a sizetype.  */
1425 
1426 /* Return the hash code X, an INTEGER_CST.  */
1427 
1428 hashval_t
1429 int_cst_hasher::hash (tree x)
1430 {
1431   const_tree const t = x;
1432   hashval_t code = TYPE_UID (TREE_TYPE (t));
1433   int i;
1434 
1435   for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
1436     code = iterative_hash_host_wide_int (TREE_INT_CST_ELT(t, i), code);
1437 
1438   return code;
1439 }
1440 
1441 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1442    is the same as that given by *Y, which is the same.  */
1443 
1444 bool
1445 int_cst_hasher::equal (tree x, tree y)
1446 {
1447   const_tree const xt = x;
1448   const_tree const yt = y;
1449 
1450   if (TREE_TYPE (xt) != TREE_TYPE (yt)
1451       || TREE_INT_CST_NUNITS (xt) != TREE_INT_CST_NUNITS (yt)
1452       || TREE_INT_CST_EXT_NUNITS (xt) != TREE_INT_CST_EXT_NUNITS (yt))
1453     return false;
1454 
1455   for (int i = 0; i < TREE_INT_CST_NUNITS (xt); i++)
1456     if (TREE_INT_CST_ELT (xt, i) != TREE_INT_CST_ELT (yt, i))
1457       return false;
1458 
1459   return true;
1460 }
1461 
1462 /* Create an INT_CST node of TYPE and value CST.
1463    The returned node is always shared.  For small integers we use a
1464    per-type vector cache, for larger ones we use a single hash table.
1465    The value is extended from its precision according to the sign of
1466    the type to be a multiple of HOST_BITS_PER_WIDE_INT.  This defines
1467    the upper bits and ensures that hashing and value equality based
1468    upon the underlying HOST_WIDE_INTs works without masking.  */
1469 
1470 static tree
1471 wide_int_to_tree_1 (tree type, const wide_int_ref &pcst)
1472 {
1473   tree t;
1474   int ix = -1;
1475   int limit = 0;
1476 
1477   gcc_assert (type);
1478   unsigned int prec = TYPE_PRECISION (type);
1479   signop sgn = TYPE_SIGN (type);
1480 
1481   /* Verify that everything is canonical.  */
1482   int l = pcst.get_len ();
1483   if (l > 1)
1484     {
1485       if (pcst.elt (l - 1) == 0)
1486 	gcc_checking_assert (pcst.elt (l - 2) < 0);
1487       if (pcst.elt (l - 1) == HOST_WIDE_INT_M1)
1488 	gcc_checking_assert (pcst.elt (l - 2) >= 0);
1489     }
1490 
1491   wide_int cst = wide_int::from (pcst, prec, sgn);
1492   unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1493 
1494   if (ext_len == 1)
1495     {
1496       /* We just need to store a single HOST_WIDE_INT.  */
1497       HOST_WIDE_INT hwi;
1498       if (TYPE_UNSIGNED (type))
1499 	hwi = cst.to_uhwi ();
1500       else
1501 	hwi = cst.to_shwi ();
1502 
1503       switch (TREE_CODE (type))
1504 	{
1505 	case NULLPTR_TYPE:
1506 	  gcc_assert (hwi == 0);
1507 	  /* Fallthru.  */
1508 
1509 	case POINTER_TYPE:
1510 	case REFERENCE_TYPE:
1511 	case POINTER_BOUNDS_TYPE:
1512 	  /* Cache NULL pointer and zero bounds.  */
1513 	  if (hwi == 0)
1514 	    {
1515 	      limit = 1;
1516 	      ix = 0;
1517 	    }
1518 	  break;
1519 
1520 	case BOOLEAN_TYPE:
1521 	  /* Cache false or true.  */
1522 	  limit = 2;
1523 	  if (IN_RANGE (hwi, 0, 1))
1524 	    ix = hwi;
1525 	  break;
1526 
1527 	case INTEGER_TYPE:
1528 	case OFFSET_TYPE:
1529 	  if (TYPE_SIGN (type) == UNSIGNED)
1530 	    {
1531 	      /* Cache [0, N).  */
1532 	      limit = INTEGER_SHARE_LIMIT;
1533 	      if (IN_RANGE (hwi, 0, INTEGER_SHARE_LIMIT - 1))
1534 		ix = hwi;
1535 	    }
1536 	  else
1537 	    {
1538 	      /* Cache [-1, N).  */
1539 	      limit = INTEGER_SHARE_LIMIT + 1;
1540 	      if (IN_RANGE (hwi, -1, INTEGER_SHARE_LIMIT - 1))
1541 		ix = hwi + 1;
1542 	    }
1543 	  break;
1544 
1545 	case ENUMERAL_TYPE:
1546 	  break;
1547 
1548 	default:
1549 	  gcc_unreachable ();
1550 	}
1551 
1552       if (ix >= 0)
1553 	{
1554 	  /* Look for it in the type's vector of small shared ints.  */
1555 	  if (!TYPE_CACHED_VALUES_P (type))
1556 	    {
1557 	      TYPE_CACHED_VALUES_P (type) = 1;
1558 	      TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1559 	    }
1560 
1561 	  t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1562 	  if (t)
1563 	    /* Make sure no one is clobbering the shared constant.  */
1564 	    gcc_checking_assert (TREE_TYPE (t) == type
1565 				 && TREE_INT_CST_NUNITS (t) == 1
1566 				 && TREE_INT_CST_OFFSET_NUNITS (t) == 1
1567 				 && TREE_INT_CST_EXT_NUNITS (t) == 1
1568 				 && TREE_INT_CST_ELT (t, 0) == hwi);
1569 	  else
1570 	    {
1571 	      /* Create a new shared int.  */
1572 	      t = build_new_int_cst (type, cst);
1573 	      TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1574 	    }
1575 	}
1576       else
1577 	{
1578 	  /* Use the cache of larger shared ints, using int_cst_node as
1579 	     a temporary.  */
1580 
1581 	  TREE_INT_CST_ELT (int_cst_node, 0) = hwi;
1582 	  TREE_TYPE (int_cst_node) = type;
1583 
1584 	  tree *slot = int_cst_hash_table->find_slot (int_cst_node, INSERT);
1585 	  t = *slot;
1586 	  if (!t)
1587 	    {
1588 	      /* Insert this one into the hash table.  */
1589 	      t = int_cst_node;
1590 	      *slot = t;
1591 	      /* Make a new node for next time round.  */
1592 	      int_cst_node = make_int_cst (1, 1);
1593 	    }
1594 	}
1595     }
1596   else
1597     {
1598       /* The value either hashes properly or we drop it on the floor
1599 	 for the gc to take care of.  There will not be enough of them
1600 	 to worry about.  */
1601 
1602       tree nt = build_new_int_cst (type, cst);
1603       tree *slot = int_cst_hash_table->find_slot (nt, INSERT);
1604       t = *slot;
1605       if (!t)
1606 	{
1607 	  /* Insert this one into the hash table.  */
1608 	  t = nt;
1609 	  *slot = t;
1610 	}
1611       else
1612 	ggc_free (nt);
1613     }
1614 
1615   return t;
1616 }
1617 
1618 hashval_t
1619 poly_int_cst_hasher::hash (tree t)
1620 {
1621   inchash::hash hstate;
1622 
1623   hstate.add_int (TYPE_UID (TREE_TYPE (t)));
1624   for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1625     hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
1626 
1627   return hstate.end ();
1628 }
1629 
1630 bool
1631 poly_int_cst_hasher::equal (tree x, const compare_type &y)
1632 {
1633   if (TREE_TYPE (x) != y.first)
1634     return false;
1635   for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1636     if (wi::to_wide (POLY_INT_CST_COEFF (x, i)) != y.second->coeffs[i])
1637       return false;
1638   return true;
1639 }
1640 
1641 /* Build a POLY_INT_CST node with type TYPE and with the elements in VALUES.
1642    The elements must also have type TYPE.  */
1643 
1644 tree
1645 build_poly_int_cst (tree type, const poly_wide_int_ref &values)
1646 {
1647   unsigned int prec = TYPE_PRECISION (type);
1648   gcc_assert (prec <= values.coeffs[0].get_precision ());
1649   poly_wide_int c = poly_wide_int::from (values, prec, SIGNED);
1650 
1651   inchash::hash h;
1652   h.add_int (TYPE_UID (type));
1653   for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1654     h.add_wide_int (c.coeffs[i]);
1655   poly_int_cst_hasher::compare_type comp (type, &c);
1656   tree *slot = poly_int_cst_hash_table->find_slot_with_hash (comp, h.end (),
1657 							     INSERT);
1658   if (*slot == NULL_TREE)
1659     {
1660       tree coeffs[NUM_POLY_INT_COEFFS];
1661       for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1662 	coeffs[i] = wide_int_to_tree_1 (type, c.coeffs[i]);
1663       *slot = build_new_poly_int_cst (type, coeffs);
1664     }
1665   return *slot;
1666 }
1667 
1668 /* Create a constant tree with value VALUE in type TYPE.  */
1669 
1670 tree
1671 wide_int_to_tree (tree type, const poly_wide_int_ref &value)
1672 {
1673   if (value.is_constant ())
1674     return wide_int_to_tree_1 (type, value.coeffs[0]);
1675   return build_poly_int_cst (type, value);
1676 }
1677 
1678 void
1679 cache_integer_cst (tree t)
1680 {
1681   tree type = TREE_TYPE (t);
1682   int ix = -1;
1683   int limit = 0;
1684   int prec = TYPE_PRECISION (type);
1685 
1686   gcc_assert (!TREE_OVERFLOW (t));
1687 
1688   switch (TREE_CODE (type))
1689     {
1690     case NULLPTR_TYPE:
1691       gcc_assert (integer_zerop (t));
1692       /* Fallthru.  */
1693 
1694     case POINTER_TYPE:
1695     case REFERENCE_TYPE:
1696       /* Cache NULL pointer.  */
1697       if (integer_zerop (t))
1698 	{
1699 	  limit = 1;
1700 	  ix = 0;
1701 	}
1702       break;
1703 
1704     case BOOLEAN_TYPE:
1705       /* Cache false or true.  */
1706       limit = 2;
1707       if (wi::ltu_p (wi::to_wide (t), 2))
1708 	ix = TREE_INT_CST_ELT (t, 0);
1709       break;
1710 
1711     case INTEGER_TYPE:
1712     case OFFSET_TYPE:
1713       if (TYPE_UNSIGNED (type))
1714 	{
1715 	  /* Cache 0..N */
1716 	  limit = INTEGER_SHARE_LIMIT;
1717 
1718 	  /* This is a little hokie, but if the prec is smaller than
1719 	     what is necessary to hold INTEGER_SHARE_LIMIT, then the
1720 	     obvious test will not get the correct answer.  */
1721 	  if (prec < HOST_BITS_PER_WIDE_INT)
1722 	    {
1723 	      if (tree_to_uhwi (t) < (unsigned HOST_WIDE_INT) INTEGER_SHARE_LIMIT)
1724 		ix = tree_to_uhwi (t);
1725 	    }
1726 	  else if (wi::ltu_p (wi::to_wide (t), INTEGER_SHARE_LIMIT))
1727 	    ix = tree_to_uhwi (t);
1728 	}
1729       else
1730 	{
1731 	  /* Cache -1..N */
1732 	  limit = INTEGER_SHARE_LIMIT + 1;
1733 
1734 	  if (integer_minus_onep (t))
1735 	    ix = 0;
1736 	  else if (!wi::neg_p (wi::to_wide (t)))
1737 	    {
1738 	      if (prec < HOST_BITS_PER_WIDE_INT)
1739 		{
1740 		  if (tree_to_shwi (t) < INTEGER_SHARE_LIMIT)
1741 		    ix = tree_to_shwi (t) + 1;
1742 		}
1743 	      else if (wi::ltu_p (wi::to_wide (t), INTEGER_SHARE_LIMIT))
1744 		ix = tree_to_shwi (t) + 1;
1745 	    }
1746 	}
1747       break;
1748 
1749     case ENUMERAL_TYPE:
1750       break;
1751 
1752     default:
1753       gcc_unreachable ();
1754     }
1755 
1756   if (ix >= 0)
1757     {
1758       /* Look for it in the type's vector of small shared ints.  */
1759       if (!TYPE_CACHED_VALUES_P (type))
1760 	{
1761 	  TYPE_CACHED_VALUES_P (type) = 1;
1762 	  TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1763 	}
1764 
1765       gcc_assert (TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) == NULL_TREE);
1766       TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1767     }
1768   else
1769     {
1770       /* Use the cache of larger shared ints.  */
1771       tree *slot = int_cst_hash_table->find_slot (t, INSERT);
1772       /* If there is already an entry for the number verify it's the
1773          same.  */
1774       if (*slot)
1775 	gcc_assert (wi::to_wide (tree (*slot)) == wi::to_wide (t));
1776       else
1777 	/* Otherwise insert this one into the hash table.  */
1778 	*slot = t;
1779     }
1780 }
1781 
1782 
1783 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1784    and the rest are zeros.  */
1785 
1786 tree
1787 build_low_bits_mask (tree type, unsigned bits)
1788 {
1789   gcc_assert (bits <= TYPE_PRECISION (type));
1790 
1791   return wide_int_to_tree (type, wi::mask (bits, false,
1792 					   TYPE_PRECISION (type)));
1793 }
1794 
1795 /* Checks that X is integer constant that can be expressed in (unsigned)
1796    HOST_WIDE_INT without loss of precision.  */
1797 
1798 bool
1799 cst_and_fits_in_hwi (const_tree x)
1800 {
1801   return (TREE_CODE (x) == INTEGER_CST
1802 	  && (tree_fits_shwi_p (x) || tree_fits_uhwi_p (x)));
1803 }
1804 
1805 /* Build a newly constructed VECTOR_CST with the given values of
1806    (VECTOR_CST_)LOG2_NPATTERNS and (VECTOR_CST_)NELTS_PER_PATTERN.  */
1807 
1808 tree
1809 make_vector (unsigned log2_npatterns,
1810 	     unsigned int nelts_per_pattern MEM_STAT_DECL)
1811 {
1812   gcc_assert (IN_RANGE (nelts_per_pattern, 1, 3));
1813   tree t;
1814   unsigned npatterns = 1 << log2_npatterns;
1815   unsigned encoded_nelts = npatterns * nelts_per_pattern;
1816   unsigned length = (sizeof (struct tree_vector)
1817 		     + (encoded_nelts - 1) * sizeof (tree));
1818 
1819   record_node_allocation_statistics (VECTOR_CST, length);
1820 
1821   t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1822 
1823   TREE_SET_CODE (t, VECTOR_CST);
1824   TREE_CONSTANT (t) = 1;
1825   VECTOR_CST_LOG2_NPATTERNS (t) = log2_npatterns;
1826   VECTOR_CST_NELTS_PER_PATTERN (t) = nelts_per_pattern;
1827 
1828   return t;
1829 }
1830 
1831 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1832    are extracted from V, a vector of CONSTRUCTOR_ELT.  */
1833 
1834 tree
1835 build_vector_from_ctor (tree type, vec<constructor_elt, va_gc> *v)
1836 {
1837   unsigned HOST_WIDE_INT idx, nelts;
1838   tree value;
1839 
1840   /* We can't construct a VECTOR_CST for a variable number of elements.  */
1841   nelts = TYPE_VECTOR_SUBPARTS (type).to_constant ();
1842   tree_vector_builder vec (type, nelts, 1);
1843   FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1844     {
1845       if (TREE_CODE (value) == VECTOR_CST)
1846 	{
1847 	  /* If NELTS is constant then this must be too.  */
1848 	  unsigned int sub_nelts = VECTOR_CST_NELTS (value).to_constant ();
1849 	  for (unsigned i = 0; i < sub_nelts; ++i)
1850 	    vec.quick_push (VECTOR_CST_ELT (value, i));
1851 	}
1852       else
1853 	vec.quick_push (value);
1854     }
1855   while (vec.length () < nelts)
1856     vec.quick_push (build_zero_cst (TREE_TYPE (type)));
1857 
1858   return vec.build ();
1859 }
1860 
1861 /* Build a vector of type VECTYPE where all the elements are SCs.  */
1862 tree
1863 build_vector_from_val (tree vectype, tree sc)
1864 {
1865   unsigned HOST_WIDE_INT i, nunits;
1866 
1867   if (sc == error_mark_node)
1868     return sc;
1869 
1870   /* Verify that the vector type is suitable for SC.  Note that there
1871      is some inconsistency in the type-system with respect to restrict
1872      qualifications of pointers.  Vector types always have a main-variant
1873      element type and the qualification is applied to the vector-type.
1874      So TREE_TYPE (vector-type) does not return a properly qualified
1875      vector element-type.  */
1876   gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1877 					   TREE_TYPE (vectype)));
1878 
1879   if (CONSTANT_CLASS_P (sc))
1880     {
1881       tree_vector_builder v (vectype, 1, 1);
1882       v.quick_push (sc);
1883       return v.build ();
1884     }
1885   else if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nunits))
1886     return fold_build1 (VEC_DUPLICATE_EXPR, vectype, sc);
1887   else
1888     {
1889       vec<constructor_elt, va_gc> *v;
1890       vec_alloc (v, nunits);
1891       for (i = 0; i < nunits; ++i)
1892 	CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1893       return build_constructor (vectype, v);
1894     }
1895 }
1896 
1897 /* Build a vector series of type TYPE in which element I has the value
1898    BASE + I * STEP.  The result is a constant if BASE and STEP are constant
1899    and a VEC_SERIES_EXPR otherwise.  */
1900 
1901 tree
1902 build_vec_series (tree type, tree base, tree step)
1903 {
1904   if (integer_zerop (step))
1905     return build_vector_from_val (type, base);
1906   if (TREE_CODE (base) == INTEGER_CST && TREE_CODE (step) == INTEGER_CST)
1907     {
1908       tree_vector_builder builder (type, 1, 3);
1909       tree elt1 = wide_int_to_tree (TREE_TYPE (base),
1910 				    wi::to_wide (base) + wi::to_wide (step));
1911       tree elt2 = wide_int_to_tree (TREE_TYPE (base),
1912 				    wi::to_wide (elt1) + wi::to_wide (step));
1913       builder.quick_push (base);
1914       builder.quick_push (elt1);
1915       builder.quick_push (elt2);
1916       return builder.build ();
1917     }
1918   return build2 (VEC_SERIES_EXPR, type, base, step);
1919 }
1920 
1921 /* Return a vector with the same number of units and number of bits
1922    as VEC_TYPE, but in which the elements are a linear series of unsigned
1923    integers { BASE, BASE + STEP, BASE + STEP * 2, ... }.  */
1924 
1925 tree
1926 build_index_vector (tree vec_type, poly_uint64 base, poly_uint64 step)
1927 {
1928   tree index_vec_type = vec_type;
1929   tree index_elt_type = TREE_TYPE (vec_type);
1930   poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vec_type);
1931   if (!INTEGRAL_TYPE_P (index_elt_type) || !TYPE_UNSIGNED (index_elt_type))
1932     {
1933       index_elt_type = build_nonstandard_integer_type
1934 	(GET_MODE_BITSIZE (SCALAR_TYPE_MODE (index_elt_type)), true);
1935       index_vec_type = build_vector_type (index_elt_type, nunits);
1936     }
1937 
1938   tree_vector_builder v (index_vec_type, 1, 3);
1939   for (unsigned int i = 0; i < 3; ++i)
1940     v.quick_push (build_int_cstu (index_elt_type, base + i * step));
1941   return v.build ();
1942 }
1943 
1944 /* Something has messed with the elements of CONSTRUCTOR C after it was built;
1945    calculate TREE_CONSTANT and TREE_SIDE_EFFECTS.  */
1946 
1947 void
1948 recompute_constructor_flags (tree c)
1949 {
1950   unsigned int i;
1951   tree val;
1952   bool constant_p = true;
1953   bool side_effects_p = false;
1954   vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
1955 
1956   FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
1957     {
1958       /* Mostly ctors will have elts that don't have side-effects, so
1959 	 the usual case is to scan all the elements.  Hence a single
1960 	 loop for both const and side effects, rather than one loop
1961 	 each (with early outs).  */
1962       if (!TREE_CONSTANT (val))
1963 	constant_p = false;
1964       if (TREE_SIDE_EFFECTS (val))
1965 	side_effects_p = true;
1966     }
1967 
1968   TREE_SIDE_EFFECTS (c) = side_effects_p;
1969   TREE_CONSTANT (c) = constant_p;
1970 }
1971 
1972 /* Make sure that TREE_CONSTANT and TREE_SIDE_EFFECTS are correct for
1973    CONSTRUCTOR C.  */
1974 
1975 void
1976 verify_constructor_flags (tree c)
1977 {
1978   unsigned int i;
1979   tree val;
1980   bool constant_p = TREE_CONSTANT (c);
1981   bool side_effects_p = TREE_SIDE_EFFECTS (c);
1982   vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
1983 
1984   FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
1985     {
1986       if (constant_p && !TREE_CONSTANT (val))
1987 	internal_error ("non-constant element in constant CONSTRUCTOR");
1988       if (!side_effects_p && TREE_SIDE_EFFECTS (val))
1989 	internal_error ("side-effects element in no-side-effects CONSTRUCTOR");
1990     }
1991 }
1992 
1993 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1994    are in the vec pointed to by VALS.  */
1995 tree
1996 build_constructor (tree type, vec<constructor_elt, va_gc> *vals)
1997 {
1998   tree c = make_node (CONSTRUCTOR);
1999 
2000   TREE_TYPE (c) = type;
2001   CONSTRUCTOR_ELTS (c) = vals;
2002 
2003   recompute_constructor_flags (c);
2004 
2005   return c;
2006 }
2007 
2008 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
2009    INDEX and VALUE.  */
2010 tree
2011 build_constructor_single (tree type, tree index, tree value)
2012 {
2013   vec<constructor_elt, va_gc> *v;
2014   constructor_elt elt = {index, value};
2015 
2016   vec_alloc (v, 1);
2017   v->quick_push (elt);
2018 
2019   return build_constructor (type, v);
2020 }
2021 
2022 
2023 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
2024    are in a list pointed to by VALS.  */
2025 tree
2026 build_constructor_from_list (tree type, tree vals)
2027 {
2028   tree t;
2029   vec<constructor_elt, va_gc> *v = NULL;
2030 
2031   if (vals)
2032     {
2033       vec_alloc (v, list_length (vals));
2034       for (t = vals; t; t = TREE_CHAIN (t))
2035 	CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
2036     }
2037 
2038   return build_constructor (type, v);
2039 }
2040 
2041 /* Return a new CONSTRUCTOR node whose type is TYPE.  NELTS is the number
2042    of elements, provided as index/value pairs.  */
2043 
2044 tree
2045 build_constructor_va (tree type, int nelts, ...)
2046 {
2047   vec<constructor_elt, va_gc> *v = NULL;
2048   va_list p;
2049 
2050   va_start (p, nelts);
2051   vec_alloc (v, nelts);
2052   while (nelts--)
2053     {
2054       tree index = va_arg (p, tree);
2055       tree value = va_arg (p, tree);
2056       CONSTRUCTOR_APPEND_ELT (v, index, value);
2057     }
2058   va_end (p);
2059   return build_constructor (type, v);
2060 }
2061 
2062 /* Return a new FIXED_CST node whose type is TYPE and value is F.  */
2063 
2064 tree
2065 build_fixed (tree type, FIXED_VALUE_TYPE f)
2066 {
2067   tree v;
2068   FIXED_VALUE_TYPE *fp;
2069 
2070   v = make_node (FIXED_CST);
2071   fp = ggc_alloc<fixed_value> ();
2072   memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
2073 
2074   TREE_TYPE (v) = type;
2075   TREE_FIXED_CST_PTR (v) = fp;
2076   return v;
2077 }
2078 
2079 /* Return a new REAL_CST node whose type is TYPE and value is D.  */
2080 
2081 tree
2082 build_real (tree type, REAL_VALUE_TYPE d)
2083 {
2084   tree v;
2085   REAL_VALUE_TYPE *dp;
2086   int overflow = 0;
2087 
2088   /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
2089      Consider doing it via real_convert now.  */
2090 
2091   v = make_node (REAL_CST);
2092   dp = ggc_alloc<real_value> ();
2093   memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
2094 
2095   TREE_TYPE (v) = type;
2096   TREE_REAL_CST_PTR (v) = dp;
2097   TREE_OVERFLOW (v) = overflow;
2098   return v;
2099 }
2100 
2101 /* Like build_real, but first truncate D to the type.  */
2102 
2103 tree
2104 build_real_truncate (tree type, REAL_VALUE_TYPE d)
2105 {
2106   return build_real (type, real_value_truncate (TYPE_MODE (type), d));
2107 }
2108 
2109 /* Return a new REAL_CST node whose type is TYPE
2110    and whose value is the integer value of the INTEGER_CST node I.  */
2111 
2112 REAL_VALUE_TYPE
2113 real_value_from_int_cst (const_tree type, const_tree i)
2114 {
2115   REAL_VALUE_TYPE d;
2116 
2117   /* Clear all bits of the real value type so that we can later do
2118      bitwise comparisons to see if two values are the same.  */
2119   memset (&d, 0, sizeof d);
2120 
2121   real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode, wi::to_wide (i),
2122 		     TYPE_SIGN (TREE_TYPE (i)));
2123   return d;
2124 }
2125 
2126 /* Given a tree representing an integer constant I, return a tree
2127    representing the same value as a floating-point constant of type TYPE.  */
2128 
2129 tree
2130 build_real_from_int_cst (tree type, const_tree i)
2131 {
2132   tree v;
2133   int overflow = TREE_OVERFLOW (i);
2134 
2135   v = build_real (type, real_value_from_int_cst (type, i));
2136 
2137   TREE_OVERFLOW (v) |= overflow;
2138   return v;
2139 }
2140 
2141 /* Return a newly constructed STRING_CST node whose value is
2142    the LEN characters at STR.
2143    Note that for a C string literal, LEN should include the trailing NUL.
2144    The TREE_TYPE is not initialized.  */
2145 
2146 tree
2147 build_string (int len, const char *str)
2148 {
2149   tree s;
2150   size_t length;
2151 
2152   /* Do not waste bytes provided by padding of struct tree_string.  */
2153   length = len + offsetof (struct tree_string, str) + 1;
2154 
2155   record_node_allocation_statistics (STRING_CST, length);
2156 
2157   s = (tree) ggc_internal_alloc (length);
2158 
2159   memset (s, 0, sizeof (struct tree_typed));
2160   TREE_SET_CODE (s, STRING_CST);
2161   TREE_CONSTANT (s) = 1;
2162   TREE_STRING_LENGTH (s) = len;
2163   memcpy (s->string.str, str, len);
2164   s->string.str[len] = '\0';
2165 
2166   return s;
2167 }
2168 
2169 /* Return a newly constructed COMPLEX_CST node whose value is
2170    specified by the real and imaginary parts REAL and IMAG.
2171    Both REAL and IMAG should be constant nodes.  TYPE, if specified,
2172    will be the type of the COMPLEX_CST; otherwise a new type will be made.  */
2173 
2174 tree
2175 build_complex (tree type, tree real, tree imag)
2176 {
2177   tree t = make_node (COMPLEX_CST);
2178 
2179   TREE_REALPART (t) = real;
2180   TREE_IMAGPART (t) = imag;
2181   TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
2182   TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
2183   return t;
2184 }
2185 
2186 /* Build a complex (inf +- 0i), such as for the result of cproj.
2187    TYPE is the complex tree type of the result.  If NEG is true, the
2188    imaginary zero is negative.  */
2189 
2190 tree
2191 build_complex_inf (tree type, bool neg)
2192 {
2193   REAL_VALUE_TYPE rinf, rzero = dconst0;
2194 
2195   real_inf (&rinf);
2196   rzero.sign = neg;
2197   return build_complex (type, build_real (TREE_TYPE (type), rinf),
2198 			build_real (TREE_TYPE (type), rzero));
2199 }
2200 
2201 /* Return the constant 1 in type TYPE.  If TYPE has several elements, each
2202    element is set to 1.  In particular, this is 1 + i for complex types.  */
2203 
2204 tree
2205 build_each_one_cst (tree type)
2206 {
2207   if (TREE_CODE (type) == COMPLEX_TYPE)
2208     {
2209       tree scalar = build_one_cst (TREE_TYPE (type));
2210       return build_complex (type, scalar, scalar);
2211     }
2212   else
2213     return build_one_cst (type);
2214 }
2215 
2216 /* Return a constant of arithmetic type TYPE which is the
2217    multiplicative identity of the set TYPE.  */
2218 
2219 tree
2220 build_one_cst (tree type)
2221 {
2222   switch (TREE_CODE (type))
2223     {
2224     case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2225     case POINTER_TYPE: case REFERENCE_TYPE:
2226     case OFFSET_TYPE:
2227       return build_int_cst (type, 1);
2228 
2229     case REAL_TYPE:
2230       return build_real (type, dconst1);
2231 
2232     case FIXED_POINT_TYPE:
2233       /* We can only generate 1 for accum types.  */
2234       gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2235       return build_fixed (type, FCONST1 (TYPE_MODE (type)));
2236 
2237     case VECTOR_TYPE:
2238       {
2239 	tree scalar = build_one_cst (TREE_TYPE (type));
2240 
2241 	return build_vector_from_val (type, scalar);
2242       }
2243 
2244     case COMPLEX_TYPE:
2245       return build_complex (type,
2246 			    build_one_cst (TREE_TYPE (type)),
2247 			    build_zero_cst (TREE_TYPE (type)));
2248 
2249     default:
2250       gcc_unreachable ();
2251     }
2252 }
2253 
2254 /* Return an integer of type TYPE containing all 1's in as much precision as
2255    it contains, or a complex or vector whose subparts are such integers.  */
2256 
2257 tree
2258 build_all_ones_cst (tree type)
2259 {
2260   if (TREE_CODE (type) == COMPLEX_TYPE)
2261     {
2262       tree scalar = build_all_ones_cst (TREE_TYPE (type));
2263       return build_complex (type, scalar, scalar);
2264     }
2265   else
2266     return build_minus_one_cst (type);
2267 }
2268 
2269 /* Return a constant of arithmetic type TYPE which is the
2270    opposite of the multiplicative identity of the set TYPE.  */
2271 
2272 tree
2273 build_minus_one_cst (tree type)
2274 {
2275   switch (TREE_CODE (type))
2276     {
2277     case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2278     case POINTER_TYPE: case REFERENCE_TYPE:
2279     case OFFSET_TYPE:
2280       return build_int_cst (type, -1);
2281 
2282     case REAL_TYPE:
2283       return build_real (type, dconstm1);
2284 
2285     case FIXED_POINT_TYPE:
2286       /* We can only generate 1 for accum types.  */
2287       gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2288       return build_fixed (type,
2289 			  fixed_from_double_int (double_int_minus_one,
2290 						 SCALAR_TYPE_MODE (type)));
2291 
2292     case VECTOR_TYPE:
2293       {
2294 	tree scalar = build_minus_one_cst (TREE_TYPE (type));
2295 
2296 	return build_vector_from_val (type, scalar);
2297       }
2298 
2299     case COMPLEX_TYPE:
2300       return build_complex (type,
2301 			    build_minus_one_cst (TREE_TYPE (type)),
2302 			    build_zero_cst (TREE_TYPE (type)));
2303 
2304     default:
2305       gcc_unreachable ();
2306     }
2307 }
2308 
2309 /* Build 0 constant of type TYPE.  This is used by constructor folding
2310    and thus the constant should be represented in memory by
2311    zero(es).  */
2312 
2313 tree
2314 build_zero_cst (tree type)
2315 {
2316   switch (TREE_CODE (type))
2317     {
2318     case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2319     case POINTER_TYPE: case REFERENCE_TYPE:
2320     case OFFSET_TYPE: case NULLPTR_TYPE:
2321       return build_int_cst (type, 0);
2322 
2323     case REAL_TYPE:
2324       return build_real (type, dconst0);
2325 
2326     case FIXED_POINT_TYPE:
2327       return build_fixed (type, FCONST0 (TYPE_MODE (type)));
2328 
2329     case VECTOR_TYPE:
2330       {
2331 	tree scalar = build_zero_cst (TREE_TYPE (type));
2332 
2333 	return build_vector_from_val (type, scalar);
2334       }
2335 
2336     case COMPLEX_TYPE:
2337       {
2338 	tree zero = build_zero_cst (TREE_TYPE (type));
2339 
2340 	return build_complex (type, zero, zero);
2341       }
2342 
2343     default:
2344       if (!AGGREGATE_TYPE_P (type))
2345 	return fold_convert (type, integer_zero_node);
2346       return build_constructor (type, NULL);
2347     }
2348 }
2349 
2350 
2351 /* Build a BINFO with LEN language slots.  */
2352 
2353 tree
2354 make_tree_binfo (unsigned base_binfos MEM_STAT_DECL)
2355 {
2356   tree t;
2357   size_t length = (offsetof (struct tree_binfo, base_binfos)
2358 		   + vec<tree, va_gc>::embedded_size (base_binfos));
2359 
2360   record_node_allocation_statistics (TREE_BINFO, length);
2361 
2362   t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
2363 
2364   memset (t, 0, offsetof (struct tree_binfo, base_binfos));
2365 
2366   TREE_SET_CODE (t, TREE_BINFO);
2367 
2368   BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
2369 
2370   return t;
2371 }
2372 
2373 /* Create a CASE_LABEL_EXPR tree node and return it.  */
2374 
2375 tree
2376 build_case_label (tree low_value, tree high_value, tree label_decl)
2377 {
2378   tree t = make_node (CASE_LABEL_EXPR);
2379 
2380   TREE_TYPE (t) = void_type_node;
2381   SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
2382 
2383   CASE_LOW (t) = low_value;
2384   CASE_HIGH (t) = high_value;
2385   CASE_LABEL (t) = label_decl;
2386   CASE_CHAIN (t) = NULL_TREE;
2387 
2388   return t;
2389 }
2390 
2391 /* Build a newly constructed INTEGER_CST node.  LEN and EXT_LEN are the
2392    values of TREE_INT_CST_NUNITS and TREE_INT_CST_EXT_NUNITS respectively.
2393    The latter determines the length of the HOST_WIDE_INT vector.  */
2394 
2395 tree
2396 make_int_cst (int len, int ext_len MEM_STAT_DECL)
2397 {
2398   tree t;
2399   int length = ((ext_len - 1) * sizeof (HOST_WIDE_INT)
2400 		+ sizeof (struct tree_int_cst));
2401 
2402   gcc_assert (len);
2403   record_node_allocation_statistics (INTEGER_CST, length);
2404 
2405   t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2406 
2407   TREE_SET_CODE (t, INTEGER_CST);
2408   TREE_INT_CST_NUNITS (t) = len;
2409   TREE_INT_CST_EXT_NUNITS (t) = ext_len;
2410   /* to_offset can only be applied to trees that are offset_int-sized
2411      or smaller.  EXT_LEN is correct if it fits, otherwise the constant
2412      must be exactly the precision of offset_int and so LEN is correct.  */
2413   if (ext_len <= OFFSET_INT_ELTS)
2414     TREE_INT_CST_OFFSET_NUNITS (t) = ext_len;
2415   else
2416     TREE_INT_CST_OFFSET_NUNITS (t) = len;
2417 
2418   TREE_CONSTANT (t) = 1;
2419 
2420   return t;
2421 }
2422 
2423 /* Build a newly constructed TREE_VEC node of length LEN.  */
2424 
2425 tree
2426 make_tree_vec (int len MEM_STAT_DECL)
2427 {
2428   tree t;
2429   size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2430 
2431   record_node_allocation_statistics (TREE_VEC, length);
2432 
2433   t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2434 
2435   TREE_SET_CODE (t, TREE_VEC);
2436   TREE_VEC_LENGTH (t) = len;
2437 
2438   return t;
2439 }
2440 
2441 /* Grow a TREE_VEC node to new length LEN.  */
2442 
2443 tree
2444 grow_tree_vec (tree v, int len MEM_STAT_DECL)
2445 {
2446   gcc_assert (TREE_CODE (v) == TREE_VEC);
2447 
2448   int oldlen = TREE_VEC_LENGTH (v);
2449   gcc_assert (len > oldlen);
2450 
2451   size_t oldlength = (oldlen - 1) * sizeof (tree) + sizeof (struct tree_vec);
2452   size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2453 
2454   record_node_allocation_statistics (TREE_VEC, length - oldlength);
2455 
2456   v = (tree) ggc_realloc (v, length PASS_MEM_STAT);
2457 
2458   TREE_VEC_LENGTH (v) = len;
2459 
2460   return v;
2461 }
2462 
2463 /* Return 1 if EXPR is the constant zero, whether it is integral, float or
2464    fixed, and scalar, complex or vector.  */
2465 
2466 int
2467 zerop (const_tree expr)
2468 {
2469   return (integer_zerop (expr)
2470 	  || real_zerop (expr)
2471 	  || fixed_zerop (expr));
2472 }
2473 
2474 /* Return 1 if EXPR is the integer constant zero or a complex constant
2475    of zero.  */
2476 
2477 int
2478 integer_zerop (const_tree expr)
2479 {
2480   switch (TREE_CODE (expr))
2481     {
2482     case INTEGER_CST:
2483       return wi::to_wide (expr) == 0;
2484     case COMPLEX_CST:
2485       return (integer_zerop (TREE_REALPART (expr))
2486 	      && integer_zerop (TREE_IMAGPART (expr)));
2487     case VECTOR_CST:
2488       return (VECTOR_CST_NPATTERNS (expr) == 1
2489 	      && VECTOR_CST_DUPLICATE_P (expr)
2490 	      && integer_zerop (VECTOR_CST_ENCODED_ELT (expr, 0)));
2491     default:
2492       return false;
2493     }
2494 }
2495 
2496 /* Return 1 if EXPR is the integer constant one or the corresponding
2497    complex constant.  */
2498 
2499 int
2500 integer_onep (const_tree expr)
2501 {
2502   switch (TREE_CODE (expr))
2503     {
2504     case INTEGER_CST:
2505       return wi::eq_p (wi::to_widest (expr), 1);
2506     case COMPLEX_CST:
2507       return (integer_onep (TREE_REALPART (expr))
2508 	      && integer_zerop (TREE_IMAGPART (expr)));
2509     case VECTOR_CST:
2510       return (VECTOR_CST_NPATTERNS (expr) == 1
2511 	      && VECTOR_CST_DUPLICATE_P (expr)
2512 	      && integer_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2513     default:
2514       return false;
2515     }
2516 }
2517 
2518 /* Return 1 if EXPR is the integer constant one.  For complex and vector,
2519    return 1 if every piece is the integer constant one.  */
2520 
2521 int
2522 integer_each_onep (const_tree expr)
2523 {
2524   if (TREE_CODE (expr) == COMPLEX_CST)
2525     return (integer_onep (TREE_REALPART (expr))
2526 	    && integer_onep (TREE_IMAGPART (expr)));
2527   else
2528     return integer_onep (expr);
2529 }
2530 
2531 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
2532    it contains, or a complex or vector whose subparts are such integers.  */
2533 
2534 int
2535 integer_all_onesp (const_tree expr)
2536 {
2537   if (TREE_CODE (expr) == COMPLEX_CST
2538       && integer_all_onesp (TREE_REALPART (expr))
2539       && integer_all_onesp (TREE_IMAGPART (expr)))
2540     return 1;
2541 
2542   else if (TREE_CODE (expr) == VECTOR_CST)
2543     return (VECTOR_CST_NPATTERNS (expr) == 1
2544 	    && VECTOR_CST_DUPLICATE_P (expr)
2545 	    && integer_all_onesp (VECTOR_CST_ENCODED_ELT (expr, 0)));
2546 
2547   else if (TREE_CODE (expr) != INTEGER_CST)
2548     return 0;
2549 
2550   return (wi::max_value (TYPE_PRECISION (TREE_TYPE (expr)), UNSIGNED)
2551 	  == wi::to_wide (expr));
2552 }
2553 
2554 /* Return 1 if EXPR is the integer constant minus one.  */
2555 
2556 int
2557 integer_minus_onep (const_tree expr)
2558 {
2559   if (TREE_CODE (expr) == COMPLEX_CST)
2560     return (integer_all_onesp (TREE_REALPART (expr))
2561 	    && integer_zerop (TREE_IMAGPART (expr)));
2562   else
2563     return integer_all_onesp (expr);
2564 }
2565 
2566 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
2567    one bit on).  */
2568 
2569 int
2570 integer_pow2p (const_tree expr)
2571 {
2572   if (TREE_CODE (expr) == COMPLEX_CST
2573       && integer_pow2p (TREE_REALPART (expr))
2574       && integer_zerop (TREE_IMAGPART (expr)))
2575     return 1;
2576 
2577   if (TREE_CODE (expr) != INTEGER_CST)
2578     return 0;
2579 
2580   return wi::popcount (wi::to_wide (expr)) == 1;
2581 }
2582 
2583 /* Return 1 if EXPR is an integer constant other than zero or a
2584    complex constant other than zero.  */
2585 
2586 int
2587 integer_nonzerop (const_tree expr)
2588 {
2589   return ((TREE_CODE (expr) == INTEGER_CST
2590 	   && wi::to_wide (expr) != 0)
2591 	  || (TREE_CODE (expr) == COMPLEX_CST
2592 	      && (integer_nonzerop (TREE_REALPART (expr))
2593 		  || integer_nonzerop (TREE_IMAGPART (expr)))));
2594 }
2595 
2596 /* Return 1 if EXPR is the integer constant one.  For vector,
2597    return 1 if every piece is the integer constant minus one
2598    (representing the value TRUE).  */
2599 
2600 int
2601 integer_truep (const_tree expr)
2602 {
2603   if (TREE_CODE (expr) == VECTOR_CST)
2604     return integer_all_onesp (expr);
2605   return integer_onep (expr);
2606 }
2607 
2608 /* Return 1 if EXPR is the fixed-point constant zero.  */
2609 
2610 int
2611 fixed_zerop (const_tree expr)
2612 {
2613   return (TREE_CODE (expr) == FIXED_CST
2614 	  && TREE_FIXED_CST (expr).data.is_zero ());
2615 }
2616 
2617 /* Return the power of two represented by a tree node known to be a
2618    power of two.  */
2619 
2620 int
2621 tree_log2 (const_tree expr)
2622 {
2623   if (TREE_CODE (expr) == COMPLEX_CST)
2624     return tree_log2 (TREE_REALPART (expr));
2625 
2626   return wi::exact_log2 (wi::to_wide (expr));
2627 }
2628 
2629 /* Similar, but return the largest integer Y such that 2 ** Y is less
2630    than or equal to EXPR.  */
2631 
2632 int
2633 tree_floor_log2 (const_tree expr)
2634 {
2635   if (TREE_CODE (expr) == COMPLEX_CST)
2636     return tree_log2 (TREE_REALPART (expr));
2637 
2638   return wi::floor_log2 (wi::to_wide (expr));
2639 }
2640 
2641 /* Return number of known trailing zero bits in EXPR, or, if the value of
2642    EXPR is known to be zero, the precision of it's type.  */
2643 
2644 unsigned int
2645 tree_ctz (const_tree expr)
2646 {
2647   if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
2648       && !POINTER_TYPE_P (TREE_TYPE (expr)))
2649     return 0;
2650 
2651   unsigned int ret1, ret2, prec = TYPE_PRECISION (TREE_TYPE (expr));
2652   switch (TREE_CODE (expr))
2653     {
2654     case INTEGER_CST:
2655       ret1 = wi::ctz (wi::to_wide (expr));
2656       return MIN (ret1, prec);
2657     case SSA_NAME:
2658       ret1 = wi::ctz (get_nonzero_bits (expr));
2659       return MIN (ret1, prec);
2660     case PLUS_EXPR:
2661     case MINUS_EXPR:
2662     case BIT_IOR_EXPR:
2663     case BIT_XOR_EXPR:
2664     case MIN_EXPR:
2665     case MAX_EXPR:
2666       ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2667       if (ret1 == 0)
2668 	return ret1;
2669       ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2670       return MIN (ret1, ret2);
2671     case POINTER_PLUS_EXPR:
2672       ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2673       ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2674       /* Second operand is sizetype, which could be in theory
2675 	 wider than pointer's precision.  Make sure we never
2676 	 return more than prec.  */
2677       ret2 = MIN (ret2, prec);
2678       return MIN (ret1, ret2);
2679     case BIT_AND_EXPR:
2680       ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2681       ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2682       return MAX (ret1, ret2);
2683     case MULT_EXPR:
2684       ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2685       ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2686       return MIN (ret1 + ret2, prec);
2687     case LSHIFT_EXPR:
2688       ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2689       if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2690 	  && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2691 	{
2692 	  ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2693 	  return MIN (ret1 + ret2, prec);
2694 	}
2695       return ret1;
2696     case RSHIFT_EXPR:
2697       if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2698 	  && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2699 	{
2700 	  ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2701 	  ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2702 	  if (ret1 > ret2)
2703 	    return ret1 - ret2;
2704 	}
2705       return 0;
2706     case TRUNC_DIV_EXPR:
2707     case CEIL_DIV_EXPR:
2708     case FLOOR_DIV_EXPR:
2709     case ROUND_DIV_EXPR:
2710     case EXACT_DIV_EXPR:
2711       if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
2712 	  && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) == 1)
2713 	{
2714 	  int l = tree_log2 (TREE_OPERAND (expr, 1));
2715 	  if (l >= 0)
2716 	    {
2717 	      ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2718 	      ret2 = l;
2719 	      if (ret1 > ret2)
2720 		return ret1 - ret2;
2721 	    }
2722 	}
2723       return 0;
2724     CASE_CONVERT:
2725       ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2726       if (ret1 && ret1 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
2727 	ret1 = prec;
2728       return MIN (ret1, prec);
2729     case SAVE_EXPR:
2730       return tree_ctz (TREE_OPERAND (expr, 0));
2731     case COND_EXPR:
2732       ret1 = tree_ctz (TREE_OPERAND (expr, 1));
2733       if (ret1 == 0)
2734 	return 0;
2735       ret2 = tree_ctz (TREE_OPERAND (expr, 2));
2736       return MIN (ret1, ret2);
2737     case COMPOUND_EXPR:
2738       return tree_ctz (TREE_OPERAND (expr, 1));
2739     case ADDR_EXPR:
2740       ret1 = get_pointer_alignment (CONST_CAST_TREE (expr));
2741       if (ret1 > BITS_PER_UNIT)
2742 	{
2743 	  ret1 = ctz_hwi (ret1 / BITS_PER_UNIT);
2744 	  return MIN (ret1, prec);
2745 	}
2746       return 0;
2747     default:
2748       return 0;
2749     }
2750 }
2751 
2752 /* Return 1 if EXPR is the real constant zero.  Trailing zeroes matter for
2753    decimal float constants, so don't return 1 for them.  */
2754 
2755 int
2756 real_zerop (const_tree expr)
2757 {
2758   switch (TREE_CODE (expr))
2759     {
2760     case REAL_CST:
2761       return real_equal (&TREE_REAL_CST (expr), &dconst0)
2762 	     && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2763     case COMPLEX_CST:
2764       return real_zerop (TREE_REALPART (expr))
2765 	     && real_zerop (TREE_IMAGPART (expr));
2766     case VECTOR_CST:
2767       {
2768 	/* Don't simply check for a duplicate because the predicate
2769 	   accepts both +0.0 and -0.0.  */
2770 	unsigned count = vector_cst_encoded_nelts (expr);
2771 	for (unsigned int i = 0; i < count; ++i)
2772 	  if (!real_zerop (VECTOR_CST_ENCODED_ELT (expr, i)))
2773 	    return false;
2774 	return true;
2775       }
2776     default:
2777       return false;
2778     }
2779 }
2780 
2781 /* Return 1 if EXPR is the real constant one in real or complex form.
2782    Trailing zeroes matter for decimal float constants, so don't return
2783    1 for them.  */
2784 
2785 int
2786 real_onep (const_tree expr)
2787 {
2788   switch (TREE_CODE (expr))
2789     {
2790     case REAL_CST:
2791       return real_equal (&TREE_REAL_CST (expr), &dconst1)
2792 	     && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2793     case COMPLEX_CST:
2794       return real_onep (TREE_REALPART (expr))
2795 	     && real_zerop (TREE_IMAGPART (expr));
2796     case VECTOR_CST:
2797       return (VECTOR_CST_NPATTERNS (expr) == 1
2798 	      && VECTOR_CST_DUPLICATE_P (expr)
2799 	      && real_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2800     default:
2801       return false;
2802     }
2803 }
2804 
2805 /* Return 1 if EXPR is the real constant minus one.  Trailing zeroes
2806    matter for decimal float constants, so don't return 1 for them.  */
2807 
2808 int
2809 real_minus_onep (const_tree expr)
2810 {
2811   switch (TREE_CODE (expr))
2812     {
2813     case REAL_CST:
2814       return real_equal (&TREE_REAL_CST (expr), &dconstm1)
2815 	     && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2816     case COMPLEX_CST:
2817       return real_minus_onep (TREE_REALPART (expr))
2818 	     && real_zerop (TREE_IMAGPART (expr));
2819     case VECTOR_CST:
2820       return (VECTOR_CST_NPATTERNS (expr) == 1
2821 	      && VECTOR_CST_DUPLICATE_P (expr)
2822 	      && real_minus_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2823     default:
2824       return false;
2825     }
2826 }
2827 
2828 /* Nonzero if EXP is a constant or a cast of a constant.  */
2829 
2830 int
2831 really_constant_p (const_tree exp)
2832 {
2833   /* This is not quite the same as STRIP_NOPS.  It does more.  */
2834   while (CONVERT_EXPR_P (exp)
2835 	 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2836     exp = TREE_OPERAND (exp, 0);
2837   return TREE_CONSTANT (exp);
2838 }
2839 
2840 /* Return true if T holds a polynomial pointer difference, storing it in
2841    *VALUE if so.  A true return means that T's precision is no greater
2842    than 64 bits, which is the largest address space we support, so *VALUE
2843    never loses precision.  However, the signedness of the result does
2844    not necessarily match the signedness of T: sometimes an unsigned type
2845    like sizetype is used to encode a value that is actually negative.  */
2846 
2847 bool
2848 ptrdiff_tree_p (const_tree t, poly_int64_pod *value)
2849 {
2850   if (!t)
2851     return false;
2852   if (TREE_CODE (t) == INTEGER_CST)
2853     {
2854       if (!cst_and_fits_in_hwi (t))
2855 	return false;
2856       *value = int_cst_value (t);
2857       return true;
2858     }
2859   if (POLY_INT_CST_P (t))
2860     {
2861       for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2862 	if (!cst_and_fits_in_hwi (POLY_INT_CST_COEFF (t, i)))
2863 	  return false;
2864       for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2865 	value->coeffs[i] = int_cst_value (POLY_INT_CST_COEFF (t, i));
2866       return true;
2867     }
2868   return false;
2869 }
2870 
2871 poly_int64
2872 tree_to_poly_int64 (const_tree t)
2873 {
2874   gcc_assert (tree_fits_poly_int64_p (t));
2875   if (POLY_INT_CST_P (t))
2876     return poly_int_cst_value (t).force_shwi ();
2877   return TREE_INT_CST_LOW (t);
2878 }
2879 
2880 poly_uint64
2881 tree_to_poly_uint64 (const_tree t)
2882 {
2883   gcc_assert (tree_fits_poly_uint64_p (t));
2884   if (POLY_INT_CST_P (t))
2885     return poly_int_cst_value (t).force_uhwi ();
2886   return TREE_INT_CST_LOW (t);
2887 }
2888 
2889 /* Return first list element whose TREE_VALUE is ELEM.
2890    Return 0 if ELEM is not in LIST.  */
2891 
2892 tree
2893 value_member (tree elem, tree list)
2894 {
2895   while (list)
2896     {
2897       if (elem == TREE_VALUE (list))
2898 	return list;
2899       list = TREE_CHAIN (list);
2900     }
2901   return NULL_TREE;
2902 }
2903 
2904 /* Return first list element whose TREE_PURPOSE is ELEM.
2905    Return 0 if ELEM is not in LIST.  */
2906 
2907 tree
2908 purpose_member (const_tree elem, tree list)
2909 {
2910   while (list)
2911     {
2912       if (elem == TREE_PURPOSE (list))
2913 	return list;
2914       list = TREE_CHAIN (list);
2915     }
2916   return NULL_TREE;
2917 }
2918 
2919 /* Return true if ELEM is in V.  */
2920 
2921 bool
2922 vec_member (const_tree elem, vec<tree, va_gc> *v)
2923 {
2924   unsigned ix;
2925   tree t;
2926   FOR_EACH_VEC_SAFE_ELT (v, ix, t)
2927     if (elem == t)
2928       return true;
2929   return false;
2930 }
2931 
2932 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2933    NULL_TREE.  */
2934 
2935 tree
2936 chain_index (int idx, tree chain)
2937 {
2938   for (; chain && idx > 0; --idx)
2939     chain = TREE_CHAIN (chain);
2940   return chain;
2941 }
2942 
2943 /* Return nonzero if ELEM is part of the chain CHAIN.  */
2944 
2945 int
2946 chain_member (const_tree elem, const_tree chain)
2947 {
2948   while (chain)
2949     {
2950       if (elem == chain)
2951 	return 1;
2952       chain = DECL_CHAIN (chain);
2953     }
2954 
2955   return 0;
2956 }
2957 
2958 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2959    We expect a null pointer to mark the end of the chain.
2960    This is the Lisp primitive `length'.  */
2961 
2962 int
2963 list_length (const_tree t)
2964 {
2965   const_tree p = t;
2966 #ifdef ENABLE_TREE_CHECKING
2967   const_tree q = t;
2968 #endif
2969   int len = 0;
2970 
2971   while (p)
2972     {
2973       p = TREE_CHAIN (p);
2974 #ifdef ENABLE_TREE_CHECKING
2975       if (len % 2)
2976 	q = TREE_CHAIN (q);
2977       gcc_assert (p != q);
2978 #endif
2979       len++;
2980     }
2981 
2982   return len;
2983 }
2984 
2985 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2986    UNION_TYPE TYPE, or NULL_TREE if none.  */
2987 
2988 tree
2989 first_field (const_tree type)
2990 {
2991   tree t = TYPE_FIELDS (type);
2992   while (t && TREE_CODE (t) != FIELD_DECL)
2993     t = TREE_CHAIN (t);
2994   return t;
2995 }
2996 
2997 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2998    by modifying the last node in chain 1 to point to chain 2.
2999    This is the Lisp primitive `nconc'.  */
3000 
3001 tree
3002 chainon (tree op1, tree op2)
3003 {
3004   tree t1;
3005 
3006   if (!op1)
3007     return op2;
3008   if (!op2)
3009     return op1;
3010 
3011   for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
3012     continue;
3013   TREE_CHAIN (t1) = op2;
3014 
3015 #ifdef ENABLE_TREE_CHECKING
3016   {
3017     tree t2;
3018     for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
3019       gcc_assert (t2 != t1);
3020   }
3021 #endif
3022 
3023   return op1;
3024 }
3025 
3026 /* Return the last node in a chain of nodes (chained through TREE_CHAIN).  */
3027 
3028 tree
3029 tree_last (tree chain)
3030 {
3031   tree next;
3032   if (chain)
3033     while ((next = TREE_CHAIN (chain)))
3034       chain = next;
3035   return chain;
3036 }
3037 
3038 /* Reverse the order of elements in the chain T,
3039    and return the new head of the chain (old last element).  */
3040 
3041 tree
3042 nreverse (tree t)
3043 {
3044   tree prev = 0, decl, next;
3045   for (decl = t; decl; decl = next)
3046     {
3047       /* We shouldn't be using this function to reverse BLOCK chains; we
3048 	 have blocks_nreverse for that.  */
3049       gcc_checking_assert (TREE_CODE (decl) != BLOCK);
3050       next = TREE_CHAIN (decl);
3051       TREE_CHAIN (decl) = prev;
3052       prev = decl;
3053     }
3054   return prev;
3055 }
3056 
3057 /* Return a newly created TREE_LIST node whose
3058    purpose and value fields are PARM and VALUE.  */
3059 
3060 tree
3061 build_tree_list (tree parm, tree value MEM_STAT_DECL)
3062 {
3063   tree t = make_node (TREE_LIST PASS_MEM_STAT);
3064   TREE_PURPOSE (t) = parm;
3065   TREE_VALUE (t) = value;
3066   return t;
3067 }
3068 
3069 /* Build a chain of TREE_LIST nodes from a vector.  */
3070 
3071 tree
3072 build_tree_list_vec (const vec<tree, va_gc> *vec MEM_STAT_DECL)
3073 {
3074   tree ret = NULL_TREE;
3075   tree *pp = &ret;
3076   unsigned int i;
3077   tree t;
3078   FOR_EACH_VEC_SAFE_ELT (vec, i, t)
3079     {
3080       *pp = build_tree_list (NULL, t PASS_MEM_STAT);
3081       pp = &TREE_CHAIN (*pp);
3082     }
3083   return ret;
3084 }
3085 
3086 /* Return a newly created TREE_LIST node whose
3087    purpose and value fields are PURPOSE and VALUE
3088    and whose TREE_CHAIN is CHAIN.  */
3089 
3090 tree
3091 tree_cons (tree purpose, tree value, tree chain MEM_STAT_DECL)
3092 {
3093   tree node;
3094 
3095   node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
3096   memset (node, 0, sizeof (struct tree_common));
3097 
3098   record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
3099 
3100   TREE_SET_CODE (node, TREE_LIST);
3101   TREE_CHAIN (node) = chain;
3102   TREE_PURPOSE (node) = purpose;
3103   TREE_VALUE (node) = value;
3104   return node;
3105 }
3106 
3107 /* Return the values of the elements of a CONSTRUCTOR as a vector of
3108    trees.  */
3109 
3110 vec<tree, va_gc> *
3111 ctor_to_vec (tree ctor)
3112 {
3113   vec<tree, va_gc> *vec;
3114   vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
3115   unsigned int ix;
3116   tree val;
3117 
3118   FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
3119     vec->quick_push (val);
3120 
3121   return vec;
3122 }
3123 
3124 /* Return the size nominally occupied by an object of type TYPE
3125    when it resides in memory.  The value is measured in units of bytes,
3126    and its data type is that normally used for type sizes
3127    (which is the first type created by make_signed_type or
3128    make_unsigned_type).  */
3129 
3130 tree
3131 size_in_bytes_loc (location_t loc, const_tree type)
3132 {
3133   tree t;
3134 
3135   if (type == error_mark_node)
3136     return integer_zero_node;
3137 
3138   type = TYPE_MAIN_VARIANT (type);
3139   t = TYPE_SIZE_UNIT (type);
3140 
3141   if (t == 0)
3142     {
3143       lang_hooks.types.incomplete_type_error (loc, NULL_TREE, type);
3144       return size_zero_node;
3145     }
3146 
3147   return t;
3148 }
3149 
3150 /* Return the size of TYPE (in bytes) as a wide integer
3151    or return -1 if the size can vary or is larger than an integer.  */
3152 
3153 HOST_WIDE_INT
3154 int_size_in_bytes (const_tree type)
3155 {
3156   tree t;
3157 
3158   if (type == error_mark_node)
3159     return 0;
3160 
3161   type = TYPE_MAIN_VARIANT (type);
3162   t = TYPE_SIZE_UNIT (type);
3163 
3164   if (t && tree_fits_uhwi_p (t))
3165     return TREE_INT_CST_LOW (t);
3166   else
3167     return -1;
3168 }
3169 
3170 /* Return the maximum size of TYPE (in bytes) as a wide integer
3171    or return -1 if the size can vary or is larger than an integer.  */
3172 
3173 HOST_WIDE_INT
3174 max_int_size_in_bytes (const_tree type)
3175 {
3176   HOST_WIDE_INT size = -1;
3177   tree size_tree;
3178 
3179   /* If this is an array type, check for a possible MAX_SIZE attached.  */
3180 
3181   if (TREE_CODE (type) == ARRAY_TYPE)
3182     {
3183       size_tree = TYPE_ARRAY_MAX_SIZE (type);
3184 
3185       if (size_tree && tree_fits_uhwi_p (size_tree))
3186 	size = tree_to_uhwi (size_tree);
3187     }
3188 
3189   /* If we still haven't been able to get a size, see if the language
3190      can compute a maximum size.  */
3191 
3192   if (size == -1)
3193     {
3194       size_tree = lang_hooks.types.max_size (type);
3195 
3196       if (size_tree && tree_fits_uhwi_p (size_tree))
3197 	size = tree_to_uhwi (size_tree);
3198     }
3199 
3200   return size;
3201 }
3202 
3203 /* Return the bit position of FIELD, in bits from the start of the record.
3204    This is a tree of type bitsizetype.  */
3205 
3206 tree
3207 bit_position (const_tree field)
3208 {
3209   return bit_from_pos (DECL_FIELD_OFFSET (field),
3210 		       DECL_FIELD_BIT_OFFSET (field));
3211 }
3212 
3213 /* Return the byte position of FIELD, in bytes from the start of the record.
3214    This is a tree of type sizetype.  */
3215 
3216 tree
3217 byte_position (const_tree field)
3218 {
3219   return byte_from_pos (DECL_FIELD_OFFSET (field),
3220 			DECL_FIELD_BIT_OFFSET (field));
3221 }
3222 
3223 /* Likewise, but return as an integer.  It must be representable in
3224    that way (since it could be a signed value, we don't have the
3225    option of returning -1 like int_size_in_byte can.  */
3226 
3227 HOST_WIDE_INT
3228 int_byte_position (const_tree field)
3229 {
3230   return tree_to_shwi (byte_position (field));
3231 }
3232 
3233 /* Return the strictest alignment, in bits, that T is known to have.  */
3234 
3235 unsigned int
3236 expr_align (const_tree t)
3237 {
3238   unsigned int align0, align1;
3239 
3240   switch (TREE_CODE (t))
3241     {
3242     CASE_CONVERT:  case NON_LVALUE_EXPR:
3243       /* If we have conversions, we know that the alignment of the
3244 	 object must meet each of the alignments of the types.  */
3245       align0 = expr_align (TREE_OPERAND (t, 0));
3246       align1 = TYPE_ALIGN (TREE_TYPE (t));
3247       return MAX (align0, align1);
3248 
3249     case SAVE_EXPR:         case COMPOUND_EXPR:       case MODIFY_EXPR:
3250     case INIT_EXPR:         case TARGET_EXPR:         case WITH_CLEANUP_EXPR:
3251     case CLEANUP_POINT_EXPR:
3252       /* These don't change the alignment of an object.  */
3253       return expr_align (TREE_OPERAND (t, 0));
3254 
3255     case COND_EXPR:
3256       /* The best we can do is say that the alignment is the least aligned
3257 	 of the two arms.  */
3258       align0 = expr_align (TREE_OPERAND (t, 1));
3259       align1 = expr_align (TREE_OPERAND (t, 2));
3260       return MIN (align0, align1);
3261 
3262       /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
3263 	 meaningfully, it's always 1.  */
3264     case LABEL_DECL:     case CONST_DECL:
3265     case VAR_DECL:       case PARM_DECL:   case RESULT_DECL:
3266     case FUNCTION_DECL:
3267       gcc_assert (DECL_ALIGN (t) != 0);
3268       return DECL_ALIGN (t);
3269 
3270     default:
3271       break;
3272     }
3273 
3274   /* Otherwise take the alignment from that of the type.  */
3275   return TYPE_ALIGN (TREE_TYPE (t));
3276 }
3277 
3278 /* Return, as a tree node, the number of elements for TYPE (which is an
3279    ARRAY_TYPE) minus one. This counts only elements of the top array.  */
3280 
3281 tree
3282 array_type_nelts (const_tree type)
3283 {
3284   tree index_type, min, max;
3285 
3286   /* If they did it with unspecified bounds, then we should have already
3287      given an error about it before we got here.  */
3288   if (! TYPE_DOMAIN (type))
3289     return error_mark_node;
3290 
3291   index_type = TYPE_DOMAIN (type);
3292   min = TYPE_MIN_VALUE (index_type);
3293   max = TYPE_MAX_VALUE (index_type);
3294 
3295   /* TYPE_MAX_VALUE may not be set if the array has unknown length.  */
3296   if (!max)
3297     return error_mark_node;
3298 
3299   return (integer_zerop (min)
3300 	  ? max
3301 	  : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
3302 }
3303 
3304 /* If arg is static -- a reference to an object in static storage -- then
3305    return the object.  This is not the same as the C meaning of `static'.
3306    If arg isn't static, return NULL.  */
3307 
3308 tree
3309 staticp (tree arg)
3310 {
3311   switch (TREE_CODE (arg))
3312     {
3313     case FUNCTION_DECL:
3314       /* Nested functions are static, even though taking their address will
3315 	 involve a trampoline as we unnest the nested function and create
3316 	 the trampoline on the tree level.  */
3317       return arg;
3318 
3319     case VAR_DECL:
3320       return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3321 	      && ! DECL_THREAD_LOCAL_P (arg)
3322 	      && ! DECL_DLLIMPORT_P (arg)
3323 	      ? arg : NULL);
3324 
3325     case CONST_DECL:
3326       return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3327 	      ? arg : NULL);
3328 
3329     case CONSTRUCTOR:
3330       return TREE_STATIC (arg) ? arg : NULL;
3331 
3332     case LABEL_DECL:
3333     case STRING_CST:
3334       return arg;
3335 
3336     case COMPONENT_REF:
3337       /* If the thing being referenced is not a field, then it is
3338 	 something language specific.  */
3339       gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
3340 
3341       /* If we are referencing a bitfield, we can't evaluate an
3342 	 ADDR_EXPR at compile time and so it isn't a constant.  */
3343       if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
3344 	return NULL;
3345 
3346       return staticp (TREE_OPERAND (arg, 0));
3347 
3348     case BIT_FIELD_REF:
3349       return NULL;
3350 
3351     case INDIRECT_REF:
3352       return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
3353 
3354     case ARRAY_REF:
3355     case ARRAY_RANGE_REF:
3356       if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
3357 	  && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
3358 	return staticp (TREE_OPERAND (arg, 0));
3359       else
3360 	return NULL;
3361 
3362     case COMPOUND_LITERAL_EXPR:
3363       return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
3364 
3365     default:
3366       return NULL;
3367     }
3368 }
3369 
3370 
3371 
3372 
3373 /* Return whether OP is a DECL whose address is function-invariant.  */
3374 
3375 bool
3376 decl_address_invariant_p (const_tree op)
3377 {
3378   /* The conditions below are slightly less strict than the one in
3379      staticp.  */
3380 
3381   switch (TREE_CODE (op))
3382     {
3383     case PARM_DECL:
3384     case RESULT_DECL:
3385     case LABEL_DECL:
3386     case FUNCTION_DECL:
3387       return true;
3388 
3389     case VAR_DECL:
3390       if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3391           || DECL_THREAD_LOCAL_P (op)
3392           || DECL_CONTEXT (op) == current_function_decl
3393           || decl_function_context (op) == current_function_decl)
3394         return true;
3395       break;
3396 
3397     case CONST_DECL:
3398       if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3399           || decl_function_context (op) == current_function_decl)
3400         return true;
3401       break;
3402 
3403     default:
3404       break;
3405     }
3406 
3407   return false;
3408 }
3409 
3410 /* Return whether OP is a DECL whose address is interprocedural-invariant.  */
3411 
3412 bool
3413 decl_address_ip_invariant_p (const_tree op)
3414 {
3415   /* The conditions below are slightly less strict than the one in
3416      staticp.  */
3417 
3418   switch (TREE_CODE (op))
3419     {
3420     case LABEL_DECL:
3421     case FUNCTION_DECL:
3422     case STRING_CST:
3423       return true;
3424 
3425     case VAR_DECL:
3426       if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
3427            && !DECL_DLLIMPORT_P (op))
3428           || DECL_THREAD_LOCAL_P (op))
3429         return true;
3430       break;
3431 
3432     case CONST_DECL:
3433       if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
3434         return true;
3435       break;
3436 
3437     default:
3438       break;
3439     }
3440 
3441   return false;
3442 }
3443 
3444 
3445 /* Return true if T is function-invariant (internal function, does
3446    not handle arithmetic; that's handled in skip_simple_arithmetic and
3447    tree_invariant_p).  */
3448 
3449 static bool
3450 tree_invariant_p_1 (tree t)
3451 {
3452   tree op;
3453 
3454   if (TREE_CONSTANT (t)
3455       || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
3456     return true;
3457 
3458   switch (TREE_CODE (t))
3459     {
3460     case SAVE_EXPR:
3461       return true;
3462 
3463     case ADDR_EXPR:
3464       op = TREE_OPERAND (t, 0);
3465       while (handled_component_p (op))
3466 	{
3467 	  switch (TREE_CODE (op))
3468 	    {
3469 	    case ARRAY_REF:
3470 	    case ARRAY_RANGE_REF:
3471 	      if (!tree_invariant_p (TREE_OPERAND (op, 1))
3472 		  || TREE_OPERAND (op, 2) != NULL_TREE
3473 		  || TREE_OPERAND (op, 3) != NULL_TREE)
3474 		return false;
3475 	      break;
3476 
3477 	    case COMPONENT_REF:
3478 	      if (TREE_OPERAND (op, 2) != NULL_TREE)
3479 		return false;
3480 	      break;
3481 
3482 	    default:;
3483 	    }
3484 	  op = TREE_OPERAND (op, 0);
3485 	}
3486 
3487       return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
3488 
3489     default:
3490       break;
3491     }
3492 
3493   return false;
3494 }
3495 
3496 /* Return true if T is function-invariant.  */
3497 
3498 bool
3499 tree_invariant_p (tree t)
3500 {
3501   tree inner = skip_simple_arithmetic (t);
3502   return tree_invariant_p_1 (inner);
3503 }
3504 
3505 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
3506    Do this to any expression which may be used in more than one place,
3507    but must be evaluated only once.
3508 
3509    Normally, expand_expr would reevaluate the expression each time.
3510    Calling save_expr produces something that is evaluated and recorded
3511    the first time expand_expr is called on it.  Subsequent calls to
3512    expand_expr just reuse the recorded value.
3513 
3514    The call to expand_expr that generates code that actually computes
3515    the value is the first call *at compile time*.  Subsequent calls
3516    *at compile time* generate code to use the saved value.
3517    This produces correct result provided that *at run time* control
3518    always flows through the insns made by the first expand_expr
3519    before reaching the other places where the save_expr was evaluated.
3520    You, the caller of save_expr, must make sure this is so.
3521 
3522    Constants, and certain read-only nodes, are returned with no
3523    SAVE_EXPR because that is safe.  Expressions containing placeholders
3524    are not touched; see tree.def for an explanation of what these
3525    are used for.  */
3526 
3527 tree
3528 save_expr (tree expr)
3529 {
3530   tree inner;
3531 
3532   /* If the tree evaluates to a constant, then we don't want to hide that
3533      fact (i.e. this allows further folding, and direct checks for constants).
3534      However, a read-only object that has side effects cannot be bypassed.
3535      Since it is no problem to reevaluate literals, we just return the
3536      literal node.  */
3537   inner = skip_simple_arithmetic (expr);
3538   if (TREE_CODE (inner) == ERROR_MARK)
3539     return inner;
3540 
3541   if (tree_invariant_p_1 (inner))
3542     return expr;
3543 
3544   /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
3545      it means that the size or offset of some field of an object depends on
3546      the value within another field.
3547 
3548      Note that it must not be the case that EXPR contains both a PLACEHOLDER_EXPR
3549      and some variable since it would then need to be both evaluated once and
3550      evaluated more than once.  Front-ends must assure this case cannot
3551      happen by surrounding any such subexpressions in their own SAVE_EXPR
3552      and forcing evaluation at the proper time.  */
3553   if (contains_placeholder_p (inner))
3554     return expr;
3555 
3556   expr = build1_loc (EXPR_LOCATION (expr), SAVE_EXPR, TREE_TYPE (expr), expr);
3557 
3558   /* This expression might be placed ahead of a jump to ensure that the
3559      value was computed on both sides of the jump.  So make sure it isn't
3560      eliminated as dead.  */
3561   TREE_SIDE_EFFECTS (expr) = 1;
3562   return expr;
3563 }
3564 
3565 /* Look inside EXPR into any simple arithmetic operations.  Return the
3566    outermost non-arithmetic or non-invariant node.  */
3567 
3568 tree
3569 skip_simple_arithmetic (tree expr)
3570 {
3571   /* We don't care about whether this can be used as an lvalue in this
3572      context.  */
3573   while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3574     expr = TREE_OPERAND (expr, 0);
3575 
3576   /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
3577      a constant, it will be more efficient to not make another SAVE_EXPR since
3578      it will allow better simplification and GCSE will be able to merge the
3579      computations if they actually occur.  */
3580   while (true)
3581     {
3582       if (UNARY_CLASS_P (expr))
3583 	expr = TREE_OPERAND (expr, 0);
3584       else if (BINARY_CLASS_P (expr))
3585 	{
3586 	  if (tree_invariant_p (TREE_OPERAND (expr, 1)))
3587 	    expr = TREE_OPERAND (expr, 0);
3588 	  else if (tree_invariant_p (TREE_OPERAND (expr, 0)))
3589 	    expr = TREE_OPERAND (expr, 1);
3590 	  else
3591 	    break;
3592 	}
3593       else
3594 	break;
3595     }
3596 
3597   return expr;
3598 }
3599 
3600 /* Look inside EXPR into simple arithmetic operations involving constants.
3601    Return the outermost non-arithmetic or non-constant node.  */
3602 
3603 tree
3604 skip_simple_constant_arithmetic (tree expr)
3605 {
3606   while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3607     expr = TREE_OPERAND (expr, 0);
3608 
3609   while (true)
3610     {
3611       if (UNARY_CLASS_P (expr))
3612 	expr = TREE_OPERAND (expr, 0);
3613       else if (BINARY_CLASS_P (expr))
3614 	{
3615 	  if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
3616 	    expr = TREE_OPERAND (expr, 0);
3617 	  else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
3618 	    expr = TREE_OPERAND (expr, 1);
3619 	  else
3620 	    break;
3621 	}
3622       else
3623 	break;
3624     }
3625 
3626   return expr;
3627 }
3628 
3629 /* Return which tree structure is used by T.  */
3630 
3631 enum tree_node_structure_enum
3632 tree_node_structure (const_tree t)
3633 {
3634   const enum tree_code code = TREE_CODE (t);
3635   return tree_node_structure_for_code (code);
3636 }
3637 
3638 /* Set various status flags when building a CALL_EXPR object T.  */
3639 
3640 static void
3641 process_call_operands (tree t)
3642 {
3643   bool side_effects = TREE_SIDE_EFFECTS (t);
3644   bool read_only = false;
3645   int i = call_expr_flags (t);
3646 
3647   /* Calls have side-effects, except those to const or pure functions.  */
3648   if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
3649     side_effects = true;
3650   /* Propagate TREE_READONLY of arguments for const functions.  */
3651   if (i & ECF_CONST)
3652     read_only = true;
3653 
3654   if (!side_effects || read_only)
3655     for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
3656       {
3657 	tree op = TREE_OPERAND (t, i);
3658 	if (op && TREE_SIDE_EFFECTS (op))
3659 	  side_effects = true;
3660 	if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
3661 	  read_only = false;
3662       }
3663 
3664   TREE_SIDE_EFFECTS (t) = side_effects;
3665   TREE_READONLY (t) = read_only;
3666 }
3667 
3668 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
3669    size or offset that depends on a field within a record.  */
3670 
3671 bool
3672 contains_placeholder_p (const_tree exp)
3673 {
3674   enum tree_code code;
3675 
3676   if (!exp)
3677     return 0;
3678 
3679   code = TREE_CODE (exp);
3680   if (code == PLACEHOLDER_EXPR)
3681     return 1;
3682 
3683   switch (TREE_CODE_CLASS (code))
3684     {
3685     case tcc_reference:
3686       /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
3687 	 position computations since they will be converted into a
3688 	 WITH_RECORD_EXPR involving the reference, which will assume
3689 	 here will be valid.  */
3690       return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3691 
3692     case tcc_exceptional:
3693       if (code == TREE_LIST)
3694 	return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
3695 		|| CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
3696       break;
3697 
3698     case tcc_unary:
3699     case tcc_binary:
3700     case tcc_comparison:
3701     case tcc_expression:
3702       switch (code)
3703 	{
3704 	case COMPOUND_EXPR:
3705 	  /* Ignoring the first operand isn't quite right, but works best.  */
3706 	  return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
3707 
3708 	case COND_EXPR:
3709 	  return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3710 		  || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
3711 		  || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
3712 
3713 	case SAVE_EXPR:
3714 	  /* The save_expr function never wraps anything containing
3715 	     a PLACEHOLDER_EXPR. */
3716 	  return 0;
3717 
3718 	default:
3719 	  break;
3720 	}
3721 
3722       switch (TREE_CODE_LENGTH (code))
3723 	{
3724 	case 1:
3725 	  return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3726 	case 2:
3727 	  return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3728 		  || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
3729 	default:
3730 	  return 0;
3731 	}
3732 
3733     case tcc_vl_exp:
3734       switch (code)
3735 	{
3736 	case CALL_EXPR:
3737 	  {
3738 	    const_tree arg;
3739 	    const_call_expr_arg_iterator iter;
3740 	    FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
3741 	      if (CONTAINS_PLACEHOLDER_P (arg))
3742 		return 1;
3743 	    return 0;
3744 	  }
3745 	default:
3746 	  return 0;
3747 	}
3748 
3749     default:
3750       return 0;
3751     }
3752   return 0;
3753 }
3754 
3755 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
3756    directly.  This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
3757    field positions.  */
3758 
3759 static bool
3760 type_contains_placeholder_1 (const_tree type)
3761 {
3762   /* If the size contains a placeholder or the parent type (component type in
3763      the case of arrays) type involves a placeholder, this type does.  */
3764   if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
3765       || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
3766       || (!POINTER_TYPE_P (type)
3767 	  && TREE_TYPE (type)
3768 	  && type_contains_placeholder_p (TREE_TYPE (type))))
3769     return true;
3770 
3771   /* Now do type-specific checks.  Note that the last part of the check above
3772      greatly limits what we have to do below.  */
3773   switch (TREE_CODE (type))
3774     {
3775     case VOID_TYPE:
3776     case POINTER_BOUNDS_TYPE:
3777     case COMPLEX_TYPE:
3778     case ENUMERAL_TYPE:
3779     case BOOLEAN_TYPE:
3780     case POINTER_TYPE:
3781     case OFFSET_TYPE:
3782     case REFERENCE_TYPE:
3783     case METHOD_TYPE:
3784     case FUNCTION_TYPE:
3785     case VECTOR_TYPE:
3786     case NULLPTR_TYPE:
3787       return false;
3788 
3789     case INTEGER_TYPE:
3790     case REAL_TYPE:
3791     case FIXED_POINT_TYPE:
3792       /* Here we just check the bounds.  */
3793       return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
3794 	      || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
3795 
3796     case ARRAY_TYPE:
3797       /* We have already checked the component type above, so just check
3798 	 the domain type.  Flexible array members have a null domain.  */
3799       return TYPE_DOMAIN (type) ?
3800 	type_contains_placeholder_p (TYPE_DOMAIN (type)) : false;
3801 
3802     case RECORD_TYPE:
3803     case UNION_TYPE:
3804     case QUAL_UNION_TYPE:
3805       {
3806 	tree field;
3807 
3808 	for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3809 	  if (TREE_CODE (field) == FIELD_DECL
3810 	      && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
3811 		  || (TREE_CODE (type) == QUAL_UNION_TYPE
3812 		      && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
3813 		  || type_contains_placeholder_p (TREE_TYPE (field))))
3814 	    return true;
3815 
3816 	return false;
3817       }
3818 
3819     default:
3820       gcc_unreachable ();
3821     }
3822 }
3823 
3824 /* Wrapper around above function used to cache its result.  */
3825 
3826 bool
3827 type_contains_placeholder_p (tree type)
3828 {
3829   bool result;
3830 
3831   /* If the contains_placeholder_bits field has been initialized,
3832      then we know the answer.  */
3833   if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
3834     return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
3835 
3836   /* Indicate that we've seen this type node, and the answer is false.
3837      This is what we want to return if we run into recursion via fields.  */
3838   TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
3839 
3840   /* Compute the real value.  */
3841   result = type_contains_placeholder_1 (type);
3842 
3843   /* Store the real value.  */
3844   TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
3845 
3846   return result;
3847 }
3848 
3849 /* Push tree EXP onto vector QUEUE if it is not already present.  */
3850 
3851 static void
3852 push_without_duplicates (tree exp, vec<tree> *queue)
3853 {
3854   unsigned int i;
3855   tree iter;
3856 
3857   FOR_EACH_VEC_ELT (*queue, i, iter)
3858     if (simple_cst_equal (iter, exp) == 1)
3859       break;
3860 
3861   if (!iter)
3862     queue->safe_push (exp);
3863 }
3864 
3865 /* Given a tree EXP, find all occurrences of references to fields
3866    in a PLACEHOLDER_EXPR and place them in vector REFS without
3867    duplicates.  Also record VAR_DECLs and CONST_DECLs.  Note that
3868    we assume here that EXP contains only arithmetic expressions
3869    or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3870    argument list.  */
3871 
3872 void
3873 find_placeholder_in_expr (tree exp, vec<tree> *refs)
3874 {
3875   enum tree_code code = TREE_CODE (exp);
3876   tree inner;
3877   int i;
3878 
3879   /* We handle TREE_LIST and COMPONENT_REF separately.  */
3880   if (code == TREE_LIST)
3881     {
3882       FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3883       FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3884     }
3885   else if (code == COMPONENT_REF)
3886     {
3887       for (inner = TREE_OPERAND (exp, 0);
3888 	   REFERENCE_CLASS_P (inner);
3889 	   inner = TREE_OPERAND (inner, 0))
3890 	;
3891 
3892       if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3893 	push_without_duplicates (exp, refs);
3894       else
3895 	FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3896    }
3897   else
3898     switch (TREE_CODE_CLASS (code))
3899       {
3900       case tcc_constant:
3901 	break;
3902 
3903       case tcc_declaration:
3904 	/* Variables allocated to static storage can stay.  */
3905         if (!TREE_STATIC (exp))
3906 	  push_without_duplicates (exp, refs);
3907 	break;
3908 
3909       case tcc_expression:
3910 	/* This is the pattern built in ada/make_aligning_type.  */
3911 	if (code == ADDR_EXPR
3912 	    && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3913 	  {
3914 	    push_without_duplicates (exp, refs);
3915 	    break;
3916 	  }
3917 
3918         /* Fall through.  */
3919 
3920       case tcc_exceptional:
3921       case tcc_unary:
3922       case tcc_binary:
3923       case tcc_comparison:
3924       case tcc_reference:
3925 	for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3926 	  FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3927 	break;
3928 
3929       case tcc_vl_exp:
3930 	for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3931 	  FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3932 	break;
3933 
3934       default:
3935 	gcc_unreachable ();
3936       }
3937 }
3938 
3939 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3940    return a tree with all occurrences of references to F in a
3941    PLACEHOLDER_EXPR replaced by R.  Also handle VAR_DECLs and
3942    CONST_DECLs.  Note that we assume here that EXP contains only
3943    arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3944    occurring only in their argument list.  */
3945 
3946 tree
3947 substitute_in_expr (tree exp, tree f, tree r)
3948 {
3949   enum tree_code code = TREE_CODE (exp);
3950   tree op0, op1, op2, op3;
3951   tree new_tree;
3952 
3953   /* We handle TREE_LIST and COMPONENT_REF separately.  */
3954   if (code == TREE_LIST)
3955     {
3956       op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3957       op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3958       if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3959 	return exp;
3960 
3961       return tree_cons (TREE_PURPOSE (exp), op1, op0);
3962     }
3963   else if (code == COMPONENT_REF)
3964     {
3965       tree inner;
3966 
3967       /* If this expression is getting a value from a PLACEHOLDER_EXPR
3968 	 and it is the right field, replace it with R.  */
3969       for (inner = TREE_OPERAND (exp, 0);
3970 	   REFERENCE_CLASS_P (inner);
3971 	   inner = TREE_OPERAND (inner, 0))
3972 	;
3973 
3974       /* The field.  */
3975       op1 = TREE_OPERAND (exp, 1);
3976 
3977       if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3978 	return r;
3979 
3980       /* If this expression hasn't been completed let, leave it alone.  */
3981       if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3982 	return exp;
3983 
3984       op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3985       if (op0 == TREE_OPERAND (exp, 0))
3986 	return exp;
3987 
3988       new_tree
3989 	= fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3990    }
3991   else
3992     switch (TREE_CODE_CLASS (code))
3993       {
3994       case tcc_constant:
3995 	return exp;
3996 
3997       case tcc_declaration:
3998 	if (exp == f)
3999 	  return r;
4000 	else
4001 	  return exp;
4002 
4003       case tcc_expression:
4004 	if (exp == f)
4005 	  return r;
4006 
4007         /* Fall through.  */
4008 
4009       case tcc_exceptional:
4010       case tcc_unary:
4011       case tcc_binary:
4012       case tcc_comparison:
4013       case tcc_reference:
4014 	switch (TREE_CODE_LENGTH (code))
4015 	  {
4016 	  case 0:
4017 	    return exp;
4018 
4019 	  case 1:
4020 	    op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4021 	    if (op0 == TREE_OPERAND (exp, 0))
4022 	      return exp;
4023 
4024 	    new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4025 	    break;
4026 
4027 	  case 2:
4028 	    op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4029 	    op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4030 
4031 	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4032 	      return exp;
4033 
4034 	    new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4035 	    break;
4036 
4037 	  case 3:
4038 	    op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4039 	    op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4040 	    op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4041 
4042 	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4043 		&& op2 == TREE_OPERAND (exp, 2))
4044 	      return exp;
4045 
4046 	    new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4047 	    break;
4048 
4049 	  case 4:
4050 	    op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4051 	    op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4052 	    op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4053 	    op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
4054 
4055 	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4056 		&& op2 == TREE_OPERAND (exp, 2)
4057 		&& op3 == TREE_OPERAND (exp, 3))
4058 	      return exp;
4059 
4060 	    new_tree
4061 	      = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4062 	    break;
4063 
4064 	  default:
4065 	    gcc_unreachable ();
4066 	  }
4067 	break;
4068 
4069       case tcc_vl_exp:
4070 	{
4071 	  int i;
4072 
4073 	  new_tree = NULL_TREE;
4074 
4075 	  /* If we are trying to replace F with a constant or with another
4076 	     instance of one of the arguments of the call, inline back
4077 	     functions which do nothing else than computing a value from
4078 	     the arguments they are passed.  This makes it possible to
4079 	     fold partially or entirely the replacement expression.  */
4080 	  if (code == CALL_EXPR)
4081 	    {
4082 	      bool maybe_inline = false;
4083 	      if (CONSTANT_CLASS_P (r))
4084 		maybe_inline = true;
4085 	      else
4086 		for (i = 3; i < TREE_OPERAND_LENGTH (exp); i++)
4087 		  if (operand_equal_p (TREE_OPERAND (exp, i), r, 0))
4088 		    {
4089 		      maybe_inline = true;
4090 		      break;
4091 		    }
4092 	      if (maybe_inline)
4093 		{
4094 		  tree t = maybe_inline_call_in_expr (exp);
4095 		  if (t)
4096 		    return SUBSTITUTE_IN_EXPR (t, f, r);
4097 		}
4098 	    }
4099 
4100 	  for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4101 	    {
4102 	      tree op = TREE_OPERAND (exp, i);
4103 	      tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
4104 	      if (new_op != op)
4105 		{
4106 		  if (!new_tree)
4107 		    new_tree = copy_node (exp);
4108 		  TREE_OPERAND (new_tree, i) = new_op;
4109 		}
4110 	    }
4111 
4112 	  if (new_tree)
4113 	    {
4114 	      new_tree = fold (new_tree);
4115 	      if (TREE_CODE (new_tree) == CALL_EXPR)
4116 		process_call_operands (new_tree);
4117 	    }
4118 	  else
4119 	    return exp;
4120 	}
4121 	break;
4122 
4123       default:
4124 	gcc_unreachable ();
4125       }
4126 
4127   TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4128 
4129   if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4130     TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4131 
4132   return new_tree;
4133 }
4134 
4135 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
4136    for it within OBJ, a tree that is an object or a chain of references.  */
4137 
4138 tree
4139 substitute_placeholder_in_expr (tree exp, tree obj)
4140 {
4141   enum tree_code code = TREE_CODE (exp);
4142   tree op0, op1, op2, op3;
4143   tree new_tree;
4144 
4145   /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
4146      in the chain of OBJ.  */
4147   if (code == PLACEHOLDER_EXPR)
4148     {
4149       tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
4150       tree elt;
4151 
4152       for (elt = obj; elt != 0;
4153 	   elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4154 		   || TREE_CODE (elt) == COND_EXPR)
4155 		  ? TREE_OPERAND (elt, 1)
4156 		  : (REFERENCE_CLASS_P (elt)
4157 		     || UNARY_CLASS_P (elt)
4158 		     || BINARY_CLASS_P (elt)
4159 		     || VL_EXP_CLASS_P (elt)
4160 		     || EXPRESSION_CLASS_P (elt))
4161 		  ? TREE_OPERAND (elt, 0) : 0))
4162 	if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
4163 	  return elt;
4164 
4165       for (elt = obj; elt != 0;
4166 	   elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4167 		   || TREE_CODE (elt) == COND_EXPR)
4168 		  ? TREE_OPERAND (elt, 1)
4169 		  : (REFERENCE_CLASS_P (elt)
4170 		     || UNARY_CLASS_P (elt)
4171 		     || BINARY_CLASS_P (elt)
4172 		     || VL_EXP_CLASS_P (elt)
4173 		     || EXPRESSION_CLASS_P (elt))
4174 		  ? TREE_OPERAND (elt, 0) : 0))
4175 	if (POINTER_TYPE_P (TREE_TYPE (elt))
4176 	    && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
4177 		== need_type))
4178 	  return fold_build1 (INDIRECT_REF, need_type, elt);
4179 
4180       /* If we didn't find it, return the original PLACEHOLDER_EXPR.  If it
4181 	 survives until RTL generation, there will be an error.  */
4182       return exp;
4183     }
4184 
4185   /* TREE_LIST is special because we need to look at TREE_VALUE
4186      and TREE_CHAIN, not TREE_OPERANDS.  */
4187   else if (code == TREE_LIST)
4188     {
4189       op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
4190       op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
4191       if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
4192 	return exp;
4193 
4194       return tree_cons (TREE_PURPOSE (exp), op1, op0);
4195     }
4196   else
4197     switch (TREE_CODE_CLASS (code))
4198       {
4199       case tcc_constant:
4200       case tcc_declaration:
4201 	return exp;
4202 
4203       case tcc_exceptional:
4204       case tcc_unary:
4205       case tcc_binary:
4206       case tcc_comparison:
4207       case tcc_expression:
4208       case tcc_reference:
4209       case tcc_statement:
4210 	switch (TREE_CODE_LENGTH (code))
4211 	  {
4212 	  case 0:
4213 	    return exp;
4214 
4215 	  case 1:
4216 	    op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4217 	    if (op0 == TREE_OPERAND (exp, 0))
4218 	      return exp;
4219 
4220 	    new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4221 	    break;
4222 
4223 	  case 2:
4224 	    op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4225 	    op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4226 
4227 	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4228 	      return exp;
4229 
4230 	    new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4231 	    break;
4232 
4233 	  case 3:
4234 	    op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4235 	    op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4236 	    op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4237 
4238 	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4239 		&& op2 == TREE_OPERAND (exp, 2))
4240 	      return exp;
4241 
4242 	    new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4243 	    break;
4244 
4245 	  case 4:
4246 	    op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4247 	    op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4248 	    op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4249 	    op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
4250 
4251 	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4252 		&& op2 == TREE_OPERAND (exp, 2)
4253 		&& op3 == TREE_OPERAND (exp, 3))
4254 	      return exp;
4255 
4256 	    new_tree
4257 	      = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4258 	    break;
4259 
4260 	  default:
4261 	    gcc_unreachable ();
4262 	  }
4263 	break;
4264 
4265       case tcc_vl_exp:
4266 	{
4267 	  int i;
4268 
4269 	  new_tree = NULL_TREE;
4270 
4271 	  for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4272 	    {
4273 	      tree op = TREE_OPERAND (exp, i);
4274 	      tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
4275 	      if (new_op != op)
4276 		{
4277 		  if (!new_tree)
4278 		    new_tree = copy_node (exp);
4279 		  TREE_OPERAND (new_tree, i) = new_op;
4280 		}
4281 	    }
4282 
4283 	  if (new_tree)
4284 	    {
4285 	      new_tree = fold (new_tree);
4286 	      if (TREE_CODE (new_tree) == CALL_EXPR)
4287 		process_call_operands (new_tree);
4288 	    }
4289 	  else
4290 	    return exp;
4291 	}
4292 	break;
4293 
4294       default:
4295 	gcc_unreachable ();
4296       }
4297 
4298   TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4299 
4300   if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4301     TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4302 
4303   return new_tree;
4304 }
4305 
4306 
4307 /* Subroutine of stabilize_reference; this is called for subtrees of
4308    references.  Any expression with side-effects must be put in a SAVE_EXPR
4309    to ensure that it is only evaluated once.
4310 
4311    We don't put SAVE_EXPR nodes around everything, because assigning very
4312    simple expressions to temporaries causes us to miss good opportunities
4313    for optimizations.  Among other things, the opportunity to fold in the
4314    addition of a constant into an addressing mode often gets lost, e.g.
4315    "y[i+1] += x;".  In general, we take the approach that we should not make
4316    an assignment unless we are forced into it - i.e., that any non-side effect
4317    operator should be allowed, and that cse should take care of coalescing
4318    multiple utterances of the same expression should that prove fruitful.  */
4319 
4320 static tree
4321 stabilize_reference_1 (tree e)
4322 {
4323   tree result;
4324   enum tree_code code = TREE_CODE (e);
4325 
4326   /* We cannot ignore const expressions because it might be a reference
4327      to a const array but whose index contains side-effects.  But we can
4328      ignore things that are actual constant or that already have been
4329      handled by this function.  */
4330 
4331   if (tree_invariant_p (e))
4332     return e;
4333 
4334   switch (TREE_CODE_CLASS (code))
4335     {
4336     case tcc_exceptional:
4337       /* Always wrap STATEMENT_LIST into SAVE_EXPR, even if it doesn't
4338 	 have side-effects.  */
4339       if (code == STATEMENT_LIST)
4340 	return save_expr (e);
4341       /* FALLTHRU */
4342     case tcc_type:
4343     case tcc_declaration:
4344     case tcc_comparison:
4345     case tcc_statement:
4346     case tcc_expression:
4347     case tcc_reference:
4348     case tcc_vl_exp:
4349       /* If the expression has side-effects, then encase it in a SAVE_EXPR
4350 	 so that it will only be evaluated once.  */
4351       /* The reference (r) and comparison (<) classes could be handled as
4352 	 below, but it is generally faster to only evaluate them once.  */
4353       if (TREE_SIDE_EFFECTS (e))
4354 	return save_expr (e);
4355       return e;
4356 
4357     case tcc_constant:
4358       /* Constants need no processing.  In fact, we should never reach
4359 	 here.  */
4360       return e;
4361 
4362     case tcc_binary:
4363       /* Division is slow and tends to be compiled with jumps,
4364 	 especially the division by powers of 2 that is often
4365 	 found inside of an array reference.  So do it just once.  */
4366       if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
4367 	  || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
4368 	  || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
4369 	  || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
4370 	return save_expr (e);
4371       /* Recursively stabilize each operand.  */
4372       result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
4373 			 stabilize_reference_1 (TREE_OPERAND (e, 1)));
4374       break;
4375 
4376     case tcc_unary:
4377       /* Recursively stabilize each operand.  */
4378       result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
4379       break;
4380 
4381     default:
4382       gcc_unreachable ();
4383     }
4384 
4385   TREE_TYPE (result) = TREE_TYPE (e);
4386   TREE_READONLY (result) = TREE_READONLY (e);
4387   TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
4388   TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
4389 
4390   return result;
4391 }
4392 
4393 /* Stabilize a reference so that we can use it any number of times
4394    without causing its operands to be evaluated more than once.
4395    Returns the stabilized reference.  This works by means of save_expr,
4396    so see the caveats in the comments about save_expr.
4397 
4398    Also allows conversion expressions whose operands are references.
4399    Any other kind of expression is returned unchanged.  */
4400 
4401 tree
4402 stabilize_reference (tree ref)
4403 {
4404   tree result;
4405   enum tree_code code = TREE_CODE (ref);
4406 
4407   switch (code)
4408     {
4409     case VAR_DECL:
4410     case PARM_DECL:
4411     case RESULT_DECL:
4412       /* No action is needed in this case.  */
4413       return ref;
4414 
4415     CASE_CONVERT:
4416     case FLOAT_EXPR:
4417     case FIX_TRUNC_EXPR:
4418       result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
4419       break;
4420 
4421     case INDIRECT_REF:
4422       result = build_nt (INDIRECT_REF,
4423 			 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
4424       break;
4425 
4426     case COMPONENT_REF:
4427       result = build_nt (COMPONENT_REF,
4428 			 stabilize_reference (TREE_OPERAND (ref, 0)),
4429 			 TREE_OPERAND (ref, 1), NULL_TREE);
4430       break;
4431 
4432     case BIT_FIELD_REF:
4433       result = build_nt (BIT_FIELD_REF,
4434 			 stabilize_reference (TREE_OPERAND (ref, 0)),
4435 			 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
4436       REF_REVERSE_STORAGE_ORDER (result) = REF_REVERSE_STORAGE_ORDER (ref);
4437       break;
4438 
4439     case ARRAY_REF:
4440       result = build_nt (ARRAY_REF,
4441 			 stabilize_reference (TREE_OPERAND (ref, 0)),
4442 			 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4443 			 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4444       break;
4445 
4446     case ARRAY_RANGE_REF:
4447       result = build_nt (ARRAY_RANGE_REF,
4448 			 stabilize_reference (TREE_OPERAND (ref, 0)),
4449 			 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4450 			 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4451       break;
4452 
4453     case COMPOUND_EXPR:
4454       /* We cannot wrap the first expression in a SAVE_EXPR, as then
4455 	 it wouldn't be ignored.  This matters when dealing with
4456 	 volatiles.  */
4457       return stabilize_reference_1 (ref);
4458 
4459       /* If arg isn't a kind of lvalue we recognize, make no change.
4460 	 Caller should recognize the error for an invalid lvalue.  */
4461     default:
4462       return ref;
4463 
4464     case ERROR_MARK:
4465       return error_mark_node;
4466     }
4467 
4468   TREE_TYPE (result) = TREE_TYPE (ref);
4469   TREE_READONLY (result) = TREE_READONLY (ref);
4470   TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
4471   TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
4472 
4473   return result;
4474 }
4475 
4476 /* Low-level constructors for expressions.  */
4477 
4478 /* A helper function for build1 and constant folders.  Set TREE_CONSTANT,
4479    and TREE_SIDE_EFFECTS for an ADDR_EXPR.  */
4480 
4481 void
4482 recompute_tree_invariant_for_addr_expr (tree t)
4483 {
4484   tree node;
4485   bool tc = true, se = false;
4486 
4487   gcc_assert (TREE_CODE (t) == ADDR_EXPR);
4488 
4489   /* We started out assuming this address is both invariant and constant, but
4490      does not have side effects.  Now go down any handled components and see if
4491      any of them involve offsets that are either non-constant or non-invariant.
4492      Also check for side-effects.
4493 
4494      ??? Note that this code makes no attempt to deal with the case where
4495      taking the address of something causes a copy due to misalignment.  */
4496 
4497 #define UPDATE_FLAGS(NODE)  \
4498 do { tree _node = (NODE); \
4499      if (_node && !TREE_CONSTANT (_node)) tc = false; \
4500      if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
4501 
4502   for (node = TREE_OPERAND (t, 0); handled_component_p (node);
4503        node = TREE_OPERAND (node, 0))
4504     {
4505       /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
4506 	 array reference (probably made temporarily by the G++ front end),
4507 	 so ignore all the operands.  */
4508       if ((TREE_CODE (node) == ARRAY_REF
4509 	   || TREE_CODE (node) == ARRAY_RANGE_REF)
4510 	  && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
4511 	{
4512 	  UPDATE_FLAGS (TREE_OPERAND (node, 1));
4513 	  if (TREE_OPERAND (node, 2))
4514 	    UPDATE_FLAGS (TREE_OPERAND (node, 2));
4515 	  if (TREE_OPERAND (node, 3))
4516 	    UPDATE_FLAGS (TREE_OPERAND (node, 3));
4517 	}
4518       /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
4519 	 FIELD_DECL, apparently.  The G++ front end can put something else
4520 	 there, at least temporarily.  */
4521       else if (TREE_CODE (node) == COMPONENT_REF
4522 	       && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
4523 	{
4524 	  if (TREE_OPERAND (node, 2))
4525 	    UPDATE_FLAGS (TREE_OPERAND (node, 2));
4526 	}
4527     }
4528 
4529   node = lang_hooks.expr_to_decl (node, &tc, &se);
4530 
4531   /* Now see what's inside.  If it's an INDIRECT_REF, copy our properties from
4532      the address, since &(*a)->b is a form of addition.  If it's a constant, the
4533      address is constant too.  If it's a decl, its address is constant if the
4534      decl is static.  Everything else is not constant and, furthermore,
4535      taking the address of a volatile variable is not volatile.  */
4536   if (TREE_CODE (node) == INDIRECT_REF
4537       || TREE_CODE (node) == MEM_REF)
4538     UPDATE_FLAGS (TREE_OPERAND (node, 0));
4539   else if (CONSTANT_CLASS_P (node))
4540     ;
4541   else if (DECL_P (node))
4542     tc &= (staticp (node) != NULL_TREE);
4543   else
4544     {
4545       tc = false;
4546       se |= TREE_SIDE_EFFECTS (node);
4547     }
4548 
4549 
4550   TREE_CONSTANT (t) = tc;
4551   TREE_SIDE_EFFECTS (t) = se;
4552 #undef UPDATE_FLAGS
4553 }
4554 
4555 /* Build an expression of code CODE, data type TYPE, and operands as
4556    specified.  Expressions and reference nodes can be created this way.
4557    Constants, decls, types and misc nodes cannot be.
4558 
4559    We define 5 non-variadic functions, from 0 to 4 arguments.  This is
4560    enough for all extant tree codes.  */
4561 
4562 tree
4563 build0 (enum tree_code code, tree tt MEM_STAT_DECL)
4564 {
4565   tree t;
4566 
4567   gcc_assert (TREE_CODE_LENGTH (code) == 0);
4568 
4569   t = make_node (code PASS_MEM_STAT);
4570   TREE_TYPE (t) = tt;
4571 
4572   return t;
4573 }
4574 
4575 tree
4576 build1 (enum tree_code code, tree type, tree node MEM_STAT_DECL)
4577 {
4578   int length = sizeof (struct tree_exp);
4579   tree t;
4580 
4581   record_node_allocation_statistics (code, length);
4582 
4583   gcc_assert (TREE_CODE_LENGTH (code) == 1);
4584 
4585   t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
4586 
4587   memset (t, 0, sizeof (struct tree_common));
4588 
4589   TREE_SET_CODE (t, code);
4590 
4591   TREE_TYPE (t) = type;
4592   SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
4593   TREE_OPERAND (t, 0) = node;
4594   if (node && !TYPE_P (node))
4595     {
4596       TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
4597       TREE_READONLY (t) = TREE_READONLY (node);
4598     }
4599 
4600   if (TREE_CODE_CLASS (code) == tcc_statement)
4601     {
4602       if (code != DEBUG_BEGIN_STMT)
4603 	TREE_SIDE_EFFECTS (t) = 1;
4604     }
4605   else switch (code)
4606     {
4607     case VA_ARG_EXPR:
4608       /* All of these have side-effects, no matter what their
4609 	 operands are.  */
4610       TREE_SIDE_EFFECTS (t) = 1;
4611       TREE_READONLY (t) = 0;
4612       break;
4613 
4614     case INDIRECT_REF:
4615       /* Whether a dereference is readonly has nothing to do with whether
4616 	 its operand is readonly.  */
4617       TREE_READONLY (t) = 0;
4618       break;
4619 
4620     case ADDR_EXPR:
4621       if (node)
4622 	recompute_tree_invariant_for_addr_expr (t);
4623       break;
4624 
4625     default:
4626       if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
4627 	  && node && !TYPE_P (node)
4628 	  && TREE_CONSTANT (node))
4629 	TREE_CONSTANT (t) = 1;
4630       if (TREE_CODE_CLASS (code) == tcc_reference
4631 	  && node && TREE_THIS_VOLATILE (node))
4632 	TREE_THIS_VOLATILE (t) = 1;
4633       break;
4634     }
4635 
4636   return t;
4637 }
4638 
4639 #define PROCESS_ARG(N)				\
4640   do {						\
4641     TREE_OPERAND (t, N) = arg##N;		\
4642     if (arg##N &&!TYPE_P (arg##N))		\
4643       {						\
4644         if (TREE_SIDE_EFFECTS (arg##N))		\
4645 	  side_effects = 1;			\
4646         if (!TREE_READONLY (arg##N)		\
4647 	    && !CONSTANT_CLASS_P (arg##N))	\
4648 	  (void) (read_only = 0);		\
4649         if (!TREE_CONSTANT (arg##N))		\
4650 	  (void) (constant = 0);		\
4651       }						\
4652   } while (0)
4653 
4654 tree
4655 build2 (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
4656 {
4657   bool constant, read_only, side_effects, div_by_zero;
4658   tree t;
4659 
4660   gcc_assert (TREE_CODE_LENGTH (code) == 2);
4661 
4662   if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
4663       && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
4664       /* When sizetype precision doesn't match that of pointers
4665          we need to be able to build explicit extensions or truncations
4666 	 of the offset argument.  */
4667       && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
4668     gcc_assert (TREE_CODE (arg0) == INTEGER_CST
4669 		&& TREE_CODE (arg1) == INTEGER_CST);
4670 
4671   if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
4672     gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
4673 		&& ptrofftype_p (TREE_TYPE (arg1)));
4674 
4675   t = make_node (code PASS_MEM_STAT);
4676   TREE_TYPE (t) = tt;
4677 
4678   /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
4679      result based on those same flags for the arguments.  But if the
4680      arguments aren't really even `tree' expressions, we shouldn't be trying
4681      to do this.  */
4682 
4683   /* Expressions without side effects may be constant if their
4684      arguments are as well.  */
4685   constant = (TREE_CODE_CLASS (code) == tcc_comparison
4686 	      || TREE_CODE_CLASS (code) == tcc_binary);
4687   read_only = 1;
4688   side_effects = TREE_SIDE_EFFECTS (t);
4689 
4690   switch (code)
4691     {
4692     case TRUNC_DIV_EXPR:
4693     case CEIL_DIV_EXPR:
4694     case FLOOR_DIV_EXPR:
4695     case ROUND_DIV_EXPR:
4696     case EXACT_DIV_EXPR:
4697     case CEIL_MOD_EXPR:
4698     case FLOOR_MOD_EXPR:
4699     case ROUND_MOD_EXPR:
4700     case TRUNC_MOD_EXPR:
4701       div_by_zero = integer_zerop (arg1);
4702       break;
4703     default:
4704       div_by_zero = false;
4705     }
4706 
4707   PROCESS_ARG (0);
4708   PROCESS_ARG (1);
4709 
4710   TREE_SIDE_EFFECTS (t) = side_effects;
4711   if (code == MEM_REF)
4712     {
4713       if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4714 	{
4715 	  tree o = TREE_OPERAND (arg0, 0);
4716 	  TREE_READONLY (t) = TREE_READONLY (o);
4717 	  TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4718 	}
4719     }
4720   else
4721     {
4722       TREE_READONLY (t) = read_only;
4723       /* Don't mark X / 0 as constant.  */
4724       TREE_CONSTANT (t) = constant && !div_by_zero;
4725       TREE_THIS_VOLATILE (t)
4726 	= (TREE_CODE_CLASS (code) == tcc_reference
4727 	   && arg0 && TREE_THIS_VOLATILE (arg0));
4728     }
4729 
4730   return t;
4731 }
4732 
4733 
4734 tree
4735 build3 (enum tree_code code, tree tt, tree arg0, tree arg1,
4736 	tree arg2 MEM_STAT_DECL)
4737 {
4738   bool constant, read_only, side_effects;
4739   tree t;
4740 
4741   gcc_assert (TREE_CODE_LENGTH (code) == 3);
4742   gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4743 
4744   t = make_node (code PASS_MEM_STAT);
4745   TREE_TYPE (t) = tt;
4746 
4747   read_only = 1;
4748 
4749   /* As a special exception, if COND_EXPR has NULL branches, we
4750      assume that it is a gimple statement and always consider
4751      it to have side effects.  */
4752   if (code == COND_EXPR
4753       && tt == void_type_node
4754       && arg1 == NULL_TREE
4755       && arg2 == NULL_TREE)
4756     side_effects = true;
4757   else
4758     side_effects = TREE_SIDE_EFFECTS (t);
4759 
4760   PROCESS_ARG (0);
4761   PROCESS_ARG (1);
4762   PROCESS_ARG (2);
4763 
4764   if (code == COND_EXPR)
4765     TREE_READONLY (t) = read_only;
4766 
4767   TREE_SIDE_EFFECTS (t) = side_effects;
4768   TREE_THIS_VOLATILE (t)
4769     = (TREE_CODE_CLASS (code) == tcc_reference
4770        && arg0 && TREE_THIS_VOLATILE (arg0));
4771 
4772   return t;
4773 }
4774 
4775 tree
4776 build4 (enum tree_code code, tree tt, tree arg0, tree arg1,
4777 	tree arg2, tree arg3 MEM_STAT_DECL)
4778 {
4779   bool constant, read_only, side_effects;
4780   tree t;
4781 
4782   gcc_assert (TREE_CODE_LENGTH (code) == 4);
4783 
4784   t = make_node (code PASS_MEM_STAT);
4785   TREE_TYPE (t) = tt;
4786 
4787   side_effects = TREE_SIDE_EFFECTS (t);
4788 
4789   PROCESS_ARG (0);
4790   PROCESS_ARG (1);
4791   PROCESS_ARG (2);
4792   PROCESS_ARG (3);
4793 
4794   TREE_SIDE_EFFECTS (t) = side_effects;
4795   TREE_THIS_VOLATILE (t)
4796     = (TREE_CODE_CLASS (code) == tcc_reference
4797        && arg0 && TREE_THIS_VOLATILE (arg0));
4798 
4799   return t;
4800 }
4801 
4802 tree
4803 build5 (enum tree_code code, tree tt, tree arg0, tree arg1,
4804 	tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
4805 {
4806   bool constant, read_only, side_effects;
4807   tree t;
4808 
4809   gcc_assert (TREE_CODE_LENGTH (code) == 5);
4810 
4811   t = make_node (code PASS_MEM_STAT);
4812   TREE_TYPE (t) = tt;
4813 
4814   side_effects = TREE_SIDE_EFFECTS (t);
4815 
4816   PROCESS_ARG (0);
4817   PROCESS_ARG (1);
4818   PROCESS_ARG (2);
4819   PROCESS_ARG (3);
4820   PROCESS_ARG (4);
4821 
4822   TREE_SIDE_EFFECTS (t) = side_effects;
4823   if (code == TARGET_MEM_REF)
4824     {
4825       if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4826 	{
4827 	  tree o = TREE_OPERAND (arg0, 0);
4828 	  TREE_READONLY (t) = TREE_READONLY (o);
4829 	  TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4830 	}
4831     }
4832   else
4833     TREE_THIS_VOLATILE (t)
4834       = (TREE_CODE_CLASS (code) == tcc_reference
4835 	 && arg0 && TREE_THIS_VOLATILE (arg0));
4836 
4837   return t;
4838 }
4839 
4840 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
4841    on the pointer PTR.  */
4842 
4843 tree
4844 build_simple_mem_ref_loc (location_t loc, tree ptr)
4845 {
4846   poly_int64 offset = 0;
4847   tree ptype = TREE_TYPE (ptr);
4848   tree tem;
4849   /* For convenience allow addresses that collapse to a simple base
4850      and offset.  */
4851   if (TREE_CODE (ptr) == ADDR_EXPR
4852       && (handled_component_p (TREE_OPERAND (ptr, 0))
4853 	  || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
4854     {
4855       ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
4856       gcc_assert (ptr);
4857       if (TREE_CODE (ptr) == MEM_REF)
4858 	{
4859 	  offset += mem_ref_offset (ptr).force_shwi ();
4860 	  ptr = TREE_OPERAND (ptr, 0);
4861 	}
4862       else
4863 	ptr = build_fold_addr_expr (ptr);
4864       gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
4865     }
4866   tem = build2 (MEM_REF, TREE_TYPE (ptype),
4867 		ptr, build_int_cst (ptype, offset));
4868   SET_EXPR_LOCATION (tem, loc);
4869   return tem;
4870 }
4871 
4872 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T.  */
4873 
4874 poly_offset_int
4875 mem_ref_offset (const_tree t)
4876 {
4877   return poly_offset_int::from (wi::to_poly_wide (TREE_OPERAND (t, 1)),
4878 				SIGNED);
4879 }
4880 
4881 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4882    offsetted by OFFSET units.  */
4883 
4884 tree
4885 build_invariant_address (tree type, tree base, poly_int64 offset)
4886 {
4887   tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4888 			  build_fold_addr_expr (base),
4889 			  build_int_cst (ptr_type_node, offset));
4890   tree addr = build1 (ADDR_EXPR, type, ref);
4891   recompute_tree_invariant_for_addr_expr (addr);
4892   return addr;
4893 }
4894 
4895 /* Similar except don't specify the TREE_TYPE
4896    and leave the TREE_SIDE_EFFECTS as 0.
4897    It is permissible for arguments to be null,
4898    or even garbage if their values do not matter.  */
4899 
4900 tree
4901 build_nt (enum tree_code code, ...)
4902 {
4903   tree t;
4904   int length;
4905   int i;
4906   va_list p;
4907 
4908   gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4909 
4910   va_start (p, code);
4911 
4912   t = make_node (code);
4913   length = TREE_CODE_LENGTH (code);
4914 
4915   for (i = 0; i < length; i++)
4916     TREE_OPERAND (t, i) = va_arg (p, tree);
4917 
4918   va_end (p);
4919   return t;
4920 }
4921 
4922 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4923    tree vec.  */
4924 
4925 tree
4926 build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
4927 {
4928   tree ret, t;
4929   unsigned int ix;
4930 
4931   ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
4932   CALL_EXPR_FN (ret) = fn;
4933   CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
4934   FOR_EACH_VEC_SAFE_ELT (args, ix, t)
4935     CALL_EXPR_ARG (ret, ix) = t;
4936   return ret;
4937 }
4938 
4939 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4940    We do NOT enter this node in any sort of symbol table.
4941 
4942    LOC is the location of the decl.
4943 
4944    layout_decl is used to set up the decl's storage layout.
4945    Other slots are initialized to 0 or null pointers.  */
4946 
4947 tree
4948 build_decl (location_t loc, enum tree_code code, tree name,
4949     		 tree type MEM_STAT_DECL)
4950 {
4951   tree t;
4952 
4953   t = make_node (code PASS_MEM_STAT);
4954   DECL_SOURCE_LOCATION (t) = loc;
4955 
4956 /*  if (type == error_mark_node)
4957     type = integer_type_node; */
4958 /* That is not done, deliberately, so that having error_mark_node
4959    as the type can suppress useless errors in the use of this variable.  */
4960 
4961   DECL_NAME (t) = name;
4962   TREE_TYPE (t) = type;
4963 
4964   if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4965     layout_decl (t, 0);
4966 
4967   return t;
4968 }
4969 
4970 /* Builds and returns function declaration with NAME and TYPE.  */
4971 
4972 tree
4973 build_fn_decl (const char *name, tree type)
4974 {
4975   tree id = get_identifier (name);
4976   tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4977 
4978   DECL_EXTERNAL (decl) = 1;
4979   TREE_PUBLIC (decl) = 1;
4980   DECL_ARTIFICIAL (decl) = 1;
4981   TREE_NOTHROW (decl) = 1;
4982 
4983   return decl;
4984 }
4985 
4986 vec<tree, va_gc> *all_translation_units;
4987 
4988 /* Builds a new translation-unit decl with name NAME, queues it in the
4989    global list of translation-unit decls and returns it.   */
4990 
4991 tree
4992 build_translation_unit_decl (tree name)
4993 {
4994   tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
4995 			name, NULL_TREE);
4996   TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
4997   vec_safe_push (all_translation_units, tu);
4998   return tu;
4999 }
5000 
5001 
5002 /* BLOCK nodes are used to represent the structure of binding contours
5003    and declarations, once those contours have been exited and their contents
5004    compiled.  This information is used for outputting debugging info.  */
5005 
5006 tree
5007 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
5008 {
5009   tree block = make_node (BLOCK);
5010 
5011   BLOCK_VARS (block) = vars;
5012   BLOCK_SUBBLOCKS (block) = subblocks;
5013   BLOCK_SUPERCONTEXT (block) = supercontext;
5014   BLOCK_CHAIN (block) = chain;
5015   return block;
5016 }
5017 
5018 
5019 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
5020 
5021    LOC is the location to use in tree T.  */
5022 
5023 void
5024 protected_set_expr_location (tree t, location_t loc)
5025 {
5026   if (CAN_HAVE_LOCATION_P (t))
5027     SET_EXPR_LOCATION (t, loc);
5028 }
5029 
5030 /* Reset the expression *EXPR_P, a size or position.
5031 
5032    ??? We could reset all non-constant sizes or positions.  But it's cheap
5033    enough to not do so and refrain from adding workarounds to dwarf2out.c.
5034 
5035    We need to reset self-referential sizes or positions because they cannot
5036    be gimplified and thus can contain a CALL_EXPR after the gimplification
5037    is finished, which will run afoul of LTO streaming.  And they need to be
5038    reset to something essentially dummy but not constant, so as to preserve
5039    the properties of the object they are attached to.  */
5040 
5041 static inline void
5042 free_lang_data_in_one_sizepos (tree *expr_p)
5043 {
5044   tree expr = *expr_p;
5045   if (CONTAINS_PLACEHOLDER_P (expr))
5046     *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
5047 }
5048 
5049 
5050 /* Reset all the fields in a binfo node BINFO.  We only keep
5051    BINFO_VTABLE, which is used by gimple_fold_obj_type_ref.  */
5052 
5053 static void
5054 free_lang_data_in_binfo (tree binfo)
5055 {
5056   unsigned i;
5057   tree t;
5058 
5059   gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
5060 
5061   BINFO_VIRTUALS (binfo) = NULL_TREE;
5062   BINFO_BASE_ACCESSES (binfo) = NULL;
5063   BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
5064   BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
5065 
5066   FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo), i, t)
5067     free_lang_data_in_binfo (t);
5068 }
5069 
5070 
5071 /* Reset all language specific information still present in TYPE.  */
5072 
5073 static void
5074 free_lang_data_in_type (tree type)
5075 {
5076   gcc_assert (TYPE_P (type));
5077 
5078   /* Give the FE a chance to remove its own data first.  */
5079   lang_hooks.free_lang_data (type);
5080 
5081   TREE_LANG_FLAG_0 (type) = 0;
5082   TREE_LANG_FLAG_1 (type) = 0;
5083   TREE_LANG_FLAG_2 (type) = 0;
5084   TREE_LANG_FLAG_3 (type) = 0;
5085   TREE_LANG_FLAG_4 (type) = 0;
5086   TREE_LANG_FLAG_5 (type) = 0;
5087   TREE_LANG_FLAG_6 (type) = 0;
5088 
5089   if (TREE_CODE (type) == FUNCTION_TYPE)
5090     {
5091       /* Remove the const and volatile qualifiers from arguments.  The
5092 	 C++ front end removes them, but the C front end does not,
5093 	 leading to false ODR violation errors when merging two
5094 	 instances of the same function signature compiled by
5095 	 different front ends.  */
5096       for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5097 	{
5098 	  tree arg_type = TREE_VALUE (p);
5099 
5100 	  if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
5101 	    {
5102 	      int quals = TYPE_QUALS (arg_type)
5103 			  & ~TYPE_QUAL_CONST
5104 			  & ~TYPE_QUAL_VOLATILE;
5105 	      TREE_VALUE (p) = build_qualified_type (arg_type, quals);
5106 	      free_lang_data_in_type (TREE_VALUE (p));
5107 	    }
5108 	  /* C++ FE uses TREE_PURPOSE to store initial values.  */
5109 	  TREE_PURPOSE (p) = NULL;
5110 	}
5111     }
5112   else if (TREE_CODE (type) == METHOD_TYPE)
5113     for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5114       /* C++ FE uses TREE_PURPOSE to store initial values.  */
5115       TREE_PURPOSE (p) = NULL;
5116   else if (RECORD_OR_UNION_TYPE_P (type))
5117     {
5118       /* Remove members that are not FIELD_DECLs from the field list
5119 	 of an aggregate.  These occur in C++.  */
5120       for (tree *prev = &TYPE_FIELDS (type), member; (member = *prev);)
5121 	if (TREE_CODE (member) == FIELD_DECL)
5122 	  prev = &DECL_CHAIN (member);
5123 	else
5124 	  *prev = DECL_CHAIN (member);
5125 
5126       /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
5127  	 and danagle the pointer from time to time.  */
5128       if (TYPE_VFIELD (type) && TREE_CODE (TYPE_VFIELD (type)) != FIELD_DECL)
5129         TYPE_VFIELD (type) = NULL_TREE;
5130 
5131       if (TYPE_BINFO (type))
5132 	{
5133 	  free_lang_data_in_binfo (TYPE_BINFO (type));
5134 	  /* We need to preserve link to bases and virtual table for all
5135 	     polymorphic types to make devirtualization machinery working.  */
5136 	  if (!BINFO_VTABLE (TYPE_BINFO (type))
5137 	      || !flag_devirtualize)
5138 	    TYPE_BINFO (type) = NULL;
5139 	}
5140     }
5141   else if (INTEGRAL_TYPE_P (type)
5142 	   || SCALAR_FLOAT_TYPE_P (type)
5143 	   || FIXED_POINT_TYPE_P (type))
5144     {
5145       free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
5146       free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
5147     }
5148 
5149   TYPE_LANG_SLOT_1 (type) = NULL_TREE;
5150 
5151   free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
5152   free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
5153 
5154   if (TYPE_CONTEXT (type)
5155       && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK)
5156     {
5157       tree ctx = TYPE_CONTEXT (type);
5158       do
5159 	{
5160 	  ctx = BLOCK_SUPERCONTEXT (ctx);
5161 	}
5162       while (ctx && TREE_CODE (ctx) == BLOCK);
5163       TYPE_CONTEXT (type) = ctx;
5164     }
5165 
5166   /* Drop TYPE_DECLs in TYPE_NAME in favor of the identifier in the
5167      TYPE_DECL if the type doesn't have linkage.  */
5168   if (! type_with_linkage_p (type))
5169     TYPE_NAME (type) = TYPE_IDENTIFIER (type);
5170 }
5171 
5172 
5173 /* Return true if DECL may need an assembler name to be set.  */
5174 
5175 static inline bool
5176 need_assembler_name_p (tree decl)
5177 {
5178   /* We use DECL_ASSEMBLER_NAME to hold mangled type names for One Definition
5179      Rule merging.  This makes type_odr_p to return true on those types during
5180      LTO and by comparing the mangled name, we can say what types are intended
5181      to be equivalent across compilation unit.
5182 
5183      We do not store names of type_in_anonymous_namespace_p.
5184 
5185      Record, union and enumeration type have linkage that allows use
5186      to check type_in_anonymous_namespace_p. We do not mangle compound types
5187      that always can be compared structurally.
5188 
5189      Similarly for builtin types, we compare properties of their main variant.
5190      A special case are integer types where mangling do make differences
5191      between char/signed char/unsigned char etc.  Storing name for these makes
5192      e.g.  -fno-signed-char/-fsigned-char mismatches to be handled well.
5193      See cp/mangle.c:write_builtin_type for details.  */
5194 
5195   if (flag_lto_odr_type_mering
5196       && TREE_CODE (decl) == TYPE_DECL
5197       && DECL_NAME (decl)
5198       && decl == TYPE_NAME (TREE_TYPE (decl))
5199       && TYPE_MAIN_VARIANT (TREE_TYPE (decl)) == TREE_TYPE (decl)
5200       && !TYPE_ARTIFICIAL (TREE_TYPE (decl))
5201       && (type_with_linkage_p (TREE_TYPE (decl))
5202 	  || TREE_CODE (TREE_TYPE (decl)) == INTEGER_TYPE)
5203       && !variably_modified_type_p (TREE_TYPE (decl), NULL_TREE))
5204     return !DECL_ASSEMBLER_NAME_SET_P (decl);
5205   /* Only FUNCTION_DECLs and VAR_DECLs are considered.  */
5206   if (!VAR_OR_FUNCTION_DECL_P (decl))
5207     return false;
5208 
5209   /* If DECL already has its assembler name set, it does not need a
5210      new one.  */
5211   if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
5212       || DECL_ASSEMBLER_NAME_SET_P (decl))
5213     return false;
5214 
5215   /* Abstract decls do not need an assembler name.  */
5216   if (DECL_ABSTRACT_P (decl))
5217     return false;
5218 
5219   /* For VAR_DECLs, only static, public and external symbols need an
5220      assembler name.  */
5221   if (VAR_P (decl)
5222       && !TREE_STATIC (decl)
5223       && !TREE_PUBLIC (decl)
5224       && !DECL_EXTERNAL (decl))
5225     return false;
5226 
5227   if (TREE_CODE (decl) == FUNCTION_DECL)
5228     {
5229       /* Do not set assembler name on builtins.  Allow RTL expansion to
5230 	 decide whether to expand inline or via a regular call.  */
5231       if (DECL_BUILT_IN (decl)
5232 	  && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
5233 	return false;
5234 
5235       /* Functions represented in the callgraph need an assembler name.  */
5236       if (cgraph_node::get (decl) != NULL)
5237 	return true;
5238 
5239       /* Unused and not public functions don't need an assembler name.  */
5240       if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
5241 	return false;
5242     }
5243 
5244   return true;
5245 }
5246 
5247 
5248 /* Reset all language specific information still present in symbol
5249    DECL.  */
5250 
5251 static void
5252 free_lang_data_in_decl (tree decl)
5253 {
5254   gcc_assert (DECL_P (decl));
5255 
5256   /* Give the FE a chance to remove its own data first.  */
5257   lang_hooks.free_lang_data (decl);
5258 
5259   TREE_LANG_FLAG_0 (decl) = 0;
5260   TREE_LANG_FLAG_1 (decl) = 0;
5261   TREE_LANG_FLAG_2 (decl) = 0;
5262   TREE_LANG_FLAG_3 (decl) = 0;
5263   TREE_LANG_FLAG_4 (decl) = 0;
5264   TREE_LANG_FLAG_5 (decl) = 0;
5265   TREE_LANG_FLAG_6 (decl) = 0;
5266 
5267   free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
5268   free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
5269   if (TREE_CODE (decl) == FIELD_DECL)
5270     {
5271       free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
5272       if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE)
5273 	DECL_QUALIFIER (decl) = NULL_TREE;
5274     }
5275 
5276  if (TREE_CODE (decl) == FUNCTION_DECL)
5277     {
5278       struct cgraph_node *node;
5279       if (!(node = cgraph_node::get (decl))
5280 	  || (!node->definition && !node->clones))
5281 	{
5282 	  if (node)
5283 	    node->release_body ();
5284 	  else
5285 	    {
5286 	      release_function_body (decl);
5287 	      DECL_ARGUMENTS (decl) = NULL;
5288 	      DECL_RESULT (decl) = NULL;
5289 	      DECL_INITIAL (decl) = error_mark_node;
5290 	    }
5291 	}
5292       if (gimple_has_body_p (decl) || (node && node->thunk.thunk_p))
5293 	{
5294 	  tree t;
5295 
5296 	  /* If DECL has a gimple body, then the context for its
5297 	     arguments must be DECL.  Otherwise, it doesn't really
5298 	     matter, as we will not be emitting any code for DECL.  In
5299 	     general, there may be other instances of DECL created by
5300 	     the front end and since PARM_DECLs are generally shared,
5301 	     their DECL_CONTEXT changes as the replicas of DECL are
5302 	     created.  The only time where DECL_CONTEXT is important
5303 	     is for the FUNCTION_DECLs that have a gimple body (since
5304 	     the PARM_DECL will be used in the function's body).  */
5305 	  for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
5306 	    DECL_CONTEXT (t) = decl;
5307 	  if (!DECL_FUNCTION_SPECIFIC_TARGET (decl))
5308 	    DECL_FUNCTION_SPECIFIC_TARGET (decl)
5309 	      = target_option_default_node;
5310 	  if (!DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl))
5311 	    DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl)
5312 	      = optimization_default_node;
5313 	}
5314 
5315       /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
5316 	 At this point, it is not needed anymore.  */
5317       DECL_SAVED_TREE (decl) = NULL_TREE;
5318 
5319       /* Clear the abstract origin if it refers to a method.
5320          Otherwise dwarf2out.c will ICE as we splice functions out of
5321          TYPE_FIELDS and thus the origin will not be output
5322          correctly.  */
5323       if (DECL_ABSTRACT_ORIGIN (decl)
5324 	  && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
5325 	  && RECORD_OR_UNION_TYPE_P
5326 	       (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
5327 	DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
5328 
5329       /* Sometimes the C++ frontend doesn't manage to transform a temporary
5330          DECL_VINDEX referring to itself into a vtable slot number as it
5331 	 should.  Happens with functions that are copied and then forgotten
5332 	 about.  Just clear it, it won't matter anymore.  */
5333       if (DECL_VINDEX (decl) && !tree_fits_shwi_p (DECL_VINDEX (decl)))
5334 	DECL_VINDEX (decl) = NULL_TREE;
5335     }
5336   else if (VAR_P (decl))
5337     {
5338       if ((DECL_EXTERNAL (decl)
5339 	   && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
5340 	  || (decl_function_context (decl) && !TREE_STATIC (decl)))
5341 	DECL_INITIAL (decl) = NULL_TREE;
5342     }
5343   else if (TREE_CODE (decl) == TYPE_DECL)
5344     {
5345       DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
5346       DECL_VISIBILITY_SPECIFIED (decl) = 0;
5347       DECL_INITIAL (decl) = NULL_TREE;
5348     }
5349   else if (TREE_CODE (decl) == FIELD_DECL)
5350     DECL_INITIAL (decl) = NULL_TREE;
5351   else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
5352            && DECL_INITIAL (decl)
5353            && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
5354     {
5355       /* Strip builtins from the translation-unit BLOCK.  We still have targets
5356 	 without builtin_decl_explicit support and also builtins are shared
5357 	 nodes and thus we can't use TREE_CHAIN in multiple lists.  */
5358       tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
5359       while (*nextp)
5360         {
5361           tree var = *nextp;
5362           if (TREE_CODE (var) == FUNCTION_DECL
5363               && DECL_BUILT_IN (var))
5364 	    *nextp = TREE_CHAIN (var);
5365 	  else
5366 	    nextp = &TREE_CHAIN (var);
5367         }
5368     }
5369 }
5370 
5371 
5372 /* Data used when collecting DECLs and TYPEs for language data removal.  */
5373 
5374 struct free_lang_data_d
5375 {
5376   free_lang_data_d () : decls (100), types (100) {}
5377 
5378   /* Worklist to avoid excessive recursion.  */
5379   auto_vec<tree> worklist;
5380 
5381   /* Set of traversed objects.  Used to avoid duplicate visits.  */
5382   hash_set<tree> pset;
5383 
5384   /* Array of symbols to process with free_lang_data_in_decl.  */
5385   auto_vec<tree> decls;
5386 
5387   /* Array of types to process with free_lang_data_in_type.  */
5388   auto_vec<tree> types;
5389 };
5390 
5391 
5392 /* Add type or decl T to one of the list of tree nodes that need their
5393    language data removed.  The lists are held inside FLD.  */
5394 
5395 static void
5396 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
5397 {
5398   if (DECL_P (t))
5399     fld->decls.safe_push (t);
5400   else if (TYPE_P (t))
5401     fld->types.safe_push (t);
5402   else
5403     gcc_unreachable ();
5404 }
5405 
5406 /* Push tree node T into FLD->WORKLIST.  */
5407 
5408 static inline void
5409 fld_worklist_push (tree t, struct free_lang_data_d *fld)
5410 {
5411   if (t && !is_lang_specific (t) && !fld->pset.contains (t))
5412     fld->worklist.safe_push ((t));
5413 }
5414 
5415 
5416 /* Operand callback helper for free_lang_data_in_node.  *TP is the
5417    subtree operand being considered.  */
5418 
5419 static tree
5420 find_decls_types_r (tree *tp, int *ws, void *data)
5421 {
5422   tree t = *tp;
5423   struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
5424 
5425   if (TREE_CODE (t) == TREE_LIST)
5426     return NULL_TREE;
5427 
5428   /* Language specific nodes will be removed, so there is no need
5429      to gather anything under them.  */
5430   if (is_lang_specific (t))
5431     {
5432       *ws = 0;
5433       return NULL_TREE;
5434     }
5435 
5436   if (DECL_P (t))
5437     {
5438       /* Note that walk_tree does not traverse every possible field in
5439 	 decls, so we have to do our own traversals here.  */
5440       add_tree_to_fld_list (t, fld);
5441 
5442       fld_worklist_push (DECL_NAME (t), fld);
5443       fld_worklist_push (DECL_CONTEXT (t), fld);
5444       fld_worklist_push (DECL_SIZE (t), fld);
5445       fld_worklist_push (DECL_SIZE_UNIT (t), fld);
5446 
5447       /* We are going to remove everything under DECL_INITIAL for
5448 	 TYPE_DECLs.  No point walking them.  */
5449       if (TREE_CODE (t) != TYPE_DECL)
5450 	fld_worklist_push (DECL_INITIAL (t), fld);
5451 
5452       fld_worklist_push (DECL_ATTRIBUTES (t), fld);
5453       fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
5454 
5455       if (TREE_CODE (t) == FUNCTION_DECL)
5456 	{
5457 	  fld_worklist_push (DECL_ARGUMENTS (t), fld);
5458 	  fld_worklist_push (DECL_RESULT (t), fld);
5459 	}
5460       else if (TREE_CODE (t) == TYPE_DECL)
5461 	{
5462 	  fld_worklist_push (DECL_ORIGINAL_TYPE (t), fld);
5463 	}
5464       else if (TREE_CODE (t) == FIELD_DECL)
5465 	{
5466 	  fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
5467 	  fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
5468 	  fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
5469 	  fld_worklist_push (DECL_FCONTEXT (t), fld);
5470 	}
5471 
5472       if ((VAR_P (t) || TREE_CODE (t) == PARM_DECL)
5473 	  && DECL_HAS_VALUE_EXPR_P (t))
5474 	fld_worklist_push (DECL_VALUE_EXPR (t), fld);
5475 
5476       if (TREE_CODE (t) != FIELD_DECL
5477 	  && TREE_CODE (t) != TYPE_DECL)
5478 	fld_worklist_push (TREE_CHAIN (t), fld);
5479       *ws = 0;
5480     }
5481   else if (TYPE_P (t))
5482     {
5483       /* Note that walk_tree does not traverse every possible field in
5484 	 types, so we have to do our own traversals here.  */
5485       add_tree_to_fld_list (t, fld);
5486 
5487       if (!RECORD_OR_UNION_TYPE_P (t))
5488 	fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
5489       fld_worklist_push (TYPE_SIZE (t), fld);
5490       fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
5491       fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
5492       fld_worklist_push (TYPE_POINTER_TO (t), fld);
5493       fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
5494       fld_worklist_push (TYPE_NAME (t), fld);
5495       /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO.  We do not stream
5496 	 them and thus do not and want not to reach unused pointer types
5497 	 this way.  */
5498       if (!POINTER_TYPE_P (t))
5499 	fld_worklist_push (TYPE_MIN_VALUE_RAW (t), fld);
5500       /* TYPE_MAX_VALUE_RAW is TYPE_BINFO for record types.  */
5501       if (!RECORD_OR_UNION_TYPE_P (t))
5502 	fld_worklist_push (TYPE_MAX_VALUE_RAW (t), fld);
5503       fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
5504       /* Do not walk TYPE_NEXT_VARIANT.  We do not stream it and thus
5505          do not and want not to reach unused variants this way.  */
5506       if (TYPE_CONTEXT (t))
5507 	{
5508 	  tree ctx = TYPE_CONTEXT (t);
5509 	  /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
5510 	     So push that instead.  */
5511 	  while (ctx && TREE_CODE (ctx) == BLOCK)
5512 	    ctx = BLOCK_SUPERCONTEXT (ctx);
5513 	  fld_worklist_push (ctx, fld);
5514 	}
5515       /* Do not walk TYPE_CANONICAL.  We do not stream it and thus do not
5516 	 and want not to reach unused types this way.  */
5517 
5518       if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
5519 	{
5520 	  unsigned i;
5521 	  tree tem;
5522 	  FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t)), i, tem)
5523 	    fld_worklist_push (TREE_TYPE (tem), fld);
5524 	  fld_worklist_push (BINFO_TYPE (TYPE_BINFO (t)), fld);
5525 	  fld_worklist_push (BINFO_VTABLE (TYPE_BINFO (t)), fld);
5526 	}
5527       if (RECORD_OR_UNION_TYPE_P (t))
5528 	{
5529 	  tree tem;
5530 	  /* Push all TYPE_FIELDS - there can be interleaving interesting
5531 	     and non-interesting things.  */
5532 	  tem = TYPE_FIELDS (t);
5533 	  while (tem)
5534 	    {
5535 	      if (TREE_CODE (tem) == FIELD_DECL
5536 		  || (TREE_CODE (tem) == TYPE_DECL
5537 		      && !DECL_IGNORED_P (tem)
5538 		      && debug_info_level > DINFO_LEVEL_TERSE
5539 		      && !is_redundant_typedef (tem)))
5540 		fld_worklist_push (tem, fld);
5541 	      tem = TREE_CHAIN (tem);
5542 	    }
5543 	}
5544       if (FUNC_OR_METHOD_TYPE_P (t))
5545 	fld_worklist_push (TYPE_METHOD_BASETYPE (t), fld);
5546 
5547       fld_worklist_push (TYPE_STUB_DECL (t), fld);
5548       *ws = 0;
5549     }
5550   else if (TREE_CODE (t) == BLOCK)
5551     {
5552       tree tem;
5553       for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
5554 	fld_worklist_push (tem, fld);
5555       for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
5556 	fld_worklist_push (tem, fld);
5557       fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
5558     }
5559 
5560   if (TREE_CODE (t) != IDENTIFIER_NODE
5561       && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
5562     fld_worklist_push (TREE_TYPE (t), fld);
5563 
5564   return NULL_TREE;
5565 }
5566 
5567 
5568 /* Find decls and types in T.  */
5569 
5570 static void
5571 find_decls_types (tree t, struct free_lang_data_d *fld)
5572 {
5573   while (1)
5574     {
5575       if (!fld->pset.contains (t))
5576 	walk_tree (&t, find_decls_types_r, fld, &fld->pset);
5577       if (fld->worklist.is_empty ())
5578 	break;
5579       t = fld->worklist.pop ();
5580     }
5581 }
5582 
5583 /* Translate all the types in LIST with the corresponding runtime
5584    types.  */
5585 
5586 static tree
5587 get_eh_types_for_runtime (tree list)
5588 {
5589   tree head, prev;
5590 
5591   if (list == NULL_TREE)
5592     return NULL_TREE;
5593 
5594   head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5595   prev = head;
5596   list = TREE_CHAIN (list);
5597   while (list)
5598     {
5599       tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5600       TREE_CHAIN (prev) = n;
5601       prev = TREE_CHAIN (prev);
5602       list = TREE_CHAIN (list);
5603     }
5604 
5605   return head;
5606 }
5607 
5608 
5609 /* Find decls and types referenced in EH region R and store them in
5610    FLD->DECLS and FLD->TYPES.  */
5611 
5612 static void
5613 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
5614 {
5615   switch (r->type)
5616     {
5617     case ERT_CLEANUP:
5618       break;
5619 
5620     case ERT_TRY:
5621       {
5622 	eh_catch c;
5623 
5624 	/* The types referenced in each catch must first be changed to the
5625 	   EH types used at runtime.  This removes references to FE types
5626 	   in the region.  */
5627 	for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
5628 	  {
5629 	    c->type_list = get_eh_types_for_runtime (c->type_list);
5630 	    walk_tree (&c->type_list, find_decls_types_r, fld, &fld->pset);
5631 	  }
5632       }
5633       break;
5634 
5635     case ERT_ALLOWED_EXCEPTIONS:
5636       r->u.allowed.type_list
5637 	= get_eh_types_for_runtime (r->u.allowed.type_list);
5638       walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, &fld->pset);
5639       break;
5640 
5641     case ERT_MUST_NOT_THROW:
5642       walk_tree (&r->u.must_not_throw.failure_decl,
5643 		 find_decls_types_r, fld, &fld->pset);
5644       break;
5645     }
5646 }
5647 
5648 
5649 /* Find decls and types referenced in cgraph node N and store them in
5650    FLD->DECLS and FLD->TYPES.  Unlike pass_referenced_vars, this will
5651    look for *every* kind of DECL and TYPE node reachable from N,
5652    including those embedded inside types and decls (i.e,, TYPE_DECLs,
5653    NAMESPACE_DECLs, etc).  */
5654 
5655 static void
5656 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
5657 {
5658   basic_block bb;
5659   struct function *fn;
5660   unsigned ix;
5661   tree t;
5662 
5663   find_decls_types (n->decl, fld);
5664 
5665   if (!gimple_has_body_p (n->decl))
5666     return;
5667 
5668   gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
5669 
5670   fn = DECL_STRUCT_FUNCTION (n->decl);
5671 
5672   /* Traverse locals. */
5673   FOR_EACH_LOCAL_DECL (fn, ix, t)
5674     find_decls_types (t, fld);
5675 
5676   /* Traverse EH regions in FN.  */
5677   {
5678     eh_region r;
5679     FOR_ALL_EH_REGION_FN (r, fn)
5680       find_decls_types_in_eh_region (r, fld);
5681   }
5682 
5683   /* Traverse every statement in FN.  */
5684   FOR_EACH_BB_FN (bb, fn)
5685     {
5686       gphi_iterator psi;
5687       gimple_stmt_iterator si;
5688       unsigned i;
5689 
5690       for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
5691 	{
5692 	  gphi *phi = psi.phi ();
5693 
5694 	  for (i = 0; i < gimple_phi_num_args (phi); i++)
5695 	    {
5696 	      tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
5697 	      find_decls_types (*arg_p, fld);
5698 	    }
5699 	}
5700 
5701       for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5702 	{
5703 	  gimple *stmt = gsi_stmt (si);
5704 
5705 	  if (is_gimple_call (stmt))
5706 	    find_decls_types (gimple_call_fntype (stmt), fld);
5707 
5708 	  for (i = 0; i < gimple_num_ops (stmt); i++)
5709 	    {
5710 	      tree arg = gimple_op (stmt, i);
5711 	      find_decls_types (arg, fld);
5712 	    }
5713 	}
5714     }
5715 }
5716 
5717 
5718 /* Find decls and types referenced in varpool node N and store them in
5719    FLD->DECLS and FLD->TYPES.  Unlike pass_referenced_vars, this will
5720    look for *every* kind of DECL and TYPE node reachable from N,
5721    including those embedded inside types and decls (i.e,, TYPE_DECLs,
5722    NAMESPACE_DECLs, etc).  */
5723 
5724 static void
5725 find_decls_types_in_var (varpool_node *v, struct free_lang_data_d *fld)
5726 {
5727   find_decls_types (v->decl, fld);
5728 }
5729 
5730 /* If T needs an assembler name, have one created for it.  */
5731 
5732 void
5733 assign_assembler_name_if_needed (tree t)
5734 {
5735   if (need_assembler_name_p (t))
5736     {
5737       /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
5738 	 diagnostics that use input_location to show locus
5739 	 information.  The problem here is that, at this point,
5740 	 input_location is generally anchored to the end of the file
5741 	 (since the parser is long gone), so we don't have a good
5742 	 position to pin it to.
5743 
5744 	 To alleviate this problem, this uses the location of T's
5745 	 declaration.  Examples of this are
5746 	 testsuite/g++.dg/template/cond2.C and
5747 	 testsuite/g++.dg/template/pr35240.C.  */
5748       location_t saved_location = input_location;
5749       input_location = DECL_SOURCE_LOCATION (t);
5750 
5751       decl_assembler_name (t);
5752 
5753       input_location = saved_location;
5754     }
5755 }
5756 
5757 
5758 /* Free language specific information for every operand and expression
5759    in every node of the call graph.  This process operates in three stages:
5760 
5761    1- Every callgraph node and varpool node is traversed looking for
5762       decls and types embedded in them.  This is a more exhaustive
5763       search than that done by find_referenced_vars, because it will
5764       also collect individual fields, decls embedded in types, etc.
5765 
5766    2- All the decls found are sent to free_lang_data_in_decl.
5767 
5768    3- All the types found are sent to free_lang_data_in_type.
5769 
5770    The ordering between decls and types is important because
5771    free_lang_data_in_decl sets assembler names, which includes
5772    mangling.  So types cannot be freed up until assembler names have
5773    been set up.  */
5774 
5775 static void
5776 free_lang_data_in_cgraph (void)
5777 {
5778   struct cgraph_node *n;
5779   varpool_node *v;
5780   struct free_lang_data_d fld;
5781   tree t;
5782   unsigned i;
5783   alias_pair *p;
5784 
5785   /* Find decls and types in the body of every function in the callgraph.  */
5786   FOR_EACH_FUNCTION (n)
5787     find_decls_types_in_node (n, &fld);
5788 
5789   FOR_EACH_VEC_SAFE_ELT (alias_pairs, i, p)
5790     find_decls_types (p->decl, &fld);
5791 
5792   /* Find decls and types in every varpool symbol.  */
5793   FOR_EACH_VARIABLE (v)
5794     find_decls_types_in_var (v, &fld);
5795 
5796   /* Set the assembler name on every decl found.  We need to do this
5797      now because free_lang_data_in_decl will invalidate data needed
5798      for mangling.  This breaks mangling on interdependent decls.  */
5799   FOR_EACH_VEC_ELT (fld.decls, i, t)
5800     assign_assembler_name_if_needed (t);
5801 
5802   /* Traverse every decl found freeing its language data.  */
5803   FOR_EACH_VEC_ELT (fld.decls, i, t)
5804     free_lang_data_in_decl (t);
5805 
5806   /* Traverse every type found freeing its language data.  */
5807   FOR_EACH_VEC_ELT (fld.types, i, t)
5808     free_lang_data_in_type (t);
5809   if (flag_checking)
5810     {
5811       FOR_EACH_VEC_ELT (fld.types, i, t)
5812 	verify_type (t);
5813     }
5814 }
5815 
5816 
5817 /* Free resources that are used by FE but are not needed once they are done. */
5818 
5819 static unsigned
5820 free_lang_data (void)
5821 {
5822   unsigned i;
5823 
5824   /* If we are the LTO frontend we have freed lang-specific data already.  */
5825   if (in_lto_p
5826       || (!flag_generate_lto && !flag_generate_offload))
5827     return 0;
5828 
5829   /* Provide a dummy TRANSLATION_UNIT_DECL if the FE failed to provide one.  */
5830   if (vec_safe_is_empty (all_translation_units))
5831     build_translation_unit_decl (NULL_TREE);
5832 
5833   /* Allocate and assign alias sets to the standard integer types
5834      while the slots are still in the way the frontends generated them.  */
5835   for (i = 0; i < itk_none; ++i)
5836     if (integer_types[i])
5837       TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5838 
5839   /* Traverse the IL resetting language specific information for
5840      operands, expressions, etc.  */
5841   free_lang_data_in_cgraph ();
5842 
5843   /* Create gimple variants for common types.  */
5844   for (unsigned i = 0;
5845        i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
5846        ++i)
5847     builtin_structptr_types[i].node = builtin_structptr_types[i].base;
5848 
5849   /* Reset some langhooks.  Do not reset types_compatible_p, it may
5850      still be used indirectly via the get_alias_set langhook.  */
5851   lang_hooks.dwarf_name = lhd_dwarf_name;
5852   lang_hooks.decl_printable_name = gimple_decl_printable_name;
5853   lang_hooks.gimplify_expr = lhd_gimplify_expr;
5854 
5855   /* We do not want the default decl_assembler_name implementation,
5856      rather if we have fixed everything we want a wrapper around it
5857      asserting that all non-local symbols already got their assembler
5858      name and only produce assembler names for local symbols.  Or rather
5859      make sure we never call decl_assembler_name on local symbols and
5860      devise a separate, middle-end private scheme for it.  */
5861 
5862   /* Reset diagnostic machinery.  */
5863   tree_diagnostics_defaults (global_dc);
5864 
5865   rebuild_type_inheritance_graph ();
5866 
5867   return 0;
5868 }
5869 
5870 
5871 namespace {
5872 
5873 const pass_data pass_data_ipa_free_lang_data =
5874 {
5875   SIMPLE_IPA_PASS, /* type */
5876   "*free_lang_data", /* name */
5877   OPTGROUP_NONE, /* optinfo_flags */
5878   TV_IPA_FREE_LANG_DATA, /* tv_id */
5879   0, /* properties_required */
5880   0, /* properties_provided */
5881   0, /* properties_destroyed */
5882   0, /* todo_flags_start */
5883   0, /* todo_flags_finish */
5884 };
5885 
5886 class pass_ipa_free_lang_data : public simple_ipa_opt_pass
5887 {
5888 public:
5889   pass_ipa_free_lang_data (gcc::context *ctxt)
5890     : simple_ipa_opt_pass (pass_data_ipa_free_lang_data, ctxt)
5891   {}
5892 
5893   /* opt_pass methods: */
5894   virtual unsigned int execute (function *) { return free_lang_data (); }
5895 
5896 }; // class pass_ipa_free_lang_data
5897 
5898 } // anon namespace
5899 
5900 simple_ipa_opt_pass *
5901 make_pass_ipa_free_lang_data (gcc::context *ctxt)
5902 {
5903   return new pass_ipa_free_lang_data (ctxt);
5904 }
5905 
5906 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5907    of the various TYPE_QUAL values.  */
5908 
5909 static void
5910 set_type_quals (tree type, int type_quals)
5911 {
5912   TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5913   TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5914   TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5915   TYPE_ATOMIC (type) = (type_quals & TYPE_QUAL_ATOMIC) != 0;
5916   TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
5917 }
5918 
5919 /* Returns true iff CAND and BASE have equivalent language-specific
5920    qualifiers.  */
5921 
5922 bool
5923 check_lang_type (const_tree cand, const_tree base)
5924 {
5925   if (lang_hooks.types.type_hash_eq == NULL)
5926     return true;
5927   /* type_hash_eq currently only applies to these types.  */
5928   if (TREE_CODE (cand) != FUNCTION_TYPE
5929       && TREE_CODE (cand) != METHOD_TYPE)
5930     return true;
5931   return lang_hooks.types.type_hash_eq (cand, base);
5932 }
5933 
5934 /* Returns true iff unqualified CAND and BASE are equivalent.  */
5935 
5936 bool
5937 check_base_type (const_tree cand, const_tree base)
5938 {
5939   return (TYPE_NAME (cand) == TYPE_NAME (base)
5940 	  /* Apparently this is needed for Objective-C.  */
5941 	  && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5942 	  /* Check alignment.  */
5943 	  && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
5944 	  && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5945 				   TYPE_ATTRIBUTES (base)));
5946 }
5947 
5948 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS.  */
5949 
5950 bool
5951 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5952 {
5953   return (TYPE_QUALS (cand) == type_quals
5954 	  && check_base_type (cand, base)
5955 	  && check_lang_type (cand, base));
5956 }
5957 
5958 /* Returns true iff CAND is equivalent to BASE with ALIGN.  */
5959 
5960 static bool
5961 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
5962 {
5963   return (TYPE_QUALS (cand) == TYPE_QUALS (base)
5964 	  && TYPE_NAME (cand) == TYPE_NAME (base)
5965 	  /* Apparently this is needed for Objective-C.  */
5966 	  && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5967 	  /* Check alignment.  */
5968 	  && TYPE_ALIGN (cand) == align
5969 	  && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5970 				   TYPE_ATTRIBUTES (base))
5971 	  && check_lang_type (cand, base));
5972 }
5973 
5974 /* This function checks to see if TYPE matches the size one of the built-in
5975    atomic types, and returns that core atomic type.  */
5976 
5977 static tree
5978 find_atomic_core_type (tree type)
5979 {
5980   tree base_atomic_type;
5981 
5982   /* Only handle complete types.  */
5983   if (!tree_fits_uhwi_p (TYPE_SIZE (type)))
5984     return NULL_TREE;
5985 
5986   switch (tree_to_uhwi (TYPE_SIZE (type)))
5987     {
5988     case 8:
5989       base_atomic_type = atomicQI_type_node;
5990       break;
5991 
5992     case 16:
5993       base_atomic_type = atomicHI_type_node;
5994       break;
5995 
5996     case 32:
5997       base_atomic_type = atomicSI_type_node;
5998       break;
5999 
6000     case 64:
6001       base_atomic_type = atomicDI_type_node;
6002       break;
6003 
6004     case 128:
6005       base_atomic_type = atomicTI_type_node;
6006       break;
6007 
6008     default:
6009       base_atomic_type = NULL_TREE;
6010     }
6011 
6012   return base_atomic_type;
6013 }
6014 
6015 /* Return a version of the TYPE, qualified as indicated by the
6016    TYPE_QUALS, if one exists.  If no qualified version exists yet,
6017    return NULL_TREE.  */
6018 
6019 tree
6020 get_qualified_type (tree type, int type_quals)
6021 {
6022   tree t;
6023 
6024   if (TYPE_QUALS (type) == type_quals)
6025     return type;
6026 
6027   /* Search the chain of variants to see if there is already one there just
6028      like the one we need to have.  If so, use that existing one.  We must
6029      preserve the TYPE_NAME, since there is code that depends on this.  */
6030   for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6031     if (check_qualified_type (t, type, type_quals))
6032       return t;
6033 
6034   return NULL_TREE;
6035 }
6036 
6037 /* Like get_qualified_type, but creates the type if it does not
6038    exist.  This function never returns NULL_TREE.  */
6039 
6040 tree
6041 build_qualified_type (tree type, int type_quals MEM_STAT_DECL)
6042 {
6043   tree t;
6044 
6045   /* See if we already have the appropriate qualified variant.  */
6046   t = get_qualified_type (type, type_quals);
6047 
6048   /* If not, build it.  */
6049   if (!t)
6050     {
6051       t = build_variant_type_copy (type PASS_MEM_STAT);
6052       set_type_quals (t, type_quals);
6053 
6054       if (((type_quals & TYPE_QUAL_ATOMIC) == TYPE_QUAL_ATOMIC))
6055 	{
6056 	  /* See if this object can map to a basic atomic type.  */
6057 	  tree atomic_type = find_atomic_core_type (type);
6058 	  if (atomic_type)
6059 	    {
6060 	      /* Ensure the alignment of this type is compatible with
6061 		 the required alignment of the atomic type.  */
6062 	      if (TYPE_ALIGN (atomic_type) > TYPE_ALIGN (t))
6063 		SET_TYPE_ALIGN (t, TYPE_ALIGN (atomic_type));
6064 	    }
6065 	}
6066 
6067       if (TYPE_STRUCTURAL_EQUALITY_P (type))
6068 	/* Propagate structural equality. */
6069 	SET_TYPE_STRUCTURAL_EQUALITY (t);
6070       else if (TYPE_CANONICAL (type) != type)
6071 	/* Build the underlying canonical type, since it is different
6072 	   from TYPE. */
6073 	{
6074 	  tree c = build_qualified_type (TYPE_CANONICAL (type), type_quals);
6075 	  TYPE_CANONICAL (t) = TYPE_CANONICAL (c);
6076 	}
6077       else
6078 	/* T is its own canonical type. */
6079 	TYPE_CANONICAL (t) = t;
6080 
6081     }
6082 
6083   return t;
6084 }
6085 
6086 /* Create a variant of type T with alignment ALIGN.  */
6087 
6088 tree
6089 build_aligned_type (tree type, unsigned int align)
6090 {
6091   tree t;
6092 
6093   if (TYPE_PACKED (type)
6094       || TYPE_ALIGN (type) == align)
6095     return type;
6096 
6097   for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6098     if (check_aligned_type (t, type, align))
6099       return t;
6100 
6101   t = build_variant_type_copy (type);
6102   SET_TYPE_ALIGN (t, align);
6103   TYPE_USER_ALIGN (t) = 1;
6104 
6105   return t;
6106 }
6107 
6108 /* Create a new distinct copy of TYPE.  The new type is made its own
6109    MAIN_VARIANT. If TYPE requires structural equality checks, the
6110    resulting type requires structural equality checks; otherwise, its
6111    TYPE_CANONICAL points to itself. */
6112 
6113 tree
6114 build_distinct_type_copy (tree type MEM_STAT_DECL)
6115 {
6116   tree t = copy_node (type PASS_MEM_STAT);
6117 
6118   TYPE_POINTER_TO (t) = 0;
6119   TYPE_REFERENCE_TO (t) = 0;
6120 
6121   /* Set the canonical type either to a new equivalence class, or
6122      propagate the need for structural equality checks. */
6123   if (TYPE_STRUCTURAL_EQUALITY_P (type))
6124     SET_TYPE_STRUCTURAL_EQUALITY (t);
6125   else
6126     TYPE_CANONICAL (t) = t;
6127 
6128   /* Make it its own variant.  */
6129   TYPE_MAIN_VARIANT (t) = t;
6130   TYPE_NEXT_VARIANT (t) = 0;
6131 
6132   /* Note that it is now possible for TYPE_MIN_VALUE to be a value
6133      whose TREE_TYPE is not t.  This can also happen in the Ada
6134      frontend when using subtypes.  */
6135 
6136   return t;
6137 }
6138 
6139 /* Create a new variant of TYPE, equivalent but distinct.  This is so
6140    the caller can modify it. TYPE_CANONICAL for the return type will
6141    be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
6142    are considered equal by the language itself (or that both types
6143    require structural equality checks). */
6144 
6145 tree
6146 build_variant_type_copy (tree type MEM_STAT_DECL)
6147 {
6148   tree t, m = TYPE_MAIN_VARIANT (type);
6149 
6150   t = build_distinct_type_copy (type PASS_MEM_STAT);
6151 
6152   /* Since we're building a variant, assume that it is a non-semantic
6153      variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
6154   TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
6155   /* Type variants have no alias set defined.  */
6156   TYPE_ALIAS_SET (t) = -1;
6157 
6158   /* Add the new type to the chain of variants of TYPE.  */
6159   TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
6160   TYPE_NEXT_VARIANT (m) = t;
6161   TYPE_MAIN_VARIANT (t) = m;
6162 
6163   return t;
6164 }
6165 
6166 /* Return true if the from tree in both tree maps are equal.  */
6167 
6168 int
6169 tree_map_base_eq (const void *va, const void *vb)
6170 {
6171   const struct tree_map_base  *const a = (const struct tree_map_base *) va,
6172     *const b = (const struct tree_map_base *) vb;
6173   return (a->from == b->from);
6174 }
6175 
6176 /* Hash a from tree in a tree_base_map.  */
6177 
6178 unsigned int
6179 tree_map_base_hash (const void *item)
6180 {
6181   return htab_hash_pointer (((const struct tree_map_base *)item)->from);
6182 }
6183 
6184 /* Return true if this tree map structure is marked for garbage collection
6185    purposes.  We simply return true if the from tree is marked, so that this
6186    structure goes away when the from tree goes away.  */
6187 
6188 int
6189 tree_map_base_marked_p (const void *p)
6190 {
6191   return ggc_marked_p (((const struct tree_map_base *) p)->from);
6192 }
6193 
6194 /* Hash a from tree in a tree_map.  */
6195 
6196 unsigned int
6197 tree_map_hash (const void *item)
6198 {
6199   return (((const struct tree_map *) item)->hash);
6200 }
6201 
6202 /* Hash a from tree in a tree_decl_map.  */
6203 
6204 unsigned int
6205 tree_decl_map_hash (const void *item)
6206 {
6207   return DECL_UID (((const struct tree_decl_map *) item)->base.from);
6208 }
6209 
6210 /* Return the initialization priority for DECL.  */
6211 
6212 priority_type
6213 decl_init_priority_lookup (tree decl)
6214 {
6215   symtab_node *snode = symtab_node::get (decl);
6216 
6217   if (!snode)
6218     return DEFAULT_INIT_PRIORITY;
6219   return
6220     snode->get_init_priority ();
6221 }
6222 
6223 /* Return the finalization priority for DECL.  */
6224 
6225 priority_type
6226 decl_fini_priority_lookup (tree decl)
6227 {
6228   cgraph_node *node = cgraph_node::get (decl);
6229 
6230   if (!node)
6231     return DEFAULT_INIT_PRIORITY;
6232   return
6233     node->get_fini_priority ();
6234 }
6235 
6236 /* Set the initialization priority for DECL to PRIORITY.  */
6237 
6238 void
6239 decl_init_priority_insert (tree decl, priority_type priority)
6240 {
6241   struct symtab_node *snode;
6242 
6243   if (priority == DEFAULT_INIT_PRIORITY)
6244     {
6245       snode = symtab_node::get (decl);
6246       if (!snode)
6247 	return;
6248     }
6249   else if (VAR_P (decl))
6250     snode = varpool_node::get_create (decl);
6251   else
6252     snode = cgraph_node::get_create (decl);
6253   snode->set_init_priority (priority);
6254 }
6255 
6256 /* Set the finalization priority for DECL to PRIORITY.  */
6257 
6258 void
6259 decl_fini_priority_insert (tree decl, priority_type priority)
6260 {
6261   struct cgraph_node *node;
6262 
6263   if (priority == DEFAULT_INIT_PRIORITY)
6264     {
6265       node = cgraph_node::get (decl);
6266       if (!node)
6267 	return;
6268     }
6269   else
6270     node = cgraph_node::get_create (decl);
6271   node->set_fini_priority (priority);
6272 }
6273 
6274 /* Print out the statistics for the DECL_DEBUG_EXPR hash table.  */
6275 
6276 static void
6277 print_debug_expr_statistics (void)
6278 {
6279   fprintf (stderr, "DECL_DEBUG_EXPR  hash: size %ld, %ld elements, %f collisions\n",
6280 	   (long) debug_expr_for_decl->size (),
6281 	   (long) debug_expr_for_decl->elements (),
6282 	   debug_expr_for_decl->collisions ());
6283 }
6284 
6285 /* Print out the statistics for the DECL_VALUE_EXPR hash table.  */
6286 
6287 static void
6288 print_value_expr_statistics (void)
6289 {
6290   fprintf (stderr, "DECL_VALUE_EXPR  hash: size %ld, %ld elements, %f collisions\n",
6291 	   (long) value_expr_for_decl->size (),
6292 	   (long) value_expr_for_decl->elements (),
6293 	   value_expr_for_decl->collisions ());
6294 }
6295 
6296 /* Lookup a debug expression for FROM, and return it if we find one.  */
6297 
6298 tree
6299 decl_debug_expr_lookup (tree from)
6300 {
6301   struct tree_decl_map *h, in;
6302   in.base.from = from;
6303 
6304   h = debug_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6305   if (h)
6306     return h->to;
6307   return NULL_TREE;
6308 }
6309 
6310 /* Insert a mapping FROM->TO in the debug expression hashtable.  */
6311 
6312 void
6313 decl_debug_expr_insert (tree from, tree to)
6314 {
6315   struct tree_decl_map *h;
6316 
6317   h = ggc_alloc<tree_decl_map> ();
6318   h->base.from = from;
6319   h->to = to;
6320   *debug_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6321 }
6322 
6323 /* Lookup a value expression for FROM, and return it if we find one.  */
6324 
6325 tree
6326 decl_value_expr_lookup (tree from)
6327 {
6328   struct tree_decl_map *h, in;
6329   in.base.from = from;
6330 
6331   h = value_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6332   if (h)
6333     return h->to;
6334   return NULL_TREE;
6335 }
6336 
6337 /* Insert a mapping FROM->TO in the value expression hashtable.  */
6338 
6339 void
6340 decl_value_expr_insert (tree from, tree to)
6341 {
6342   struct tree_decl_map *h;
6343 
6344   h = ggc_alloc<tree_decl_map> ();
6345   h->base.from = from;
6346   h->to = to;
6347   *value_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6348 }
6349 
6350 /* Lookup a vector of debug arguments for FROM, and return it if we
6351    find one.  */
6352 
6353 vec<tree, va_gc> **
6354 decl_debug_args_lookup (tree from)
6355 {
6356   struct tree_vec_map *h, in;
6357 
6358   if (!DECL_HAS_DEBUG_ARGS_P (from))
6359     return NULL;
6360   gcc_checking_assert (debug_args_for_decl != NULL);
6361   in.base.from = from;
6362   h = debug_args_for_decl->find_with_hash (&in, DECL_UID (from));
6363   if (h)
6364     return &h->to;
6365   return NULL;
6366 }
6367 
6368 /* Insert a mapping FROM->empty vector of debug arguments in the value
6369    expression hashtable.  */
6370 
6371 vec<tree, va_gc> **
6372 decl_debug_args_insert (tree from)
6373 {
6374   struct tree_vec_map *h;
6375   tree_vec_map **loc;
6376 
6377   if (DECL_HAS_DEBUG_ARGS_P (from))
6378     return decl_debug_args_lookup (from);
6379   if (debug_args_for_decl == NULL)
6380     debug_args_for_decl = hash_table<tree_vec_map_cache_hasher>::create_ggc (64);
6381   h = ggc_alloc<tree_vec_map> ();
6382   h->base.from = from;
6383   h->to = NULL;
6384   loc = debug_args_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT);
6385   *loc = h;
6386   DECL_HAS_DEBUG_ARGS_P (from) = 1;
6387   return &h->to;
6388 }
6389 
6390 /* Hashing of types so that we don't make duplicates.
6391    The entry point is `type_hash_canon'.  */
6392 
6393 /* Generate the default hash code for TYPE.  This is designed for
6394    speed, rather than maximum entropy.  */
6395 
6396 hashval_t
6397 type_hash_canon_hash (tree type)
6398 {
6399   inchash::hash hstate;
6400 
6401   hstate.add_int (TREE_CODE (type));
6402 
6403   if (TREE_TYPE (type))
6404     hstate.add_object (TYPE_HASH (TREE_TYPE (type)));
6405 
6406   for (tree t = TYPE_ATTRIBUTES (type); t; t = TREE_CHAIN (t))
6407     /* Just the identifier is adequate to distinguish.  */
6408     hstate.add_object (IDENTIFIER_HASH_VALUE (get_attribute_name (t)));
6409 
6410   switch (TREE_CODE (type))
6411     {
6412     case METHOD_TYPE:
6413       hstate.add_object (TYPE_HASH (TYPE_METHOD_BASETYPE (type)));
6414       /* FALLTHROUGH. */
6415     case FUNCTION_TYPE:
6416       for (tree t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6417 	if (TREE_VALUE (t) != error_mark_node)
6418 	  hstate.add_object (TYPE_HASH (TREE_VALUE (t)));
6419       break;
6420 
6421     case OFFSET_TYPE:
6422       hstate.add_object (TYPE_HASH (TYPE_OFFSET_BASETYPE (type)));
6423       break;
6424 
6425     case ARRAY_TYPE:
6426       {
6427 	if (TYPE_DOMAIN (type))
6428 	  hstate.add_object (TYPE_HASH (TYPE_DOMAIN (type)));
6429 	if (!AGGREGATE_TYPE_P (TREE_TYPE (type)))
6430 	  {
6431 	    unsigned typeless = TYPE_TYPELESS_STORAGE (type);
6432 	    hstate.add_object (typeless);
6433 	  }
6434       }
6435       break;
6436 
6437     case INTEGER_TYPE:
6438       {
6439 	tree t = TYPE_MAX_VALUE (type);
6440 	if (!t)
6441 	  t = TYPE_MIN_VALUE (type);
6442 	for (int i = 0; i < TREE_INT_CST_NUNITS (t); i++)
6443 	  hstate.add_object (TREE_INT_CST_ELT (t, i));
6444 	break;
6445       }
6446 
6447     case REAL_TYPE:
6448     case FIXED_POINT_TYPE:
6449       {
6450 	unsigned prec = TYPE_PRECISION (type);
6451 	hstate.add_object (prec);
6452 	break;
6453       }
6454 
6455     case VECTOR_TYPE:
6456       hstate.add_poly_int (TYPE_VECTOR_SUBPARTS (type));
6457       break;
6458 
6459     default:
6460       break;
6461     }
6462 
6463   return hstate.end ();
6464 }
6465 
6466 /* These are the Hashtable callback functions.  */
6467 
6468 /* Returns true iff the types are equivalent.  */
6469 
6470 bool
6471 type_cache_hasher::equal (type_hash *a, type_hash *b)
6472 {
6473   /* First test the things that are the same for all types.  */
6474   if (a->hash != b->hash
6475       || TREE_CODE (a->type) != TREE_CODE (b->type)
6476       || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6477       || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6478 				 TYPE_ATTRIBUTES (b->type))
6479       || (TREE_CODE (a->type) != COMPLEX_TYPE
6480           && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6481     return 0;
6482 
6483   /* Be careful about comparing arrays before and after the element type
6484      has been completed; don't compare TYPE_ALIGN unless both types are
6485      complete.  */
6486   if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6487       && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6488 	  || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6489     return 0;
6490 
6491   switch (TREE_CODE (a->type))
6492     {
6493     case VOID_TYPE:
6494     case COMPLEX_TYPE:
6495     case POINTER_TYPE:
6496     case REFERENCE_TYPE:
6497     case NULLPTR_TYPE:
6498       return 1;
6499 
6500     case VECTOR_TYPE:
6501       return known_eq (TYPE_VECTOR_SUBPARTS (a->type),
6502 		       TYPE_VECTOR_SUBPARTS (b->type));
6503 
6504     case ENUMERAL_TYPE:
6505       if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6506 	  && !(TYPE_VALUES (a->type)
6507 	       && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6508 	       && TYPE_VALUES (b->type)
6509 	       && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6510 	       && type_list_equal (TYPE_VALUES (a->type),
6511 				   TYPE_VALUES (b->type))))
6512 	return 0;
6513 
6514       /* fall through */
6515 
6516     case INTEGER_TYPE:
6517     case REAL_TYPE:
6518     case BOOLEAN_TYPE:
6519       if (TYPE_PRECISION (a->type) != TYPE_PRECISION (b->type))
6520 	return false;
6521       return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6522 	       || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6523 				      TYPE_MAX_VALUE (b->type)))
6524 	      && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6525 		  || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6526 					 TYPE_MIN_VALUE (b->type))));
6527 
6528     case FIXED_POINT_TYPE:
6529       return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6530 
6531     case OFFSET_TYPE:
6532       return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6533 
6534     case METHOD_TYPE:
6535       if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6536 	  && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6537 	      || (TYPE_ARG_TYPES (a->type)
6538 		  && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6539 		  && TYPE_ARG_TYPES (b->type)
6540 		  && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6541 		  && type_list_equal (TYPE_ARG_TYPES (a->type),
6542 				      TYPE_ARG_TYPES (b->type)))))
6543         break;
6544       return 0;
6545     case ARRAY_TYPE:
6546       /* Don't compare TYPE_TYPELESS_STORAGE flag on aggregates,
6547 	 where the flag should be inherited from the element type
6548 	 and can change after ARRAY_TYPEs are created; on non-aggregates
6549 	 compare it and hash it, scalars will never have that flag set
6550 	 and we need to differentiate between arrays created by different
6551 	 front-ends or middle-end created arrays.  */
6552       return (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
6553 	      && (AGGREGATE_TYPE_P (TREE_TYPE (a->type))
6554 		  || (TYPE_TYPELESS_STORAGE (a->type)
6555 		      == TYPE_TYPELESS_STORAGE (b->type))));
6556 
6557     case RECORD_TYPE:
6558     case UNION_TYPE:
6559     case QUAL_UNION_TYPE:
6560       return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
6561 	      || (TYPE_FIELDS (a->type)
6562 		  && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
6563 		  && TYPE_FIELDS (b->type)
6564 		  && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
6565 		  && type_list_equal (TYPE_FIELDS (a->type),
6566 				      TYPE_FIELDS (b->type))));
6567 
6568     case FUNCTION_TYPE:
6569       if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6570 	  || (TYPE_ARG_TYPES (a->type)
6571 	      && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6572 	      && TYPE_ARG_TYPES (b->type)
6573 	      && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6574 	      && type_list_equal (TYPE_ARG_TYPES (a->type),
6575 				  TYPE_ARG_TYPES (b->type))))
6576 	break;
6577       return 0;
6578 
6579     default:
6580       return 0;
6581     }
6582 
6583   if (lang_hooks.types.type_hash_eq != NULL)
6584     return lang_hooks.types.type_hash_eq (a->type, b->type);
6585 
6586   return 1;
6587 }
6588 
6589 /* Given TYPE, and HASHCODE its hash code, return the canonical
6590    object for an identical type if one already exists.
6591    Otherwise, return TYPE, and record it as the canonical object.
6592 
6593    To use this function, first create a type of the sort you want.
6594    Then compute its hash code from the fields of the type that
6595    make it different from other similar types.
6596    Then call this function and use the value.  */
6597 
6598 tree
6599 type_hash_canon (unsigned int hashcode, tree type)
6600 {
6601   type_hash in;
6602   type_hash **loc;
6603 
6604   /* The hash table only contains main variants, so ensure that's what we're
6605      being passed.  */
6606   gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6607 
6608   /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6609      must call that routine before comparing TYPE_ALIGNs.  */
6610   layout_type (type);
6611 
6612   in.hash = hashcode;
6613   in.type = type;
6614 
6615   loc = type_hash_table->find_slot_with_hash (&in, hashcode, INSERT);
6616   if (*loc)
6617     {
6618       tree t1 = ((type_hash *) *loc)->type;
6619       gcc_assert (TYPE_MAIN_VARIANT (t1) == t1);
6620       if (TYPE_UID (type) + 1 == next_type_uid)
6621 	--next_type_uid;
6622       /* Free also min/max values and the cache for integer
6623 	 types.  This can't be done in free_node, as LTO frees
6624 	 those on its own.  */
6625       if (TREE_CODE (type) == INTEGER_TYPE)
6626 	{
6627 	  if (TYPE_MIN_VALUE (type)
6628 	      && TREE_TYPE (TYPE_MIN_VALUE (type)) == type)
6629 	    {
6630 	      /* Zero is always in TYPE_CACHED_VALUES.  */
6631 	      if (! TYPE_UNSIGNED (type))
6632 		int_cst_hash_table->remove_elt (TYPE_MIN_VALUE (type));
6633 	      ggc_free (TYPE_MIN_VALUE (type));
6634 	    }
6635 	  if (TYPE_MAX_VALUE (type)
6636 	      && TREE_TYPE (TYPE_MAX_VALUE (type)) == type)
6637 	    {
6638 	      int_cst_hash_table->remove_elt (TYPE_MAX_VALUE (type));
6639 	      ggc_free (TYPE_MAX_VALUE (type));
6640 	    }
6641 	  if (TYPE_CACHED_VALUES_P (type))
6642 	    ggc_free (TYPE_CACHED_VALUES (type));
6643 	}
6644       free_node (type);
6645       return t1;
6646     }
6647   else
6648     {
6649       struct type_hash *h;
6650 
6651       h = ggc_alloc<type_hash> ();
6652       h->hash = hashcode;
6653       h->type = type;
6654       *loc = h;
6655 
6656       return type;
6657     }
6658 }
6659 
6660 static void
6661 print_type_hash_statistics (void)
6662 {
6663   fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6664 	   (long) type_hash_table->size (),
6665 	   (long) type_hash_table->elements (),
6666 	   type_hash_table->collisions ());
6667 }
6668 
6669 /* Given two lists of types
6670    (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6671    return 1 if the lists contain the same types in the same order.
6672    Also, the TREE_PURPOSEs must match.  */
6673 
6674 int
6675 type_list_equal (const_tree l1, const_tree l2)
6676 {
6677   const_tree t1, t2;
6678 
6679   for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6680     if (TREE_VALUE (t1) != TREE_VALUE (t2)
6681 	|| (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6682 	    && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6683 		  && (TREE_TYPE (TREE_PURPOSE (t1))
6684 		      == TREE_TYPE (TREE_PURPOSE (t2))))))
6685       return 0;
6686 
6687   return t1 == t2;
6688 }
6689 
6690 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6691    given by TYPE.  If the argument list accepts variable arguments,
6692    then this function counts only the ordinary arguments.  */
6693 
6694 int
6695 type_num_arguments (const_tree type)
6696 {
6697   int i = 0;
6698   tree t;
6699 
6700   for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6701     /* If the function does not take a variable number of arguments,
6702        the last element in the list will have type `void'.  */
6703     if (VOID_TYPE_P (TREE_VALUE (t)))
6704       break;
6705     else
6706       ++i;
6707 
6708   return i;
6709 }
6710 
6711 /* Nonzero if integer constants T1 and T2
6712    represent the same constant value.  */
6713 
6714 int
6715 tree_int_cst_equal (const_tree t1, const_tree t2)
6716 {
6717   if (t1 == t2)
6718     return 1;
6719 
6720   if (t1 == 0 || t2 == 0)
6721     return 0;
6722 
6723   if (TREE_CODE (t1) == INTEGER_CST
6724       && TREE_CODE (t2) == INTEGER_CST
6725       && wi::to_widest (t1) == wi::to_widest (t2))
6726     return 1;
6727 
6728   return 0;
6729 }
6730 
6731 /* Return true if T is an INTEGER_CST whose numerical value (extended
6732    according to TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT.  */
6733 
6734 bool
6735 tree_fits_shwi_p (const_tree t)
6736 {
6737   return (t != NULL_TREE
6738 	  && TREE_CODE (t) == INTEGER_CST
6739 	  && wi::fits_shwi_p (wi::to_widest (t)));
6740 }
6741 
6742 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
6743    value (extended according to TYPE_UNSIGNED) fits in a poly_int64.  */
6744 
6745 bool
6746 tree_fits_poly_int64_p (const_tree t)
6747 {
6748   if (t == NULL_TREE)
6749     return false;
6750   if (POLY_INT_CST_P (t))
6751     {
6752       for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
6753 	if (!wi::fits_shwi_p (wi::to_wide (POLY_INT_CST_COEFF (t, i))))
6754 	  return false;
6755       return true;
6756     }
6757   return (TREE_CODE (t) == INTEGER_CST
6758 	  && wi::fits_shwi_p (wi::to_widest (t)));
6759 }
6760 
6761 /* Return true if T is an INTEGER_CST whose numerical value (extended
6762    according to TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT.  */
6763 
6764 bool
6765 tree_fits_uhwi_p (const_tree t)
6766 {
6767   return (t != NULL_TREE
6768 	  && TREE_CODE (t) == INTEGER_CST
6769 	  && wi::fits_uhwi_p (wi::to_widest (t)));
6770 }
6771 
6772 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
6773    value (extended according to TYPE_UNSIGNED) fits in a poly_uint64.  */
6774 
6775 bool
6776 tree_fits_poly_uint64_p (const_tree t)
6777 {
6778   if (t == NULL_TREE)
6779     return false;
6780   if (POLY_INT_CST_P (t))
6781     {
6782       for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
6783 	if (!wi::fits_uhwi_p (wi::to_widest (POLY_INT_CST_COEFF (t, i))))
6784 	  return false;
6785       return true;
6786     }
6787   return (TREE_CODE (t) == INTEGER_CST
6788 	  && wi::fits_uhwi_p (wi::to_widest (t)));
6789 }
6790 
6791 /* T is an INTEGER_CST whose numerical value (extended according to
6792    TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT.  Return that
6793    HOST_WIDE_INT.  */
6794 
6795 HOST_WIDE_INT
6796 tree_to_shwi (const_tree t)
6797 {
6798   gcc_assert (tree_fits_shwi_p (t));
6799   return TREE_INT_CST_LOW (t);
6800 }
6801 
6802 /* T is an INTEGER_CST whose numerical value (extended according to
6803    TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT.  Return that
6804    HOST_WIDE_INT.  */
6805 
6806 unsigned HOST_WIDE_INT
6807 tree_to_uhwi (const_tree t)
6808 {
6809   gcc_assert (tree_fits_uhwi_p (t));
6810   return TREE_INT_CST_LOW (t);
6811 }
6812 
6813 /* Return the most significant (sign) bit of T.  */
6814 
6815 int
6816 tree_int_cst_sign_bit (const_tree t)
6817 {
6818   unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
6819 
6820   return wi::extract_uhwi (wi::to_wide (t), bitno, 1);
6821 }
6822 
6823 /* Return an indication of the sign of the integer constant T.
6824    The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6825    Note that -1 will never be returned if T's type is unsigned.  */
6826 
6827 int
6828 tree_int_cst_sgn (const_tree t)
6829 {
6830   if (wi::to_wide (t) == 0)
6831     return 0;
6832   else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6833     return 1;
6834   else if (wi::neg_p (wi::to_wide (t)))
6835     return -1;
6836   else
6837     return 1;
6838 }
6839 
6840 /* Return the minimum number of bits needed to represent VALUE in a
6841    signed or unsigned type, UNSIGNEDP says which.  */
6842 
6843 unsigned int
6844 tree_int_cst_min_precision (tree value, signop sgn)
6845 {
6846   /* If the value is negative, compute its negative minus 1.  The latter
6847      adjustment is because the absolute value of the largest negative value
6848      is one larger than the largest positive value.  This is equivalent to
6849      a bit-wise negation, so use that operation instead.  */
6850 
6851   if (tree_int_cst_sgn (value) < 0)
6852     value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6853 
6854   /* Return the number of bits needed, taking into account the fact
6855      that we need one more bit for a signed than unsigned type.
6856      If value is 0 or -1, the minimum precision is 1 no matter
6857      whether unsignedp is true or false.  */
6858 
6859   if (integer_zerop (value))
6860     return 1;
6861   else
6862     return tree_floor_log2 (value) + 1 + (sgn == SIGNED ? 1 : 0) ;
6863 }
6864 
6865 /* Return truthvalue of whether T1 is the same tree structure as T2.
6866    Return 1 if they are the same.
6867    Return 0 if they are understandably different.
6868    Return -1 if either contains tree structure not understood by
6869    this function.  */
6870 
6871 int
6872 simple_cst_equal (const_tree t1, const_tree t2)
6873 {
6874   enum tree_code code1, code2;
6875   int cmp;
6876   int i;
6877 
6878   if (t1 == t2)
6879     return 1;
6880   if (t1 == 0 || t2 == 0)
6881     return 0;
6882 
6883   code1 = TREE_CODE (t1);
6884   code2 = TREE_CODE (t2);
6885 
6886   if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6887     {
6888       if (CONVERT_EXPR_CODE_P (code2)
6889 	  || code2 == NON_LVALUE_EXPR)
6890 	return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6891       else
6892 	return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6893     }
6894 
6895   else if (CONVERT_EXPR_CODE_P (code2)
6896 	   || code2 == NON_LVALUE_EXPR)
6897     return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6898 
6899   if (code1 != code2)
6900     return 0;
6901 
6902   switch (code1)
6903     {
6904     case INTEGER_CST:
6905       return wi::to_widest (t1) == wi::to_widest (t2);
6906 
6907     case REAL_CST:
6908       return real_identical (&TREE_REAL_CST (t1), &TREE_REAL_CST (t2));
6909 
6910     case FIXED_CST:
6911       return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6912 
6913     case STRING_CST:
6914       return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6915 	      && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6916 			 TREE_STRING_LENGTH (t1)));
6917 
6918     case CONSTRUCTOR:
6919       {
6920 	unsigned HOST_WIDE_INT idx;
6921 	vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
6922 	vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);
6923 
6924 	if (vec_safe_length (v1) != vec_safe_length (v2))
6925 	  return false;
6926 
6927         for (idx = 0; idx < vec_safe_length (v1); ++idx)
6928 	  /* ??? Should we handle also fields here? */
6929 	  if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
6930 	    return false;
6931 	return true;
6932       }
6933 
6934     case SAVE_EXPR:
6935       return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6936 
6937     case CALL_EXPR:
6938       cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
6939       if (cmp <= 0)
6940 	return cmp;
6941       if (call_expr_nargs (t1) != call_expr_nargs (t2))
6942 	return 0;
6943       {
6944 	const_tree arg1, arg2;
6945 	const_call_expr_arg_iterator iter1, iter2;
6946 	for (arg1 = first_const_call_expr_arg (t1, &iter1),
6947 	       arg2 = first_const_call_expr_arg (t2, &iter2);
6948 	     arg1 && arg2;
6949 	     arg1 = next_const_call_expr_arg (&iter1),
6950 	       arg2 = next_const_call_expr_arg (&iter2))
6951 	  {
6952 	    cmp = simple_cst_equal (arg1, arg2);
6953 	    if (cmp <= 0)
6954 	      return cmp;
6955 	  }
6956 	return arg1 == arg2;
6957       }
6958 
6959     case TARGET_EXPR:
6960       /* Special case: if either target is an unallocated VAR_DECL,
6961 	 it means that it's going to be unified with whatever the
6962 	 TARGET_EXPR is really supposed to initialize, so treat it
6963 	 as being equivalent to anything.  */
6964       if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
6965 	   && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
6966 	   && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
6967 	  || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
6968 	      && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
6969 	      && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
6970 	cmp = 1;
6971       else
6972 	cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6973 
6974       if (cmp <= 0)
6975 	return cmp;
6976 
6977       return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
6978 
6979     case WITH_CLEANUP_EXPR:
6980       cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6981       if (cmp <= 0)
6982 	return cmp;
6983 
6984       return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
6985 
6986     case COMPONENT_REF:
6987       if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
6988 	return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6989 
6990       return 0;
6991 
6992     case VAR_DECL:
6993     case PARM_DECL:
6994     case CONST_DECL:
6995     case FUNCTION_DECL:
6996       return 0;
6997 
6998     default:
6999       if (POLY_INT_CST_P (t1))
7000 	/* A false return means maybe_ne rather than known_ne.  */
7001 	return known_eq (poly_widest_int::from (poly_int_cst_value (t1),
7002 						TYPE_SIGN (TREE_TYPE (t1))),
7003 			 poly_widest_int::from (poly_int_cst_value (t2),
7004 						TYPE_SIGN (TREE_TYPE (t2))));
7005       break;
7006     }
7007 
7008   /* This general rule works for most tree codes.  All exceptions should be
7009      handled above.  If this is a language-specific tree code, we can't
7010      trust what might be in the operand, so say we don't know
7011      the situation.  */
7012   if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
7013     return -1;
7014 
7015   switch (TREE_CODE_CLASS (code1))
7016     {
7017     case tcc_unary:
7018     case tcc_binary:
7019     case tcc_comparison:
7020     case tcc_expression:
7021     case tcc_reference:
7022     case tcc_statement:
7023       cmp = 1;
7024       for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
7025 	{
7026 	  cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
7027 	  if (cmp <= 0)
7028 	    return cmp;
7029 	}
7030 
7031       return cmp;
7032 
7033     default:
7034       return -1;
7035     }
7036 }
7037 
7038 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
7039    Return -1, 0, or 1 if the value of T is less than, equal to, or greater
7040    than U, respectively.  */
7041 
7042 int
7043 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
7044 {
7045   if (tree_int_cst_sgn (t) < 0)
7046     return -1;
7047   else if (!tree_fits_uhwi_p (t))
7048     return 1;
7049   else if (TREE_INT_CST_LOW (t) == u)
7050     return 0;
7051   else if (TREE_INT_CST_LOW (t) < u)
7052     return -1;
7053   else
7054     return 1;
7055 }
7056 
7057 /* Return true if SIZE represents a constant size that is in bounds of
7058    what the middle-end and the backend accepts (covering not more than
7059    half of the address-space).  */
7060 
7061 bool
7062 valid_constant_size_p (const_tree size)
7063 {
7064   if (POLY_INT_CST_P (size))
7065     {
7066       if (TREE_OVERFLOW (size))
7067 	return false;
7068       for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
7069 	if (!valid_constant_size_p (POLY_INT_CST_COEFF (size, i)))
7070 	  return false;
7071       return true;
7072     }
7073   if (! tree_fits_uhwi_p (size)
7074       || TREE_OVERFLOW (size)
7075       || tree_int_cst_sign_bit (size) != 0)
7076     return false;
7077   return true;
7078 }
7079 
7080 /* Return the precision of the type, or for a complex or vector type the
7081    precision of the type of its elements.  */
7082 
7083 unsigned int
7084 element_precision (const_tree type)
7085 {
7086   if (!TYPE_P (type))
7087     type = TREE_TYPE (type);
7088   enum tree_code code = TREE_CODE (type);
7089   if (code == COMPLEX_TYPE || code == VECTOR_TYPE)
7090     type = TREE_TYPE (type);
7091 
7092   return TYPE_PRECISION (type);
7093 }
7094 
7095 /* Return true if CODE represents an associative tree code.  Otherwise
7096    return false.  */
7097 bool
7098 associative_tree_code (enum tree_code code)
7099 {
7100   switch (code)
7101     {
7102     case BIT_IOR_EXPR:
7103     case BIT_AND_EXPR:
7104     case BIT_XOR_EXPR:
7105     case PLUS_EXPR:
7106     case MULT_EXPR:
7107     case MIN_EXPR:
7108     case MAX_EXPR:
7109       return true;
7110 
7111     default:
7112       break;
7113     }
7114   return false;
7115 }
7116 
7117 /* Return true if CODE represents a commutative tree code.  Otherwise
7118    return false.  */
7119 bool
7120 commutative_tree_code (enum tree_code code)
7121 {
7122   switch (code)
7123     {
7124     case PLUS_EXPR:
7125     case MULT_EXPR:
7126     case MULT_HIGHPART_EXPR:
7127     case MIN_EXPR:
7128     case MAX_EXPR:
7129     case BIT_IOR_EXPR:
7130     case BIT_XOR_EXPR:
7131     case BIT_AND_EXPR:
7132     case NE_EXPR:
7133     case EQ_EXPR:
7134     case UNORDERED_EXPR:
7135     case ORDERED_EXPR:
7136     case UNEQ_EXPR:
7137     case LTGT_EXPR:
7138     case TRUTH_AND_EXPR:
7139     case TRUTH_XOR_EXPR:
7140     case TRUTH_OR_EXPR:
7141     case WIDEN_MULT_EXPR:
7142     case VEC_WIDEN_MULT_HI_EXPR:
7143     case VEC_WIDEN_MULT_LO_EXPR:
7144     case VEC_WIDEN_MULT_EVEN_EXPR:
7145     case VEC_WIDEN_MULT_ODD_EXPR:
7146       return true;
7147 
7148     default:
7149       break;
7150     }
7151   return false;
7152 }
7153 
7154 /* Return true if CODE represents a ternary tree code for which the
7155    first two operands are commutative.  Otherwise return false.  */
7156 bool
7157 commutative_ternary_tree_code (enum tree_code code)
7158 {
7159   switch (code)
7160     {
7161     case WIDEN_MULT_PLUS_EXPR:
7162     case WIDEN_MULT_MINUS_EXPR:
7163     case DOT_PROD_EXPR:
7164     case FMA_EXPR:
7165       return true;
7166 
7167     default:
7168       break;
7169     }
7170   return false;
7171 }
7172 
7173 /* Returns true if CODE can overflow.  */
7174 
7175 bool
7176 operation_can_overflow (enum tree_code code)
7177 {
7178   switch (code)
7179     {
7180     case PLUS_EXPR:
7181     case MINUS_EXPR:
7182     case MULT_EXPR:
7183     case LSHIFT_EXPR:
7184       /* Can overflow in various ways.  */
7185       return true;
7186     case TRUNC_DIV_EXPR:
7187     case EXACT_DIV_EXPR:
7188     case FLOOR_DIV_EXPR:
7189     case CEIL_DIV_EXPR:
7190       /* For INT_MIN / -1.  */
7191       return true;
7192     case NEGATE_EXPR:
7193     case ABS_EXPR:
7194       /* For -INT_MIN.  */
7195       return true;
7196     default:
7197       /* These operators cannot overflow.  */
7198       return false;
7199     }
7200 }
7201 
7202 /* Returns true if CODE operating on operands of type TYPE doesn't overflow, or
7203    ftrapv doesn't generate trapping insns for CODE.  */
7204 
7205 bool
7206 operation_no_trapping_overflow (tree type, enum tree_code code)
7207 {
7208   gcc_checking_assert (ANY_INTEGRAL_TYPE_P (type));
7209 
7210   /* We don't generate instructions that trap on overflow for complex or vector
7211      types.  */
7212   if (!INTEGRAL_TYPE_P (type))
7213     return true;
7214 
7215   if (!TYPE_OVERFLOW_TRAPS (type))
7216     return true;
7217 
7218   switch (code)
7219     {
7220     case PLUS_EXPR:
7221     case MINUS_EXPR:
7222     case MULT_EXPR:
7223     case NEGATE_EXPR:
7224     case ABS_EXPR:
7225       /* These operators can overflow, and -ftrapv generates trapping code for
7226 	 these.  */
7227       return false;
7228     case TRUNC_DIV_EXPR:
7229     case EXACT_DIV_EXPR:
7230     case FLOOR_DIV_EXPR:
7231     case CEIL_DIV_EXPR:
7232     case LSHIFT_EXPR:
7233       /* These operators can overflow, but -ftrapv does not generate trapping
7234 	 code for these.  */
7235       return true;
7236     default:
7237       /* These operators cannot overflow.  */
7238       return true;
7239     }
7240 }
7241 
7242 namespace inchash
7243 {
7244 
7245 /* Generate a hash value for an expression.  This can be used iteratively
7246    by passing a previous result as the HSTATE argument.
7247 
7248    This function is intended to produce the same hash for expressions which
7249    would compare equal using operand_equal_p.  */
7250 void
7251 add_expr (const_tree t, inchash::hash &hstate, unsigned int flags)
7252 {
7253   int i;
7254   enum tree_code code;
7255   enum tree_code_class tclass;
7256 
7257   if (t == NULL_TREE || t == error_mark_node)
7258     {
7259       hstate.merge_hash (0);
7260       return;
7261     }
7262 
7263   if (!(flags & OEP_ADDRESS_OF))
7264     STRIP_NOPS (t);
7265 
7266   code = TREE_CODE (t);
7267 
7268   switch (code)
7269     {
7270     /* Alas, constants aren't shared, so we can't rely on pointer
7271        identity.  */
7272     case VOID_CST:
7273       hstate.merge_hash (0);
7274       return;
7275     case INTEGER_CST:
7276       gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
7277       for (i = 0; i < TREE_INT_CST_EXT_NUNITS (t); i++)
7278 	hstate.add_hwi (TREE_INT_CST_ELT (t, i));
7279       return;
7280     case REAL_CST:
7281       {
7282 	unsigned int val2;
7283 	if (!HONOR_SIGNED_ZEROS (t) && real_zerop (t))
7284 	  val2 = rvc_zero;
7285 	else
7286 	  val2 = real_hash (TREE_REAL_CST_PTR (t));
7287 	hstate.merge_hash (val2);
7288 	return;
7289       }
7290     case FIXED_CST:
7291       {
7292 	unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
7293 	hstate.merge_hash (val2);
7294 	return;
7295       }
7296     case STRING_CST:
7297       hstate.add ((const void *) TREE_STRING_POINTER (t),
7298 		  TREE_STRING_LENGTH (t));
7299       return;
7300     case COMPLEX_CST:
7301       inchash::add_expr (TREE_REALPART (t), hstate, flags);
7302       inchash::add_expr (TREE_IMAGPART (t), hstate, flags);
7303       return;
7304     case VECTOR_CST:
7305       {
7306 	hstate.add_int (VECTOR_CST_NPATTERNS (t));
7307 	hstate.add_int (VECTOR_CST_NELTS_PER_PATTERN (t));
7308 	unsigned int count = vector_cst_encoded_nelts (t);
7309 	for (unsigned int i = 0; i < count; ++i)
7310 	  inchash::add_expr (VECTOR_CST_ENCODED_ELT (t, i), hstate, flags);
7311 	return;
7312       }
7313     case SSA_NAME:
7314       /* We can just compare by pointer.  */
7315       hstate.add_hwi (SSA_NAME_VERSION (t));
7316       return;
7317     case PLACEHOLDER_EXPR:
7318       /* The node itself doesn't matter.  */
7319       return;
7320     case BLOCK:
7321     case OMP_CLAUSE:
7322       /* Ignore.  */
7323       return;
7324     case TREE_LIST:
7325       /* A list of expressions, for a CALL_EXPR or as the elements of a
7326 	 VECTOR_CST.  */
7327       for (; t; t = TREE_CHAIN (t))
7328 	inchash::add_expr (TREE_VALUE (t), hstate, flags);
7329       return;
7330     case CONSTRUCTOR:
7331       {
7332 	unsigned HOST_WIDE_INT idx;
7333 	tree field, value;
7334 	flags &= ~OEP_ADDRESS_OF;
7335 	FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
7336 	  {
7337 	    inchash::add_expr (field, hstate, flags);
7338 	    inchash::add_expr (value, hstate, flags);
7339 	  }
7340 	return;
7341       }
7342     case STATEMENT_LIST:
7343       {
7344 	tree_stmt_iterator i;
7345 	for (i = tsi_start (CONST_CAST_TREE (t));
7346 	     !tsi_end_p (i); tsi_next (&i))
7347 	  inchash::add_expr (tsi_stmt (i), hstate, flags);
7348 	return;
7349       }
7350     case TREE_VEC:
7351       for (i = 0; i < TREE_VEC_LENGTH (t); ++i)
7352 	inchash::add_expr (TREE_VEC_ELT (t, i), hstate, flags);
7353       return;
7354     case FUNCTION_DECL:
7355       /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
7356 	 Otherwise nodes that compare equal according to operand_equal_p might
7357 	 get different hash codes.  However, don't do this for machine specific
7358 	 or front end builtins, since the function code is overloaded in those
7359 	 cases.  */
7360       if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
7361 	  && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
7362 	{
7363 	  t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
7364 	  code = TREE_CODE (t);
7365 	}
7366       /* FALL THROUGH */
7367     default:
7368       if (POLY_INT_CST_P (t))
7369 	{
7370 	  for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
7371 	    hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
7372 	  return;
7373 	}
7374       tclass = TREE_CODE_CLASS (code);
7375 
7376       if (tclass == tcc_declaration)
7377 	{
7378 	  /* DECL's have a unique ID */
7379 	  hstate.add_hwi (DECL_UID (t));
7380 	}
7381       else if (tclass == tcc_comparison && !commutative_tree_code (code))
7382 	{
7383 	  /* For comparisons that can be swapped, use the lower
7384 	     tree code.  */
7385 	  enum tree_code ccode = swap_tree_comparison (code);
7386 	  if (code < ccode)
7387 	    ccode = code;
7388 	  hstate.add_object (ccode);
7389 	  inchash::add_expr (TREE_OPERAND (t, ccode != code), hstate, flags);
7390 	  inchash::add_expr (TREE_OPERAND (t, ccode == code), hstate, flags);
7391 	}
7392       else if (CONVERT_EXPR_CODE_P (code))
7393 	{
7394 	  /* NOP_EXPR and CONVERT_EXPR are considered equal by
7395 	     operand_equal_p.  */
7396 	  enum tree_code ccode = NOP_EXPR;
7397 	  hstate.add_object (ccode);
7398 
7399 	  /* Don't hash the type, that can lead to having nodes which
7400 	     compare equal according to operand_equal_p, but which
7401 	     have different hash codes.  Make sure to include signedness
7402 	     in the hash computation.  */
7403 	  hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
7404 	  inchash::add_expr (TREE_OPERAND (t, 0), hstate, flags);
7405 	}
7406       /* For OEP_ADDRESS_OF, hash MEM_EXPR[&decl, 0] the same as decl.  */
7407       else if (code == MEM_REF
7408 	       && (flags & OEP_ADDRESS_OF) != 0
7409 	       && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
7410 	       && DECL_P (TREE_OPERAND (TREE_OPERAND (t, 0), 0))
7411 	       && integer_zerop (TREE_OPERAND (t, 1)))
7412 	inchash::add_expr (TREE_OPERAND (TREE_OPERAND (t, 0), 0),
7413 			   hstate, flags);
7414       /* Don't ICE on FE specific trees, or their arguments etc.
7415 	 during operand_equal_p hash verification.  */
7416       else if (!IS_EXPR_CODE_CLASS (tclass))
7417 	gcc_assert (flags & OEP_HASH_CHECK);
7418       else
7419 	{
7420 	  unsigned int sflags = flags;
7421 
7422 	  hstate.add_object (code);
7423 
7424 	  switch (code)
7425 	    {
7426 	    case ADDR_EXPR:
7427 	      gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
7428 	      flags |= OEP_ADDRESS_OF;
7429 	      sflags = flags;
7430 	      break;
7431 
7432 	    case INDIRECT_REF:
7433 	    case MEM_REF:
7434 	    case TARGET_MEM_REF:
7435 	      flags &= ~OEP_ADDRESS_OF;
7436 	      sflags = flags;
7437 	      break;
7438 
7439 	    case ARRAY_REF:
7440 	    case ARRAY_RANGE_REF:
7441 	    case COMPONENT_REF:
7442 	    case BIT_FIELD_REF:
7443 	      sflags &= ~OEP_ADDRESS_OF;
7444 	      break;
7445 
7446 	    case COND_EXPR:
7447 	      flags &= ~OEP_ADDRESS_OF;
7448 	      break;
7449 
7450 	    case FMA_EXPR:
7451 	    case WIDEN_MULT_PLUS_EXPR:
7452 	    case WIDEN_MULT_MINUS_EXPR:
7453 	      {
7454 		/* The multiplication operands are commutative.  */
7455 		inchash::hash one, two;
7456 		inchash::add_expr (TREE_OPERAND (t, 0), one, flags);
7457 		inchash::add_expr (TREE_OPERAND (t, 1), two, flags);
7458 		hstate.add_commutative (one, two);
7459 		inchash::add_expr (TREE_OPERAND (t, 2), two, flags);
7460 		return;
7461 	      }
7462 
7463 	    case CALL_EXPR:
7464 	      if (CALL_EXPR_FN (t) == NULL_TREE)
7465 		hstate.add_int (CALL_EXPR_IFN (t));
7466 	      break;
7467 
7468 	    case TARGET_EXPR:
7469 	      /* For TARGET_EXPR, just hash on the TARGET_EXPR_SLOT.
7470 		 Usually different TARGET_EXPRs just should use
7471 		 different temporaries in their slots.  */
7472 	      inchash::add_expr (TARGET_EXPR_SLOT (t), hstate, flags);
7473 	      return;
7474 
7475 	    default:
7476 	      break;
7477 	    }
7478 
7479 	  /* Don't hash the type, that can lead to having nodes which
7480 	     compare equal according to operand_equal_p, but which
7481 	     have different hash codes.  */
7482 	  if (code == NON_LVALUE_EXPR)
7483 	    {
7484 	      /* Make sure to include signness in the hash computation.  */
7485 	      hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
7486 	      inchash::add_expr (TREE_OPERAND (t, 0), hstate, flags);
7487 	    }
7488 
7489 	  else if (commutative_tree_code (code))
7490 	    {
7491 	      /* It's a commutative expression.  We want to hash it the same
7492 		 however it appears.  We do this by first hashing both operands
7493 		 and then rehashing based on the order of their independent
7494 		 hashes.  */
7495 	      inchash::hash one, two;
7496 	      inchash::add_expr (TREE_OPERAND (t, 0), one, flags);
7497 	      inchash::add_expr (TREE_OPERAND (t, 1), two, flags);
7498 	      hstate.add_commutative (one, two);
7499 	    }
7500 	  else
7501 	    for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
7502 	      inchash::add_expr (TREE_OPERAND (t, i), hstate,
7503 				 i == 0 ? flags : sflags);
7504 	}
7505       return;
7506     }
7507 }
7508 
7509 }
7510 
7511 /* Constructors for pointer, array and function types.
7512    (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7513    constructed by language-dependent code, not here.)  */
7514 
7515 /* Construct, lay out and return the type of pointers to TO_TYPE with
7516    mode MODE.  If CAN_ALIAS_ALL is TRUE, indicate this type can
7517    reference all of memory. If such a type has already been
7518    constructed, reuse it.  */
7519 
7520 tree
7521 build_pointer_type_for_mode (tree to_type, machine_mode mode,
7522 			     bool can_alias_all)
7523 {
7524   tree t;
7525   bool could_alias = can_alias_all;
7526 
7527   if (to_type == error_mark_node)
7528     return error_mark_node;
7529 
7530   /* If the pointed-to type has the may_alias attribute set, force
7531      a TYPE_REF_CAN_ALIAS_ALL pointer to be generated.  */
7532   if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7533     can_alias_all = true;
7534 
7535   /* In some cases, languages will have things that aren't a POINTER_TYPE
7536      (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7537      In that case, return that type without regard to the rest of our
7538      operands.
7539 
7540      ??? This is a kludge, but consistent with the way this function has
7541      always operated and there doesn't seem to be a good way to avoid this
7542      at the moment.  */
7543   if (TYPE_POINTER_TO (to_type) != 0
7544       && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
7545     return TYPE_POINTER_TO (to_type);
7546 
7547   /* First, if we already have a type for pointers to TO_TYPE and it's
7548      the proper mode, use it.  */
7549   for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
7550     if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7551       return t;
7552 
7553   t = make_node (POINTER_TYPE);
7554 
7555   TREE_TYPE (t) = to_type;
7556   SET_TYPE_MODE (t, mode);
7557   TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7558   TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
7559   TYPE_POINTER_TO (to_type) = t;
7560 
7561   /* During LTO we do not set TYPE_CANONICAL of pointers and references.  */
7562   if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
7563     SET_TYPE_STRUCTURAL_EQUALITY (t);
7564   else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
7565     TYPE_CANONICAL (t)
7566       = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7567 				     mode, false);
7568 
7569   /* Lay out the type.  This function has many callers that are concerned
7570      with expression-construction, and this simplifies them all.  */
7571   layout_type (t);
7572 
7573   return t;
7574 }
7575 
7576 /* By default build pointers in ptr_mode.  */
7577 
7578 tree
7579 build_pointer_type (tree to_type)
7580 {
7581   addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7582 					      : TYPE_ADDR_SPACE (to_type);
7583   machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7584   return build_pointer_type_for_mode (to_type, pointer_mode, false);
7585 }
7586 
7587 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE.  */
7588 
7589 tree
7590 build_reference_type_for_mode (tree to_type, machine_mode mode,
7591 			       bool can_alias_all)
7592 {
7593   tree t;
7594   bool could_alias = can_alias_all;
7595 
7596   if (to_type == error_mark_node)
7597     return error_mark_node;
7598 
7599   /* If the pointed-to type has the may_alias attribute set, force
7600      a TYPE_REF_CAN_ALIAS_ALL pointer to be generated.  */
7601   if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7602     can_alias_all = true;
7603 
7604   /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7605      (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7606      In that case, return that type without regard to the rest of our
7607      operands.
7608 
7609      ??? This is a kludge, but consistent with the way this function has
7610      always operated and there doesn't seem to be a good way to avoid this
7611      at the moment.  */
7612   if (TYPE_REFERENCE_TO (to_type) != 0
7613       && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7614     return TYPE_REFERENCE_TO (to_type);
7615 
7616   /* First, if we already have a type for pointers to TO_TYPE and it's
7617      the proper mode, use it.  */
7618   for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7619     if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7620       return t;
7621 
7622   t = make_node (REFERENCE_TYPE);
7623 
7624   TREE_TYPE (t) = to_type;
7625   SET_TYPE_MODE (t, mode);
7626   TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7627   TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7628   TYPE_REFERENCE_TO (to_type) = t;
7629 
7630   /* During LTO we do not set TYPE_CANONICAL of pointers and references.  */
7631   if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
7632     SET_TYPE_STRUCTURAL_EQUALITY (t);
7633   else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
7634     TYPE_CANONICAL (t)
7635       = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7636 				       mode, false);
7637 
7638   layout_type (t);
7639 
7640   return t;
7641 }
7642 
7643 
7644 /* Build the node for the type of references-to-TO_TYPE by default
7645    in ptr_mode.  */
7646 
7647 tree
7648 build_reference_type (tree to_type)
7649 {
7650   addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7651 					      : TYPE_ADDR_SPACE (to_type);
7652   machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7653   return build_reference_type_for_mode (to_type, pointer_mode, false);
7654 }
7655 
7656 #define MAX_INT_CACHED_PREC \
7657   (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7658 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7659 
7660 /* Builds a signed or unsigned integer type of precision PRECISION.
7661    Used for C bitfields whose precision does not match that of
7662    built-in target types.  */
7663 tree
7664 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7665 				int unsignedp)
7666 {
7667   tree itype, ret;
7668 
7669   if (unsignedp)
7670     unsignedp = MAX_INT_CACHED_PREC + 1;
7671 
7672   if (precision <= MAX_INT_CACHED_PREC)
7673     {
7674       itype = nonstandard_integer_type_cache[precision + unsignedp];
7675       if (itype)
7676 	return itype;
7677     }
7678 
7679   itype = make_node (INTEGER_TYPE);
7680   TYPE_PRECISION (itype) = precision;
7681 
7682   if (unsignedp)
7683     fixup_unsigned_type (itype);
7684   else
7685     fixup_signed_type (itype);
7686 
7687   ret = itype;
7688 
7689   inchash::hash hstate;
7690   inchash::add_expr (TYPE_MAX_VALUE (itype), hstate);
7691   ret = type_hash_canon (hstate.end (), itype);
7692   if (precision <= MAX_INT_CACHED_PREC)
7693     nonstandard_integer_type_cache[precision + unsignedp] = ret;
7694 
7695   return ret;
7696 }
7697 
7698 #define MAX_BOOL_CACHED_PREC \
7699   (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7700 static GTY(()) tree nonstandard_boolean_type_cache[MAX_BOOL_CACHED_PREC + 1];
7701 
7702 /* Builds a boolean type of precision PRECISION.
7703    Used for boolean vectors to choose proper vector element size.  */
7704 tree
7705 build_nonstandard_boolean_type (unsigned HOST_WIDE_INT precision)
7706 {
7707   tree type;
7708 
7709   if (precision <= MAX_BOOL_CACHED_PREC)
7710     {
7711       type = nonstandard_boolean_type_cache[precision];
7712       if (type)
7713 	return type;
7714     }
7715 
7716   type = make_node (BOOLEAN_TYPE);
7717   TYPE_PRECISION (type) = precision;
7718   fixup_signed_type (type);
7719 
7720   if (precision <= MAX_INT_CACHED_PREC)
7721     nonstandard_boolean_type_cache[precision] = type;
7722 
7723   return type;
7724 }
7725 
7726 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7727    or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL.  If SHARED
7728    is true, reuse such a type that has already been constructed.  */
7729 
7730 static tree
7731 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7732 {
7733   tree itype = make_node (INTEGER_TYPE);
7734 
7735   TREE_TYPE (itype) = type;
7736 
7737   TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7738   TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7739 
7740   TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7741   SET_TYPE_MODE (itype, TYPE_MODE (type));
7742   TYPE_SIZE (itype) = TYPE_SIZE (type);
7743   TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7744   SET_TYPE_ALIGN (itype, TYPE_ALIGN (type));
7745   TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7746   SET_TYPE_WARN_IF_NOT_ALIGN (itype, TYPE_WARN_IF_NOT_ALIGN (type));
7747 
7748   if (!shared)
7749     return itype;
7750 
7751   if ((TYPE_MIN_VALUE (itype)
7752        && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7753       || (TYPE_MAX_VALUE (itype)
7754 	  && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7755     {
7756       /* Since we cannot reliably merge this type, we need to compare it using
7757 	 structural equality checks.  */
7758       SET_TYPE_STRUCTURAL_EQUALITY (itype);
7759       return itype;
7760     }
7761 
7762   hashval_t hash = type_hash_canon_hash (itype);
7763   itype = type_hash_canon (hash, itype);
7764 
7765   return itype;
7766 }
7767 
7768 /* Wrapper around build_range_type_1 with SHARED set to true.  */
7769 
7770 tree
7771 build_range_type (tree type, tree lowval, tree highval)
7772 {
7773   return build_range_type_1 (type, lowval, highval, true);
7774 }
7775 
7776 /* Wrapper around build_range_type_1 with SHARED set to false.  */
7777 
7778 tree
7779 build_nonshared_range_type (tree type, tree lowval, tree highval)
7780 {
7781   return build_range_type_1 (type, lowval, highval, false);
7782 }
7783 
7784 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7785    MAXVAL should be the maximum value in the domain
7786    (one less than the length of the array).
7787 
7788    The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7789    We don't enforce this limit, that is up to caller (e.g. language front end).
7790    The limit exists because the result is a signed type and we don't handle
7791    sizes that use more than one HOST_WIDE_INT.  */
7792 
7793 tree
7794 build_index_type (tree maxval)
7795 {
7796   return build_range_type (sizetype, size_zero_node, maxval);
7797 }
7798 
7799 /* Return true if the debug information for TYPE, a subtype, should be emitted
7800    as a subrange type.  If so, set LOWVAL to the low bound and HIGHVAL to the
7801    high bound, respectively.  Sometimes doing so unnecessarily obfuscates the
7802    debug info and doesn't reflect the source code.  */
7803 
7804 bool
7805 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7806 {
7807   tree base_type = TREE_TYPE (type), low, high;
7808 
7809   /* Subrange types have a base type which is an integral type.  */
7810   if (!INTEGRAL_TYPE_P (base_type))
7811     return false;
7812 
7813   /* Get the real bounds of the subtype.  */
7814   if (lang_hooks.types.get_subrange_bounds)
7815     lang_hooks.types.get_subrange_bounds (type, &low, &high);
7816   else
7817     {
7818       low = TYPE_MIN_VALUE (type);
7819       high = TYPE_MAX_VALUE (type);
7820     }
7821 
7822   /* If the type and its base type have the same representation and the same
7823      name, then the type is not a subrange but a copy of the base type.  */
7824   if ((TREE_CODE (base_type) == INTEGER_TYPE
7825        || TREE_CODE (base_type) == BOOLEAN_TYPE)
7826       && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7827       && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7828       && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type))
7829       && TYPE_IDENTIFIER (type) == TYPE_IDENTIFIER (base_type))
7830     return false;
7831 
7832   if (lowval)
7833     *lowval = low;
7834   if (highval)
7835     *highval = high;
7836   return true;
7837 }
7838 
7839 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7840    and number of elements specified by the range of values of INDEX_TYPE.
7841    If TYPELESS_STORAGE is true, TYPE_TYPELESS_STORAGE flag is set on the type.
7842    If SHARED is true, reuse such a type that has already been constructed.  */
7843 
7844 static tree
7845 build_array_type_1 (tree elt_type, tree index_type, bool typeless_storage,
7846 		    bool shared)
7847 {
7848   tree t;
7849 
7850   if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7851     {
7852       error ("arrays of functions are not meaningful");
7853       elt_type = integer_type_node;
7854     }
7855 
7856   t = make_node (ARRAY_TYPE);
7857   TREE_TYPE (t) = elt_type;
7858   TYPE_DOMAIN (t) = index_type;
7859   TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7860   TYPE_TYPELESS_STORAGE (t) = typeless_storage;
7861   layout_type (t);
7862 
7863   /* If the element type is incomplete at this point we get marked for
7864      structural equality.  Do not record these types in the canonical
7865      type hashtable.  */
7866   if (TYPE_STRUCTURAL_EQUALITY_P (t))
7867     return t;
7868 
7869   if (shared)
7870     {
7871       hashval_t hash = type_hash_canon_hash (t);
7872       t = type_hash_canon (hash, t);
7873     }
7874 
7875   if (TYPE_CANONICAL (t) == t)
7876     {
7877       if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7878 	  || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type))
7879 	  || in_lto_p)
7880 	SET_TYPE_STRUCTURAL_EQUALITY (t);
7881       else if (TYPE_CANONICAL (elt_type) != elt_type
7882 	       || (index_type && TYPE_CANONICAL (index_type) != index_type))
7883 	TYPE_CANONICAL (t)
7884 	  = build_array_type_1 (TYPE_CANONICAL (elt_type),
7885 				index_type
7886 				? TYPE_CANONICAL (index_type) : NULL_TREE,
7887 				typeless_storage, shared);
7888     }
7889 
7890   return t;
7891 }
7892 
7893 /* Wrapper around build_array_type_1 with SHARED set to true.  */
7894 
7895 tree
7896 build_array_type (tree elt_type, tree index_type, bool typeless_storage)
7897 {
7898   return build_array_type_1 (elt_type, index_type, typeless_storage, true);
7899 }
7900 
7901 /* Wrapper around build_array_type_1 with SHARED set to false.  */
7902 
7903 tree
7904 build_nonshared_array_type (tree elt_type, tree index_type)
7905 {
7906   return build_array_type_1 (elt_type, index_type, false, false);
7907 }
7908 
7909 /* Return a representation of ELT_TYPE[NELTS], using indices of type
7910    sizetype.  */
7911 
7912 tree
7913 build_array_type_nelts (tree elt_type, poly_uint64 nelts)
7914 {
7915   return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
7916 }
7917 
7918 /* Recursively examines the array elements of TYPE, until a non-array
7919    element type is found.  */
7920 
7921 tree
7922 strip_array_types (tree type)
7923 {
7924   while (TREE_CODE (type) == ARRAY_TYPE)
7925     type = TREE_TYPE (type);
7926 
7927   return type;
7928 }
7929 
7930 /* Computes the canonical argument types from the argument type list
7931    ARGTYPES.
7932 
7933    Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7934    on entry to this function, or if any of the ARGTYPES are
7935    structural.
7936 
7937    Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7938    true on entry to this function, or if any of the ARGTYPES are
7939    non-canonical.
7940 
7941    Returns a canonical argument list, which may be ARGTYPES when the
7942    canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7943    true) or would not differ from ARGTYPES.  */
7944 
7945 static tree
7946 maybe_canonicalize_argtypes (tree argtypes,
7947 			     bool *any_structural_p,
7948 			     bool *any_noncanonical_p)
7949 {
7950   tree arg;
7951   bool any_noncanonical_argtypes_p = false;
7952 
7953   for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7954     {
7955       if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7956 	/* Fail gracefully by stating that the type is structural.  */
7957 	*any_structural_p = true;
7958       else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7959 	*any_structural_p = true;
7960       else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7961 	       || TREE_PURPOSE (arg))
7962 	/* If the argument has a default argument, we consider it
7963 	   non-canonical even though the type itself is canonical.
7964 	   That way, different variants of function and method types
7965 	   with default arguments will all point to the variant with
7966 	   no defaults as their canonical type.  */
7967         any_noncanonical_argtypes_p = true;
7968     }
7969 
7970   if (*any_structural_p)
7971     return argtypes;
7972 
7973   if (any_noncanonical_argtypes_p)
7974     {
7975       /* Build the canonical list of argument types.  */
7976       tree canon_argtypes = NULL_TREE;
7977       bool is_void = false;
7978 
7979       for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7980         {
7981           if (arg == void_list_node)
7982             is_void = true;
7983           else
7984             canon_argtypes = tree_cons (NULL_TREE,
7985                                         TYPE_CANONICAL (TREE_VALUE (arg)),
7986                                         canon_argtypes);
7987         }
7988 
7989       canon_argtypes = nreverse (canon_argtypes);
7990       if (is_void)
7991         canon_argtypes = chainon (canon_argtypes, void_list_node);
7992 
7993       /* There is a non-canonical type.  */
7994       *any_noncanonical_p = true;
7995       return canon_argtypes;
7996     }
7997 
7998   /* The canonical argument types are the same as ARGTYPES.  */
7999   return argtypes;
8000 }
8001 
8002 /* Construct, lay out and return
8003    the type of functions returning type VALUE_TYPE
8004    given arguments of types ARG_TYPES.
8005    ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
8006    are data type nodes for the arguments of the function.
8007    If such a type has already been constructed, reuse it.  */
8008 
8009 tree
8010 build_function_type (tree value_type, tree arg_types)
8011 {
8012   tree t;
8013   inchash::hash hstate;
8014   bool any_structural_p, any_noncanonical_p;
8015   tree canon_argtypes;
8016 
8017   if (TREE_CODE (value_type) == FUNCTION_TYPE)
8018     {
8019       error ("function return type cannot be function");
8020       value_type = integer_type_node;
8021     }
8022 
8023   /* Make a node of the sort we want.  */
8024   t = make_node (FUNCTION_TYPE);
8025   TREE_TYPE (t) = value_type;
8026   TYPE_ARG_TYPES (t) = arg_types;
8027 
8028   /* If we already have such a type, use the old one.  */
8029   hashval_t hash = type_hash_canon_hash (t);
8030   t = type_hash_canon (hash, t);
8031 
8032   /* Set up the canonical type. */
8033   any_structural_p   = TYPE_STRUCTURAL_EQUALITY_P (value_type);
8034   any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
8035   canon_argtypes = maybe_canonicalize_argtypes (arg_types,
8036 						&any_structural_p,
8037 						&any_noncanonical_p);
8038   if (any_structural_p)
8039     SET_TYPE_STRUCTURAL_EQUALITY (t);
8040   else if (any_noncanonical_p)
8041     TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
8042 					      canon_argtypes);
8043 
8044   if (!COMPLETE_TYPE_P (t))
8045     layout_type (t);
8046   return t;
8047 }
8048 
8049 /* Build a function type.  The RETURN_TYPE is the type returned by the
8050    function.  If VAARGS is set, no void_type_node is appended to the
8051    list.  ARGP must be always be terminated be a NULL_TREE.  */
8052 
8053 static tree
8054 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
8055 {
8056   tree t, args, last;
8057 
8058   t = va_arg (argp, tree);
8059   for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
8060     args = tree_cons (NULL_TREE, t, args);
8061 
8062   if (vaargs)
8063     {
8064       last = args;
8065       if (args != NULL_TREE)
8066 	args = nreverse (args);
8067       gcc_assert (last != void_list_node);
8068     }
8069   else if (args == NULL_TREE)
8070     args = void_list_node;
8071   else
8072     {
8073       last = args;
8074       args = nreverse (args);
8075       TREE_CHAIN (last) = void_list_node;
8076     }
8077   args = build_function_type (return_type, args);
8078 
8079   return args;
8080 }
8081 
8082 /* Build a function type.  The RETURN_TYPE is the type returned by the
8083    function.  If additional arguments are provided, they are
8084    additional argument types.  The list of argument types must always
8085    be terminated by NULL_TREE.  */
8086 
8087 tree
8088 build_function_type_list (tree return_type, ...)
8089 {
8090   tree args;
8091   va_list p;
8092 
8093   va_start (p, return_type);
8094   args = build_function_type_list_1 (false, return_type, p);
8095   va_end (p);
8096   return args;
8097 }
8098 
8099 /* Build a variable argument function type.  The RETURN_TYPE is the
8100    type returned by the function.  If additional arguments are provided,
8101    they are additional argument types.  The list of argument types must
8102    always be terminated by NULL_TREE.  */
8103 
8104 tree
8105 build_varargs_function_type_list (tree return_type, ...)
8106 {
8107   tree args;
8108   va_list p;
8109 
8110   va_start (p, return_type);
8111   args = build_function_type_list_1 (true, return_type, p);
8112   va_end (p);
8113 
8114   return args;
8115 }
8116 
8117 /* Build a function type.  RETURN_TYPE is the type returned by the
8118    function; VAARGS indicates whether the function takes varargs.  The
8119    function takes N named arguments, the types of which are provided in
8120    ARG_TYPES.  */
8121 
8122 static tree
8123 build_function_type_array_1 (bool vaargs, tree return_type, int n,
8124 			     tree *arg_types)
8125 {
8126   int i;
8127   tree t = vaargs ? NULL_TREE : void_list_node;
8128 
8129   for (i = n - 1; i >= 0; i--)
8130     t = tree_cons (NULL_TREE, arg_types[i], t);
8131 
8132   return build_function_type (return_type, t);
8133 }
8134 
8135 /* Build a function type.  RETURN_TYPE is the type returned by the
8136    function.  The function takes N named arguments, the types of which
8137    are provided in ARG_TYPES.  */
8138 
8139 tree
8140 build_function_type_array (tree return_type, int n, tree *arg_types)
8141 {
8142   return build_function_type_array_1 (false, return_type, n, arg_types);
8143 }
8144 
8145 /* Build a variable argument function type.  RETURN_TYPE is the type
8146    returned by the function.  The function takes N named arguments, the
8147    types of which are provided in ARG_TYPES.  */
8148 
8149 tree
8150 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
8151 {
8152   return build_function_type_array_1 (true, return_type, n, arg_types);
8153 }
8154 
8155 /* Build a METHOD_TYPE for a member of BASETYPE.  The RETTYPE (a TYPE)
8156    and ARGTYPES (a TREE_LIST) are the return type and arguments types
8157    for the method.  An implicit additional parameter (of type
8158    pointer-to-BASETYPE) is added to the ARGTYPES.  */
8159 
8160 tree
8161 build_method_type_directly (tree basetype,
8162 			    tree rettype,
8163 			    tree argtypes)
8164 {
8165   tree t;
8166   tree ptype;
8167   bool any_structural_p, any_noncanonical_p;
8168   tree canon_argtypes;
8169 
8170   /* Make a node of the sort we want.  */
8171   t = make_node (METHOD_TYPE);
8172 
8173   TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8174   TREE_TYPE (t) = rettype;
8175   ptype = build_pointer_type (basetype);
8176 
8177   /* The actual arglist for this function includes a "hidden" argument
8178      which is "this".  Put it into the list of argument types.  */
8179   argtypes = tree_cons (NULL_TREE, ptype, argtypes);
8180   TYPE_ARG_TYPES (t) = argtypes;
8181 
8182   /* If we already have such a type, use the old one.  */
8183   hashval_t hash = type_hash_canon_hash (t);
8184   t = type_hash_canon (hash, t);
8185 
8186   /* Set up the canonical type. */
8187   any_structural_p
8188     = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8189        || TYPE_STRUCTURAL_EQUALITY_P (rettype));
8190   any_noncanonical_p
8191     = (TYPE_CANONICAL (basetype) != basetype
8192        || TYPE_CANONICAL (rettype) != rettype);
8193   canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
8194 						&any_structural_p,
8195 						&any_noncanonical_p);
8196   if (any_structural_p)
8197     SET_TYPE_STRUCTURAL_EQUALITY (t);
8198   else if (any_noncanonical_p)
8199     TYPE_CANONICAL (t)
8200       = build_method_type_directly (TYPE_CANONICAL (basetype),
8201 				    TYPE_CANONICAL (rettype),
8202 				    canon_argtypes);
8203   if (!COMPLETE_TYPE_P (t))
8204     layout_type (t);
8205 
8206   return t;
8207 }
8208 
8209 /* Construct, lay out and return the type of methods belonging to class
8210    BASETYPE and whose arguments and values are described by TYPE.
8211    If that type exists already, reuse it.
8212    TYPE must be a FUNCTION_TYPE node.  */
8213 
8214 tree
8215 build_method_type (tree basetype, tree type)
8216 {
8217   gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
8218 
8219   return build_method_type_directly (basetype,
8220 				     TREE_TYPE (type),
8221 				     TYPE_ARG_TYPES (type));
8222 }
8223 
8224 /* Construct, lay out and return the type of offsets to a value
8225    of type TYPE, within an object of type BASETYPE.
8226    If a suitable offset type exists already, reuse it.  */
8227 
8228 tree
8229 build_offset_type (tree basetype, tree type)
8230 {
8231   tree t;
8232 
8233   /* Make a node of the sort we want.  */
8234   t = make_node (OFFSET_TYPE);
8235 
8236   TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8237   TREE_TYPE (t) = type;
8238 
8239   /* If we already have such a type, use the old one.  */
8240   hashval_t hash = type_hash_canon_hash (t);
8241   t = type_hash_canon (hash, t);
8242 
8243   if (!COMPLETE_TYPE_P (t))
8244     layout_type (t);
8245 
8246   if (TYPE_CANONICAL (t) == t)
8247     {
8248       if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8249 	  || TYPE_STRUCTURAL_EQUALITY_P (type))
8250 	SET_TYPE_STRUCTURAL_EQUALITY (t);
8251       else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
8252 	       || TYPE_CANONICAL (type) != type)
8253 	TYPE_CANONICAL (t)
8254 	  = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
8255 			       TYPE_CANONICAL (type));
8256     }
8257 
8258   return t;
8259 }
8260 
8261 /* Create a complex type whose components are COMPONENT_TYPE.
8262 
8263    If NAMED is true, the type is given a TYPE_NAME.  We do not always
8264    do so because this creates a DECL node and thus make the DECL_UIDs
8265    dependent on the type canonicalization hashtable, which is GC-ed,
8266    so the DECL_UIDs would not be stable wrt garbage collection.  */
8267 
8268 tree
8269 build_complex_type (tree component_type, bool named)
8270 {
8271   gcc_assert (INTEGRAL_TYPE_P (component_type)
8272 	      || SCALAR_FLOAT_TYPE_P (component_type)
8273 	      || FIXED_POINT_TYPE_P (component_type));
8274 
8275   /* Make a node of the sort we want.  */
8276   tree probe = make_node (COMPLEX_TYPE);
8277 
8278   TREE_TYPE (probe) = TYPE_MAIN_VARIANT (component_type);
8279 
8280   /* If we already have such a type, use the old one.  */
8281   hashval_t hash = type_hash_canon_hash (probe);
8282   tree t = type_hash_canon (hash, probe);
8283 
8284   if (t == probe)
8285     {
8286       /* We created a new type.  The hash insertion will have laid
8287 	 out the type.  We need to check the canonicalization and
8288 	 maybe set the name.  */
8289       gcc_checking_assert (COMPLETE_TYPE_P (t)
8290 			   && !TYPE_NAME (t)
8291 			   && TYPE_CANONICAL (t) == t);
8292 
8293       if (TYPE_STRUCTURAL_EQUALITY_P (TREE_TYPE (t)))
8294 	SET_TYPE_STRUCTURAL_EQUALITY (t);
8295       else if (TYPE_CANONICAL (TREE_TYPE (t)) != TREE_TYPE (t))
8296 	TYPE_CANONICAL (t)
8297 	  = build_complex_type (TYPE_CANONICAL (TREE_TYPE (t)), named);
8298 
8299       /* We need to create a name, since complex is a fundamental type.  */
8300       if (named)
8301 	{
8302 	  const char *name = NULL;
8303 
8304 	  if (TREE_TYPE (t) == char_type_node)
8305 	    name = "complex char";
8306 	  else if (TREE_TYPE (t) == signed_char_type_node)
8307 	    name = "complex signed char";
8308 	  else if (TREE_TYPE (t) == unsigned_char_type_node)
8309 	    name = "complex unsigned char";
8310 	  else if (TREE_TYPE (t) == short_integer_type_node)
8311 	    name = "complex short int";
8312 	  else if (TREE_TYPE (t) == short_unsigned_type_node)
8313 	    name = "complex short unsigned int";
8314 	  else if (TREE_TYPE (t) == integer_type_node)
8315 	    name = "complex int";
8316 	  else if (TREE_TYPE (t) == unsigned_type_node)
8317 	    name = "complex unsigned int";
8318 	  else if (TREE_TYPE (t) == long_integer_type_node)
8319 	    name = "complex long int";
8320 	  else if (TREE_TYPE (t) == long_unsigned_type_node)
8321 	    name = "complex long unsigned int";
8322 	  else if (TREE_TYPE (t) == long_long_integer_type_node)
8323 	    name = "complex long long int";
8324 	  else if (TREE_TYPE (t) == long_long_unsigned_type_node)
8325 	    name = "complex long long unsigned int";
8326 
8327 	  if (name != NULL)
8328 	    TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
8329 					get_identifier (name), t);
8330 	}
8331     }
8332 
8333   return build_qualified_type (t, TYPE_QUALS (component_type));
8334 }
8335 
8336 /* If TYPE is a real or complex floating-point type and the target
8337    does not directly support arithmetic on TYPE then return the wider
8338    type to be used for arithmetic on TYPE.  Otherwise, return
8339    NULL_TREE.  */
8340 
8341 tree
8342 excess_precision_type (tree type)
8343 {
8344   /* The target can give two different responses to the question of
8345      which excess precision mode it would like depending on whether we
8346      are in -fexcess-precision=standard or -fexcess-precision=fast.  */
8347 
8348   enum excess_precision_type requested_type
8349     = (flag_excess_precision == EXCESS_PRECISION_FAST
8350        ? EXCESS_PRECISION_TYPE_FAST
8351        : EXCESS_PRECISION_TYPE_STANDARD);
8352 
8353   enum flt_eval_method target_flt_eval_method
8354     = targetm.c.excess_precision (requested_type);
8355 
8356   /* The target should not ask for unpredictable float evaluation (though
8357      it might advertise that implicitly the evaluation is unpredictable,
8358      but we don't care about that here, it will have been reported
8359      elsewhere).  If it does ask for unpredictable evaluation, we have
8360      nothing to do here.  */
8361   gcc_assert (target_flt_eval_method != FLT_EVAL_METHOD_UNPREDICTABLE);
8362 
8363   /* Nothing to do.  The target has asked for all types we know about
8364      to be computed with their native precision and range.  */
8365   if (target_flt_eval_method == FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16)
8366     return NULL_TREE;
8367 
8368   /* The target will promote this type in a target-dependent way, so excess
8369      precision ought to leave it alone.  */
8370   if (targetm.promoted_type (type) != NULL_TREE)
8371     return NULL_TREE;
8372 
8373   machine_mode float16_type_mode = (float16_type_node
8374 				    ? TYPE_MODE (float16_type_node)
8375 				    : VOIDmode);
8376   machine_mode float_type_mode = TYPE_MODE (float_type_node);
8377   machine_mode double_type_mode = TYPE_MODE (double_type_node);
8378 
8379   switch (TREE_CODE (type))
8380     {
8381     case REAL_TYPE:
8382       {
8383 	machine_mode type_mode = TYPE_MODE (type);
8384 	switch (target_flt_eval_method)
8385 	  {
8386 	  case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8387 	    if (type_mode == float16_type_mode)
8388 	      return float_type_node;
8389 	    break;
8390 	  case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8391 	    if (type_mode == float16_type_mode
8392 		|| type_mode == float_type_mode)
8393 	      return double_type_node;
8394 	    break;
8395 	  case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8396 	    if (type_mode == float16_type_mode
8397 		|| type_mode == float_type_mode
8398 		|| type_mode == double_type_mode)
8399 	      return long_double_type_node;
8400 	    break;
8401 	  default:
8402 	    gcc_unreachable ();
8403 	  }
8404 	break;
8405       }
8406     case COMPLEX_TYPE:
8407       {
8408 	if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
8409 	  return NULL_TREE;
8410 	machine_mode type_mode = TYPE_MODE (TREE_TYPE (type));
8411 	switch (target_flt_eval_method)
8412 	  {
8413 	  case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8414 	    if (type_mode == float16_type_mode)
8415 	      return complex_float_type_node;
8416 	    break;
8417 	  case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8418 	    if (type_mode == float16_type_mode
8419 		|| type_mode == float_type_mode)
8420 	      return complex_double_type_node;
8421 	    break;
8422 	  case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8423 	    if (type_mode == float16_type_mode
8424 		|| type_mode == float_type_mode
8425 		|| type_mode == double_type_mode)
8426 	      return complex_long_double_type_node;
8427 	    break;
8428 	  default:
8429 	    gcc_unreachable ();
8430 	  }
8431 	break;
8432       }
8433     default:
8434       break;
8435     }
8436 
8437   return NULL_TREE;
8438 }
8439 
8440 /* Return OP, stripped of any conversions to wider types as much as is safe.
8441    Converting the value back to OP's type makes a value equivalent to OP.
8442 
8443    If FOR_TYPE is nonzero, we return a value which, if converted to
8444    type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8445 
8446    OP must have integer, real or enumeral type.  Pointers are not allowed!
8447 
8448    There are some cases where the obvious value we could return
8449    would regenerate to OP if converted to OP's type,
8450    but would not extend like OP to wider types.
8451    If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8452    For example, if OP is (unsigned short)(signed char)-1,
8453    we avoid returning (signed char)-1 if FOR_TYPE is int,
8454    even though extending that to an unsigned short would regenerate OP,
8455    since the result of extending (signed char)-1 to (int)
8456    is different from (int) OP.  */
8457 
8458 tree
8459 get_unwidened (tree op, tree for_type)
8460 {
8461   /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension.  */
8462   tree type = TREE_TYPE (op);
8463   unsigned final_prec
8464     = TYPE_PRECISION (for_type != 0 ? for_type : type);
8465   int uns
8466     = (for_type != 0 && for_type != type
8467        && final_prec > TYPE_PRECISION (type)
8468        && TYPE_UNSIGNED (type));
8469   tree win = op;
8470 
8471   while (CONVERT_EXPR_P (op))
8472     {
8473       int bitschange;
8474 
8475       /* TYPE_PRECISION on vector types has different meaning
8476 	 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8477 	 so avoid them here.  */
8478       if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8479 	break;
8480 
8481       bitschange = TYPE_PRECISION (TREE_TYPE (op))
8482 		   - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8483 
8484       /* Truncations are many-one so cannot be removed.
8485 	 Unless we are later going to truncate down even farther.  */
8486       if (bitschange < 0
8487 	  && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8488 	break;
8489 
8490       /* See what's inside this conversion.  If we decide to strip it,
8491 	 we will set WIN.  */
8492       op = TREE_OPERAND (op, 0);
8493 
8494       /* If we have not stripped any zero-extensions (uns is 0),
8495 	 we can strip any kind of extension.
8496 	 If we have previously stripped a zero-extension,
8497 	 only zero-extensions can safely be stripped.
8498 	 Any extension can be stripped if the bits it would produce
8499 	 are all going to be discarded later by truncating to FOR_TYPE.  */
8500 
8501       if (bitschange > 0)
8502 	{
8503 	  if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8504 	    win = op;
8505 	  /* TYPE_UNSIGNED says whether this is a zero-extension.
8506 	     Let's avoid computing it if it does not affect WIN
8507 	     and if UNS will not be needed again.  */
8508 	  if ((uns
8509 	       || CONVERT_EXPR_P (op))
8510 	      && TYPE_UNSIGNED (TREE_TYPE (op)))
8511 	    {
8512 	      uns = 1;
8513 	      win = op;
8514 	    }
8515 	}
8516     }
8517 
8518   /* If we finally reach a constant see if it fits in sth smaller and
8519      in that case convert it.  */
8520   if (TREE_CODE (win) == INTEGER_CST)
8521     {
8522       tree wtype = TREE_TYPE (win);
8523       unsigned prec = wi::min_precision (wi::to_wide (win), TYPE_SIGN (wtype));
8524       if (for_type)
8525 	prec = MAX (prec, final_prec);
8526       if (prec < TYPE_PRECISION (wtype))
8527 	{
8528 	  tree t = lang_hooks.types.type_for_size (prec, TYPE_UNSIGNED (wtype));
8529 	  if (t && TYPE_PRECISION (t) < TYPE_PRECISION (wtype))
8530 	    win = fold_convert (t, win);
8531 	}
8532     }
8533 
8534   return win;
8535 }
8536 
8537 /* Return OP or a simpler expression for a narrower value
8538    which can be sign-extended or zero-extended to give back OP.
8539    Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8540    or 0 if the value should be sign-extended.  */
8541 
8542 tree
8543 get_narrower (tree op, int *unsignedp_ptr)
8544 {
8545   int uns = 0;
8546   int first = 1;
8547   tree win = op;
8548   bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8549 
8550   while (TREE_CODE (op) == NOP_EXPR)
8551     {
8552       int bitschange
8553 	= (TYPE_PRECISION (TREE_TYPE (op))
8554 	   - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8555 
8556       /* Truncations are many-one so cannot be removed.  */
8557       if (bitschange < 0)
8558 	break;
8559 
8560       /* See what's inside this conversion.  If we decide to strip it,
8561 	 we will set WIN.  */
8562 
8563       if (bitschange > 0)
8564 	{
8565 	  op = TREE_OPERAND (op, 0);
8566 	  /* An extension: the outermost one can be stripped,
8567 	     but remember whether it is zero or sign extension.  */
8568 	  if (first)
8569 	    uns = TYPE_UNSIGNED (TREE_TYPE (op));
8570 	  /* Otherwise, if a sign extension has been stripped,
8571 	     only sign extensions can now be stripped;
8572 	     if a zero extension has been stripped, only zero-extensions.  */
8573 	  else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
8574 	    break;
8575 	  first = 0;
8576 	}
8577       else /* bitschange == 0 */
8578 	{
8579 	  /* A change in nominal type can always be stripped, but we must
8580 	     preserve the unsignedness.  */
8581 	  if (first)
8582 	    uns = TYPE_UNSIGNED (TREE_TYPE (op));
8583 	  first = 0;
8584 	  op = TREE_OPERAND (op, 0);
8585 	  /* Keep trying to narrow, but don't assign op to win if it
8586 	     would turn an integral type into something else.  */
8587 	  if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
8588 	    continue;
8589 	}
8590 
8591       win = op;
8592     }
8593 
8594   if (TREE_CODE (op) == COMPONENT_REF
8595       /* Since type_for_size always gives an integer type.  */
8596       && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
8597       && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
8598       /* Ensure field is laid out already.  */
8599       && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
8600       && tree_fits_uhwi_p (DECL_SIZE (TREE_OPERAND (op, 1))))
8601     {
8602       unsigned HOST_WIDE_INT innerprec
8603 	= tree_to_uhwi (DECL_SIZE (TREE_OPERAND (op, 1)));
8604       int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
8605 		       || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
8606       tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
8607 
8608       /* We can get this structure field in a narrower type that fits it,
8609 	 but the resulting extension to its nominal type (a fullword type)
8610 	 must satisfy the same conditions as for other extensions.
8611 
8612 	 Do this only for fields that are aligned (not bit-fields),
8613 	 because when bit-field insns will be used there is no
8614 	 advantage in doing this.  */
8615 
8616       if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8617 	  && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8618 	  && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8619 	  && type != 0)
8620 	{
8621 	  if (first)
8622 	    uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8623 	  win = fold_convert (type, op);
8624 	}
8625     }
8626 
8627   *unsignedp_ptr = uns;
8628   return win;
8629 }
8630 
8631 /* Return true if integer constant C has a value that is permissible
8632    for TYPE, an integral type.  */
8633 
8634 bool
8635 int_fits_type_p (const_tree c, const_tree type)
8636 {
8637   tree type_low_bound, type_high_bound;
8638   bool ok_for_low_bound, ok_for_high_bound;
8639   signop sgn_c = TYPE_SIGN (TREE_TYPE (c));
8640 
8641   /* Non-standard boolean types can have arbitrary precision but various
8642      transformations assume that they can only take values 0 and +/-1.  */
8643   if (TREE_CODE (type) == BOOLEAN_TYPE)
8644     return wi::fits_to_boolean_p (wi::to_wide (c), type);
8645 
8646 retry:
8647   type_low_bound = TYPE_MIN_VALUE (type);
8648   type_high_bound = TYPE_MAX_VALUE (type);
8649 
8650   /* If at least one bound of the type is a constant integer, we can check
8651      ourselves and maybe make a decision. If no such decision is possible, but
8652      this type is a subtype, try checking against that.  Otherwise, use
8653      fits_to_tree_p, which checks against the precision.
8654 
8655      Compute the status for each possibly constant bound, and return if we see
8656      one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8657      for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8658      for "constant known to fit".  */
8659 
8660   /* Check if c >= type_low_bound.  */
8661   if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8662     {
8663       if (tree_int_cst_lt (c, type_low_bound))
8664 	return false;
8665       ok_for_low_bound = true;
8666     }
8667   else
8668     ok_for_low_bound = false;
8669 
8670   /* Check if c <= type_high_bound.  */
8671   if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8672     {
8673       if (tree_int_cst_lt (type_high_bound, c))
8674 	return false;
8675       ok_for_high_bound = true;
8676     }
8677   else
8678     ok_for_high_bound = false;
8679 
8680   /* If the constant fits both bounds, the result is known.  */
8681   if (ok_for_low_bound && ok_for_high_bound)
8682     return true;
8683 
8684   /* Perform some generic filtering which may allow making a decision
8685      even if the bounds are not constant.  First, negative integers
8686      never fit in unsigned types, */
8687   if (TYPE_UNSIGNED (type) && sgn_c == SIGNED && wi::neg_p (wi::to_wide (c)))
8688     return false;
8689 
8690   /* Second, narrower types always fit in wider ones.  */
8691   if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8692     return true;
8693 
8694   /* Third, unsigned integers with top bit set never fit signed types.  */
8695   if (!TYPE_UNSIGNED (type) && sgn_c == UNSIGNED)
8696     {
8697       int prec = GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (TREE_TYPE (c))) - 1;
8698       if (prec < TYPE_PRECISION (TREE_TYPE (c)))
8699 	{
8700 	  /* When a tree_cst is converted to a wide-int, the precision
8701 	     is taken from the type.  However, if the precision of the
8702 	     mode underneath the type is smaller than that, it is
8703 	     possible that the value will not fit.  The test below
8704 	     fails if any bit is set between the sign bit of the
8705 	     underlying mode and the top bit of the type.  */
8706 	  if (wi::zext (wi::to_wide (c), prec - 1) != wi::to_wide (c))
8707 	    return false;
8708 	}
8709       else if (wi::neg_p (wi::to_wide (c)))
8710 	return false;
8711     }
8712 
8713   /* If we haven't been able to decide at this point, there nothing more we
8714      can check ourselves here.  Look at the base type if we have one and it
8715      has the same precision.  */
8716   if (TREE_CODE (type) == INTEGER_TYPE
8717       && TREE_TYPE (type) != 0
8718       && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8719     {
8720       type = TREE_TYPE (type);
8721       goto retry;
8722     }
8723 
8724   /* Or to fits_to_tree_p, if nothing else.  */
8725   return wi::fits_to_tree_p (wi::to_wide (c), type);
8726 }
8727 
8728 /* Stores bounds of an integer TYPE in MIN and MAX.  If TYPE has non-constant
8729    bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8730    represented (assuming two's-complement arithmetic) within the bit
8731    precision of the type are returned instead.  */
8732 
8733 void
8734 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8735 {
8736   if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8737       && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8738     wi::to_mpz (wi::to_wide (TYPE_MIN_VALUE (type)), min, TYPE_SIGN (type));
8739   else
8740     {
8741       if (TYPE_UNSIGNED (type))
8742 	mpz_set_ui (min, 0);
8743       else
8744 	{
8745 	  wide_int mn = wi::min_value (TYPE_PRECISION (type), SIGNED);
8746 	  wi::to_mpz (mn, min, SIGNED);
8747 	}
8748     }
8749 
8750   if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8751       && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8752     wi::to_mpz (wi::to_wide (TYPE_MAX_VALUE (type)), max, TYPE_SIGN (type));
8753   else
8754     {
8755       wide_int mn = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type));
8756       wi::to_mpz (mn, max, TYPE_SIGN (type));
8757     }
8758 }
8759 
8760 /* Return true if VAR is an automatic variable defined in function FN.  */
8761 
8762 bool
8763 auto_var_in_fn_p (const_tree var, const_tree fn)
8764 {
8765   return (DECL_P (var) && DECL_CONTEXT (var) == fn
8766 	  && ((((VAR_P (var) && ! DECL_EXTERNAL (var))
8767 		|| TREE_CODE (var) == PARM_DECL)
8768 	       && ! TREE_STATIC (var))
8769 	      || TREE_CODE (var) == LABEL_DECL
8770 	      || TREE_CODE (var) == RESULT_DECL));
8771 }
8772 
8773 /* Subprogram of following function.  Called by walk_tree.
8774 
8775    Return *TP if it is an automatic variable or parameter of the
8776    function passed in as DATA.  */
8777 
8778 static tree
8779 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8780 {
8781   tree fn = (tree) data;
8782 
8783   if (TYPE_P (*tp))
8784     *walk_subtrees = 0;
8785 
8786   else if (DECL_P (*tp)
8787 	   && auto_var_in_fn_p (*tp, fn))
8788     return *tp;
8789 
8790   return NULL_TREE;
8791 }
8792 
8793 /* Returns true if T is, contains, or refers to a type with variable
8794    size.  For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8795    arguments, but not the return type.  If FN is nonzero, only return
8796    true if a modifier of the type or position of FN is a variable or
8797    parameter inside FN.
8798 
8799    This concept is more general than that of C99 'variably modified types':
8800    in C99, a struct type is never variably modified because a VLA may not
8801    appear as a structure member.  However, in GNU C code like:
8802 
8803      struct S { int i[f()]; };
8804 
8805    is valid, and other languages may define similar constructs.  */
8806 
8807 bool
8808 variably_modified_type_p (tree type, tree fn)
8809 {
8810   tree t;
8811 
8812 /* Test if T is either variable (if FN is zero) or an expression containing
8813    a variable in FN.  If TYPE isn't gimplified, return true also if
8814    gimplify_one_sizepos would gimplify the expression into a local
8815    variable.  */
8816 #define RETURN_TRUE_IF_VAR(T)						\
8817   do { tree _t = (T);							\
8818     if (_t != NULL_TREE							\
8819 	&& _t != error_mark_node					\
8820 	&& !CONSTANT_CLASS_P (_t)					\
8821 	&& TREE_CODE (_t) != PLACEHOLDER_EXPR				\
8822 	&& (!fn								\
8823 	    || (!TYPE_SIZES_GIMPLIFIED (type)				\
8824 		&& (TREE_CODE (_t) != VAR_DECL				\
8825 		    && !CONTAINS_PLACEHOLDER_P (_t)))			\
8826 	    || walk_tree (&_t, find_var_from_fn, fn, NULL)))		\
8827       return true;  } while (0)
8828 
8829   if (type == error_mark_node)
8830     return false;
8831 
8832   /* If TYPE itself has variable size, it is variably modified.  */
8833   RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8834   RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8835 
8836   switch (TREE_CODE (type))
8837     {
8838     case POINTER_TYPE:
8839     case REFERENCE_TYPE:
8840     case VECTOR_TYPE:
8841       /* Ada can have pointer types refering to themselves indirectly.  */
8842       if (TREE_VISITED (type))
8843 	return false;
8844       TREE_VISITED (type) = true;
8845       if (variably_modified_type_p (TREE_TYPE (type), fn))
8846 	{
8847 	  TREE_VISITED (type) = false;
8848 	  return true;
8849 	}
8850       TREE_VISITED (type) = false;
8851       break;
8852 
8853     case FUNCTION_TYPE:
8854     case METHOD_TYPE:
8855       /* If TYPE is a function type, it is variably modified if the
8856 	 return type is variably modified.  */
8857       if (variably_modified_type_p (TREE_TYPE (type), fn))
8858 	  return true;
8859       break;
8860 
8861     case INTEGER_TYPE:
8862     case REAL_TYPE:
8863     case FIXED_POINT_TYPE:
8864     case ENUMERAL_TYPE:
8865     case BOOLEAN_TYPE:
8866       /* Scalar types are variably modified if their end points
8867 	 aren't constant.  */
8868       RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8869       RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8870       break;
8871 
8872     case RECORD_TYPE:
8873     case UNION_TYPE:
8874     case QUAL_UNION_TYPE:
8875       /* We can't see if any of the fields are variably-modified by the
8876 	 definition we normally use, since that would produce infinite
8877 	 recursion via pointers.  */
8878       /* This is variably modified if some field's type is.  */
8879       for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
8880 	if (TREE_CODE (t) == FIELD_DECL)
8881 	  {
8882 	    RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8883 	    RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8884 	    RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8885 
8886 	    if (TREE_CODE (type) == QUAL_UNION_TYPE)
8887 	      RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8888 	  }
8889       break;
8890 
8891     case ARRAY_TYPE:
8892       /* Do not call ourselves to avoid infinite recursion.  This is
8893 	 variably modified if the element type is.  */
8894       RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8895       RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8896       break;
8897 
8898     default:
8899       break;
8900     }
8901 
8902   /* The current language may have other cases to check, but in general,
8903      all other types are not variably modified.  */
8904   return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8905 
8906 #undef RETURN_TRUE_IF_VAR
8907 }
8908 
8909 /* Given a DECL or TYPE, return the scope in which it was declared, or
8910    NULL_TREE if there is no containing scope.  */
8911 
8912 tree
8913 get_containing_scope (const_tree t)
8914 {
8915   return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8916 }
8917 
8918 /* Returns the ultimate TRANSLATION_UNIT_DECL context of DECL or NULL.  */
8919 
8920 const_tree
8921 get_ultimate_context (const_tree decl)
8922 {
8923   while (decl && TREE_CODE (decl) != TRANSLATION_UNIT_DECL)
8924     {
8925       if (TREE_CODE (decl) == BLOCK)
8926 	decl = BLOCK_SUPERCONTEXT (decl);
8927       else
8928 	decl = get_containing_scope (decl);
8929     }
8930   return decl;
8931 }
8932 
8933 /* Return the innermost context enclosing DECL that is
8934    a FUNCTION_DECL, or zero if none.  */
8935 
8936 tree
8937 decl_function_context (const_tree decl)
8938 {
8939   tree context;
8940 
8941   if (TREE_CODE (decl) == ERROR_MARK)
8942     return 0;
8943 
8944   /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8945      where we look up the function at runtime.  Such functions always take
8946      a first argument of type 'pointer to real context'.
8947 
8948      C++ should really be fixed to use DECL_CONTEXT for the real context,
8949      and use something else for the "virtual context".  */
8950   else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8951     context
8952       = TYPE_MAIN_VARIANT
8953 	(TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8954   else
8955     context = DECL_CONTEXT (decl);
8956 
8957   while (context && TREE_CODE (context) != FUNCTION_DECL)
8958     {
8959       if (TREE_CODE (context) == BLOCK)
8960 	context = BLOCK_SUPERCONTEXT (context);
8961       else
8962 	context = get_containing_scope (context);
8963     }
8964 
8965   return context;
8966 }
8967 
8968 /* Return the innermost context enclosing DECL that is
8969    a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8970    TYPE_DECLs and FUNCTION_DECLs are transparent to this function.  */
8971 
8972 tree
8973 decl_type_context (const_tree decl)
8974 {
8975   tree context = DECL_CONTEXT (decl);
8976 
8977   while (context)
8978     switch (TREE_CODE (context))
8979       {
8980       case NAMESPACE_DECL:
8981       case TRANSLATION_UNIT_DECL:
8982 	return NULL_TREE;
8983 
8984       case RECORD_TYPE:
8985       case UNION_TYPE:
8986       case QUAL_UNION_TYPE:
8987 	return context;
8988 
8989       case TYPE_DECL:
8990       case FUNCTION_DECL:
8991 	context = DECL_CONTEXT (context);
8992 	break;
8993 
8994       case BLOCK:
8995 	context = BLOCK_SUPERCONTEXT (context);
8996 	break;
8997 
8998       default:
8999 	gcc_unreachable ();
9000       }
9001 
9002   return NULL_TREE;
9003 }
9004 
9005 /* CALL is a CALL_EXPR.  Return the declaration for the function
9006    called, or NULL_TREE if the called function cannot be
9007    determined.  */
9008 
9009 tree
9010 get_callee_fndecl (const_tree call)
9011 {
9012   tree addr;
9013 
9014   if (call == error_mark_node)
9015     return error_mark_node;
9016 
9017   /* It's invalid to call this function with anything but a
9018      CALL_EXPR.  */
9019   gcc_assert (TREE_CODE (call) == CALL_EXPR);
9020 
9021   /* The first operand to the CALL is the address of the function
9022      called.  */
9023   addr = CALL_EXPR_FN (call);
9024 
9025   /* If there is no function, return early.  */
9026   if (addr == NULL_TREE)
9027     return NULL_TREE;
9028 
9029   STRIP_NOPS (addr);
9030 
9031   /* If this is a readonly function pointer, extract its initial value.  */
9032   if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
9033       && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
9034       && DECL_INITIAL (addr))
9035     addr = DECL_INITIAL (addr);
9036 
9037   /* If the address is just `&f' for some function `f', then we know
9038      that `f' is being called.  */
9039   if (TREE_CODE (addr) == ADDR_EXPR
9040       && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
9041     return TREE_OPERAND (addr, 0);
9042 
9043   /* We couldn't figure out what was being called.  */
9044   return NULL_TREE;
9045 }
9046 
9047 /* If CALL_EXPR CALL calls a normal built-in function or an internal function,
9048    return the associated function code, otherwise return CFN_LAST.  */
9049 
9050 combined_fn
9051 get_call_combined_fn (const_tree call)
9052 {
9053   /* It's invalid to call this function with anything but a CALL_EXPR.  */
9054   gcc_assert (TREE_CODE (call) == CALL_EXPR);
9055 
9056   if (!CALL_EXPR_FN (call))
9057     return as_combined_fn (CALL_EXPR_IFN (call));
9058 
9059   tree fndecl = get_callee_fndecl (call);
9060   if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
9061     return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
9062 
9063   return CFN_LAST;
9064 }
9065 
9066 #define TREE_MEM_USAGE_SPACES 40
9067 
9068 /* Print debugging information about tree nodes generated during the compile,
9069    and any language-specific information.  */
9070 
9071 void
9072 dump_tree_statistics (void)
9073 {
9074   if (GATHER_STATISTICS)
9075     {
9076       int i;
9077       uint64_t total_nodes, total_bytes;
9078       fprintf (stderr, "\nKind                   Nodes      Bytes\n");
9079       mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9080       total_nodes = total_bytes = 0;
9081       for (i = 0; i < (int) all_kinds; i++)
9082 	{
9083 	  fprintf (stderr, "%-20s %7" PRIu64 " %10" PRIu64 "\n",
9084 		   tree_node_kind_names[i], tree_node_counts[i],
9085 		   tree_node_sizes[i]);
9086 	  total_nodes += tree_node_counts[i];
9087 	  total_bytes += tree_node_sizes[i];
9088 	}
9089       mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9090       fprintf (stderr, "%-20s %7" PRIu64 " %10" PRIu64 "\n", "Total",
9091 	       total_nodes, total_bytes);
9092       mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9093       fprintf (stderr, "Code                   Nodes\n");
9094       mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9095       for (i = 0; i < (int) MAX_TREE_CODES; i++)
9096 	fprintf (stderr, "%-32s %7" PRIu64 "\n",
9097 		 get_tree_code_name ((enum tree_code) i), tree_code_counts[i]);
9098       mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9099       fprintf (stderr, "\n");
9100       ssanames_print_statistics ();
9101       fprintf (stderr, "\n");
9102       phinodes_print_statistics ();
9103       fprintf (stderr, "\n");
9104     }
9105   else
9106     fprintf (stderr, "(No per-node statistics)\n");
9107 
9108   print_type_hash_statistics ();
9109   print_debug_expr_statistics ();
9110   print_value_expr_statistics ();
9111   lang_hooks.print_statistics ();
9112 }
9113 
9114 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
9115 
9116 /* Generate a crc32 of the low BYTES bytes of VALUE.  */
9117 
9118 unsigned
9119 crc32_unsigned_n (unsigned chksum, unsigned value, unsigned bytes)
9120 {
9121   /* This relies on the raw feedback's top 4 bits being zero.  */
9122 #define FEEDBACK(X) ((X) * 0x04c11db7)
9123 #define SYNDROME(X) (FEEDBACK ((X) & 1) ^ FEEDBACK ((X) & 2) \
9124 		     ^ FEEDBACK ((X) & 4) ^ FEEDBACK ((X) & 8))
9125   static const unsigned syndromes[16] =
9126     {
9127       SYNDROME(0x0), SYNDROME(0x1), SYNDROME(0x2), SYNDROME(0x3),
9128       SYNDROME(0x4), SYNDROME(0x5), SYNDROME(0x6), SYNDROME(0x7),
9129       SYNDROME(0x8), SYNDROME(0x9), SYNDROME(0xa), SYNDROME(0xb),
9130       SYNDROME(0xc), SYNDROME(0xd), SYNDROME(0xe), SYNDROME(0xf),
9131     };
9132 #undef FEEDBACK
9133 #undef SYNDROME
9134 
9135   value <<= (32 - bytes * 8);
9136   for (unsigned ix = bytes * 2; ix--; value <<= 4)
9137     {
9138       unsigned feedback = syndromes[((value ^ chksum) >> 28) & 0xf];
9139 
9140       chksum = (chksum << 4) ^ feedback;
9141     }
9142 
9143   return chksum;
9144 }
9145 
9146 /* Generate a crc32 of a string.  */
9147 
9148 unsigned
9149 crc32_string (unsigned chksum, const char *string)
9150 {
9151   do
9152     chksum = crc32_byte (chksum, *string);
9153   while (*string++);
9154   return chksum;
9155 }
9156 
9157 /* P is a string that will be used in a symbol.  Mask out any characters
9158    that are not valid in that context.  */
9159 
9160 void
9161 clean_symbol_name (char *p)
9162 {
9163   for (; *p; p++)
9164     if (! (ISALNUM (*p)
9165 #ifndef NO_DOLLAR_IN_LABEL	/* this for `$'; unlikely, but... -- kr */
9166 	    || *p == '$'
9167 #endif
9168 #ifndef NO_DOT_IN_LABEL		/* this for `.'; unlikely, but...  */
9169 	    || *p == '.'
9170 #endif
9171 	   ))
9172       *p = '_';
9173 }
9174 
9175 /* For anonymous aggregate types, we need some sort of name to
9176    hold on to.  In practice, this should not appear, but it should
9177    not be harmful if it does.  */
9178 bool
9179 anon_aggrname_p(const_tree id_node)
9180 {
9181 #ifndef NO_DOT_IN_LABEL
9182  return (IDENTIFIER_POINTER (id_node)[0] == '.'
9183 	 && IDENTIFIER_POINTER (id_node)[1] == '_');
9184 #else /* NO_DOT_IN_LABEL */
9185 #ifndef NO_DOLLAR_IN_LABEL
9186   return (IDENTIFIER_POINTER (id_node)[0] == '$' \
9187 	  && IDENTIFIER_POINTER (id_node)[1] == '_');
9188 #else /* NO_DOLLAR_IN_LABEL */
9189 #define ANON_AGGRNAME_PREFIX "__anon_"
9190   return (!strncmp (IDENTIFIER_POINTER (id_node), ANON_AGGRNAME_PREFIX,
9191 		    sizeof (ANON_AGGRNAME_PREFIX) - 1));
9192 #endif	/* NO_DOLLAR_IN_LABEL */
9193 #endif	/* NO_DOT_IN_LABEL */
9194 }
9195 
9196 /* Return a format for an anonymous aggregate name.  */
9197 const char *
9198 anon_aggrname_format()
9199 {
9200 #ifndef NO_DOT_IN_LABEL
9201  return "._%d";
9202 #else /* NO_DOT_IN_LABEL */
9203 #ifndef NO_DOLLAR_IN_LABEL
9204   return "$_%d";
9205 #else /* NO_DOLLAR_IN_LABEL */
9206   return "__anon_%d";
9207 #endif	/* NO_DOLLAR_IN_LABEL */
9208 #endif	/* NO_DOT_IN_LABEL */
9209 }
9210 
9211 /* Generate a name for a special-purpose function.
9212    The generated name may need to be unique across the whole link.
9213    Changes to this function may also require corresponding changes to
9214    xstrdup_mask_random.
9215    TYPE is some string to identify the purpose of this function to the
9216    linker or collect2; it must start with an uppercase letter,
9217    one of:
9218    I - for constructors
9219    D - for destructors
9220    N - for C++ anonymous namespaces
9221    F - for DWARF unwind frame information.  */
9222 
9223 tree
9224 get_file_function_name (const char *type)
9225 {
9226   char *buf;
9227   const char *p;
9228   char *q;
9229 
9230   /* If we already have a name we know to be unique, just use that.  */
9231   if (first_global_object_name)
9232     p = q = ASTRDUP (first_global_object_name);
9233   /* If the target is handling the constructors/destructors, they
9234      will be local to this file and the name is only necessary for
9235      debugging purposes.
9236      We also assign sub_I and sub_D sufixes to constructors called from
9237      the global static constructors.  These are always local.  */
9238   else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
9239 	   || (strncmp (type, "sub_", 4) == 0
9240 	       && (type[4] == 'I' || type[4] == 'D')))
9241     {
9242       const char *file = main_input_filename;
9243       if (! file)
9244 	file = LOCATION_FILE (input_location);
9245       /* Just use the file's basename, because the full pathname
9246 	 might be quite long.  */
9247       p = q = ASTRDUP (lbasename (file));
9248     }
9249   else
9250     {
9251       /* Otherwise, the name must be unique across the entire link.
9252 	 We don't have anything that we know to be unique to this translation
9253 	 unit, so use what we do have and throw in some randomness.  */
9254       unsigned len;
9255       const char *name = weak_global_object_name;
9256       const char *file = main_input_filename;
9257 
9258       if (! name)
9259 	name = "";
9260       if (! file)
9261 	file = LOCATION_FILE (input_location);
9262 
9263       len = strlen (file);
9264       q = (char *) alloca (9 + 19 + len + 1);
9265       memcpy (q, file, len + 1);
9266 
9267       snprintf (q + len, 9 + 19 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
9268 		crc32_string (0, name), get_random_seed (false));
9269 
9270       p = q;
9271     }
9272 
9273   clean_symbol_name (q);
9274   buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
9275 			 + strlen (type));
9276 
9277   /* Set up the name of the file-level functions we may need.
9278      Use a global object (which is already required to be unique over
9279      the program) rather than the file name (which imposes extra
9280      constraints).  */
9281   sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
9282 
9283   return get_identifier (buf);
9284 }
9285 
9286 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
9287 
9288 /* Complain that the tree code of NODE does not match the expected 0
9289    terminated list of trailing codes. The trailing code list can be
9290    empty, for a more vague error message.  FILE, LINE, and FUNCTION
9291    are of the caller.  */
9292 
9293 void
9294 tree_check_failed (const_tree node, const char *file,
9295 		   int line, const char *function, ...)
9296 {
9297   va_list args;
9298   const char *buffer;
9299   unsigned length = 0;
9300   enum tree_code code;
9301 
9302   va_start (args, function);
9303   while ((code = (enum tree_code) va_arg (args, int)))
9304     length += 4 + strlen (get_tree_code_name (code));
9305   va_end (args);
9306   if (length)
9307     {
9308       char *tmp;
9309       va_start (args, function);
9310       length += strlen ("expected ");
9311       buffer = tmp = (char *) alloca (length);
9312       length = 0;
9313       while ((code = (enum tree_code) va_arg (args, int)))
9314 	{
9315 	  const char *prefix = length ? " or " : "expected ";
9316 
9317 	  strcpy (tmp + length, prefix);
9318 	  length += strlen (prefix);
9319 	  strcpy (tmp + length, get_tree_code_name (code));
9320 	  length += strlen (get_tree_code_name (code));
9321 	}
9322       va_end (args);
9323     }
9324   else
9325     buffer = "unexpected node";
9326 
9327   internal_error ("tree check: %s, have %s in %s, at %s:%d",
9328 		  buffer, get_tree_code_name (TREE_CODE (node)),
9329 		  function, trim_filename (file), line);
9330 }
9331 
9332 /* Complain that the tree code of NODE does match the expected 0
9333    terminated list of trailing codes. FILE, LINE, and FUNCTION are of
9334    the caller.  */
9335 
9336 void
9337 tree_not_check_failed (const_tree node, const char *file,
9338 		       int line, const char *function, ...)
9339 {
9340   va_list args;
9341   char *buffer;
9342   unsigned length = 0;
9343   enum tree_code code;
9344 
9345   va_start (args, function);
9346   while ((code = (enum tree_code) va_arg (args, int)))
9347     length += 4 + strlen (get_tree_code_name (code));
9348   va_end (args);
9349   va_start (args, function);
9350   buffer = (char *) alloca (length);
9351   length = 0;
9352   while ((code = (enum tree_code) va_arg (args, int)))
9353     {
9354       if (length)
9355 	{
9356 	  strcpy (buffer + length, " or ");
9357 	  length += 4;
9358 	}
9359       strcpy (buffer + length, get_tree_code_name (code));
9360       length += strlen (get_tree_code_name (code));
9361     }
9362   va_end (args);
9363 
9364   internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
9365 		  buffer, get_tree_code_name (TREE_CODE (node)),
9366 		  function, trim_filename (file), line);
9367 }
9368 
9369 /* Similar to tree_check_failed, except that we check for a class of tree
9370    code, given in CL.  */
9371 
9372 void
9373 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
9374 			 const char *file, int line, const char *function)
9375 {
9376   internal_error
9377     ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
9378      TREE_CODE_CLASS_STRING (cl),
9379      TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9380      get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9381 }
9382 
9383 /* Similar to tree_check_failed, except that instead of specifying a
9384    dozen codes, use the knowledge that they're all sequential.  */
9385 
9386 void
9387 tree_range_check_failed (const_tree node, const char *file, int line,
9388 			 const char *function, enum tree_code c1,
9389 			 enum tree_code c2)
9390 {
9391   char *buffer;
9392   unsigned length = 0;
9393   unsigned int c;
9394 
9395   for (c = c1; c <= c2; ++c)
9396     length += 4 + strlen (get_tree_code_name ((enum tree_code) c));
9397 
9398   length += strlen ("expected ");
9399   buffer = (char *) alloca (length);
9400   length = 0;
9401 
9402   for (c = c1; c <= c2; ++c)
9403     {
9404       const char *prefix = length ? " or " : "expected ";
9405 
9406       strcpy (buffer + length, prefix);
9407       length += strlen (prefix);
9408       strcpy (buffer + length, get_tree_code_name ((enum tree_code) c));
9409       length += strlen (get_tree_code_name ((enum tree_code) c));
9410     }
9411 
9412   internal_error ("tree check: %s, have %s in %s, at %s:%d",
9413 		  buffer, get_tree_code_name (TREE_CODE (node)),
9414 		  function, trim_filename (file), line);
9415 }
9416 
9417 
9418 /* Similar to tree_check_failed, except that we check that a tree does
9419    not have the specified code, given in CL.  */
9420 
9421 void
9422 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
9423 			     const char *file, int line, const char *function)
9424 {
9425   internal_error
9426     ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
9427      TREE_CODE_CLASS_STRING (cl),
9428      TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9429      get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9430 }
9431 
9432 
9433 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes.  */
9434 
9435 void
9436 omp_clause_check_failed (const_tree node, const char *file, int line,
9437                          const char *function, enum omp_clause_code code)
9438 {
9439   internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
9440 		  omp_clause_code_name[code], get_tree_code_name (TREE_CODE (node)),
9441 		  function, trim_filename (file), line);
9442 }
9443 
9444 
9445 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes.  */
9446 
9447 void
9448 omp_clause_range_check_failed (const_tree node, const char *file, int line,
9449 			       const char *function, enum omp_clause_code c1,
9450 			       enum omp_clause_code c2)
9451 {
9452   char *buffer;
9453   unsigned length = 0;
9454   unsigned int c;
9455 
9456   for (c = c1; c <= c2; ++c)
9457     length += 4 + strlen (omp_clause_code_name[c]);
9458 
9459   length += strlen ("expected ");
9460   buffer = (char *) alloca (length);
9461   length = 0;
9462 
9463   for (c = c1; c <= c2; ++c)
9464     {
9465       const char *prefix = length ? " or " : "expected ";
9466 
9467       strcpy (buffer + length, prefix);
9468       length += strlen (prefix);
9469       strcpy (buffer + length, omp_clause_code_name[c]);
9470       length += strlen (omp_clause_code_name[c]);
9471     }
9472 
9473   internal_error ("tree check: %s, have %s in %s, at %s:%d",
9474 		  buffer, omp_clause_code_name[TREE_CODE (node)],
9475 		  function, trim_filename (file), line);
9476 }
9477 
9478 
9479 #undef DEFTREESTRUCT
9480 #define DEFTREESTRUCT(VAL, NAME) NAME,
9481 
9482 static const char *ts_enum_names[] = {
9483 #include "treestruct.def"
9484 };
9485 #undef DEFTREESTRUCT
9486 
9487 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
9488 
9489 /* Similar to tree_class_check_failed, except that we check for
9490    whether CODE contains the tree structure identified by EN.  */
9491 
9492 void
9493 tree_contains_struct_check_failed (const_tree node,
9494 				   const enum tree_node_structure_enum en,
9495 				   const char *file, int line,
9496 				   const char *function)
9497 {
9498   internal_error
9499     ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
9500      TS_ENUM_NAME (en),
9501      get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9502 }
9503 
9504 
9505 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9506    (dynamically sized) vector.  */
9507 
9508 void
9509 tree_int_cst_elt_check_failed (int idx, int len, const char *file, int line,
9510 			       const char *function)
9511 {
9512   internal_error
9513     ("tree check: accessed elt %d of tree_int_cst with %d elts in %s, at %s:%d",
9514      idx + 1, len, function, trim_filename (file), line);
9515 }
9516 
9517 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9518    (dynamically sized) vector.  */
9519 
9520 void
9521 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
9522 			   const char *function)
9523 {
9524   internal_error
9525     ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
9526      idx + 1, len, function, trim_filename (file), line);
9527 }
9528 
9529 /* Similar to above, except that the check is for the bounds of the operand
9530    vector of an expression node EXP.  */
9531 
9532 void
9533 tree_operand_check_failed (int idx, const_tree exp, const char *file,
9534 			   int line, const char *function)
9535 {
9536   enum tree_code code = TREE_CODE (exp);
9537   internal_error
9538     ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
9539      idx + 1, get_tree_code_name (code), TREE_OPERAND_LENGTH (exp),
9540      function, trim_filename (file), line);
9541 }
9542 
9543 /* Similar to above, except that the check is for the number of
9544    operands of an OMP_CLAUSE node.  */
9545 
9546 void
9547 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
9548 			         int line, const char *function)
9549 {
9550   internal_error
9551     ("tree check: accessed operand %d of omp_clause %s with %d operands "
9552      "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
9553      omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
9554      trim_filename (file), line);
9555 }
9556 #endif /* ENABLE_TREE_CHECKING */
9557 
9558 /* Create a new vector type node holding NUNITS units of type INNERTYPE,
9559    and mapped to the machine mode MODE.  Initialize its fields and build
9560    the information necessary for debugging output.  */
9561 
9562 static tree
9563 make_vector_type (tree innertype, poly_int64 nunits, machine_mode mode)
9564 {
9565   tree t;
9566   tree mv_innertype = TYPE_MAIN_VARIANT (innertype);
9567 
9568   t = make_node (VECTOR_TYPE);
9569   TREE_TYPE (t) = mv_innertype;
9570   SET_TYPE_VECTOR_SUBPARTS (t, nunits);
9571   SET_TYPE_MODE (t, mode);
9572 
9573   if (TYPE_STRUCTURAL_EQUALITY_P (mv_innertype) || in_lto_p)
9574     SET_TYPE_STRUCTURAL_EQUALITY (t);
9575   else if ((TYPE_CANONICAL (mv_innertype) != innertype
9576 	    || mode != VOIDmode)
9577 	   && !VECTOR_BOOLEAN_TYPE_P (t))
9578     TYPE_CANONICAL (t)
9579       = make_vector_type (TYPE_CANONICAL (mv_innertype), nunits, VOIDmode);
9580 
9581   layout_type (t);
9582 
9583   hashval_t hash = type_hash_canon_hash (t);
9584   t = type_hash_canon (hash, t);
9585 
9586   /* We have built a main variant, based on the main variant of the
9587      inner type. Use it to build the variant we return.  */
9588   if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
9589       && TREE_TYPE (t) != innertype)
9590     return build_type_attribute_qual_variant (t,
9591 					      TYPE_ATTRIBUTES (innertype),
9592 					      TYPE_QUALS (innertype));
9593 
9594   return t;
9595 }
9596 
9597 static tree
9598 make_or_reuse_type (unsigned size, int unsignedp)
9599 {
9600   int i;
9601 
9602   if (size == INT_TYPE_SIZE)
9603     return unsignedp ? unsigned_type_node : integer_type_node;
9604   if (size == CHAR_TYPE_SIZE)
9605     return unsignedp ? unsigned_char_type_node : signed_char_type_node;
9606   if (size == SHORT_TYPE_SIZE)
9607     return unsignedp ? short_unsigned_type_node : short_integer_type_node;
9608   if (size == LONG_TYPE_SIZE)
9609     return unsignedp ? long_unsigned_type_node : long_integer_type_node;
9610   if (size == LONG_LONG_TYPE_SIZE)
9611     return (unsignedp ? long_long_unsigned_type_node
9612             : long_long_integer_type_node);
9613 
9614   for (i = 0; i < NUM_INT_N_ENTS; i ++)
9615     if (size == int_n_data[i].bitsize
9616 	&& int_n_enabled_p[i])
9617       return (unsignedp ? int_n_trees[i].unsigned_type
9618 	      : int_n_trees[i].signed_type);
9619 
9620   if (unsignedp)
9621     return make_unsigned_type (size);
9622   else
9623     return make_signed_type (size);
9624 }
9625 
9626 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP.  */
9627 
9628 static tree
9629 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
9630 {
9631   if (satp)
9632     {
9633       if (size == SHORT_FRACT_TYPE_SIZE)
9634 	return unsignedp ? sat_unsigned_short_fract_type_node
9635 			 : sat_short_fract_type_node;
9636       if (size == FRACT_TYPE_SIZE)
9637 	return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
9638       if (size == LONG_FRACT_TYPE_SIZE)
9639 	return unsignedp ? sat_unsigned_long_fract_type_node
9640 			 : sat_long_fract_type_node;
9641       if (size == LONG_LONG_FRACT_TYPE_SIZE)
9642 	return unsignedp ? sat_unsigned_long_long_fract_type_node
9643 			 : sat_long_long_fract_type_node;
9644     }
9645   else
9646     {
9647       if (size == SHORT_FRACT_TYPE_SIZE)
9648 	return unsignedp ? unsigned_short_fract_type_node
9649 			 : short_fract_type_node;
9650       if (size == FRACT_TYPE_SIZE)
9651 	return unsignedp ? unsigned_fract_type_node : fract_type_node;
9652       if (size == LONG_FRACT_TYPE_SIZE)
9653 	return unsignedp ? unsigned_long_fract_type_node
9654 			 : long_fract_type_node;
9655       if (size == LONG_LONG_FRACT_TYPE_SIZE)
9656 	return unsignedp ? unsigned_long_long_fract_type_node
9657 			 : long_long_fract_type_node;
9658     }
9659 
9660   return make_fract_type (size, unsignedp, satp);
9661 }
9662 
9663 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP.  */
9664 
9665 static tree
9666 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
9667 {
9668   if (satp)
9669     {
9670       if (size == SHORT_ACCUM_TYPE_SIZE)
9671 	return unsignedp ? sat_unsigned_short_accum_type_node
9672 			 : sat_short_accum_type_node;
9673       if (size == ACCUM_TYPE_SIZE)
9674 	return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
9675       if (size == LONG_ACCUM_TYPE_SIZE)
9676 	return unsignedp ? sat_unsigned_long_accum_type_node
9677 			 : sat_long_accum_type_node;
9678       if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9679 	return unsignedp ? sat_unsigned_long_long_accum_type_node
9680 			 : sat_long_long_accum_type_node;
9681     }
9682   else
9683     {
9684       if (size == SHORT_ACCUM_TYPE_SIZE)
9685 	return unsignedp ? unsigned_short_accum_type_node
9686 			 : short_accum_type_node;
9687       if (size == ACCUM_TYPE_SIZE)
9688 	return unsignedp ? unsigned_accum_type_node : accum_type_node;
9689       if (size == LONG_ACCUM_TYPE_SIZE)
9690 	return unsignedp ? unsigned_long_accum_type_node
9691 			 : long_accum_type_node;
9692       if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9693 	return unsignedp ? unsigned_long_long_accum_type_node
9694 			 : long_long_accum_type_node;
9695     }
9696 
9697   return make_accum_type (size, unsignedp, satp);
9698 }
9699 
9700 
9701 /* Create an atomic variant node for TYPE.  This routine is called
9702    during initialization of data types to create the 5 basic atomic
9703    types. The generic build_variant_type function requires these to
9704    already be set up in order to function properly, so cannot be
9705    called from there.  If ALIGN is non-zero, then ensure alignment is
9706    overridden to this value.  */
9707 
9708 static tree
9709 build_atomic_base (tree type, unsigned int align)
9710 {
9711   tree t;
9712 
9713   /* Make sure its not already registered.  */
9714   if ((t = get_qualified_type (type, TYPE_QUAL_ATOMIC)))
9715     return t;
9716 
9717   t = build_variant_type_copy (type);
9718   set_type_quals (t, TYPE_QUAL_ATOMIC);
9719 
9720   if (align)
9721     SET_TYPE_ALIGN (t, align);
9722 
9723   return t;
9724 }
9725 
9726 /* Information about the _FloatN and _FloatNx types.  This must be in
9727    the same order as the corresponding TI_* enum values.  */
9728 const floatn_type_info floatn_nx_types[NUM_FLOATN_NX_TYPES] =
9729   {
9730     { 16, false },
9731     { 32, false },
9732     { 64, false },
9733     { 128, false },
9734     { 32, true },
9735     { 64, true },
9736     { 128, true },
9737   };
9738 
9739 
9740 /* Create nodes for all integer types (and error_mark_node) using the sizes
9741    of C datatypes.  SIGNED_CHAR specifies whether char is signed.  */
9742 
9743 void
9744 build_common_tree_nodes (bool signed_char)
9745 {
9746   int i;
9747 
9748   error_mark_node = make_node (ERROR_MARK);
9749   TREE_TYPE (error_mark_node) = error_mark_node;
9750 
9751   initialize_sizetypes ();
9752 
9753   /* Define both `signed char' and `unsigned char'.  */
9754   signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
9755   TYPE_STRING_FLAG (signed_char_type_node) = 1;
9756   unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
9757   TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
9758 
9759   /* Define `char', which is like either `signed char' or `unsigned char'
9760      but not the same as either.  */
9761   char_type_node
9762     = (signed_char
9763        ? make_signed_type (CHAR_TYPE_SIZE)
9764        : make_unsigned_type (CHAR_TYPE_SIZE));
9765   TYPE_STRING_FLAG (char_type_node) = 1;
9766 
9767   short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
9768   short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
9769   integer_type_node = make_signed_type (INT_TYPE_SIZE);
9770   unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
9771   long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
9772   long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
9773   long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
9774   long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
9775 
9776   for (i = 0; i < NUM_INT_N_ENTS; i ++)
9777     {
9778       int_n_trees[i].signed_type = make_signed_type (int_n_data[i].bitsize);
9779       int_n_trees[i].unsigned_type = make_unsigned_type (int_n_data[i].bitsize);
9780       TYPE_SIZE (int_n_trees[i].signed_type) = bitsize_int (int_n_data[i].bitsize);
9781       TYPE_SIZE (int_n_trees[i].unsigned_type) = bitsize_int (int_n_data[i].bitsize);
9782 
9783       if (int_n_data[i].bitsize > LONG_LONG_TYPE_SIZE
9784 	  && int_n_enabled_p[i])
9785 	{
9786 	  integer_types[itk_intN_0 + i * 2] = int_n_trees[i].signed_type;
9787 	  integer_types[itk_unsigned_intN_0 + i * 2] = int_n_trees[i].unsigned_type;
9788 	}
9789     }
9790 
9791   /* Define a boolean type.  This type only represents boolean values but
9792      may be larger than char depending on the value of BOOL_TYPE_SIZE.  */
9793   boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
9794   TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
9795   TYPE_PRECISION (boolean_type_node) = 1;
9796   TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
9797 
9798   /* Define what type to use for size_t.  */
9799   if (strcmp (SIZE_TYPE, "unsigned int") == 0)
9800     size_type_node = unsigned_type_node;
9801   else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
9802     size_type_node = long_unsigned_type_node;
9803   else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
9804     size_type_node = long_long_unsigned_type_node;
9805   else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
9806     size_type_node = short_unsigned_type_node;
9807   else
9808     {
9809       int i;
9810 
9811       size_type_node = NULL_TREE;
9812       for (i = 0; i < NUM_INT_N_ENTS; i++)
9813 	if (int_n_enabled_p[i])
9814 	  {
9815 	    char name[50];
9816 	    sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
9817 
9818 	    if (strcmp (name, SIZE_TYPE) == 0)
9819 	      {
9820 		size_type_node = int_n_trees[i].unsigned_type;
9821 	      }
9822 	  }
9823       if (size_type_node == NULL_TREE)
9824 	gcc_unreachable ();
9825     }
9826 
9827   /* Define what type to use for ptrdiff_t.  */
9828   if (strcmp (PTRDIFF_TYPE, "int") == 0)
9829     ptrdiff_type_node = integer_type_node;
9830   else if (strcmp (PTRDIFF_TYPE, "long int") == 0)
9831     ptrdiff_type_node = long_integer_type_node;
9832   else if (strcmp (PTRDIFF_TYPE, "long long int") == 0)
9833     ptrdiff_type_node = long_long_integer_type_node;
9834   else if (strcmp (PTRDIFF_TYPE, "short int") == 0)
9835     ptrdiff_type_node = short_integer_type_node;
9836   else
9837     {
9838       ptrdiff_type_node = NULL_TREE;
9839       for (int i = 0; i < NUM_INT_N_ENTS; i++)
9840 	if (int_n_enabled_p[i])
9841 	  {
9842 	    char name[50];
9843 	    sprintf (name, "__int%d", int_n_data[i].bitsize);
9844 	    if (strcmp (name, PTRDIFF_TYPE) == 0)
9845 	      ptrdiff_type_node = int_n_trees[i].signed_type;
9846 	  }
9847       if (ptrdiff_type_node == NULL_TREE)
9848 	gcc_unreachable ();
9849     }
9850 
9851   /* Fill in the rest of the sized types.  Reuse existing type nodes
9852      when possible.  */
9853   intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
9854   intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
9855   intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
9856   intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
9857   intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
9858 
9859   unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
9860   unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
9861   unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
9862   unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
9863   unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
9864 
9865   /* Don't call build_qualified type for atomics.  That routine does
9866      special processing for atomics, and until they are initialized
9867      it's better not to make that call.
9868 
9869      Check to see if there is a target override for atomic types.  */
9870 
9871   atomicQI_type_node = build_atomic_base (unsigned_intQI_type_node,
9872 					targetm.atomic_align_for_mode (QImode));
9873   atomicHI_type_node = build_atomic_base (unsigned_intHI_type_node,
9874 					targetm.atomic_align_for_mode (HImode));
9875   atomicSI_type_node = build_atomic_base (unsigned_intSI_type_node,
9876 					targetm.atomic_align_for_mode (SImode));
9877   atomicDI_type_node = build_atomic_base (unsigned_intDI_type_node,
9878 					targetm.atomic_align_for_mode (DImode));
9879   atomicTI_type_node = build_atomic_base (unsigned_intTI_type_node,
9880 					targetm.atomic_align_for_mode (TImode));
9881 
9882   access_public_node = get_identifier ("public");
9883   access_protected_node = get_identifier ("protected");
9884   access_private_node = get_identifier ("private");
9885 
9886   /* Define these next since types below may used them.  */
9887   integer_zero_node = build_int_cst (integer_type_node, 0);
9888   integer_one_node = build_int_cst (integer_type_node, 1);
9889   integer_three_node = build_int_cst (integer_type_node, 3);
9890   integer_minus_one_node = build_int_cst (integer_type_node, -1);
9891 
9892   size_zero_node = size_int (0);
9893   size_one_node = size_int (1);
9894   bitsize_zero_node = bitsize_int (0);
9895   bitsize_one_node = bitsize_int (1);
9896   bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
9897 
9898   boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
9899   boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
9900 
9901   void_type_node = make_node (VOID_TYPE);
9902   layout_type (void_type_node);
9903 
9904   pointer_bounds_type_node = targetm.chkp_bound_type ();
9905 
9906   /* We are not going to have real types in C with less than byte alignment,
9907      so we might as well not have any types that claim to have it.  */
9908   SET_TYPE_ALIGN (void_type_node, BITS_PER_UNIT);
9909   TYPE_USER_ALIGN (void_type_node) = 0;
9910 
9911   void_node = make_node (VOID_CST);
9912   TREE_TYPE (void_node) = void_type_node;
9913 
9914   null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9915   layout_type (TREE_TYPE (null_pointer_node));
9916 
9917   ptr_type_node = build_pointer_type (void_type_node);
9918   const_ptr_type_node
9919     = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9920   for (unsigned i = 0;
9921        i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
9922        ++i)
9923     builtin_structptr_types[i].node = builtin_structptr_types[i].base;
9924 
9925   pointer_sized_int_node = build_nonstandard_integer_type (POINTER_SIZE, 1);
9926 
9927   float_type_node = make_node (REAL_TYPE);
9928   TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9929   layout_type (float_type_node);
9930 
9931   double_type_node = make_node (REAL_TYPE);
9932   TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9933   layout_type (double_type_node);
9934 
9935   long_double_type_node = make_node (REAL_TYPE);
9936   TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9937   layout_type (long_double_type_node);
9938 
9939   for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
9940     {
9941       int n = floatn_nx_types[i].n;
9942       bool extended = floatn_nx_types[i].extended;
9943       scalar_float_mode mode;
9944       if (!targetm.floatn_mode (n, extended).exists (&mode))
9945 	continue;
9946       int precision = GET_MODE_PRECISION (mode);
9947       /* Work around the rs6000 KFmode having precision 113 not
9948 	 128.  */
9949       const struct real_format *fmt = REAL_MODE_FORMAT (mode);
9950       gcc_assert (fmt->b == 2 && fmt->emin + fmt->emax == 3);
9951       int min_precision = fmt->p + ceil_log2 (fmt->emax - fmt->emin);
9952       if (!extended)
9953 	gcc_assert (min_precision == n);
9954       if (precision < min_precision)
9955 	precision = min_precision;
9956       FLOATN_NX_TYPE_NODE (i) = make_node (REAL_TYPE);
9957       TYPE_PRECISION (FLOATN_NX_TYPE_NODE (i)) = precision;
9958       layout_type (FLOATN_NX_TYPE_NODE (i));
9959       SET_TYPE_MODE (FLOATN_NX_TYPE_NODE (i), mode);
9960     }
9961 
9962   float_ptr_type_node = build_pointer_type (float_type_node);
9963   double_ptr_type_node = build_pointer_type (double_type_node);
9964   long_double_ptr_type_node = build_pointer_type (long_double_type_node);
9965   integer_ptr_type_node = build_pointer_type (integer_type_node);
9966 
9967   /* Fixed size integer types.  */
9968   uint16_type_node = make_or_reuse_type (16, 1);
9969   uint32_type_node = make_or_reuse_type (32, 1);
9970   uint64_type_node = make_or_reuse_type (64, 1);
9971 
9972   /* Decimal float types. */
9973   dfloat32_type_node = make_node (REAL_TYPE);
9974   TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
9975   SET_TYPE_MODE (dfloat32_type_node, SDmode);
9976   layout_type (dfloat32_type_node);
9977   dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
9978 
9979   dfloat64_type_node = make_node (REAL_TYPE);
9980   TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
9981   SET_TYPE_MODE (dfloat64_type_node, DDmode);
9982   layout_type (dfloat64_type_node);
9983   dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
9984 
9985   dfloat128_type_node = make_node (REAL_TYPE);
9986   TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
9987   SET_TYPE_MODE (dfloat128_type_node, TDmode);
9988   layout_type (dfloat128_type_node);
9989   dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
9990 
9991   complex_integer_type_node = build_complex_type (integer_type_node, true);
9992   complex_float_type_node = build_complex_type (float_type_node, true);
9993   complex_double_type_node = build_complex_type (double_type_node, true);
9994   complex_long_double_type_node = build_complex_type (long_double_type_node,
9995 						      true);
9996 
9997   for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
9998     {
9999       if (FLOATN_NX_TYPE_NODE (i) != NULL_TREE)
10000 	COMPLEX_FLOATN_NX_TYPE_NODE (i)
10001 	  = build_complex_type (FLOATN_NX_TYPE_NODE (i));
10002     }
10003 
10004 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned.  */
10005 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
10006   sat_ ## KIND ## _type_node = \
10007     make_sat_signed_ ## KIND ## _type (SIZE); \
10008   sat_unsigned_ ## KIND ## _type_node = \
10009     make_sat_unsigned_ ## KIND ## _type (SIZE); \
10010   KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10011   unsigned_ ## KIND ## _type_node = \
10012     make_unsigned_ ## KIND ## _type (SIZE);
10013 
10014 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
10015   sat_ ## WIDTH ## KIND ## _type_node = \
10016     make_sat_signed_ ## KIND ## _type (SIZE); \
10017   sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
10018     make_sat_unsigned_ ## KIND ## _type (SIZE); \
10019   WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10020   unsigned_ ## WIDTH ## KIND ## _type_node = \
10021     make_unsigned_ ## KIND ## _type (SIZE);
10022 
10023 /* Make fixed-point type nodes based on four different widths.  */
10024 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
10025   MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
10026   MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
10027   MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
10028   MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
10029 
10030 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned.  */
10031 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
10032   NAME ## _type_node = \
10033     make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
10034   u ## NAME ## _type_node = \
10035     make_or_reuse_unsigned_ ## KIND ## _type \
10036       (GET_MODE_BITSIZE (U ## MODE ## mode)); \
10037   sat_ ## NAME ## _type_node = \
10038     make_or_reuse_sat_signed_ ## KIND ## _type \
10039       (GET_MODE_BITSIZE (MODE ## mode)); \
10040   sat_u ## NAME ## _type_node = \
10041     make_or_reuse_sat_unsigned_ ## KIND ## _type \
10042       (GET_MODE_BITSIZE (U ## MODE ## mode));
10043 
10044   /* Fixed-point type and mode nodes.  */
10045   MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
10046   MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
10047   MAKE_FIXED_MODE_NODE (fract, qq, QQ)
10048   MAKE_FIXED_MODE_NODE (fract, hq, HQ)
10049   MAKE_FIXED_MODE_NODE (fract, sq, SQ)
10050   MAKE_FIXED_MODE_NODE (fract, dq, DQ)
10051   MAKE_FIXED_MODE_NODE (fract, tq, TQ)
10052   MAKE_FIXED_MODE_NODE (accum, ha, HA)
10053   MAKE_FIXED_MODE_NODE (accum, sa, SA)
10054   MAKE_FIXED_MODE_NODE (accum, da, DA)
10055   MAKE_FIXED_MODE_NODE (accum, ta, TA)
10056 
10057   {
10058     tree t = targetm.build_builtin_va_list ();
10059 
10060     /* Many back-ends define record types without setting TYPE_NAME.
10061        If we copied the record type here, we'd keep the original
10062        record type without a name.  This breaks name mangling.  So,
10063        don't copy record types and let c_common_nodes_and_builtins()
10064        declare the type to be __builtin_va_list.  */
10065     if (TREE_CODE (t) != RECORD_TYPE)
10066       t = build_variant_type_copy (t);
10067 
10068     va_list_type_node = t;
10069   }
10070 }
10071 
10072 /* Modify DECL for given flags.
10073    TM_PURE attribute is set only on types, so the function will modify
10074    DECL's type when ECF_TM_PURE is used.  */
10075 
10076 void
10077 set_call_expr_flags (tree decl, int flags)
10078 {
10079   if (flags & ECF_NOTHROW)
10080     TREE_NOTHROW (decl) = 1;
10081   if (flags & ECF_CONST)
10082     TREE_READONLY (decl) = 1;
10083   if (flags & ECF_PURE)
10084     DECL_PURE_P (decl) = 1;
10085   if (flags & ECF_LOOPING_CONST_OR_PURE)
10086     DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
10087   if (flags & ECF_NOVOPS)
10088     DECL_IS_NOVOPS (decl) = 1;
10089   if (flags & ECF_NORETURN)
10090     TREE_THIS_VOLATILE (decl) = 1;
10091   if (flags & ECF_MALLOC)
10092     DECL_IS_MALLOC (decl) = 1;
10093   if (flags & ECF_RETURNS_TWICE)
10094     DECL_IS_RETURNS_TWICE (decl) = 1;
10095   if (flags & ECF_LEAF)
10096     DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
10097 					NULL, DECL_ATTRIBUTES (decl));
10098   if (flags & ECF_COLD)
10099     DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("cold"),
10100 					NULL, DECL_ATTRIBUTES (decl));
10101   if (flags & ECF_RET1)
10102     DECL_ATTRIBUTES (decl)
10103       = tree_cons (get_identifier ("fn spec"),
10104 		   build_tree_list (NULL_TREE, build_string (1, "1")),
10105 		   DECL_ATTRIBUTES (decl));
10106   if ((flags & ECF_TM_PURE) && flag_tm)
10107     apply_tm_attr (decl, get_identifier ("transaction_pure"));
10108   /* Looping const or pure is implied by noreturn.
10109      There is currently no way to declare looping const or looping pure alone.  */
10110   gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
10111 	      || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
10112 }
10113 
10114 
10115 /* A subroutine of build_common_builtin_nodes.  Define a builtin function.  */
10116 
10117 static void
10118 local_define_builtin (const char *name, tree type, enum built_in_function code,
10119                       const char *library_name, int ecf_flags)
10120 {
10121   tree decl;
10122 
10123   decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
10124 			       library_name, NULL_TREE);
10125   set_call_expr_flags (decl, ecf_flags);
10126 
10127   set_builtin_decl (code, decl, true);
10128 }
10129 
10130 /* Call this function after instantiating all builtins that the language
10131    front end cares about.  This will build the rest of the builtins
10132    and internal functions that are relied upon by the tree optimizers and
10133    the middle-end.  */
10134 
10135 void
10136 build_common_builtin_nodes (void)
10137 {
10138   tree tmp, ftype;
10139   int ecf_flags;
10140 
10141   if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE)
10142       || !builtin_decl_explicit_p (BUILT_IN_ABORT))
10143     {
10144       ftype = build_function_type (void_type_node, void_list_node);
10145       if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
10146 	local_define_builtin ("__builtin_unreachable", ftype,
10147 			      BUILT_IN_UNREACHABLE,
10148 			      "__builtin_unreachable",
10149 			      ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
10150 			      | ECF_CONST | ECF_COLD);
10151       if (!builtin_decl_explicit_p (BUILT_IN_ABORT))
10152 	local_define_builtin ("__builtin_abort", ftype, BUILT_IN_ABORT,
10153 			      "abort",
10154 			      ECF_LEAF | ECF_NORETURN | ECF_CONST | ECF_COLD);
10155     }
10156 
10157   if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
10158       || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10159     {
10160       ftype = build_function_type_list (ptr_type_node,
10161 					ptr_type_node, const_ptr_type_node,
10162 					size_type_node, NULL_TREE);
10163 
10164       if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
10165 	local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
10166 			      "memcpy", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10167       if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10168 	local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
10169 			      "memmove", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10170     }
10171 
10172   if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
10173     {
10174       ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10175 					const_ptr_type_node, size_type_node,
10176 					NULL_TREE);
10177       local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
10178 			    "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10179     }
10180 
10181   if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
10182     {
10183       ftype = build_function_type_list (ptr_type_node,
10184 					ptr_type_node, integer_type_node,
10185 					size_type_node, NULL_TREE);
10186       local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
10187 			    "memset", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10188     }
10189 
10190   /* If we're checking the stack, `alloca' can throw.  */
10191   const int alloca_flags
10192     = ECF_MALLOC | ECF_LEAF | (flag_stack_check ? 0 : ECF_NOTHROW);
10193 
10194   if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
10195     {
10196       ftype = build_function_type_list (ptr_type_node,
10197 					size_type_node, NULL_TREE);
10198       local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
10199 			    "alloca", alloca_flags);
10200     }
10201 
10202   ftype = build_function_type_list (ptr_type_node, size_type_node,
10203 				    size_type_node, NULL_TREE);
10204   local_define_builtin ("__builtin_alloca_with_align", ftype,
10205 			BUILT_IN_ALLOCA_WITH_ALIGN,
10206 			"__builtin_alloca_with_align",
10207 			alloca_flags);
10208 
10209   ftype = build_function_type_list (ptr_type_node, size_type_node,
10210 				    size_type_node, size_type_node, NULL_TREE);
10211   local_define_builtin ("__builtin_alloca_with_align_and_max", ftype,
10212 			BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX,
10213 			"__builtin_alloca_with_align_and_max",
10214 			alloca_flags);
10215 
10216   ftype = build_function_type_list (void_type_node,
10217 				    ptr_type_node, ptr_type_node,
10218 				    ptr_type_node, NULL_TREE);
10219   local_define_builtin ("__builtin_init_trampoline", ftype,
10220 			BUILT_IN_INIT_TRAMPOLINE,
10221 			"__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
10222   local_define_builtin ("__builtin_init_heap_trampoline", ftype,
10223 			BUILT_IN_INIT_HEAP_TRAMPOLINE,
10224 			"__builtin_init_heap_trampoline",
10225 			ECF_NOTHROW | ECF_LEAF);
10226   local_define_builtin ("__builtin_init_descriptor", ftype,
10227 			BUILT_IN_INIT_DESCRIPTOR,
10228 			"__builtin_init_descriptor", ECF_NOTHROW | ECF_LEAF);
10229 
10230   ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
10231   local_define_builtin ("__builtin_adjust_trampoline", ftype,
10232 			BUILT_IN_ADJUST_TRAMPOLINE,
10233 			"__builtin_adjust_trampoline",
10234 			ECF_CONST | ECF_NOTHROW);
10235   local_define_builtin ("__builtin_adjust_descriptor", ftype,
10236 			BUILT_IN_ADJUST_DESCRIPTOR,
10237 			"__builtin_adjust_descriptor",
10238 			ECF_CONST | ECF_NOTHROW);
10239 
10240   ftype = build_function_type_list (void_type_node,
10241 				    ptr_type_node, ptr_type_node, NULL_TREE);
10242   local_define_builtin ("__builtin_nonlocal_goto", ftype,
10243 			BUILT_IN_NONLOCAL_GOTO,
10244 			"__builtin_nonlocal_goto",
10245 			ECF_NORETURN | ECF_NOTHROW);
10246 
10247   ftype = build_function_type_list (void_type_node,
10248 				    ptr_type_node, ptr_type_node, NULL_TREE);
10249   local_define_builtin ("__builtin_setjmp_setup", ftype,
10250 			BUILT_IN_SETJMP_SETUP,
10251 			"__builtin_setjmp_setup", ECF_NOTHROW);
10252 
10253   ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10254   local_define_builtin ("__builtin_setjmp_receiver", ftype,
10255 			BUILT_IN_SETJMP_RECEIVER,
10256 			"__builtin_setjmp_receiver", ECF_NOTHROW | ECF_LEAF);
10257 
10258   ftype = build_function_type_list (ptr_type_node, NULL_TREE);
10259   local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
10260 			"__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
10261 
10262   ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10263   local_define_builtin ("__builtin_stack_restore", ftype,
10264 			BUILT_IN_STACK_RESTORE,
10265 			"__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
10266 
10267   ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10268 				    const_ptr_type_node, size_type_node,
10269 				    NULL_TREE);
10270   local_define_builtin ("__builtin_memcmp_eq", ftype, BUILT_IN_MEMCMP_EQ,
10271 			"__builtin_memcmp_eq",
10272 			ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10273 
10274   /* If there's a possibility that we might use the ARM EABI, build the
10275     alternate __cxa_end_cleanup node used to resume from C++.  */
10276   if (targetm.arm_eabi_unwinder)
10277     {
10278       ftype = build_function_type_list (void_type_node, NULL_TREE);
10279       local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
10280 			    BUILT_IN_CXA_END_CLEANUP,
10281 			    "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
10282     }
10283 
10284   ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10285   local_define_builtin ("__builtin_unwind_resume", ftype,
10286 			BUILT_IN_UNWIND_RESUME,
10287 			((targetm_common.except_unwind_info (&global_options)
10288 			  == UI_SJLJ)
10289 			 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
10290 			ECF_NORETURN);
10291 
10292   if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
10293     {
10294       ftype = build_function_type_list (ptr_type_node, integer_type_node,
10295 					NULL_TREE);
10296       local_define_builtin ("__builtin_return_address", ftype,
10297 			    BUILT_IN_RETURN_ADDRESS,
10298 			    "__builtin_return_address",
10299 			    ECF_NOTHROW);
10300     }
10301 
10302   if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
10303       || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10304     {
10305       ftype = build_function_type_list (void_type_node, ptr_type_node,
10306 					ptr_type_node, NULL_TREE);
10307       if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
10308 	local_define_builtin ("__cyg_profile_func_enter", ftype,
10309 			      BUILT_IN_PROFILE_FUNC_ENTER,
10310 			      "__cyg_profile_func_enter", 0);
10311       if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10312 	local_define_builtin ("__cyg_profile_func_exit", ftype,
10313 			      BUILT_IN_PROFILE_FUNC_EXIT,
10314 			      "__cyg_profile_func_exit", 0);
10315     }
10316 
10317   /* The exception object and filter values from the runtime.  The argument
10318      must be zero before exception lowering, i.e. from the front end.  After
10319      exception lowering, it will be the region number for the exception
10320      landing pad.  These functions are PURE instead of CONST to prevent
10321      them from being hoisted past the exception edge that will initialize
10322      its value in the landing pad.  */
10323   ftype = build_function_type_list (ptr_type_node,
10324 				    integer_type_node, NULL_TREE);
10325   ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
10326   /* Only use TM_PURE if we have TM language support.  */
10327   if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
10328     ecf_flags |= ECF_TM_PURE;
10329   local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
10330 			"__builtin_eh_pointer", ecf_flags);
10331 
10332   tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
10333   ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
10334   local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
10335 			"__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10336 
10337   ftype = build_function_type_list (void_type_node,
10338 				    integer_type_node, integer_type_node,
10339 				    NULL_TREE);
10340   local_define_builtin ("__builtin_eh_copy_values", ftype,
10341 			BUILT_IN_EH_COPY_VALUES,
10342 			"__builtin_eh_copy_values", ECF_NOTHROW);
10343 
10344   /* Complex multiplication and division.  These are handled as builtins
10345      rather than optabs because emit_library_call_value doesn't support
10346      complex.  Further, we can do slightly better with folding these
10347      beasties if the real and complex parts of the arguments are separate.  */
10348   {
10349     int mode;
10350 
10351     for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
10352       {
10353 	char mode_name_buf[4], *q;
10354 	const char *p;
10355 	enum built_in_function mcode, dcode;
10356 	tree type, inner_type;
10357 	const char *prefix = "__";
10358 
10359 	if (targetm.libfunc_gnu_prefix)
10360 	  prefix = "__gnu_";
10361 
10362 	type = lang_hooks.types.type_for_mode ((machine_mode) mode, 0);
10363 	if (type == NULL)
10364 	  continue;
10365 	inner_type = TREE_TYPE (type);
10366 
10367 	ftype = build_function_type_list (type, inner_type, inner_type,
10368 					  inner_type, inner_type, NULL_TREE);
10369 
10370         mcode = ((enum built_in_function)
10371 		 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10372         dcode = ((enum built_in_function)
10373 		 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10374 
10375         for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
10376 	  *q = TOLOWER (*p);
10377 	*q = '\0';
10378 
10379 	built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
10380 					NULL);
10381         local_define_builtin (built_in_names[mcode], ftype, mcode,
10382 			      built_in_names[mcode],
10383 			      ECF_CONST | ECF_NOTHROW | ECF_LEAF);
10384 
10385 	built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
10386 					NULL);
10387         local_define_builtin (built_in_names[dcode], ftype, dcode,
10388 			      built_in_names[dcode],
10389 			      ECF_CONST | ECF_NOTHROW | ECF_LEAF);
10390       }
10391   }
10392 
10393   init_internal_fns ();
10394 }
10395 
10396 /* HACK.  GROSS.  This is absolutely disgusting.  I wish there was a
10397    better way.
10398 
10399    If we requested a pointer to a vector, build up the pointers that
10400    we stripped off while looking for the inner type.  Similarly for
10401    return values from functions.
10402 
10403    The argument TYPE is the top of the chain, and BOTTOM is the
10404    new type which we will point to.  */
10405 
10406 tree
10407 reconstruct_complex_type (tree type, tree bottom)
10408 {
10409   tree inner, outer;
10410 
10411   if (TREE_CODE (type) == POINTER_TYPE)
10412     {
10413       inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10414       outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
10415 					   TYPE_REF_CAN_ALIAS_ALL (type));
10416     }
10417   else if (TREE_CODE (type) == REFERENCE_TYPE)
10418     {
10419       inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10420       outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
10421 					     TYPE_REF_CAN_ALIAS_ALL (type));
10422     }
10423   else if (TREE_CODE (type) == ARRAY_TYPE)
10424     {
10425       inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10426       outer = build_array_type (inner, TYPE_DOMAIN (type));
10427     }
10428   else if (TREE_CODE (type) == FUNCTION_TYPE)
10429     {
10430       inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10431       outer = build_function_type (inner, TYPE_ARG_TYPES (type));
10432     }
10433   else if (TREE_CODE (type) == METHOD_TYPE)
10434     {
10435       inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10436       /* The build_method_type_directly() routine prepends 'this' to argument list,
10437          so we must compensate by getting rid of it.  */
10438       outer
10439 	= build_method_type_directly
10440 	    (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
10441 	     inner,
10442 	     TREE_CHAIN (TYPE_ARG_TYPES (type)));
10443     }
10444   else if (TREE_CODE (type) == OFFSET_TYPE)
10445     {
10446       inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10447       outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
10448     }
10449   else
10450     return bottom;
10451 
10452   return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
10453 					    TYPE_QUALS (type));
10454 }
10455 
10456 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
10457    the inner type.  */
10458 tree
10459 build_vector_type_for_mode (tree innertype, machine_mode mode)
10460 {
10461   poly_int64 nunits;
10462   unsigned int bitsize;
10463 
10464   switch (GET_MODE_CLASS (mode))
10465     {
10466     case MODE_VECTOR_BOOL:
10467     case MODE_VECTOR_INT:
10468     case MODE_VECTOR_FLOAT:
10469     case MODE_VECTOR_FRACT:
10470     case MODE_VECTOR_UFRACT:
10471     case MODE_VECTOR_ACCUM:
10472     case MODE_VECTOR_UACCUM:
10473       nunits = GET_MODE_NUNITS (mode);
10474       break;
10475 
10476     case MODE_INT:
10477       /* Check that there are no leftover bits.  */
10478       bitsize = GET_MODE_BITSIZE (as_a <scalar_int_mode> (mode));
10479       gcc_assert (bitsize % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
10480       nunits = bitsize / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
10481       break;
10482 
10483     default:
10484       gcc_unreachable ();
10485     }
10486 
10487   return make_vector_type (innertype, nunits, mode);
10488 }
10489 
10490 /* Similarly, but takes the inner type and number of units, which must be
10491    a power of two.  */
10492 
10493 tree
10494 build_vector_type (tree innertype, poly_int64 nunits)
10495 {
10496   return make_vector_type (innertype, nunits, VOIDmode);
10497 }
10498 
10499 /* Build truth vector with specified length and number of units.  */
10500 
10501 tree
10502 build_truth_vector_type (poly_uint64 nunits, poly_uint64 vector_size)
10503 {
10504   machine_mode mask_mode
10505     = targetm.vectorize.get_mask_mode (nunits, vector_size).else_blk ();
10506 
10507   poly_uint64 vsize;
10508   if (mask_mode == BLKmode)
10509     vsize = vector_size * BITS_PER_UNIT;
10510   else
10511     vsize = GET_MODE_BITSIZE (mask_mode);
10512 
10513   unsigned HOST_WIDE_INT esize = vector_element_size (vsize, nunits);
10514 
10515   tree bool_type = build_nonstandard_boolean_type (esize);
10516 
10517   return make_vector_type (bool_type, nunits, mask_mode);
10518 }
10519 
10520 /* Returns a vector type corresponding to a comparison of VECTYPE.  */
10521 
10522 tree
10523 build_same_sized_truth_vector_type (tree vectype)
10524 {
10525   if (VECTOR_BOOLEAN_TYPE_P (vectype))
10526     return vectype;
10527 
10528   poly_uint64 size = GET_MODE_SIZE (TYPE_MODE (vectype));
10529 
10530   if (known_eq (size, 0U))
10531     size = tree_to_uhwi (TYPE_SIZE_UNIT (vectype));
10532 
10533   return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (vectype), size);
10534 }
10535 
10536 /* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set.  */
10537 
10538 tree
10539 build_opaque_vector_type (tree innertype, poly_int64 nunits)
10540 {
10541   tree t = make_vector_type (innertype, nunits, VOIDmode);
10542   tree cand;
10543   /* We always build the non-opaque variant before the opaque one,
10544      so if it already exists, it is TYPE_NEXT_VARIANT of this one.  */
10545   cand = TYPE_NEXT_VARIANT (t);
10546   if (cand
10547       && TYPE_VECTOR_OPAQUE (cand)
10548       && check_qualified_type (cand, t, TYPE_QUALS (t)))
10549     return cand;
10550   /* Othewise build a variant type and make sure to queue it after
10551      the non-opaque type.  */
10552   cand = build_distinct_type_copy (t);
10553   TYPE_VECTOR_OPAQUE (cand) = true;
10554   TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
10555   TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
10556   TYPE_NEXT_VARIANT (t) = cand;
10557   TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
10558   return cand;
10559 }
10560 
10561 /* Return the value of element I of VECTOR_CST T as a wide_int.  */
10562 
10563 wide_int
10564 vector_cst_int_elt (const_tree t, unsigned int i)
10565 {
10566   /* First handle elements that are directly encoded.  */
10567   unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
10568   if (i < encoded_nelts)
10569     return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, i));
10570 
10571   /* Identify the pattern that contains element I and work out the index of
10572      the last encoded element for that pattern.  */
10573   unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
10574   unsigned int pattern = i % npatterns;
10575   unsigned int count = i / npatterns;
10576   unsigned int final_i = encoded_nelts - npatterns + pattern;
10577 
10578   /* If there are no steps, the final encoded value is the right one.  */
10579   if (!VECTOR_CST_STEPPED_P (t))
10580     return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, final_i));
10581 
10582   /* Otherwise work out the value from the last two encoded elements.  */
10583   tree v1 = VECTOR_CST_ENCODED_ELT (t, final_i - npatterns);
10584   tree v2 = VECTOR_CST_ENCODED_ELT (t, final_i);
10585   wide_int diff = wi::to_wide (v2) - wi::to_wide (v1);
10586   return wi::to_wide (v2) + (count - 2) * diff;
10587 }
10588 
10589 /* Return the value of element I of VECTOR_CST T.  */
10590 
10591 tree
10592 vector_cst_elt (const_tree t, unsigned int i)
10593 {
10594   /* First handle elements that are directly encoded.  */
10595   unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
10596   if (i < encoded_nelts)
10597     return VECTOR_CST_ENCODED_ELT (t, i);
10598 
10599   /* If there are no steps, the final encoded value is the right one.  */
10600   if (!VECTOR_CST_STEPPED_P (t))
10601     {
10602       /* Identify the pattern that contains element I and work out the index of
10603 	 the last encoded element for that pattern.  */
10604       unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
10605       unsigned int pattern = i % npatterns;
10606       unsigned int final_i = encoded_nelts - npatterns + pattern;
10607       return VECTOR_CST_ENCODED_ELT (t, final_i);
10608     }
10609 
10610   /* Otherwise work out the value from the last two encoded elements.  */
10611   return wide_int_to_tree (TREE_TYPE (TREE_TYPE (t)),
10612 			   vector_cst_int_elt (t, i));
10613 }
10614 
10615 /* Given an initializer INIT, return TRUE if INIT is zero or some
10616    aggregate of zeros.  Otherwise return FALSE.  */
10617 bool
10618 initializer_zerop (const_tree init)
10619 {
10620   tree elt;
10621 
10622   STRIP_NOPS (init);
10623 
10624   switch (TREE_CODE (init))
10625     {
10626     case INTEGER_CST:
10627       return integer_zerop (init);
10628 
10629     case REAL_CST:
10630       /* ??? Note that this is not correct for C4X float formats.  There,
10631 	 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
10632 	 negative exponent.  */
10633       return real_zerop (init)
10634 	&& ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
10635 
10636     case FIXED_CST:
10637       return fixed_zerop (init);
10638 
10639     case COMPLEX_CST:
10640       return integer_zerop (init)
10641 	|| (real_zerop (init)
10642 	    && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
10643 	    && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
10644 
10645     case VECTOR_CST:
10646       return (VECTOR_CST_NPATTERNS (init) == 1
10647 	      && VECTOR_CST_DUPLICATE_P (init)
10648 	      && initializer_zerop (VECTOR_CST_ENCODED_ELT (init, 0)));
10649 
10650     case CONSTRUCTOR:
10651       {
10652 	unsigned HOST_WIDE_INT idx;
10653 
10654 	if (TREE_CLOBBER_P (init))
10655 	  return false;
10656 	FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
10657 	  if (!initializer_zerop (elt))
10658 	    return false;
10659 	return true;
10660       }
10661 
10662     case STRING_CST:
10663       {
10664 	int i;
10665 
10666 	/* We need to loop through all elements to handle cases like
10667 	   "\0" and "\0foobar".  */
10668 	for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
10669 	  if (TREE_STRING_POINTER (init)[i] != '\0')
10670 	    return false;
10671 
10672 	return true;
10673       }
10674 
10675     default:
10676       return false;
10677     }
10678 }
10679 
10680 /* Check if vector VEC consists of all the equal elements and
10681    that the number of elements corresponds to the type of VEC.
10682    The function returns first element of the vector
10683    or NULL_TREE if the vector is not uniform.  */
10684 tree
10685 uniform_vector_p (const_tree vec)
10686 {
10687   tree first, t;
10688   unsigned HOST_WIDE_INT i, nelts;
10689 
10690   if (vec == NULL_TREE)
10691     return NULL_TREE;
10692 
10693   gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec)));
10694 
10695   if (TREE_CODE (vec) == VEC_DUPLICATE_EXPR)
10696     return TREE_OPERAND (vec, 0);
10697 
10698   else if (TREE_CODE (vec) == VECTOR_CST)
10699     {
10700       if (VECTOR_CST_NPATTERNS (vec) == 1 && VECTOR_CST_DUPLICATE_P (vec))
10701 	return VECTOR_CST_ENCODED_ELT (vec, 0);
10702       return NULL_TREE;
10703     }
10704 
10705   else if (TREE_CODE (vec) == CONSTRUCTOR
10706 	   && TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)).is_constant (&nelts))
10707     {
10708       first = error_mark_node;
10709 
10710       FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t)
10711         {
10712           if (i == 0)
10713             {
10714               first = t;
10715               continue;
10716             }
10717 	  if (!operand_equal_p (first, t, 0))
10718 	    return NULL_TREE;
10719         }
10720       if (i != nelts)
10721 	return NULL_TREE;
10722 
10723       return first;
10724     }
10725 
10726   return NULL_TREE;
10727 }
10728 
10729 /* Build an empty statement at location LOC.  */
10730 
10731 tree
10732 build_empty_stmt (location_t loc)
10733 {
10734   tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
10735   SET_EXPR_LOCATION (t, loc);
10736   return t;
10737 }
10738 
10739 
10740 /* Build an OpenMP clause with code CODE.  LOC is the location of the
10741    clause.  */
10742 
10743 tree
10744 build_omp_clause (location_t loc, enum omp_clause_code code)
10745 {
10746   tree t;
10747   int size, length;
10748 
10749   length = omp_clause_num_ops[code];
10750   size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
10751 
10752   record_node_allocation_statistics (OMP_CLAUSE, size);
10753 
10754   t = (tree) ggc_internal_alloc (size);
10755   memset (t, 0, size);
10756   TREE_SET_CODE (t, OMP_CLAUSE);
10757   OMP_CLAUSE_SET_CODE (t, code);
10758   OMP_CLAUSE_LOCATION (t) = loc;
10759 
10760   return t;
10761 }
10762 
10763 /* Build a tcc_vl_exp object with code CODE and room for LEN operands.  LEN
10764    includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
10765    Except for the CODE and operand count field, other storage for the
10766    object is initialized to zeros.  */
10767 
10768 tree
10769 build_vl_exp (enum tree_code code, int len MEM_STAT_DECL)
10770 {
10771   tree t;
10772   int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
10773 
10774   gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
10775   gcc_assert (len >= 1);
10776 
10777   record_node_allocation_statistics (code, length);
10778 
10779   t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
10780 
10781   TREE_SET_CODE (t, code);
10782 
10783   /* Can't use TREE_OPERAND to store the length because if checking is
10784      enabled, it will try to check the length before we store it.  :-P  */
10785   t->exp.operands[0] = build_int_cst (sizetype, len);
10786 
10787   return t;
10788 }
10789 
10790 /* Helper function for build_call_* functions; build a CALL_EXPR with
10791    indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
10792    the argument slots.  */
10793 
10794 static tree
10795 build_call_1 (tree return_type, tree fn, int nargs)
10796 {
10797   tree t;
10798 
10799   t = build_vl_exp (CALL_EXPR, nargs + 3);
10800   TREE_TYPE (t) = return_type;
10801   CALL_EXPR_FN (t) = fn;
10802   CALL_EXPR_STATIC_CHAIN (t) = NULL;
10803 
10804   return t;
10805 }
10806 
10807 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10808    FN and a null static chain slot.  NARGS is the number of call arguments
10809    which are specified as "..." arguments.  */
10810 
10811 tree
10812 build_call_nary (tree return_type, tree fn, int nargs, ...)
10813 {
10814   tree ret;
10815   va_list args;
10816   va_start (args, nargs);
10817   ret = build_call_valist (return_type, fn, nargs, args);
10818   va_end (args);
10819   return ret;
10820 }
10821 
10822 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10823    FN and a null static chain slot.  NARGS is the number of call arguments
10824    which are specified as a va_list ARGS.  */
10825 
10826 tree
10827 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
10828 {
10829   tree t;
10830   int i;
10831 
10832   t = build_call_1 (return_type, fn, nargs);
10833   for (i = 0; i < nargs; i++)
10834     CALL_EXPR_ARG (t, i) = va_arg (args, tree);
10835   process_call_operands (t);
10836   return t;
10837 }
10838 
10839 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10840    FN and a null static chain slot.  NARGS is the number of call arguments
10841    which are specified as a tree array ARGS.  */
10842 
10843 tree
10844 build_call_array_loc (location_t loc, tree return_type, tree fn,
10845 		      int nargs, const tree *args)
10846 {
10847   tree t;
10848   int i;
10849 
10850   t = build_call_1 (return_type, fn, nargs);
10851   for (i = 0; i < nargs; i++)
10852     CALL_EXPR_ARG (t, i) = args[i];
10853   process_call_operands (t);
10854   SET_EXPR_LOCATION (t, loc);
10855   return t;
10856 }
10857 
10858 /* Like build_call_array, but takes a vec.  */
10859 
10860 tree
10861 build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args)
10862 {
10863   tree ret, t;
10864   unsigned int ix;
10865 
10866   ret = build_call_1 (return_type, fn, vec_safe_length (args));
10867   FOR_EACH_VEC_SAFE_ELT (args, ix, t)
10868     CALL_EXPR_ARG (ret, ix) = t;
10869   process_call_operands (ret);
10870   return ret;
10871 }
10872 
10873 /* Conveniently construct a function call expression.  FNDECL names the
10874    function to be called and N arguments are passed in the array
10875    ARGARRAY.  */
10876 
10877 tree
10878 build_call_expr_loc_array (location_t loc, tree fndecl, int n, tree *argarray)
10879 {
10880   tree fntype = TREE_TYPE (fndecl);
10881   tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
10882 
10883   return fold_build_call_array_loc (loc, TREE_TYPE (fntype), fn, n, argarray);
10884 }
10885 
10886 /* Conveniently construct a function call expression.  FNDECL names the
10887    function to be called and the arguments are passed in the vector
10888    VEC.  */
10889 
10890 tree
10891 build_call_expr_loc_vec (location_t loc, tree fndecl, vec<tree, va_gc> *vec)
10892 {
10893   return build_call_expr_loc_array (loc, fndecl, vec_safe_length (vec),
10894 				    vec_safe_address (vec));
10895 }
10896 
10897 
10898 /* Conveniently construct a function call expression.  FNDECL names the
10899    function to be called, N is the number of arguments, and the "..."
10900    parameters are the argument expressions.  */
10901 
10902 tree
10903 build_call_expr_loc (location_t loc, tree fndecl, int n, ...)
10904 {
10905   va_list ap;
10906   tree *argarray = XALLOCAVEC (tree, n);
10907   int i;
10908 
10909   va_start (ap, n);
10910   for (i = 0; i < n; i++)
10911     argarray[i] = va_arg (ap, tree);
10912   va_end (ap);
10913   return build_call_expr_loc_array (loc, fndecl, n, argarray);
10914 }
10915 
10916 /* Like build_call_expr_loc (UNKNOWN_LOCATION, ...).  Duplicated because
10917    varargs macros aren't supported by all bootstrap compilers.  */
10918 
10919 tree
10920 build_call_expr (tree fndecl, int n, ...)
10921 {
10922   va_list ap;
10923   tree *argarray = XALLOCAVEC (tree, n);
10924   int i;
10925 
10926   va_start (ap, n);
10927   for (i = 0; i < n; i++)
10928     argarray[i] = va_arg (ap, tree);
10929   va_end (ap);
10930   return build_call_expr_loc_array (UNKNOWN_LOCATION, fndecl, n, argarray);
10931 }
10932 
10933 /* Build an internal call to IFN, with arguments ARGS[0:N-1] and with return
10934    type TYPE.  This is just like CALL_EXPR, except its CALL_EXPR_FN is NULL.
10935    It will get gimplified later into an ordinary internal function.  */
10936 
10937 tree
10938 build_call_expr_internal_loc_array (location_t loc, internal_fn ifn,
10939 				    tree type, int n, const tree *args)
10940 {
10941   tree t = build_call_1 (type, NULL_TREE, n);
10942   for (int i = 0; i < n; ++i)
10943     CALL_EXPR_ARG (t, i) = args[i];
10944   SET_EXPR_LOCATION (t, loc);
10945   CALL_EXPR_IFN (t) = ifn;
10946   return t;
10947 }
10948 
10949 /* Build internal call expression.  This is just like CALL_EXPR, except
10950    its CALL_EXPR_FN is NULL.  It will get gimplified later into ordinary
10951    internal function.  */
10952 
10953 tree
10954 build_call_expr_internal_loc (location_t loc, enum internal_fn ifn,
10955 			      tree type, int n, ...)
10956 {
10957   va_list ap;
10958   tree *argarray = XALLOCAVEC (tree, n);
10959   int i;
10960 
10961   va_start (ap, n);
10962   for (i = 0; i < n; i++)
10963     argarray[i] = va_arg (ap, tree);
10964   va_end (ap);
10965   return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
10966 }
10967 
10968 /* Return a function call to FN, if the target is guaranteed to support it,
10969    or null otherwise.
10970 
10971    N is the number of arguments, passed in the "...", and TYPE is the
10972    type of the return value.  */
10973 
10974 tree
10975 maybe_build_call_expr_loc (location_t loc, combined_fn fn, tree type,
10976 			   int n, ...)
10977 {
10978   va_list ap;
10979   tree *argarray = XALLOCAVEC (tree, n);
10980   int i;
10981 
10982   va_start (ap, n);
10983   for (i = 0; i < n; i++)
10984     argarray[i] = va_arg (ap, tree);
10985   va_end (ap);
10986   if (internal_fn_p (fn))
10987     {
10988       internal_fn ifn = as_internal_fn (fn);
10989       if (direct_internal_fn_p (ifn))
10990 	{
10991 	  tree_pair types = direct_internal_fn_types (ifn, type, argarray);
10992 	  if (!direct_internal_fn_supported_p (ifn, types,
10993 					       OPTIMIZE_FOR_BOTH))
10994 	    return NULL_TREE;
10995 	}
10996       return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
10997     }
10998   else
10999     {
11000       tree fndecl = builtin_decl_implicit (as_builtin_fn (fn));
11001       if (!fndecl)
11002 	return NULL_TREE;
11003       return build_call_expr_loc_array (loc, fndecl, n, argarray);
11004     }
11005 }
11006 
11007 /* Return a function call to the appropriate builtin alloca variant.
11008 
11009    SIZE is the size to be allocated.  ALIGN, if non-zero, is the requested
11010    alignment of the allocated area.  MAX_SIZE, if non-negative, is an upper
11011    bound for SIZE in case it is not a fixed value.  */
11012 
11013 tree
11014 build_alloca_call_expr (tree size, unsigned int align, HOST_WIDE_INT max_size)
11015 {
11016   if (max_size >= 0)
11017     {
11018       tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX);
11019       return
11020 	build_call_expr (t, 3, size, size_int (align), size_int (max_size));
11021     }
11022   else if (align > 0)
11023     {
11024       tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
11025       return build_call_expr (t, 2, size, size_int (align));
11026     }
11027   else
11028     {
11029       tree t = builtin_decl_explicit (BUILT_IN_ALLOCA);
11030       return build_call_expr (t, 1, size);
11031     }
11032 }
11033 
11034 /* Create a new constant string literal and return a char* pointer to it.
11035    The STRING_CST value is the LEN characters at STR.  */
11036 tree
11037 build_string_literal (int len, const char *str)
11038 {
11039   tree t, elem, index, type;
11040 
11041   t = build_string (len, str);
11042   elem = build_type_variant (char_type_node, 1, 0);
11043   index = build_index_type (size_int (len - 1));
11044   type = build_array_type (elem, index);
11045   TREE_TYPE (t) = type;
11046   TREE_CONSTANT (t) = 1;
11047   TREE_READONLY (t) = 1;
11048   TREE_STATIC (t) = 1;
11049 
11050   type = build_pointer_type (elem);
11051   t = build1 (ADDR_EXPR, type,
11052 	      build4 (ARRAY_REF, elem,
11053 		      t, integer_zero_node, NULL_TREE, NULL_TREE));
11054   return t;
11055 }
11056 
11057 
11058 
11059 /* Return true if T (assumed to be a DECL) must be assigned a memory
11060    location.  */
11061 
11062 bool
11063 needs_to_live_in_memory (const_tree t)
11064 {
11065   return (TREE_ADDRESSABLE (t)
11066 	  || is_global_var (t)
11067 	  || (TREE_CODE (t) == RESULT_DECL
11068 	      && !DECL_BY_REFERENCE (t)
11069 	      && aggregate_value_p (t, current_function_decl)));
11070 }
11071 
11072 /* Return value of a constant X and sign-extend it.  */
11073 
11074 HOST_WIDE_INT
11075 int_cst_value (const_tree x)
11076 {
11077   unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
11078   unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
11079 
11080   /* Make sure the sign-extended value will fit in a HOST_WIDE_INT.  */
11081   gcc_assert (cst_and_fits_in_hwi (x));
11082 
11083   if (bits < HOST_BITS_PER_WIDE_INT)
11084     {
11085       bool negative = ((val >> (bits - 1)) & 1) != 0;
11086       if (negative)
11087 	val |= HOST_WIDE_INT_M1U << (bits - 1) << 1;
11088       else
11089 	val &= ~(HOST_WIDE_INT_M1U << (bits - 1) << 1);
11090     }
11091 
11092   return val;
11093 }
11094 
11095 /* If TYPE is an integral or pointer type, return an integer type with
11096    the same precision which is unsigned iff UNSIGNEDP is true, or itself
11097    if TYPE is already an integer type of signedness UNSIGNEDP.  */
11098 
11099 tree
11100 signed_or_unsigned_type_for (int unsignedp, tree type)
11101 {
11102   if (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type) == unsignedp)
11103     return type;
11104 
11105   if (TREE_CODE (type) == VECTOR_TYPE)
11106     {
11107       tree inner = TREE_TYPE (type);
11108       tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
11109       if (!inner2)
11110 	return NULL_TREE;
11111       if (inner == inner2)
11112 	return type;
11113       return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
11114     }
11115 
11116   if (!INTEGRAL_TYPE_P (type)
11117       && !POINTER_TYPE_P (type)
11118       && TREE_CODE (type) != OFFSET_TYPE)
11119     return NULL_TREE;
11120 
11121   return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
11122 }
11123 
11124 /* If TYPE is an integral or pointer type, return an integer type with
11125    the same precision which is unsigned, or itself if TYPE is already an
11126    unsigned integer type.  */
11127 
11128 tree
11129 unsigned_type_for (tree type)
11130 {
11131   return signed_or_unsigned_type_for (1, type);
11132 }
11133 
11134 /* If TYPE is an integral or pointer type, return an integer type with
11135    the same precision which is signed, or itself if TYPE is already a
11136    signed integer type.  */
11137 
11138 tree
11139 signed_type_for (tree type)
11140 {
11141   return signed_or_unsigned_type_for (0, type);
11142 }
11143 
11144 /* If TYPE is a vector type, return a signed integer vector type with the
11145    same width and number of subparts. Otherwise return boolean_type_node.  */
11146 
11147 tree
11148 truth_type_for (tree type)
11149 {
11150   if (TREE_CODE (type) == VECTOR_TYPE)
11151     {
11152       if (VECTOR_BOOLEAN_TYPE_P (type))
11153 	return type;
11154       return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (type),
11155 				      GET_MODE_SIZE (TYPE_MODE (type)));
11156     }
11157   else
11158     return boolean_type_node;
11159 }
11160 
11161 /* Returns the largest value obtainable by casting something in INNER type to
11162    OUTER type.  */
11163 
11164 tree
11165 upper_bound_in_type (tree outer, tree inner)
11166 {
11167   unsigned int det = 0;
11168   unsigned oprec = TYPE_PRECISION (outer);
11169   unsigned iprec = TYPE_PRECISION (inner);
11170   unsigned prec;
11171 
11172   /* Compute a unique number for every combination.  */
11173   det |= (oprec > iprec) ? 4 : 0;
11174   det |= TYPE_UNSIGNED (outer) ? 2 : 0;
11175   det |= TYPE_UNSIGNED (inner) ? 1 : 0;
11176 
11177   /* Determine the exponent to use.  */
11178   switch (det)
11179     {
11180     case 0:
11181     case 1:
11182       /* oprec <= iprec, outer: signed, inner: don't care.  */
11183       prec = oprec - 1;
11184       break;
11185     case 2:
11186     case 3:
11187       /* oprec <= iprec, outer: unsigned, inner: don't care.  */
11188       prec = oprec;
11189       break;
11190     case 4:
11191       /* oprec > iprec, outer: signed, inner: signed.  */
11192       prec = iprec - 1;
11193       break;
11194     case 5:
11195       /* oprec > iprec, outer: signed, inner: unsigned.  */
11196       prec = iprec;
11197       break;
11198     case 6:
11199       /* oprec > iprec, outer: unsigned, inner: signed.  */
11200       prec = oprec;
11201       break;
11202     case 7:
11203       /* oprec > iprec, outer: unsigned, inner: unsigned.  */
11204       prec = iprec;
11205       break;
11206     default:
11207       gcc_unreachable ();
11208     }
11209 
11210   return wide_int_to_tree (outer,
11211 			   wi::mask (prec, false, TYPE_PRECISION (outer)));
11212 }
11213 
11214 /* Returns the smallest value obtainable by casting something in INNER type to
11215    OUTER type.  */
11216 
11217 tree
11218 lower_bound_in_type (tree outer, tree inner)
11219 {
11220   unsigned oprec = TYPE_PRECISION (outer);
11221   unsigned iprec = TYPE_PRECISION (inner);
11222 
11223   /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
11224      and obtain 0.  */
11225   if (TYPE_UNSIGNED (outer)
11226       /* If we are widening something of an unsigned type, OUTER type
11227 	 contains all values of INNER type.  In particular, both INNER
11228 	 and OUTER types have zero in common.  */
11229       || (oprec > iprec && TYPE_UNSIGNED (inner)))
11230     return build_int_cst (outer, 0);
11231   else
11232     {
11233       /* If we are widening a signed type to another signed type, we
11234 	 want to obtain -2^^(iprec-1).  If we are keeping the
11235 	 precision or narrowing to a signed type, we want to obtain
11236 	 -2^(oprec-1).  */
11237       unsigned prec = oprec > iprec ? iprec : oprec;
11238       return wide_int_to_tree (outer,
11239 			       wi::mask (prec - 1, true,
11240 					 TYPE_PRECISION (outer)));
11241     }
11242 }
11243 
11244 /* Return nonzero if two operands that are suitable for PHI nodes are
11245    necessarily equal.  Specifically, both ARG0 and ARG1 must be either
11246    SSA_NAME or invariant.  Note that this is strictly an optimization.
11247    That is, callers of this function can directly call operand_equal_p
11248    and get the same result, only slower.  */
11249 
11250 int
11251 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
11252 {
11253   if (arg0 == arg1)
11254     return 1;
11255   if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
11256     return 0;
11257   return operand_equal_p (arg0, arg1, 0);
11258 }
11259 
11260 /* Returns number of zeros at the end of binary representation of X.  */
11261 
11262 tree
11263 num_ending_zeros (const_tree x)
11264 {
11265   return build_int_cst (TREE_TYPE (x), wi::ctz (wi::to_wide (x)));
11266 }
11267 
11268 
11269 #define WALK_SUBTREE(NODE)				\
11270   do							\
11271     {							\
11272       result = walk_tree_1 (&(NODE), func, data, pset, lh);	\
11273       if (result)					\
11274 	return result;					\
11275     }							\
11276   while (0)
11277 
11278 /* This is a subroutine of walk_tree that walks field of TYPE that are to
11279    be walked whenever a type is seen in the tree.  Rest of operands and return
11280    value are as for walk_tree.  */
11281 
11282 static tree
11283 walk_type_fields (tree type, walk_tree_fn func, void *data,
11284 		  hash_set<tree> *pset, walk_tree_lh lh)
11285 {
11286   tree result = NULL_TREE;
11287 
11288   switch (TREE_CODE (type))
11289     {
11290     case POINTER_TYPE:
11291     case REFERENCE_TYPE:
11292     case VECTOR_TYPE:
11293       /* We have to worry about mutually recursive pointers.  These can't
11294 	 be written in C.  They can in Ada.  It's pathological, but
11295 	 there's an ACATS test (c38102a) that checks it.  Deal with this
11296 	 by checking if we're pointing to another pointer, that one
11297 	 points to another pointer, that one does too, and we have no htab.
11298 	 If so, get a hash table.  We check three levels deep to avoid
11299 	 the cost of the hash table if we don't need one.  */
11300       if (POINTER_TYPE_P (TREE_TYPE (type))
11301 	  && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
11302 	  && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
11303 	  && !pset)
11304 	{
11305 	  result = walk_tree_without_duplicates (&TREE_TYPE (type),
11306 						 func, data);
11307 	  if (result)
11308 	    return result;
11309 
11310 	  break;
11311 	}
11312 
11313       /* fall through */
11314 
11315     case COMPLEX_TYPE:
11316       WALK_SUBTREE (TREE_TYPE (type));
11317       break;
11318 
11319     case METHOD_TYPE:
11320       WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
11321 
11322       /* Fall through.  */
11323 
11324     case FUNCTION_TYPE:
11325       WALK_SUBTREE (TREE_TYPE (type));
11326       {
11327 	tree arg;
11328 
11329 	/* We never want to walk into default arguments.  */
11330 	for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
11331 	  WALK_SUBTREE (TREE_VALUE (arg));
11332       }
11333       break;
11334 
11335     case ARRAY_TYPE:
11336       /* Don't follow this nodes's type if a pointer for fear that
11337 	 we'll have infinite recursion.  If we have a PSET, then we
11338 	 need not fear.  */
11339       if (pset
11340 	  || (!POINTER_TYPE_P (TREE_TYPE (type))
11341 	      && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
11342 	WALK_SUBTREE (TREE_TYPE (type));
11343       WALK_SUBTREE (TYPE_DOMAIN (type));
11344       break;
11345 
11346     case OFFSET_TYPE:
11347       WALK_SUBTREE (TREE_TYPE (type));
11348       WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
11349       break;
11350 
11351     default:
11352       break;
11353     }
11354 
11355   return NULL_TREE;
11356 }
11357 
11358 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal.  FUNC is
11359    called with the DATA and the address of each sub-tree.  If FUNC returns a
11360    non-NULL value, the traversal is stopped, and the value returned by FUNC
11361    is returned.  If PSET is non-NULL it is used to record the nodes visited,
11362    and to avoid visiting a node more than once.  */
11363 
11364 tree
11365 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
11366 	     hash_set<tree> *pset, walk_tree_lh lh)
11367 {
11368   enum tree_code code;
11369   int walk_subtrees;
11370   tree result;
11371 
11372 #define WALK_SUBTREE_TAIL(NODE)				\
11373   do							\
11374     {							\
11375        tp = & (NODE);					\
11376        goto tail_recurse;				\
11377     }							\
11378   while (0)
11379 
11380  tail_recurse:
11381   /* Skip empty subtrees.  */
11382   if (!*tp)
11383     return NULL_TREE;
11384 
11385   /* Don't walk the same tree twice, if the user has requested
11386      that we avoid doing so.  */
11387   if (pset && pset->add (*tp))
11388     return NULL_TREE;
11389 
11390   /* Call the function.  */
11391   walk_subtrees = 1;
11392   result = (*func) (tp, &walk_subtrees, data);
11393 
11394   /* If we found something, return it.  */
11395   if (result)
11396     return result;
11397 
11398   code = TREE_CODE (*tp);
11399 
11400   /* Even if we didn't, FUNC may have decided that there was nothing
11401      interesting below this point in the tree.  */
11402   if (!walk_subtrees)
11403     {
11404       /* But we still need to check our siblings.  */
11405       if (code == TREE_LIST)
11406 	WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
11407       else if (code == OMP_CLAUSE)
11408 	WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11409       else
11410 	return NULL_TREE;
11411     }
11412 
11413   if (lh)
11414     {
11415       result = (*lh) (tp, &walk_subtrees, func, data, pset);
11416       if (result || !walk_subtrees)
11417         return result;
11418     }
11419 
11420   switch (code)
11421     {
11422     case ERROR_MARK:
11423     case IDENTIFIER_NODE:
11424     case INTEGER_CST:
11425     case REAL_CST:
11426     case FIXED_CST:
11427     case VECTOR_CST:
11428     case STRING_CST:
11429     case BLOCK:
11430     case PLACEHOLDER_EXPR:
11431     case SSA_NAME:
11432     case FIELD_DECL:
11433     case RESULT_DECL:
11434       /* None of these have subtrees other than those already walked
11435 	 above.  */
11436       break;
11437 
11438     case TREE_LIST:
11439       WALK_SUBTREE (TREE_VALUE (*tp));
11440       WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
11441       break;
11442 
11443     case TREE_VEC:
11444       {
11445 	int len = TREE_VEC_LENGTH (*tp);
11446 
11447 	if (len == 0)
11448 	  break;
11449 
11450 	/* Walk all elements but the first.  */
11451 	while (--len)
11452 	  WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
11453 
11454 	/* Now walk the first one as a tail call.  */
11455 	WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
11456       }
11457 
11458     case COMPLEX_CST:
11459       WALK_SUBTREE (TREE_REALPART (*tp));
11460       WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
11461 
11462     case CONSTRUCTOR:
11463       {
11464 	unsigned HOST_WIDE_INT idx;
11465 	constructor_elt *ce;
11466 
11467 	for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (*tp), idx, &ce);
11468 	     idx++)
11469 	  WALK_SUBTREE (ce->value);
11470       }
11471       break;
11472 
11473     case SAVE_EXPR:
11474       WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
11475 
11476     case BIND_EXPR:
11477       {
11478 	tree decl;
11479 	for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
11480 	  {
11481 	    /* Walk the DECL_INITIAL and DECL_SIZE.  We don't want to walk
11482 	       into declarations that are just mentioned, rather than
11483 	       declared; they don't really belong to this part of the tree.
11484 	       And, we can see cycles: the initializer for a declaration
11485 	       can refer to the declaration itself.  */
11486 	    WALK_SUBTREE (DECL_INITIAL (decl));
11487 	    WALK_SUBTREE (DECL_SIZE (decl));
11488 	    WALK_SUBTREE (DECL_SIZE_UNIT (decl));
11489 	  }
11490 	WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
11491       }
11492 
11493     case STATEMENT_LIST:
11494       {
11495 	tree_stmt_iterator i;
11496 	for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
11497 	  WALK_SUBTREE (*tsi_stmt_ptr (i));
11498       }
11499       break;
11500 
11501     case OMP_CLAUSE:
11502       switch (OMP_CLAUSE_CODE (*tp))
11503 	{
11504 	case OMP_CLAUSE_GANG:
11505 	case OMP_CLAUSE__GRIDDIM_:
11506 	  WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
11507 	  /* FALLTHRU */
11508 
11509 	case OMP_CLAUSE_ASYNC:
11510 	case OMP_CLAUSE_WAIT:
11511 	case OMP_CLAUSE_WORKER:
11512 	case OMP_CLAUSE_VECTOR:
11513 	case OMP_CLAUSE_NUM_GANGS:
11514 	case OMP_CLAUSE_NUM_WORKERS:
11515 	case OMP_CLAUSE_VECTOR_LENGTH:
11516 	case OMP_CLAUSE_PRIVATE:
11517 	case OMP_CLAUSE_SHARED:
11518 	case OMP_CLAUSE_FIRSTPRIVATE:
11519 	case OMP_CLAUSE_COPYIN:
11520 	case OMP_CLAUSE_COPYPRIVATE:
11521 	case OMP_CLAUSE_FINAL:
11522 	case OMP_CLAUSE_IF:
11523 	case OMP_CLAUSE_NUM_THREADS:
11524 	case OMP_CLAUSE_SCHEDULE:
11525 	case OMP_CLAUSE_UNIFORM:
11526 	case OMP_CLAUSE_DEPEND:
11527 	case OMP_CLAUSE_NUM_TEAMS:
11528 	case OMP_CLAUSE_THREAD_LIMIT:
11529 	case OMP_CLAUSE_DEVICE:
11530 	case OMP_CLAUSE_DIST_SCHEDULE:
11531 	case OMP_CLAUSE_SAFELEN:
11532 	case OMP_CLAUSE_SIMDLEN:
11533 	case OMP_CLAUSE_ORDERED:
11534 	case OMP_CLAUSE_PRIORITY:
11535 	case OMP_CLAUSE_GRAINSIZE:
11536 	case OMP_CLAUSE_NUM_TASKS:
11537 	case OMP_CLAUSE_HINT:
11538 	case OMP_CLAUSE_TO_DECLARE:
11539 	case OMP_CLAUSE_LINK:
11540 	case OMP_CLAUSE_USE_DEVICE_PTR:
11541 	case OMP_CLAUSE_IS_DEVICE_PTR:
11542 	case OMP_CLAUSE__LOOPTEMP_:
11543 	case OMP_CLAUSE__SIMDUID_:
11544 	  WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
11545 	  /* FALLTHRU */
11546 
11547 	case OMP_CLAUSE_INDEPENDENT:
11548 	case OMP_CLAUSE_NOWAIT:
11549 	case OMP_CLAUSE_DEFAULT:
11550 	case OMP_CLAUSE_UNTIED:
11551 	case OMP_CLAUSE_MERGEABLE:
11552 	case OMP_CLAUSE_PROC_BIND:
11553 	case OMP_CLAUSE_INBRANCH:
11554 	case OMP_CLAUSE_NOTINBRANCH:
11555 	case OMP_CLAUSE_FOR:
11556 	case OMP_CLAUSE_PARALLEL:
11557 	case OMP_CLAUSE_SECTIONS:
11558 	case OMP_CLAUSE_TASKGROUP:
11559 	case OMP_CLAUSE_NOGROUP:
11560 	case OMP_CLAUSE_THREADS:
11561 	case OMP_CLAUSE_SIMD:
11562 	case OMP_CLAUSE_DEFAULTMAP:
11563 	case OMP_CLAUSE_AUTO:
11564 	case OMP_CLAUSE_SEQ:
11565 	case OMP_CLAUSE_TILE:
11566 	case OMP_CLAUSE__SIMT_:
11567 	  WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11568 
11569 	case OMP_CLAUSE_LASTPRIVATE:
11570 	  WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11571 	  WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
11572 	  WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11573 
11574 	case OMP_CLAUSE_COLLAPSE:
11575 	  {
11576 	    int i;
11577 	    for (i = 0; i < 3; i++)
11578 	      WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11579 	    WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11580 	  }
11581 
11582 	case OMP_CLAUSE_LINEAR:
11583 	  WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11584 	  WALK_SUBTREE (OMP_CLAUSE_LINEAR_STEP (*tp));
11585 	  WALK_SUBTREE (OMP_CLAUSE_LINEAR_STMT (*tp));
11586 	  WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11587 
11588 	case OMP_CLAUSE_ALIGNED:
11589 	case OMP_CLAUSE_FROM:
11590 	case OMP_CLAUSE_TO:
11591 	case OMP_CLAUSE_MAP:
11592 	case OMP_CLAUSE__CACHE_:
11593 	  WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11594 	  WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
11595 	  WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11596 
11597 	case OMP_CLAUSE_REDUCTION:
11598 	  {
11599 	    int i;
11600 	    for (i = 0; i < 5; i++)
11601 	      WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11602 	    WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11603 	  }
11604 
11605 	default:
11606 	  gcc_unreachable ();
11607 	}
11608       break;
11609 
11610     case TARGET_EXPR:
11611       {
11612 	int i, len;
11613 
11614 	/* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
11615 	   But, we only want to walk once.  */
11616 	len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
11617 	for (i = 0; i < len; ++i)
11618 	  WALK_SUBTREE (TREE_OPERAND (*tp, i));
11619 	WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
11620       }
11621 
11622     case DECL_EXPR:
11623       /* If this is a TYPE_DECL, walk into the fields of the type that it's
11624 	 defining.  We only want to walk into these fields of a type in this
11625 	 case and not in the general case of a mere reference to the type.
11626 
11627 	 The criterion is as follows: if the field can be an expression, it
11628 	 must be walked only here.  This should be in keeping with the fields
11629 	 that are directly gimplified in gimplify_type_sizes in order for the
11630 	 mark/copy-if-shared/unmark machinery of the gimplifier to work with
11631 	 variable-sized types.
11632 
11633 	 Note that DECLs get walked as part of processing the BIND_EXPR.  */
11634       if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
11635 	{
11636 	  tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
11637 	  if (TREE_CODE (*type_p) == ERROR_MARK)
11638 	    return NULL_TREE;
11639 
11640 	  /* Call the function for the type.  See if it returns anything or
11641 	     doesn't want us to continue.  If we are to continue, walk both
11642 	     the normal fields and those for the declaration case.  */
11643 	  result = (*func) (type_p, &walk_subtrees, data);
11644 	  if (result || !walk_subtrees)
11645 	    return result;
11646 
11647 	  /* But do not walk a pointed-to type since it may itself need to
11648 	     be walked in the declaration case if it isn't anonymous.  */
11649 	  if (!POINTER_TYPE_P (*type_p))
11650 	    {
11651 	      result = walk_type_fields (*type_p, func, data, pset, lh);
11652 	      if (result)
11653 		return result;
11654 	    }
11655 
11656 	  /* If this is a record type, also walk the fields.  */
11657 	  if (RECORD_OR_UNION_TYPE_P (*type_p))
11658 	    {
11659 	      tree field;
11660 
11661 	      for (field = TYPE_FIELDS (*type_p); field;
11662 		   field = DECL_CHAIN (field))
11663 		{
11664 		  /* We'd like to look at the type of the field, but we can
11665 		     easily get infinite recursion.  So assume it's pointed
11666 		     to elsewhere in the tree.  Also, ignore things that
11667 		     aren't fields.  */
11668 		  if (TREE_CODE (field) != FIELD_DECL)
11669 		    continue;
11670 
11671 		  WALK_SUBTREE (DECL_FIELD_OFFSET (field));
11672 		  WALK_SUBTREE (DECL_SIZE (field));
11673 		  WALK_SUBTREE (DECL_SIZE_UNIT (field));
11674 		  if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
11675 		    WALK_SUBTREE (DECL_QUALIFIER (field));
11676 		}
11677 	    }
11678 
11679 	  /* Same for scalar types.  */
11680 	  else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
11681 		   || TREE_CODE (*type_p) == ENUMERAL_TYPE
11682 		   || TREE_CODE (*type_p) == INTEGER_TYPE
11683 		   || TREE_CODE (*type_p) == FIXED_POINT_TYPE
11684 		   || TREE_CODE (*type_p) == REAL_TYPE)
11685 	    {
11686 	      WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
11687 	      WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
11688 	    }
11689 
11690 	  WALK_SUBTREE (TYPE_SIZE (*type_p));
11691 	  WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
11692 	}
11693       /* FALLTHRU */
11694 
11695     default:
11696       if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
11697 	{
11698 	  int i, len;
11699 
11700 	  /* Walk over all the sub-trees of this operand.  */
11701 	  len = TREE_OPERAND_LENGTH (*tp);
11702 
11703 	  /* Go through the subtrees.  We need to do this in forward order so
11704 	     that the scope of a FOR_EXPR is handled properly.  */
11705 	  if (len)
11706 	    {
11707 	      for (i = 0; i < len - 1; ++i)
11708 		WALK_SUBTREE (TREE_OPERAND (*tp, i));
11709 	      WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
11710 	    }
11711 	}
11712       /* If this is a type, walk the needed fields in the type.  */
11713       else if (TYPE_P (*tp))
11714 	return walk_type_fields (*tp, func, data, pset, lh);
11715       break;
11716     }
11717 
11718   /* We didn't find what we were looking for.  */
11719   return NULL_TREE;
11720 
11721 #undef WALK_SUBTREE_TAIL
11722 }
11723 #undef WALK_SUBTREE
11724 
11725 /* Like walk_tree, but does not walk duplicate nodes more than once.  */
11726 
11727 tree
11728 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
11729 				walk_tree_lh lh)
11730 {
11731   tree result;
11732 
11733   hash_set<tree> pset;
11734   result = walk_tree_1 (tp, func, data, &pset, lh);
11735   return result;
11736 }
11737 
11738 
11739 tree
11740 tree_block (tree t)
11741 {
11742   const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
11743 
11744   if (IS_EXPR_CODE_CLASS (c))
11745     return LOCATION_BLOCK (t->exp.locus);
11746   gcc_unreachable ();
11747   return NULL;
11748 }
11749 
11750 void
11751 tree_set_block (tree t, tree b)
11752 {
11753   const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
11754 
11755   if (IS_EXPR_CODE_CLASS (c))
11756     {
11757       t->exp.locus = set_block (t->exp.locus, b);
11758     }
11759   else
11760     gcc_unreachable ();
11761 }
11762 
11763 /* Create a nameless artificial label and put it in the current
11764    function context.  The label has a location of LOC.  Returns the
11765    newly created label.  */
11766 
11767 tree
11768 create_artificial_label (location_t loc)
11769 {
11770   tree lab = build_decl (loc,
11771       			 LABEL_DECL, NULL_TREE, void_type_node);
11772 
11773   DECL_ARTIFICIAL (lab) = 1;
11774   DECL_IGNORED_P (lab) = 1;
11775   DECL_CONTEXT (lab) = current_function_decl;
11776   return lab;
11777 }
11778 
11779 /*  Given a tree, try to return a useful variable name that we can use
11780     to prefix a temporary that is being assigned the value of the tree.
11781     I.E. given  <temp> = &A, return A.  */
11782 
11783 const char *
11784 get_name (tree t)
11785 {
11786   tree stripped_decl;
11787 
11788   stripped_decl = t;
11789   STRIP_NOPS (stripped_decl);
11790   if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
11791     return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
11792   else if (TREE_CODE (stripped_decl) == SSA_NAME)
11793     {
11794       tree name = SSA_NAME_IDENTIFIER (stripped_decl);
11795       if (!name)
11796 	return NULL;
11797       return IDENTIFIER_POINTER (name);
11798     }
11799   else
11800     {
11801       switch (TREE_CODE (stripped_decl))
11802 	{
11803 	case ADDR_EXPR:
11804 	  return get_name (TREE_OPERAND (stripped_decl, 0));
11805 	default:
11806 	  return NULL;
11807 	}
11808     }
11809 }
11810 
11811 /* Return true if TYPE has a variable argument list.  */
11812 
11813 bool
11814 stdarg_p (const_tree fntype)
11815 {
11816   function_args_iterator args_iter;
11817   tree n = NULL_TREE, t;
11818 
11819   if (!fntype)
11820     return false;
11821 
11822   FOREACH_FUNCTION_ARGS (fntype, t, args_iter)
11823     {
11824       n = t;
11825     }
11826 
11827   return n != NULL_TREE && n != void_type_node;
11828 }
11829 
11830 /* Return true if TYPE has a prototype.  */
11831 
11832 bool
11833 prototype_p (const_tree fntype)
11834 {
11835   tree t;
11836 
11837   gcc_assert (fntype != NULL_TREE);
11838 
11839   t = TYPE_ARG_TYPES (fntype);
11840   return (t != NULL_TREE);
11841 }
11842 
11843 /* If BLOCK is inlined from an __attribute__((__artificial__))
11844    routine, return pointer to location from where it has been
11845    called.  */
11846 location_t *
11847 block_nonartificial_location (tree block)
11848 {
11849   location_t *ret = NULL;
11850 
11851   while (block && TREE_CODE (block) == BLOCK
11852 	 && BLOCK_ABSTRACT_ORIGIN (block))
11853     {
11854       tree ao = BLOCK_ABSTRACT_ORIGIN (block);
11855 
11856       while (TREE_CODE (ao) == BLOCK
11857 	     && BLOCK_ABSTRACT_ORIGIN (ao)
11858 	     && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
11859 	ao = BLOCK_ABSTRACT_ORIGIN (ao);
11860 
11861       if (TREE_CODE (ao) == FUNCTION_DECL)
11862 	{
11863 	  /* If AO is an artificial inline, point RET to the
11864 	     call site locus at which it has been inlined and continue
11865 	     the loop, in case AO's caller is also an artificial
11866 	     inline.  */
11867 	  if (DECL_DECLARED_INLINE_P (ao)
11868 	      && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
11869 	    ret = &BLOCK_SOURCE_LOCATION (block);
11870 	  else
11871 	    break;
11872 	}
11873       else if (TREE_CODE (ao) != BLOCK)
11874 	break;
11875 
11876       block = BLOCK_SUPERCONTEXT (block);
11877     }
11878   return ret;
11879 }
11880 
11881 
11882 /* If EXP is inlined from an __attribute__((__artificial__))
11883    function, return the location of the original call expression.  */
11884 
11885 location_t
11886 tree_nonartificial_location (tree exp)
11887 {
11888   location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
11889 
11890   if (loc)
11891     return *loc;
11892   else
11893     return EXPR_LOCATION (exp);
11894 }
11895 
11896 
11897 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
11898    nodes.  */
11899 
11900 /* Return the hash code X, an OPTIMIZATION_NODE or TARGET_OPTION code.  */
11901 
11902 hashval_t
11903 cl_option_hasher::hash (tree x)
11904 {
11905   const_tree const t = x;
11906   const char *p;
11907   size_t i;
11908   size_t len = 0;
11909   hashval_t hash = 0;
11910 
11911   if (TREE_CODE (t) == OPTIMIZATION_NODE)
11912     {
11913       p = (const char *)TREE_OPTIMIZATION (t);
11914       len = sizeof (struct cl_optimization);
11915     }
11916 
11917   else if (TREE_CODE (t) == TARGET_OPTION_NODE)
11918     return cl_target_option_hash (TREE_TARGET_OPTION (t));
11919 
11920   else
11921     gcc_unreachable ();
11922 
11923   /* assume most opt flags are just 0/1, some are 2-3, and a few might be
11924      something else.  */
11925   for (i = 0; i < len; i++)
11926     if (p[i])
11927       hash = (hash << 4) ^ ((i << 2) | p[i]);
11928 
11929   return hash;
11930 }
11931 
11932 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
11933    TARGET_OPTION tree node) is the same as that given by *Y, which is the
11934    same.  */
11935 
11936 bool
11937 cl_option_hasher::equal (tree x, tree y)
11938 {
11939   const_tree const xt = x;
11940   const_tree const yt = y;
11941   const char *xp;
11942   const char *yp;
11943   size_t len;
11944 
11945   if (TREE_CODE (xt) != TREE_CODE (yt))
11946     return 0;
11947 
11948   if (TREE_CODE (xt) == OPTIMIZATION_NODE)
11949     {
11950       xp = (const char *)TREE_OPTIMIZATION (xt);
11951       yp = (const char *)TREE_OPTIMIZATION (yt);
11952       len = sizeof (struct cl_optimization);
11953     }
11954 
11955   else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
11956     {
11957       return cl_target_option_eq (TREE_TARGET_OPTION (xt),
11958 				  TREE_TARGET_OPTION (yt));
11959     }
11960 
11961   else
11962     gcc_unreachable ();
11963 
11964   return (memcmp (xp, yp, len) == 0);
11965 }
11966 
11967 /* Build an OPTIMIZATION_NODE based on the options in OPTS.  */
11968 
11969 tree
11970 build_optimization_node (struct gcc_options *opts)
11971 {
11972   tree t;
11973 
11974   /* Use the cache of optimization nodes.  */
11975 
11976   cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
11977 			opts);
11978 
11979   tree *slot = cl_option_hash_table->find_slot (cl_optimization_node, INSERT);
11980   t = *slot;
11981   if (!t)
11982     {
11983       /* Insert this one into the hash table.  */
11984       t = cl_optimization_node;
11985       *slot = t;
11986 
11987       /* Make a new node for next time round.  */
11988       cl_optimization_node = make_node (OPTIMIZATION_NODE);
11989     }
11990 
11991   return t;
11992 }
11993 
11994 /* Build a TARGET_OPTION_NODE based on the options in OPTS.  */
11995 
11996 tree
11997 build_target_option_node (struct gcc_options *opts)
11998 {
11999   tree t;
12000 
12001   /* Use the cache of optimization nodes.  */
12002 
12003   cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
12004 			 opts);
12005 
12006   tree *slot = cl_option_hash_table->find_slot (cl_target_option_node, INSERT);
12007   t = *slot;
12008   if (!t)
12009     {
12010       /* Insert this one into the hash table.  */
12011       t = cl_target_option_node;
12012       *slot = t;
12013 
12014       /* Make a new node for next time round.  */
12015       cl_target_option_node = make_node (TARGET_OPTION_NODE);
12016     }
12017 
12018   return t;
12019 }
12020 
12021 /* Clear TREE_TARGET_GLOBALS of all TARGET_OPTION_NODE trees,
12022    so that they aren't saved during PCH writing.  */
12023 
12024 void
12025 prepare_target_option_nodes_for_pch (void)
12026 {
12027   hash_table<cl_option_hasher>::iterator iter = cl_option_hash_table->begin ();
12028   for (; iter != cl_option_hash_table->end (); ++iter)
12029     if (TREE_CODE (*iter) == TARGET_OPTION_NODE)
12030       TREE_TARGET_GLOBALS (*iter) = NULL;
12031 }
12032 
12033 /* Determine the "ultimate origin" of a block.  The block may be an inlined
12034    instance of an inlined instance of a block which is local to an inline
12035    function, so we have to trace all of the way back through the origin chain
12036    to find out what sort of node actually served as the original seed for the
12037    given block.  */
12038 
12039 tree
12040 block_ultimate_origin (const_tree block)
12041 {
12042   tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
12043 
12044   /* BLOCK_ABSTRACT_ORIGIN can point to itself; ignore that if
12045      we're trying to output the abstract instance of this function.  */
12046   if (BLOCK_ABSTRACT (block) && immediate_origin == block)
12047     return NULL_TREE;
12048 
12049   if (immediate_origin == NULL_TREE)
12050     return NULL_TREE;
12051   else
12052     {
12053       tree ret_val;
12054       tree lookahead = immediate_origin;
12055 
12056       do
12057 	{
12058 	  ret_val = lookahead;
12059 	  lookahead = (TREE_CODE (ret_val) == BLOCK
12060 		       ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
12061 	}
12062       while (lookahead != NULL && lookahead != ret_val);
12063 
12064       /* The block's abstract origin chain may not be the *ultimate* origin of
12065 	 the block. It could lead to a DECL that has an abstract origin set.
12066 	 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
12067 	 will give us if it has one).  Note that DECL's abstract origins are
12068 	 supposed to be the most distant ancestor (or so decl_ultimate_origin
12069 	 claims), so we don't need to loop following the DECL origins.  */
12070       if (DECL_P (ret_val))
12071 	return DECL_ORIGIN (ret_val);
12072 
12073       return ret_val;
12074     }
12075 }
12076 
12077 /* Return true iff conversion from INNER_TYPE to OUTER_TYPE generates
12078    no instruction.  */
12079 
12080 bool
12081 tree_nop_conversion_p (const_tree outer_type, const_tree inner_type)
12082 {
12083   /* Do not strip casts into or out of differing address spaces.  */
12084   if (POINTER_TYPE_P (outer_type)
12085       && TYPE_ADDR_SPACE (TREE_TYPE (outer_type)) != ADDR_SPACE_GENERIC)
12086     {
12087       if (!POINTER_TYPE_P (inner_type)
12088 	  || (TYPE_ADDR_SPACE (TREE_TYPE (outer_type))
12089 	      != TYPE_ADDR_SPACE (TREE_TYPE (inner_type))))
12090 	return false;
12091     }
12092   else if (POINTER_TYPE_P (inner_type)
12093 	   && TYPE_ADDR_SPACE (TREE_TYPE (inner_type)) != ADDR_SPACE_GENERIC)
12094     {
12095       /* We already know that outer_type is not a pointer with
12096 	 a non-generic address space.  */
12097       return false;
12098     }
12099 
12100   /* Use precision rather then machine mode when we can, which gives
12101      the correct answer even for submode (bit-field) types.  */
12102   if ((INTEGRAL_TYPE_P (outer_type)
12103        || POINTER_TYPE_P (outer_type)
12104        || TREE_CODE (outer_type) == OFFSET_TYPE)
12105       && (INTEGRAL_TYPE_P (inner_type)
12106 	  || POINTER_TYPE_P (inner_type)
12107 	  || TREE_CODE (inner_type) == OFFSET_TYPE))
12108     return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
12109 
12110   /* Otherwise fall back on comparing machine modes (e.g. for
12111      aggregate types, floats).  */
12112   return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
12113 }
12114 
12115 /* Return true iff conversion in EXP generates no instruction.  Mark
12116    it inline so that we fully inline into the stripping functions even
12117    though we have two uses of this function.  */
12118 
12119 static inline bool
12120 tree_nop_conversion (const_tree exp)
12121 {
12122   tree outer_type, inner_type;
12123 
12124   if (location_wrapper_p (exp))
12125     return true;
12126   if (!CONVERT_EXPR_P (exp)
12127       && TREE_CODE (exp) != NON_LVALUE_EXPR)
12128     return false;
12129   if (TREE_OPERAND (exp, 0) == error_mark_node)
12130     return false;
12131 
12132   outer_type = TREE_TYPE (exp);
12133   inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12134 
12135   if (!inner_type)
12136     return false;
12137 
12138   return tree_nop_conversion_p (outer_type, inner_type);
12139 }
12140 
12141 /* Return true iff conversion in EXP generates no instruction.  Don't
12142    consider conversions changing the signedness.  */
12143 
12144 static bool
12145 tree_sign_nop_conversion (const_tree exp)
12146 {
12147   tree outer_type, inner_type;
12148 
12149   if (!tree_nop_conversion (exp))
12150     return false;
12151 
12152   outer_type = TREE_TYPE (exp);
12153   inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12154 
12155   return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
12156 	  && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
12157 }
12158 
12159 /* Strip conversions from EXP according to tree_nop_conversion and
12160    return the resulting expression.  */
12161 
12162 tree
12163 tree_strip_nop_conversions (tree exp)
12164 {
12165   while (tree_nop_conversion (exp))
12166     exp = TREE_OPERAND (exp, 0);
12167   return exp;
12168 }
12169 
12170 /* Strip conversions from EXP according to tree_sign_nop_conversion
12171    and return the resulting expression.  */
12172 
12173 tree
12174 tree_strip_sign_nop_conversions (tree exp)
12175 {
12176   while (tree_sign_nop_conversion (exp))
12177     exp = TREE_OPERAND (exp, 0);
12178   return exp;
12179 }
12180 
12181 /* Avoid any floating point extensions from EXP.  */
12182 tree
12183 strip_float_extensions (tree exp)
12184 {
12185   tree sub, expt, subt;
12186 
12187   /*  For floating point constant look up the narrowest type that can hold
12188       it properly and handle it like (type)(narrowest_type)constant.
12189       This way we can optimize for instance a=a*2.0 where "a" is float
12190       but 2.0 is double constant.  */
12191   if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
12192     {
12193       REAL_VALUE_TYPE orig;
12194       tree type = NULL;
12195 
12196       orig = TREE_REAL_CST (exp);
12197       if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
12198 	  && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
12199 	type = float_type_node;
12200       else if (TYPE_PRECISION (TREE_TYPE (exp))
12201 	       > TYPE_PRECISION (double_type_node)
12202 	       && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
12203 	type = double_type_node;
12204       if (type)
12205 	return build_real_truncate (type, orig);
12206     }
12207 
12208   if (!CONVERT_EXPR_P (exp))
12209     return exp;
12210 
12211   sub = TREE_OPERAND (exp, 0);
12212   subt = TREE_TYPE (sub);
12213   expt = TREE_TYPE (exp);
12214 
12215   if (!FLOAT_TYPE_P (subt))
12216     return exp;
12217 
12218   if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
12219     return exp;
12220 
12221   if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
12222     return exp;
12223 
12224   return strip_float_extensions (sub);
12225 }
12226 
12227 /* Strip out all handled components that produce invariant
12228    offsets.  */
12229 
12230 const_tree
12231 strip_invariant_refs (const_tree op)
12232 {
12233   while (handled_component_p (op))
12234     {
12235       switch (TREE_CODE (op))
12236 	{
12237 	case ARRAY_REF:
12238 	case ARRAY_RANGE_REF:
12239 	  if (!is_gimple_constant (TREE_OPERAND (op, 1))
12240 	      || TREE_OPERAND (op, 2) != NULL_TREE
12241 	      || TREE_OPERAND (op, 3) != NULL_TREE)
12242 	    return NULL;
12243 	  break;
12244 
12245 	case COMPONENT_REF:
12246 	  if (TREE_OPERAND (op, 2) != NULL_TREE)
12247 	    return NULL;
12248 	  break;
12249 
12250 	default:;
12251 	}
12252       op = TREE_OPERAND (op, 0);
12253     }
12254 
12255   return op;
12256 }
12257 
12258 static GTY(()) tree gcc_eh_personality_decl;
12259 
12260 /* Return the GCC personality function decl.  */
12261 
12262 tree
12263 lhd_gcc_personality (void)
12264 {
12265   if (!gcc_eh_personality_decl)
12266     gcc_eh_personality_decl = build_personality_function ("gcc");
12267   return gcc_eh_personality_decl;
12268 }
12269 
12270 /* TARGET is a call target of GIMPLE call statement
12271    (obtained by gimple_call_fn).  Return true if it is
12272    OBJ_TYPE_REF representing an virtual call of C++ method.
12273    (As opposed to OBJ_TYPE_REF representing objc calls
12274    through a cast where middle-end devirtualization machinery
12275    can't apply.) */
12276 
12277 bool
12278 virtual_method_call_p (const_tree target)
12279 {
12280   if (TREE_CODE (target) != OBJ_TYPE_REF)
12281     return false;
12282   tree t = TREE_TYPE (target);
12283   gcc_checking_assert (TREE_CODE (t) == POINTER_TYPE);
12284   t = TREE_TYPE (t);
12285   if (TREE_CODE (t) == FUNCTION_TYPE)
12286     return false;
12287   gcc_checking_assert (TREE_CODE (t) == METHOD_TYPE);
12288   /* If we do not have BINFO associated, it means that type was built
12289      without devirtualization enabled.  Do not consider this a virtual
12290      call.  */
12291   if (!TYPE_BINFO (obj_type_ref_class (target)))
12292     return false;
12293   return true;
12294 }
12295 
12296 /* REF is OBJ_TYPE_REF, return the class the ref corresponds to.  */
12297 
12298 tree
12299 obj_type_ref_class (const_tree ref)
12300 {
12301   gcc_checking_assert (TREE_CODE (ref) == OBJ_TYPE_REF);
12302   ref = TREE_TYPE (ref);
12303   gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
12304   ref = TREE_TYPE (ref);
12305   /* We look for type THIS points to.  ObjC also builds
12306      OBJ_TYPE_REF with non-method calls, Their first parameter
12307      ID however also corresponds to class type. */
12308   gcc_checking_assert (TREE_CODE (ref) == METHOD_TYPE
12309 		       || TREE_CODE (ref) == FUNCTION_TYPE);
12310   ref = TREE_VALUE (TYPE_ARG_TYPES (ref));
12311   gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
12312   return TREE_TYPE (ref);
12313 }
12314 
12315 /* Lookup sub-BINFO of BINFO of TYPE at offset POS.  */
12316 
12317 static tree
12318 lookup_binfo_at_offset (tree binfo, tree type, HOST_WIDE_INT pos)
12319 {
12320   unsigned int i;
12321   tree base_binfo, b;
12322 
12323   for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
12324     if (pos == tree_to_shwi (BINFO_OFFSET (base_binfo))
12325 	&& types_same_for_odr (TREE_TYPE (base_binfo), type))
12326       return base_binfo;
12327     else if ((b = lookup_binfo_at_offset (base_binfo, type, pos)) != NULL)
12328       return b;
12329   return NULL;
12330 }
12331 
12332 /* Try to find a base info of BINFO that would have its field decl at offset
12333    OFFSET within the BINFO type and which is of EXPECTED_TYPE.  If it can be
12334    found, return, otherwise return NULL_TREE.  */
12335 
12336 tree
12337 get_binfo_at_offset (tree binfo, poly_int64 offset, tree expected_type)
12338 {
12339   tree type = BINFO_TYPE (binfo);
12340 
12341   while (true)
12342     {
12343       HOST_WIDE_INT pos, size;
12344       tree fld;
12345       int i;
12346 
12347       if (types_same_for_odr (type, expected_type))
12348 	  return binfo;
12349       if (maybe_lt (offset, 0))
12350 	return NULL_TREE;
12351 
12352       for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
12353 	{
12354 	  if (TREE_CODE (fld) != FIELD_DECL || !DECL_ARTIFICIAL (fld))
12355 	    continue;
12356 
12357 	  pos = int_bit_position (fld);
12358 	  size = tree_to_uhwi (DECL_SIZE (fld));
12359 	  if (known_in_range_p (offset, pos, size))
12360 	    break;
12361 	}
12362       if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
12363 	return NULL_TREE;
12364 
12365       /* Offset 0 indicates the primary base, whose vtable contents are
12366 	 represented in the binfo for the derived class.  */
12367       else if (maybe_ne (offset, 0))
12368 	{
12369 	  tree found_binfo = NULL, base_binfo;
12370 	  /* Offsets in BINFO are in bytes relative to the whole structure
12371 	     while POS is in bits relative to the containing field.  */
12372 	  int binfo_offset = (tree_to_shwi (BINFO_OFFSET (binfo)) + pos
12373 			     / BITS_PER_UNIT);
12374 
12375 	  for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
12376 	    if (tree_to_shwi (BINFO_OFFSET (base_binfo)) == binfo_offset
12377 		&& types_same_for_odr (TREE_TYPE (base_binfo), TREE_TYPE (fld)))
12378 	      {
12379 		found_binfo = base_binfo;
12380 		break;
12381 	      }
12382 	  if (found_binfo)
12383 	    binfo = found_binfo;
12384 	  else
12385 	    binfo = lookup_binfo_at_offset (binfo, TREE_TYPE (fld),
12386 					    binfo_offset);
12387 	 }
12388 
12389       type = TREE_TYPE (fld);
12390       offset -= pos;
12391     }
12392 }
12393 
12394 /* Returns true if X is a typedef decl.  */
12395 
12396 bool
12397 is_typedef_decl (const_tree x)
12398 {
12399   return (x && TREE_CODE (x) == TYPE_DECL
12400           && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
12401 }
12402 
12403 /* Returns true iff TYPE is a type variant created for a typedef. */
12404 
12405 bool
12406 typedef_variant_p (const_tree type)
12407 {
12408   return is_typedef_decl (TYPE_NAME (type));
12409 }
12410 
12411 /* Warn about a use of an identifier which was marked deprecated.  */
12412 void
12413 warn_deprecated_use (tree node, tree attr)
12414 {
12415   const char *msg;
12416 
12417   if (node == 0 || !warn_deprecated_decl)
12418     return;
12419 
12420   if (!attr)
12421     {
12422       if (DECL_P (node))
12423 	attr = DECL_ATTRIBUTES (node);
12424       else if (TYPE_P (node))
12425 	{
12426 	  tree decl = TYPE_STUB_DECL (node);
12427 	  if (decl)
12428 	    attr = lookup_attribute ("deprecated",
12429 				     TYPE_ATTRIBUTES (TREE_TYPE (decl)));
12430 	}
12431     }
12432 
12433   if (attr)
12434     attr = lookup_attribute ("deprecated", attr);
12435 
12436   if (attr)
12437     msg = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)));
12438   else
12439     msg = NULL;
12440 
12441   bool w;
12442   if (DECL_P (node))
12443     {
12444       if (msg)
12445 	w = warning (OPT_Wdeprecated_declarations,
12446 		     "%qD is deprecated: %s", node, msg);
12447       else
12448 	w = warning (OPT_Wdeprecated_declarations,
12449 		     "%qD is deprecated", node);
12450       if (w)
12451 	inform (DECL_SOURCE_LOCATION (node), "declared here");
12452     }
12453   else if (TYPE_P (node))
12454     {
12455       tree what = NULL_TREE;
12456       tree decl = TYPE_STUB_DECL (node);
12457 
12458       if (TYPE_NAME (node))
12459 	{
12460 	  if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
12461 	    what = TYPE_NAME (node);
12462 	  else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
12463 		   && DECL_NAME (TYPE_NAME (node)))
12464 	    what = DECL_NAME (TYPE_NAME (node));
12465 	}
12466 
12467       if (decl)
12468 	{
12469 	  if (what)
12470 	    {
12471 	      if (msg)
12472 		w = warning (OPT_Wdeprecated_declarations,
12473 			     "%qE is deprecated: %s", what, msg);
12474 	      else
12475 		w = warning (OPT_Wdeprecated_declarations,
12476 			     "%qE is deprecated", what);
12477 	    }
12478 	  else
12479 	    {
12480 	      if (msg)
12481 		w = warning (OPT_Wdeprecated_declarations,
12482 			     "type is deprecated: %s", msg);
12483 	      else
12484 		w = warning (OPT_Wdeprecated_declarations,
12485 			     "type is deprecated");
12486 	    }
12487 	  if (w)
12488 	    inform (DECL_SOURCE_LOCATION (decl), "declared here");
12489 	}
12490       else
12491 	{
12492 	  if (what)
12493 	    {
12494 	      if (msg)
12495 		warning (OPT_Wdeprecated_declarations, "%qE is deprecated: %s",
12496 			 what, msg);
12497 	      else
12498 		warning (OPT_Wdeprecated_declarations, "%qE is deprecated", what);
12499 	    }
12500 	  else
12501 	    {
12502 	      if (msg)
12503 		warning (OPT_Wdeprecated_declarations, "type is deprecated: %s",
12504 			 msg);
12505 	      else
12506 		warning (OPT_Wdeprecated_declarations, "type is deprecated");
12507 	    }
12508 	}
12509     }
12510 }
12511 
12512 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
12513    somewhere in it.  */
12514 
12515 bool
12516 contains_bitfld_component_ref_p (const_tree ref)
12517 {
12518   while (handled_component_p (ref))
12519     {
12520       if (TREE_CODE (ref) == COMPONENT_REF
12521           && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
12522         return true;
12523       ref = TREE_OPERAND (ref, 0);
12524     }
12525 
12526   return false;
12527 }
12528 
12529 /* Try to determine whether a TRY_CATCH expression can fall through.
12530    This is a subroutine of block_may_fallthru.  */
12531 
12532 static bool
12533 try_catch_may_fallthru (const_tree stmt)
12534 {
12535   tree_stmt_iterator i;
12536 
12537   /* If the TRY block can fall through, the whole TRY_CATCH can
12538      fall through.  */
12539   if (block_may_fallthru (TREE_OPERAND (stmt, 0)))
12540     return true;
12541 
12542   i = tsi_start (TREE_OPERAND (stmt, 1));
12543   switch (TREE_CODE (tsi_stmt (i)))
12544     {
12545     case CATCH_EXPR:
12546       /* We expect to see a sequence of CATCH_EXPR trees, each with a
12547 	 catch expression and a body.  The whole TRY_CATCH may fall
12548 	 through iff any of the catch bodies falls through.  */
12549       for (; !tsi_end_p (i); tsi_next (&i))
12550 	{
12551 	  if (block_may_fallthru (CATCH_BODY (tsi_stmt (i))))
12552 	    return true;
12553 	}
12554       return false;
12555 
12556     case EH_FILTER_EXPR:
12557       /* The exception filter expression only matters if there is an
12558 	 exception.  If the exception does not match EH_FILTER_TYPES,
12559 	 we will execute EH_FILTER_FAILURE, and we will fall through
12560 	 if that falls through.  If the exception does match
12561 	 EH_FILTER_TYPES, the stack unwinder will continue up the
12562 	 stack, so we will not fall through.  We don't know whether we
12563 	 will throw an exception which matches EH_FILTER_TYPES or not,
12564 	 so we just ignore EH_FILTER_TYPES and assume that we might
12565 	 throw an exception which doesn't match.  */
12566       return block_may_fallthru (EH_FILTER_FAILURE (tsi_stmt (i)));
12567 
12568     default:
12569       /* This case represents statements to be executed when an
12570 	 exception occurs.  Those statements are implicitly followed
12571 	 by a RESX statement to resume execution after the exception.
12572 	 So in this case the TRY_CATCH never falls through.  */
12573       return false;
12574     }
12575 }
12576 
12577 /* Try to determine if we can fall out of the bottom of BLOCK.  This guess
12578    need not be 100% accurate; simply be conservative and return true if we
12579    don't know.  This is used only to avoid stupidly generating extra code.
12580    If we're wrong, we'll just delete the extra code later.  */
12581 
12582 bool
12583 block_may_fallthru (const_tree block)
12584 {
12585   /* This CONST_CAST is okay because expr_last returns its argument
12586      unmodified and we assign it to a const_tree.  */
12587   const_tree stmt = expr_last (CONST_CAST_TREE (block));
12588 
12589   switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
12590     {
12591     case GOTO_EXPR:
12592     case RETURN_EXPR:
12593       /* Easy cases.  If the last statement of the block implies
12594 	 control transfer, then we can't fall through.  */
12595       return false;
12596 
12597     case SWITCH_EXPR:
12598       /* If there is a default: label or case labels cover all possible
12599 	 SWITCH_COND values, then the SWITCH_EXPR will transfer control
12600 	 to some case label in all cases and all we care is whether the
12601 	 SWITCH_BODY falls through.  */
12602       if (SWITCH_ALL_CASES_P (stmt))
12603 	return block_may_fallthru (SWITCH_BODY (stmt));
12604       return true;
12605 
12606     case COND_EXPR:
12607       if (block_may_fallthru (COND_EXPR_THEN (stmt)))
12608 	return true;
12609       return block_may_fallthru (COND_EXPR_ELSE (stmt));
12610 
12611     case BIND_EXPR:
12612       return block_may_fallthru (BIND_EXPR_BODY (stmt));
12613 
12614     case TRY_CATCH_EXPR:
12615       return try_catch_may_fallthru (stmt);
12616 
12617     case TRY_FINALLY_EXPR:
12618       /* The finally clause is always executed after the try clause,
12619 	 so if it does not fall through, then the try-finally will not
12620 	 fall through.  Otherwise, if the try clause does not fall
12621 	 through, then when the finally clause falls through it will
12622 	 resume execution wherever the try clause was going.  So the
12623 	 whole try-finally will only fall through if both the try
12624 	 clause and the finally clause fall through.  */
12625       return (block_may_fallthru (TREE_OPERAND (stmt, 0))
12626 	      && block_may_fallthru (TREE_OPERAND (stmt, 1)));
12627 
12628     case MODIFY_EXPR:
12629       if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
12630 	stmt = TREE_OPERAND (stmt, 1);
12631       else
12632 	return true;
12633       /* FALLTHRU */
12634 
12635     case CALL_EXPR:
12636       /* Functions that do not return do not fall through.  */
12637       return (call_expr_flags (stmt) & ECF_NORETURN) == 0;
12638 
12639     case CLEANUP_POINT_EXPR:
12640       return block_may_fallthru (TREE_OPERAND (stmt, 0));
12641 
12642     case TARGET_EXPR:
12643       return block_may_fallthru (TREE_OPERAND (stmt, 1));
12644 
12645     case ERROR_MARK:
12646       return true;
12647 
12648     default:
12649       return lang_hooks.block_may_fallthru (stmt);
12650     }
12651 }
12652 
12653 /* True if we are using EH to handle cleanups.  */
12654 static bool using_eh_for_cleanups_flag = false;
12655 
12656 /* This routine is called from front ends to indicate eh should be used for
12657    cleanups.  */
12658 void
12659 using_eh_for_cleanups (void)
12660 {
12661   using_eh_for_cleanups_flag = true;
12662 }
12663 
12664 /* Query whether EH is used for cleanups.  */
12665 bool
12666 using_eh_for_cleanups_p (void)
12667 {
12668   return using_eh_for_cleanups_flag;
12669 }
12670 
12671 /* Wrapper for tree_code_name to ensure that tree code is valid */
12672 const char *
12673 get_tree_code_name (enum tree_code code)
12674 {
12675   const char *invalid = "<invalid tree code>";
12676 
12677   if (code >= MAX_TREE_CODES)
12678     return invalid;
12679 
12680   return tree_code_name[code];
12681 }
12682 
12683 /* Drops the TREE_OVERFLOW flag from T.  */
12684 
12685 tree
12686 drop_tree_overflow (tree t)
12687 {
12688   gcc_checking_assert (TREE_OVERFLOW (t));
12689 
12690   /* For tree codes with a sharing machinery re-build the result.  */
12691   if (poly_int_tree_p (t))
12692     return wide_int_to_tree (TREE_TYPE (t), wi::to_poly_wide (t));
12693 
12694   /* For VECTOR_CST, remove the overflow bits from the encoded elements
12695      and canonicalize the result.  */
12696   if (TREE_CODE (t) == VECTOR_CST)
12697     {
12698       tree_vector_builder builder;
12699       builder.new_unary_operation (TREE_TYPE (t), t, true);
12700       unsigned int count = builder.encoded_nelts ();
12701       for (unsigned int i = 0; i < count; ++i)
12702 	{
12703 	  tree elt = VECTOR_CST_ELT (t, i);
12704 	  if (TREE_OVERFLOW (elt))
12705 	    elt = drop_tree_overflow (elt);
12706 	  builder.quick_push (elt);
12707 	}
12708       return builder.build ();
12709     }
12710 
12711   /* Otherwise, as all tcc_constants are possibly shared, copy the node
12712      and drop the flag.  */
12713   t = copy_node (t);
12714   TREE_OVERFLOW (t) = 0;
12715 
12716   /* For constants that contain nested constants, drop the flag
12717      from those as well.  */
12718   if (TREE_CODE (t) == COMPLEX_CST)
12719     {
12720       if (TREE_OVERFLOW (TREE_REALPART (t)))
12721 	TREE_REALPART (t) = drop_tree_overflow (TREE_REALPART (t));
12722       if (TREE_OVERFLOW (TREE_IMAGPART (t)))
12723 	TREE_IMAGPART (t) = drop_tree_overflow (TREE_IMAGPART (t));
12724     }
12725 
12726   return t;
12727 }
12728 
12729 /* Given a memory reference expression T, return its base address.
12730    The base address of a memory reference expression is the main
12731    object being referenced.  For instance, the base address for
12732    'array[i].fld[j]' is 'array'.  You can think of this as stripping
12733    away the offset part from a memory address.
12734 
12735    This function calls handled_component_p to strip away all the inner
12736    parts of the memory reference until it reaches the base object.  */
12737 
12738 tree
12739 get_base_address (tree t)
12740 {
12741   while (handled_component_p (t))
12742     t = TREE_OPERAND (t, 0);
12743 
12744   if ((TREE_CODE (t) == MEM_REF
12745        || TREE_CODE (t) == TARGET_MEM_REF)
12746       && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
12747     t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
12748 
12749   /* ???  Either the alias oracle or all callers need to properly deal
12750      with WITH_SIZE_EXPRs before we can look through those.  */
12751   if (TREE_CODE (t) == WITH_SIZE_EXPR)
12752     return NULL_TREE;
12753 
12754   return t;
12755 }
12756 
12757 /* Return a tree of sizetype representing the size, in bytes, of the element
12758    of EXP, an ARRAY_REF or an ARRAY_RANGE_REF.  */
12759 
12760 tree
12761 array_ref_element_size (tree exp)
12762 {
12763   tree aligned_size = TREE_OPERAND (exp, 3);
12764   tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
12765   location_t loc = EXPR_LOCATION (exp);
12766 
12767   /* If a size was specified in the ARRAY_REF, it's the size measured
12768      in alignment units of the element type.  So multiply by that value.  */
12769   if (aligned_size)
12770     {
12771       /* ??? tree_ssa_useless_type_conversion will eliminate casts to
12772 	 sizetype from another type of the same width and signedness.  */
12773       if (TREE_TYPE (aligned_size) != sizetype)
12774 	aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
12775       return size_binop_loc (loc, MULT_EXPR, aligned_size,
12776 			     size_int (TYPE_ALIGN_UNIT (elmt_type)));
12777     }
12778 
12779   /* Otherwise, take the size from that of the element type.  Substitute
12780      any PLACEHOLDER_EXPR that we have.  */
12781   else
12782     return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
12783 }
12784 
12785 /* Return a tree representing the lower bound of the array mentioned in
12786    EXP, an ARRAY_REF or an ARRAY_RANGE_REF.  */
12787 
12788 tree
12789 array_ref_low_bound (tree exp)
12790 {
12791   tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
12792 
12793   /* If a lower bound is specified in EXP, use it.  */
12794   if (TREE_OPERAND (exp, 2))
12795     return TREE_OPERAND (exp, 2);
12796 
12797   /* Otherwise, if there is a domain type and it has a lower bound, use it,
12798      substituting for a PLACEHOLDER_EXPR as needed.  */
12799   if (domain_type && TYPE_MIN_VALUE (domain_type))
12800     return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
12801 
12802   /* Otherwise, return a zero of the appropriate type.  */
12803   return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
12804 }
12805 
12806 /* Return a tree representing the upper bound of the array mentioned in
12807    EXP, an ARRAY_REF or an ARRAY_RANGE_REF.  */
12808 
12809 tree
12810 array_ref_up_bound (tree exp)
12811 {
12812   tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
12813 
12814   /* If there is a domain type and it has an upper bound, use it, substituting
12815      for a PLACEHOLDER_EXPR as needed.  */
12816   if (domain_type && TYPE_MAX_VALUE (domain_type))
12817     return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
12818 
12819   /* Otherwise fail.  */
12820   return NULL_TREE;
12821 }
12822 
12823 /* Returns true if REF is an array reference or a component reference
12824    to an array at the end of a structure.
12825    If this is the case, the array may be allocated larger
12826    than its upper bound implies.  */
12827 
12828 bool
12829 array_at_struct_end_p (tree ref)
12830 {
12831   tree atype;
12832 
12833   if (TREE_CODE (ref) == ARRAY_REF
12834       || TREE_CODE (ref) == ARRAY_RANGE_REF)
12835     {
12836       atype = TREE_TYPE (TREE_OPERAND (ref, 0));
12837       ref = TREE_OPERAND (ref, 0);
12838     }
12839   else if (TREE_CODE (ref) == COMPONENT_REF
12840 	   && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 1))) == ARRAY_TYPE)
12841     atype = TREE_TYPE (TREE_OPERAND (ref, 1));
12842   else
12843     return false;
12844 
12845   if (TREE_CODE (ref) == STRING_CST)
12846     return false;
12847 
12848   tree ref_to_array = ref;
12849   while (handled_component_p (ref))
12850     {
12851       /* If the reference chain contains a component reference to a
12852          non-union type and there follows another field the reference
12853 	 is not at the end of a structure.  */
12854       if (TREE_CODE (ref) == COMPONENT_REF)
12855 	{
12856 	  if (TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
12857 	    {
12858 	      tree nextf = DECL_CHAIN (TREE_OPERAND (ref, 1));
12859 	      while (nextf && TREE_CODE (nextf) != FIELD_DECL)
12860 		nextf = DECL_CHAIN (nextf);
12861 	      if (nextf)
12862 		return false;
12863 	    }
12864 	}
12865       /* If we have a multi-dimensional array we do not consider
12866          a non-innermost dimension as flex array if the whole
12867 	 multi-dimensional array is at struct end.
12868 	 Same for an array of aggregates with a trailing array
12869 	 member.  */
12870       else if (TREE_CODE (ref) == ARRAY_REF)
12871 	return false;
12872       else if (TREE_CODE (ref) == ARRAY_RANGE_REF)
12873 	;
12874       /* If we view an underlying object as sth else then what we
12875          gathered up to now is what we have to rely on.  */
12876       else if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
12877 	break;
12878       else
12879 	gcc_unreachable ();
12880 
12881       ref = TREE_OPERAND (ref, 0);
12882     }
12883 
12884   /* The array now is at struct end.  Treat flexible arrays as
12885      always subject to extend, even into just padding constrained by
12886      an underlying decl.  */
12887   if (! TYPE_SIZE (atype)
12888       || ! TYPE_DOMAIN (atype)
12889       || ! TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
12890     return true;
12891 
12892   if (TREE_CODE (ref) == MEM_REF
12893       && TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR)
12894     ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
12895 
12896   /* If the reference is based on a declared entity, the size of the array
12897      is constrained by its given domain.  (Do not trust commons PR/69368).  */
12898   if (DECL_P (ref)
12899       && !(flag_unconstrained_commons
12900 	   && VAR_P (ref) && DECL_COMMON (ref))
12901       && DECL_SIZE_UNIT (ref)
12902       && TREE_CODE (DECL_SIZE_UNIT (ref)) == INTEGER_CST)
12903     {
12904       /* Check whether the array domain covers all of the available
12905          padding.  */
12906       poly_int64 offset;
12907       if (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (atype))) != INTEGER_CST
12908 	  || TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST
12909           || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST)
12910 	return true;
12911       if (! get_addr_base_and_unit_offset (ref_to_array, &offset))
12912 	return true;
12913 
12914       /* If at least one extra element fits it is a flexarray.  */
12915       if (known_le ((wi::to_offset (TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
12916 		     - wi::to_offset (TYPE_MIN_VALUE (TYPE_DOMAIN (atype)))
12917 		     + 2)
12918 		    * wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (atype))),
12919 		    wi::to_offset (DECL_SIZE_UNIT (ref)) - offset))
12920 	return true;
12921 
12922       return false;
12923     }
12924 
12925   return true;
12926 }
12927 
12928 /* Return a tree representing the offset, in bytes, of the field referenced
12929    by EXP.  This does not include any offset in DECL_FIELD_BIT_OFFSET.  */
12930 
12931 tree
12932 component_ref_field_offset (tree exp)
12933 {
12934   tree aligned_offset = TREE_OPERAND (exp, 2);
12935   tree field = TREE_OPERAND (exp, 1);
12936   location_t loc = EXPR_LOCATION (exp);
12937 
12938   /* If an offset was specified in the COMPONENT_REF, it's the offset measured
12939      in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT.  So multiply by that
12940      value.  */
12941   if (aligned_offset)
12942     {
12943       /* ??? tree_ssa_useless_type_conversion will eliminate casts to
12944 	 sizetype from another type of the same width and signedness.  */
12945       if (TREE_TYPE (aligned_offset) != sizetype)
12946 	aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
12947       return size_binop_loc (loc, MULT_EXPR, aligned_offset,
12948 			     size_int (DECL_OFFSET_ALIGN (field)
12949 				       / BITS_PER_UNIT));
12950     }
12951 
12952   /* Otherwise, take the offset from that of the field.  Substitute
12953      any PLACEHOLDER_EXPR that we have.  */
12954   else
12955     return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
12956 }
12957 
12958 /* Return the machine mode of T.  For vectors, returns the mode of the
12959    inner type.  The main use case is to feed the result to HONOR_NANS,
12960    avoiding the BLKmode that a direct TYPE_MODE (T) might return.  */
12961 
12962 machine_mode
12963 element_mode (const_tree t)
12964 {
12965   if (!TYPE_P (t))
12966     t = TREE_TYPE (t);
12967   if (VECTOR_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
12968     t = TREE_TYPE (t);
12969   return TYPE_MODE (t);
12970 }
12971 
12972 /* Vector types need to re-check the target flags each time we report
12973    the machine mode.  We need to do this because attribute target can
12974    change the result of vector_mode_supported_p and have_regs_of_mode
12975    on a per-function basis.  Thus the TYPE_MODE of a VECTOR_TYPE can
12976    change on a per-function basis.  */
12977 /* ??? Possibly a better solution is to run through all the types
12978    referenced by a function and re-compute the TYPE_MODE once, rather
12979    than make the TYPE_MODE macro call a function.  */
12980 
12981 machine_mode
12982 vector_type_mode (const_tree t)
12983 {
12984   machine_mode mode;
12985 
12986   gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
12987 
12988   mode = t->type_common.mode;
12989   if (VECTOR_MODE_P (mode)
12990       && (!targetm.vector_mode_supported_p (mode)
12991 	  || !have_regs_of_mode[mode]))
12992     {
12993       scalar_int_mode innermode;
12994 
12995       /* For integers, try mapping it to a same-sized scalar mode.  */
12996       if (is_int_mode (TREE_TYPE (t)->type_common.mode, &innermode))
12997 	{
12998 	  poly_int64 size = (TYPE_VECTOR_SUBPARTS (t)
12999 			     * GET_MODE_BITSIZE (innermode));
13000 	  scalar_int_mode mode;
13001 	  if (int_mode_for_size (size, 0).exists (&mode)
13002 	      && have_regs_of_mode[mode])
13003 	    return mode;
13004 	}
13005 
13006       return BLKmode;
13007     }
13008 
13009   return mode;
13010 }
13011 
13012 /* Verify that basic properties of T match TV and thus T can be a variant of
13013    TV.  TV should be the more specified variant (i.e. the main variant).  */
13014 
13015 static bool
13016 verify_type_variant (const_tree t, tree tv)
13017 {
13018   /* Type variant can differ by:
13019 
13020      - TYPE_QUALS: TYPE_READONLY, TYPE_VOLATILE, TYPE_ATOMIC, TYPE_RESTRICT,
13021                    ENCODE_QUAL_ADDR_SPACE.
13022      - main variant may be TYPE_COMPLETE_P and variant types !TYPE_COMPLETE_P
13023        in this case some values may not be set in the variant types
13024        (see TYPE_COMPLETE_P checks).
13025      - it is possible to have TYPE_ARTIFICIAL variant of non-artifical type
13026      - by TYPE_NAME and attributes (i.e. when variant originate by typedef)
13027      - TYPE_CANONICAL (TYPE_ALIAS_SET is the same among variants)
13028      - by the alignment: TYPE_ALIGN and TYPE_USER_ALIGN
13029      - during LTO by TYPE_CONTEXT if type is TYPE_FILE_SCOPE_P
13030        this is necessary to make it possible to merge types form different TUs
13031      - arrays, pointers and references may have TREE_TYPE that is a variant
13032        of TREE_TYPE of their main variants.
13033      - aggregates may have new TYPE_FIELDS list that list variants of
13034        the main variant TYPE_FIELDS.
13035      - vector types may differ by TYPE_VECTOR_OPAQUE
13036    */
13037 
13038   /* Convenience macro for matching individual fields.  */
13039 #define verify_variant_match(flag)					    \
13040   do {									    \
13041     if (flag (tv) != flag (t))						    \
13042       {									    \
13043 	error ("type variant differs by %s", #flag);			    \
13044 	debug_tree (tv);						    \
13045 	return false;							    \
13046       }									    \
13047   } while (false)
13048 
13049   /* tree_base checks.  */
13050 
13051   verify_variant_match (TREE_CODE);
13052   /* FIXME: Ada builds non-artificial variants of artificial types.  */
13053   if (TYPE_ARTIFICIAL (tv) && 0)
13054     verify_variant_match (TYPE_ARTIFICIAL);
13055   if (POINTER_TYPE_P (tv))
13056     verify_variant_match (TYPE_REF_CAN_ALIAS_ALL);
13057   /* FIXME: TYPE_SIZES_GIMPLIFIED may differs for Ada build.  */
13058   verify_variant_match (TYPE_UNSIGNED);
13059   verify_variant_match (TYPE_PACKED);
13060   if (TREE_CODE (t) == REFERENCE_TYPE)
13061     verify_variant_match (TYPE_REF_IS_RVALUE);
13062   if (AGGREGATE_TYPE_P (t))
13063     verify_variant_match (TYPE_REVERSE_STORAGE_ORDER);
13064   else
13065     verify_variant_match (TYPE_SATURATING);
13066   /* FIXME: This check trigger during libstdc++ build.  */
13067   if (RECORD_OR_UNION_TYPE_P (t) && COMPLETE_TYPE_P (t) && 0)
13068     verify_variant_match (TYPE_FINAL_P);
13069 
13070   /* tree_type_common checks.  */
13071 
13072   if (COMPLETE_TYPE_P (t))
13073     {
13074       verify_variant_match (TYPE_MODE);
13075       if (TREE_CODE (TYPE_SIZE (t)) != PLACEHOLDER_EXPR
13076 	  && TREE_CODE (TYPE_SIZE (tv)) != PLACEHOLDER_EXPR)
13077 	verify_variant_match (TYPE_SIZE);
13078       if (TREE_CODE (TYPE_SIZE_UNIT (t)) != PLACEHOLDER_EXPR
13079 	  && TREE_CODE (TYPE_SIZE_UNIT (tv)) != PLACEHOLDER_EXPR
13080 	  && TYPE_SIZE_UNIT (t) != TYPE_SIZE_UNIT (tv))
13081 	{
13082 	  gcc_assert (!operand_equal_p (TYPE_SIZE_UNIT (t),
13083 					TYPE_SIZE_UNIT (tv), 0));
13084 	  error ("type variant has different TYPE_SIZE_UNIT");
13085 	  debug_tree (tv);
13086 	  error ("type variant's TYPE_SIZE_UNIT");
13087 	  debug_tree (TYPE_SIZE_UNIT (tv));
13088 	  error ("type's TYPE_SIZE_UNIT");
13089 	  debug_tree (TYPE_SIZE_UNIT (t));
13090 	  return false;
13091 	}
13092     }
13093   verify_variant_match (TYPE_PRECISION);
13094   verify_variant_match (TYPE_NEEDS_CONSTRUCTING);
13095   if (RECORD_OR_UNION_TYPE_P (t))
13096     verify_variant_match (TYPE_TRANSPARENT_AGGR);
13097   else if (TREE_CODE (t) == ARRAY_TYPE)
13098     verify_variant_match (TYPE_NONALIASED_COMPONENT);
13099   /* During LTO we merge variant lists from diferent translation units
13100      that may differ BY TYPE_CONTEXT that in turn may point
13101      to TRANSLATION_UNIT_DECL.
13102      Ada also builds variants of types with different TYPE_CONTEXT.   */
13103   if ((!in_lto_p || !TYPE_FILE_SCOPE_P (t)) && 0)
13104     verify_variant_match (TYPE_CONTEXT);
13105   verify_variant_match (TYPE_STRING_FLAG);
13106   if (TYPE_ALIAS_SET_KNOWN_P (t))
13107     {
13108       error ("type variant with TYPE_ALIAS_SET_KNOWN_P");
13109       debug_tree (tv);
13110       return false;
13111     }
13112 
13113   /* tree_type_non_common checks.  */
13114 
13115   /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
13116      and dangle the pointer from time to time.  */
13117   if (RECORD_OR_UNION_TYPE_P (t) && TYPE_VFIELD (t) != TYPE_VFIELD (tv)
13118       && (in_lto_p || !TYPE_VFIELD (tv)
13119 	  || TREE_CODE (TYPE_VFIELD (tv)) != TREE_LIST))
13120     {
13121       error ("type variant has different TYPE_VFIELD");
13122       debug_tree (tv);
13123       return false;
13124     }
13125   if ((TREE_CODE (t) == ENUMERAL_TYPE && COMPLETE_TYPE_P (t))
13126        || TREE_CODE (t) == INTEGER_TYPE
13127        || TREE_CODE (t) == BOOLEAN_TYPE
13128        || TREE_CODE (t) == REAL_TYPE
13129        || TREE_CODE (t) == FIXED_POINT_TYPE)
13130     {
13131       verify_variant_match (TYPE_MAX_VALUE);
13132       verify_variant_match (TYPE_MIN_VALUE);
13133     }
13134   if (TREE_CODE (t) == METHOD_TYPE)
13135     verify_variant_match (TYPE_METHOD_BASETYPE);
13136   if (TREE_CODE (t) == OFFSET_TYPE)
13137     verify_variant_match (TYPE_OFFSET_BASETYPE);
13138   if (TREE_CODE (t) == ARRAY_TYPE)
13139     verify_variant_match (TYPE_ARRAY_MAX_SIZE);
13140   /* FIXME: Be lax and allow TYPE_BINFO to be missing in variant types
13141      or even type's main variant.  This is needed to make bootstrap pass
13142      and the bug seems new in GCC 5.
13143      C++ FE should be updated to make this consistent and we should check
13144      that TYPE_BINFO is always NULL for !COMPLETE_TYPE_P and otherwise there
13145      is a match with main variant.
13146 
13147      Also disable the check for Java for now because of parser hack that builds
13148      first an dummy BINFO and then sometimes replace it by real BINFO in some
13149      of the copies.  */
13150   if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t) && TYPE_BINFO (tv)
13151       && TYPE_BINFO (t) != TYPE_BINFO (tv)
13152       /* FIXME: Java sometimes keep dump TYPE_BINFOs on variant types.
13153 	 Since there is no cheap way to tell C++/Java type w/o LTO, do checking
13154 	 at LTO time only.  */
13155       && (in_lto_p && odr_type_p (t)))
13156     {
13157       error ("type variant has different TYPE_BINFO");
13158       debug_tree (tv);
13159       error ("type variant's TYPE_BINFO");
13160       debug_tree (TYPE_BINFO (tv));
13161       error ("type's TYPE_BINFO");
13162       debug_tree (TYPE_BINFO (t));
13163       return false;
13164     }
13165 
13166   /* Check various uses of TYPE_VALUES_RAW.  */
13167   if (TREE_CODE (t) == ENUMERAL_TYPE)
13168     verify_variant_match (TYPE_VALUES);
13169   else if (TREE_CODE (t) == ARRAY_TYPE)
13170     verify_variant_match (TYPE_DOMAIN);
13171   /* Permit incomplete variants of complete type.  While FEs may complete
13172      all variants, this does not happen for C++ templates in all cases.  */
13173   else if (RECORD_OR_UNION_TYPE_P (t)
13174 	   && COMPLETE_TYPE_P (t)
13175 	   && TYPE_FIELDS (t) != TYPE_FIELDS (tv))
13176     {
13177       tree f1, f2;
13178 
13179       /* Fortran builds qualified variants as new records with items of
13180 	 qualified type. Verify that they looks same.  */
13181       for (f1 = TYPE_FIELDS (t), f2 = TYPE_FIELDS (tv);
13182 	   f1 && f2;
13183 	   f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
13184 	if (TREE_CODE (f1) != FIELD_DECL || TREE_CODE (f2) != FIELD_DECL
13185 	    || (TYPE_MAIN_VARIANT (TREE_TYPE (f1))
13186 		 != TYPE_MAIN_VARIANT (TREE_TYPE (f2))
13187 		/* FIXME: gfc_nonrestricted_type builds all types as variants
13188 		   with exception of pointer types.  It deeply copies the type
13189 		   which means that we may end up with a variant type
13190 		   referring non-variant pointer.  We may change it to
13191 		   produce types as variants, too, like
13192 		   objc_get_protocol_qualified_type does.  */
13193 		&& !POINTER_TYPE_P (TREE_TYPE (f1)))
13194 	    || DECL_FIELD_OFFSET (f1) != DECL_FIELD_OFFSET (f2)
13195 	    || DECL_FIELD_BIT_OFFSET (f1) != DECL_FIELD_BIT_OFFSET (f2))
13196 	  break;
13197       if (f1 || f2)
13198 	{
13199 	  error ("type variant has different TYPE_FIELDS");
13200 	  debug_tree (tv);
13201 	  error ("first mismatch is field");
13202 	  debug_tree (f1);
13203 	  error ("and field");
13204 	  debug_tree (f2);
13205           return false;
13206 	}
13207     }
13208   else if ((TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE))
13209     verify_variant_match (TYPE_ARG_TYPES);
13210   /* For C++ the qualified variant of array type is really an array type
13211      of qualified TREE_TYPE.
13212      objc builds variants of pointer where pointer to type is a variant, too
13213      in objc_get_protocol_qualified_type.  */
13214   if (TREE_TYPE (t) != TREE_TYPE (tv)
13215       && ((TREE_CODE (t) != ARRAY_TYPE
13216 	   && !POINTER_TYPE_P (t))
13217 	  || TYPE_MAIN_VARIANT (TREE_TYPE (t))
13218 	     != TYPE_MAIN_VARIANT (TREE_TYPE (tv))))
13219     {
13220       error ("type variant has different TREE_TYPE");
13221       debug_tree (tv);
13222       error ("type variant's TREE_TYPE");
13223       debug_tree (TREE_TYPE (tv));
13224       error ("type's TREE_TYPE");
13225       debug_tree (TREE_TYPE (t));
13226       return false;
13227     }
13228   if (type_with_alias_set_p (t)
13229       && !gimple_canonical_types_compatible_p (t, tv, false))
13230     {
13231       error ("type is not compatible with its variant");
13232       debug_tree (tv);
13233       error ("type variant's TREE_TYPE");
13234       debug_tree (TREE_TYPE (tv));
13235       error ("type's TREE_TYPE");
13236       debug_tree (TREE_TYPE (t));
13237       return false;
13238     }
13239   return true;
13240 #undef verify_variant_match
13241 }
13242 
13243 
13244 /* The TYPE_CANONICAL merging machinery.  It should closely resemble
13245    the middle-end types_compatible_p function.  It needs to avoid
13246    claiming types are different for types that should be treated
13247    the same with respect to TBAA.  Canonical types are also used
13248    for IL consistency checks via the useless_type_conversion_p
13249    predicate which does not handle all type kinds itself but falls
13250    back to pointer-comparison of TYPE_CANONICAL for aggregates
13251    for example.  */
13252 
13253 /* Return true if TYPE_UNSIGNED of TYPE should be ignored for canonical
13254    type calculation because we need to allow inter-operability between signed
13255    and unsigned variants.  */
13256 
13257 bool
13258 type_with_interoperable_signedness (const_tree type)
13259 {
13260   /* Fortran standard require C_SIGNED_CHAR to be interoperable with both
13261      signed char and unsigned char.  Similarly fortran FE builds
13262      C_SIZE_T as signed type, while C defines it unsigned.  */
13263 
13264   return tree_code_for_canonical_type_merging (TREE_CODE (type))
13265 	   == INTEGER_TYPE
13266          && (TYPE_PRECISION (type) == TYPE_PRECISION (signed_char_type_node)
13267 	     || TYPE_PRECISION (type) == TYPE_PRECISION (size_type_node));
13268 }
13269 
13270 /* Return true iff T1 and T2 are structurally identical for what
13271    TBAA is concerned.
13272    This function is used both by lto.c canonical type merging and by the
13273    verifier.  If TRUST_TYPE_CANONICAL we do not look into structure of types
13274    that have TYPE_CANONICAL defined and assume them equivalent.  This is useful
13275    only for LTO because only in these cases TYPE_CANONICAL equivalence
13276    correspond to one defined by gimple_canonical_types_compatible_p.  */
13277 
13278 bool
13279 gimple_canonical_types_compatible_p (const_tree t1, const_tree t2,
13280 				     bool trust_type_canonical)
13281 {
13282   /* Type variants should be same as the main variant.  When not doing sanity
13283      checking to verify this fact, go to main variants and save some work.  */
13284   if (trust_type_canonical)
13285     {
13286       t1 = TYPE_MAIN_VARIANT (t1);
13287       t2 = TYPE_MAIN_VARIANT (t2);
13288     }
13289 
13290   /* Check first for the obvious case of pointer identity.  */
13291   if (t1 == t2)
13292     return true;
13293 
13294   /* Check that we have two types to compare.  */
13295   if (t1 == NULL_TREE || t2 == NULL_TREE)
13296     return false;
13297 
13298   /* We consider complete types always compatible with incomplete type.
13299      This does not make sense for canonical type calculation and thus we
13300      need to ensure that we are never called on it.
13301 
13302      FIXME: For more correctness the function probably should have three modes
13303 	1) mode assuming that types are complete mathcing their structure
13304 	2) mode allowing incomplete types but producing equivalence classes
13305 	   and thus ignoring all info from complete types
13306 	3) mode allowing incomplete types to match complete but checking
13307 	   compatibility between complete types.
13308 
13309      1 and 2 can be used for canonical type calculation. 3 is the real
13310      definition of type compatibility that can be used i.e. for warnings during
13311      declaration merging.  */
13312 
13313   gcc_assert (!trust_type_canonical
13314 	      || (type_with_alias_set_p (t1) && type_with_alias_set_p (t2)));
13315   /* If the types have been previously registered and found equal
13316      they still are.  */
13317 
13318   if (TYPE_CANONICAL (t1) && TYPE_CANONICAL (t2)
13319       && trust_type_canonical)
13320     {
13321       /* Do not use TYPE_CANONICAL of pointer types.  For LTO streamed types
13322 	 they are always NULL, but they are set to non-NULL for types
13323 	 constructed by build_pointer_type and variants.  In this case the
13324 	 TYPE_CANONICAL is more fine grained than the equivalnce we test (where
13325 	 all pointers are considered equal.  Be sure to not return false
13326 	 negatives.  */
13327       gcc_checking_assert (canonical_type_used_p (t1)
13328 			   && canonical_type_used_p (t2));
13329       return TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2);
13330     }
13331 
13332   /* Can't be the same type if the types don't have the same code.  */
13333   enum tree_code code = tree_code_for_canonical_type_merging (TREE_CODE (t1));
13334   if (code != tree_code_for_canonical_type_merging (TREE_CODE (t2)))
13335     return false;
13336 
13337   /* Qualifiers do not matter for canonical type comparison purposes.  */
13338 
13339   /* Void types and nullptr types are always the same.  */
13340   if (TREE_CODE (t1) == VOID_TYPE
13341       || TREE_CODE (t1) == NULLPTR_TYPE)
13342     return true;
13343 
13344   /* Can't be the same type if they have different mode.  */
13345   if (TYPE_MODE (t1) != TYPE_MODE (t2))
13346     return false;
13347 
13348   /* Non-aggregate types can be handled cheaply.  */
13349   if (INTEGRAL_TYPE_P (t1)
13350       || SCALAR_FLOAT_TYPE_P (t1)
13351       || FIXED_POINT_TYPE_P (t1)
13352       || TREE_CODE (t1) == VECTOR_TYPE
13353       || TREE_CODE (t1) == COMPLEX_TYPE
13354       || TREE_CODE (t1) == OFFSET_TYPE
13355       || POINTER_TYPE_P (t1))
13356     {
13357       /* Can't be the same type if they have different recision.  */
13358       if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2))
13359 	return false;
13360 
13361       /* In some cases the signed and unsigned types are required to be
13362 	 inter-operable.  */
13363       if (TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2)
13364 	  && !type_with_interoperable_signedness (t1))
13365 	return false;
13366 
13367       /* Fortran's C_SIGNED_CHAR is !TYPE_STRING_FLAG but needs to be
13368 	 interoperable with "signed char".  Unless all frontends are revisited
13369 	 to agree on these types, we must ignore the flag completely.  */
13370 
13371       /* Fortran standard define C_PTR type that is compatible with every
13372  	 C pointer.  For this reason we need to glob all pointers into one.
13373 	 Still pointers in different address spaces are not compatible.  */
13374       if (POINTER_TYPE_P (t1))
13375 	{
13376 	  if (TYPE_ADDR_SPACE (TREE_TYPE (t1))
13377 	      != TYPE_ADDR_SPACE (TREE_TYPE (t2)))
13378 	    return false;
13379 	}
13380 
13381       /* Tail-recurse to components.  */
13382       if (TREE_CODE (t1) == VECTOR_TYPE
13383 	  || TREE_CODE (t1) == COMPLEX_TYPE)
13384 	return gimple_canonical_types_compatible_p (TREE_TYPE (t1),
13385 						    TREE_TYPE (t2),
13386 						    trust_type_canonical);
13387 
13388       return true;
13389     }
13390 
13391   /* Do type-specific comparisons.  */
13392   switch (TREE_CODE (t1))
13393     {
13394     case ARRAY_TYPE:
13395       /* Array types are the same if the element types are the same and
13396 	 the number of elements are the same.  */
13397       if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
13398 						trust_type_canonical)
13399 	  || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
13400 	  || TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2)
13401 	  || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
13402 	return false;
13403       else
13404 	{
13405 	  tree i1 = TYPE_DOMAIN (t1);
13406 	  tree i2 = TYPE_DOMAIN (t2);
13407 
13408 	  /* For an incomplete external array, the type domain can be
13409  	     NULL_TREE.  Check this condition also.  */
13410 	  if (i1 == NULL_TREE && i2 == NULL_TREE)
13411 	    return true;
13412 	  else if (i1 == NULL_TREE || i2 == NULL_TREE)
13413 	    return false;
13414 	  else
13415 	    {
13416 	      tree min1 = TYPE_MIN_VALUE (i1);
13417 	      tree min2 = TYPE_MIN_VALUE (i2);
13418 	      tree max1 = TYPE_MAX_VALUE (i1);
13419 	      tree max2 = TYPE_MAX_VALUE (i2);
13420 
13421 	      /* The minimum/maximum values have to be the same.  */
13422 	      if ((min1 == min2
13423 		   || (min1 && min2
13424 		       && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
13425 			    && TREE_CODE (min2) == PLACEHOLDER_EXPR)
13426 		           || operand_equal_p (min1, min2, 0))))
13427 		  && (max1 == max2
13428 		      || (max1 && max2
13429 			  && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
13430 			       && TREE_CODE (max2) == PLACEHOLDER_EXPR)
13431 			      || operand_equal_p (max1, max2, 0)))))
13432 		return true;
13433 	      else
13434 		return false;
13435 	    }
13436 	}
13437 
13438     case METHOD_TYPE:
13439     case FUNCTION_TYPE:
13440       /* Function types are the same if the return type and arguments types
13441 	 are the same.  */
13442       if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
13443 						trust_type_canonical))
13444 	return false;
13445 
13446       if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
13447 	return true;
13448       else
13449 	{
13450 	  tree parms1, parms2;
13451 
13452 	  for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
13453 	       parms1 && parms2;
13454 	       parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
13455 	    {
13456 	      if (!gimple_canonical_types_compatible_p
13457 		     (TREE_VALUE (parms1), TREE_VALUE (parms2),
13458 		      trust_type_canonical))
13459 		return false;
13460 	    }
13461 
13462 	  if (parms1 || parms2)
13463 	    return false;
13464 
13465 	  return true;
13466 	}
13467 
13468     case RECORD_TYPE:
13469     case UNION_TYPE:
13470     case QUAL_UNION_TYPE:
13471       {
13472 	tree f1, f2;
13473 
13474 	/* Don't try to compare variants of an incomplete type, before
13475 	   TYPE_FIELDS has been copied around.  */
13476 	if (!COMPLETE_TYPE_P (t1) && !COMPLETE_TYPE_P (t2))
13477 	  return true;
13478 
13479 
13480 	if (TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2))
13481 	  return false;
13482 
13483 	/* For aggregate types, all the fields must be the same.  */
13484 	for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
13485 	     f1 || f2;
13486 	     f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
13487 	  {
13488 	    /* Skip non-fields and zero-sized fields.  */
13489 	    while (f1 && (TREE_CODE (f1) != FIELD_DECL
13490 			  || (DECL_SIZE (f1)
13491 			      && integer_zerop (DECL_SIZE (f1)))))
13492 	      f1 = TREE_CHAIN (f1);
13493 	    while (f2 && (TREE_CODE (f2) != FIELD_DECL
13494 			  || (DECL_SIZE (f2)
13495 			      && integer_zerop (DECL_SIZE (f2)))))
13496 	      f2 = TREE_CHAIN (f2);
13497 	    if (!f1 || !f2)
13498 	      break;
13499 	    /* The fields must have the same name, offset and type.  */
13500 	    if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
13501 		|| !gimple_compare_field_offset (f1, f2)
13502 		|| !gimple_canonical_types_compatible_p
13503 		      (TREE_TYPE (f1), TREE_TYPE (f2),
13504 		       trust_type_canonical))
13505 	      return false;
13506 	  }
13507 
13508 	/* If one aggregate has more fields than the other, they
13509 	   are not the same.  */
13510 	if (f1 || f2)
13511 	  return false;
13512 
13513 	return true;
13514       }
13515 
13516     default:
13517       /* Consider all types with language specific trees in them mutually
13518 	 compatible.  This is executed only from verify_type and false
13519          positives can be tolerated.  */
13520       gcc_assert (!in_lto_p);
13521       return true;
13522     }
13523 }
13524 
13525 /* Verify type T.  */
13526 
13527 void
13528 verify_type (const_tree t)
13529 {
13530   bool error_found = false;
13531   tree mv = TYPE_MAIN_VARIANT (t);
13532   if (!mv)
13533     {
13534       error ("Main variant is not defined");
13535       error_found = true;
13536     }
13537   else if (mv != TYPE_MAIN_VARIANT (mv))
13538     {
13539       error ("TYPE_MAIN_VARIANT has different TYPE_MAIN_VARIANT");
13540       debug_tree (mv);
13541       error_found = true;
13542     }
13543   else if (t != mv && !verify_type_variant (t, mv))
13544     error_found = true;
13545 
13546   tree ct = TYPE_CANONICAL (t);
13547   if (!ct)
13548     ;
13549   else if (TYPE_CANONICAL (t) != ct)
13550     {
13551       error ("TYPE_CANONICAL has different TYPE_CANONICAL");
13552       debug_tree (ct);
13553       error_found = true;
13554     }
13555   /* Method and function types can not be used to address memory and thus
13556      TYPE_CANONICAL really matters only for determining useless conversions.
13557 
13558      FIXME: C++ FE produce declarations of builtin functions that are not
13559      compatible with main variants.  */
13560   else if (TREE_CODE (t) == FUNCTION_TYPE)
13561     ;
13562   else if (t != ct
13563 	   /* FIXME: gimple_canonical_types_compatible_p can not compare types
13564 	      with variably sized arrays because their sizes possibly
13565 	      gimplified to different variables.  */
13566 	   && !variably_modified_type_p (ct, NULL)
13567 	   && !gimple_canonical_types_compatible_p (t, ct, false))
13568     {
13569       error ("TYPE_CANONICAL is not compatible");
13570       debug_tree (ct);
13571       error_found = true;
13572     }
13573 
13574   if (COMPLETE_TYPE_P (t) && TYPE_CANONICAL (t)
13575       && TYPE_MODE (t) != TYPE_MODE (TYPE_CANONICAL (t)))
13576     {
13577       error ("TYPE_MODE of TYPE_CANONICAL is not compatible");
13578       debug_tree (ct);
13579       error_found = true;
13580     }
13581   if (TYPE_MAIN_VARIANT (t) == t && ct && TYPE_MAIN_VARIANT (ct) != ct)
13582    {
13583       error ("TYPE_CANONICAL of main variant is not main variant");
13584       debug_tree (ct);
13585       debug_tree (TYPE_MAIN_VARIANT (ct));
13586       error_found = true;
13587    }
13588 
13589 
13590   /* Check various uses of TYPE_MIN_VALUE_RAW.  */
13591   if (RECORD_OR_UNION_TYPE_P (t))
13592     {
13593       /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
13594 	 and danagle the pointer from time to time.  */
13595       if (TYPE_VFIELD (t)
13596 	  && TREE_CODE (TYPE_VFIELD (t)) != FIELD_DECL
13597 	  && TREE_CODE (TYPE_VFIELD (t)) != TREE_LIST)
13598 	{
13599 	  error ("TYPE_VFIELD is not FIELD_DECL nor TREE_LIST");
13600 	  debug_tree (TYPE_VFIELD (t));
13601 	  error_found = true;
13602 	}
13603     }
13604   else if (TREE_CODE (t) == POINTER_TYPE)
13605     {
13606       if (TYPE_NEXT_PTR_TO (t)
13607 	  && TREE_CODE (TYPE_NEXT_PTR_TO (t)) != POINTER_TYPE)
13608 	{
13609 	  error ("TYPE_NEXT_PTR_TO is not POINTER_TYPE");
13610 	  debug_tree (TYPE_NEXT_PTR_TO (t));
13611 	  error_found = true;
13612 	}
13613     }
13614   else if (TREE_CODE (t) == REFERENCE_TYPE)
13615     {
13616       if (TYPE_NEXT_REF_TO (t)
13617 	  && TREE_CODE (TYPE_NEXT_REF_TO (t)) != REFERENCE_TYPE)
13618 	{
13619 	  error ("TYPE_NEXT_REF_TO is not REFERENCE_TYPE");
13620 	  debug_tree (TYPE_NEXT_REF_TO (t));
13621 	  error_found = true;
13622 	}
13623     }
13624   else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
13625 	   || TREE_CODE (t) == FIXED_POINT_TYPE)
13626     {
13627       /* FIXME: The following check should pass:
13628 	  useless_type_conversion_p (const_cast <tree> (t),
13629 				     TREE_TYPE (TYPE_MIN_VALUE (t))
13630 	 but does not for C sizetypes in LTO.  */
13631     }
13632 
13633   /* Check various uses of TYPE_MAXVAL_RAW.  */
13634   if (RECORD_OR_UNION_TYPE_P (t))
13635     {
13636       if (!TYPE_BINFO (t))
13637 	;
13638       else if (TREE_CODE (TYPE_BINFO (t)) != TREE_BINFO)
13639 	{
13640 	  error ("TYPE_BINFO is not TREE_BINFO");
13641 	  debug_tree (TYPE_BINFO (t));
13642 	  error_found = true;
13643 	}
13644       else if (TREE_TYPE (TYPE_BINFO (t)) != TYPE_MAIN_VARIANT (t))
13645 	{
13646 	  error ("TYPE_BINFO type is not TYPE_MAIN_VARIANT");
13647 	  debug_tree (TREE_TYPE (TYPE_BINFO (t)));
13648 	  error_found = true;
13649 	}
13650     }
13651   else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
13652     {
13653       if (TYPE_METHOD_BASETYPE (t)
13654 	  && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != RECORD_TYPE
13655 	  && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != UNION_TYPE)
13656 	{
13657 	  error ("TYPE_METHOD_BASETYPE is not record nor union");
13658 	  debug_tree (TYPE_METHOD_BASETYPE (t));
13659 	  error_found = true;
13660 	}
13661     }
13662   else if (TREE_CODE (t) == OFFSET_TYPE)
13663     {
13664       if (TYPE_OFFSET_BASETYPE (t)
13665 	  && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != RECORD_TYPE
13666 	  && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != UNION_TYPE)
13667 	{
13668 	  error ("TYPE_OFFSET_BASETYPE is not record nor union");
13669 	  debug_tree (TYPE_OFFSET_BASETYPE (t));
13670 	  error_found = true;
13671 	}
13672     }
13673   else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
13674 	   || TREE_CODE (t) == FIXED_POINT_TYPE)
13675     {
13676       /* FIXME: The following check should pass:
13677 	  useless_type_conversion_p (const_cast <tree> (t),
13678 				     TREE_TYPE (TYPE_MAX_VALUE (t))
13679 	 but does not for C sizetypes in LTO.  */
13680     }
13681   else if (TREE_CODE (t) == ARRAY_TYPE)
13682     {
13683       if (TYPE_ARRAY_MAX_SIZE (t)
13684 	  && TREE_CODE (TYPE_ARRAY_MAX_SIZE (t)) != INTEGER_CST)
13685         {
13686 	  error ("TYPE_ARRAY_MAX_SIZE not INTEGER_CST");
13687 	  debug_tree (TYPE_ARRAY_MAX_SIZE (t));
13688 	  error_found = true;
13689         }
13690     }
13691   else if (TYPE_MAX_VALUE_RAW (t))
13692     {
13693       error ("TYPE_MAX_VALUE_RAW non-NULL");
13694       debug_tree (TYPE_MAX_VALUE_RAW (t));
13695       error_found = true;
13696     }
13697 
13698   if (TYPE_LANG_SLOT_1 (t) && in_lto_p)
13699     {
13700       error ("TYPE_LANG_SLOT_1 (binfo) field is non-NULL");
13701       debug_tree (TYPE_LANG_SLOT_1 (t));
13702       error_found = true;
13703     }
13704 
13705   /* Check various uses of TYPE_VALUES_RAW.  */
13706   if (TREE_CODE (t) == ENUMERAL_TYPE)
13707     for (tree l = TYPE_VALUES (t); l; l = TREE_CHAIN (l))
13708       {
13709 	tree value = TREE_VALUE (l);
13710 	tree name = TREE_PURPOSE (l);
13711 
13712 	/* C FE porduce INTEGER_CST of INTEGER_TYPE, while C++ FE uses
13713  	   CONST_DECL of ENUMERAL TYPE.  */
13714 	if (TREE_CODE (value) != INTEGER_CST && TREE_CODE (value) != CONST_DECL)
13715 	  {
13716 	    error ("Enum value is not CONST_DECL or INTEGER_CST");
13717 	    debug_tree (value);
13718 	    debug_tree (name);
13719 	    error_found = true;
13720 	  }
13721 	if (TREE_CODE (TREE_TYPE (value)) != INTEGER_TYPE
13722 	    && !useless_type_conversion_p (const_cast <tree> (t), TREE_TYPE (value)))
13723 	  {
13724 	    error ("Enum value type is not INTEGER_TYPE nor convertible to the enum");
13725 	    debug_tree (value);
13726 	    debug_tree (name);
13727 	    error_found = true;
13728 	  }
13729 	if (TREE_CODE (name) != IDENTIFIER_NODE)
13730 	  {
13731 	    error ("Enum value name is not IDENTIFIER_NODE");
13732 	    debug_tree (value);
13733 	    debug_tree (name);
13734 	    error_found = true;
13735 	  }
13736       }
13737   else if (TREE_CODE (t) == ARRAY_TYPE)
13738     {
13739       if (TYPE_DOMAIN (t) && TREE_CODE (TYPE_DOMAIN (t)) != INTEGER_TYPE)
13740 	{
13741 	  error ("Array TYPE_DOMAIN is not integer type");
13742 	  debug_tree (TYPE_DOMAIN (t));
13743 	  error_found = true;
13744 	}
13745     }
13746   else if (RECORD_OR_UNION_TYPE_P (t))
13747     {
13748       if (TYPE_FIELDS (t) && !COMPLETE_TYPE_P (t) && in_lto_p)
13749 	{
13750 	  error ("TYPE_FIELDS defined in incomplete type");
13751 	  error_found = true;
13752 	}
13753       for (tree fld = TYPE_FIELDS (t); fld; fld = TREE_CHAIN (fld))
13754 	{
13755 	  /* TODO: verify properties of decls.  */
13756 	  if (TREE_CODE (fld) == FIELD_DECL)
13757 	    ;
13758 	  else if (TREE_CODE (fld) == TYPE_DECL)
13759 	    ;
13760 	  else if (TREE_CODE (fld) == CONST_DECL)
13761 	    ;
13762 	  else if (VAR_P (fld))
13763 	    ;
13764 	  else if (TREE_CODE (fld) == TEMPLATE_DECL)
13765 	    ;
13766 	  else if (TREE_CODE (fld) == USING_DECL)
13767 	    ;
13768 	  else if (TREE_CODE (fld) == FUNCTION_DECL)
13769 	    ;
13770 	  else
13771 	    {
13772 	      error ("Wrong tree in TYPE_FIELDS list");
13773 	      debug_tree (fld);
13774 	      error_found = true;
13775 	    }
13776 	}
13777     }
13778   else if (TREE_CODE (t) == INTEGER_TYPE
13779 	   || TREE_CODE (t) == BOOLEAN_TYPE
13780 	   || TREE_CODE (t) == OFFSET_TYPE
13781 	   || TREE_CODE (t) == REFERENCE_TYPE
13782 	   || TREE_CODE (t) == NULLPTR_TYPE
13783 	   || TREE_CODE (t) == POINTER_TYPE)
13784     {
13785       if (TYPE_CACHED_VALUES_P (t) != (TYPE_CACHED_VALUES (t) != NULL))
13786 	{
13787 	  error ("TYPE_CACHED_VALUES_P is %i while TYPE_CACHED_VALUES is %p",
13788 		 TYPE_CACHED_VALUES_P (t), (void *)TYPE_CACHED_VALUES (t));
13789 	  error_found = true;
13790 	}
13791       else if (TYPE_CACHED_VALUES_P (t) && TREE_CODE (TYPE_CACHED_VALUES (t)) != TREE_VEC)
13792 	{
13793 	  error ("TYPE_CACHED_VALUES is not TREE_VEC");
13794 	  debug_tree (TYPE_CACHED_VALUES (t));
13795 	  error_found = true;
13796 	}
13797       /* Verify just enough of cache to ensure that no one copied it to new type.
13798  	 All copying should go by copy_node that should clear it.  */
13799       else if (TYPE_CACHED_VALUES_P (t))
13800 	{
13801 	  int i;
13802 	  for (i = 0; i < TREE_VEC_LENGTH (TYPE_CACHED_VALUES (t)); i++)
13803 	    if (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)
13804 		&& TREE_TYPE (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)) != t)
13805 	      {
13806 		error ("wrong TYPE_CACHED_VALUES entry");
13807 		debug_tree (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i));
13808 		error_found = true;
13809 		break;
13810 	      }
13811 	}
13812     }
13813   else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
13814     for (tree l = TYPE_ARG_TYPES (t); l; l = TREE_CHAIN (l))
13815       {
13816 	/* C++ FE uses TREE_PURPOSE to store initial values.  */
13817 	if (TREE_PURPOSE (l) && in_lto_p)
13818 	  {
13819 	    error ("TREE_PURPOSE is non-NULL in TYPE_ARG_TYPES list");
13820 	    debug_tree (l);
13821 	    error_found = true;
13822 	  }
13823 	if (!TYPE_P (TREE_VALUE (l)))
13824 	  {
13825 	    error ("Wrong entry in TYPE_ARG_TYPES list");
13826 	    debug_tree (l);
13827 	    error_found = true;
13828 	  }
13829       }
13830   else if (!is_lang_specific (t) && TYPE_VALUES_RAW (t))
13831     {
13832       error ("TYPE_VALUES_RAW field is non-NULL");
13833       debug_tree (TYPE_VALUES_RAW (t));
13834       error_found = true;
13835     }
13836   if (TREE_CODE (t) != INTEGER_TYPE
13837       && TREE_CODE (t) != BOOLEAN_TYPE
13838       && TREE_CODE (t) != OFFSET_TYPE
13839       && TREE_CODE (t) != REFERENCE_TYPE
13840       && TREE_CODE (t) != NULLPTR_TYPE
13841       && TREE_CODE (t) != POINTER_TYPE
13842       && TYPE_CACHED_VALUES_P (t))
13843     {
13844       error ("TYPE_CACHED_VALUES_P is set while it should not");
13845       error_found = true;
13846     }
13847   if (TYPE_STRING_FLAG (t)
13848       && TREE_CODE (t) != ARRAY_TYPE && TREE_CODE (t) != INTEGER_TYPE)
13849     {
13850       error ("TYPE_STRING_FLAG is set on wrong type code");
13851       error_found = true;
13852     }
13853 
13854   /* ipa-devirt makes an assumption that TYPE_METHOD_BASETYPE is always
13855      TYPE_MAIN_VARIANT and it would be odd to add methods only to variatns
13856      of a type. */
13857   if (TREE_CODE (t) == METHOD_TYPE
13858       && TYPE_MAIN_VARIANT (TYPE_METHOD_BASETYPE (t)) != TYPE_METHOD_BASETYPE (t))
13859     {
13860 	error ("TYPE_METHOD_BASETYPE is not main variant");
13861 	error_found = true;
13862     }
13863 
13864   if (error_found)
13865     {
13866       debug_tree (const_cast <tree> (t));
13867       internal_error ("verify_type failed");
13868     }
13869 }
13870 
13871 
13872 /* Return 1 if ARG interpreted as signed in its precision is known to be
13873    always positive or 2 if ARG is known to be always negative, or 3 if
13874    ARG may be positive or negative.  */
13875 
13876 int
13877 get_range_pos_neg (tree arg)
13878 {
13879   if (arg == error_mark_node)
13880     return 3;
13881 
13882   int prec = TYPE_PRECISION (TREE_TYPE (arg));
13883   int cnt = 0;
13884   if (TREE_CODE (arg) == INTEGER_CST)
13885     {
13886       wide_int w = wi::sext (wi::to_wide (arg), prec);
13887       if (wi::neg_p (w))
13888 	return 2;
13889       else
13890 	return 1;
13891     }
13892   while (CONVERT_EXPR_P (arg)
13893 	 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
13894 	 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) <= prec)
13895     {
13896       arg = TREE_OPERAND (arg, 0);
13897       /* Narrower value zero extended into wider type
13898 	 will always result in positive values.  */
13899       if (TYPE_UNSIGNED (TREE_TYPE (arg))
13900 	  && TYPE_PRECISION (TREE_TYPE (arg)) < prec)
13901 	return 1;
13902       prec = TYPE_PRECISION (TREE_TYPE (arg));
13903       if (++cnt > 30)
13904 	return 3;
13905     }
13906 
13907   if (TREE_CODE (arg) != SSA_NAME)
13908     return 3;
13909   wide_int arg_min, arg_max;
13910   while (get_range_info (arg, &arg_min, &arg_max) != VR_RANGE)
13911     {
13912       gimple *g = SSA_NAME_DEF_STMT (arg);
13913       if (is_gimple_assign (g)
13914 	  && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g)))
13915 	{
13916 	  tree t = gimple_assign_rhs1 (g);
13917 	  if (INTEGRAL_TYPE_P (TREE_TYPE (t))
13918 	      && TYPE_PRECISION (TREE_TYPE (t)) <= prec)
13919 	    {
13920 	      if (TYPE_UNSIGNED (TREE_TYPE (t))
13921 		  && TYPE_PRECISION (TREE_TYPE (t)) < prec)
13922 		return 1;
13923 	      prec = TYPE_PRECISION (TREE_TYPE (t));
13924 	      arg = t;
13925 	      if (++cnt > 30)
13926 		return 3;
13927 	      continue;
13928 	    }
13929 	}
13930       return 3;
13931     }
13932   if (TYPE_UNSIGNED (TREE_TYPE (arg)))
13933     {
13934       /* For unsigned values, the "positive" range comes
13935 	 below the "negative" range.  */
13936       if (!wi::neg_p (wi::sext (arg_max, prec), SIGNED))
13937 	return 1;
13938       if (wi::neg_p (wi::sext (arg_min, prec), SIGNED))
13939 	return 2;
13940     }
13941   else
13942     {
13943       if (!wi::neg_p (wi::sext (arg_min, prec), SIGNED))
13944 	return 1;
13945       if (wi::neg_p (wi::sext (arg_max, prec), SIGNED))
13946 	return 2;
13947     }
13948   return 3;
13949 }
13950 
13951 
13952 
13953 
13954 /* Return true if ARG is marked with the nonnull attribute in the
13955    current function signature.  */
13956 
13957 bool
13958 nonnull_arg_p (const_tree arg)
13959 {
13960   tree t, attrs, fntype;
13961   unsigned HOST_WIDE_INT arg_num;
13962 
13963   gcc_assert (TREE_CODE (arg) == PARM_DECL
13964 	      && (POINTER_TYPE_P (TREE_TYPE (arg))
13965 		  || TREE_CODE (TREE_TYPE (arg)) == OFFSET_TYPE));
13966 
13967   /* The static chain decl is always non null.  */
13968   if (arg == cfun->static_chain_decl)
13969     return true;
13970 
13971   /* THIS argument of method is always non-NULL.  */
13972   if (TREE_CODE (TREE_TYPE (cfun->decl)) == METHOD_TYPE
13973       && arg == DECL_ARGUMENTS (cfun->decl)
13974       && flag_delete_null_pointer_checks)
13975     return true;
13976 
13977   /* Values passed by reference are always non-NULL.  */
13978   if (TREE_CODE (TREE_TYPE (arg)) == REFERENCE_TYPE
13979       && flag_delete_null_pointer_checks)
13980     return true;
13981 
13982   fntype = TREE_TYPE (cfun->decl);
13983   for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
13984     {
13985       attrs = lookup_attribute ("nonnull", attrs);
13986 
13987       /* If "nonnull" wasn't specified, we know nothing about the argument.  */
13988       if (attrs == NULL_TREE)
13989 	return false;
13990 
13991       /* If "nonnull" applies to all the arguments, then ARG is non-null.  */
13992       if (TREE_VALUE (attrs) == NULL_TREE)
13993 	return true;
13994 
13995       /* Get the position number for ARG in the function signature.  */
13996       for (arg_num = 1, t = DECL_ARGUMENTS (cfun->decl);
13997 	   t;
13998 	   t = DECL_CHAIN (t), arg_num++)
13999 	{
14000 	  if (t == arg)
14001 	    break;
14002 	}
14003 
14004       gcc_assert (t == arg);
14005 
14006       /* Now see if ARG_NUM is mentioned in the nonnull list.  */
14007       for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
14008 	{
14009 	  if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
14010 	    return true;
14011 	}
14012     }
14013 
14014   return false;
14015 }
14016 
14017 /* Combine LOC and BLOCK to a combined adhoc loc, retaining any range
14018    information.  */
14019 
14020 location_t
14021 set_block (location_t loc, tree block)
14022 {
14023   location_t pure_loc = get_pure_location (loc);
14024   source_range src_range = get_range_from_loc (line_table, loc);
14025   return COMBINE_LOCATION_DATA (line_table, pure_loc, src_range, block);
14026 }
14027 
14028 location_t
14029 set_source_range (tree expr, location_t start, location_t finish)
14030 {
14031   source_range src_range;
14032   src_range.m_start = start;
14033   src_range.m_finish = finish;
14034   return set_source_range (expr, src_range);
14035 }
14036 
14037 location_t
14038 set_source_range (tree expr, source_range src_range)
14039 {
14040   if (!EXPR_P (expr))
14041     return UNKNOWN_LOCATION;
14042 
14043   location_t pure_loc = get_pure_location (EXPR_LOCATION (expr));
14044   location_t adhoc = COMBINE_LOCATION_DATA (line_table,
14045 					    pure_loc,
14046 					    src_range,
14047 					    NULL);
14048   SET_EXPR_LOCATION (expr, adhoc);
14049   return adhoc;
14050 }
14051 
14052 /* Return EXPR, potentially wrapped with a node expression LOC,
14053    if !CAN_HAVE_LOCATION_P (expr).
14054 
14055    NON_LVALUE_EXPR is used for wrapping constants, apart from STRING_CST.
14056    VIEW_CONVERT_EXPR is used for wrapping non-constants and STRING_CST.
14057 
14058    Wrapper nodes can be identified using location_wrapper_p.  */
14059 
14060 tree
14061 maybe_wrap_with_location (tree expr, location_t loc)
14062 {
14063   if (expr == NULL)
14064     return NULL;
14065   if (loc == UNKNOWN_LOCATION)
14066     return expr;
14067   if (CAN_HAVE_LOCATION_P (expr))
14068     return expr;
14069   /* We should only be adding wrappers for constants and for decls,
14070      or for some exceptional tree nodes (e.g. BASELINK in the C++ FE).  */
14071   gcc_assert (CONSTANT_CLASS_P (expr)
14072 	      || DECL_P (expr)
14073 	      || EXCEPTIONAL_CLASS_P (expr));
14074 
14075   /* For now, don't add wrappers to exceptional tree nodes, to minimize
14076      any impact of the wrapper nodes.  */
14077   if (EXCEPTIONAL_CLASS_P (expr))
14078     return expr;
14079 
14080   tree_code code
14081     = (((CONSTANT_CLASS_P (expr) && TREE_CODE (expr) != STRING_CST)
14082 	|| (TREE_CODE (expr) == CONST_DECL && !TREE_STATIC (expr)))
14083        ? NON_LVALUE_EXPR : VIEW_CONVERT_EXPR);
14084   tree wrapper = build1_loc (loc, code, TREE_TYPE (expr), expr);
14085   /* Mark this node as being a wrapper.  */
14086   EXPR_LOCATION_WRAPPER_P (wrapper) = 1;
14087   return wrapper;
14088 }
14089 
14090 /* Return the name of combined function FN, for debugging purposes.  */
14091 
14092 const char *
14093 combined_fn_name (combined_fn fn)
14094 {
14095   if (builtin_fn_p (fn))
14096     {
14097       tree fndecl = builtin_decl_explicit (as_builtin_fn (fn));
14098       return IDENTIFIER_POINTER (DECL_NAME (fndecl));
14099     }
14100   else
14101     return internal_fn_name (as_internal_fn (fn));
14102 }
14103 
14104 /* Return a bitmap with a bit set corresponding to each argument in
14105    a function call type FNTYPE declared with attribute nonnull,
14106    or null if none of the function's argument are nonnull.  The caller
14107    must free the bitmap.  */
14108 
14109 bitmap
14110 get_nonnull_args (const_tree fntype)
14111 {
14112   if (fntype == NULL_TREE)
14113     return NULL;
14114 
14115   tree attrs = TYPE_ATTRIBUTES (fntype);
14116   if (!attrs)
14117     return NULL;
14118 
14119   bitmap argmap = NULL;
14120 
14121   /* A function declaration can specify multiple attribute nonnull,
14122      each with zero or more arguments.  The loop below creates a bitmap
14123      representing a union of all the arguments.  An empty (but non-null)
14124      bitmap means that all arguments have been declaraed nonnull.  */
14125   for ( ; attrs; attrs = TREE_CHAIN (attrs))
14126     {
14127       attrs = lookup_attribute ("nonnull", attrs);
14128       if (!attrs)
14129 	break;
14130 
14131       if (!argmap)
14132 	argmap = BITMAP_ALLOC (NULL);
14133 
14134       if (!TREE_VALUE (attrs))
14135 	{
14136 	  /* Clear the bitmap in case a previous attribute nonnull
14137 	     set it and this one overrides it for all arguments.  */
14138 	  bitmap_clear (argmap);
14139 	  return argmap;
14140 	}
14141 
14142       /* Iterate over the indices of the format arguments declared nonnull
14143 	 and set a bit for each.  */
14144       for (tree idx = TREE_VALUE (attrs); idx; idx = TREE_CHAIN (idx))
14145 	{
14146 	  unsigned int val = TREE_INT_CST_LOW (TREE_VALUE (idx)) - 1;
14147 	  bitmap_set_bit (argmap, val);
14148 	}
14149     }
14150 
14151   return argmap;
14152 }
14153 
14154 /* Returns true if TYPE is a type where it and all of its subobjects
14155    (recursively) are of structure, union, or array type.  */
14156 
14157 static bool
14158 default_is_empty_type (tree type)
14159 {
14160   if (RECORD_OR_UNION_TYPE_P (type))
14161     {
14162       for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
14163 	if (TREE_CODE (field) == FIELD_DECL
14164 	    && !DECL_PADDING_P (field)
14165 	    && !default_is_empty_type (TREE_TYPE (field)))
14166 	  return false;
14167       return true;
14168     }
14169   else if (TREE_CODE (type) == ARRAY_TYPE)
14170     return (integer_minus_onep (array_type_nelts (type))
14171 	    || TYPE_DOMAIN (type) == NULL_TREE
14172 	    || default_is_empty_type (TREE_TYPE (type)));
14173   return false;
14174 }
14175 
14176 /* Implement TARGET_EMPTY_RECORD_P.  Return true if TYPE is an empty type
14177    that shouldn't be passed via stack.  */
14178 
14179 bool
14180 default_is_empty_record (const_tree type)
14181 {
14182   if (!abi_version_at_least (12))
14183     return false;
14184 
14185   if (type == error_mark_node)
14186     return false;
14187 
14188   if (TREE_ADDRESSABLE (type))
14189     return false;
14190 
14191   return default_is_empty_type (TYPE_MAIN_VARIANT (type));
14192 }
14193 
14194 /* Like int_size_in_bytes, but handle empty records specially.  */
14195 
14196 HOST_WIDE_INT
14197 arg_int_size_in_bytes (const_tree type)
14198 {
14199   return TYPE_EMPTY_P (type) ? 0 : int_size_in_bytes (type);
14200 }
14201 
14202 /* Like size_in_bytes, but handle empty records specially.  */
14203 
14204 tree
14205 arg_size_in_bytes (const_tree type)
14206 {
14207   return TYPE_EMPTY_P (type) ? size_zero_node : size_in_bytes (type);
14208 }
14209 
14210 /* Return true if an expression with CODE has to have the same result type as
14211    its first operand.  */
14212 
14213 bool
14214 expr_type_first_operand_type_p (tree_code code)
14215 {
14216   switch (code)
14217     {
14218     case NEGATE_EXPR:
14219     case ABS_EXPR:
14220     case BIT_NOT_EXPR:
14221     case PAREN_EXPR:
14222     case CONJ_EXPR:
14223 
14224     case PLUS_EXPR:
14225     case MINUS_EXPR:
14226     case MULT_EXPR:
14227     case TRUNC_DIV_EXPR:
14228     case CEIL_DIV_EXPR:
14229     case FLOOR_DIV_EXPR:
14230     case ROUND_DIV_EXPR:
14231     case TRUNC_MOD_EXPR:
14232     case CEIL_MOD_EXPR:
14233     case FLOOR_MOD_EXPR:
14234     case ROUND_MOD_EXPR:
14235     case RDIV_EXPR:
14236     case EXACT_DIV_EXPR:
14237     case MIN_EXPR:
14238     case MAX_EXPR:
14239     case BIT_IOR_EXPR:
14240     case BIT_XOR_EXPR:
14241     case BIT_AND_EXPR:
14242 
14243     case LSHIFT_EXPR:
14244     case RSHIFT_EXPR:
14245     case LROTATE_EXPR:
14246     case RROTATE_EXPR:
14247       return true;
14248 
14249     default:
14250       return false;
14251     }
14252 }
14253 
14254 /* List of pointer types used to declare builtins before we have seen their
14255    real declaration.
14256 
14257    Keep the size up to date in tree.h !  */
14258 const builtin_structptr_type builtin_structptr_types[6] =
14259 {
14260   { fileptr_type_node, ptr_type_node, "FILE" },
14261   { const_tm_ptr_type_node, const_ptr_type_node, "tm" },
14262   { fenv_t_ptr_type_node, ptr_type_node, "fenv_t" },
14263   { const_fenv_t_ptr_type_node, const_ptr_type_node, "fenv_t" },
14264   { fexcept_t_ptr_type_node, ptr_type_node, "fexcept_t" },
14265   { const_fexcept_t_ptr_type_node, const_ptr_type_node, "fexcept_t" }
14266 };
14267 
14268 #if CHECKING_P
14269 
14270 namespace selftest {
14271 
14272 /* Selftests for tree.  */
14273 
14274 /* Verify that integer constants are sane.  */
14275 
14276 static void
14277 test_integer_constants ()
14278 {
14279   ASSERT_TRUE (integer_type_node != NULL);
14280   ASSERT_TRUE (build_int_cst (integer_type_node, 0) != NULL);
14281 
14282   tree type = integer_type_node;
14283 
14284   tree zero = build_zero_cst (type);
14285   ASSERT_EQ (INTEGER_CST, TREE_CODE (zero));
14286   ASSERT_EQ (type, TREE_TYPE (zero));
14287 
14288   tree one = build_int_cst (type, 1);
14289   ASSERT_EQ (INTEGER_CST, TREE_CODE (one));
14290   ASSERT_EQ (type, TREE_TYPE (zero));
14291 }
14292 
14293 /* Verify identifiers.  */
14294 
14295 static void
14296 test_identifiers ()
14297 {
14298   tree identifier = get_identifier ("foo");
14299   ASSERT_EQ (3, IDENTIFIER_LENGTH (identifier));
14300   ASSERT_STREQ ("foo", IDENTIFIER_POINTER (identifier));
14301 }
14302 
14303 /* Verify LABEL_DECL.  */
14304 
14305 static void
14306 test_labels ()
14307 {
14308   tree identifier = get_identifier ("err");
14309   tree label_decl = build_decl (UNKNOWN_LOCATION, LABEL_DECL,
14310 				identifier, void_type_node);
14311   ASSERT_EQ (-1, LABEL_DECL_UID (label_decl));
14312   ASSERT_FALSE (FORCED_LABEL (label_decl));
14313 }
14314 
14315 /* Return a new VECTOR_CST node whose type is TYPE and whose values
14316    are given by VALS.  */
14317 
14318 static tree
14319 build_vector (tree type, vec<tree> vals MEM_STAT_DECL)
14320 {
14321   gcc_assert (known_eq (vals.length (), TYPE_VECTOR_SUBPARTS (type)));
14322   tree_vector_builder builder (type, vals.length (), 1);
14323   builder.splice (vals);
14324   return builder.build ();
14325 }
14326 
14327 /* Check that VECTOR_CST ACTUAL contains the elements in EXPECTED.  */
14328 
14329 static void
14330 check_vector_cst (vec<tree> expected, tree actual)
14331 {
14332   ASSERT_KNOWN_EQ (expected.length (),
14333 		   TYPE_VECTOR_SUBPARTS (TREE_TYPE (actual)));
14334   for (unsigned int i = 0; i < expected.length (); ++i)
14335     ASSERT_EQ (wi::to_wide (expected[i]),
14336 	       wi::to_wide (vector_cst_elt (actual, i)));
14337 }
14338 
14339 /* Check that VECTOR_CST ACTUAL contains NPATTERNS duplicated elements,
14340    and that its elements match EXPECTED.  */
14341 
14342 static void
14343 check_vector_cst_duplicate (vec<tree> expected, tree actual,
14344 			    unsigned int npatterns)
14345 {
14346   ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
14347   ASSERT_EQ (1, VECTOR_CST_NELTS_PER_PATTERN (actual));
14348   ASSERT_EQ (npatterns, vector_cst_encoded_nelts (actual));
14349   ASSERT_TRUE (VECTOR_CST_DUPLICATE_P (actual));
14350   ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
14351   check_vector_cst (expected, actual);
14352 }
14353 
14354 /* Check that VECTOR_CST ACTUAL contains NPATTERNS foreground elements
14355    and NPATTERNS background elements, and that its elements match
14356    EXPECTED.  */
14357 
14358 static void
14359 check_vector_cst_fill (vec<tree> expected, tree actual,
14360 		       unsigned int npatterns)
14361 {
14362   ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
14363   ASSERT_EQ (2, VECTOR_CST_NELTS_PER_PATTERN (actual));
14364   ASSERT_EQ (2 * npatterns, vector_cst_encoded_nelts (actual));
14365   ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
14366   ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
14367   check_vector_cst (expected, actual);
14368 }
14369 
14370 /* Check that VECTOR_CST ACTUAL contains NPATTERNS stepped patterns,
14371    and that its elements match EXPECTED.  */
14372 
14373 static void
14374 check_vector_cst_stepped (vec<tree> expected, tree actual,
14375 			  unsigned int npatterns)
14376 {
14377   ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
14378   ASSERT_EQ (3, VECTOR_CST_NELTS_PER_PATTERN (actual));
14379   ASSERT_EQ (3 * npatterns, vector_cst_encoded_nelts (actual));
14380   ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
14381   ASSERT_TRUE (VECTOR_CST_STEPPED_P (actual));
14382   check_vector_cst (expected, actual);
14383 }
14384 
14385 /* Test the creation of VECTOR_CSTs.  */
14386 
14387 static void
14388 test_vector_cst_patterns (ALONE_CXX_MEM_STAT_INFO)
14389 {
14390   auto_vec<tree, 8> elements (8);
14391   elements.quick_grow (8);
14392   tree element_type = build_nonstandard_integer_type (16, true);
14393   tree vector_type = build_vector_type (element_type, 8);
14394 
14395   /* Test a simple linear series with a base of 0 and a step of 1:
14396      { 0, 1, 2, 3, 4, 5, 6, 7 }.  */
14397   for (unsigned int i = 0; i < 8; ++i)
14398     elements[i] = build_int_cst (element_type, i);
14399   tree vector = build_vector (vector_type, elements PASS_MEM_STAT);
14400   check_vector_cst_stepped (elements, vector, 1);
14401 
14402   /* Try the same with the first element replaced by 100:
14403      { 100, 1, 2, 3, 4, 5, 6, 7 }.  */
14404   elements[0] = build_int_cst (element_type, 100);
14405   vector = build_vector (vector_type, elements PASS_MEM_STAT);
14406   check_vector_cst_stepped (elements, vector, 1);
14407 
14408   /* Try a series that wraps around.
14409      { 100, 65531, 65532, 65533, 65534, 65535, 0, 1 }.  */
14410   for (unsigned int i = 1; i < 8; ++i)
14411     elements[i] = build_int_cst (element_type, (65530 + i) & 0xffff);
14412   vector = build_vector (vector_type, elements PASS_MEM_STAT);
14413   check_vector_cst_stepped (elements, vector, 1);
14414 
14415   /* Try a downward series:
14416      { 100, 79, 78, 77, 76, 75, 75, 73 }.  */
14417   for (unsigned int i = 1; i < 8; ++i)
14418     elements[i] = build_int_cst (element_type, 80 - i);
14419   vector = build_vector (vector_type, elements PASS_MEM_STAT);
14420   check_vector_cst_stepped (elements, vector, 1);
14421 
14422   /* Try two interleaved series with different bases and steps:
14423      { 100, 53, 66, 206, 62, 212, 58, 218 }.  */
14424   elements[1] = build_int_cst (element_type, 53);
14425   for (unsigned int i = 2; i < 8; i += 2)
14426     {
14427       elements[i] = build_int_cst (element_type, 70 - i * 2);
14428       elements[i + 1] = build_int_cst (element_type, 200 + i * 3);
14429     }
14430   vector = build_vector (vector_type, elements PASS_MEM_STAT);
14431   check_vector_cst_stepped (elements, vector, 2);
14432 
14433   /* Try a duplicated value:
14434      { 100, 100, 100, 100, 100, 100, 100, 100 }.  */
14435   for (unsigned int i = 1; i < 8; ++i)
14436     elements[i] = elements[0];
14437   vector = build_vector (vector_type, elements PASS_MEM_STAT);
14438   check_vector_cst_duplicate (elements, vector, 1);
14439 
14440   /* Try an interleaved duplicated value:
14441      { 100, 55, 100, 55, 100, 55, 100, 55 }.  */
14442   elements[1] = build_int_cst (element_type, 55);
14443   for (unsigned int i = 2; i < 8; ++i)
14444     elements[i] = elements[i - 2];
14445   vector = build_vector (vector_type, elements PASS_MEM_STAT);
14446   check_vector_cst_duplicate (elements, vector, 2);
14447 
14448   /* Try a duplicated value with 2 exceptions
14449      { 41, 97, 100, 55, 100, 55, 100, 55 }.  */
14450   elements[0] = build_int_cst (element_type, 41);
14451   elements[1] = build_int_cst (element_type, 97);
14452   vector = build_vector (vector_type, elements PASS_MEM_STAT);
14453   check_vector_cst_fill (elements, vector, 2);
14454 
14455   /* Try with and without a step
14456      { 41, 97, 100, 21, 100, 35, 100, 49 }.  */
14457   for (unsigned int i = 3; i < 8; i += 2)
14458     elements[i] = build_int_cst (element_type, i * 7);
14459   vector = build_vector (vector_type, elements PASS_MEM_STAT);
14460   check_vector_cst_stepped (elements, vector, 2);
14461 
14462   /* Try a fully-general constant:
14463      { 41, 97, 100, 21, 100, 9990, 100, 49 }.  */
14464   elements[5] = build_int_cst (element_type, 9990);
14465   vector = build_vector (vector_type, elements PASS_MEM_STAT);
14466   check_vector_cst_fill (elements, vector, 4);
14467 }
14468 
14469 /* Verify that STRIP_NOPS (NODE) is EXPECTED.
14470    Helper function for test_location_wrappers, to deal with STRIP_NOPS
14471    modifying its argument in-place.  */
14472 
14473 static void
14474 check_strip_nops (tree node, tree expected)
14475 {
14476   STRIP_NOPS (node);
14477   ASSERT_EQ (expected, node);
14478 }
14479 
14480 /* Verify location wrappers.  */
14481 
14482 static void
14483 test_location_wrappers ()
14484 {
14485   location_t loc = BUILTINS_LOCATION;
14486 
14487   ASSERT_EQ (NULL_TREE, maybe_wrap_with_location (NULL_TREE, loc));
14488 
14489   /* Wrapping a constant.  */
14490   tree int_cst = build_int_cst (integer_type_node, 42);
14491   ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_cst));
14492   ASSERT_FALSE (location_wrapper_p (int_cst));
14493 
14494   tree wrapped_int_cst = maybe_wrap_with_location (int_cst, loc);
14495   ASSERT_TRUE (location_wrapper_p (wrapped_int_cst));
14496   ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_cst));
14497   ASSERT_EQ (int_cst, tree_strip_any_location_wrapper (wrapped_int_cst));
14498 
14499   /* We shouldn't add wrapper nodes for UNKNOWN_LOCATION.  */
14500   ASSERT_EQ (int_cst, maybe_wrap_with_location (int_cst, UNKNOWN_LOCATION));
14501 
14502   /* We shouldn't add wrapper nodes for nodes that CAN_HAVE_LOCATION_P.  */
14503   tree cast = build1 (NOP_EXPR, char_type_node, int_cst);
14504   ASSERT_TRUE (CAN_HAVE_LOCATION_P (cast));
14505   ASSERT_EQ (cast, maybe_wrap_with_location (cast, loc));
14506 
14507   /* Wrapping a STRING_CST.  */
14508   tree string_cst = build_string (4, "foo");
14509   ASSERT_FALSE (CAN_HAVE_LOCATION_P (string_cst));
14510   ASSERT_FALSE (location_wrapper_p (string_cst));
14511 
14512   tree wrapped_string_cst = maybe_wrap_with_location (string_cst, loc);
14513   ASSERT_TRUE (location_wrapper_p (wrapped_string_cst));
14514   ASSERT_EQ (VIEW_CONVERT_EXPR, TREE_CODE (wrapped_string_cst));
14515   ASSERT_EQ (loc, EXPR_LOCATION (wrapped_string_cst));
14516   ASSERT_EQ (string_cst, tree_strip_any_location_wrapper (wrapped_string_cst));
14517 
14518 
14519   /* Wrapping a variable.  */
14520   tree int_var = build_decl (UNKNOWN_LOCATION, VAR_DECL,
14521 			     get_identifier ("some_int_var"),
14522 			     integer_type_node);
14523   ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_var));
14524   ASSERT_FALSE (location_wrapper_p (int_var));
14525 
14526   tree wrapped_int_var = maybe_wrap_with_location (int_var, loc);
14527   ASSERT_TRUE (location_wrapper_p (wrapped_int_var));
14528   ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_var));
14529   ASSERT_EQ (int_var, tree_strip_any_location_wrapper (wrapped_int_var));
14530 
14531   /* Verify that "reinterpret_cast<int>(some_int_var)" is not a location
14532      wrapper.  */
14533   tree r_cast = build1 (NON_LVALUE_EXPR, integer_type_node, int_var);
14534   ASSERT_FALSE (location_wrapper_p (r_cast));
14535   ASSERT_EQ (r_cast, tree_strip_any_location_wrapper (r_cast));
14536 
14537   /* Verify that STRIP_NOPS removes wrappers.  */
14538   check_strip_nops (wrapped_int_cst, int_cst);
14539   check_strip_nops (wrapped_string_cst, string_cst);
14540   check_strip_nops (wrapped_int_var, int_var);
14541 }
14542 
14543 /* Run all of the selftests within this file.  */
14544 
14545 void
14546 tree_c_tests ()
14547 {
14548   test_integer_constants ();
14549   test_identifiers ();
14550   test_labels ();
14551   test_vector_cst_patterns ();
14552   test_location_wrappers ();
14553 }
14554 
14555 } // namespace selftest
14556 
14557 #endif /* CHECKING_P */
14558 
14559 #include "gt-tree.h"
14560