xref: /dragonfly/contrib/gcc-8.0/gcc/tree.c (revision ef2b2b9d)
1 /* Language-independent node constructors for parse phase of GNU compiler.
2    Copyright (C) 1987-2018 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 /* This file contains the low level primitives for operating on tree nodes,
21    including allocation, list operations, interning of identifiers,
22    construction of data type nodes and statement nodes,
23    and construction of type conversion nodes.  It also contains
24    tables index by tree code that describe how to take apart
25    nodes of that code.
26 
27    It is intended to be language-independent but can occasionally
28    calls language-dependent routines.  */
29 
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "backend.h"
34 #include "target.h"
35 #include "tree.h"
36 #include "gimple.h"
37 #include "tree-pass.h"
38 #include "ssa.h"
39 #include "cgraph.h"
40 #include "diagnostic.h"
41 #include "flags.h"
42 #include "alias.h"
43 #include "fold-const.h"
44 #include "stor-layout.h"
45 #include "calls.h"
46 #include "attribs.h"
47 #include "toplev.h" /* get_random_seed */
48 #include "output.h"
49 #include "common/common-target.h"
50 #include "langhooks.h"
51 #include "tree-inline.h"
52 #include "tree-iterator.h"
53 #include "internal-fn.h"
54 #include "gimple-iterator.h"
55 #include "gimplify.h"
56 #include "tree-dfa.h"
57 #include "params.h"
58 #include "langhooks-def.h"
59 #include "tree-diagnostic.h"
60 #include "except.h"
61 #include "builtins.h"
62 #include "print-tree.h"
63 #include "ipa-utils.h"
64 #include "selftest.h"
65 #include "stringpool.h"
66 #include "attribs.h"
67 #include "rtl.h"
68 #include "regs.h"
69 #include "tree-vector-builder.h"
70 
71 /* Tree code classes.  */
72 
73 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
74 #define END_OF_BASE_TREE_CODES tcc_exceptional,
75 
76 const enum tree_code_class tree_code_type[] = {
77 #include "all-tree.def"
78 };
79 
80 #undef DEFTREECODE
81 #undef END_OF_BASE_TREE_CODES
82 
83 /* Table indexed by tree code giving number of expression
84    operands beyond the fixed part of the node structure.
85    Not used for types or decls.  */
86 
87 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
88 #define END_OF_BASE_TREE_CODES 0,
89 
90 const unsigned char tree_code_length[] = {
91 #include "all-tree.def"
92 };
93 
94 #undef DEFTREECODE
95 #undef END_OF_BASE_TREE_CODES
96 
97 /* Names of tree components.
98    Used for printing out the tree and error messages.  */
99 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
100 #define END_OF_BASE_TREE_CODES "@dummy",
101 
102 static const char *const tree_code_name[] = {
103 #include "all-tree.def"
104 };
105 
106 #undef DEFTREECODE
107 #undef END_OF_BASE_TREE_CODES
108 
109 /* Each tree code class has an associated string representation.
110    These must correspond to the tree_code_class entries.  */
111 
112 const char *const tree_code_class_strings[] =
113 {
114   "exceptional",
115   "constant",
116   "type",
117   "declaration",
118   "reference",
119   "comparison",
120   "unary",
121   "binary",
122   "statement",
123   "vl_exp",
124   "expression"
125 };
126 
127 /* obstack.[ch] explicitly declined to prototype this.  */
128 extern int _obstack_allocated_p (struct obstack *h, void *obj);
129 
130 /* Statistics-gathering stuff.  */
131 
132 static uint64_t tree_code_counts[MAX_TREE_CODES];
133 uint64_t tree_node_counts[(int) all_kinds];
134 uint64_t tree_node_sizes[(int) all_kinds];
135 
136 /* Keep in sync with tree.h:enum tree_node_kind.  */
137 static const char * const tree_node_kind_names[] = {
138   "decls",
139   "types",
140   "blocks",
141   "stmts",
142   "refs",
143   "exprs",
144   "constants",
145   "identifiers",
146   "vecs",
147   "binfos",
148   "ssa names",
149   "constructors",
150   "random kinds",
151   "lang_decl kinds",
152   "lang_type kinds",
153   "omp clauses",
154 };
155 
156 /* Unique id for next decl created.  */
157 static GTY(()) int next_decl_uid;
158 /* Unique id for next type created.  */
159 static GTY(()) unsigned next_type_uid = 1;
160 /* Unique id for next debug decl created.  Use negative numbers,
161    to catch erroneous uses.  */
162 static GTY(()) int next_debug_decl_uid;
163 
164 /* Since we cannot rehash a type after it is in the table, we have to
165    keep the hash code.  */
166 
167 struct GTY((for_user)) type_hash {
168   unsigned long hash;
169   tree type;
170 };
171 
172 /* Initial size of the hash table (rounded to next prime).  */
173 #define TYPE_HASH_INITIAL_SIZE 1000
174 
175 struct type_cache_hasher : ggc_cache_ptr_hash<type_hash>
176 {
177   static hashval_t hash (type_hash *t) { return t->hash; }
178   static bool equal (type_hash *a, type_hash *b);
179 
180   static int
181   keep_cache_entry (type_hash *&t)
182   {
183     return ggc_marked_p (t->type);
184   }
185 };
186 
187 /* Now here is the hash table.  When recording a type, it is added to
188    the slot whose index is the hash code.  Note that the hash table is
189    used for several kinds of types (function types, array types and
190    array index range types, for now).  While all these live in the
191    same table, they are completely independent, and the hash code is
192    computed differently for each of these.  */
193 
194 static GTY ((cache)) hash_table<type_cache_hasher> *type_hash_table;
195 
196 /* Hash table and temporary node for larger integer const values.  */
197 static GTY (()) tree int_cst_node;
198 
199 struct int_cst_hasher : ggc_cache_ptr_hash<tree_node>
200 {
201   static hashval_t hash (tree t);
202   static bool equal (tree x, tree y);
203 };
204 
205 static GTY ((cache)) hash_table<int_cst_hasher> *int_cst_hash_table;
206 
207 /* Class and variable for making sure that there is a single POLY_INT_CST
208    for a given value.  */
209 struct poly_int_cst_hasher : ggc_cache_ptr_hash<tree_node>
210 {
211   typedef std::pair<tree, const poly_wide_int *> compare_type;
212   static hashval_t hash (tree t);
213   static bool equal (tree x, const compare_type &y);
214 };
215 
216 static GTY ((cache)) hash_table<poly_int_cst_hasher> *poly_int_cst_hash_table;
217 
218 /* Hash table for optimization flags and target option flags.  Use the same
219    hash table for both sets of options.  Nodes for building the current
220    optimization and target option nodes.  The assumption is most of the time
221    the options created will already be in the hash table, so we avoid
222    allocating and freeing up a node repeatably.  */
223 static GTY (()) tree cl_optimization_node;
224 static GTY (()) tree cl_target_option_node;
225 
226 struct cl_option_hasher : ggc_cache_ptr_hash<tree_node>
227 {
228   static hashval_t hash (tree t);
229   static bool equal (tree x, tree y);
230 };
231 
232 static GTY ((cache)) hash_table<cl_option_hasher> *cl_option_hash_table;
233 
234 /* General tree->tree mapping  structure for use in hash tables.  */
235 
236 
237 static GTY ((cache))
238      hash_table<tree_decl_map_cache_hasher> *debug_expr_for_decl;
239 
240 static GTY ((cache))
241      hash_table<tree_decl_map_cache_hasher> *value_expr_for_decl;
242 
243 struct tree_vec_map_cache_hasher : ggc_cache_ptr_hash<tree_vec_map>
244 {
245   static hashval_t hash (tree_vec_map *m) { return DECL_UID (m->base.from); }
246 
247   static bool
248   equal (tree_vec_map *a, tree_vec_map *b)
249   {
250     return a->base.from == b->base.from;
251   }
252 
253   static int
254   keep_cache_entry (tree_vec_map *&m)
255   {
256     return ggc_marked_p (m->base.from);
257   }
258 };
259 
260 static GTY ((cache))
261      hash_table<tree_vec_map_cache_hasher> *debug_args_for_decl;
262 
263 static void set_type_quals (tree, int);
264 static void print_type_hash_statistics (void);
265 static void print_debug_expr_statistics (void);
266 static void print_value_expr_statistics (void);
267 
268 tree global_trees[TI_MAX];
269 tree integer_types[itk_none];
270 
271 bool int_n_enabled_p[NUM_INT_N_ENTS];
272 struct int_n_trees_t int_n_trees [NUM_INT_N_ENTS];
273 
274 bool tree_contains_struct[MAX_TREE_CODES][64];
275 
276 /* Number of operands for each OpenMP clause.  */
277 unsigned const char omp_clause_num_ops[] =
278 {
279   0, /* OMP_CLAUSE_ERROR  */
280   1, /* OMP_CLAUSE_PRIVATE  */
281   1, /* OMP_CLAUSE_SHARED  */
282   1, /* OMP_CLAUSE_FIRSTPRIVATE  */
283   2, /* OMP_CLAUSE_LASTPRIVATE  */
284   5, /* OMP_CLAUSE_REDUCTION  */
285   1, /* OMP_CLAUSE_COPYIN  */
286   1, /* OMP_CLAUSE_COPYPRIVATE  */
287   3, /* OMP_CLAUSE_LINEAR  */
288   2, /* OMP_CLAUSE_ALIGNED  */
289   1, /* OMP_CLAUSE_DEPEND  */
290   1, /* OMP_CLAUSE_UNIFORM  */
291   1, /* OMP_CLAUSE_TO_DECLARE  */
292   1, /* OMP_CLAUSE_LINK  */
293   2, /* OMP_CLAUSE_FROM  */
294   2, /* OMP_CLAUSE_TO  */
295   2, /* OMP_CLAUSE_MAP  */
296   1, /* OMP_CLAUSE_USE_DEVICE_PTR  */
297   1, /* OMP_CLAUSE_IS_DEVICE_PTR  */
298   2, /* OMP_CLAUSE__CACHE_  */
299   2, /* OMP_CLAUSE_GANG  */
300   1, /* OMP_CLAUSE_ASYNC  */
301   1, /* OMP_CLAUSE_WAIT  */
302   0, /* OMP_CLAUSE_AUTO  */
303   0, /* OMP_CLAUSE_SEQ  */
304   1, /* OMP_CLAUSE__LOOPTEMP_  */
305   1, /* OMP_CLAUSE_IF  */
306   1, /* OMP_CLAUSE_NUM_THREADS  */
307   1, /* OMP_CLAUSE_SCHEDULE  */
308   0, /* OMP_CLAUSE_NOWAIT  */
309   1, /* OMP_CLAUSE_ORDERED  */
310   0, /* OMP_CLAUSE_DEFAULT  */
311   3, /* OMP_CLAUSE_COLLAPSE  */
312   0, /* OMP_CLAUSE_UNTIED   */
313   1, /* OMP_CLAUSE_FINAL  */
314   0, /* OMP_CLAUSE_MERGEABLE  */
315   1, /* OMP_CLAUSE_DEVICE  */
316   1, /* OMP_CLAUSE_DIST_SCHEDULE  */
317   0, /* OMP_CLAUSE_INBRANCH  */
318   0, /* OMP_CLAUSE_NOTINBRANCH  */
319   1, /* OMP_CLAUSE_NUM_TEAMS  */
320   1, /* OMP_CLAUSE_THREAD_LIMIT  */
321   0, /* OMP_CLAUSE_PROC_BIND  */
322   1, /* OMP_CLAUSE_SAFELEN  */
323   1, /* OMP_CLAUSE_SIMDLEN  */
324   0, /* OMP_CLAUSE_FOR  */
325   0, /* OMP_CLAUSE_PARALLEL  */
326   0, /* OMP_CLAUSE_SECTIONS  */
327   0, /* OMP_CLAUSE_TASKGROUP  */
328   1, /* OMP_CLAUSE_PRIORITY  */
329   1, /* OMP_CLAUSE_GRAINSIZE  */
330   1, /* OMP_CLAUSE_NUM_TASKS  */
331   0, /* OMP_CLAUSE_NOGROUP  */
332   0, /* OMP_CLAUSE_THREADS  */
333   0, /* OMP_CLAUSE_SIMD  */
334   1, /* OMP_CLAUSE_HINT  */
335   0, /* OMP_CLAUSE_DEFALTMAP  */
336   1, /* OMP_CLAUSE__SIMDUID_  */
337   0, /* OMP_CLAUSE__SIMT_  */
338   0, /* OMP_CLAUSE_INDEPENDENT  */
339   1, /* OMP_CLAUSE_WORKER  */
340   1, /* OMP_CLAUSE_VECTOR  */
341   1, /* OMP_CLAUSE_NUM_GANGS  */
342   1, /* OMP_CLAUSE_NUM_WORKERS  */
343   1, /* OMP_CLAUSE_VECTOR_LENGTH  */
344   3, /* OMP_CLAUSE_TILE  */
345   2, /* OMP_CLAUSE__GRIDDIM_  */
346 };
347 
348 const char * const omp_clause_code_name[] =
349 {
350   "error_clause",
351   "private",
352   "shared",
353   "firstprivate",
354   "lastprivate",
355   "reduction",
356   "copyin",
357   "copyprivate",
358   "linear",
359   "aligned",
360   "depend",
361   "uniform",
362   "to",
363   "link",
364   "from",
365   "to",
366   "map",
367   "use_device_ptr",
368   "is_device_ptr",
369   "_cache_",
370   "gang",
371   "async",
372   "wait",
373   "auto",
374   "seq",
375   "_looptemp_",
376   "if",
377   "num_threads",
378   "schedule",
379   "nowait",
380   "ordered",
381   "default",
382   "collapse",
383   "untied",
384   "final",
385   "mergeable",
386   "device",
387   "dist_schedule",
388   "inbranch",
389   "notinbranch",
390   "num_teams",
391   "thread_limit",
392   "proc_bind",
393   "safelen",
394   "simdlen",
395   "for",
396   "parallel",
397   "sections",
398   "taskgroup",
399   "priority",
400   "grainsize",
401   "num_tasks",
402   "nogroup",
403   "threads",
404   "simd",
405   "hint",
406   "defaultmap",
407   "_simduid_",
408   "_simt_",
409   "independent",
410   "worker",
411   "vector",
412   "num_gangs",
413   "num_workers",
414   "vector_length",
415   "tile",
416   "_griddim_"
417 };
418 
419 
420 /* Return the tree node structure used by tree code CODE.  */
421 
422 static inline enum tree_node_structure_enum
423 tree_node_structure_for_code (enum tree_code code)
424 {
425   switch (TREE_CODE_CLASS (code))
426     {
427     case tcc_declaration:
428       {
429 	switch (code)
430 	  {
431 	  case FIELD_DECL:
432 	    return TS_FIELD_DECL;
433 	  case PARM_DECL:
434 	    return TS_PARM_DECL;
435 	  case VAR_DECL:
436 	    return TS_VAR_DECL;
437 	  case LABEL_DECL:
438 	    return TS_LABEL_DECL;
439 	  case RESULT_DECL:
440 	    return TS_RESULT_DECL;
441 	  case DEBUG_EXPR_DECL:
442 	    return TS_DECL_WRTL;
443 	  case CONST_DECL:
444 	    return TS_CONST_DECL;
445 	  case TYPE_DECL:
446 	    return TS_TYPE_DECL;
447 	  case FUNCTION_DECL:
448 	    return TS_FUNCTION_DECL;
449 	  case TRANSLATION_UNIT_DECL:
450 	    return TS_TRANSLATION_UNIT_DECL;
451 	  default:
452 	    return TS_DECL_NON_COMMON;
453 	  }
454       }
455     case tcc_type:
456       return TS_TYPE_NON_COMMON;
457     case tcc_reference:
458     case tcc_comparison:
459     case tcc_unary:
460     case tcc_binary:
461     case tcc_expression:
462     case tcc_statement:
463     case tcc_vl_exp:
464       return TS_EXP;
465     default:  /* tcc_constant and tcc_exceptional */
466       break;
467     }
468   switch (code)
469     {
470       /* tcc_constant cases.  */
471     case VOID_CST:		return TS_TYPED;
472     case INTEGER_CST:		return TS_INT_CST;
473     case POLY_INT_CST:		return TS_POLY_INT_CST;
474     case REAL_CST:		return TS_REAL_CST;
475     case FIXED_CST:		return TS_FIXED_CST;
476     case COMPLEX_CST:		return TS_COMPLEX;
477     case VECTOR_CST:		return TS_VECTOR;
478     case STRING_CST:		return TS_STRING;
479       /* tcc_exceptional cases.  */
480     case ERROR_MARK:		return TS_COMMON;
481     case IDENTIFIER_NODE:	return TS_IDENTIFIER;
482     case TREE_LIST:		return TS_LIST;
483     case TREE_VEC:		return TS_VEC;
484     case SSA_NAME:		return TS_SSA_NAME;
485     case PLACEHOLDER_EXPR:	return TS_COMMON;
486     case STATEMENT_LIST:	return TS_STATEMENT_LIST;
487     case BLOCK:			return TS_BLOCK;
488     case CONSTRUCTOR:		return TS_CONSTRUCTOR;
489     case TREE_BINFO:		return TS_BINFO;
490     case OMP_CLAUSE:		return TS_OMP_CLAUSE;
491     case OPTIMIZATION_NODE:	return TS_OPTIMIZATION;
492     case TARGET_OPTION_NODE:	return TS_TARGET_OPTION;
493 
494     default:
495       gcc_unreachable ();
496     }
497 }
498 
499 
500 /* Initialize tree_contains_struct to describe the hierarchy of tree
501    nodes.  */
502 
503 static void
504 initialize_tree_contains_struct (void)
505 {
506   unsigned i;
507 
508   for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
509     {
510       enum tree_code code;
511       enum tree_node_structure_enum ts_code;
512 
513       code = (enum tree_code) i;
514       ts_code = tree_node_structure_for_code (code);
515 
516       /* Mark the TS structure itself.  */
517       tree_contains_struct[code][ts_code] = 1;
518 
519       /* Mark all the structures that TS is derived from.  */
520       switch (ts_code)
521 	{
522 	case TS_TYPED:
523 	case TS_BLOCK:
524 	case TS_OPTIMIZATION:
525 	case TS_TARGET_OPTION:
526 	  MARK_TS_BASE (code);
527 	  break;
528 
529 	case TS_COMMON:
530 	case TS_INT_CST:
531 	case TS_POLY_INT_CST:
532 	case TS_REAL_CST:
533 	case TS_FIXED_CST:
534 	case TS_VECTOR:
535 	case TS_STRING:
536 	case TS_COMPLEX:
537 	case TS_SSA_NAME:
538 	case TS_CONSTRUCTOR:
539 	case TS_EXP:
540 	case TS_STATEMENT_LIST:
541 	  MARK_TS_TYPED (code);
542 	  break;
543 
544 	case TS_IDENTIFIER:
545 	case TS_DECL_MINIMAL:
546 	case TS_TYPE_COMMON:
547 	case TS_LIST:
548 	case TS_VEC:
549 	case TS_BINFO:
550 	case TS_OMP_CLAUSE:
551 	  MARK_TS_COMMON (code);
552 	  break;
553 
554 	case TS_TYPE_WITH_LANG_SPECIFIC:
555 	  MARK_TS_TYPE_COMMON (code);
556 	  break;
557 
558 	case TS_TYPE_NON_COMMON:
559 	  MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
560 	  break;
561 
562 	case TS_DECL_COMMON:
563 	  MARK_TS_DECL_MINIMAL (code);
564 	  break;
565 
566 	case TS_DECL_WRTL:
567 	case TS_CONST_DECL:
568 	  MARK_TS_DECL_COMMON (code);
569 	  break;
570 
571 	case TS_DECL_NON_COMMON:
572 	  MARK_TS_DECL_WITH_VIS (code);
573 	  break;
574 
575 	case TS_DECL_WITH_VIS:
576 	case TS_PARM_DECL:
577 	case TS_LABEL_DECL:
578 	case TS_RESULT_DECL:
579 	  MARK_TS_DECL_WRTL (code);
580 	  break;
581 
582 	case TS_FIELD_DECL:
583 	  MARK_TS_DECL_COMMON (code);
584 	  break;
585 
586 	case TS_VAR_DECL:
587 	  MARK_TS_DECL_WITH_VIS (code);
588 	  break;
589 
590 	case TS_TYPE_DECL:
591 	case TS_FUNCTION_DECL:
592 	  MARK_TS_DECL_NON_COMMON (code);
593 	  break;
594 
595 	case TS_TRANSLATION_UNIT_DECL:
596 	  MARK_TS_DECL_COMMON (code);
597 	  break;
598 
599 	default:
600 	  gcc_unreachable ();
601 	}
602     }
603 
604   /* Basic consistency checks for attributes used in fold.  */
605   gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
606   gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
607   gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
608   gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
609   gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
610   gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
611   gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
612   gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
613   gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
614   gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
615   gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
616   gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
617   gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
618   gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
619   gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
620   gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
621   gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
622   gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
623   gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
624   gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
625   gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
626   gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
627   gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
628   gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
629   gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
630   gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
631   gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
632   gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
633   gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
634   gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
635   gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
636   gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
637   gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
638   gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
639   gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
640   gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
641   gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
642   gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
643   gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_MINIMAL]);
644   gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_COMMON]);
645 }
646 
647 
648 /* Init tree.c.  */
649 
650 void
651 init_ttree (void)
652 {
653   /* Initialize the hash table of types.  */
654   type_hash_table
655     = hash_table<type_cache_hasher>::create_ggc (TYPE_HASH_INITIAL_SIZE);
656 
657   debug_expr_for_decl
658     = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
659 
660   value_expr_for_decl
661     = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
662 
663   int_cst_hash_table = hash_table<int_cst_hasher>::create_ggc (1024);
664 
665   poly_int_cst_hash_table = hash_table<poly_int_cst_hasher>::create_ggc (64);
666 
667   int_cst_node = make_int_cst (1, 1);
668 
669   cl_option_hash_table = hash_table<cl_option_hasher>::create_ggc (64);
670 
671   cl_optimization_node = make_node (OPTIMIZATION_NODE);
672   cl_target_option_node = make_node (TARGET_OPTION_NODE);
673 
674   /* Initialize the tree_contains_struct array.  */
675   initialize_tree_contains_struct ();
676   lang_hooks.init_ts ();
677 }
678 
679 
680 /* The name of the object as the assembler will see it (but before any
681    translations made by ASM_OUTPUT_LABELREF).  Often this is the same
682    as DECL_NAME.  It is an IDENTIFIER_NODE.  */
683 tree
684 decl_assembler_name (tree decl)
685 {
686   if (!DECL_ASSEMBLER_NAME_SET_P (decl))
687     lang_hooks.set_decl_assembler_name (decl);
688   return DECL_ASSEMBLER_NAME_RAW (decl);
689 }
690 
691 /* The DECL_ASSEMBLER_NAME_RAW of DECL is being explicitly set to NAME
692    (either of which may be NULL).  Inform the FE, if this changes the
693    name.  */
694 
695 void
696 overwrite_decl_assembler_name (tree decl, tree name)
697 {
698   if (DECL_ASSEMBLER_NAME_RAW (decl) != name)
699     lang_hooks.overwrite_decl_assembler_name (decl, name);
700 }
701 
702 /* When the target supports COMDAT groups, this indicates which group the
703    DECL is associated with.  This can be either an IDENTIFIER_NODE or a
704    decl, in which case its DECL_ASSEMBLER_NAME identifies the group.  */
705 tree
706 decl_comdat_group (const_tree node)
707 {
708   struct symtab_node *snode = symtab_node::get (node);
709   if (!snode)
710     return NULL;
711   return snode->get_comdat_group ();
712 }
713 
714 /* Likewise, but make sure it's been reduced to an IDENTIFIER_NODE.  */
715 tree
716 decl_comdat_group_id (const_tree node)
717 {
718   struct symtab_node *snode = symtab_node::get (node);
719   if (!snode)
720     return NULL;
721   return snode->get_comdat_group_id ();
722 }
723 
724 /* When the target supports named section, return its name as IDENTIFIER_NODE
725    or NULL if it is in no section.  */
726 const char *
727 decl_section_name (const_tree node)
728 {
729   struct symtab_node *snode = symtab_node::get (node);
730   if (!snode)
731     return NULL;
732   return snode->get_section ();
733 }
734 
735 /* Set section name of NODE to VALUE (that is expected to be
736    identifier node) */
737 void
738 set_decl_section_name (tree node, const char *value)
739 {
740   struct symtab_node *snode;
741 
742   if (value == NULL)
743     {
744       snode = symtab_node::get (node);
745       if (!snode)
746 	return;
747     }
748   else if (VAR_P (node))
749     snode = varpool_node::get_create (node);
750   else
751     snode = cgraph_node::get_create (node);
752   snode->set_section (value);
753 }
754 
755 /* Return TLS model of a variable NODE.  */
756 enum tls_model
757 decl_tls_model (const_tree node)
758 {
759   struct varpool_node *snode = varpool_node::get (node);
760   if (!snode)
761     return TLS_MODEL_NONE;
762   return snode->tls_model;
763 }
764 
765 /* Set TLS model of variable NODE to MODEL.  */
766 void
767 set_decl_tls_model (tree node, enum tls_model model)
768 {
769   struct varpool_node *vnode;
770 
771   if (model == TLS_MODEL_NONE)
772     {
773       vnode = varpool_node::get (node);
774       if (!vnode)
775 	return;
776     }
777   else
778     vnode = varpool_node::get_create (node);
779   vnode->tls_model = model;
780 }
781 
782 /* Compute the number of bytes occupied by a tree with code CODE.
783    This function cannot be used for nodes that have variable sizes,
784    including TREE_VEC, INTEGER_CST, STRING_CST, and CALL_EXPR.  */
785 size_t
786 tree_code_size (enum tree_code code)
787 {
788   switch (TREE_CODE_CLASS (code))
789     {
790     case tcc_declaration:  /* A decl node */
791       switch (code)
792 	{
793 	case FIELD_DECL:	return sizeof (tree_field_decl);
794 	case PARM_DECL:		return sizeof (tree_parm_decl);
795 	case VAR_DECL:		return sizeof (tree_var_decl);
796 	case LABEL_DECL:	return sizeof (tree_label_decl);
797 	case RESULT_DECL:	return sizeof (tree_result_decl);
798 	case CONST_DECL:	return sizeof (tree_const_decl);
799 	case TYPE_DECL:		return sizeof (tree_type_decl);
800 	case FUNCTION_DECL:	return sizeof (tree_function_decl);
801 	case DEBUG_EXPR_DECL:	return sizeof (tree_decl_with_rtl);
802 	case TRANSLATION_UNIT_DECL: return sizeof (tree_translation_unit_decl);
803 	case NAMESPACE_DECL:
804 	case IMPORTED_DECL:
805 	case NAMELIST_DECL:	return sizeof (tree_decl_non_common);
806 	default:
807 	  gcc_checking_assert (code >= NUM_TREE_CODES);
808 	  return lang_hooks.tree_size (code);
809 	}
810 
811     case tcc_type:  /* a type node */
812       switch (code)
813 	{
814 	case OFFSET_TYPE:
815 	case ENUMERAL_TYPE:
816 	case BOOLEAN_TYPE:
817 	case INTEGER_TYPE:
818 	case REAL_TYPE:
819 	case POINTER_TYPE:
820 	case REFERENCE_TYPE:
821 	case NULLPTR_TYPE:
822 	case FIXED_POINT_TYPE:
823 	case COMPLEX_TYPE:
824 	case VECTOR_TYPE:
825 	case ARRAY_TYPE:
826 	case RECORD_TYPE:
827 	case UNION_TYPE:
828 	case QUAL_UNION_TYPE:
829 	case VOID_TYPE:
830 	case POINTER_BOUNDS_TYPE:
831 	case FUNCTION_TYPE:
832 	case METHOD_TYPE:
833 	case LANG_TYPE:		return sizeof (tree_type_non_common);
834 	default:
835 	  gcc_checking_assert (code >= NUM_TREE_CODES);
836 	  return lang_hooks.tree_size (code);
837 	}
838 
839     case tcc_reference:   /* a reference */
840     case tcc_expression:  /* an expression */
841     case tcc_statement:   /* an expression with side effects */
842     case tcc_comparison:  /* a comparison expression */
843     case tcc_unary:       /* a unary arithmetic expression */
844     case tcc_binary:      /* a binary arithmetic expression */
845       return (sizeof (struct tree_exp)
846 	      + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
847 
848     case tcc_constant:  /* a constant */
849       switch (code)
850 	{
851 	case VOID_CST:		return sizeof (tree_typed);
852 	case INTEGER_CST:	gcc_unreachable ();
853 	case POLY_INT_CST:	return sizeof (tree_poly_int_cst);
854 	case REAL_CST:		return sizeof (tree_real_cst);
855 	case FIXED_CST:		return sizeof (tree_fixed_cst);
856 	case COMPLEX_CST:	return sizeof (tree_complex);
857 	case VECTOR_CST:	gcc_unreachable ();
858 	case STRING_CST:	gcc_unreachable ();
859 	default:
860 	  gcc_checking_assert (code >= NUM_TREE_CODES);
861 	  return lang_hooks.tree_size (code);
862 	}
863 
864     case tcc_exceptional:  /* something random, like an identifier.  */
865       switch (code)
866 	{
867 	case IDENTIFIER_NODE:	return lang_hooks.identifier_size;
868 	case TREE_LIST:		return sizeof (tree_list);
869 
870 	case ERROR_MARK:
871 	case PLACEHOLDER_EXPR:	return sizeof (tree_common);
872 
873 	case TREE_VEC:		gcc_unreachable ();
874 	case OMP_CLAUSE:	gcc_unreachable ();
875 
876 	case SSA_NAME:		return sizeof (tree_ssa_name);
877 
878 	case STATEMENT_LIST:	return sizeof (tree_statement_list);
879 	case BLOCK:		return sizeof (struct tree_block);
880 	case CONSTRUCTOR:	return sizeof (tree_constructor);
881 	case OPTIMIZATION_NODE: return sizeof (tree_optimization_option);
882 	case TARGET_OPTION_NODE: return sizeof (tree_target_option);
883 
884 	default:
885 	  gcc_checking_assert (code >= NUM_TREE_CODES);
886 	  return lang_hooks.tree_size (code);
887 	}
888 
889     default:
890       gcc_unreachable ();
891     }
892 }
893 
894 /* Compute the number of bytes occupied by NODE.  This routine only
895    looks at TREE_CODE, except for those nodes that have variable sizes.  */
896 size_t
897 tree_size (const_tree node)
898 {
899   const enum tree_code code = TREE_CODE (node);
900   switch (code)
901     {
902     case INTEGER_CST:
903       return (sizeof (struct tree_int_cst)
904 	      + (TREE_INT_CST_EXT_NUNITS (node) - 1) * sizeof (HOST_WIDE_INT));
905 
906     case TREE_BINFO:
907       return (offsetof (struct tree_binfo, base_binfos)
908 	      + vec<tree, va_gc>
909 		  ::embedded_size (BINFO_N_BASE_BINFOS (node)));
910 
911     case TREE_VEC:
912       return (sizeof (struct tree_vec)
913 	      + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
914 
915     case VECTOR_CST:
916       return (sizeof (struct tree_vector)
917 	      + (vector_cst_encoded_nelts (node) - 1) * sizeof (tree));
918 
919     case STRING_CST:
920       return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
921 
922     case OMP_CLAUSE:
923       return (sizeof (struct tree_omp_clause)
924 	      + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
925 	        * sizeof (tree));
926 
927     default:
928       if (TREE_CODE_CLASS (code) == tcc_vl_exp)
929 	return (sizeof (struct tree_exp)
930 		+ (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
931       else
932 	return tree_code_size (code);
933     }
934 }
935 
936 /* Return tree node kind based on tree CODE.  */
937 
938 static tree_node_kind
939 get_stats_node_kind (enum tree_code code)
940 {
941   enum tree_code_class type = TREE_CODE_CLASS (code);
942 
943   switch (type)
944     {
945     case tcc_declaration:  /* A decl node */
946       return d_kind;
947     case tcc_type:  /* a type node */
948       return t_kind;
949     case tcc_statement:  /* an expression with side effects */
950       return s_kind;
951     case tcc_reference:  /* a reference */
952       return r_kind;
953     case tcc_expression:  /* an expression */
954     case tcc_comparison:  /* a comparison expression */
955     case tcc_unary:  /* a unary arithmetic expression */
956     case tcc_binary:  /* a binary arithmetic expression */
957       return e_kind;
958     case tcc_constant:  /* a constant */
959       return c_kind;
960     case tcc_exceptional:  /* something random, like an identifier.  */
961       switch (code)
962 	{
963 	case IDENTIFIER_NODE:
964 	  return id_kind;
965 	case TREE_VEC:
966 	  return vec_kind;
967 	case TREE_BINFO:
968 	  return binfo_kind;
969 	case SSA_NAME:
970 	  return ssa_name_kind;
971 	case BLOCK:
972 	  return b_kind;
973 	case CONSTRUCTOR:
974 	  return constr_kind;
975 	case OMP_CLAUSE:
976 	  return omp_clause_kind;
977 	default:
978 	  return x_kind;
979 	}
980       break;
981     case tcc_vl_exp:
982       return e_kind;
983     default:
984       gcc_unreachable ();
985     }
986 }
987 
988 /* Record interesting allocation statistics for a tree node with CODE
989    and LENGTH.  */
990 
991 static void
992 record_node_allocation_statistics (enum tree_code code, size_t length)
993 {
994   if (!GATHER_STATISTICS)
995     return;
996 
997   tree_node_kind kind = get_stats_node_kind (code);
998 
999   tree_code_counts[(int) code]++;
1000   tree_node_counts[(int) kind]++;
1001   tree_node_sizes[(int) kind] += length;
1002 }
1003 
1004 /* Allocate and return a new UID from the DECL_UID namespace.  */
1005 
1006 int
1007 allocate_decl_uid (void)
1008 {
1009   return next_decl_uid++;
1010 }
1011 
1012 /* Return a newly allocated node of code CODE.  For decl and type
1013    nodes, some other fields are initialized.  The rest of the node is
1014    initialized to zero.  This function cannot be used for TREE_VEC,
1015    INTEGER_CST or OMP_CLAUSE nodes, which is enforced by asserts in
1016    tree_code_size.
1017 
1018    Achoo!  I got a code in the node.  */
1019 
1020 tree
1021 make_node (enum tree_code code MEM_STAT_DECL)
1022 {
1023   tree t;
1024   enum tree_code_class type = TREE_CODE_CLASS (code);
1025   size_t length = tree_code_size (code);
1026 
1027   record_node_allocation_statistics (code, length);
1028 
1029   t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1030   TREE_SET_CODE (t, code);
1031 
1032   switch (type)
1033     {
1034     case tcc_statement:
1035       if (code != DEBUG_BEGIN_STMT)
1036 	TREE_SIDE_EFFECTS (t) = 1;
1037       break;
1038 
1039     case tcc_declaration:
1040       if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
1041 	{
1042 	  if (code == FUNCTION_DECL)
1043 	    {
1044 	      SET_DECL_ALIGN (t, FUNCTION_ALIGNMENT (FUNCTION_BOUNDARY));
1045 	      SET_DECL_MODE (t, FUNCTION_MODE);
1046 	    }
1047 	  else
1048 	    SET_DECL_ALIGN (t, 1);
1049 	}
1050       DECL_SOURCE_LOCATION (t) = input_location;
1051       if (TREE_CODE (t) == DEBUG_EXPR_DECL)
1052 	DECL_UID (t) = --next_debug_decl_uid;
1053       else
1054 	{
1055 	  DECL_UID (t) = allocate_decl_uid ();
1056 	  SET_DECL_PT_UID (t, -1);
1057 	}
1058       if (TREE_CODE (t) == LABEL_DECL)
1059 	LABEL_DECL_UID (t) = -1;
1060 
1061       break;
1062 
1063     case tcc_type:
1064       TYPE_UID (t) = next_type_uid++;
1065       SET_TYPE_ALIGN (t, BITS_PER_UNIT);
1066       TYPE_USER_ALIGN (t) = 0;
1067       TYPE_MAIN_VARIANT (t) = t;
1068       TYPE_CANONICAL (t) = t;
1069 
1070       /* Default to no attributes for type, but let target change that.  */
1071       TYPE_ATTRIBUTES (t) = NULL_TREE;
1072       targetm.set_default_type_attributes (t);
1073 
1074       /* We have not yet computed the alias set for this type.  */
1075       TYPE_ALIAS_SET (t) = -1;
1076       break;
1077 
1078     case tcc_constant:
1079       TREE_CONSTANT (t) = 1;
1080       break;
1081 
1082     case tcc_expression:
1083       switch (code)
1084 	{
1085 	case INIT_EXPR:
1086 	case MODIFY_EXPR:
1087 	case VA_ARG_EXPR:
1088 	case PREDECREMENT_EXPR:
1089 	case PREINCREMENT_EXPR:
1090 	case POSTDECREMENT_EXPR:
1091 	case POSTINCREMENT_EXPR:
1092 	  /* All of these have side-effects, no matter what their
1093 	     operands are.  */
1094 	  TREE_SIDE_EFFECTS (t) = 1;
1095 	  break;
1096 
1097 	default:
1098 	  break;
1099 	}
1100       break;
1101 
1102     case tcc_exceptional:
1103       switch (code)
1104         {
1105 	case TARGET_OPTION_NODE:
1106 	  TREE_TARGET_OPTION(t)
1107 			    = ggc_cleared_alloc<struct cl_target_option> ();
1108 	  break;
1109 
1110 	case OPTIMIZATION_NODE:
1111 	  TREE_OPTIMIZATION (t)
1112 			    = ggc_cleared_alloc<struct cl_optimization> ();
1113 	  break;
1114 
1115 	default:
1116 	  break;
1117 	}
1118       break;
1119 
1120     default:
1121       /* Other classes need no special treatment.  */
1122       break;
1123     }
1124 
1125   return t;
1126 }
1127 
1128 /* Free tree node.  */
1129 
1130 void
1131 free_node (tree node)
1132 {
1133   enum tree_code code = TREE_CODE (node);
1134   if (GATHER_STATISTICS)
1135     {
1136       enum tree_node_kind kind = get_stats_node_kind (code);
1137 
1138       gcc_checking_assert (tree_code_counts[(int) TREE_CODE (node)] != 0);
1139       gcc_checking_assert (tree_node_counts[(int) kind] != 0);
1140       gcc_checking_assert (tree_node_sizes[(int) kind] >= tree_size (node));
1141 
1142       tree_code_counts[(int) TREE_CODE (node)]--;
1143       tree_node_counts[(int) kind]--;
1144       tree_node_sizes[(int) kind] -= tree_size (node);
1145     }
1146   if (CODE_CONTAINS_STRUCT (code, TS_CONSTRUCTOR))
1147     vec_free (CONSTRUCTOR_ELTS (node));
1148   else if (code == BLOCK)
1149     vec_free (BLOCK_NONLOCALIZED_VARS (node));
1150   else if (code == TREE_BINFO)
1151     vec_free (BINFO_BASE_ACCESSES (node));
1152   ggc_free (node);
1153 }
1154 
1155 /* Return a new node with the same contents as NODE except that its
1156    TREE_CHAIN, if it has one, is zero and it has a fresh uid.  */
1157 
1158 tree
1159 copy_node (tree node MEM_STAT_DECL)
1160 {
1161   tree t;
1162   enum tree_code code = TREE_CODE (node);
1163   size_t length;
1164 
1165   gcc_assert (code != STATEMENT_LIST);
1166 
1167   length = tree_size (node);
1168   record_node_allocation_statistics (code, length);
1169   t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
1170   memcpy (t, node, length);
1171 
1172   if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
1173     TREE_CHAIN (t) = 0;
1174   TREE_ASM_WRITTEN (t) = 0;
1175   TREE_VISITED (t) = 0;
1176 
1177   if (TREE_CODE_CLASS (code) == tcc_declaration)
1178     {
1179       if (code == DEBUG_EXPR_DECL)
1180 	DECL_UID (t) = --next_debug_decl_uid;
1181       else
1182 	{
1183 	  DECL_UID (t) = allocate_decl_uid ();
1184 	  if (DECL_PT_UID_SET_P (node))
1185 	    SET_DECL_PT_UID (t, DECL_PT_UID (node));
1186 	}
1187       if ((TREE_CODE (node) == PARM_DECL || VAR_P (node))
1188 	  && DECL_HAS_VALUE_EXPR_P (node))
1189 	{
1190 	  SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
1191 	  DECL_HAS_VALUE_EXPR_P (t) = 1;
1192 	}
1193       /* DECL_DEBUG_EXPR is copied explicitely by callers.  */
1194       if (VAR_P (node))
1195 	{
1196 	  DECL_HAS_DEBUG_EXPR_P (t) = 0;
1197 	  t->decl_with_vis.symtab_node = NULL;
1198 	}
1199       if (VAR_P (node) && DECL_HAS_INIT_PRIORITY_P (node))
1200 	{
1201 	  SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
1202 	  DECL_HAS_INIT_PRIORITY_P (t) = 1;
1203 	}
1204       if (TREE_CODE (node) == FUNCTION_DECL)
1205 	{
1206 	  DECL_STRUCT_FUNCTION (t) = NULL;
1207 	  t->decl_with_vis.symtab_node = NULL;
1208 	}
1209     }
1210   else if (TREE_CODE_CLASS (code) == tcc_type)
1211     {
1212       TYPE_UID (t) = next_type_uid++;
1213       /* The following is so that the debug code for
1214 	 the copy is different from the original type.
1215 	 The two statements usually duplicate each other
1216 	 (because they clear fields of the same union),
1217 	 but the optimizer should catch that.  */
1218       TYPE_SYMTAB_ADDRESS (t) = 0;
1219       TYPE_SYMTAB_DIE (t) = 0;
1220 
1221       /* Do not copy the values cache.  */
1222       if (TYPE_CACHED_VALUES_P (t))
1223 	{
1224 	  TYPE_CACHED_VALUES_P (t) = 0;
1225 	  TYPE_CACHED_VALUES (t) = NULL_TREE;
1226 	}
1227     }
1228     else if (code == TARGET_OPTION_NODE)
1229       {
1230 	TREE_TARGET_OPTION (t) = ggc_alloc<struct cl_target_option>();
1231 	memcpy (TREE_TARGET_OPTION (t), TREE_TARGET_OPTION (node),
1232 		sizeof (struct cl_target_option));
1233       }
1234     else if (code == OPTIMIZATION_NODE)
1235       {
1236 	TREE_OPTIMIZATION (t) = ggc_alloc<struct cl_optimization>();
1237 	memcpy (TREE_OPTIMIZATION (t), TREE_OPTIMIZATION (node),
1238 		sizeof (struct cl_optimization));
1239       }
1240 
1241   return t;
1242 }
1243 
1244 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1245    For example, this can copy a list made of TREE_LIST nodes.  */
1246 
1247 tree
1248 copy_list (tree list)
1249 {
1250   tree head;
1251   tree prev, next;
1252 
1253   if (list == 0)
1254     return 0;
1255 
1256   head = prev = copy_node (list);
1257   next = TREE_CHAIN (list);
1258   while (next)
1259     {
1260       TREE_CHAIN (prev) = copy_node (next);
1261       prev = TREE_CHAIN (prev);
1262       next = TREE_CHAIN (next);
1263     }
1264   return head;
1265 }
1266 
1267 
1268 /* Return the value that TREE_INT_CST_EXT_NUNITS should have for an
1269    INTEGER_CST with value CST and type TYPE.   */
1270 
1271 static unsigned int
1272 get_int_cst_ext_nunits (tree type, const wide_int &cst)
1273 {
1274   gcc_checking_assert (cst.get_precision () == TYPE_PRECISION (type));
1275   /* We need extra HWIs if CST is an unsigned integer with its
1276      upper bit set.  */
1277   if (TYPE_UNSIGNED (type) && wi::neg_p (cst))
1278     return cst.get_precision () / HOST_BITS_PER_WIDE_INT + 1;
1279   return cst.get_len ();
1280 }
1281 
1282 /* Return a new INTEGER_CST with value CST and type TYPE.  */
1283 
1284 static tree
1285 build_new_int_cst (tree type, const wide_int &cst)
1286 {
1287   unsigned int len = cst.get_len ();
1288   unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1289   tree nt = make_int_cst (len, ext_len);
1290 
1291   if (len < ext_len)
1292     {
1293       --ext_len;
1294       TREE_INT_CST_ELT (nt, ext_len)
1295 	= zext_hwi (-1, cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1296       for (unsigned int i = len; i < ext_len; ++i)
1297 	TREE_INT_CST_ELT (nt, i) = -1;
1298     }
1299   else if (TYPE_UNSIGNED (type)
1300 	   && cst.get_precision () < len * HOST_BITS_PER_WIDE_INT)
1301     {
1302       len--;
1303       TREE_INT_CST_ELT (nt, len)
1304 	= zext_hwi (cst.elt (len),
1305 		    cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1306     }
1307 
1308   for (unsigned int i = 0; i < len; i++)
1309     TREE_INT_CST_ELT (nt, i) = cst.elt (i);
1310   TREE_TYPE (nt) = type;
1311   return nt;
1312 }
1313 
1314 /* Return a new POLY_INT_CST with coefficients COEFFS and type TYPE.  */
1315 
1316 static tree
1317 build_new_poly_int_cst (tree type, tree (&coeffs)[NUM_POLY_INT_COEFFS]
1318 			CXX_MEM_STAT_INFO)
1319 {
1320   size_t length = sizeof (struct tree_poly_int_cst);
1321   record_node_allocation_statistics (POLY_INT_CST, length);
1322 
1323   tree t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1324 
1325   TREE_SET_CODE (t, POLY_INT_CST);
1326   TREE_CONSTANT (t) = 1;
1327   TREE_TYPE (t) = type;
1328   for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1329     POLY_INT_CST_COEFF (t, i) = coeffs[i];
1330   return t;
1331 }
1332 
1333 /* Create a constant tree that contains CST sign-extended to TYPE.  */
1334 
1335 tree
1336 build_int_cst (tree type, poly_int64 cst)
1337 {
1338   /* Support legacy code.  */
1339   if (!type)
1340     type = integer_type_node;
1341 
1342   return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1343 }
1344 
1345 /* Create a constant tree that contains CST zero-extended to TYPE.  */
1346 
1347 tree
1348 build_int_cstu (tree type, poly_uint64 cst)
1349 {
1350   return wide_int_to_tree (type, wi::uhwi (cst, TYPE_PRECISION (type)));
1351 }
1352 
1353 /* Create a constant tree that contains CST sign-extended to TYPE.  */
1354 
1355 tree
1356 build_int_cst_type (tree type, poly_int64 cst)
1357 {
1358   gcc_assert (type);
1359   return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1360 }
1361 
1362 /* Constructs tree in type TYPE from with value given by CST.  Signedness
1363    of CST is assumed to be the same as the signedness of TYPE.  */
1364 
1365 tree
1366 double_int_to_tree (tree type, double_int cst)
1367 {
1368   return wide_int_to_tree (type, widest_int::from (cst, TYPE_SIGN (type)));
1369 }
1370 
1371 /* We force the wide_int CST to the range of the type TYPE by sign or
1372    zero extending it.  OVERFLOWABLE indicates if we are interested in
1373    overflow of the value, when >0 we are only interested in signed
1374    overflow, for <0 we are interested in any overflow.  OVERFLOWED
1375    indicates whether overflow has already occurred.  CONST_OVERFLOWED
1376    indicates whether constant overflow has already occurred.  We force
1377    T's value to be within range of T's type (by setting to 0 or 1 all
1378    the bits outside the type's range).  We set TREE_OVERFLOWED if,
1379         OVERFLOWED is nonzero,
1380         or OVERFLOWABLE is >0 and signed overflow occurs
1381         or OVERFLOWABLE is <0 and any overflow occurs
1382    We return a new tree node for the extended wide_int.  The node
1383    is shared if no overflow flags are set.  */
1384 
1385 
1386 tree
1387 force_fit_type (tree type, const poly_wide_int_ref &cst,
1388 		int overflowable, bool overflowed)
1389 {
1390   signop sign = TYPE_SIGN (type);
1391 
1392   /* If we need to set overflow flags, return a new unshared node.  */
1393   if (overflowed || !wi::fits_to_tree_p (cst, type))
1394     {
1395       if (overflowed
1396 	  || overflowable < 0
1397 	  || (overflowable > 0 && sign == SIGNED))
1398 	{
1399 	  poly_wide_int tmp = poly_wide_int::from (cst, TYPE_PRECISION (type),
1400 						   sign);
1401 	  tree t;
1402 	  if (tmp.is_constant ())
1403 	    t = build_new_int_cst (type, tmp.coeffs[0]);
1404 	  else
1405 	    {
1406 	      tree coeffs[NUM_POLY_INT_COEFFS];
1407 	      for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1408 		{
1409 		  coeffs[i] = build_new_int_cst (type, tmp.coeffs[i]);
1410 		  TREE_OVERFLOW (coeffs[i]) = 1;
1411 		}
1412 	      t = build_new_poly_int_cst (type, coeffs);
1413 	    }
1414 	  TREE_OVERFLOW (t) = 1;
1415 	  return t;
1416 	}
1417     }
1418 
1419   /* Else build a shared node.  */
1420   return wide_int_to_tree (type, cst);
1421 }
1422 
1423 /* These are the hash table functions for the hash table of INTEGER_CST
1424    nodes of a sizetype.  */
1425 
1426 /* Return the hash code X, an INTEGER_CST.  */
1427 
1428 hashval_t
1429 int_cst_hasher::hash (tree x)
1430 {
1431   const_tree const t = x;
1432   hashval_t code = TYPE_UID (TREE_TYPE (t));
1433   int i;
1434 
1435   for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
1436     code = iterative_hash_host_wide_int (TREE_INT_CST_ELT(t, i), code);
1437 
1438   return code;
1439 }
1440 
1441 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1442    is the same as that given by *Y, which is the same.  */
1443 
1444 bool
1445 int_cst_hasher::equal (tree x, tree y)
1446 {
1447   const_tree const xt = x;
1448   const_tree const yt = y;
1449 
1450   if (TREE_TYPE (xt) != TREE_TYPE (yt)
1451       || TREE_INT_CST_NUNITS (xt) != TREE_INT_CST_NUNITS (yt)
1452       || TREE_INT_CST_EXT_NUNITS (xt) != TREE_INT_CST_EXT_NUNITS (yt))
1453     return false;
1454 
1455   for (int i = 0; i < TREE_INT_CST_NUNITS (xt); i++)
1456     if (TREE_INT_CST_ELT (xt, i) != TREE_INT_CST_ELT (yt, i))
1457       return false;
1458 
1459   return true;
1460 }
1461 
1462 /* Create an INT_CST node of TYPE and value CST.
1463    The returned node is always shared.  For small integers we use a
1464    per-type vector cache, for larger ones we use a single hash table.
1465    The value is extended from its precision according to the sign of
1466    the type to be a multiple of HOST_BITS_PER_WIDE_INT.  This defines
1467    the upper bits and ensures that hashing and value equality based
1468    upon the underlying HOST_WIDE_INTs works without masking.  */
1469 
1470 static tree
1471 wide_int_to_tree_1 (tree type, const wide_int_ref &pcst)
1472 {
1473   tree t;
1474   int ix = -1;
1475   int limit = 0;
1476 
1477   gcc_assert (type);
1478   unsigned int prec = TYPE_PRECISION (type);
1479   signop sgn = TYPE_SIGN (type);
1480 
1481   /* Verify that everything is canonical.  */
1482   int l = pcst.get_len ();
1483   if (l > 1)
1484     {
1485       if (pcst.elt (l - 1) == 0)
1486 	gcc_checking_assert (pcst.elt (l - 2) < 0);
1487       if (pcst.elt (l - 1) == HOST_WIDE_INT_M1)
1488 	gcc_checking_assert (pcst.elt (l - 2) >= 0);
1489     }
1490 
1491   wide_int cst = wide_int::from (pcst, prec, sgn);
1492   unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1493 
1494   if (ext_len == 1)
1495     {
1496       /* We just need to store a single HOST_WIDE_INT.  */
1497       HOST_WIDE_INT hwi;
1498       if (TYPE_UNSIGNED (type))
1499 	hwi = cst.to_uhwi ();
1500       else
1501 	hwi = cst.to_shwi ();
1502 
1503       switch (TREE_CODE (type))
1504 	{
1505 	case NULLPTR_TYPE:
1506 	  gcc_assert (hwi == 0);
1507 	  /* Fallthru.  */
1508 
1509 	case POINTER_TYPE:
1510 	case REFERENCE_TYPE:
1511 	case POINTER_BOUNDS_TYPE:
1512 	  /* Cache NULL pointer and zero bounds.  */
1513 	  if (hwi == 0)
1514 	    {
1515 	      limit = 1;
1516 	      ix = 0;
1517 	    }
1518 	  break;
1519 
1520 	case BOOLEAN_TYPE:
1521 	  /* Cache false or true.  */
1522 	  limit = 2;
1523 	  if (IN_RANGE (hwi, 0, 1))
1524 	    ix = hwi;
1525 	  break;
1526 
1527 	case INTEGER_TYPE:
1528 	case OFFSET_TYPE:
1529 	  if (TYPE_SIGN (type) == UNSIGNED)
1530 	    {
1531 	      /* Cache [0, N).  */
1532 	      limit = INTEGER_SHARE_LIMIT;
1533 	      if (IN_RANGE (hwi, 0, INTEGER_SHARE_LIMIT - 1))
1534 		ix = hwi;
1535 	    }
1536 	  else
1537 	    {
1538 	      /* Cache [-1, N).  */
1539 	      limit = INTEGER_SHARE_LIMIT + 1;
1540 	      if (IN_RANGE (hwi, -1, INTEGER_SHARE_LIMIT - 1))
1541 		ix = hwi + 1;
1542 	    }
1543 	  break;
1544 
1545 	case ENUMERAL_TYPE:
1546 	  break;
1547 
1548 	default:
1549 	  gcc_unreachable ();
1550 	}
1551 
1552       if (ix >= 0)
1553 	{
1554 	  /* Look for it in the type's vector of small shared ints.  */
1555 	  if (!TYPE_CACHED_VALUES_P (type))
1556 	    {
1557 	      TYPE_CACHED_VALUES_P (type) = 1;
1558 	      TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1559 	    }
1560 
1561 	  t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1562 	  if (t)
1563 	    /* Make sure no one is clobbering the shared constant.  */
1564 	    gcc_checking_assert (TREE_TYPE (t) == type
1565 				 && TREE_INT_CST_NUNITS (t) == 1
1566 				 && TREE_INT_CST_OFFSET_NUNITS (t) == 1
1567 				 && TREE_INT_CST_EXT_NUNITS (t) == 1
1568 				 && TREE_INT_CST_ELT (t, 0) == hwi);
1569 	  else
1570 	    {
1571 	      /* Create a new shared int.  */
1572 	      t = build_new_int_cst (type, cst);
1573 	      TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1574 	    }
1575 	}
1576       else
1577 	{
1578 	  /* Use the cache of larger shared ints, using int_cst_node as
1579 	     a temporary.  */
1580 
1581 	  TREE_INT_CST_ELT (int_cst_node, 0) = hwi;
1582 	  TREE_TYPE (int_cst_node) = type;
1583 
1584 	  tree *slot = int_cst_hash_table->find_slot (int_cst_node, INSERT);
1585 	  t = *slot;
1586 	  if (!t)
1587 	    {
1588 	      /* Insert this one into the hash table.  */
1589 	      t = int_cst_node;
1590 	      *slot = t;
1591 	      /* Make a new node for next time round.  */
1592 	      int_cst_node = make_int_cst (1, 1);
1593 	    }
1594 	}
1595     }
1596   else
1597     {
1598       /* The value either hashes properly or we drop it on the floor
1599 	 for the gc to take care of.  There will not be enough of them
1600 	 to worry about.  */
1601 
1602       tree nt = build_new_int_cst (type, cst);
1603       tree *slot = int_cst_hash_table->find_slot (nt, INSERT);
1604       t = *slot;
1605       if (!t)
1606 	{
1607 	  /* Insert this one into the hash table.  */
1608 	  t = nt;
1609 	  *slot = t;
1610 	}
1611       else
1612 	ggc_free (nt);
1613     }
1614 
1615   return t;
1616 }
1617 
1618 hashval_t
1619 poly_int_cst_hasher::hash (tree t)
1620 {
1621   inchash::hash hstate;
1622 
1623   hstate.add_int (TYPE_UID (TREE_TYPE (t)));
1624   for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1625     hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
1626 
1627   return hstate.end ();
1628 }
1629 
1630 bool
1631 poly_int_cst_hasher::equal (tree x, const compare_type &y)
1632 {
1633   if (TREE_TYPE (x) != y.first)
1634     return false;
1635   for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1636     if (wi::to_wide (POLY_INT_CST_COEFF (x, i)) != y.second->coeffs[i])
1637       return false;
1638   return true;
1639 }
1640 
1641 /* Build a POLY_INT_CST node with type TYPE and with the elements in VALUES.
1642    The elements must also have type TYPE.  */
1643 
1644 tree
1645 build_poly_int_cst (tree type, const poly_wide_int_ref &values)
1646 {
1647   unsigned int prec = TYPE_PRECISION (type);
1648   gcc_assert (prec <= values.coeffs[0].get_precision ());
1649   poly_wide_int c = poly_wide_int::from (values, prec, SIGNED);
1650 
1651   inchash::hash h;
1652   h.add_int (TYPE_UID (type));
1653   for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1654     h.add_wide_int (c.coeffs[i]);
1655   poly_int_cst_hasher::compare_type comp (type, &c);
1656   tree *slot = poly_int_cst_hash_table->find_slot_with_hash (comp, h.end (),
1657 							     INSERT);
1658   if (*slot == NULL_TREE)
1659     {
1660       tree coeffs[NUM_POLY_INT_COEFFS];
1661       for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1662 	coeffs[i] = wide_int_to_tree_1 (type, c.coeffs[i]);
1663       *slot = build_new_poly_int_cst (type, coeffs);
1664     }
1665   return *slot;
1666 }
1667 
1668 /* Create a constant tree with value VALUE in type TYPE.  */
1669 
1670 tree
1671 wide_int_to_tree (tree type, const poly_wide_int_ref &value)
1672 {
1673   if (value.is_constant ())
1674     return wide_int_to_tree_1 (type, value.coeffs[0]);
1675   return build_poly_int_cst (type, value);
1676 }
1677 
1678 void
1679 cache_integer_cst (tree t)
1680 {
1681   tree type = TREE_TYPE (t);
1682   int ix = -1;
1683   int limit = 0;
1684   int prec = TYPE_PRECISION (type);
1685 
1686   gcc_assert (!TREE_OVERFLOW (t));
1687 
1688   switch (TREE_CODE (type))
1689     {
1690     case NULLPTR_TYPE:
1691       gcc_assert (integer_zerop (t));
1692       /* Fallthru.  */
1693 
1694     case POINTER_TYPE:
1695     case REFERENCE_TYPE:
1696       /* Cache NULL pointer.  */
1697       if (integer_zerop (t))
1698 	{
1699 	  limit = 1;
1700 	  ix = 0;
1701 	}
1702       break;
1703 
1704     case BOOLEAN_TYPE:
1705       /* Cache false or true.  */
1706       limit = 2;
1707       if (wi::ltu_p (wi::to_wide (t), 2))
1708 	ix = TREE_INT_CST_ELT (t, 0);
1709       break;
1710 
1711     case INTEGER_TYPE:
1712     case OFFSET_TYPE:
1713       if (TYPE_UNSIGNED (type))
1714 	{
1715 	  /* Cache 0..N */
1716 	  limit = INTEGER_SHARE_LIMIT;
1717 
1718 	  /* This is a little hokie, but if the prec is smaller than
1719 	     what is necessary to hold INTEGER_SHARE_LIMIT, then the
1720 	     obvious test will not get the correct answer.  */
1721 	  if (prec < HOST_BITS_PER_WIDE_INT)
1722 	    {
1723 	      if (tree_to_uhwi (t) < (unsigned HOST_WIDE_INT) INTEGER_SHARE_LIMIT)
1724 		ix = tree_to_uhwi (t);
1725 	    }
1726 	  else if (wi::ltu_p (wi::to_wide (t), INTEGER_SHARE_LIMIT))
1727 	    ix = tree_to_uhwi (t);
1728 	}
1729       else
1730 	{
1731 	  /* Cache -1..N */
1732 	  limit = INTEGER_SHARE_LIMIT + 1;
1733 
1734 	  if (integer_minus_onep (t))
1735 	    ix = 0;
1736 	  else if (!wi::neg_p (wi::to_wide (t)))
1737 	    {
1738 	      if (prec < HOST_BITS_PER_WIDE_INT)
1739 		{
1740 		  if (tree_to_shwi (t) < INTEGER_SHARE_LIMIT)
1741 		    ix = tree_to_shwi (t) + 1;
1742 		}
1743 	      else if (wi::ltu_p (wi::to_wide (t), INTEGER_SHARE_LIMIT))
1744 		ix = tree_to_shwi (t) + 1;
1745 	    }
1746 	}
1747       break;
1748 
1749     case ENUMERAL_TYPE:
1750       break;
1751 
1752     default:
1753       gcc_unreachable ();
1754     }
1755 
1756   if (ix >= 0)
1757     {
1758       /* Look for it in the type's vector of small shared ints.  */
1759       if (!TYPE_CACHED_VALUES_P (type))
1760 	{
1761 	  TYPE_CACHED_VALUES_P (type) = 1;
1762 	  TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1763 	}
1764 
1765       gcc_assert (TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) == NULL_TREE);
1766       TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1767     }
1768   else
1769     {
1770       /* Use the cache of larger shared ints.  */
1771       tree *slot = int_cst_hash_table->find_slot (t, INSERT);
1772       /* If there is already an entry for the number verify it's the
1773          same.  */
1774       if (*slot)
1775 	gcc_assert (wi::to_wide (tree (*slot)) == wi::to_wide (t));
1776       else
1777 	/* Otherwise insert this one into the hash table.  */
1778 	*slot = t;
1779     }
1780 }
1781 
1782 
1783 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1784    and the rest are zeros.  */
1785 
1786 tree
1787 build_low_bits_mask (tree type, unsigned bits)
1788 {
1789   gcc_assert (bits <= TYPE_PRECISION (type));
1790 
1791   return wide_int_to_tree (type, wi::mask (bits, false,
1792 					   TYPE_PRECISION (type)));
1793 }
1794 
1795 /* Checks that X is integer constant that can be expressed in (unsigned)
1796    HOST_WIDE_INT without loss of precision.  */
1797 
1798 bool
1799 cst_and_fits_in_hwi (const_tree x)
1800 {
1801   return (TREE_CODE (x) == INTEGER_CST
1802 	  && (tree_fits_shwi_p (x) || tree_fits_uhwi_p (x)));
1803 }
1804 
1805 /* Build a newly constructed VECTOR_CST with the given values of
1806    (VECTOR_CST_)LOG2_NPATTERNS and (VECTOR_CST_)NELTS_PER_PATTERN.  */
1807 
1808 tree
1809 make_vector (unsigned log2_npatterns,
1810 	     unsigned int nelts_per_pattern MEM_STAT_DECL)
1811 {
1812   gcc_assert (IN_RANGE (nelts_per_pattern, 1, 3));
1813   tree t;
1814   unsigned npatterns = 1 << log2_npatterns;
1815   unsigned encoded_nelts = npatterns * nelts_per_pattern;
1816   unsigned length = (sizeof (struct tree_vector)
1817 		     + (encoded_nelts - 1) * sizeof (tree));
1818 
1819   record_node_allocation_statistics (VECTOR_CST, length);
1820 
1821   t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1822 
1823   TREE_SET_CODE (t, VECTOR_CST);
1824   TREE_CONSTANT (t) = 1;
1825   VECTOR_CST_LOG2_NPATTERNS (t) = log2_npatterns;
1826   VECTOR_CST_NELTS_PER_PATTERN (t) = nelts_per_pattern;
1827 
1828   return t;
1829 }
1830 
1831 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1832    are extracted from V, a vector of CONSTRUCTOR_ELT.  */
1833 
1834 tree
1835 build_vector_from_ctor (tree type, vec<constructor_elt, va_gc> *v)
1836 {
1837   unsigned HOST_WIDE_INT idx, nelts;
1838   tree value;
1839 
1840   /* We can't construct a VECTOR_CST for a variable number of elements.  */
1841   nelts = TYPE_VECTOR_SUBPARTS (type).to_constant ();
1842   tree_vector_builder vec (type, nelts, 1);
1843   FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1844     {
1845       if (TREE_CODE (value) == VECTOR_CST)
1846 	{
1847 	  /* If NELTS is constant then this must be too.  */
1848 	  unsigned int sub_nelts = VECTOR_CST_NELTS (value).to_constant ();
1849 	  for (unsigned i = 0; i < sub_nelts; ++i)
1850 	    vec.quick_push (VECTOR_CST_ELT (value, i));
1851 	}
1852       else
1853 	vec.quick_push (value);
1854     }
1855   while (vec.length () < nelts)
1856     vec.quick_push (build_zero_cst (TREE_TYPE (type)));
1857 
1858   return vec.build ();
1859 }
1860 
1861 /* Build a vector of type VECTYPE where all the elements are SCs.  */
1862 tree
1863 build_vector_from_val (tree vectype, tree sc)
1864 {
1865   unsigned HOST_WIDE_INT i, nunits;
1866 
1867   if (sc == error_mark_node)
1868     return sc;
1869 
1870   /* Verify that the vector type is suitable for SC.  Note that there
1871      is some inconsistency in the type-system with respect to restrict
1872      qualifications of pointers.  Vector types always have a main-variant
1873      element type and the qualification is applied to the vector-type.
1874      So TREE_TYPE (vector-type) does not return a properly qualified
1875      vector element-type.  */
1876   gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1877 					   TREE_TYPE (vectype)));
1878 
1879   if (CONSTANT_CLASS_P (sc))
1880     {
1881       tree_vector_builder v (vectype, 1, 1);
1882       v.quick_push (sc);
1883       return v.build ();
1884     }
1885   else if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nunits))
1886     return fold_build1 (VEC_DUPLICATE_EXPR, vectype, sc);
1887   else
1888     {
1889       vec<constructor_elt, va_gc> *v;
1890       vec_alloc (v, nunits);
1891       for (i = 0; i < nunits; ++i)
1892 	CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1893       return build_constructor (vectype, v);
1894     }
1895 }
1896 
1897 /* Build a vector series of type TYPE in which element I has the value
1898    BASE + I * STEP.  The result is a constant if BASE and STEP are constant
1899    and a VEC_SERIES_EXPR otherwise.  */
1900 
1901 tree
1902 build_vec_series (tree type, tree base, tree step)
1903 {
1904   if (integer_zerop (step))
1905     return build_vector_from_val (type, base);
1906   if (TREE_CODE (base) == INTEGER_CST && TREE_CODE (step) == INTEGER_CST)
1907     {
1908       tree_vector_builder builder (type, 1, 3);
1909       tree elt1 = wide_int_to_tree (TREE_TYPE (base),
1910 				    wi::to_wide (base) + wi::to_wide (step));
1911       tree elt2 = wide_int_to_tree (TREE_TYPE (base),
1912 				    wi::to_wide (elt1) + wi::to_wide (step));
1913       builder.quick_push (base);
1914       builder.quick_push (elt1);
1915       builder.quick_push (elt2);
1916       return builder.build ();
1917     }
1918   return build2 (VEC_SERIES_EXPR, type, base, step);
1919 }
1920 
1921 /* Return a vector with the same number of units and number of bits
1922    as VEC_TYPE, but in which the elements are a linear series of unsigned
1923    integers { BASE, BASE + STEP, BASE + STEP * 2, ... }.  */
1924 
1925 tree
1926 build_index_vector (tree vec_type, poly_uint64 base, poly_uint64 step)
1927 {
1928   tree index_vec_type = vec_type;
1929   tree index_elt_type = TREE_TYPE (vec_type);
1930   poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vec_type);
1931   if (!INTEGRAL_TYPE_P (index_elt_type) || !TYPE_UNSIGNED (index_elt_type))
1932     {
1933       index_elt_type = build_nonstandard_integer_type
1934 	(GET_MODE_BITSIZE (SCALAR_TYPE_MODE (index_elt_type)), true);
1935       index_vec_type = build_vector_type (index_elt_type, nunits);
1936     }
1937 
1938   tree_vector_builder v (index_vec_type, 1, 3);
1939   for (unsigned int i = 0; i < 3; ++i)
1940     v.quick_push (build_int_cstu (index_elt_type, base + i * step));
1941   return v.build ();
1942 }
1943 
1944 /* Something has messed with the elements of CONSTRUCTOR C after it was built;
1945    calculate TREE_CONSTANT and TREE_SIDE_EFFECTS.  */
1946 
1947 void
1948 recompute_constructor_flags (tree c)
1949 {
1950   unsigned int i;
1951   tree val;
1952   bool constant_p = true;
1953   bool side_effects_p = false;
1954   vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
1955 
1956   FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
1957     {
1958       /* Mostly ctors will have elts that don't have side-effects, so
1959 	 the usual case is to scan all the elements.  Hence a single
1960 	 loop for both const and side effects, rather than one loop
1961 	 each (with early outs).  */
1962       if (!TREE_CONSTANT (val))
1963 	constant_p = false;
1964       if (TREE_SIDE_EFFECTS (val))
1965 	side_effects_p = true;
1966     }
1967 
1968   TREE_SIDE_EFFECTS (c) = side_effects_p;
1969   TREE_CONSTANT (c) = constant_p;
1970 }
1971 
1972 /* Make sure that TREE_CONSTANT and TREE_SIDE_EFFECTS are correct for
1973    CONSTRUCTOR C.  */
1974 
1975 void
1976 verify_constructor_flags (tree c)
1977 {
1978   unsigned int i;
1979   tree val;
1980   bool constant_p = TREE_CONSTANT (c);
1981   bool side_effects_p = TREE_SIDE_EFFECTS (c);
1982   vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
1983 
1984   FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
1985     {
1986       if (constant_p && !TREE_CONSTANT (val))
1987 	internal_error ("non-constant element in constant CONSTRUCTOR");
1988       if (!side_effects_p && TREE_SIDE_EFFECTS (val))
1989 	internal_error ("side-effects element in no-side-effects CONSTRUCTOR");
1990     }
1991 }
1992 
1993 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1994    are in the vec pointed to by VALS.  */
1995 tree
1996 build_constructor (tree type, vec<constructor_elt, va_gc> *vals)
1997 {
1998   tree c = make_node (CONSTRUCTOR);
1999 
2000   TREE_TYPE (c) = type;
2001   CONSTRUCTOR_ELTS (c) = vals;
2002 
2003   recompute_constructor_flags (c);
2004 
2005   return c;
2006 }
2007 
2008 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
2009    INDEX and VALUE.  */
2010 tree
2011 build_constructor_single (tree type, tree index, tree value)
2012 {
2013   vec<constructor_elt, va_gc> *v;
2014   constructor_elt elt = {index, value};
2015 
2016   vec_alloc (v, 1);
2017   v->quick_push (elt);
2018 
2019   return build_constructor (type, v);
2020 }
2021 
2022 
2023 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
2024    are in a list pointed to by VALS.  */
2025 tree
2026 build_constructor_from_list (tree type, tree vals)
2027 {
2028   tree t;
2029   vec<constructor_elt, va_gc> *v = NULL;
2030 
2031   if (vals)
2032     {
2033       vec_alloc (v, list_length (vals));
2034       for (t = vals; t; t = TREE_CHAIN (t))
2035 	CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
2036     }
2037 
2038   return build_constructor (type, v);
2039 }
2040 
2041 /* Return a new CONSTRUCTOR node whose type is TYPE.  NELTS is the number
2042    of elements, provided as index/value pairs.  */
2043 
2044 tree
2045 build_constructor_va (tree type, int nelts, ...)
2046 {
2047   vec<constructor_elt, va_gc> *v = NULL;
2048   va_list p;
2049 
2050   va_start (p, nelts);
2051   vec_alloc (v, nelts);
2052   while (nelts--)
2053     {
2054       tree index = va_arg (p, tree);
2055       tree value = va_arg (p, tree);
2056       CONSTRUCTOR_APPEND_ELT (v, index, value);
2057     }
2058   va_end (p);
2059   return build_constructor (type, v);
2060 }
2061 
2062 /* Return a new FIXED_CST node whose type is TYPE and value is F.  */
2063 
2064 tree
2065 build_fixed (tree type, FIXED_VALUE_TYPE f)
2066 {
2067   tree v;
2068   FIXED_VALUE_TYPE *fp;
2069 
2070   v = make_node (FIXED_CST);
2071   fp = ggc_alloc<fixed_value> ();
2072   memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
2073 
2074   TREE_TYPE (v) = type;
2075   TREE_FIXED_CST_PTR (v) = fp;
2076   return v;
2077 }
2078 
2079 /* Return a new REAL_CST node whose type is TYPE and value is D.  */
2080 
2081 tree
2082 build_real (tree type, REAL_VALUE_TYPE d)
2083 {
2084   tree v;
2085   REAL_VALUE_TYPE *dp;
2086   int overflow = 0;
2087 
2088   /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
2089      Consider doing it via real_convert now.  */
2090 
2091   v = make_node (REAL_CST);
2092   dp = ggc_alloc<real_value> ();
2093   memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
2094 
2095   TREE_TYPE (v) = type;
2096   TREE_REAL_CST_PTR (v) = dp;
2097   TREE_OVERFLOW (v) = overflow;
2098   return v;
2099 }
2100 
2101 /* Like build_real, but first truncate D to the type.  */
2102 
2103 tree
2104 build_real_truncate (tree type, REAL_VALUE_TYPE d)
2105 {
2106   return build_real (type, real_value_truncate (TYPE_MODE (type), d));
2107 }
2108 
2109 /* Return a new REAL_CST node whose type is TYPE
2110    and whose value is the integer value of the INTEGER_CST node I.  */
2111 
2112 REAL_VALUE_TYPE
2113 real_value_from_int_cst (const_tree type, const_tree i)
2114 {
2115   REAL_VALUE_TYPE d;
2116 
2117   /* Clear all bits of the real value type so that we can later do
2118      bitwise comparisons to see if two values are the same.  */
2119   memset (&d, 0, sizeof d);
2120 
2121   real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode, wi::to_wide (i),
2122 		     TYPE_SIGN (TREE_TYPE (i)));
2123   return d;
2124 }
2125 
2126 /* Given a tree representing an integer constant I, return a tree
2127    representing the same value as a floating-point constant of type TYPE.  */
2128 
2129 tree
2130 build_real_from_int_cst (tree type, const_tree i)
2131 {
2132   tree v;
2133   int overflow = TREE_OVERFLOW (i);
2134 
2135   v = build_real (type, real_value_from_int_cst (type, i));
2136 
2137   TREE_OVERFLOW (v) |= overflow;
2138   return v;
2139 }
2140 
2141 /* Return a newly constructed STRING_CST node whose value is
2142    the LEN characters at STR.
2143    Note that for a C string literal, LEN should include the trailing NUL.
2144    The TREE_TYPE is not initialized.  */
2145 
2146 tree
2147 build_string (int len, const char *str)
2148 {
2149   tree s;
2150   size_t length;
2151 
2152   /* Do not waste bytes provided by padding of struct tree_string.  */
2153   length = len + offsetof (struct tree_string, str) + 1;
2154 
2155   record_node_allocation_statistics (STRING_CST, length);
2156 
2157   s = (tree) ggc_internal_alloc (length);
2158 
2159   memset (s, 0, sizeof (struct tree_typed));
2160   TREE_SET_CODE (s, STRING_CST);
2161   TREE_CONSTANT (s) = 1;
2162   TREE_STRING_LENGTH (s) = len;
2163   memcpy (s->string.str, str, len);
2164   s->string.str[len] = '\0';
2165 
2166   return s;
2167 }
2168 
2169 /* Return a newly constructed COMPLEX_CST node whose value is
2170    specified by the real and imaginary parts REAL and IMAG.
2171    Both REAL and IMAG should be constant nodes.  TYPE, if specified,
2172    will be the type of the COMPLEX_CST; otherwise a new type will be made.  */
2173 
2174 tree
2175 build_complex (tree type, tree real, tree imag)
2176 {
2177   tree t = make_node (COMPLEX_CST);
2178 
2179   TREE_REALPART (t) = real;
2180   TREE_IMAGPART (t) = imag;
2181   TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
2182   TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
2183   return t;
2184 }
2185 
2186 /* Build a complex (inf +- 0i), such as for the result of cproj.
2187    TYPE is the complex tree type of the result.  If NEG is true, the
2188    imaginary zero is negative.  */
2189 
2190 tree
2191 build_complex_inf (tree type, bool neg)
2192 {
2193   REAL_VALUE_TYPE rinf, rzero = dconst0;
2194 
2195   real_inf (&rinf);
2196   rzero.sign = neg;
2197   return build_complex (type, build_real (TREE_TYPE (type), rinf),
2198 			build_real (TREE_TYPE (type), rzero));
2199 }
2200 
2201 /* Return the constant 1 in type TYPE.  If TYPE has several elements, each
2202    element is set to 1.  In particular, this is 1 + i for complex types.  */
2203 
2204 tree
2205 build_each_one_cst (tree type)
2206 {
2207   if (TREE_CODE (type) == COMPLEX_TYPE)
2208     {
2209       tree scalar = build_one_cst (TREE_TYPE (type));
2210       return build_complex (type, scalar, scalar);
2211     }
2212   else
2213     return build_one_cst (type);
2214 }
2215 
2216 /* Return a constant of arithmetic type TYPE which is the
2217    multiplicative identity of the set TYPE.  */
2218 
2219 tree
2220 build_one_cst (tree type)
2221 {
2222   switch (TREE_CODE (type))
2223     {
2224     case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2225     case POINTER_TYPE: case REFERENCE_TYPE:
2226     case OFFSET_TYPE:
2227       return build_int_cst (type, 1);
2228 
2229     case REAL_TYPE:
2230       return build_real (type, dconst1);
2231 
2232     case FIXED_POINT_TYPE:
2233       /* We can only generate 1 for accum types.  */
2234       gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2235       return build_fixed (type, FCONST1 (TYPE_MODE (type)));
2236 
2237     case VECTOR_TYPE:
2238       {
2239 	tree scalar = build_one_cst (TREE_TYPE (type));
2240 
2241 	return build_vector_from_val (type, scalar);
2242       }
2243 
2244     case COMPLEX_TYPE:
2245       return build_complex (type,
2246 			    build_one_cst (TREE_TYPE (type)),
2247 			    build_zero_cst (TREE_TYPE (type)));
2248 
2249     default:
2250       gcc_unreachable ();
2251     }
2252 }
2253 
2254 /* Return an integer of type TYPE containing all 1's in as much precision as
2255    it contains, or a complex or vector whose subparts are such integers.  */
2256 
2257 tree
2258 build_all_ones_cst (tree type)
2259 {
2260   if (TREE_CODE (type) == COMPLEX_TYPE)
2261     {
2262       tree scalar = build_all_ones_cst (TREE_TYPE (type));
2263       return build_complex (type, scalar, scalar);
2264     }
2265   else
2266     return build_minus_one_cst (type);
2267 }
2268 
2269 /* Return a constant of arithmetic type TYPE which is the
2270    opposite of the multiplicative identity of the set TYPE.  */
2271 
2272 tree
2273 build_minus_one_cst (tree type)
2274 {
2275   switch (TREE_CODE (type))
2276     {
2277     case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2278     case POINTER_TYPE: case REFERENCE_TYPE:
2279     case OFFSET_TYPE:
2280       return build_int_cst (type, -1);
2281 
2282     case REAL_TYPE:
2283       return build_real (type, dconstm1);
2284 
2285     case FIXED_POINT_TYPE:
2286       /* We can only generate 1 for accum types.  */
2287       gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2288       return build_fixed (type,
2289 			  fixed_from_double_int (double_int_minus_one,
2290 						 SCALAR_TYPE_MODE (type)));
2291 
2292     case VECTOR_TYPE:
2293       {
2294 	tree scalar = build_minus_one_cst (TREE_TYPE (type));
2295 
2296 	return build_vector_from_val (type, scalar);
2297       }
2298 
2299     case COMPLEX_TYPE:
2300       return build_complex (type,
2301 			    build_minus_one_cst (TREE_TYPE (type)),
2302 			    build_zero_cst (TREE_TYPE (type)));
2303 
2304     default:
2305       gcc_unreachable ();
2306     }
2307 }
2308 
2309 /* Build 0 constant of type TYPE.  This is used by constructor folding
2310    and thus the constant should be represented in memory by
2311    zero(es).  */
2312 
2313 tree
2314 build_zero_cst (tree type)
2315 {
2316   switch (TREE_CODE (type))
2317     {
2318     case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2319     case POINTER_TYPE: case REFERENCE_TYPE:
2320     case OFFSET_TYPE: case NULLPTR_TYPE:
2321       return build_int_cst (type, 0);
2322 
2323     case REAL_TYPE:
2324       return build_real (type, dconst0);
2325 
2326     case FIXED_POINT_TYPE:
2327       return build_fixed (type, FCONST0 (TYPE_MODE (type)));
2328 
2329     case VECTOR_TYPE:
2330       {
2331 	tree scalar = build_zero_cst (TREE_TYPE (type));
2332 
2333 	return build_vector_from_val (type, scalar);
2334       }
2335 
2336     case COMPLEX_TYPE:
2337       {
2338 	tree zero = build_zero_cst (TREE_TYPE (type));
2339 
2340 	return build_complex (type, zero, zero);
2341       }
2342 
2343     default:
2344       if (!AGGREGATE_TYPE_P (type))
2345 	return fold_convert (type, integer_zero_node);
2346       return build_constructor (type, NULL);
2347     }
2348 }
2349 
2350 
2351 /* Build a BINFO with LEN language slots.  */
2352 
2353 tree
2354 make_tree_binfo (unsigned base_binfos MEM_STAT_DECL)
2355 {
2356   tree t;
2357   size_t length = (offsetof (struct tree_binfo, base_binfos)
2358 		   + vec<tree, va_gc>::embedded_size (base_binfos));
2359 
2360   record_node_allocation_statistics (TREE_BINFO, length);
2361 
2362   t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
2363 
2364   memset (t, 0, offsetof (struct tree_binfo, base_binfos));
2365 
2366   TREE_SET_CODE (t, TREE_BINFO);
2367 
2368   BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
2369 
2370   return t;
2371 }
2372 
2373 /* Create a CASE_LABEL_EXPR tree node and return it.  */
2374 
2375 tree
2376 build_case_label (tree low_value, tree high_value, tree label_decl)
2377 {
2378   tree t = make_node (CASE_LABEL_EXPR);
2379 
2380   TREE_TYPE (t) = void_type_node;
2381   SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
2382 
2383   CASE_LOW (t) = low_value;
2384   CASE_HIGH (t) = high_value;
2385   CASE_LABEL (t) = label_decl;
2386   CASE_CHAIN (t) = NULL_TREE;
2387 
2388   return t;
2389 }
2390 
2391 /* Build a newly constructed INTEGER_CST node.  LEN and EXT_LEN are the
2392    values of TREE_INT_CST_NUNITS and TREE_INT_CST_EXT_NUNITS respectively.
2393    The latter determines the length of the HOST_WIDE_INT vector.  */
2394 
2395 tree
2396 make_int_cst (int len, int ext_len MEM_STAT_DECL)
2397 {
2398   tree t;
2399   int length = ((ext_len - 1) * sizeof (HOST_WIDE_INT)
2400 		+ sizeof (struct tree_int_cst));
2401 
2402   gcc_assert (len);
2403   record_node_allocation_statistics (INTEGER_CST, length);
2404 
2405   t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2406 
2407   TREE_SET_CODE (t, INTEGER_CST);
2408   TREE_INT_CST_NUNITS (t) = len;
2409   TREE_INT_CST_EXT_NUNITS (t) = ext_len;
2410   /* to_offset can only be applied to trees that are offset_int-sized
2411      or smaller.  EXT_LEN is correct if it fits, otherwise the constant
2412      must be exactly the precision of offset_int and so LEN is correct.  */
2413   if (ext_len <= OFFSET_INT_ELTS)
2414     TREE_INT_CST_OFFSET_NUNITS (t) = ext_len;
2415   else
2416     TREE_INT_CST_OFFSET_NUNITS (t) = len;
2417 
2418   TREE_CONSTANT (t) = 1;
2419 
2420   return t;
2421 }
2422 
2423 /* Build a newly constructed TREE_VEC node of length LEN.  */
2424 
2425 tree
2426 make_tree_vec (int len MEM_STAT_DECL)
2427 {
2428   tree t;
2429   size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2430 
2431   record_node_allocation_statistics (TREE_VEC, length);
2432 
2433   t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2434 
2435   TREE_SET_CODE (t, TREE_VEC);
2436   TREE_VEC_LENGTH (t) = len;
2437 
2438   return t;
2439 }
2440 
2441 /* Grow a TREE_VEC node to new length LEN.  */
2442 
2443 tree
2444 grow_tree_vec (tree v, int len MEM_STAT_DECL)
2445 {
2446   gcc_assert (TREE_CODE (v) == TREE_VEC);
2447 
2448   int oldlen = TREE_VEC_LENGTH (v);
2449   gcc_assert (len > oldlen);
2450 
2451   size_t oldlength = (oldlen - 1) * sizeof (tree) + sizeof (struct tree_vec);
2452   size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2453 
2454   record_node_allocation_statistics (TREE_VEC, length - oldlength);
2455 
2456   v = (tree) ggc_realloc (v, length PASS_MEM_STAT);
2457 
2458   TREE_VEC_LENGTH (v) = len;
2459 
2460   return v;
2461 }
2462 
2463 /* Return 1 if EXPR is the constant zero, whether it is integral, float or
2464    fixed, and scalar, complex or vector.  */
2465 
2466 int
2467 zerop (const_tree expr)
2468 {
2469   return (integer_zerop (expr)
2470 	  || real_zerop (expr)
2471 	  || fixed_zerop (expr));
2472 }
2473 
2474 /* Return 1 if EXPR is the integer constant zero or a complex constant
2475    of zero.  */
2476 
2477 int
2478 integer_zerop (const_tree expr)
2479 {
2480   switch (TREE_CODE (expr))
2481     {
2482     case INTEGER_CST:
2483       return wi::to_wide (expr) == 0;
2484     case COMPLEX_CST:
2485       return (integer_zerop (TREE_REALPART (expr))
2486 	      && integer_zerop (TREE_IMAGPART (expr)));
2487     case VECTOR_CST:
2488       return (VECTOR_CST_NPATTERNS (expr) == 1
2489 	      && VECTOR_CST_DUPLICATE_P (expr)
2490 	      && integer_zerop (VECTOR_CST_ENCODED_ELT (expr, 0)));
2491     default:
2492       return false;
2493     }
2494 }
2495 
2496 /* Return 1 if EXPR is the integer constant one or the corresponding
2497    complex constant.  */
2498 
2499 int
2500 integer_onep (const_tree expr)
2501 {
2502   switch (TREE_CODE (expr))
2503     {
2504     case INTEGER_CST:
2505       return wi::eq_p (wi::to_widest (expr), 1);
2506     case COMPLEX_CST:
2507       return (integer_onep (TREE_REALPART (expr))
2508 	      && integer_zerop (TREE_IMAGPART (expr)));
2509     case VECTOR_CST:
2510       return (VECTOR_CST_NPATTERNS (expr) == 1
2511 	      && VECTOR_CST_DUPLICATE_P (expr)
2512 	      && integer_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2513     default:
2514       return false;
2515     }
2516 }
2517 
2518 /* Return 1 if EXPR is the integer constant one.  For complex and vector,
2519    return 1 if every piece is the integer constant one.  */
2520 
2521 int
2522 integer_each_onep (const_tree expr)
2523 {
2524   if (TREE_CODE (expr) == COMPLEX_CST)
2525     return (integer_onep (TREE_REALPART (expr))
2526 	    && integer_onep (TREE_IMAGPART (expr)));
2527   else
2528     return integer_onep (expr);
2529 }
2530 
2531 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
2532    it contains, or a complex or vector whose subparts are such integers.  */
2533 
2534 int
2535 integer_all_onesp (const_tree expr)
2536 {
2537   if (TREE_CODE (expr) == COMPLEX_CST
2538       && integer_all_onesp (TREE_REALPART (expr))
2539       && integer_all_onesp (TREE_IMAGPART (expr)))
2540     return 1;
2541 
2542   else if (TREE_CODE (expr) == VECTOR_CST)
2543     return (VECTOR_CST_NPATTERNS (expr) == 1
2544 	    && VECTOR_CST_DUPLICATE_P (expr)
2545 	    && integer_all_onesp (VECTOR_CST_ENCODED_ELT (expr, 0)));
2546 
2547   else if (TREE_CODE (expr) != INTEGER_CST)
2548     return 0;
2549 
2550   return (wi::max_value (TYPE_PRECISION (TREE_TYPE (expr)), UNSIGNED)
2551 	  == wi::to_wide (expr));
2552 }
2553 
2554 /* Return 1 if EXPR is the integer constant minus one.  */
2555 
2556 int
2557 integer_minus_onep (const_tree expr)
2558 {
2559   if (TREE_CODE (expr) == COMPLEX_CST)
2560     return (integer_all_onesp (TREE_REALPART (expr))
2561 	    && integer_zerop (TREE_IMAGPART (expr)));
2562   else
2563     return integer_all_onesp (expr);
2564 }
2565 
2566 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
2567    one bit on).  */
2568 
2569 int
2570 integer_pow2p (const_tree expr)
2571 {
2572   if (TREE_CODE (expr) == COMPLEX_CST
2573       && integer_pow2p (TREE_REALPART (expr))
2574       && integer_zerop (TREE_IMAGPART (expr)))
2575     return 1;
2576 
2577   if (TREE_CODE (expr) != INTEGER_CST)
2578     return 0;
2579 
2580   return wi::popcount (wi::to_wide (expr)) == 1;
2581 }
2582 
2583 /* Return 1 if EXPR is an integer constant other than zero or a
2584    complex constant other than zero.  */
2585 
2586 int
2587 integer_nonzerop (const_tree expr)
2588 {
2589   return ((TREE_CODE (expr) == INTEGER_CST
2590 	   && wi::to_wide (expr) != 0)
2591 	  || (TREE_CODE (expr) == COMPLEX_CST
2592 	      && (integer_nonzerop (TREE_REALPART (expr))
2593 		  || integer_nonzerop (TREE_IMAGPART (expr)))));
2594 }
2595 
2596 /* Return 1 if EXPR is the integer constant one.  For vector,
2597    return 1 if every piece is the integer constant minus one
2598    (representing the value TRUE).  */
2599 
2600 int
2601 integer_truep (const_tree expr)
2602 {
2603   if (TREE_CODE (expr) == VECTOR_CST)
2604     return integer_all_onesp (expr);
2605   return integer_onep (expr);
2606 }
2607 
2608 /* Return 1 if EXPR is the fixed-point constant zero.  */
2609 
2610 int
2611 fixed_zerop (const_tree expr)
2612 {
2613   return (TREE_CODE (expr) == FIXED_CST
2614 	  && TREE_FIXED_CST (expr).data.is_zero ());
2615 }
2616 
2617 /* Return the power of two represented by a tree node known to be a
2618    power of two.  */
2619 
2620 int
2621 tree_log2 (const_tree expr)
2622 {
2623   if (TREE_CODE (expr) == COMPLEX_CST)
2624     return tree_log2 (TREE_REALPART (expr));
2625 
2626   return wi::exact_log2 (wi::to_wide (expr));
2627 }
2628 
2629 /* Similar, but return the largest integer Y such that 2 ** Y is less
2630    than or equal to EXPR.  */
2631 
2632 int
2633 tree_floor_log2 (const_tree expr)
2634 {
2635   if (TREE_CODE (expr) == COMPLEX_CST)
2636     return tree_log2 (TREE_REALPART (expr));
2637 
2638   return wi::floor_log2 (wi::to_wide (expr));
2639 }
2640 
2641 /* Return number of known trailing zero bits in EXPR, or, if the value of
2642    EXPR is known to be zero, the precision of it's type.  */
2643 
2644 unsigned int
2645 tree_ctz (const_tree expr)
2646 {
2647   if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
2648       && !POINTER_TYPE_P (TREE_TYPE (expr)))
2649     return 0;
2650 
2651   unsigned int ret1, ret2, prec = TYPE_PRECISION (TREE_TYPE (expr));
2652   switch (TREE_CODE (expr))
2653     {
2654     case INTEGER_CST:
2655       ret1 = wi::ctz (wi::to_wide (expr));
2656       return MIN (ret1, prec);
2657     case SSA_NAME:
2658       ret1 = wi::ctz (get_nonzero_bits (expr));
2659       return MIN (ret1, prec);
2660     case PLUS_EXPR:
2661     case MINUS_EXPR:
2662     case BIT_IOR_EXPR:
2663     case BIT_XOR_EXPR:
2664     case MIN_EXPR:
2665     case MAX_EXPR:
2666       ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2667       if (ret1 == 0)
2668 	return ret1;
2669       ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2670       return MIN (ret1, ret2);
2671     case POINTER_PLUS_EXPR:
2672       ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2673       ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2674       /* Second operand is sizetype, which could be in theory
2675 	 wider than pointer's precision.  Make sure we never
2676 	 return more than prec.  */
2677       ret2 = MIN (ret2, prec);
2678       return MIN (ret1, ret2);
2679     case BIT_AND_EXPR:
2680       ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2681       ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2682       return MAX (ret1, ret2);
2683     case MULT_EXPR:
2684       ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2685       ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2686       return MIN (ret1 + ret2, prec);
2687     case LSHIFT_EXPR:
2688       ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2689       if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2690 	  && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2691 	{
2692 	  ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2693 	  return MIN (ret1 + ret2, prec);
2694 	}
2695       return ret1;
2696     case RSHIFT_EXPR:
2697       if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2698 	  && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2699 	{
2700 	  ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2701 	  ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2702 	  if (ret1 > ret2)
2703 	    return ret1 - ret2;
2704 	}
2705       return 0;
2706     case TRUNC_DIV_EXPR:
2707     case CEIL_DIV_EXPR:
2708     case FLOOR_DIV_EXPR:
2709     case ROUND_DIV_EXPR:
2710     case EXACT_DIV_EXPR:
2711       if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
2712 	  && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) == 1)
2713 	{
2714 	  int l = tree_log2 (TREE_OPERAND (expr, 1));
2715 	  if (l >= 0)
2716 	    {
2717 	      ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2718 	      ret2 = l;
2719 	      if (ret1 > ret2)
2720 		return ret1 - ret2;
2721 	    }
2722 	}
2723       return 0;
2724     CASE_CONVERT:
2725       ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2726       if (ret1 && ret1 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
2727 	ret1 = prec;
2728       return MIN (ret1, prec);
2729     case SAVE_EXPR:
2730       return tree_ctz (TREE_OPERAND (expr, 0));
2731     case COND_EXPR:
2732       ret1 = tree_ctz (TREE_OPERAND (expr, 1));
2733       if (ret1 == 0)
2734 	return 0;
2735       ret2 = tree_ctz (TREE_OPERAND (expr, 2));
2736       return MIN (ret1, ret2);
2737     case COMPOUND_EXPR:
2738       return tree_ctz (TREE_OPERAND (expr, 1));
2739     case ADDR_EXPR:
2740       ret1 = get_pointer_alignment (CONST_CAST_TREE (expr));
2741       if (ret1 > BITS_PER_UNIT)
2742 	{
2743 	  ret1 = ctz_hwi (ret1 / BITS_PER_UNIT);
2744 	  return MIN (ret1, prec);
2745 	}
2746       return 0;
2747     default:
2748       return 0;
2749     }
2750 }
2751 
2752 /* Return 1 if EXPR is the real constant zero.  Trailing zeroes matter for
2753    decimal float constants, so don't return 1 for them.  */
2754 
2755 int
2756 real_zerop (const_tree expr)
2757 {
2758   switch (TREE_CODE (expr))
2759     {
2760     case REAL_CST:
2761       return real_equal (&TREE_REAL_CST (expr), &dconst0)
2762 	     && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2763     case COMPLEX_CST:
2764       return real_zerop (TREE_REALPART (expr))
2765 	     && real_zerop (TREE_IMAGPART (expr));
2766     case VECTOR_CST:
2767       {
2768 	/* Don't simply check for a duplicate because the predicate
2769 	   accepts both +0.0 and -0.0.  */
2770 	unsigned count = vector_cst_encoded_nelts (expr);
2771 	for (unsigned int i = 0; i < count; ++i)
2772 	  if (!real_zerop (VECTOR_CST_ENCODED_ELT (expr, i)))
2773 	    return false;
2774 	return true;
2775       }
2776     default:
2777       return false;
2778     }
2779 }
2780 
2781 /* Return 1 if EXPR is the real constant one in real or complex form.
2782    Trailing zeroes matter for decimal float constants, so don't return
2783    1 for them.  */
2784 
2785 int
2786 real_onep (const_tree expr)
2787 {
2788   switch (TREE_CODE (expr))
2789     {
2790     case REAL_CST:
2791       return real_equal (&TREE_REAL_CST (expr), &dconst1)
2792 	     && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2793     case COMPLEX_CST:
2794       return real_onep (TREE_REALPART (expr))
2795 	     && real_zerop (TREE_IMAGPART (expr));
2796     case VECTOR_CST:
2797       return (VECTOR_CST_NPATTERNS (expr) == 1
2798 	      && VECTOR_CST_DUPLICATE_P (expr)
2799 	      && real_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2800     default:
2801       return false;
2802     }
2803 }
2804 
2805 /* Return 1 if EXPR is the real constant minus one.  Trailing zeroes
2806    matter for decimal float constants, so don't return 1 for them.  */
2807 
2808 int
2809 real_minus_onep (const_tree expr)
2810 {
2811   switch (TREE_CODE (expr))
2812     {
2813     case REAL_CST:
2814       return real_equal (&TREE_REAL_CST (expr), &dconstm1)
2815 	     && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2816     case COMPLEX_CST:
2817       return real_minus_onep (TREE_REALPART (expr))
2818 	     && real_zerop (TREE_IMAGPART (expr));
2819     case VECTOR_CST:
2820       return (VECTOR_CST_NPATTERNS (expr) == 1
2821 	      && VECTOR_CST_DUPLICATE_P (expr)
2822 	      && real_minus_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2823     default:
2824       return false;
2825     }
2826 }
2827 
2828 /* Nonzero if EXP is a constant or a cast of a constant.  */
2829 
2830 int
2831 really_constant_p (const_tree exp)
2832 {
2833   /* This is not quite the same as STRIP_NOPS.  It does more.  */
2834   while (CONVERT_EXPR_P (exp)
2835 	 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2836     exp = TREE_OPERAND (exp, 0);
2837   return TREE_CONSTANT (exp);
2838 }
2839 
2840 /* Return true if T holds a polynomial pointer difference, storing it in
2841    *VALUE if so.  A true return means that T's precision is no greater
2842    than 64 bits, which is the largest address space we support, so *VALUE
2843    never loses precision.  However, the signedness of the result does
2844    not necessarily match the signedness of T: sometimes an unsigned type
2845    like sizetype is used to encode a value that is actually negative.  */
2846 
2847 bool
2848 ptrdiff_tree_p (const_tree t, poly_int64_pod *value)
2849 {
2850   if (!t)
2851     return false;
2852   if (TREE_CODE (t) == INTEGER_CST)
2853     {
2854       if (!cst_and_fits_in_hwi (t))
2855 	return false;
2856       *value = int_cst_value (t);
2857       return true;
2858     }
2859   if (POLY_INT_CST_P (t))
2860     {
2861       for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2862 	if (!cst_and_fits_in_hwi (POLY_INT_CST_COEFF (t, i)))
2863 	  return false;
2864       for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2865 	value->coeffs[i] = int_cst_value (POLY_INT_CST_COEFF (t, i));
2866       return true;
2867     }
2868   return false;
2869 }
2870 
2871 poly_int64
2872 tree_to_poly_int64 (const_tree t)
2873 {
2874   gcc_assert (tree_fits_poly_int64_p (t));
2875   if (POLY_INT_CST_P (t))
2876     return poly_int_cst_value (t).force_shwi ();
2877   return TREE_INT_CST_LOW (t);
2878 }
2879 
2880 poly_uint64
2881 tree_to_poly_uint64 (const_tree t)
2882 {
2883   gcc_assert (tree_fits_poly_uint64_p (t));
2884   if (POLY_INT_CST_P (t))
2885     return poly_int_cst_value (t).force_uhwi ();
2886   return TREE_INT_CST_LOW (t);
2887 }
2888 
2889 /* Return first list element whose TREE_VALUE is ELEM.
2890    Return 0 if ELEM is not in LIST.  */
2891 
2892 tree
2893 value_member (tree elem, tree list)
2894 {
2895   while (list)
2896     {
2897       if (elem == TREE_VALUE (list))
2898 	return list;
2899       list = TREE_CHAIN (list);
2900     }
2901   return NULL_TREE;
2902 }
2903 
2904 /* Return first list element whose TREE_PURPOSE is ELEM.
2905    Return 0 if ELEM is not in LIST.  */
2906 
2907 tree
2908 purpose_member (const_tree elem, tree list)
2909 {
2910   while (list)
2911     {
2912       if (elem == TREE_PURPOSE (list))
2913 	return list;
2914       list = TREE_CHAIN (list);
2915     }
2916   return NULL_TREE;
2917 }
2918 
2919 /* Return true if ELEM is in V.  */
2920 
2921 bool
2922 vec_member (const_tree elem, vec<tree, va_gc> *v)
2923 {
2924   unsigned ix;
2925   tree t;
2926   FOR_EACH_VEC_SAFE_ELT (v, ix, t)
2927     if (elem == t)
2928       return true;
2929   return false;
2930 }
2931 
2932 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2933    NULL_TREE.  */
2934 
2935 tree
2936 chain_index (int idx, tree chain)
2937 {
2938   for (; chain && idx > 0; --idx)
2939     chain = TREE_CHAIN (chain);
2940   return chain;
2941 }
2942 
2943 /* Return nonzero if ELEM is part of the chain CHAIN.  */
2944 
2945 int
2946 chain_member (const_tree elem, const_tree chain)
2947 {
2948   while (chain)
2949     {
2950       if (elem == chain)
2951 	return 1;
2952       chain = DECL_CHAIN (chain);
2953     }
2954 
2955   return 0;
2956 }
2957 
2958 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2959    We expect a null pointer to mark the end of the chain.
2960    This is the Lisp primitive `length'.  */
2961 
2962 int
2963 list_length (const_tree t)
2964 {
2965   const_tree p = t;
2966 #ifdef ENABLE_TREE_CHECKING
2967   const_tree q = t;
2968 #endif
2969   int len = 0;
2970 
2971   while (p)
2972     {
2973       p = TREE_CHAIN (p);
2974 #ifdef ENABLE_TREE_CHECKING
2975       if (len % 2)
2976 	q = TREE_CHAIN (q);
2977       gcc_assert (p != q);
2978 #endif
2979       len++;
2980     }
2981 
2982   return len;
2983 }
2984 
2985 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2986    UNION_TYPE TYPE, or NULL_TREE if none.  */
2987 
2988 tree
2989 first_field (const_tree type)
2990 {
2991   tree t = TYPE_FIELDS (type);
2992   while (t && TREE_CODE (t) != FIELD_DECL)
2993     t = TREE_CHAIN (t);
2994   return t;
2995 }
2996 
2997 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2998    by modifying the last node in chain 1 to point to chain 2.
2999    This is the Lisp primitive `nconc'.  */
3000 
3001 tree
3002 chainon (tree op1, tree op2)
3003 {
3004   tree t1;
3005 
3006   if (!op1)
3007     return op2;
3008   if (!op2)
3009     return op1;
3010 
3011   for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
3012     continue;
3013   TREE_CHAIN (t1) = op2;
3014 
3015 #ifdef ENABLE_TREE_CHECKING
3016   {
3017     tree t2;
3018     for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
3019       gcc_assert (t2 != t1);
3020   }
3021 #endif
3022 
3023   return op1;
3024 }
3025 
3026 /* Return the last node in a chain of nodes (chained through TREE_CHAIN).  */
3027 
3028 tree
3029 tree_last (tree chain)
3030 {
3031   tree next;
3032   if (chain)
3033     while ((next = TREE_CHAIN (chain)))
3034       chain = next;
3035   return chain;
3036 }
3037 
3038 /* Reverse the order of elements in the chain T,
3039    and return the new head of the chain (old last element).  */
3040 
3041 tree
3042 nreverse (tree t)
3043 {
3044   tree prev = 0, decl, next;
3045   for (decl = t; decl; decl = next)
3046     {
3047       /* We shouldn't be using this function to reverse BLOCK chains; we
3048 	 have blocks_nreverse for that.  */
3049       gcc_checking_assert (TREE_CODE (decl) != BLOCK);
3050       next = TREE_CHAIN (decl);
3051       TREE_CHAIN (decl) = prev;
3052       prev = decl;
3053     }
3054   return prev;
3055 }
3056 
3057 /* Return a newly created TREE_LIST node whose
3058    purpose and value fields are PARM and VALUE.  */
3059 
3060 tree
3061 build_tree_list (tree parm, tree value MEM_STAT_DECL)
3062 {
3063   tree t = make_node (TREE_LIST PASS_MEM_STAT);
3064   TREE_PURPOSE (t) = parm;
3065   TREE_VALUE (t) = value;
3066   return t;
3067 }
3068 
3069 /* Build a chain of TREE_LIST nodes from a vector.  */
3070 
3071 tree
3072 build_tree_list_vec (const vec<tree, va_gc> *vec MEM_STAT_DECL)
3073 {
3074   tree ret = NULL_TREE;
3075   tree *pp = &ret;
3076   unsigned int i;
3077   tree t;
3078   FOR_EACH_VEC_SAFE_ELT (vec, i, t)
3079     {
3080       *pp = build_tree_list (NULL, t PASS_MEM_STAT);
3081       pp = &TREE_CHAIN (*pp);
3082     }
3083   return ret;
3084 }
3085 
3086 /* Return a newly created TREE_LIST node whose
3087    purpose and value fields are PURPOSE and VALUE
3088    and whose TREE_CHAIN is CHAIN.  */
3089 
3090 tree
3091 tree_cons (tree purpose, tree value, tree chain MEM_STAT_DECL)
3092 {
3093   tree node;
3094 
3095   node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
3096   memset (node, 0, sizeof (struct tree_common));
3097 
3098   record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
3099 
3100   TREE_SET_CODE (node, TREE_LIST);
3101   TREE_CHAIN (node) = chain;
3102   TREE_PURPOSE (node) = purpose;
3103   TREE_VALUE (node) = value;
3104   return node;
3105 }
3106 
3107 /* Return the values of the elements of a CONSTRUCTOR as a vector of
3108    trees.  */
3109 
3110 vec<tree, va_gc> *
3111 ctor_to_vec (tree ctor)
3112 {
3113   vec<tree, va_gc> *vec;
3114   vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
3115   unsigned int ix;
3116   tree val;
3117 
3118   FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
3119     vec->quick_push (val);
3120 
3121   return vec;
3122 }
3123 
3124 /* Return the size nominally occupied by an object of type TYPE
3125    when it resides in memory.  The value is measured in units of bytes,
3126    and its data type is that normally used for type sizes
3127    (which is the first type created by make_signed_type or
3128    make_unsigned_type).  */
3129 
3130 tree
3131 size_in_bytes_loc (location_t loc, const_tree type)
3132 {
3133   tree t;
3134 
3135   if (type == error_mark_node)
3136     return integer_zero_node;
3137 
3138   type = TYPE_MAIN_VARIANT (type);
3139   t = TYPE_SIZE_UNIT (type);
3140 
3141   if (t == 0)
3142     {
3143       lang_hooks.types.incomplete_type_error (loc, NULL_TREE, type);
3144       return size_zero_node;
3145     }
3146 
3147   return t;
3148 }
3149 
3150 /* Return the size of TYPE (in bytes) as a wide integer
3151    or return -1 if the size can vary or is larger than an integer.  */
3152 
3153 HOST_WIDE_INT
3154 int_size_in_bytes (const_tree type)
3155 {
3156   tree t;
3157 
3158   if (type == error_mark_node)
3159     return 0;
3160 
3161   type = TYPE_MAIN_VARIANT (type);
3162   t = TYPE_SIZE_UNIT (type);
3163 
3164   if (t && tree_fits_uhwi_p (t))
3165     return TREE_INT_CST_LOW (t);
3166   else
3167     return -1;
3168 }
3169 
3170 /* Return the maximum size of TYPE (in bytes) as a wide integer
3171    or return -1 if the size can vary or is larger than an integer.  */
3172 
3173 HOST_WIDE_INT
3174 max_int_size_in_bytes (const_tree type)
3175 {
3176   HOST_WIDE_INT size = -1;
3177   tree size_tree;
3178 
3179   /* If this is an array type, check for a possible MAX_SIZE attached.  */
3180 
3181   if (TREE_CODE (type) == ARRAY_TYPE)
3182     {
3183       size_tree = TYPE_ARRAY_MAX_SIZE (type);
3184 
3185       if (size_tree && tree_fits_uhwi_p (size_tree))
3186 	size = tree_to_uhwi (size_tree);
3187     }
3188 
3189   /* If we still haven't been able to get a size, see if the language
3190      can compute a maximum size.  */
3191 
3192   if (size == -1)
3193     {
3194       size_tree = lang_hooks.types.max_size (type);
3195 
3196       if (size_tree && tree_fits_uhwi_p (size_tree))
3197 	size = tree_to_uhwi (size_tree);
3198     }
3199 
3200   return size;
3201 }
3202 
3203 /* Return the bit position of FIELD, in bits from the start of the record.
3204    This is a tree of type bitsizetype.  */
3205 
3206 tree
3207 bit_position (const_tree field)
3208 {
3209   return bit_from_pos (DECL_FIELD_OFFSET (field),
3210 		       DECL_FIELD_BIT_OFFSET (field));
3211 }
3212 
3213 /* Return the byte position of FIELD, in bytes from the start of the record.
3214    This is a tree of type sizetype.  */
3215 
3216 tree
3217 byte_position (const_tree field)
3218 {
3219   return byte_from_pos (DECL_FIELD_OFFSET (field),
3220 			DECL_FIELD_BIT_OFFSET (field));
3221 }
3222 
3223 /* Likewise, but return as an integer.  It must be representable in
3224    that way (since it could be a signed value, we don't have the
3225    option of returning -1 like int_size_in_byte can.  */
3226 
3227 HOST_WIDE_INT
3228 int_byte_position (const_tree field)
3229 {
3230   return tree_to_shwi (byte_position (field));
3231 }
3232 
3233 /* Return the strictest alignment, in bits, that T is known to have.  */
3234 
3235 unsigned int
3236 expr_align (const_tree t)
3237 {
3238   unsigned int align0, align1;
3239 
3240   switch (TREE_CODE (t))
3241     {
3242     CASE_CONVERT:  case NON_LVALUE_EXPR:
3243       /* If we have conversions, we know that the alignment of the
3244 	 object must meet each of the alignments of the types.  */
3245       align0 = expr_align (TREE_OPERAND (t, 0));
3246       align1 = TYPE_ALIGN (TREE_TYPE (t));
3247       return MAX (align0, align1);
3248 
3249     case SAVE_EXPR:         case COMPOUND_EXPR:       case MODIFY_EXPR:
3250     case INIT_EXPR:         case TARGET_EXPR:         case WITH_CLEANUP_EXPR:
3251     case CLEANUP_POINT_EXPR:
3252       /* These don't change the alignment of an object.  */
3253       return expr_align (TREE_OPERAND (t, 0));
3254 
3255     case COND_EXPR:
3256       /* The best we can do is say that the alignment is the least aligned
3257 	 of the two arms.  */
3258       align0 = expr_align (TREE_OPERAND (t, 1));
3259       align1 = expr_align (TREE_OPERAND (t, 2));
3260       return MIN (align0, align1);
3261 
3262       /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
3263 	 meaningfully, it's always 1.  */
3264     case LABEL_DECL:     case CONST_DECL:
3265     case VAR_DECL:       case PARM_DECL:   case RESULT_DECL:
3266     case FUNCTION_DECL:
3267       gcc_assert (DECL_ALIGN (t) != 0);
3268       return DECL_ALIGN (t);
3269 
3270     default:
3271       break;
3272     }
3273 
3274   /* Otherwise take the alignment from that of the type.  */
3275   return TYPE_ALIGN (TREE_TYPE (t));
3276 }
3277 
3278 /* Return, as a tree node, the number of elements for TYPE (which is an
3279    ARRAY_TYPE) minus one. This counts only elements of the top array.  */
3280 
3281 tree
3282 array_type_nelts (const_tree type)
3283 {
3284   tree index_type, min, max;
3285 
3286   /* If they did it with unspecified bounds, then we should have already
3287      given an error about it before we got here.  */
3288   if (! TYPE_DOMAIN (type))
3289     return error_mark_node;
3290 
3291   index_type = TYPE_DOMAIN (type);
3292   min = TYPE_MIN_VALUE (index_type);
3293   max = TYPE_MAX_VALUE (index_type);
3294 
3295   /* TYPE_MAX_VALUE may not be set if the array has unknown length.  */
3296   if (!max)
3297     return error_mark_node;
3298 
3299   return (integer_zerop (min)
3300 	  ? max
3301 	  : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
3302 }
3303 
3304 /* If arg is static -- a reference to an object in static storage -- then
3305    return the object.  This is not the same as the C meaning of `static'.
3306    If arg isn't static, return NULL.  */
3307 
3308 tree
3309 staticp (tree arg)
3310 {
3311   switch (TREE_CODE (arg))
3312     {
3313     case FUNCTION_DECL:
3314       /* Nested functions are static, even though taking their address will
3315 	 involve a trampoline as we unnest the nested function and create
3316 	 the trampoline on the tree level.  */
3317       return arg;
3318 
3319     case VAR_DECL:
3320       return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3321 	      && ! DECL_THREAD_LOCAL_P (arg)
3322 	      && ! DECL_DLLIMPORT_P (arg)
3323 	      ? arg : NULL);
3324 
3325     case CONST_DECL:
3326       return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3327 	      ? arg : NULL);
3328 
3329     case CONSTRUCTOR:
3330       return TREE_STATIC (arg) ? arg : NULL;
3331 
3332     case LABEL_DECL:
3333     case STRING_CST:
3334       return arg;
3335 
3336     case COMPONENT_REF:
3337       /* If the thing being referenced is not a field, then it is
3338 	 something language specific.  */
3339       gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
3340 
3341       /* If we are referencing a bitfield, we can't evaluate an
3342 	 ADDR_EXPR at compile time and so it isn't a constant.  */
3343       if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
3344 	return NULL;
3345 
3346       return staticp (TREE_OPERAND (arg, 0));
3347 
3348     case BIT_FIELD_REF:
3349       return NULL;
3350 
3351     case INDIRECT_REF:
3352       return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
3353 
3354     case ARRAY_REF:
3355     case ARRAY_RANGE_REF:
3356       if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
3357 	  && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
3358 	return staticp (TREE_OPERAND (arg, 0));
3359       else
3360 	return NULL;
3361 
3362     case COMPOUND_LITERAL_EXPR:
3363       return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
3364 
3365     default:
3366       return NULL;
3367     }
3368 }
3369 
3370 
3371 
3372 
3373 /* Return whether OP is a DECL whose address is function-invariant.  */
3374 
3375 bool
3376 decl_address_invariant_p (const_tree op)
3377 {
3378   /* The conditions below are slightly less strict than the one in
3379      staticp.  */
3380 
3381   switch (TREE_CODE (op))
3382     {
3383     case PARM_DECL:
3384     case RESULT_DECL:
3385     case LABEL_DECL:
3386     case FUNCTION_DECL:
3387       return true;
3388 
3389     case VAR_DECL:
3390       if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3391           || DECL_THREAD_LOCAL_P (op)
3392           || DECL_CONTEXT (op) == current_function_decl
3393           || decl_function_context (op) == current_function_decl)
3394         return true;
3395       break;
3396 
3397     case CONST_DECL:
3398       if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3399           || decl_function_context (op) == current_function_decl)
3400         return true;
3401       break;
3402 
3403     default:
3404       break;
3405     }
3406 
3407   return false;
3408 }
3409 
3410 /* Return whether OP is a DECL whose address is interprocedural-invariant.  */
3411 
3412 bool
3413 decl_address_ip_invariant_p (const_tree op)
3414 {
3415   /* The conditions below are slightly less strict than the one in
3416      staticp.  */
3417 
3418   switch (TREE_CODE (op))
3419     {
3420     case LABEL_DECL:
3421     case FUNCTION_DECL:
3422     case STRING_CST:
3423       return true;
3424 
3425     case VAR_DECL:
3426       if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
3427            && !DECL_DLLIMPORT_P (op))
3428           || DECL_THREAD_LOCAL_P (op))
3429         return true;
3430       break;
3431 
3432     case CONST_DECL:
3433       if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
3434         return true;
3435       break;
3436 
3437     default:
3438       break;
3439     }
3440 
3441   return false;
3442 }
3443 
3444 
3445 /* Return true if T is function-invariant (internal function, does
3446    not handle arithmetic; that's handled in skip_simple_arithmetic and
3447    tree_invariant_p).  */
3448 
3449 static bool
3450 tree_invariant_p_1 (tree t)
3451 {
3452   tree op;
3453 
3454   if (TREE_CONSTANT (t)
3455       || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
3456     return true;
3457 
3458   switch (TREE_CODE (t))
3459     {
3460     case SAVE_EXPR:
3461       return true;
3462 
3463     case ADDR_EXPR:
3464       op = TREE_OPERAND (t, 0);
3465       while (handled_component_p (op))
3466 	{
3467 	  switch (TREE_CODE (op))
3468 	    {
3469 	    case ARRAY_REF:
3470 	    case ARRAY_RANGE_REF:
3471 	      if (!tree_invariant_p (TREE_OPERAND (op, 1))
3472 		  || TREE_OPERAND (op, 2) != NULL_TREE
3473 		  || TREE_OPERAND (op, 3) != NULL_TREE)
3474 		return false;
3475 	      break;
3476 
3477 	    case COMPONENT_REF:
3478 	      if (TREE_OPERAND (op, 2) != NULL_TREE)
3479 		return false;
3480 	      break;
3481 
3482 	    default:;
3483 	    }
3484 	  op = TREE_OPERAND (op, 0);
3485 	}
3486 
3487       return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
3488 
3489     default:
3490       break;
3491     }
3492 
3493   return false;
3494 }
3495 
3496 /* Return true if T is function-invariant.  */
3497 
3498 bool
3499 tree_invariant_p (tree t)
3500 {
3501   tree inner = skip_simple_arithmetic (t);
3502   return tree_invariant_p_1 (inner);
3503 }
3504 
3505 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
3506    Do this to any expression which may be used in more than one place,
3507    but must be evaluated only once.
3508 
3509    Normally, expand_expr would reevaluate the expression each time.
3510    Calling save_expr produces something that is evaluated and recorded
3511    the first time expand_expr is called on it.  Subsequent calls to
3512    expand_expr just reuse the recorded value.
3513 
3514    The call to expand_expr that generates code that actually computes
3515    the value is the first call *at compile time*.  Subsequent calls
3516    *at compile time* generate code to use the saved value.
3517    This produces correct result provided that *at run time* control
3518    always flows through the insns made by the first expand_expr
3519    before reaching the other places where the save_expr was evaluated.
3520    You, the caller of save_expr, must make sure this is so.
3521 
3522    Constants, and certain read-only nodes, are returned with no
3523    SAVE_EXPR because that is safe.  Expressions containing placeholders
3524    are not touched; see tree.def for an explanation of what these
3525    are used for.  */
3526 
3527 tree
3528 save_expr (tree expr)
3529 {
3530   tree inner;
3531 
3532   /* If the tree evaluates to a constant, then we don't want to hide that
3533      fact (i.e. this allows further folding, and direct checks for constants).
3534      However, a read-only object that has side effects cannot be bypassed.
3535      Since it is no problem to reevaluate literals, we just return the
3536      literal node.  */
3537   inner = skip_simple_arithmetic (expr);
3538   if (TREE_CODE (inner) == ERROR_MARK)
3539     return inner;
3540 
3541   if (tree_invariant_p_1 (inner))
3542     return expr;
3543 
3544   /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
3545      it means that the size or offset of some field of an object depends on
3546      the value within another field.
3547 
3548      Note that it must not be the case that EXPR contains both a PLACEHOLDER_EXPR
3549      and some variable since it would then need to be both evaluated once and
3550      evaluated more than once.  Front-ends must assure this case cannot
3551      happen by surrounding any such subexpressions in their own SAVE_EXPR
3552      and forcing evaluation at the proper time.  */
3553   if (contains_placeholder_p (inner))
3554     return expr;
3555 
3556   expr = build1_loc (EXPR_LOCATION (expr), SAVE_EXPR, TREE_TYPE (expr), expr);
3557 
3558   /* This expression might be placed ahead of a jump to ensure that the
3559      value was computed on both sides of the jump.  So make sure it isn't
3560      eliminated as dead.  */
3561   TREE_SIDE_EFFECTS (expr) = 1;
3562   return expr;
3563 }
3564 
3565 /* Look inside EXPR into any simple arithmetic operations.  Return the
3566    outermost non-arithmetic or non-invariant node.  */
3567 
3568 tree
3569 skip_simple_arithmetic (tree expr)
3570 {
3571   /* We don't care about whether this can be used as an lvalue in this
3572      context.  */
3573   while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3574     expr = TREE_OPERAND (expr, 0);
3575 
3576   /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
3577      a constant, it will be more efficient to not make another SAVE_EXPR since
3578      it will allow better simplification and GCSE will be able to merge the
3579      computations if they actually occur.  */
3580   while (true)
3581     {
3582       if (UNARY_CLASS_P (expr))
3583 	expr = TREE_OPERAND (expr, 0);
3584       else if (BINARY_CLASS_P (expr))
3585 	{
3586 	  if (tree_invariant_p (TREE_OPERAND (expr, 1)))
3587 	    expr = TREE_OPERAND (expr, 0);
3588 	  else if (tree_invariant_p (TREE_OPERAND (expr, 0)))
3589 	    expr = TREE_OPERAND (expr, 1);
3590 	  else
3591 	    break;
3592 	}
3593       else
3594 	break;
3595     }
3596 
3597   return expr;
3598 }
3599 
3600 /* Look inside EXPR into simple arithmetic operations involving constants.
3601    Return the outermost non-arithmetic or non-constant node.  */
3602 
3603 tree
3604 skip_simple_constant_arithmetic (tree expr)
3605 {
3606   while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3607     expr = TREE_OPERAND (expr, 0);
3608 
3609   while (true)
3610     {
3611       if (UNARY_CLASS_P (expr))
3612 	expr = TREE_OPERAND (expr, 0);
3613       else if (BINARY_CLASS_P (expr))
3614 	{
3615 	  if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
3616 	    expr = TREE_OPERAND (expr, 0);
3617 	  else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
3618 	    expr = TREE_OPERAND (expr, 1);
3619 	  else
3620 	    break;
3621 	}
3622       else
3623 	break;
3624     }
3625 
3626   return expr;
3627 }
3628 
3629 /* Return which tree structure is used by T.  */
3630 
3631 enum tree_node_structure_enum
3632 tree_node_structure (const_tree t)
3633 {
3634   const enum tree_code code = TREE_CODE (t);
3635   return tree_node_structure_for_code (code);
3636 }
3637 
3638 /* Set various status flags when building a CALL_EXPR object T.  */
3639 
3640 static void
3641 process_call_operands (tree t)
3642 {
3643   bool side_effects = TREE_SIDE_EFFECTS (t);
3644   bool read_only = false;
3645   int i = call_expr_flags (t);
3646 
3647   /* Calls have side-effects, except those to const or pure functions.  */
3648   if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
3649     side_effects = true;
3650   /* Propagate TREE_READONLY of arguments for const functions.  */
3651   if (i & ECF_CONST)
3652     read_only = true;
3653 
3654   if (!side_effects || read_only)
3655     for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
3656       {
3657 	tree op = TREE_OPERAND (t, i);
3658 	if (op && TREE_SIDE_EFFECTS (op))
3659 	  side_effects = true;
3660 	if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
3661 	  read_only = false;
3662       }
3663 
3664   TREE_SIDE_EFFECTS (t) = side_effects;
3665   TREE_READONLY (t) = read_only;
3666 }
3667 
3668 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
3669    size or offset that depends on a field within a record.  */
3670 
3671 bool
3672 contains_placeholder_p (const_tree exp)
3673 {
3674   enum tree_code code;
3675 
3676   if (!exp)
3677     return 0;
3678 
3679   code = TREE_CODE (exp);
3680   if (code == PLACEHOLDER_EXPR)
3681     return 1;
3682 
3683   switch (TREE_CODE_CLASS (code))
3684     {
3685     case tcc_reference:
3686       /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
3687 	 position computations since they will be converted into a
3688 	 WITH_RECORD_EXPR involving the reference, which will assume
3689 	 here will be valid.  */
3690       return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3691 
3692     case tcc_exceptional:
3693       if (code == TREE_LIST)
3694 	return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
3695 		|| CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
3696       break;
3697 
3698     case tcc_unary:
3699     case tcc_binary:
3700     case tcc_comparison:
3701     case tcc_expression:
3702       switch (code)
3703 	{
3704 	case COMPOUND_EXPR:
3705 	  /* Ignoring the first operand isn't quite right, but works best.  */
3706 	  return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
3707 
3708 	case COND_EXPR:
3709 	  return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3710 		  || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
3711 		  || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
3712 
3713 	case SAVE_EXPR:
3714 	  /* The save_expr function never wraps anything containing
3715 	     a PLACEHOLDER_EXPR. */
3716 	  return 0;
3717 
3718 	default:
3719 	  break;
3720 	}
3721 
3722       switch (TREE_CODE_LENGTH (code))
3723 	{
3724 	case 1:
3725 	  return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3726 	case 2:
3727 	  return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3728 		  || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
3729 	default:
3730 	  return 0;
3731 	}
3732 
3733     case tcc_vl_exp:
3734       switch (code)
3735 	{
3736 	case CALL_EXPR:
3737 	  {
3738 	    const_tree arg;
3739 	    const_call_expr_arg_iterator iter;
3740 	    FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
3741 	      if (CONTAINS_PLACEHOLDER_P (arg))
3742 		return 1;
3743 	    return 0;
3744 	  }
3745 	default:
3746 	  return 0;
3747 	}
3748 
3749     default:
3750       return 0;
3751     }
3752   return 0;
3753 }
3754 
3755 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
3756    directly.  This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
3757    field positions.  */
3758 
3759 static bool
3760 type_contains_placeholder_1 (const_tree type)
3761 {
3762   /* If the size contains a placeholder or the parent type (component type in
3763      the case of arrays) type involves a placeholder, this type does.  */
3764   if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
3765       || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
3766       || (!POINTER_TYPE_P (type)
3767 	  && TREE_TYPE (type)
3768 	  && type_contains_placeholder_p (TREE_TYPE (type))))
3769     return true;
3770 
3771   /* Now do type-specific checks.  Note that the last part of the check above
3772      greatly limits what we have to do below.  */
3773   switch (TREE_CODE (type))
3774     {
3775     case VOID_TYPE:
3776     case POINTER_BOUNDS_TYPE:
3777     case COMPLEX_TYPE:
3778     case ENUMERAL_TYPE:
3779     case BOOLEAN_TYPE:
3780     case POINTER_TYPE:
3781     case OFFSET_TYPE:
3782     case REFERENCE_TYPE:
3783     case METHOD_TYPE:
3784     case FUNCTION_TYPE:
3785     case VECTOR_TYPE:
3786     case NULLPTR_TYPE:
3787       return false;
3788 
3789     case INTEGER_TYPE:
3790     case REAL_TYPE:
3791     case FIXED_POINT_TYPE:
3792       /* Here we just check the bounds.  */
3793       return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
3794 	      || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
3795 
3796     case ARRAY_TYPE:
3797       /* We have already checked the component type above, so just check
3798 	 the domain type.  Flexible array members have a null domain.  */
3799       return TYPE_DOMAIN (type) ?
3800 	type_contains_placeholder_p (TYPE_DOMAIN (type)) : false;
3801 
3802     case RECORD_TYPE:
3803     case UNION_TYPE:
3804     case QUAL_UNION_TYPE:
3805       {
3806 	tree field;
3807 
3808 	for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3809 	  if (TREE_CODE (field) == FIELD_DECL
3810 	      && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
3811 		  || (TREE_CODE (type) == QUAL_UNION_TYPE
3812 		      && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
3813 		  || type_contains_placeholder_p (TREE_TYPE (field))))
3814 	    return true;
3815 
3816 	return false;
3817       }
3818 
3819     default:
3820       gcc_unreachable ();
3821     }
3822 }
3823 
3824 /* Wrapper around above function used to cache its result.  */
3825 
3826 bool
3827 type_contains_placeholder_p (tree type)
3828 {
3829   bool result;
3830 
3831   /* If the contains_placeholder_bits field has been initialized,
3832      then we know the answer.  */
3833   if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
3834     return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
3835 
3836   /* Indicate that we've seen this type node, and the answer is false.
3837      This is what we want to return if we run into recursion via fields.  */
3838   TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
3839 
3840   /* Compute the real value.  */
3841   result = type_contains_placeholder_1 (type);
3842 
3843   /* Store the real value.  */
3844   TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
3845 
3846   return result;
3847 }
3848 
3849 /* Push tree EXP onto vector QUEUE if it is not already present.  */
3850 
3851 static void
3852 push_without_duplicates (tree exp, vec<tree> *queue)
3853 {
3854   unsigned int i;
3855   tree iter;
3856 
3857   FOR_EACH_VEC_ELT (*queue, i, iter)
3858     if (simple_cst_equal (iter, exp) == 1)
3859       break;
3860 
3861   if (!iter)
3862     queue->safe_push (exp);
3863 }
3864 
3865 /* Given a tree EXP, find all occurrences of references to fields
3866    in a PLACEHOLDER_EXPR and place them in vector REFS without
3867    duplicates.  Also record VAR_DECLs and CONST_DECLs.  Note that
3868    we assume here that EXP contains only arithmetic expressions
3869    or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3870    argument list.  */
3871 
3872 void
3873 find_placeholder_in_expr (tree exp, vec<tree> *refs)
3874 {
3875   enum tree_code code = TREE_CODE (exp);
3876   tree inner;
3877   int i;
3878 
3879   /* We handle TREE_LIST and COMPONENT_REF separately.  */
3880   if (code == TREE_LIST)
3881     {
3882       FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3883       FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3884     }
3885   else if (code == COMPONENT_REF)
3886     {
3887       for (inner = TREE_OPERAND (exp, 0);
3888 	   REFERENCE_CLASS_P (inner);
3889 	   inner = TREE_OPERAND (inner, 0))
3890 	;
3891 
3892       if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3893 	push_without_duplicates (exp, refs);
3894       else
3895 	FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3896    }
3897   else
3898     switch (TREE_CODE_CLASS (code))
3899       {
3900       case tcc_constant:
3901 	break;
3902 
3903       case tcc_declaration:
3904 	/* Variables allocated to static storage can stay.  */
3905         if (!TREE_STATIC (exp))
3906 	  push_without_duplicates (exp, refs);
3907 	break;
3908 
3909       case tcc_expression:
3910 	/* This is the pattern built in ada/make_aligning_type.  */
3911 	if (code == ADDR_EXPR
3912 	    && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3913 	  {
3914 	    push_without_duplicates (exp, refs);
3915 	    break;
3916 	  }
3917 
3918         /* Fall through.  */
3919 
3920       case tcc_exceptional:
3921       case tcc_unary:
3922       case tcc_binary:
3923       case tcc_comparison:
3924       case tcc_reference:
3925 	for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3926 	  FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3927 	break;
3928 
3929       case tcc_vl_exp:
3930 	for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3931 	  FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3932 	break;
3933 
3934       default:
3935 	gcc_unreachable ();
3936       }
3937 }
3938 
3939 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3940    return a tree with all occurrences of references to F in a
3941    PLACEHOLDER_EXPR replaced by R.  Also handle VAR_DECLs and
3942    CONST_DECLs.  Note that we assume here that EXP contains only
3943    arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3944    occurring only in their argument list.  */
3945 
3946 tree
3947 substitute_in_expr (tree exp, tree f, tree r)
3948 {
3949   enum tree_code code = TREE_CODE (exp);
3950   tree op0, op1, op2, op3;
3951   tree new_tree;
3952 
3953   /* We handle TREE_LIST and COMPONENT_REF separately.  */
3954   if (code == TREE_LIST)
3955     {
3956       op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3957       op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3958       if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3959 	return exp;
3960 
3961       return tree_cons (TREE_PURPOSE (exp), op1, op0);
3962     }
3963   else if (code == COMPONENT_REF)
3964     {
3965       tree inner;
3966 
3967       /* If this expression is getting a value from a PLACEHOLDER_EXPR
3968 	 and it is the right field, replace it with R.  */
3969       for (inner = TREE_OPERAND (exp, 0);
3970 	   REFERENCE_CLASS_P (inner);
3971 	   inner = TREE_OPERAND (inner, 0))
3972 	;
3973 
3974       /* The field.  */
3975       op1 = TREE_OPERAND (exp, 1);
3976 
3977       if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3978 	return r;
3979 
3980       /* If this expression hasn't been completed let, leave it alone.  */
3981       if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3982 	return exp;
3983 
3984       op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3985       if (op0 == TREE_OPERAND (exp, 0))
3986 	return exp;
3987 
3988       new_tree
3989 	= fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3990    }
3991   else
3992     switch (TREE_CODE_CLASS (code))
3993       {
3994       case tcc_constant:
3995 	return exp;
3996 
3997       case tcc_declaration:
3998 	if (exp == f)
3999 	  return r;
4000 	else
4001 	  return exp;
4002 
4003       case tcc_expression:
4004 	if (exp == f)
4005 	  return r;
4006 
4007         /* Fall through.  */
4008 
4009       case tcc_exceptional:
4010       case tcc_unary:
4011       case tcc_binary:
4012       case tcc_comparison:
4013       case tcc_reference:
4014 	switch (TREE_CODE_LENGTH (code))
4015 	  {
4016 	  case 0:
4017 	    return exp;
4018 
4019 	  case 1:
4020 	    op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4021 	    if (op0 == TREE_OPERAND (exp, 0))
4022 	      return exp;
4023 
4024 	    new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4025 	    break;
4026 
4027 	  case 2:
4028 	    op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4029 	    op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4030 
4031 	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4032 	      return exp;
4033 
4034 	    new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4035 	    break;
4036 
4037 	  case 3:
4038 	    op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4039 	    op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4040 	    op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4041 
4042 	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4043 		&& op2 == TREE_OPERAND (exp, 2))
4044 	      return exp;
4045 
4046 	    new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4047 	    break;
4048 
4049 	  case 4:
4050 	    op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4051 	    op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4052 	    op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4053 	    op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
4054 
4055 	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4056 		&& op2 == TREE_OPERAND (exp, 2)
4057 		&& op3 == TREE_OPERAND (exp, 3))
4058 	      return exp;
4059 
4060 	    new_tree
4061 	      = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4062 	    break;
4063 
4064 	  default:
4065 	    gcc_unreachable ();
4066 	  }
4067 	break;
4068 
4069       case tcc_vl_exp:
4070 	{
4071 	  int i;
4072 
4073 	  new_tree = NULL_TREE;
4074 
4075 	  /* If we are trying to replace F with a constant or with another
4076 	     instance of one of the arguments of the call, inline back
4077 	     functions which do nothing else than computing a value from
4078 	     the arguments they are passed.  This makes it possible to
4079 	     fold partially or entirely the replacement expression.  */
4080 	  if (code == CALL_EXPR)
4081 	    {
4082 	      bool maybe_inline = false;
4083 	      if (CONSTANT_CLASS_P (r))
4084 		maybe_inline = true;
4085 	      else
4086 		for (i = 3; i < TREE_OPERAND_LENGTH (exp); i++)
4087 		  if (operand_equal_p (TREE_OPERAND (exp, i), r, 0))
4088 		    {
4089 		      maybe_inline = true;
4090 		      break;
4091 		    }
4092 	      if (maybe_inline)
4093 		{
4094 		  tree t = maybe_inline_call_in_expr (exp);
4095 		  if (t)
4096 		    return SUBSTITUTE_IN_EXPR (t, f, r);
4097 		}
4098 	    }
4099 
4100 	  for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4101 	    {
4102 	      tree op = TREE_OPERAND (exp, i);
4103 	      tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
4104 	      if (new_op != op)
4105 		{
4106 		  if (!new_tree)
4107 		    new_tree = copy_node (exp);
4108 		  TREE_OPERAND (new_tree, i) = new_op;
4109 		}
4110 	    }
4111 
4112 	  if (new_tree)
4113 	    {
4114 	      new_tree = fold (new_tree);
4115 	      if (TREE_CODE (new_tree) == CALL_EXPR)
4116 		process_call_operands (new_tree);
4117 	    }
4118 	  else
4119 	    return exp;
4120 	}
4121 	break;
4122 
4123       default:
4124 	gcc_unreachable ();
4125       }
4126 
4127   TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4128 
4129   if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4130     TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4131 
4132   return new_tree;
4133 }
4134 
4135 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
4136    for it within OBJ, a tree that is an object or a chain of references.  */
4137 
4138 tree
4139 substitute_placeholder_in_expr (tree exp, tree obj)
4140 {
4141   enum tree_code code = TREE_CODE (exp);
4142   tree op0, op1, op2, op3;
4143   tree new_tree;
4144 
4145   /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
4146      in the chain of OBJ.  */
4147   if (code == PLACEHOLDER_EXPR)
4148     {
4149       tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
4150       tree elt;
4151 
4152       for (elt = obj; elt != 0;
4153 	   elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4154 		   || TREE_CODE (elt) == COND_EXPR)
4155 		  ? TREE_OPERAND (elt, 1)
4156 		  : (REFERENCE_CLASS_P (elt)
4157 		     || UNARY_CLASS_P (elt)
4158 		     || BINARY_CLASS_P (elt)
4159 		     || VL_EXP_CLASS_P (elt)
4160 		     || EXPRESSION_CLASS_P (elt))
4161 		  ? TREE_OPERAND (elt, 0) : 0))
4162 	if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
4163 	  return elt;
4164 
4165       for (elt = obj; elt != 0;
4166 	   elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4167 		   || TREE_CODE (elt) == COND_EXPR)
4168 		  ? TREE_OPERAND (elt, 1)
4169 		  : (REFERENCE_CLASS_P (elt)
4170 		     || UNARY_CLASS_P (elt)
4171 		     || BINARY_CLASS_P (elt)
4172 		     || VL_EXP_CLASS_P (elt)
4173 		     || EXPRESSION_CLASS_P (elt))
4174 		  ? TREE_OPERAND (elt, 0) : 0))
4175 	if (POINTER_TYPE_P (TREE_TYPE (elt))
4176 	    && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
4177 		== need_type))
4178 	  return fold_build1 (INDIRECT_REF, need_type, elt);
4179 
4180       /* If we didn't find it, return the original PLACEHOLDER_EXPR.  If it
4181 	 survives until RTL generation, there will be an error.  */
4182       return exp;
4183     }
4184 
4185   /* TREE_LIST is special because we need to look at TREE_VALUE
4186      and TREE_CHAIN, not TREE_OPERANDS.  */
4187   else if (code == TREE_LIST)
4188     {
4189       op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
4190       op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
4191       if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
4192 	return exp;
4193 
4194       return tree_cons (TREE_PURPOSE (exp), op1, op0);
4195     }
4196   else
4197     switch (TREE_CODE_CLASS (code))
4198       {
4199       case tcc_constant:
4200       case tcc_declaration:
4201 	return exp;
4202 
4203       case tcc_exceptional:
4204       case tcc_unary:
4205       case tcc_binary:
4206       case tcc_comparison:
4207       case tcc_expression:
4208       case tcc_reference:
4209       case tcc_statement:
4210 	switch (TREE_CODE_LENGTH (code))
4211 	  {
4212 	  case 0:
4213 	    return exp;
4214 
4215 	  case 1:
4216 	    op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4217 	    if (op0 == TREE_OPERAND (exp, 0))
4218 	      return exp;
4219 
4220 	    new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4221 	    break;
4222 
4223 	  case 2:
4224 	    op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4225 	    op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4226 
4227 	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4228 	      return exp;
4229 
4230 	    new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4231 	    break;
4232 
4233 	  case 3:
4234 	    op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4235 	    op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4236 	    op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4237 
4238 	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4239 		&& op2 == TREE_OPERAND (exp, 2))
4240 	      return exp;
4241 
4242 	    new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4243 	    break;
4244 
4245 	  case 4:
4246 	    op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4247 	    op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4248 	    op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4249 	    op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
4250 
4251 	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4252 		&& op2 == TREE_OPERAND (exp, 2)
4253 		&& op3 == TREE_OPERAND (exp, 3))
4254 	      return exp;
4255 
4256 	    new_tree
4257 	      = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4258 	    break;
4259 
4260 	  default:
4261 	    gcc_unreachable ();
4262 	  }
4263 	break;
4264 
4265       case tcc_vl_exp:
4266 	{
4267 	  int i;
4268 
4269 	  new_tree = NULL_TREE;
4270 
4271 	  for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4272 	    {
4273 	      tree op = TREE_OPERAND (exp, i);
4274 	      tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
4275 	      if (new_op != op)
4276 		{
4277 		  if (!new_tree)
4278 		    new_tree = copy_node (exp);
4279 		  TREE_OPERAND (new_tree, i) = new_op;
4280 		}
4281 	    }
4282 
4283 	  if (new_tree)
4284 	    {
4285 	      new_tree = fold (new_tree);
4286 	      if (TREE_CODE (new_tree) == CALL_EXPR)
4287 		process_call_operands (new_tree);
4288 	    }
4289 	  else
4290 	    return exp;
4291 	}
4292 	break;
4293 
4294       default:
4295 	gcc_unreachable ();
4296       }
4297 
4298   TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4299 
4300   if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4301     TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4302 
4303   return new_tree;
4304 }
4305 
4306 
4307 /* Subroutine of stabilize_reference; this is called for subtrees of
4308    references.  Any expression with side-effects must be put in a SAVE_EXPR
4309    to ensure that it is only evaluated once.
4310 
4311    We don't put SAVE_EXPR nodes around everything, because assigning very
4312    simple expressions to temporaries causes us to miss good opportunities
4313    for optimizations.  Among other things, the opportunity to fold in the
4314    addition of a constant into an addressing mode often gets lost, e.g.
4315    "y[i+1] += x;".  In general, we take the approach that we should not make
4316    an assignment unless we are forced into it - i.e., that any non-side effect
4317    operator should be allowed, and that cse should take care of coalescing
4318    multiple utterances of the same expression should that prove fruitful.  */
4319 
4320 static tree
4321 stabilize_reference_1 (tree e)
4322 {
4323   tree result;
4324   enum tree_code code = TREE_CODE (e);
4325 
4326   /* We cannot ignore const expressions because it might be a reference
4327      to a const array but whose index contains side-effects.  But we can
4328      ignore things that are actual constant or that already have been
4329      handled by this function.  */
4330 
4331   if (tree_invariant_p (e))
4332     return e;
4333 
4334   switch (TREE_CODE_CLASS (code))
4335     {
4336     case tcc_exceptional:
4337       /* Always wrap STATEMENT_LIST into SAVE_EXPR, even if it doesn't
4338 	 have side-effects.  */
4339       if (code == STATEMENT_LIST)
4340 	return save_expr (e);
4341       /* FALLTHRU */
4342     case tcc_type:
4343     case tcc_declaration:
4344     case tcc_comparison:
4345     case tcc_statement:
4346     case tcc_expression:
4347     case tcc_reference:
4348     case tcc_vl_exp:
4349       /* If the expression has side-effects, then encase it in a SAVE_EXPR
4350 	 so that it will only be evaluated once.  */
4351       /* The reference (r) and comparison (<) classes could be handled as
4352 	 below, but it is generally faster to only evaluate them once.  */
4353       if (TREE_SIDE_EFFECTS (e))
4354 	return save_expr (e);
4355       return e;
4356 
4357     case tcc_constant:
4358       /* Constants need no processing.  In fact, we should never reach
4359 	 here.  */
4360       return e;
4361 
4362     case tcc_binary:
4363       /* Division is slow and tends to be compiled with jumps,
4364 	 especially the division by powers of 2 that is often
4365 	 found inside of an array reference.  So do it just once.  */
4366       if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
4367 	  || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
4368 	  || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
4369 	  || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
4370 	return save_expr (e);
4371       /* Recursively stabilize each operand.  */
4372       result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
4373 			 stabilize_reference_1 (TREE_OPERAND (e, 1)));
4374       break;
4375 
4376     case tcc_unary:
4377       /* Recursively stabilize each operand.  */
4378       result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
4379       break;
4380 
4381     default:
4382       gcc_unreachable ();
4383     }
4384 
4385   TREE_TYPE (result) = TREE_TYPE (e);
4386   TREE_READONLY (result) = TREE_READONLY (e);
4387   TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
4388   TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
4389 
4390   return result;
4391 }
4392 
4393 /* Stabilize a reference so that we can use it any number of times
4394    without causing its operands to be evaluated more than once.
4395    Returns the stabilized reference.  This works by means of save_expr,
4396    so see the caveats in the comments about save_expr.
4397 
4398    Also allows conversion expressions whose operands are references.
4399    Any other kind of expression is returned unchanged.  */
4400 
4401 tree
4402 stabilize_reference (tree ref)
4403 {
4404   tree result;
4405   enum tree_code code = TREE_CODE (ref);
4406 
4407   switch (code)
4408     {
4409     case VAR_DECL:
4410     case PARM_DECL:
4411     case RESULT_DECL:
4412       /* No action is needed in this case.  */
4413       return ref;
4414 
4415     CASE_CONVERT:
4416     case FLOAT_EXPR:
4417     case FIX_TRUNC_EXPR:
4418       result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
4419       break;
4420 
4421     case INDIRECT_REF:
4422       result = build_nt (INDIRECT_REF,
4423 			 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
4424       break;
4425 
4426     case COMPONENT_REF:
4427       result = build_nt (COMPONENT_REF,
4428 			 stabilize_reference (TREE_OPERAND (ref, 0)),
4429 			 TREE_OPERAND (ref, 1), NULL_TREE);
4430       break;
4431 
4432     case BIT_FIELD_REF:
4433       result = build_nt (BIT_FIELD_REF,
4434 			 stabilize_reference (TREE_OPERAND (ref, 0)),
4435 			 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
4436       REF_REVERSE_STORAGE_ORDER (result) = REF_REVERSE_STORAGE_ORDER (ref);
4437       break;
4438 
4439     case ARRAY_REF:
4440       result = build_nt (ARRAY_REF,
4441 			 stabilize_reference (TREE_OPERAND (ref, 0)),
4442 			 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4443 			 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4444       break;
4445 
4446     case ARRAY_RANGE_REF:
4447       result = build_nt (ARRAY_RANGE_REF,
4448 			 stabilize_reference (TREE_OPERAND (ref, 0)),
4449 			 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4450 			 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4451       break;
4452 
4453     case COMPOUND_EXPR:
4454       /* We cannot wrap the first expression in a SAVE_EXPR, as then
4455 	 it wouldn't be ignored.  This matters when dealing with
4456 	 volatiles.  */
4457       return stabilize_reference_1 (ref);
4458 
4459       /* If arg isn't a kind of lvalue we recognize, make no change.
4460 	 Caller should recognize the error for an invalid lvalue.  */
4461     default:
4462       return ref;
4463 
4464     case ERROR_MARK:
4465       return error_mark_node;
4466     }
4467 
4468   TREE_TYPE (result) = TREE_TYPE (ref);
4469   TREE_READONLY (result) = TREE_READONLY (ref);
4470   TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
4471   TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
4472 
4473   return result;
4474 }
4475 
4476 /* Low-level constructors for expressions.  */
4477 
4478 /* A helper function for build1 and constant folders.  Set TREE_CONSTANT,
4479    and TREE_SIDE_EFFECTS for an ADDR_EXPR.  */
4480 
4481 void
4482 recompute_tree_invariant_for_addr_expr (tree t)
4483 {
4484   tree node;
4485   bool tc = true, se = false;
4486 
4487   gcc_assert (TREE_CODE (t) == ADDR_EXPR);
4488 
4489   /* We started out assuming this address is both invariant and constant, but
4490      does not have side effects.  Now go down any handled components and see if
4491      any of them involve offsets that are either non-constant or non-invariant.
4492      Also check for side-effects.
4493 
4494      ??? Note that this code makes no attempt to deal with the case where
4495      taking the address of something causes a copy due to misalignment.  */
4496 
4497 #define UPDATE_FLAGS(NODE)  \
4498 do { tree _node = (NODE); \
4499      if (_node && !TREE_CONSTANT (_node)) tc = false; \
4500      if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
4501 
4502   for (node = TREE_OPERAND (t, 0); handled_component_p (node);
4503        node = TREE_OPERAND (node, 0))
4504     {
4505       /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
4506 	 array reference (probably made temporarily by the G++ front end),
4507 	 so ignore all the operands.  */
4508       if ((TREE_CODE (node) == ARRAY_REF
4509 	   || TREE_CODE (node) == ARRAY_RANGE_REF)
4510 	  && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
4511 	{
4512 	  UPDATE_FLAGS (TREE_OPERAND (node, 1));
4513 	  if (TREE_OPERAND (node, 2))
4514 	    UPDATE_FLAGS (TREE_OPERAND (node, 2));
4515 	  if (TREE_OPERAND (node, 3))
4516 	    UPDATE_FLAGS (TREE_OPERAND (node, 3));
4517 	}
4518       /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
4519 	 FIELD_DECL, apparently.  The G++ front end can put something else
4520 	 there, at least temporarily.  */
4521       else if (TREE_CODE (node) == COMPONENT_REF
4522 	       && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
4523 	{
4524 	  if (TREE_OPERAND (node, 2))
4525 	    UPDATE_FLAGS (TREE_OPERAND (node, 2));
4526 	}
4527     }
4528 
4529   node = lang_hooks.expr_to_decl (node, &tc, &se);
4530 
4531   /* Now see what's inside.  If it's an INDIRECT_REF, copy our properties from
4532      the address, since &(*a)->b is a form of addition.  If it's a constant, the
4533      address is constant too.  If it's a decl, its address is constant if the
4534      decl is static.  Everything else is not constant and, furthermore,
4535      taking the address of a volatile variable is not volatile.  */
4536   if (TREE_CODE (node) == INDIRECT_REF
4537       || TREE_CODE (node) == MEM_REF)
4538     UPDATE_FLAGS (TREE_OPERAND (node, 0));
4539   else if (CONSTANT_CLASS_P (node))
4540     ;
4541   else if (DECL_P (node))
4542     tc &= (staticp (node) != NULL_TREE);
4543   else
4544     {
4545       tc = false;
4546       se |= TREE_SIDE_EFFECTS (node);
4547     }
4548 
4549 
4550   TREE_CONSTANT (t) = tc;
4551   TREE_SIDE_EFFECTS (t) = se;
4552 #undef UPDATE_FLAGS
4553 }
4554 
4555 /* Build an expression of code CODE, data type TYPE, and operands as
4556    specified.  Expressions and reference nodes can be created this way.
4557    Constants, decls, types and misc nodes cannot be.
4558 
4559    We define 5 non-variadic functions, from 0 to 4 arguments.  This is
4560    enough for all extant tree codes.  */
4561 
4562 tree
4563 build0 (enum tree_code code, tree tt MEM_STAT_DECL)
4564 {
4565   tree t;
4566 
4567   gcc_assert (TREE_CODE_LENGTH (code) == 0);
4568 
4569   t = make_node (code PASS_MEM_STAT);
4570   TREE_TYPE (t) = tt;
4571 
4572   return t;
4573 }
4574 
4575 tree
4576 build1 (enum tree_code code, tree type, tree node MEM_STAT_DECL)
4577 {
4578   int length = sizeof (struct tree_exp);
4579   tree t;
4580 
4581   record_node_allocation_statistics (code, length);
4582 
4583   gcc_assert (TREE_CODE_LENGTH (code) == 1);
4584 
4585   t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
4586 
4587   memset (t, 0, sizeof (struct tree_common));
4588 
4589   TREE_SET_CODE (t, code);
4590 
4591   TREE_TYPE (t) = type;
4592   SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
4593   TREE_OPERAND (t, 0) = node;
4594   if (node && !TYPE_P (node))
4595     {
4596       TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
4597       TREE_READONLY (t) = TREE_READONLY (node);
4598     }
4599 
4600   if (TREE_CODE_CLASS (code) == tcc_statement)
4601     {
4602       if (code != DEBUG_BEGIN_STMT)
4603 	TREE_SIDE_EFFECTS (t) = 1;
4604     }
4605   else switch (code)
4606     {
4607     case VA_ARG_EXPR:
4608       /* All of these have side-effects, no matter what their
4609 	 operands are.  */
4610       TREE_SIDE_EFFECTS (t) = 1;
4611       TREE_READONLY (t) = 0;
4612       break;
4613 
4614     case INDIRECT_REF:
4615       /* Whether a dereference is readonly has nothing to do with whether
4616 	 its operand is readonly.  */
4617       TREE_READONLY (t) = 0;
4618       break;
4619 
4620     case ADDR_EXPR:
4621       if (node)
4622 	recompute_tree_invariant_for_addr_expr (t);
4623       break;
4624 
4625     default:
4626       if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
4627 	  && node && !TYPE_P (node)
4628 	  && TREE_CONSTANT (node))
4629 	TREE_CONSTANT (t) = 1;
4630       if (TREE_CODE_CLASS (code) == tcc_reference
4631 	  && node && TREE_THIS_VOLATILE (node))
4632 	TREE_THIS_VOLATILE (t) = 1;
4633       break;
4634     }
4635 
4636   return t;
4637 }
4638 
4639 #define PROCESS_ARG(N)				\
4640   do {						\
4641     TREE_OPERAND (t, N) = arg##N;		\
4642     if (arg##N &&!TYPE_P (arg##N))		\
4643       {						\
4644         if (TREE_SIDE_EFFECTS (arg##N))		\
4645 	  side_effects = 1;			\
4646         if (!TREE_READONLY (arg##N)		\
4647 	    && !CONSTANT_CLASS_P (arg##N))	\
4648 	  (void) (read_only = 0);		\
4649         if (!TREE_CONSTANT (arg##N))		\
4650 	  (void) (constant = 0);		\
4651       }						\
4652   } while (0)
4653 
4654 tree
4655 build2 (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
4656 {
4657   bool constant, read_only, side_effects, div_by_zero;
4658   tree t;
4659 
4660   gcc_assert (TREE_CODE_LENGTH (code) == 2);
4661 
4662   if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
4663       && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
4664       /* When sizetype precision doesn't match that of pointers
4665          we need to be able to build explicit extensions or truncations
4666 	 of the offset argument.  */
4667       && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
4668     gcc_assert (TREE_CODE (arg0) == INTEGER_CST
4669 		&& TREE_CODE (arg1) == INTEGER_CST);
4670 
4671   if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
4672     gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
4673 		&& ptrofftype_p (TREE_TYPE (arg1)));
4674 
4675   t = make_node (code PASS_MEM_STAT);
4676   TREE_TYPE (t) = tt;
4677 
4678   /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
4679      result based on those same flags for the arguments.  But if the
4680      arguments aren't really even `tree' expressions, we shouldn't be trying
4681      to do this.  */
4682 
4683   /* Expressions without side effects may be constant if their
4684      arguments are as well.  */
4685   constant = (TREE_CODE_CLASS (code) == tcc_comparison
4686 	      || TREE_CODE_CLASS (code) == tcc_binary);
4687   read_only = 1;
4688   side_effects = TREE_SIDE_EFFECTS (t);
4689 
4690   switch (code)
4691     {
4692     case TRUNC_DIV_EXPR:
4693     case CEIL_DIV_EXPR:
4694     case FLOOR_DIV_EXPR:
4695     case ROUND_DIV_EXPR:
4696     case EXACT_DIV_EXPR:
4697     case CEIL_MOD_EXPR:
4698     case FLOOR_MOD_EXPR:
4699     case ROUND_MOD_EXPR:
4700     case TRUNC_MOD_EXPR:
4701       div_by_zero = integer_zerop (arg1);
4702       break;
4703     default:
4704       div_by_zero = false;
4705     }
4706 
4707   PROCESS_ARG (0);
4708   PROCESS_ARG (1);
4709 
4710   TREE_SIDE_EFFECTS (t) = side_effects;
4711   if (code == MEM_REF)
4712     {
4713       if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4714 	{
4715 	  tree o = TREE_OPERAND (arg0, 0);
4716 	  TREE_READONLY (t) = TREE_READONLY (o);
4717 	  TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4718 	}
4719     }
4720   else
4721     {
4722       TREE_READONLY (t) = read_only;
4723       /* Don't mark X / 0 as constant.  */
4724       TREE_CONSTANT (t) = constant && !div_by_zero;
4725       TREE_THIS_VOLATILE (t)
4726 	= (TREE_CODE_CLASS (code) == tcc_reference
4727 	   && arg0 && TREE_THIS_VOLATILE (arg0));
4728     }
4729 
4730   return t;
4731 }
4732 
4733 
4734 tree
4735 build3 (enum tree_code code, tree tt, tree arg0, tree arg1,
4736 	tree arg2 MEM_STAT_DECL)
4737 {
4738   bool constant, read_only, side_effects;
4739   tree t;
4740 
4741   gcc_assert (TREE_CODE_LENGTH (code) == 3);
4742   gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4743 
4744   t = make_node (code PASS_MEM_STAT);
4745   TREE_TYPE (t) = tt;
4746 
4747   read_only = 1;
4748 
4749   /* As a special exception, if COND_EXPR has NULL branches, we
4750      assume that it is a gimple statement and always consider
4751      it to have side effects.  */
4752   if (code == COND_EXPR
4753       && tt == void_type_node
4754       && arg1 == NULL_TREE
4755       && arg2 == NULL_TREE)
4756     side_effects = true;
4757   else
4758     side_effects = TREE_SIDE_EFFECTS (t);
4759 
4760   PROCESS_ARG (0);
4761   PROCESS_ARG (1);
4762   PROCESS_ARG (2);
4763 
4764   if (code == COND_EXPR)
4765     TREE_READONLY (t) = read_only;
4766 
4767   TREE_SIDE_EFFECTS (t) = side_effects;
4768   TREE_THIS_VOLATILE (t)
4769     = (TREE_CODE_CLASS (code) == tcc_reference
4770        && arg0 && TREE_THIS_VOLATILE (arg0));
4771 
4772   return t;
4773 }
4774 
4775 tree
4776 build4 (enum tree_code code, tree tt, tree arg0, tree arg1,
4777 	tree arg2, tree arg3 MEM_STAT_DECL)
4778 {
4779   bool constant, read_only, side_effects;
4780   tree t;
4781 
4782   gcc_assert (TREE_CODE_LENGTH (code) == 4);
4783 
4784   t = make_node (code PASS_MEM_STAT);
4785   TREE_TYPE (t) = tt;
4786 
4787   side_effects = TREE_SIDE_EFFECTS (t);
4788 
4789   PROCESS_ARG (0);
4790   PROCESS_ARG (1);
4791   PROCESS_ARG (2);
4792   PROCESS_ARG (3);
4793 
4794   TREE_SIDE_EFFECTS (t) = side_effects;
4795   TREE_THIS_VOLATILE (t)
4796     = (TREE_CODE_CLASS (code) == tcc_reference
4797        && arg0 && TREE_THIS_VOLATILE (arg0));
4798 
4799   return t;
4800 }
4801 
4802 tree
4803 build5 (enum tree_code code, tree tt, tree arg0, tree arg1,
4804 	tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
4805 {
4806   bool constant, read_only, side_effects;
4807   tree t;
4808 
4809   gcc_assert (TREE_CODE_LENGTH (code) == 5);
4810 
4811   t = make_node (code PASS_MEM_STAT);
4812   TREE_TYPE (t) = tt;
4813 
4814   side_effects = TREE_SIDE_EFFECTS (t);
4815 
4816   PROCESS_ARG (0);
4817   PROCESS_ARG (1);
4818   PROCESS_ARG (2);
4819   PROCESS_ARG (3);
4820   PROCESS_ARG (4);
4821 
4822   TREE_SIDE_EFFECTS (t) = side_effects;
4823   if (code == TARGET_MEM_REF)
4824     {
4825       if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4826 	{
4827 	  tree o = TREE_OPERAND (arg0, 0);
4828 	  TREE_READONLY (t) = TREE_READONLY (o);
4829 	  TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4830 	}
4831     }
4832   else
4833     TREE_THIS_VOLATILE (t)
4834       = (TREE_CODE_CLASS (code) == tcc_reference
4835 	 && arg0 && TREE_THIS_VOLATILE (arg0));
4836 
4837   return t;
4838 }
4839 
4840 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
4841    on the pointer PTR.  */
4842 
4843 tree
4844 build_simple_mem_ref_loc (location_t loc, tree ptr)
4845 {
4846   poly_int64 offset = 0;
4847   tree ptype = TREE_TYPE (ptr);
4848   tree tem;
4849   /* For convenience allow addresses that collapse to a simple base
4850      and offset.  */
4851   if (TREE_CODE (ptr) == ADDR_EXPR
4852       && (handled_component_p (TREE_OPERAND (ptr, 0))
4853 	  || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
4854     {
4855       ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
4856       gcc_assert (ptr);
4857       if (TREE_CODE (ptr) == MEM_REF)
4858 	{
4859 	  offset += mem_ref_offset (ptr).force_shwi ();
4860 	  ptr = TREE_OPERAND (ptr, 0);
4861 	}
4862       else
4863 	ptr = build_fold_addr_expr (ptr);
4864       gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
4865     }
4866   tem = build2 (MEM_REF, TREE_TYPE (ptype),
4867 		ptr, build_int_cst (ptype, offset));
4868   SET_EXPR_LOCATION (tem, loc);
4869   return tem;
4870 }
4871 
4872 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T.  */
4873 
4874 poly_offset_int
4875 mem_ref_offset (const_tree t)
4876 {
4877   return poly_offset_int::from (wi::to_poly_wide (TREE_OPERAND (t, 1)),
4878 				SIGNED);
4879 }
4880 
4881 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4882    offsetted by OFFSET units.  */
4883 
4884 tree
4885 build_invariant_address (tree type, tree base, poly_int64 offset)
4886 {
4887   tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4888 			  build_fold_addr_expr (base),
4889 			  build_int_cst (ptr_type_node, offset));
4890   tree addr = build1 (ADDR_EXPR, type, ref);
4891   recompute_tree_invariant_for_addr_expr (addr);
4892   return addr;
4893 }
4894 
4895 /* Similar except don't specify the TREE_TYPE
4896    and leave the TREE_SIDE_EFFECTS as 0.
4897    It is permissible for arguments to be null,
4898    or even garbage if their values do not matter.  */
4899 
4900 tree
4901 build_nt (enum tree_code code, ...)
4902 {
4903   tree t;
4904   int length;
4905   int i;
4906   va_list p;
4907 
4908   gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4909 
4910   va_start (p, code);
4911 
4912   t = make_node (code);
4913   length = TREE_CODE_LENGTH (code);
4914 
4915   for (i = 0; i < length; i++)
4916     TREE_OPERAND (t, i) = va_arg (p, tree);
4917 
4918   va_end (p);
4919   return t;
4920 }
4921 
4922 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4923    tree vec.  */
4924 
4925 tree
4926 build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
4927 {
4928   tree ret, t;
4929   unsigned int ix;
4930 
4931   ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
4932   CALL_EXPR_FN (ret) = fn;
4933   CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
4934   FOR_EACH_VEC_SAFE_ELT (args, ix, t)
4935     CALL_EXPR_ARG (ret, ix) = t;
4936   return ret;
4937 }
4938 
4939 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4940    We do NOT enter this node in any sort of symbol table.
4941 
4942    LOC is the location of the decl.
4943 
4944    layout_decl is used to set up the decl's storage layout.
4945    Other slots are initialized to 0 or null pointers.  */
4946 
4947 tree
4948 build_decl (location_t loc, enum tree_code code, tree name,
4949     		 tree type MEM_STAT_DECL)
4950 {
4951   tree t;
4952 
4953   t = make_node (code PASS_MEM_STAT);
4954   DECL_SOURCE_LOCATION (t) = loc;
4955 
4956 /*  if (type == error_mark_node)
4957     type = integer_type_node; */
4958 /* That is not done, deliberately, so that having error_mark_node
4959    as the type can suppress useless errors in the use of this variable.  */
4960 
4961   DECL_NAME (t) = name;
4962   TREE_TYPE (t) = type;
4963 
4964   if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4965     layout_decl (t, 0);
4966 
4967   return t;
4968 }
4969 
4970 /* Builds and returns function declaration with NAME and TYPE.  */
4971 
4972 tree
4973 build_fn_decl (const char *name, tree type)
4974 {
4975   tree id = get_identifier (name);
4976   tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4977 
4978   DECL_EXTERNAL (decl) = 1;
4979   TREE_PUBLIC (decl) = 1;
4980   DECL_ARTIFICIAL (decl) = 1;
4981   TREE_NOTHROW (decl) = 1;
4982 
4983   return decl;
4984 }
4985 
4986 vec<tree, va_gc> *all_translation_units;
4987 
4988 /* Builds a new translation-unit decl with name NAME, queues it in the
4989    global list of translation-unit decls and returns it.   */
4990 
4991 tree
4992 build_translation_unit_decl (tree name)
4993 {
4994   tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
4995 			name, NULL_TREE);
4996   TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
4997   vec_safe_push (all_translation_units, tu);
4998   return tu;
4999 }
5000 
5001 
5002 /* BLOCK nodes are used to represent the structure of binding contours
5003    and declarations, once those contours have been exited and their contents
5004    compiled.  This information is used for outputting debugging info.  */
5005 
5006 tree
5007 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
5008 {
5009   tree block = make_node (BLOCK);
5010 
5011   BLOCK_VARS (block) = vars;
5012   BLOCK_SUBBLOCKS (block) = subblocks;
5013   BLOCK_SUPERCONTEXT (block) = supercontext;
5014   BLOCK_CHAIN (block) = chain;
5015   return block;
5016 }
5017 
5018 
5019 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
5020 
5021    LOC is the location to use in tree T.  */
5022 
5023 void
5024 protected_set_expr_location (tree t, location_t loc)
5025 {
5026   if (CAN_HAVE_LOCATION_P (t))
5027     SET_EXPR_LOCATION (t, loc);
5028 }
5029 
5030 /* Reset the expression *EXPR_P, a size or position.
5031 
5032    ??? We could reset all non-constant sizes or positions.  But it's cheap
5033    enough to not do so and refrain from adding workarounds to dwarf2out.c.
5034 
5035    We need to reset self-referential sizes or positions because they cannot
5036    be gimplified and thus can contain a CALL_EXPR after the gimplification
5037    is finished, which will run afoul of LTO streaming.  And they need to be
5038    reset to something essentially dummy but not constant, so as to preserve
5039    the properties of the object they are attached to.  */
5040 
5041 static inline void
5042 free_lang_data_in_one_sizepos (tree *expr_p)
5043 {
5044   tree expr = *expr_p;
5045   if (CONTAINS_PLACEHOLDER_P (expr))
5046     *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
5047 }
5048 
5049 
5050 /* Reset all the fields in a binfo node BINFO.  We only keep
5051    BINFO_VTABLE, which is used by gimple_fold_obj_type_ref.  */
5052 
5053 static void
5054 free_lang_data_in_binfo (tree binfo)
5055 {
5056   unsigned i;
5057   tree t;
5058 
5059   gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
5060 
5061   BINFO_VIRTUALS (binfo) = NULL_TREE;
5062   BINFO_BASE_ACCESSES (binfo) = NULL;
5063   BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
5064   BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
5065 
5066   FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo), i, t)
5067     free_lang_data_in_binfo (t);
5068 }
5069 
5070 
5071 /* Reset all language specific information still present in TYPE.  */
5072 
5073 static void
5074 free_lang_data_in_type (tree type)
5075 {
5076   gcc_assert (TYPE_P (type));
5077 
5078   /* Give the FE a chance to remove its own data first.  */
5079   lang_hooks.free_lang_data (type);
5080 
5081   TREE_LANG_FLAG_0 (type) = 0;
5082   TREE_LANG_FLAG_1 (type) = 0;
5083   TREE_LANG_FLAG_2 (type) = 0;
5084   TREE_LANG_FLAG_3 (type) = 0;
5085   TREE_LANG_FLAG_4 (type) = 0;
5086   TREE_LANG_FLAG_5 (type) = 0;
5087   TREE_LANG_FLAG_6 (type) = 0;
5088 
5089   if (TREE_CODE (type) == FUNCTION_TYPE)
5090     {
5091       /* Remove the const and volatile qualifiers from arguments.  The
5092 	 C++ front end removes them, but the C front end does not,
5093 	 leading to false ODR violation errors when merging two
5094 	 instances of the same function signature compiled by
5095 	 different front ends.  */
5096       for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5097 	{
5098 	  tree arg_type = TREE_VALUE (p);
5099 
5100 	  if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
5101 	    {
5102 	      int quals = TYPE_QUALS (arg_type)
5103 			  & ~TYPE_QUAL_CONST
5104 			  & ~TYPE_QUAL_VOLATILE;
5105 	      TREE_VALUE (p) = build_qualified_type (arg_type, quals);
5106 	      free_lang_data_in_type (TREE_VALUE (p));
5107 	    }
5108 	  /* C++ FE uses TREE_PURPOSE to store initial values.  */
5109 	  TREE_PURPOSE (p) = NULL;
5110 	}
5111     }
5112   else if (TREE_CODE (type) == METHOD_TYPE)
5113     for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5114       /* C++ FE uses TREE_PURPOSE to store initial values.  */
5115       TREE_PURPOSE (p) = NULL;
5116   else if (RECORD_OR_UNION_TYPE_P (type))
5117     {
5118       /* Remove members that are not FIELD_DECLs from the field list
5119 	 of an aggregate.  These occur in C++.  */
5120       for (tree *prev = &TYPE_FIELDS (type), member; (member = *prev);)
5121 	if (TREE_CODE (member) == FIELD_DECL)
5122 	  prev = &DECL_CHAIN (member);
5123 	else
5124 	  *prev = DECL_CHAIN (member);
5125 
5126       /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
5127  	 and danagle the pointer from time to time.  */
5128       if (TYPE_VFIELD (type) && TREE_CODE (TYPE_VFIELD (type)) != FIELD_DECL)
5129         TYPE_VFIELD (type) = NULL_TREE;
5130 
5131       if (TYPE_BINFO (type))
5132 	{
5133 	  free_lang_data_in_binfo (TYPE_BINFO (type));
5134 	  /* We need to preserve link to bases and virtual table for all
5135 	     polymorphic types to make devirtualization machinery working.  */
5136 	  if (!BINFO_VTABLE (TYPE_BINFO (type))
5137 	      || !flag_devirtualize)
5138 	    TYPE_BINFO (type) = NULL;
5139 	}
5140     }
5141   else if (INTEGRAL_TYPE_P (type)
5142 	   || SCALAR_FLOAT_TYPE_P (type)
5143 	   || FIXED_POINT_TYPE_P (type))
5144     {
5145       free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
5146       free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
5147     }
5148 
5149   TYPE_LANG_SLOT_1 (type) = NULL_TREE;
5150 
5151   free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
5152   free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
5153 
5154   if (TYPE_CONTEXT (type)
5155       && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK)
5156     {
5157       tree ctx = TYPE_CONTEXT (type);
5158       do
5159 	{
5160 	  ctx = BLOCK_SUPERCONTEXT (ctx);
5161 	}
5162       while (ctx && TREE_CODE (ctx) == BLOCK);
5163       TYPE_CONTEXT (type) = ctx;
5164     }
5165 
5166   /* Drop TYPE_DECLs in TYPE_NAME in favor of the identifier in the
5167      TYPE_DECL if the type doesn't have linkage.  */
5168   if (! type_with_linkage_p (type))
5169     TYPE_NAME (type) = TYPE_IDENTIFIER (type);
5170 }
5171 
5172 
5173 /* Return true if DECL may need an assembler name to be set.  */
5174 
5175 static inline bool
5176 need_assembler_name_p (tree decl)
5177 {
5178   /* We use DECL_ASSEMBLER_NAME to hold mangled type names for One Definition
5179      Rule merging.  This makes type_odr_p to return true on those types during
5180      LTO and by comparing the mangled name, we can say what types are intended
5181      to be equivalent across compilation unit.
5182 
5183      We do not store names of type_in_anonymous_namespace_p.
5184 
5185      Record, union and enumeration type have linkage that allows use
5186      to check type_in_anonymous_namespace_p. We do not mangle compound types
5187      that always can be compared structurally.
5188 
5189      Similarly for builtin types, we compare properties of their main variant.
5190      A special case are integer types where mangling do make differences
5191      between char/signed char/unsigned char etc.  Storing name for these makes
5192      e.g.  -fno-signed-char/-fsigned-char mismatches to be handled well.
5193      See cp/mangle.c:write_builtin_type for details.  */
5194 
5195   if (flag_lto_odr_type_mering
5196       && TREE_CODE (decl) == TYPE_DECL
5197       && DECL_NAME (decl)
5198       && decl == TYPE_NAME (TREE_TYPE (decl))
5199       && TYPE_MAIN_VARIANT (TREE_TYPE (decl)) == TREE_TYPE (decl)
5200       && !TYPE_ARTIFICIAL (TREE_TYPE (decl))
5201       && (type_with_linkage_p (TREE_TYPE (decl))
5202 	  || TREE_CODE (TREE_TYPE (decl)) == INTEGER_TYPE)
5203       && !variably_modified_type_p (TREE_TYPE (decl), NULL_TREE))
5204     return !DECL_ASSEMBLER_NAME_SET_P (decl);
5205   /* Only FUNCTION_DECLs and VAR_DECLs are considered.  */
5206   if (!VAR_OR_FUNCTION_DECL_P (decl))
5207     return false;
5208 
5209   /* If DECL already has its assembler name set, it does not need a
5210      new one.  */
5211   if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
5212       || DECL_ASSEMBLER_NAME_SET_P (decl))
5213     return false;
5214 
5215   /* Abstract decls do not need an assembler name.  */
5216   if (DECL_ABSTRACT_P (decl))
5217     return false;
5218 
5219   /* For VAR_DECLs, only static, public and external symbols need an
5220      assembler name.  */
5221   if (VAR_P (decl)
5222       && !TREE_STATIC (decl)
5223       && !TREE_PUBLIC (decl)
5224       && !DECL_EXTERNAL (decl))
5225     return false;
5226 
5227   if (TREE_CODE (decl) == FUNCTION_DECL)
5228     {
5229       /* Do not set assembler name on builtins.  Allow RTL expansion to
5230 	 decide whether to expand inline or via a regular call.  */
5231       if (DECL_BUILT_IN (decl)
5232 	  && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
5233 	return false;
5234 
5235       /* Functions represented in the callgraph need an assembler name.  */
5236       if (cgraph_node::get (decl) != NULL)
5237 	return true;
5238 
5239       /* Unused and not public functions don't need an assembler name.  */
5240       if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
5241 	return false;
5242     }
5243 
5244   return true;
5245 }
5246 
5247 
5248 /* Reset all language specific information still present in symbol
5249    DECL.  */
5250 
5251 static void
5252 free_lang_data_in_decl (tree decl)
5253 {
5254   gcc_assert (DECL_P (decl));
5255 
5256   /* Give the FE a chance to remove its own data first.  */
5257   lang_hooks.free_lang_data (decl);
5258 
5259   TREE_LANG_FLAG_0 (decl) = 0;
5260   TREE_LANG_FLAG_1 (decl) = 0;
5261   TREE_LANG_FLAG_2 (decl) = 0;
5262   TREE_LANG_FLAG_3 (decl) = 0;
5263   TREE_LANG_FLAG_4 (decl) = 0;
5264   TREE_LANG_FLAG_5 (decl) = 0;
5265   TREE_LANG_FLAG_6 (decl) = 0;
5266 
5267   free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
5268   free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
5269   if (TREE_CODE (decl) == FIELD_DECL)
5270     {
5271       free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
5272       if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE)
5273 	DECL_QUALIFIER (decl) = NULL_TREE;
5274     }
5275 
5276  if (TREE_CODE (decl) == FUNCTION_DECL)
5277     {
5278       struct cgraph_node *node;
5279       if (!(node = cgraph_node::get (decl))
5280 	  || (!node->definition && !node->clones))
5281 	{
5282 	  if (node)
5283 	    node->release_body ();
5284 	  else
5285 	    {
5286 	      release_function_body (decl);
5287 	      DECL_ARGUMENTS (decl) = NULL;
5288 	      DECL_RESULT (decl) = NULL;
5289 	      DECL_INITIAL (decl) = error_mark_node;
5290 	    }
5291 	}
5292       if (gimple_has_body_p (decl) || (node && node->thunk.thunk_p))
5293 	{
5294 	  tree t;
5295 
5296 	  /* If DECL has a gimple body, then the context for its
5297 	     arguments must be DECL.  Otherwise, it doesn't really
5298 	     matter, as we will not be emitting any code for DECL.  In
5299 	     general, there may be other instances of DECL created by
5300 	     the front end and since PARM_DECLs are generally shared,
5301 	     their DECL_CONTEXT changes as the replicas of DECL are
5302 	     created.  The only time where DECL_CONTEXT is important
5303 	     is for the FUNCTION_DECLs that have a gimple body (since
5304 	     the PARM_DECL will be used in the function's body).  */
5305 	  for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
5306 	    DECL_CONTEXT (t) = decl;
5307 	  if (!DECL_FUNCTION_SPECIFIC_TARGET (decl))
5308 	    DECL_FUNCTION_SPECIFIC_TARGET (decl)
5309 	      = target_option_default_node;
5310 	  if (!DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl))
5311 	    DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl)
5312 	      = optimization_default_node;
5313 	}
5314 
5315       /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
5316 	 At this point, it is not needed anymore.  */
5317       DECL_SAVED_TREE (decl) = NULL_TREE;
5318 
5319       /* Clear the abstract origin if it refers to a method.
5320          Otherwise dwarf2out.c will ICE as we splice functions out of
5321          TYPE_FIELDS and thus the origin will not be output
5322          correctly.  */
5323       if (DECL_ABSTRACT_ORIGIN (decl)
5324 	  && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
5325 	  && RECORD_OR_UNION_TYPE_P
5326 	       (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
5327 	DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
5328 
5329       /* Sometimes the C++ frontend doesn't manage to transform a temporary
5330          DECL_VINDEX referring to itself into a vtable slot number as it
5331 	 should.  Happens with functions that are copied and then forgotten
5332 	 about.  Just clear it, it won't matter anymore.  */
5333       if (DECL_VINDEX (decl) && !tree_fits_shwi_p (DECL_VINDEX (decl)))
5334 	DECL_VINDEX (decl) = NULL_TREE;
5335     }
5336   else if (VAR_P (decl))
5337     {
5338       if ((DECL_EXTERNAL (decl)
5339 	   && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
5340 	  || (decl_function_context (decl) && !TREE_STATIC (decl)))
5341 	DECL_INITIAL (decl) = NULL_TREE;
5342     }
5343   else if (TREE_CODE (decl) == TYPE_DECL)
5344     {
5345       DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
5346       DECL_VISIBILITY_SPECIFIED (decl) = 0;
5347       DECL_INITIAL (decl) = NULL_TREE;
5348     }
5349   else if (TREE_CODE (decl) == FIELD_DECL)
5350     DECL_INITIAL (decl) = NULL_TREE;
5351   else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
5352            && DECL_INITIAL (decl)
5353            && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
5354     {
5355       /* Strip builtins from the translation-unit BLOCK.  We still have targets
5356 	 without builtin_decl_explicit support and also builtins are shared
5357 	 nodes and thus we can't use TREE_CHAIN in multiple lists.  */
5358       tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
5359       while (*nextp)
5360         {
5361           tree var = *nextp;
5362           if (TREE_CODE (var) == FUNCTION_DECL
5363               && DECL_BUILT_IN (var))
5364 	    *nextp = TREE_CHAIN (var);
5365 	  else
5366 	    nextp = &TREE_CHAIN (var);
5367         }
5368     }
5369 }
5370 
5371 
5372 /* Data used when collecting DECLs and TYPEs for language data removal.  */
5373 
5374 struct free_lang_data_d
5375 {
5376   free_lang_data_d () : decls (100), types (100) {}
5377 
5378   /* Worklist to avoid excessive recursion.  */
5379   auto_vec<tree> worklist;
5380 
5381   /* Set of traversed objects.  Used to avoid duplicate visits.  */
5382   hash_set<tree> pset;
5383 
5384   /* Array of symbols to process with free_lang_data_in_decl.  */
5385   auto_vec<tree> decls;
5386 
5387   /* Array of types to process with free_lang_data_in_type.  */
5388   auto_vec<tree> types;
5389 };
5390 
5391 
5392 /* Add type or decl T to one of the list of tree nodes that need their
5393    language data removed.  The lists are held inside FLD.  */
5394 
5395 static void
5396 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
5397 {
5398   if (DECL_P (t))
5399     fld->decls.safe_push (t);
5400   else if (TYPE_P (t))
5401     fld->types.safe_push (t);
5402   else
5403     gcc_unreachable ();
5404 }
5405 
5406 /* Push tree node T into FLD->WORKLIST.  */
5407 
5408 static inline void
5409 fld_worklist_push (tree t, struct free_lang_data_d *fld)
5410 {
5411   if (t && !is_lang_specific (t) && !fld->pset.contains (t))
5412     fld->worklist.safe_push ((t));
5413 }
5414 
5415 
5416 /* Operand callback helper for free_lang_data_in_node.  *TP is the
5417    subtree operand being considered.  */
5418 
5419 static tree
5420 find_decls_types_r (tree *tp, int *ws, void *data)
5421 {
5422   tree t = *tp;
5423   struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
5424 
5425   if (TREE_CODE (t) == TREE_LIST)
5426     return NULL_TREE;
5427 
5428   /* Language specific nodes will be removed, so there is no need
5429      to gather anything under them.  */
5430   if (is_lang_specific (t))
5431     {
5432       *ws = 0;
5433       return NULL_TREE;
5434     }
5435 
5436   if (DECL_P (t))
5437     {
5438       /* Note that walk_tree does not traverse every possible field in
5439 	 decls, so we have to do our own traversals here.  */
5440       add_tree_to_fld_list (t, fld);
5441 
5442       fld_worklist_push (DECL_NAME (t), fld);
5443       fld_worklist_push (DECL_CONTEXT (t), fld);
5444       fld_worklist_push (DECL_SIZE (t), fld);
5445       fld_worklist_push (DECL_SIZE_UNIT (t), fld);
5446 
5447       /* We are going to remove everything under DECL_INITIAL for
5448 	 TYPE_DECLs.  No point walking them.  */
5449       if (TREE_CODE (t) != TYPE_DECL)
5450 	fld_worklist_push (DECL_INITIAL (t), fld);
5451 
5452       fld_worklist_push (DECL_ATTRIBUTES (t), fld);
5453       fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
5454 
5455       if (TREE_CODE (t) == FUNCTION_DECL)
5456 	{
5457 	  fld_worklist_push (DECL_ARGUMENTS (t), fld);
5458 	  fld_worklist_push (DECL_RESULT (t), fld);
5459 	}
5460       else if (TREE_CODE (t) == TYPE_DECL)
5461 	{
5462 	  fld_worklist_push (DECL_ORIGINAL_TYPE (t), fld);
5463 	}
5464       else if (TREE_CODE (t) == FIELD_DECL)
5465 	{
5466 	  fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
5467 	  fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
5468 	  fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
5469 	  fld_worklist_push (DECL_FCONTEXT (t), fld);
5470 	}
5471 
5472       if ((VAR_P (t) || TREE_CODE (t) == PARM_DECL)
5473 	  && DECL_HAS_VALUE_EXPR_P (t))
5474 	fld_worklist_push (DECL_VALUE_EXPR (t), fld);
5475 
5476       if (TREE_CODE (t) != FIELD_DECL
5477 	  && TREE_CODE (t) != TYPE_DECL)
5478 	fld_worklist_push (TREE_CHAIN (t), fld);
5479       *ws = 0;
5480     }
5481   else if (TYPE_P (t))
5482     {
5483       /* Note that walk_tree does not traverse every possible field in
5484 	 types, so we have to do our own traversals here.  */
5485       add_tree_to_fld_list (t, fld);
5486 
5487       if (!RECORD_OR_UNION_TYPE_P (t))
5488 	fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
5489       fld_worklist_push (TYPE_SIZE (t), fld);
5490       fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
5491       fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
5492       fld_worklist_push (TYPE_POINTER_TO (t), fld);
5493       fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
5494       fld_worklist_push (TYPE_NAME (t), fld);
5495       /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO.  We do not stream
5496 	 them and thus do not and want not to reach unused pointer types
5497 	 this way.  */
5498       if (!POINTER_TYPE_P (t))
5499 	fld_worklist_push (TYPE_MIN_VALUE_RAW (t), fld);
5500       /* TYPE_MAX_VALUE_RAW is TYPE_BINFO for record types.  */
5501       if (!RECORD_OR_UNION_TYPE_P (t))
5502 	fld_worklist_push (TYPE_MAX_VALUE_RAW (t), fld);
5503       fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
5504       /* Do not walk TYPE_NEXT_VARIANT.  We do not stream it and thus
5505          do not and want not to reach unused variants this way.  */
5506       if (TYPE_CONTEXT (t))
5507 	{
5508 	  tree ctx = TYPE_CONTEXT (t);
5509 	  /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
5510 	     So push that instead.  */
5511 	  while (ctx && TREE_CODE (ctx) == BLOCK)
5512 	    ctx = BLOCK_SUPERCONTEXT (ctx);
5513 	  fld_worklist_push (ctx, fld);
5514 	}
5515       /* Do not walk TYPE_CANONICAL.  We do not stream it and thus do not
5516 	 and want not to reach unused types this way.  */
5517 
5518       if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
5519 	{
5520 	  unsigned i;
5521 	  tree tem;
5522 	  FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t)), i, tem)
5523 	    fld_worklist_push (TREE_TYPE (tem), fld);
5524 	  fld_worklist_push (BINFO_TYPE (TYPE_BINFO (t)), fld);
5525 	  fld_worklist_push (BINFO_VTABLE (TYPE_BINFO (t)), fld);
5526 	}
5527       if (RECORD_OR_UNION_TYPE_P (t))
5528 	{
5529 	  tree tem;
5530 	  /* Push all TYPE_FIELDS - there can be interleaving interesting
5531 	     and non-interesting things.  */
5532 	  tem = TYPE_FIELDS (t);
5533 	  while (tem)
5534 	    {
5535 	      if (TREE_CODE (tem) == FIELD_DECL
5536 		  || (TREE_CODE (tem) == TYPE_DECL
5537 		      && !DECL_IGNORED_P (tem)
5538 		      && debug_info_level > DINFO_LEVEL_TERSE
5539 		      && !is_redundant_typedef (tem)))
5540 		fld_worklist_push (tem, fld);
5541 	      tem = TREE_CHAIN (tem);
5542 	    }
5543 	}
5544       if (FUNC_OR_METHOD_TYPE_P (t))
5545 	fld_worklist_push (TYPE_METHOD_BASETYPE (t), fld);
5546 
5547       fld_worklist_push (TYPE_STUB_DECL (t), fld);
5548       *ws = 0;
5549     }
5550   else if (TREE_CODE (t) == BLOCK)
5551     {
5552       tree tem;
5553       for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
5554 	fld_worklist_push (tem, fld);
5555       for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
5556 	fld_worklist_push (tem, fld);
5557       fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
5558     }
5559 
5560   if (TREE_CODE (t) != IDENTIFIER_NODE
5561       && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
5562     fld_worklist_push (TREE_TYPE (t), fld);
5563 
5564   return NULL_TREE;
5565 }
5566 
5567 
5568 /* Find decls and types in T.  */
5569 
5570 static void
5571 find_decls_types (tree t, struct free_lang_data_d *fld)
5572 {
5573   while (1)
5574     {
5575       if (!fld->pset.contains (t))
5576 	walk_tree (&t, find_decls_types_r, fld, &fld->pset);
5577       if (fld->worklist.is_empty ())
5578 	break;
5579       t = fld->worklist.pop ();
5580     }
5581 }
5582 
5583 /* Translate all the types in LIST with the corresponding runtime
5584    types.  */
5585 
5586 static tree
5587 get_eh_types_for_runtime (tree list)
5588 {
5589   tree head, prev;
5590 
5591   if (list == NULL_TREE)
5592     return NULL_TREE;
5593 
5594   head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5595   prev = head;
5596   list = TREE_CHAIN (list);
5597   while (list)
5598     {
5599       tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5600       TREE_CHAIN (prev) = n;
5601       prev = TREE_CHAIN (prev);
5602       list = TREE_CHAIN (list);
5603     }
5604 
5605   return head;
5606 }
5607 
5608 
5609 /* Find decls and types referenced in EH region R and store them in
5610    FLD->DECLS and FLD->TYPES.  */
5611 
5612 static void
5613 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
5614 {
5615   switch (r->type)
5616     {
5617     case ERT_CLEANUP:
5618       break;
5619 
5620     case ERT_TRY:
5621       {
5622 	eh_catch c;
5623 
5624 	/* The types referenced in each catch must first be changed to the
5625 	   EH types used at runtime.  This removes references to FE types
5626 	   in the region.  */
5627 	for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
5628 	  {
5629 	    c->type_list = get_eh_types_for_runtime (c->type_list);
5630 	    walk_tree (&c->type_list, find_decls_types_r, fld, &fld->pset);
5631 	  }
5632       }
5633       break;
5634 
5635     case ERT_ALLOWED_EXCEPTIONS:
5636       r->u.allowed.type_list
5637 	= get_eh_types_for_runtime (r->u.allowed.type_list);
5638       walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, &fld->pset);
5639       break;
5640 
5641     case ERT_MUST_NOT_THROW:
5642       walk_tree (&r->u.must_not_throw.failure_decl,
5643 		 find_decls_types_r, fld, &fld->pset);
5644       break;
5645     }
5646 }
5647 
5648 
5649 /* Find decls and types referenced in cgraph node N and store them in
5650    FLD->DECLS and FLD->TYPES.  Unlike pass_referenced_vars, this will
5651    look for *every* kind of DECL and TYPE node reachable from N,
5652    including those embedded inside types and decls (i.e,, TYPE_DECLs,
5653    NAMESPACE_DECLs, etc).  */
5654 
5655 static void
5656 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
5657 {
5658   basic_block bb;
5659   struct function *fn;
5660   unsigned ix;
5661   tree t;
5662 
5663   find_decls_types (n->decl, fld);
5664 
5665   if (!gimple_has_body_p (n->decl))
5666     return;
5667 
5668   gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
5669 
5670   fn = DECL_STRUCT_FUNCTION (n->decl);
5671 
5672   /* Traverse locals. */
5673   FOR_EACH_LOCAL_DECL (fn, ix, t)
5674     find_decls_types (t, fld);
5675 
5676   /* Traverse EH regions in FN.  */
5677   {
5678     eh_region r;
5679     FOR_ALL_EH_REGION_FN (r, fn)
5680       find_decls_types_in_eh_region (r, fld);
5681   }
5682 
5683   /* Traverse every statement in FN.  */
5684   FOR_EACH_BB_FN (bb, fn)
5685     {
5686       gphi_iterator psi;
5687       gimple_stmt_iterator si;
5688       unsigned i;
5689 
5690       for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
5691 	{
5692 	  gphi *phi = psi.phi ();
5693 
5694 	  for (i = 0; i < gimple_phi_num_args (phi); i++)
5695 	    {
5696 	      tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
5697 	      find_decls_types (*arg_p, fld);
5698 	    }
5699 	}
5700 
5701       for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5702 	{
5703 	  gimple *stmt = gsi_stmt (si);
5704 
5705 	  if (is_gimple_call (stmt))
5706 	    find_decls_types (gimple_call_fntype (stmt), fld);
5707 
5708 	  for (i = 0; i < gimple_num_ops (stmt); i++)
5709 	    {
5710 	      tree arg = gimple_op (stmt, i);
5711 	      find_decls_types (arg, fld);
5712 	    }
5713 	}
5714     }
5715 }
5716 
5717 
5718 /* Find decls and types referenced in varpool node N and store them in
5719    FLD->DECLS and FLD->TYPES.  Unlike pass_referenced_vars, this will
5720    look for *every* kind of DECL and TYPE node reachable from N,
5721    including those embedded inside types and decls (i.e,, TYPE_DECLs,
5722    NAMESPACE_DECLs, etc).  */
5723 
5724 static void
5725 find_decls_types_in_var (varpool_node *v, struct free_lang_data_d *fld)
5726 {
5727   find_decls_types (v->decl, fld);
5728 }
5729 
5730 /* If T needs an assembler name, have one created for it.  */
5731 
5732 void
5733 assign_assembler_name_if_needed (tree t)
5734 {
5735   if (need_assembler_name_p (t))
5736     {
5737       /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
5738 	 diagnostics that use input_location to show locus
5739 	 information.  The problem here is that, at this point,
5740 	 input_location is generally anchored to the end of the file
5741 	 (since the parser is long gone), so we don't have a good
5742 	 position to pin it to.
5743 
5744 	 To alleviate this problem, this uses the location of T's
5745 	 declaration.  Examples of this are
5746 	 testsuite/g++.dg/template/cond2.C and
5747 	 testsuite/g++.dg/template/pr35240.C.  */
5748       location_t saved_location = input_location;
5749       input_location = DECL_SOURCE_LOCATION (t);
5750 
5751       decl_assembler_name (t);
5752 
5753       input_location = saved_location;
5754     }
5755 }
5756 
5757 
5758 /* Free language specific information for every operand and expression
5759    in every node of the call graph.  This process operates in three stages:
5760 
5761    1- Every callgraph node and varpool node is traversed looking for
5762       decls and types embedded in them.  This is a more exhaustive
5763       search than that done by find_referenced_vars, because it will
5764       also collect individual fields, decls embedded in types, etc.
5765 
5766    2- All the decls found are sent to free_lang_data_in_decl.
5767 
5768    3- All the types found are sent to free_lang_data_in_type.
5769 
5770    The ordering between decls and types is important because
5771    free_lang_data_in_decl sets assembler names, which includes
5772    mangling.  So types cannot be freed up until assembler names have
5773    been set up.  */
5774 
5775 static void
5776 free_lang_data_in_cgraph (void)
5777 {
5778   struct cgraph_node *n;
5779   varpool_node *v;
5780   struct free_lang_data_d fld;
5781   tree t;
5782   unsigned i;
5783   alias_pair *p;
5784 
5785   /* Find decls and types in the body of every function in the callgraph.  */
5786   FOR_EACH_FUNCTION (n)
5787     find_decls_types_in_node (n, &fld);
5788 
5789   FOR_EACH_VEC_SAFE_ELT (alias_pairs, i, p)
5790     find_decls_types (p->decl, &fld);
5791 
5792   /* Find decls and types in every varpool symbol.  */
5793   FOR_EACH_VARIABLE (v)
5794     find_decls_types_in_var (v, &fld);
5795 
5796   /* Set the assembler name on every decl found.  We need to do this
5797      now because free_lang_data_in_decl will invalidate data needed
5798      for mangling.  This breaks mangling on interdependent decls.  */
5799   FOR_EACH_VEC_ELT (fld.decls, i, t)
5800     assign_assembler_name_if_needed (t);
5801 
5802   /* Traverse every decl found freeing its language data.  */
5803   FOR_EACH_VEC_ELT (fld.decls, i, t)
5804     free_lang_data_in_decl (t);
5805 
5806   /* Traverse every type found freeing its language data.  */
5807   FOR_EACH_VEC_ELT (fld.types, i, t)
5808     free_lang_data_in_type (t);
5809   if (flag_checking)
5810     {
5811       FOR_EACH_VEC_ELT (fld.types, i, t)
5812 	verify_type (t);
5813     }
5814 }
5815 
5816 
5817 /* Free resources that are used by FE but are not needed once they are done. */
5818 
5819 static unsigned
5820 free_lang_data (void)
5821 {
5822   unsigned i;
5823 
5824   /* If we are the LTO frontend we have freed lang-specific data already.  */
5825   if (in_lto_p
5826       || (!flag_generate_lto && !flag_generate_offload))
5827     {
5828       /* Rebuild type inheritance graph even when not doing LTO to get
5829 	 consistent profile data.  */
5830       rebuild_type_inheritance_graph ();
5831       return 0;
5832     }
5833 
5834   /* Provide a dummy TRANSLATION_UNIT_DECL if the FE failed to provide one.  */
5835   if (vec_safe_is_empty (all_translation_units))
5836     build_translation_unit_decl (NULL_TREE);
5837 
5838   /* Allocate and assign alias sets to the standard integer types
5839      while the slots are still in the way the frontends generated them.  */
5840   for (i = 0; i < itk_none; ++i)
5841     if (integer_types[i])
5842       TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5843 
5844   /* Traverse the IL resetting language specific information for
5845      operands, expressions, etc.  */
5846   free_lang_data_in_cgraph ();
5847 
5848   /* Create gimple variants for common types.  */
5849   for (unsigned i = 0;
5850        i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
5851        ++i)
5852     builtin_structptr_types[i].node = builtin_structptr_types[i].base;
5853 
5854   /* Reset some langhooks.  Do not reset types_compatible_p, it may
5855      still be used indirectly via the get_alias_set langhook.  */
5856   lang_hooks.dwarf_name = lhd_dwarf_name;
5857   lang_hooks.decl_printable_name = gimple_decl_printable_name;
5858   lang_hooks.gimplify_expr = lhd_gimplify_expr;
5859 
5860   /* We do not want the default decl_assembler_name implementation,
5861      rather if we have fixed everything we want a wrapper around it
5862      asserting that all non-local symbols already got their assembler
5863      name and only produce assembler names for local symbols.  Or rather
5864      make sure we never call decl_assembler_name on local symbols and
5865      devise a separate, middle-end private scheme for it.  */
5866 
5867   /* Reset diagnostic machinery.  */
5868   tree_diagnostics_defaults (global_dc);
5869 
5870   rebuild_type_inheritance_graph ();
5871 
5872   return 0;
5873 }
5874 
5875 
5876 namespace {
5877 
5878 const pass_data pass_data_ipa_free_lang_data =
5879 {
5880   SIMPLE_IPA_PASS, /* type */
5881   "*free_lang_data", /* name */
5882   OPTGROUP_NONE, /* optinfo_flags */
5883   TV_IPA_FREE_LANG_DATA, /* tv_id */
5884   0, /* properties_required */
5885   0, /* properties_provided */
5886   0, /* properties_destroyed */
5887   0, /* todo_flags_start */
5888   0, /* todo_flags_finish */
5889 };
5890 
5891 class pass_ipa_free_lang_data : public simple_ipa_opt_pass
5892 {
5893 public:
5894   pass_ipa_free_lang_data (gcc::context *ctxt)
5895     : simple_ipa_opt_pass (pass_data_ipa_free_lang_data, ctxt)
5896   {}
5897 
5898   /* opt_pass methods: */
5899   virtual unsigned int execute (function *) { return free_lang_data (); }
5900 
5901 }; // class pass_ipa_free_lang_data
5902 
5903 } // anon namespace
5904 
5905 simple_ipa_opt_pass *
5906 make_pass_ipa_free_lang_data (gcc::context *ctxt)
5907 {
5908   return new pass_ipa_free_lang_data (ctxt);
5909 }
5910 
5911 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5912    of the various TYPE_QUAL values.  */
5913 
5914 static void
5915 set_type_quals (tree type, int type_quals)
5916 {
5917   TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5918   TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5919   TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5920   TYPE_ATOMIC (type) = (type_quals & TYPE_QUAL_ATOMIC) != 0;
5921   TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
5922 }
5923 
5924 /* Returns true iff CAND and BASE have equivalent language-specific
5925    qualifiers.  */
5926 
5927 bool
5928 check_lang_type (const_tree cand, const_tree base)
5929 {
5930   if (lang_hooks.types.type_hash_eq == NULL)
5931     return true;
5932   /* type_hash_eq currently only applies to these types.  */
5933   if (TREE_CODE (cand) != FUNCTION_TYPE
5934       && TREE_CODE (cand) != METHOD_TYPE)
5935     return true;
5936   return lang_hooks.types.type_hash_eq (cand, base);
5937 }
5938 
5939 /* Returns true iff unqualified CAND and BASE are equivalent.  */
5940 
5941 bool
5942 check_base_type (const_tree cand, const_tree base)
5943 {
5944   return (TYPE_NAME (cand) == TYPE_NAME (base)
5945 	  /* Apparently this is needed for Objective-C.  */
5946 	  && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5947 	  /* Check alignment.  */
5948 	  && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
5949 	  && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5950 				   TYPE_ATTRIBUTES (base)));
5951 }
5952 
5953 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS.  */
5954 
5955 bool
5956 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5957 {
5958   return (TYPE_QUALS (cand) == type_quals
5959 	  && check_base_type (cand, base)
5960 	  && check_lang_type (cand, base));
5961 }
5962 
5963 /* Returns true iff CAND is equivalent to BASE with ALIGN.  */
5964 
5965 static bool
5966 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
5967 {
5968   return (TYPE_QUALS (cand) == TYPE_QUALS (base)
5969 	  && TYPE_NAME (cand) == TYPE_NAME (base)
5970 	  /* Apparently this is needed for Objective-C.  */
5971 	  && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5972 	  /* Check alignment.  */
5973 	  && TYPE_ALIGN (cand) == align
5974 	  && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5975 				   TYPE_ATTRIBUTES (base))
5976 	  && check_lang_type (cand, base));
5977 }
5978 
5979 /* This function checks to see if TYPE matches the size one of the built-in
5980    atomic types, and returns that core atomic type.  */
5981 
5982 static tree
5983 find_atomic_core_type (tree type)
5984 {
5985   tree base_atomic_type;
5986 
5987   /* Only handle complete types.  */
5988   if (!tree_fits_uhwi_p (TYPE_SIZE (type)))
5989     return NULL_TREE;
5990 
5991   switch (tree_to_uhwi (TYPE_SIZE (type)))
5992     {
5993     case 8:
5994       base_atomic_type = atomicQI_type_node;
5995       break;
5996 
5997     case 16:
5998       base_atomic_type = atomicHI_type_node;
5999       break;
6000 
6001     case 32:
6002       base_atomic_type = atomicSI_type_node;
6003       break;
6004 
6005     case 64:
6006       base_atomic_type = atomicDI_type_node;
6007       break;
6008 
6009     case 128:
6010       base_atomic_type = atomicTI_type_node;
6011       break;
6012 
6013     default:
6014       base_atomic_type = NULL_TREE;
6015     }
6016 
6017   return base_atomic_type;
6018 }
6019 
6020 /* Return a version of the TYPE, qualified as indicated by the
6021    TYPE_QUALS, if one exists.  If no qualified version exists yet,
6022    return NULL_TREE.  */
6023 
6024 tree
6025 get_qualified_type (tree type, int type_quals)
6026 {
6027   tree t;
6028 
6029   if (TYPE_QUALS (type) == type_quals)
6030     return type;
6031 
6032   /* Search the chain of variants to see if there is already one there just
6033      like the one we need to have.  If so, use that existing one.  We must
6034      preserve the TYPE_NAME, since there is code that depends on this.  */
6035   for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6036     if (check_qualified_type (t, type, type_quals))
6037       return t;
6038 
6039   return NULL_TREE;
6040 }
6041 
6042 /* Like get_qualified_type, but creates the type if it does not
6043    exist.  This function never returns NULL_TREE.  */
6044 
6045 tree
6046 build_qualified_type (tree type, int type_quals MEM_STAT_DECL)
6047 {
6048   tree t;
6049 
6050   /* See if we already have the appropriate qualified variant.  */
6051   t = get_qualified_type (type, type_quals);
6052 
6053   /* If not, build it.  */
6054   if (!t)
6055     {
6056       t = build_variant_type_copy (type PASS_MEM_STAT);
6057       set_type_quals (t, type_quals);
6058 
6059       if (((type_quals & TYPE_QUAL_ATOMIC) == TYPE_QUAL_ATOMIC))
6060 	{
6061 	  /* See if this object can map to a basic atomic type.  */
6062 	  tree atomic_type = find_atomic_core_type (type);
6063 	  if (atomic_type)
6064 	    {
6065 	      /* Ensure the alignment of this type is compatible with
6066 		 the required alignment of the atomic type.  */
6067 	      if (TYPE_ALIGN (atomic_type) > TYPE_ALIGN (t))
6068 		SET_TYPE_ALIGN (t, TYPE_ALIGN (atomic_type));
6069 	    }
6070 	}
6071 
6072       if (TYPE_STRUCTURAL_EQUALITY_P (type))
6073 	/* Propagate structural equality. */
6074 	SET_TYPE_STRUCTURAL_EQUALITY (t);
6075       else if (TYPE_CANONICAL (type) != type)
6076 	/* Build the underlying canonical type, since it is different
6077 	   from TYPE. */
6078 	{
6079 	  tree c = build_qualified_type (TYPE_CANONICAL (type), type_quals);
6080 	  TYPE_CANONICAL (t) = TYPE_CANONICAL (c);
6081 	}
6082       else
6083 	/* T is its own canonical type. */
6084 	TYPE_CANONICAL (t) = t;
6085 
6086     }
6087 
6088   return t;
6089 }
6090 
6091 /* Create a variant of type T with alignment ALIGN.  */
6092 
6093 tree
6094 build_aligned_type (tree type, unsigned int align)
6095 {
6096   tree t;
6097 
6098   if (TYPE_PACKED (type)
6099       || TYPE_ALIGN (type) == align)
6100     return type;
6101 
6102   for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6103     if (check_aligned_type (t, type, align))
6104       return t;
6105 
6106   t = build_variant_type_copy (type);
6107   SET_TYPE_ALIGN (t, align);
6108   TYPE_USER_ALIGN (t) = 1;
6109 
6110   return t;
6111 }
6112 
6113 /* Create a new distinct copy of TYPE.  The new type is made its own
6114    MAIN_VARIANT. If TYPE requires structural equality checks, the
6115    resulting type requires structural equality checks; otherwise, its
6116    TYPE_CANONICAL points to itself. */
6117 
6118 tree
6119 build_distinct_type_copy (tree type MEM_STAT_DECL)
6120 {
6121   tree t = copy_node (type PASS_MEM_STAT);
6122 
6123   TYPE_POINTER_TO (t) = 0;
6124   TYPE_REFERENCE_TO (t) = 0;
6125 
6126   /* Set the canonical type either to a new equivalence class, or
6127      propagate the need for structural equality checks. */
6128   if (TYPE_STRUCTURAL_EQUALITY_P (type))
6129     SET_TYPE_STRUCTURAL_EQUALITY (t);
6130   else
6131     TYPE_CANONICAL (t) = t;
6132 
6133   /* Make it its own variant.  */
6134   TYPE_MAIN_VARIANT (t) = t;
6135   TYPE_NEXT_VARIANT (t) = 0;
6136 
6137   /* Note that it is now possible for TYPE_MIN_VALUE to be a value
6138      whose TREE_TYPE is not t.  This can also happen in the Ada
6139      frontend when using subtypes.  */
6140 
6141   return t;
6142 }
6143 
6144 /* Create a new variant of TYPE, equivalent but distinct.  This is so
6145    the caller can modify it. TYPE_CANONICAL for the return type will
6146    be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
6147    are considered equal by the language itself (or that both types
6148    require structural equality checks). */
6149 
6150 tree
6151 build_variant_type_copy (tree type MEM_STAT_DECL)
6152 {
6153   tree t, m = TYPE_MAIN_VARIANT (type);
6154 
6155   t = build_distinct_type_copy (type PASS_MEM_STAT);
6156 
6157   /* Since we're building a variant, assume that it is a non-semantic
6158      variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
6159   TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
6160   /* Type variants have no alias set defined.  */
6161   TYPE_ALIAS_SET (t) = -1;
6162 
6163   /* Add the new type to the chain of variants of TYPE.  */
6164   TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
6165   TYPE_NEXT_VARIANT (m) = t;
6166   TYPE_MAIN_VARIANT (t) = m;
6167 
6168   return t;
6169 }
6170 
6171 /* Return true if the from tree in both tree maps are equal.  */
6172 
6173 int
6174 tree_map_base_eq (const void *va, const void *vb)
6175 {
6176   const struct tree_map_base  *const a = (const struct tree_map_base *) va,
6177     *const b = (const struct tree_map_base *) vb;
6178   return (a->from == b->from);
6179 }
6180 
6181 /* Hash a from tree in a tree_base_map.  */
6182 
6183 unsigned int
6184 tree_map_base_hash (const void *item)
6185 {
6186   return htab_hash_pointer (((const struct tree_map_base *)item)->from);
6187 }
6188 
6189 /* Return true if this tree map structure is marked for garbage collection
6190    purposes.  We simply return true if the from tree is marked, so that this
6191    structure goes away when the from tree goes away.  */
6192 
6193 int
6194 tree_map_base_marked_p (const void *p)
6195 {
6196   return ggc_marked_p (((const struct tree_map_base *) p)->from);
6197 }
6198 
6199 /* Hash a from tree in a tree_map.  */
6200 
6201 unsigned int
6202 tree_map_hash (const void *item)
6203 {
6204   return (((const struct tree_map *) item)->hash);
6205 }
6206 
6207 /* Hash a from tree in a tree_decl_map.  */
6208 
6209 unsigned int
6210 tree_decl_map_hash (const void *item)
6211 {
6212   return DECL_UID (((const struct tree_decl_map *) item)->base.from);
6213 }
6214 
6215 /* Return the initialization priority for DECL.  */
6216 
6217 priority_type
6218 decl_init_priority_lookup (tree decl)
6219 {
6220   symtab_node *snode = symtab_node::get (decl);
6221 
6222   if (!snode)
6223     return DEFAULT_INIT_PRIORITY;
6224   return
6225     snode->get_init_priority ();
6226 }
6227 
6228 /* Return the finalization priority for DECL.  */
6229 
6230 priority_type
6231 decl_fini_priority_lookup (tree decl)
6232 {
6233   cgraph_node *node = cgraph_node::get (decl);
6234 
6235   if (!node)
6236     return DEFAULT_INIT_PRIORITY;
6237   return
6238     node->get_fini_priority ();
6239 }
6240 
6241 /* Set the initialization priority for DECL to PRIORITY.  */
6242 
6243 void
6244 decl_init_priority_insert (tree decl, priority_type priority)
6245 {
6246   struct symtab_node *snode;
6247 
6248   if (priority == DEFAULT_INIT_PRIORITY)
6249     {
6250       snode = symtab_node::get (decl);
6251       if (!snode)
6252 	return;
6253     }
6254   else if (VAR_P (decl))
6255     snode = varpool_node::get_create (decl);
6256   else
6257     snode = cgraph_node::get_create (decl);
6258   snode->set_init_priority (priority);
6259 }
6260 
6261 /* Set the finalization priority for DECL to PRIORITY.  */
6262 
6263 void
6264 decl_fini_priority_insert (tree decl, priority_type priority)
6265 {
6266   struct cgraph_node *node;
6267 
6268   if (priority == DEFAULT_INIT_PRIORITY)
6269     {
6270       node = cgraph_node::get (decl);
6271       if (!node)
6272 	return;
6273     }
6274   else
6275     node = cgraph_node::get_create (decl);
6276   node->set_fini_priority (priority);
6277 }
6278 
6279 /* Print out the statistics for the DECL_DEBUG_EXPR hash table.  */
6280 
6281 static void
6282 print_debug_expr_statistics (void)
6283 {
6284   fprintf (stderr, "DECL_DEBUG_EXPR  hash: size %ld, %ld elements, %f collisions\n",
6285 	   (long) debug_expr_for_decl->size (),
6286 	   (long) debug_expr_for_decl->elements (),
6287 	   debug_expr_for_decl->collisions ());
6288 }
6289 
6290 /* Print out the statistics for the DECL_VALUE_EXPR hash table.  */
6291 
6292 static void
6293 print_value_expr_statistics (void)
6294 {
6295   fprintf (stderr, "DECL_VALUE_EXPR  hash: size %ld, %ld elements, %f collisions\n",
6296 	   (long) value_expr_for_decl->size (),
6297 	   (long) value_expr_for_decl->elements (),
6298 	   value_expr_for_decl->collisions ());
6299 }
6300 
6301 /* Lookup a debug expression for FROM, and return it if we find one.  */
6302 
6303 tree
6304 decl_debug_expr_lookup (tree from)
6305 {
6306   struct tree_decl_map *h, in;
6307   in.base.from = from;
6308 
6309   h = debug_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6310   if (h)
6311     return h->to;
6312   return NULL_TREE;
6313 }
6314 
6315 /* Insert a mapping FROM->TO in the debug expression hashtable.  */
6316 
6317 void
6318 decl_debug_expr_insert (tree from, tree to)
6319 {
6320   struct tree_decl_map *h;
6321 
6322   h = ggc_alloc<tree_decl_map> ();
6323   h->base.from = from;
6324   h->to = to;
6325   *debug_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6326 }
6327 
6328 /* Lookup a value expression for FROM, and return it if we find one.  */
6329 
6330 tree
6331 decl_value_expr_lookup (tree from)
6332 {
6333   struct tree_decl_map *h, in;
6334   in.base.from = from;
6335 
6336   h = value_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6337   if (h)
6338     return h->to;
6339   return NULL_TREE;
6340 }
6341 
6342 /* Insert a mapping FROM->TO in the value expression hashtable.  */
6343 
6344 void
6345 decl_value_expr_insert (tree from, tree to)
6346 {
6347   struct tree_decl_map *h;
6348 
6349   h = ggc_alloc<tree_decl_map> ();
6350   h->base.from = from;
6351   h->to = to;
6352   *value_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6353 }
6354 
6355 /* Lookup a vector of debug arguments for FROM, and return it if we
6356    find one.  */
6357 
6358 vec<tree, va_gc> **
6359 decl_debug_args_lookup (tree from)
6360 {
6361   struct tree_vec_map *h, in;
6362 
6363   if (!DECL_HAS_DEBUG_ARGS_P (from))
6364     return NULL;
6365   gcc_checking_assert (debug_args_for_decl != NULL);
6366   in.base.from = from;
6367   h = debug_args_for_decl->find_with_hash (&in, DECL_UID (from));
6368   if (h)
6369     return &h->to;
6370   return NULL;
6371 }
6372 
6373 /* Insert a mapping FROM->empty vector of debug arguments in the value
6374    expression hashtable.  */
6375 
6376 vec<tree, va_gc> **
6377 decl_debug_args_insert (tree from)
6378 {
6379   struct tree_vec_map *h;
6380   tree_vec_map **loc;
6381 
6382   if (DECL_HAS_DEBUG_ARGS_P (from))
6383     return decl_debug_args_lookup (from);
6384   if (debug_args_for_decl == NULL)
6385     debug_args_for_decl = hash_table<tree_vec_map_cache_hasher>::create_ggc (64);
6386   h = ggc_alloc<tree_vec_map> ();
6387   h->base.from = from;
6388   h->to = NULL;
6389   loc = debug_args_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT);
6390   *loc = h;
6391   DECL_HAS_DEBUG_ARGS_P (from) = 1;
6392   return &h->to;
6393 }
6394 
6395 /* Hashing of types so that we don't make duplicates.
6396    The entry point is `type_hash_canon'.  */
6397 
6398 /* Generate the default hash code for TYPE.  This is designed for
6399    speed, rather than maximum entropy.  */
6400 
6401 hashval_t
6402 type_hash_canon_hash (tree type)
6403 {
6404   inchash::hash hstate;
6405 
6406   hstate.add_int (TREE_CODE (type));
6407 
6408   if (TREE_TYPE (type))
6409     hstate.add_object (TYPE_HASH (TREE_TYPE (type)));
6410 
6411   for (tree t = TYPE_ATTRIBUTES (type); t; t = TREE_CHAIN (t))
6412     /* Just the identifier is adequate to distinguish.  */
6413     hstate.add_object (IDENTIFIER_HASH_VALUE (get_attribute_name (t)));
6414 
6415   switch (TREE_CODE (type))
6416     {
6417     case METHOD_TYPE:
6418       hstate.add_object (TYPE_HASH (TYPE_METHOD_BASETYPE (type)));
6419       /* FALLTHROUGH. */
6420     case FUNCTION_TYPE:
6421       for (tree t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6422 	if (TREE_VALUE (t) != error_mark_node)
6423 	  hstate.add_object (TYPE_HASH (TREE_VALUE (t)));
6424       break;
6425 
6426     case OFFSET_TYPE:
6427       hstate.add_object (TYPE_HASH (TYPE_OFFSET_BASETYPE (type)));
6428       break;
6429 
6430     case ARRAY_TYPE:
6431       {
6432 	if (TYPE_DOMAIN (type))
6433 	  hstate.add_object (TYPE_HASH (TYPE_DOMAIN (type)));
6434 	if (!AGGREGATE_TYPE_P (TREE_TYPE (type)))
6435 	  {
6436 	    unsigned typeless = TYPE_TYPELESS_STORAGE (type);
6437 	    hstate.add_object (typeless);
6438 	  }
6439       }
6440       break;
6441 
6442     case INTEGER_TYPE:
6443       {
6444 	tree t = TYPE_MAX_VALUE (type);
6445 	if (!t)
6446 	  t = TYPE_MIN_VALUE (type);
6447 	for (int i = 0; i < TREE_INT_CST_NUNITS (t); i++)
6448 	  hstate.add_object (TREE_INT_CST_ELT (t, i));
6449 	break;
6450       }
6451 
6452     case REAL_TYPE:
6453     case FIXED_POINT_TYPE:
6454       {
6455 	unsigned prec = TYPE_PRECISION (type);
6456 	hstate.add_object (prec);
6457 	break;
6458       }
6459 
6460     case VECTOR_TYPE:
6461       hstate.add_poly_int (TYPE_VECTOR_SUBPARTS (type));
6462       break;
6463 
6464     default:
6465       break;
6466     }
6467 
6468   return hstate.end ();
6469 }
6470 
6471 /* These are the Hashtable callback functions.  */
6472 
6473 /* Returns true iff the types are equivalent.  */
6474 
6475 bool
6476 type_cache_hasher::equal (type_hash *a, type_hash *b)
6477 {
6478   /* First test the things that are the same for all types.  */
6479   if (a->hash != b->hash
6480       || TREE_CODE (a->type) != TREE_CODE (b->type)
6481       || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6482       || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6483 				 TYPE_ATTRIBUTES (b->type))
6484       || (TREE_CODE (a->type) != COMPLEX_TYPE
6485           && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6486     return 0;
6487 
6488   /* Be careful about comparing arrays before and after the element type
6489      has been completed; don't compare TYPE_ALIGN unless both types are
6490      complete.  */
6491   if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6492       && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6493 	  || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6494     return 0;
6495 
6496   switch (TREE_CODE (a->type))
6497     {
6498     case VOID_TYPE:
6499     case COMPLEX_TYPE:
6500     case POINTER_TYPE:
6501     case REFERENCE_TYPE:
6502     case NULLPTR_TYPE:
6503       return 1;
6504 
6505     case VECTOR_TYPE:
6506       return known_eq (TYPE_VECTOR_SUBPARTS (a->type),
6507 		       TYPE_VECTOR_SUBPARTS (b->type));
6508 
6509     case ENUMERAL_TYPE:
6510       if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6511 	  && !(TYPE_VALUES (a->type)
6512 	       && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6513 	       && TYPE_VALUES (b->type)
6514 	       && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6515 	       && type_list_equal (TYPE_VALUES (a->type),
6516 				   TYPE_VALUES (b->type))))
6517 	return 0;
6518 
6519       /* fall through */
6520 
6521     case INTEGER_TYPE:
6522     case REAL_TYPE:
6523     case BOOLEAN_TYPE:
6524       if (TYPE_PRECISION (a->type) != TYPE_PRECISION (b->type))
6525 	return false;
6526       return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6527 	       || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6528 				      TYPE_MAX_VALUE (b->type)))
6529 	      && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6530 		  || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6531 					 TYPE_MIN_VALUE (b->type))));
6532 
6533     case FIXED_POINT_TYPE:
6534       return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6535 
6536     case OFFSET_TYPE:
6537       return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6538 
6539     case METHOD_TYPE:
6540       if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6541 	  && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6542 	      || (TYPE_ARG_TYPES (a->type)
6543 		  && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6544 		  && TYPE_ARG_TYPES (b->type)
6545 		  && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6546 		  && type_list_equal (TYPE_ARG_TYPES (a->type),
6547 				      TYPE_ARG_TYPES (b->type)))))
6548         break;
6549       return 0;
6550     case ARRAY_TYPE:
6551       /* Don't compare TYPE_TYPELESS_STORAGE flag on aggregates,
6552 	 where the flag should be inherited from the element type
6553 	 and can change after ARRAY_TYPEs are created; on non-aggregates
6554 	 compare it and hash it, scalars will never have that flag set
6555 	 and we need to differentiate between arrays created by different
6556 	 front-ends or middle-end created arrays.  */
6557       return (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
6558 	      && (AGGREGATE_TYPE_P (TREE_TYPE (a->type))
6559 		  || (TYPE_TYPELESS_STORAGE (a->type)
6560 		      == TYPE_TYPELESS_STORAGE (b->type))));
6561 
6562     case RECORD_TYPE:
6563     case UNION_TYPE:
6564     case QUAL_UNION_TYPE:
6565       return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
6566 	      || (TYPE_FIELDS (a->type)
6567 		  && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
6568 		  && TYPE_FIELDS (b->type)
6569 		  && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
6570 		  && type_list_equal (TYPE_FIELDS (a->type),
6571 				      TYPE_FIELDS (b->type))));
6572 
6573     case FUNCTION_TYPE:
6574       if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6575 	  || (TYPE_ARG_TYPES (a->type)
6576 	      && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6577 	      && TYPE_ARG_TYPES (b->type)
6578 	      && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6579 	      && type_list_equal (TYPE_ARG_TYPES (a->type),
6580 				  TYPE_ARG_TYPES (b->type))))
6581 	break;
6582       return 0;
6583 
6584     default:
6585       return 0;
6586     }
6587 
6588   if (lang_hooks.types.type_hash_eq != NULL)
6589     return lang_hooks.types.type_hash_eq (a->type, b->type);
6590 
6591   return 1;
6592 }
6593 
6594 /* Given TYPE, and HASHCODE its hash code, return the canonical
6595    object for an identical type if one already exists.
6596    Otherwise, return TYPE, and record it as the canonical object.
6597 
6598    To use this function, first create a type of the sort you want.
6599    Then compute its hash code from the fields of the type that
6600    make it different from other similar types.
6601    Then call this function and use the value.  */
6602 
6603 tree
6604 type_hash_canon (unsigned int hashcode, tree type)
6605 {
6606   type_hash in;
6607   type_hash **loc;
6608 
6609   /* The hash table only contains main variants, so ensure that's what we're
6610      being passed.  */
6611   gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6612 
6613   /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6614      must call that routine before comparing TYPE_ALIGNs.  */
6615   layout_type (type);
6616 
6617   in.hash = hashcode;
6618   in.type = type;
6619 
6620   loc = type_hash_table->find_slot_with_hash (&in, hashcode, INSERT);
6621   if (*loc)
6622     {
6623       tree t1 = ((type_hash *) *loc)->type;
6624       gcc_assert (TYPE_MAIN_VARIANT (t1) == t1
6625 		  && t1 != type);
6626       if (TYPE_UID (type) + 1 == next_type_uid)
6627 	--next_type_uid;
6628       /* Free also min/max values and the cache for integer
6629 	 types.  This can't be done in free_node, as LTO frees
6630 	 those on its own.  */
6631       if (TREE_CODE (type) == INTEGER_TYPE)
6632 	{
6633 	  if (TYPE_MIN_VALUE (type)
6634 	      && TREE_TYPE (TYPE_MIN_VALUE (type)) == type)
6635 	    {
6636 	      /* Zero is always in TYPE_CACHED_VALUES.  */
6637 	      if (! TYPE_UNSIGNED (type))
6638 		int_cst_hash_table->remove_elt (TYPE_MIN_VALUE (type));
6639 	      ggc_free (TYPE_MIN_VALUE (type));
6640 	    }
6641 	  if (TYPE_MAX_VALUE (type)
6642 	      && TREE_TYPE (TYPE_MAX_VALUE (type)) == type)
6643 	    {
6644 	      int_cst_hash_table->remove_elt (TYPE_MAX_VALUE (type));
6645 	      ggc_free (TYPE_MAX_VALUE (type));
6646 	    }
6647 	  if (TYPE_CACHED_VALUES_P (type))
6648 	    ggc_free (TYPE_CACHED_VALUES (type));
6649 	}
6650       free_node (type);
6651       return t1;
6652     }
6653   else
6654     {
6655       struct type_hash *h;
6656 
6657       h = ggc_alloc<type_hash> ();
6658       h->hash = hashcode;
6659       h->type = type;
6660       *loc = h;
6661 
6662       return type;
6663     }
6664 }
6665 
6666 static void
6667 print_type_hash_statistics (void)
6668 {
6669   fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6670 	   (long) type_hash_table->size (),
6671 	   (long) type_hash_table->elements (),
6672 	   type_hash_table->collisions ());
6673 }
6674 
6675 /* Given two lists of types
6676    (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6677    return 1 if the lists contain the same types in the same order.
6678    Also, the TREE_PURPOSEs must match.  */
6679 
6680 int
6681 type_list_equal (const_tree l1, const_tree l2)
6682 {
6683   const_tree t1, t2;
6684 
6685   for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6686     if (TREE_VALUE (t1) != TREE_VALUE (t2)
6687 	|| (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6688 	    && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6689 		  && (TREE_TYPE (TREE_PURPOSE (t1))
6690 		      == TREE_TYPE (TREE_PURPOSE (t2))))))
6691       return 0;
6692 
6693   return t1 == t2;
6694 }
6695 
6696 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6697    given by TYPE.  If the argument list accepts variable arguments,
6698    then this function counts only the ordinary arguments.  */
6699 
6700 int
6701 type_num_arguments (const_tree type)
6702 {
6703   int i = 0;
6704   tree t;
6705 
6706   for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6707     /* If the function does not take a variable number of arguments,
6708        the last element in the list will have type `void'.  */
6709     if (VOID_TYPE_P (TREE_VALUE (t)))
6710       break;
6711     else
6712       ++i;
6713 
6714   return i;
6715 }
6716 
6717 /* Nonzero if integer constants T1 and T2
6718    represent the same constant value.  */
6719 
6720 int
6721 tree_int_cst_equal (const_tree t1, const_tree t2)
6722 {
6723   if (t1 == t2)
6724     return 1;
6725 
6726   if (t1 == 0 || t2 == 0)
6727     return 0;
6728 
6729   if (TREE_CODE (t1) == INTEGER_CST
6730       && TREE_CODE (t2) == INTEGER_CST
6731       && wi::to_widest (t1) == wi::to_widest (t2))
6732     return 1;
6733 
6734   return 0;
6735 }
6736 
6737 /* Return true if T is an INTEGER_CST whose numerical value (extended
6738    according to TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT.  */
6739 
6740 bool
6741 tree_fits_shwi_p (const_tree t)
6742 {
6743   return (t != NULL_TREE
6744 	  && TREE_CODE (t) == INTEGER_CST
6745 	  && wi::fits_shwi_p (wi::to_widest (t)));
6746 }
6747 
6748 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
6749    value (extended according to TYPE_UNSIGNED) fits in a poly_int64.  */
6750 
6751 bool
6752 tree_fits_poly_int64_p (const_tree t)
6753 {
6754   if (t == NULL_TREE)
6755     return false;
6756   if (POLY_INT_CST_P (t))
6757     {
6758       for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
6759 	if (!wi::fits_shwi_p (wi::to_wide (POLY_INT_CST_COEFF (t, i))))
6760 	  return false;
6761       return true;
6762     }
6763   return (TREE_CODE (t) == INTEGER_CST
6764 	  && wi::fits_shwi_p (wi::to_widest (t)));
6765 }
6766 
6767 /* Return true if T is an INTEGER_CST whose numerical value (extended
6768    according to TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT.  */
6769 
6770 bool
6771 tree_fits_uhwi_p (const_tree t)
6772 {
6773   return (t != NULL_TREE
6774 	  && TREE_CODE (t) == INTEGER_CST
6775 	  && wi::fits_uhwi_p (wi::to_widest (t)));
6776 }
6777 
6778 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
6779    value (extended according to TYPE_UNSIGNED) fits in a poly_uint64.  */
6780 
6781 bool
6782 tree_fits_poly_uint64_p (const_tree t)
6783 {
6784   if (t == NULL_TREE)
6785     return false;
6786   if (POLY_INT_CST_P (t))
6787     {
6788       for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
6789 	if (!wi::fits_uhwi_p (wi::to_widest (POLY_INT_CST_COEFF (t, i))))
6790 	  return false;
6791       return true;
6792     }
6793   return (TREE_CODE (t) == INTEGER_CST
6794 	  && wi::fits_uhwi_p (wi::to_widest (t)));
6795 }
6796 
6797 /* T is an INTEGER_CST whose numerical value (extended according to
6798    TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT.  Return that
6799    HOST_WIDE_INT.  */
6800 
6801 HOST_WIDE_INT
6802 tree_to_shwi (const_tree t)
6803 {
6804   gcc_assert (tree_fits_shwi_p (t));
6805   return TREE_INT_CST_LOW (t);
6806 }
6807 
6808 /* T is an INTEGER_CST whose numerical value (extended according to
6809    TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT.  Return that
6810    HOST_WIDE_INT.  */
6811 
6812 unsigned HOST_WIDE_INT
6813 tree_to_uhwi (const_tree t)
6814 {
6815   gcc_assert (tree_fits_uhwi_p (t));
6816   return TREE_INT_CST_LOW (t);
6817 }
6818 
6819 /* Return the most significant (sign) bit of T.  */
6820 
6821 int
6822 tree_int_cst_sign_bit (const_tree t)
6823 {
6824   unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
6825 
6826   return wi::extract_uhwi (wi::to_wide (t), bitno, 1);
6827 }
6828 
6829 /* Return an indication of the sign of the integer constant T.
6830    The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6831    Note that -1 will never be returned if T's type is unsigned.  */
6832 
6833 int
6834 tree_int_cst_sgn (const_tree t)
6835 {
6836   if (wi::to_wide (t) == 0)
6837     return 0;
6838   else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6839     return 1;
6840   else if (wi::neg_p (wi::to_wide (t)))
6841     return -1;
6842   else
6843     return 1;
6844 }
6845 
6846 /* Return the minimum number of bits needed to represent VALUE in a
6847    signed or unsigned type, UNSIGNEDP says which.  */
6848 
6849 unsigned int
6850 tree_int_cst_min_precision (tree value, signop sgn)
6851 {
6852   /* If the value is negative, compute its negative minus 1.  The latter
6853      adjustment is because the absolute value of the largest negative value
6854      is one larger than the largest positive value.  This is equivalent to
6855      a bit-wise negation, so use that operation instead.  */
6856 
6857   if (tree_int_cst_sgn (value) < 0)
6858     value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6859 
6860   /* Return the number of bits needed, taking into account the fact
6861      that we need one more bit for a signed than unsigned type.
6862      If value is 0 or -1, the minimum precision is 1 no matter
6863      whether unsignedp is true or false.  */
6864 
6865   if (integer_zerop (value))
6866     return 1;
6867   else
6868     return tree_floor_log2 (value) + 1 + (sgn == SIGNED ? 1 : 0) ;
6869 }
6870 
6871 /* Return truthvalue of whether T1 is the same tree structure as T2.
6872    Return 1 if they are the same.
6873    Return 0 if they are understandably different.
6874    Return -1 if either contains tree structure not understood by
6875    this function.  */
6876 
6877 int
6878 simple_cst_equal (const_tree t1, const_tree t2)
6879 {
6880   enum tree_code code1, code2;
6881   int cmp;
6882   int i;
6883 
6884   if (t1 == t2)
6885     return 1;
6886   if (t1 == 0 || t2 == 0)
6887     return 0;
6888 
6889   code1 = TREE_CODE (t1);
6890   code2 = TREE_CODE (t2);
6891 
6892   if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6893     {
6894       if (CONVERT_EXPR_CODE_P (code2)
6895 	  || code2 == NON_LVALUE_EXPR)
6896 	return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6897       else
6898 	return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6899     }
6900 
6901   else if (CONVERT_EXPR_CODE_P (code2)
6902 	   || code2 == NON_LVALUE_EXPR)
6903     return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6904 
6905   if (code1 != code2)
6906     return 0;
6907 
6908   switch (code1)
6909     {
6910     case INTEGER_CST:
6911       return wi::to_widest (t1) == wi::to_widest (t2);
6912 
6913     case REAL_CST:
6914       return real_identical (&TREE_REAL_CST (t1), &TREE_REAL_CST (t2));
6915 
6916     case FIXED_CST:
6917       return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6918 
6919     case STRING_CST:
6920       return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6921 	      && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6922 			 TREE_STRING_LENGTH (t1)));
6923 
6924     case CONSTRUCTOR:
6925       {
6926 	unsigned HOST_WIDE_INT idx;
6927 	vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
6928 	vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);
6929 
6930 	if (vec_safe_length (v1) != vec_safe_length (v2))
6931 	  return false;
6932 
6933         for (idx = 0; idx < vec_safe_length (v1); ++idx)
6934 	  /* ??? Should we handle also fields here? */
6935 	  if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
6936 	    return false;
6937 	return true;
6938       }
6939 
6940     case SAVE_EXPR:
6941       return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6942 
6943     case CALL_EXPR:
6944       cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
6945       if (cmp <= 0)
6946 	return cmp;
6947       if (call_expr_nargs (t1) != call_expr_nargs (t2))
6948 	return 0;
6949       {
6950 	const_tree arg1, arg2;
6951 	const_call_expr_arg_iterator iter1, iter2;
6952 	for (arg1 = first_const_call_expr_arg (t1, &iter1),
6953 	       arg2 = first_const_call_expr_arg (t2, &iter2);
6954 	     arg1 && arg2;
6955 	     arg1 = next_const_call_expr_arg (&iter1),
6956 	       arg2 = next_const_call_expr_arg (&iter2))
6957 	  {
6958 	    cmp = simple_cst_equal (arg1, arg2);
6959 	    if (cmp <= 0)
6960 	      return cmp;
6961 	  }
6962 	return arg1 == arg2;
6963       }
6964 
6965     case TARGET_EXPR:
6966       /* Special case: if either target is an unallocated VAR_DECL,
6967 	 it means that it's going to be unified with whatever the
6968 	 TARGET_EXPR is really supposed to initialize, so treat it
6969 	 as being equivalent to anything.  */
6970       if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
6971 	   && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
6972 	   && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
6973 	  || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
6974 	      && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
6975 	      && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
6976 	cmp = 1;
6977       else
6978 	cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6979 
6980       if (cmp <= 0)
6981 	return cmp;
6982 
6983       return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
6984 
6985     case WITH_CLEANUP_EXPR:
6986       cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6987       if (cmp <= 0)
6988 	return cmp;
6989 
6990       return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
6991 
6992     case COMPONENT_REF:
6993       if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
6994 	return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6995 
6996       return 0;
6997 
6998     case VAR_DECL:
6999     case PARM_DECL:
7000     case CONST_DECL:
7001     case FUNCTION_DECL:
7002       return 0;
7003 
7004     default:
7005       if (POLY_INT_CST_P (t1))
7006 	/* A false return means maybe_ne rather than known_ne.  */
7007 	return known_eq (poly_widest_int::from (poly_int_cst_value (t1),
7008 						TYPE_SIGN (TREE_TYPE (t1))),
7009 			 poly_widest_int::from (poly_int_cst_value (t2),
7010 						TYPE_SIGN (TREE_TYPE (t2))));
7011       break;
7012     }
7013 
7014   /* This general rule works for most tree codes.  All exceptions should be
7015      handled above.  If this is a language-specific tree code, we can't
7016      trust what might be in the operand, so say we don't know
7017      the situation.  */
7018   if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
7019     return -1;
7020 
7021   switch (TREE_CODE_CLASS (code1))
7022     {
7023     case tcc_unary:
7024     case tcc_binary:
7025     case tcc_comparison:
7026     case tcc_expression:
7027     case tcc_reference:
7028     case tcc_statement:
7029       cmp = 1;
7030       for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
7031 	{
7032 	  cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
7033 	  if (cmp <= 0)
7034 	    return cmp;
7035 	}
7036 
7037       return cmp;
7038 
7039     default:
7040       return -1;
7041     }
7042 }
7043 
7044 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
7045    Return -1, 0, or 1 if the value of T is less than, equal to, or greater
7046    than U, respectively.  */
7047 
7048 int
7049 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
7050 {
7051   if (tree_int_cst_sgn (t) < 0)
7052     return -1;
7053   else if (!tree_fits_uhwi_p (t))
7054     return 1;
7055   else if (TREE_INT_CST_LOW (t) == u)
7056     return 0;
7057   else if (TREE_INT_CST_LOW (t) < u)
7058     return -1;
7059   else
7060     return 1;
7061 }
7062 
7063 /* Return true if SIZE represents a constant size that is in bounds of
7064    what the middle-end and the backend accepts (covering not more than
7065    half of the address-space).  */
7066 
7067 bool
7068 valid_constant_size_p (const_tree size)
7069 {
7070   if (POLY_INT_CST_P (size))
7071     {
7072       if (TREE_OVERFLOW (size))
7073 	return false;
7074       for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
7075 	if (!valid_constant_size_p (POLY_INT_CST_COEFF (size, i)))
7076 	  return false;
7077       return true;
7078     }
7079   if (! tree_fits_uhwi_p (size)
7080       || TREE_OVERFLOW (size)
7081       || tree_int_cst_sign_bit (size) != 0)
7082     return false;
7083   return true;
7084 }
7085 
7086 /* Return the precision of the type, or for a complex or vector type the
7087    precision of the type of its elements.  */
7088 
7089 unsigned int
7090 element_precision (const_tree type)
7091 {
7092   if (!TYPE_P (type))
7093     type = TREE_TYPE (type);
7094   enum tree_code code = TREE_CODE (type);
7095   if (code == COMPLEX_TYPE || code == VECTOR_TYPE)
7096     type = TREE_TYPE (type);
7097 
7098   return TYPE_PRECISION (type);
7099 }
7100 
7101 /* Return true if CODE represents an associative tree code.  Otherwise
7102    return false.  */
7103 bool
7104 associative_tree_code (enum tree_code code)
7105 {
7106   switch (code)
7107     {
7108     case BIT_IOR_EXPR:
7109     case BIT_AND_EXPR:
7110     case BIT_XOR_EXPR:
7111     case PLUS_EXPR:
7112     case MULT_EXPR:
7113     case MIN_EXPR:
7114     case MAX_EXPR:
7115       return true;
7116 
7117     default:
7118       break;
7119     }
7120   return false;
7121 }
7122 
7123 /* Return true if CODE represents a commutative tree code.  Otherwise
7124    return false.  */
7125 bool
7126 commutative_tree_code (enum tree_code code)
7127 {
7128   switch (code)
7129     {
7130     case PLUS_EXPR:
7131     case MULT_EXPR:
7132     case MULT_HIGHPART_EXPR:
7133     case MIN_EXPR:
7134     case MAX_EXPR:
7135     case BIT_IOR_EXPR:
7136     case BIT_XOR_EXPR:
7137     case BIT_AND_EXPR:
7138     case NE_EXPR:
7139     case EQ_EXPR:
7140     case UNORDERED_EXPR:
7141     case ORDERED_EXPR:
7142     case UNEQ_EXPR:
7143     case LTGT_EXPR:
7144     case TRUTH_AND_EXPR:
7145     case TRUTH_XOR_EXPR:
7146     case TRUTH_OR_EXPR:
7147     case WIDEN_MULT_EXPR:
7148     case VEC_WIDEN_MULT_HI_EXPR:
7149     case VEC_WIDEN_MULT_LO_EXPR:
7150     case VEC_WIDEN_MULT_EVEN_EXPR:
7151     case VEC_WIDEN_MULT_ODD_EXPR:
7152       return true;
7153 
7154     default:
7155       break;
7156     }
7157   return false;
7158 }
7159 
7160 /* Return true if CODE represents a ternary tree code for which the
7161    first two operands are commutative.  Otherwise return false.  */
7162 bool
7163 commutative_ternary_tree_code (enum tree_code code)
7164 {
7165   switch (code)
7166     {
7167     case WIDEN_MULT_PLUS_EXPR:
7168     case WIDEN_MULT_MINUS_EXPR:
7169     case DOT_PROD_EXPR:
7170     case FMA_EXPR:
7171       return true;
7172 
7173     default:
7174       break;
7175     }
7176   return false;
7177 }
7178 
7179 /* Returns true if CODE can overflow.  */
7180 
7181 bool
7182 operation_can_overflow (enum tree_code code)
7183 {
7184   switch (code)
7185     {
7186     case PLUS_EXPR:
7187     case MINUS_EXPR:
7188     case MULT_EXPR:
7189     case LSHIFT_EXPR:
7190       /* Can overflow in various ways.  */
7191       return true;
7192     case TRUNC_DIV_EXPR:
7193     case EXACT_DIV_EXPR:
7194     case FLOOR_DIV_EXPR:
7195     case CEIL_DIV_EXPR:
7196       /* For INT_MIN / -1.  */
7197       return true;
7198     case NEGATE_EXPR:
7199     case ABS_EXPR:
7200       /* For -INT_MIN.  */
7201       return true;
7202     default:
7203       /* These operators cannot overflow.  */
7204       return false;
7205     }
7206 }
7207 
7208 /* Returns true if CODE operating on operands of type TYPE doesn't overflow, or
7209    ftrapv doesn't generate trapping insns for CODE.  */
7210 
7211 bool
7212 operation_no_trapping_overflow (tree type, enum tree_code code)
7213 {
7214   gcc_checking_assert (ANY_INTEGRAL_TYPE_P (type));
7215 
7216   /* We don't generate instructions that trap on overflow for complex or vector
7217      types.  */
7218   if (!INTEGRAL_TYPE_P (type))
7219     return true;
7220 
7221   if (!TYPE_OVERFLOW_TRAPS (type))
7222     return true;
7223 
7224   switch (code)
7225     {
7226     case PLUS_EXPR:
7227     case MINUS_EXPR:
7228     case MULT_EXPR:
7229     case NEGATE_EXPR:
7230     case ABS_EXPR:
7231       /* These operators can overflow, and -ftrapv generates trapping code for
7232 	 these.  */
7233       return false;
7234     case TRUNC_DIV_EXPR:
7235     case EXACT_DIV_EXPR:
7236     case FLOOR_DIV_EXPR:
7237     case CEIL_DIV_EXPR:
7238     case LSHIFT_EXPR:
7239       /* These operators can overflow, but -ftrapv does not generate trapping
7240 	 code for these.  */
7241       return true;
7242     default:
7243       /* These operators cannot overflow.  */
7244       return true;
7245     }
7246 }
7247 
7248 namespace inchash
7249 {
7250 
7251 /* Generate a hash value for an expression.  This can be used iteratively
7252    by passing a previous result as the HSTATE argument.
7253 
7254    This function is intended to produce the same hash for expressions which
7255    would compare equal using operand_equal_p.  */
7256 void
7257 add_expr (const_tree t, inchash::hash &hstate, unsigned int flags)
7258 {
7259   int i;
7260   enum tree_code code;
7261   enum tree_code_class tclass;
7262 
7263   if (t == NULL_TREE || t == error_mark_node)
7264     {
7265       hstate.merge_hash (0);
7266       return;
7267     }
7268 
7269   if (!(flags & OEP_ADDRESS_OF))
7270     STRIP_NOPS (t);
7271 
7272   code = TREE_CODE (t);
7273 
7274   switch (code)
7275     {
7276     /* Alas, constants aren't shared, so we can't rely on pointer
7277        identity.  */
7278     case VOID_CST:
7279       hstate.merge_hash (0);
7280       return;
7281     case INTEGER_CST:
7282       gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
7283       for (i = 0; i < TREE_INT_CST_EXT_NUNITS (t); i++)
7284 	hstate.add_hwi (TREE_INT_CST_ELT (t, i));
7285       return;
7286     case REAL_CST:
7287       {
7288 	unsigned int val2;
7289 	if (!HONOR_SIGNED_ZEROS (t) && real_zerop (t))
7290 	  val2 = rvc_zero;
7291 	else
7292 	  val2 = real_hash (TREE_REAL_CST_PTR (t));
7293 	hstate.merge_hash (val2);
7294 	return;
7295       }
7296     case FIXED_CST:
7297       {
7298 	unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
7299 	hstate.merge_hash (val2);
7300 	return;
7301       }
7302     case STRING_CST:
7303       hstate.add ((const void *) TREE_STRING_POINTER (t),
7304 		  TREE_STRING_LENGTH (t));
7305       return;
7306     case COMPLEX_CST:
7307       inchash::add_expr (TREE_REALPART (t), hstate, flags);
7308       inchash::add_expr (TREE_IMAGPART (t), hstate, flags);
7309       return;
7310     case VECTOR_CST:
7311       {
7312 	hstate.add_int (VECTOR_CST_NPATTERNS (t));
7313 	hstate.add_int (VECTOR_CST_NELTS_PER_PATTERN (t));
7314 	unsigned int count = vector_cst_encoded_nelts (t);
7315 	for (unsigned int i = 0; i < count; ++i)
7316 	  inchash::add_expr (VECTOR_CST_ENCODED_ELT (t, i), hstate, flags);
7317 	return;
7318       }
7319     case SSA_NAME:
7320       /* We can just compare by pointer.  */
7321       hstate.add_hwi (SSA_NAME_VERSION (t));
7322       return;
7323     case PLACEHOLDER_EXPR:
7324       /* The node itself doesn't matter.  */
7325       return;
7326     case BLOCK:
7327     case OMP_CLAUSE:
7328       /* Ignore.  */
7329       return;
7330     case TREE_LIST:
7331       /* A list of expressions, for a CALL_EXPR or as the elements of a
7332 	 VECTOR_CST.  */
7333       for (; t; t = TREE_CHAIN (t))
7334 	inchash::add_expr (TREE_VALUE (t), hstate, flags);
7335       return;
7336     case CONSTRUCTOR:
7337       {
7338 	unsigned HOST_WIDE_INT idx;
7339 	tree field, value;
7340 	flags &= ~OEP_ADDRESS_OF;
7341 	FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
7342 	  {
7343 	    inchash::add_expr (field, hstate, flags);
7344 	    inchash::add_expr (value, hstate, flags);
7345 	  }
7346 	return;
7347       }
7348     case STATEMENT_LIST:
7349       {
7350 	tree_stmt_iterator i;
7351 	for (i = tsi_start (CONST_CAST_TREE (t));
7352 	     !tsi_end_p (i); tsi_next (&i))
7353 	  inchash::add_expr (tsi_stmt (i), hstate, flags);
7354 	return;
7355       }
7356     case TREE_VEC:
7357       for (i = 0; i < TREE_VEC_LENGTH (t); ++i)
7358 	inchash::add_expr (TREE_VEC_ELT (t, i), hstate, flags);
7359       return;
7360     case IDENTIFIER_NODE:
7361       hstate.add_object (IDENTIFIER_HASH_VALUE (t));
7362       return;
7363     case FUNCTION_DECL:
7364       /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
7365 	 Otherwise nodes that compare equal according to operand_equal_p might
7366 	 get different hash codes.  However, don't do this for machine specific
7367 	 or front end builtins, since the function code is overloaded in those
7368 	 cases.  */
7369       if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
7370 	  && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
7371 	{
7372 	  t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
7373 	  code = TREE_CODE (t);
7374 	}
7375       /* FALL THROUGH */
7376     default:
7377       if (POLY_INT_CST_P (t))
7378 	{
7379 	  for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
7380 	    hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
7381 	  return;
7382 	}
7383       tclass = TREE_CODE_CLASS (code);
7384 
7385       if (tclass == tcc_declaration)
7386 	{
7387 	  /* DECL's have a unique ID */
7388 	  hstate.add_hwi (DECL_UID (t));
7389 	}
7390       else if (tclass == tcc_comparison && !commutative_tree_code (code))
7391 	{
7392 	  /* For comparisons that can be swapped, use the lower
7393 	     tree code.  */
7394 	  enum tree_code ccode = swap_tree_comparison (code);
7395 	  if (code < ccode)
7396 	    ccode = code;
7397 	  hstate.add_object (ccode);
7398 	  inchash::add_expr (TREE_OPERAND (t, ccode != code), hstate, flags);
7399 	  inchash::add_expr (TREE_OPERAND (t, ccode == code), hstate, flags);
7400 	}
7401       else if (CONVERT_EXPR_CODE_P (code))
7402 	{
7403 	  /* NOP_EXPR and CONVERT_EXPR are considered equal by
7404 	     operand_equal_p.  */
7405 	  enum tree_code ccode = NOP_EXPR;
7406 	  hstate.add_object (ccode);
7407 
7408 	  /* Don't hash the type, that can lead to having nodes which
7409 	     compare equal according to operand_equal_p, but which
7410 	     have different hash codes.  Make sure to include signedness
7411 	     in the hash computation.  */
7412 	  hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
7413 	  inchash::add_expr (TREE_OPERAND (t, 0), hstate, flags);
7414 	}
7415       /* For OEP_ADDRESS_OF, hash MEM_EXPR[&decl, 0] the same as decl.  */
7416       else if (code == MEM_REF
7417 	       && (flags & OEP_ADDRESS_OF) != 0
7418 	       && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
7419 	       && DECL_P (TREE_OPERAND (TREE_OPERAND (t, 0), 0))
7420 	       && integer_zerop (TREE_OPERAND (t, 1)))
7421 	inchash::add_expr (TREE_OPERAND (TREE_OPERAND (t, 0), 0),
7422 			   hstate, flags);
7423       /* Don't ICE on FE specific trees, or their arguments etc.
7424 	 during operand_equal_p hash verification.  */
7425       else if (!IS_EXPR_CODE_CLASS (tclass))
7426 	gcc_assert (flags & OEP_HASH_CHECK);
7427       else
7428 	{
7429 	  unsigned int sflags = flags;
7430 
7431 	  hstate.add_object (code);
7432 
7433 	  switch (code)
7434 	    {
7435 	    case ADDR_EXPR:
7436 	      gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
7437 	      flags |= OEP_ADDRESS_OF;
7438 	      sflags = flags;
7439 	      break;
7440 
7441 	    case INDIRECT_REF:
7442 	    case MEM_REF:
7443 	    case TARGET_MEM_REF:
7444 	      flags &= ~OEP_ADDRESS_OF;
7445 	      sflags = flags;
7446 	      break;
7447 
7448 	    case ARRAY_REF:
7449 	    case ARRAY_RANGE_REF:
7450 	    case COMPONENT_REF:
7451 	    case BIT_FIELD_REF:
7452 	      sflags &= ~OEP_ADDRESS_OF;
7453 	      break;
7454 
7455 	    case COND_EXPR:
7456 	      flags &= ~OEP_ADDRESS_OF;
7457 	      break;
7458 
7459 	    case FMA_EXPR:
7460 	    case WIDEN_MULT_PLUS_EXPR:
7461 	    case WIDEN_MULT_MINUS_EXPR:
7462 	      {
7463 		/* The multiplication operands are commutative.  */
7464 		inchash::hash one, two;
7465 		inchash::add_expr (TREE_OPERAND (t, 0), one, flags);
7466 		inchash::add_expr (TREE_OPERAND (t, 1), two, flags);
7467 		hstate.add_commutative (one, two);
7468 		inchash::add_expr (TREE_OPERAND (t, 2), two, flags);
7469 		return;
7470 	      }
7471 
7472 	    case CALL_EXPR:
7473 	      if (CALL_EXPR_FN (t) == NULL_TREE)
7474 		hstate.add_int (CALL_EXPR_IFN (t));
7475 	      break;
7476 
7477 	    case TARGET_EXPR:
7478 	      /* For TARGET_EXPR, just hash on the TARGET_EXPR_SLOT.
7479 		 Usually different TARGET_EXPRs just should use
7480 		 different temporaries in their slots.  */
7481 	      inchash::add_expr (TARGET_EXPR_SLOT (t), hstate, flags);
7482 	      return;
7483 
7484 	    default:
7485 	      break;
7486 	    }
7487 
7488 	  /* Don't hash the type, that can lead to having nodes which
7489 	     compare equal according to operand_equal_p, but which
7490 	     have different hash codes.  */
7491 	  if (code == NON_LVALUE_EXPR)
7492 	    {
7493 	      /* Make sure to include signness in the hash computation.  */
7494 	      hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
7495 	      inchash::add_expr (TREE_OPERAND (t, 0), hstate, flags);
7496 	    }
7497 
7498 	  else if (commutative_tree_code (code))
7499 	    {
7500 	      /* It's a commutative expression.  We want to hash it the same
7501 		 however it appears.  We do this by first hashing both operands
7502 		 and then rehashing based on the order of their independent
7503 		 hashes.  */
7504 	      inchash::hash one, two;
7505 	      inchash::add_expr (TREE_OPERAND (t, 0), one, flags);
7506 	      inchash::add_expr (TREE_OPERAND (t, 1), two, flags);
7507 	      hstate.add_commutative (one, two);
7508 	    }
7509 	  else
7510 	    for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
7511 	      inchash::add_expr (TREE_OPERAND (t, i), hstate,
7512 				 i == 0 ? flags : sflags);
7513 	}
7514       return;
7515     }
7516 }
7517 
7518 }
7519 
7520 /* Constructors for pointer, array and function types.
7521    (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7522    constructed by language-dependent code, not here.)  */
7523 
7524 /* Construct, lay out and return the type of pointers to TO_TYPE with
7525    mode MODE.  If CAN_ALIAS_ALL is TRUE, indicate this type can
7526    reference all of memory. If such a type has already been
7527    constructed, reuse it.  */
7528 
7529 tree
7530 build_pointer_type_for_mode (tree to_type, machine_mode mode,
7531 			     bool can_alias_all)
7532 {
7533   tree t;
7534   bool could_alias = can_alias_all;
7535 
7536   if (to_type == error_mark_node)
7537     return error_mark_node;
7538 
7539   /* If the pointed-to type has the may_alias attribute set, force
7540      a TYPE_REF_CAN_ALIAS_ALL pointer to be generated.  */
7541   if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7542     can_alias_all = true;
7543 
7544   /* In some cases, languages will have things that aren't a POINTER_TYPE
7545      (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7546      In that case, return that type without regard to the rest of our
7547      operands.
7548 
7549      ??? This is a kludge, but consistent with the way this function has
7550      always operated and there doesn't seem to be a good way to avoid this
7551      at the moment.  */
7552   if (TYPE_POINTER_TO (to_type) != 0
7553       && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
7554     return TYPE_POINTER_TO (to_type);
7555 
7556   /* First, if we already have a type for pointers to TO_TYPE and it's
7557      the proper mode, use it.  */
7558   for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
7559     if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7560       return t;
7561 
7562   t = make_node (POINTER_TYPE);
7563 
7564   TREE_TYPE (t) = to_type;
7565   SET_TYPE_MODE (t, mode);
7566   TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7567   TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
7568   TYPE_POINTER_TO (to_type) = t;
7569 
7570   /* During LTO we do not set TYPE_CANONICAL of pointers and references.  */
7571   if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
7572     SET_TYPE_STRUCTURAL_EQUALITY (t);
7573   else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
7574     TYPE_CANONICAL (t)
7575       = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7576 				     mode, false);
7577 
7578   /* Lay out the type.  This function has many callers that are concerned
7579      with expression-construction, and this simplifies them all.  */
7580   layout_type (t);
7581 
7582   return t;
7583 }
7584 
7585 /* By default build pointers in ptr_mode.  */
7586 
7587 tree
7588 build_pointer_type (tree to_type)
7589 {
7590   addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7591 					      : TYPE_ADDR_SPACE (to_type);
7592   machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7593   return build_pointer_type_for_mode (to_type, pointer_mode, false);
7594 }
7595 
7596 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE.  */
7597 
7598 tree
7599 build_reference_type_for_mode (tree to_type, machine_mode mode,
7600 			       bool can_alias_all)
7601 {
7602   tree t;
7603   bool could_alias = can_alias_all;
7604 
7605   if (to_type == error_mark_node)
7606     return error_mark_node;
7607 
7608   /* If the pointed-to type has the may_alias attribute set, force
7609      a TYPE_REF_CAN_ALIAS_ALL pointer to be generated.  */
7610   if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7611     can_alias_all = true;
7612 
7613   /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7614      (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7615      In that case, return that type without regard to the rest of our
7616      operands.
7617 
7618      ??? This is a kludge, but consistent with the way this function has
7619      always operated and there doesn't seem to be a good way to avoid this
7620      at the moment.  */
7621   if (TYPE_REFERENCE_TO (to_type) != 0
7622       && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7623     return TYPE_REFERENCE_TO (to_type);
7624 
7625   /* First, if we already have a type for pointers to TO_TYPE and it's
7626      the proper mode, use it.  */
7627   for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7628     if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7629       return t;
7630 
7631   t = make_node (REFERENCE_TYPE);
7632 
7633   TREE_TYPE (t) = to_type;
7634   SET_TYPE_MODE (t, mode);
7635   TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7636   TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7637   TYPE_REFERENCE_TO (to_type) = t;
7638 
7639   /* During LTO we do not set TYPE_CANONICAL of pointers and references.  */
7640   if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
7641     SET_TYPE_STRUCTURAL_EQUALITY (t);
7642   else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
7643     TYPE_CANONICAL (t)
7644       = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7645 				       mode, false);
7646 
7647   layout_type (t);
7648 
7649   return t;
7650 }
7651 
7652 
7653 /* Build the node for the type of references-to-TO_TYPE by default
7654    in ptr_mode.  */
7655 
7656 tree
7657 build_reference_type (tree to_type)
7658 {
7659   addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7660 					      : TYPE_ADDR_SPACE (to_type);
7661   machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7662   return build_reference_type_for_mode (to_type, pointer_mode, false);
7663 }
7664 
7665 #define MAX_INT_CACHED_PREC \
7666   (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7667 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7668 
7669 /* Builds a signed or unsigned integer type of precision PRECISION.
7670    Used for C bitfields whose precision does not match that of
7671    built-in target types.  */
7672 tree
7673 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7674 				int unsignedp)
7675 {
7676   tree itype, ret;
7677 
7678   if (unsignedp)
7679     unsignedp = MAX_INT_CACHED_PREC + 1;
7680 
7681   if (precision <= MAX_INT_CACHED_PREC)
7682     {
7683       itype = nonstandard_integer_type_cache[precision + unsignedp];
7684       if (itype)
7685 	return itype;
7686     }
7687 
7688   itype = make_node (INTEGER_TYPE);
7689   TYPE_PRECISION (itype) = precision;
7690 
7691   if (unsignedp)
7692     fixup_unsigned_type (itype);
7693   else
7694     fixup_signed_type (itype);
7695 
7696   ret = itype;
7697 
7698   inchash::hash hstate;
7699   inchash::add_expr (TYPE_MAX_VALUE (itype), hstate);
7700   ret = type_hash_canon (hstate.end (), itype);
7701   if (precision <= MAX_INT_CACHED_PREC)
7702     nonstandard_integer_type_cache[precision + unsignedp] = ret;
7703 
7704   return ret;
7705 }
7706 
7707 #define MAX_BOOL_CACHED_PREC \
7708   (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7709 static GTY(()) tree nonstandard_boolean_type_cache[MAX_BOOL_CACHED_PREC + 1];
7710 
7711 /* Builds a boolean type of precision PRECISION.
7712    Used for boolean vectors to choose proper vector element size.  */
7713 tree
7714 build_nonstandard_boolean_type (unsigned HOST_WIDE_INT precision)
7715 {
7716   tree type;
7717 
7718   if (precision <= MAX_BOOL_CACHED_PREC)
7719     {
7720       type = nonstandard_boolean_type_cache[precision];
7721       if (type)
7722 	return type;
7723     }
7724 
7725   type = make_node (BOOLEAN_TYPE);
7726   TYPE_PRECISION (type) = precision;
7727   fixup_signed_type (type);
7728 
7729   if (precision <= MAX_INT_CACHED_PREC)
7730     nonstandard_boolean_type_cache[precision] = type;
7731 
7732   return type;
7733 }
7734 
7735 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7736    or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL.  If SHARED
7737    is true, reuse such a type that has already been constructed.  */
7738 
7739 static tree
7740 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7741 {
7742   tree itype = make_node (INTEGER_TYPE);
7743 
7744   TREE_TYPE (itype) = type;
7745 
7746   TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7747   TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7748 
7749   TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7750   SET_TYPE_MODE (itype, TYPE_MODE (type));
7751   TYPE_SIZE (itype) = TYPE_SIZE (type);
7752   TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7753   SET_TYPE_ALIGN (itype, TYPE_ALIGN (type));
7754   TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7755   SET_TYPE_WARN_IF_NOT_ALIGN (itype, TYPE_WARN_IF_NOT_ALIGN (type));
7756 
7757   if (!shared)
7758     return itype;
7759 
7760   if ((TYPE_MIN_VALUE (itype)
7761        && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7762       || (TYPE_MAX_VALUE (itype)
7763 	  && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7764     {
7765       /* Since we cannot reliably merge this type, we need to compare it using
7766 	 structural equality checks.  */
7767       SET_TYPE_STRUCTURAL_EQUALITY (itype);
7768       return itype;
7769     }
7770 
7771   hashval_t hash = type_hash_canon_hash (itype);
7772   itype = type_hash_canon (hash, itype);
7773 
7774   return itype;
7775 }
7776 
7777 /* Wrapper around build_range_type_1 with SHARED set to true.  */
7778 
7779 tree
7780 build_range_type (tree type, tree lowval, tree highval)
7781 {
7782   return build_range_type_1 (type, lowval, highval, true);
7783 }
7784 
7785 /* Wrapper around build_range_type_1 with SHARED set to false.  */
7786 
7787 tree
7788 build_nonshared_range_type (tree type, tree lowval, tree highval)
7789 {
7790   return build_range_type_1 (type, lowval, highval, false);
7791 }
7792 
7793 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7794    MAXVAL should be the maximum value in the domain
7795    (one less than the length of the array).
7796 
7797    The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7798    We don't enforce this limit, that is up to caller (e.g. language front end).
7799    The limit exists because the result is a signed type and we don't handle
7800    sizes that use more than one HOST_WIDE_INT.  */
7801 
7802 tree
7803 build_index_type (tree maxval)
7804 {
7805   return build_range_type (sizetype, size_zero_node, maxval);
7806 }
7807 
7808 /* Return true if the debug information for TYPE, a subtype, should be emitted
7809    as a subrange type.  If so, set LOWVAL to the low bound and HIGHVAL to the
7810    high bound, respectively.  Sometimes doing so unnecessarily obfuscates the
7811    debug info and doesn't reflect the source code.  */
7812 
7813 bool
7814 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7815 {
7816   tree base_type = TREE_TYPE (type), low, high;
7817 
7818   /* Subrange types have a base type which is an integral type.  */
7819   if (!INTEGRAL_TYPE_P (base_type))
7820     return false;
7821 
7822   /* Get the real bounds of the subtype.  */
7823   if (lang_hooks.types.get_subrange_bounds)
7824     lang_hooks.types.get_subrange_bounds (type, &low, &high);
7825   else
7826     {
7827       low = TYPE_MIN_VALUE (type);
7828       high = TYPE_MAX_VALUE (type);
7829     }
7830 
7831   /* If the type and its base type have the same representation and the same
7832      name, then the type is not a subrange but a copy of the base type.  */
7833   if ((TREE_CODE (base_type) == INTEGER_TYPE
7834        || TREE_CODE (base_type) == BOOLEAN_TYPE)
7835       && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7836       && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7837       && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type))
7838       && TYPE_IDENTIFIER (type) == TYPE_IDENTIFIER (base_type))
7839     return false;
7840 
7841   if (lowval)
7842     *lowval = low;
7843   if (highval)
7844     *highval = high;
7845   return true;
7846 }
7847 
7848 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7849    and number of elements specified by the range of values of INDEX_TYPE.
7850    If TYPELESS_STORAGE is true, TYPE_TYPELESS_STORAGE flag is set on the type.
7851    If SHARED is true, reuse such a type that has already been constructed.  */
7852 
7853 static tree
7854 build_array_type_1 (tree elt_type, tree index_type, bool typeless_storage,
7855 		    bool shared)
7856 {
7857   tree t;
7858 
7859   if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7860     {
7861       error ("arrays of functions are not meaningful");
7862       elt_type = integer_type_node;
7863     }
7864 
7865   t = make_node (ARRAY_TYPE);
7866   TREE_TYPE (t) = elt_type;
7867   TYPE_DOMAIN (t) = index_type;
7868   TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7869   TYPE_TYPELESS_STORAGE (t) = typeless_storage;
7870   layout_type (t);
7871 
7872   /* If the element type is incomplete at this point we get marked for
7873      structural equality.  Do not record these types in the canonical
7874      type hashtable.  */
7875   if (TYPE_STRUCTURAL_EQUALITY_P (t))
7876     return t;
7877 
7878   if (shared)
7879     {
7880       hashval_t hash = type_hash_canon_hash (t);
7881       t = type_hash_canon (hash, t);
7882     }
7883 
7884   if (TYPE_CANONICAL (t) == t)
7885     {
7886       if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7887 	  || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type))
7888 	  || in_lto_p)
7889 	SET_TYPE_STRUCTURAL_EQUALITY (t);
7890       else if (TYPE_CANONICAL (elt_type) != elt_type
7891 	       || (index_type && TYPE_CANONICAL (index_type) != index_type))
7892 	TYPE_CANONICAL (t)
7893 	  = build_array_type_1 (TYPE_CANONICAL (elt_type),
7894 				index_type
7895 				? TYPE_CANONICAL (index_type) : NULL_TREE,
7896 				typeless_storage, shared);
7897     }
7898 
7899   return t;
7900 }
7901 
7902 /* Wrapper around build_array_type_1 with SHARED set to true.  */
7903 
7904 tree
7905 build_array_type (tree elt_type, tree index_type, bool typeless_storage)
7906 {
7907   return build_array_type_1 (elt_type, index_type, typeless_storage, true);
7908 }
7909 
7910 /* Wrapper around build_array_type_1 with SHARED set to false.  */
7911 
7912 tree
7913 build_nonshared_array_type (tree elt_type, tree index_type)
7914 {
7915   return build_array_type_1 (elt_type, index_type, false, false);
7916 }
7917 
7918 /* Return a representation of ELT_TYPE[NELTS], using indices of type
7919    sizetype.  */
7920 
7921 tree
7922 build_array_type_nelts (tree elt_type, poly_uint64 nelts)
7923 {
7924   return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
7925 }
7926 
7927 /* Recursively examines the array elements of TYPE, until a non-array
7928    element type is found.  */
7929 
7930 tree
7931 strip_array_types (tree type)
7932 {
7933   while (TREE_CODE (type) == ARRAY_TYPE)
7934     type = TREE_TYPE (type);
7935 
7936   return type;
7937 }
7938 
7939 /* Computes the canonical argument types from the argument type list
7940    ARGTYPES.
7941 
7942    Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7943    on entry to this function, or if any of the ARGTYPES are
7944    structural.
7945 
7946    Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7947    true on entry to this function, or if any of the ARGTYPES are
7948    non-canonical.
7949 
7950    Returns a canonical argument list, which may be ARGTYPES when the
7951    canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7952    true) or would not differ from ARGTYPES.  */
7953 
7954 static tree
7955 maybe_canonicalize_argtypes (tree argtypes,
7956 			     bool *any_structural_p,
7957 			     bool *any_noncanonical_p)
7958 {
7959   tree arg;
7960   bool any_noncanonical_argtypes_p = false;
7961 
7962   for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7963     {
7964       if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7965 	/* Fail gracefully by stating that the type is structural.  */
7966 	*any_structural_p = true;
7967       else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7968 	*any_structural_p = true;
7969       else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7970 	       || TREE_PURPOSE (arg))
7971 	/* If the argument has a default argument, we consider it
7972 	   non-canonical even though the type itself is canonical.
7973 	   That way, different variants of function and method types
7974 	   with default arguments will all point to the variant with
7975 	   no defaults as their canonical type.  */
7976         any_noncanonical_argtypes_p = true;
7977     }
7978 
7979   if (*any_structural_p)
7980     return argtypes;
7981 
7982   if (any_noncanonical_argtypes_p)
7983     {
7984       /* Build the canonical list of argument types.  */
7985       tree canon_argtypes = NULL_TREE;
7986       bool is_void = false;
7987 
7988       for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7989         {
7990           if (arg == void_list_node)
7991             is_void = true;
7992           else
7993             canon_argtypes = tree_cons (NULL_TREE,
7994                                         TYPE_CANONICAL (TREE_VALUE (arg)),
7995                                         canon_argtypes);
7996         }
7997 
7998       canon_argtypes = nreverse (canon_argtypes);
7999       if (is_void)
8000         canon_argtypes = chainon (canon_argtypes, void_list_node);
8001 
8002       /* There is a non-canonical type.  */
8003       *any_noncanonical_p = true;
8004       return canon_argtypes;
8005     }
8006 
8007   /* The canonical argument types are the same as ARGTYPES.  */
8008   return argtypes;
8009 }
8010 
8011 /* Construct, lay out and return
8012    the type of functions returning type VALUE_TYPE
8013    given arguments of types ARG_TYPES.
8014    ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
8015    are data type nodes for the arguments of the function.
8016    If such a type has already been constructed, reuse it.  */
8017 
8018 tree
8019 build_function_type (tree value_type, tree arg_types)
8020 {
8021   tree t;
8022   inchash::hash hstate;
8023   bool any_structural_p, any_noncanonical_p;
8024   tree canon_argtypes;
8025 
8026   gcc_assert (arg_types != error_mark_node);
8027 
8028   if (TREE_CODE (value_type) == FUNCTION_TYPE)
8029     {
8030       error ("function return type cannot be function");
8031       value_type = integer_type_node;
8032     }
8033 
8034   /* Make a node of the sort we want.  */
8035   t = make_node (FUNCTION_TYPE);
8036   TREE_TYPE (t) = value_type;
8037   TYPE_ARG_TYPES (t) = arg_types;
8038 
8039   /* If we already have such a type, use the old one.  */
8040   hashval_t hash = type_hash_canon_hash (t);
8041   t = type_hash_canon (hash, t);
8042 
8043   /* Set up the canonical type. */
8044   any_structural_p   = TYPE_STRUCTURAL_EQUALITY_P (value_type);
8045   any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
8046   canon_argtypes = maybe_canonicalize_argtypes (arg_types,
8047 						&any_structural_p,
8048 						&any_noncanonical_p);
8049   if (any_structural_p)
8050     SET_TYPE_STRUCTURAL_EQUALITY (t);
8051   else if (any_noncanonical_p)
8052     TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
8053 					      canon_argtypes);
8054 
8055   if (!COMPLETE_TYPE_P (t))
8056     layout_type (t);
8057   return t;
8058 }
8059 
8060 /* Build a function type.  The RETURN_TYPE is the type returned by the
8061    function.  If VAARGS is set, no void_type_node is appended to the
8062    list.  ARGP must be always be terminated be a NULL_TREE.  */
8063 
8064 static tree
8065 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
8066 {
8067   tree t, args, last;
8068 
8069   t = va_arg (argp, tree);
8070   for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
8071     args = tree_cons (NULL_TREE, t, args);
8072 
8073   if (vaargs)
8074     {
8075       last = args;
8076       if (args != NULL_TREE)
8077 	args = nreverse (args);
8078       gcc_assert (last != void_list_node);
8079     }
8080   else if (args == NULL_TREE)
8081     args = void_list_node;
8082   else
8083     {
8084       last = args;
8085       args = nreverse (args);
8086       TREE_CHAIN (last) = void_list_node;
8087     }
8088   args = build_function_type (return_type, args);
8089 
8090   return args;
8091 }
8092 
8093 /* Build a function type.  The RETURN_TYPE is the type returned by the
8094    function.  If additional arguments are provided, they are
8095    additional argument types.  The list of argument types must always
8096    be terminated by NULL_TREE.  */
8097 
8098 tree
8099 build_function_type_list (tree return_type, ...)
8100 {
8101   tree args;
8102   va_list p;
8103 
8104   va_start (p, return_type);
8105   args = build_function_type_list_1 (false, return_type, p);
8106   va_end (p);
8107   return args;
8108 }
8109 
8110 /* Build a variable argument function type.  The RETURN_TYPE is the
8111    type returned by the function.  If additional arguments are provided,
8112    they are additional argument types.  The list of argument types must
8113    always be terminated by NULL_TREE.  */
8114 
8115 tree
8116 build_varargs_function_type_list (tree return_type, ...)
8117 {
8118   tree args;
8119   va_list p;
8120 
8121   va_start (p, return_type);
8122   args = build_function_type_list_1 (true, return_type, p);
8123   va_end (p);
8124 
8125   return args;
8126 }
8127 
8128 /* Build a function type.  RETURN_TYPE is the type returned by the
8129    function; VAARGS indicates whether the function takes varargs.  The
8130    function takes N named arguments, the types of which are provided in
8131    ARG_TYPES.  */
8132 
8133 static tree
8134 build_function_type_array_1 (bool vaargs, tree return_type, int n,
8135 			     tree *arg_types)
8136 {
8137   int i;
8138   tree t = vaargs ? NULL_TREE : void_list_node;
8139 
8140   for (i = n - 1; i >= 0; i--)
8141     t = tree_cons (NULL_TREE, arg_types[i], t);
8142 
8143   return build_function_type (return_type, t);
8144 }
8145 
8146 /* Build a function type.  RETURN_TYPE is the type returned by the
8147    function.  The function takes N named arguments, the types of which
8148    are provided in ARG_TYPES.  */
8149 
8150 tree
8151 build_function_type_array (tree return_type, int n, tree *arg_types)
8152 {
8153   return build_function_type_array_1 (false, return_type, n, arg_types);
8154 }
8155 
8156 /* Build a variable argument function type.  RETURN_TYPE is the type
8157    returned by the function.  The function takes N named arguments, the
8158    types of which are provided in ARG_TYPES.  */
8159 
8160 tree
8161 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
8162 {
8163   return build_function_type_array_1 (true, return_type, n, arg_types);
8164 }
8165 
8166 /* Build a METHOD_TYPE for a member of BASETYPE.  The RETTYPE (a TYPE)
8167    and ARGTYPES (a TREE_LIST) are the return type and arguments types
8168    for the method.  An implicit additional parameter (of type
8169    pointer-to-BASETYPE) is added to the ARGTYPES.  */
8170 
8171 tree
8172 build_method_type_directly (tree basetype,
8173 			    tree rettype,
8174 			    tree argtypes)
8175 {
8176   tree t;
8177   tree ptype;
8178   bool any_structural_p, any_noncanonical_p;
8179   tree canon_argtypes;
8180 
8181   /* Make a node of the sort we want.  */
8182   t = make_node (METHOD_TYPE);
8183 
8184   TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8185   TREE_TYPE (t) = rettype;
8186   ptype = build_pointer_type (basetype);
8187 
8188   /* The actual arglist for this function includes a "hidden" argument
8189      which is "this".  Put it into the list of argument types.  */
8190   argtypes = tree_cons (NULL_TREE, ptype, argtypes);
8191   TYPE_ARG_TYPES (t) = argtypes;
8192 
8193   /* If we already have such a type, use the old one.  */
8194   hashval_t hash = type_hash_canon_hash (t);
8195   t = type_hash_canon (hash, t);
8196 
8197   /* Set up the canonical type. */
8198   any_structural_p
8199     = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8200        || TYPE_STRUCTURAL_EQUALITY_P (rettype));
8201   any_noncanonical_p
8202     = (TYPE_CANONICAL (basetype) != basetype
8203        || TYPE_CANONICAL (rettype) != rettype);
8204   canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
8205 						&any_structural_p,
8206 						&any_noncanonical_p);
8207   if (any_structural_p)
8208     SET_TYPE_STRUCTURAL_EQUALITY (t);
8209   else if (any_noncanonical_p)
8210     TYPE_CANONICAL (t)
8211       = build_method_type_directly (TYPE_CANONICAL (basetype),
8212 				    TYPE_CANONICAL (rettype),
8213 				    canon_argtypes);
8214   if (!COMPLETE_TYPE_P (t))
8215     layout_type (t);
8216 
8217   return t;
8218 }
8219 
8220 /* Construct, lay out and return the type of methods belonging to class
8221    BASETYPE and whose arguments and values are described by TYPE.
8222    If that type exists already, reuse it.
8223    TYPE must be a FUNCTION_TYPE node.  */
8224 
8225 tree
8226 build_method_type (tree basetype, tree type)
8227 {
8228   gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
8229 
8230   return build_method_type_directly (basetype,
8231 				     TREE_TYPE (type),
8232 				     TYPE_ARG_TYPES (type));
8233 }
8234 
8235 /* Construct, lay out and return the type of offsets to a value
8236    of type TYPE, within an object of type BASETYPE.
8237    If a suitable offset type exists already, reuse it.  */
8238 
8239 tree
8240 build_offset_type (tree basetype, tree type)
8241 {
8242   tree t;
8243 
8244   /* Make a node of the sort we want.  */
8245   t = make_node (OFFSET_TYPE);
8246 
8247   TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8248   TREE_TYPE (t) = type;
8249 
8250   /* If we already have such a type, use the old one.  */
8251   hashval_t hash = type_hash_canon_hash (t);
8252   t = type_hash_canon (hash, t);
8253 
8254   if (!COMPLETE_TYPE_P (t))
8255     layout_type (t);
8256 
8257   if (TYPE_CANONICAL (t) == t)
8258     {
8259       if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8260 	  || TYPE_STRUCTURAL_EQUALITY_P (type))
8261 	SET_TYPE_STRUCTURAL_EQUALITY (t);
8262       else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
8263 	       || TYPE_CANONICAL (type) != type)
8264 	TYPE_CANONICAL (t)
8265 	  = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
8266 			       TYPE_CANONICAL (type));
8267     }
8268 
8269   return t;
8270 }
8271 
8272 /* Create a complex type whose components are COMPONENT_TYPE.
8273 
8274    If NAMED is true, the type is given a TYPE_NAME.  We do not always
8275    do so because this creates a DECL node and thus make the DECL_UIDs
8276    dependent on the type canonicalization hashtable, which is GC-ed,
8277    so the DECL_UIDs would not be stable wrt garbage collection.  */
8278 
8279 tree
8280 build_complex_type (tree component_type, bool named)
8281 {
8282   gcc_assert (INTEGRAL_TYPE_P (component_type)
8283 	      || SCALAR_FLOAT_TYPE_P (component_type)
8284 	      || FIXED_POINT_TYPE_P (component_type));
8285 
8286   /* Make a node of the sort we want.  */
8287   tree probe = make_node (COMPLEX_TYPE);
8288 
8289   TREE_TYPE (probe) = TYPE_MAIN_VARIANT (component_type);
8290 
8291   /* If we already have such a type, use the old one.  */
8292   hashval_t hash = type_hash_canon_hash (probe);
8293   tree t = type_hash_canon (hash, probe);
8294 
8295   if (t == probe)
8296     {
8297       /* We created a new type.  The hash insertion will have laid
8298 	 out the type.  We need to check the canonicalization and
8299 	 maybe set the name.  */
8300       gcc_checking_assert (COMPLETE_TYPE_P (t)
8301 			   && !TYPE_NAME (t)
8302 			   && TYPE_CANONICAL (t) == t);
8303 
8304       if (TYPE_STRUCTURAL_EQUALITY_P (TREE_TYPE (t)))
8305 	SET_TYPE_STRUCTURAL_EQUALITY (t);
8306       else if (TYPE_CANONICAL (TREE_TYPE (t)) != TREE_TYPE (t))
8307 	TYPE_CANONICAL (t)
8308 	  = build_complex_type (TYPE_CANONICAL (TREE_TYPE (t)), named);
8309 
8310       /* We need to create a name, since complex is a fundamental type.  */
8311       if (named)
8312 	{
8313 	  const char *name = NULL;
8314 
8315 	  if (TREE_TYPE (t) == char_type_node)
8316 	    name = "complex char";
8317 	  else if (TREE_TYPE (t) == signed_char_type_node)
8318 	    name = "complex signed char";
8319 	  else if (TREE_TYPE (t) == unsigned_char_type_node)
8320 	    name = "complex unsigned char";
8321 	  else if (TREE_TYPE (t) == short_integer_type_node)
8322 	    name = "complex short int";
8323 	  else if (TREE_TYPE (t) == short_unsigned_type_node)
8324 	    name = "complex short unsigned int";
8325 	  else if (TREE_TYPE (t) == integer_type_node)
8326 	    name = "complex int";
8327 	  else if (TREE_TYPE (t) == unsigned_type_node)
8328 	    name = "complex unsigned int";
8329 	  else if (TREE_TYPE (t) == long_integer_type_node)
8330 	    name = "complex long int";
8331 	  else if (TREE_TYPE (t) == long_unsigned_type_node)
8332 	    name = "complex long unsigned int";
8333 	  else if (TREE_TYPE (t) == long_long_integer_type_node)
8334 	    name = "complex long long int";
8335 	  else if (TREE_TYPE (t) == long_long_unsigned_type_node)
8336 	    name = "complex long long unsigned int";
8337 
8338 	  if (name != NULL)
8339 	    TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
8340 					get_identifier (name), t);
8341 	}
8342     }
8343 
8344   return build_qualified_type (t, TYPE_QUALS (component_type));
8345 }
8346 
8347 /* If TYPE is a real or complex floating-point type and the target
8348    does not directly support arithmetic on TYPE then return the wider
8349    type to be used for arithmetic on TYPE.  Otherwise, return
8350    NULL_TREE.  */
8351 
8352 tree
8353 excess_precision_type (tree type)
8354 {
8355   /* The target can give two different responses to the question of
8356      which excess precision mode it would like depending on whether we
8357      are in -fexcess-precision=standard or -fexcess-precision=fast.  */
8358 
8359   enum excess_precision_type requested_type
8360     = (flag_excess_precision == EXCESS_PRECISION_FAST
8361        ? EXCESS_PRECISION_TYPE_FAST
8362        : EXCESS_PRECISION_TYPE_STANDARD);
8363 
8364   enum flt_eval_method target_flt_eval_method
8365     = targetm.c.excess_precision (requested_type);
8366 
8367   /* The target should not ask for unpredictable float evaluation (though
8368      it might advertise that implicitly the evaluation is unpredictable,
8369      but we don't care about that here, it will have been reported
8370      elsewhere).  If it does ask for unpredictable evaluation, we have
8371      nothing to do here.  */
8372   gcc_assert (target_flt_eval_method != FLT_EVAL_METHOD_UNPREDICTABLE);
8373 
8374   /* Nothing to do.  The target has asked for all types we know about
8375      to be computed with their native precision and range.  */
8376   if (target_flt_eval_method == FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16)
8377     return NULL_TREE;
8378 
8379   /* The target will promote this type in a target-dependent way, so excess
8380      precision ought to leave it alone.  */
8381   if (targetm.promoted_type (type) != NULL_TREE)
8382     return NULL_TREE;
8383 
8384   machine_mode float16_type_mode = (float16_type_node
8385 				    ? TYPE_MODE (float16_type_node)
8386 				    : VOIDmode);
8387   machine_mode float_type_mode = TYPE_MODE (float_type_node);
8388   machine_mode double_type_mode = TYPE_MODE (double_type_node);
8389 
8390   switch (TREE_CODE (type))
8391     {
8392     case REAL_TYPE:
8393       {
8394 	machine_mode type_mode = TYPE_MODE (type);
8395 	switch (target_flt_eval_method)
8396 	  {
8397 	  case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8398 	    if (type_mode == float16_type_mode)
8399 	      return float_type_node;
8400 	    break;
8401 	  case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8402 	    if (type_mode == float16_type_mode
8403 		|| type_mode == float_type_mode)
8404 	      return double_type_node;
8405 	    break;
8406 	  case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8407 	    if (type_mode == float16_type_mode
8408 		|| type_mode == float_type_mode
8409 		|| type_mode == double_type_mode)
8410 	      return long_double_type_node;
8411 	    break;
8412 	  default:
8413 	    gcc_unreachable ();
8414 	  }
8415 	break;
8416       }
8417     case COMPLEX_TYPE:
8418       {
8419 	if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
8420 	  return NULL_TREE;
8421 	machine_mode type_mode = TYPE_MODE (TREE_TYPE (type));
8422 	switch (target_flt_eval_method)
8423 	  {
8424 	  case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8425 	    if (type_mode == float16_type_mode)
8426 	      return complex_float_type_node;
8427 	    break;
8428 	  case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8429 	    if (type_mode == float16_type_mode
8430 		|| type_mode == float_type_mode)
8431 	      return complex_double_type_node;
8432 	    break;
8433 	  case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8434 	    if (type_mode == float16_type_mode
8435 		|| type_mode == float_type_mode
8436 		|| type_mode == double_type_mode)
8437 	      return complex_long_double_type_node;
8438 	    break;
8439 	  default:
8440 	    gcc_unreachable ();
8441 	  }
8442 	break;
8443       }
8444     default:
8445       break;
8446     }
8447 
8448   return NULL_TREE;
8449 }
8450 
8451 /* Return OP, stripped of any conversions to wider types as much as is safe.
8452    Converting the value back to OP's type makes a value equivalent to OP.
8453 
8454    If FOR_TYPE is nonzero, we return a value which, if converted to
8455    type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8456 
8457    OP must have integer, real or enumeral type.  Pointers are not allowed!
8458 
8459    There are some cases where the obvious value we could return
8460    would regenerate to OP if converted to OP's type,
8461    but would not extend like OP to wider types.
8462    If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8463    For example, if OP is (unsigned short)(signed char)-1,
8464    we avoid returning (signed char)-1 if FOR_TYPE is int,
8465    even though extending that to an unsigned short would regenerate OP,
8466    since the result of extending (signed char)-1 to (int)
8467    is different from (int) OP.  */
8468 
8469 tree
8470 get_unwidened (tree op, tree for_type)
8471 {
8472   /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension.  */
8473   tree type = TREE_TYPE (op);
8474   unsigned final_prec
8475     = TYPE_PRECISION (for_type != 0 ? for_type : type);
8476   int uns
8477     = (for_type != 0 && for_type != type
8478        && final_prec > TYPE_PRECISION (type)
8479        && TYPE_UNSIGNED (type));
8480   tree win = op;
8481 
8482   while (CONVERT_EXPR_P (op))
8483     {
8484       int bitschange;
8485 
8486       /* TYPE_PRECISION on vector types has different meaning
8487 	 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8488 	 so avoid them here.  */
8489       if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8490 	break;
8491 
8492       bitschange = TYPE_PRECISION (TREE_TYPE (op))
8493 		   - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8494 
8495       /* Truncations are many-one so cannot be removed.
8496 	 Unless we are later going to truncate down even farther.  */
8497       if (bitschange < 0
8498 	  && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8499 	break;
8500 
8501       /* See what's inside this conversion.  If we decide to strip it,
8502 	 we will set WIN.  */
8503       op = TREE_OPERAND (op, 0);
8504 
8505       /* If we have not stripped any zero-extensions (uns is 0),
8506 	 we can strip any kind of extension.
8507 	 If we have previously stripped a zero-extension,
8508 	 only zero-extensions can safely be stripped.
8509 	 Any extension can be stripped if the bits it would produce
8510 	 are all going to be discarded later by truncating to FOR_TYPE.  */
8511 
8512       if (bitschange > 0)
8513 	{
8514 	  if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8515 	    win = op;
8516 	  /* TYPE_UNSIGNED says whether this is a zero-extension.
8517 	     Let's avoid computing it if it does not affect WIN
8518 	     and if UNS will not be needed again.  */
8519 	  if ((uns
8520 	       || CONVERT_EXPR_P (op))
8521 	      && TYPE_UNSIGNED (TREE_TYPE (op)))
8522 	    {
8523 	      uns = 1;
8524 	      win = op;
8525 	    }
8526 	}
8527     }
8528 
8529   /* If we finally reach a constant see if it fits in sth smaller and
8530      in that case convert it.  */
8531   if (TREE_CODE (win) == INTEGER_CST)
8532     {
8533       tree wtype = TREE_TYPE (win);
8534       unsigned prec = wi::min_precision (wi::to_wide (win), TYPE_SIGN (wtype));
8535       if (for_type)
8536 	prec = MAX (prec, final_prec);
8537       if (prec < TYPE_PRECISION (wtype))
8538 	{
8539 	  tree t = lang_hooks.types.type_for_size (prec, TYPE_UNSIGNED (wtype));
8540 	  if (t && TYPE_PRECISION (t) < TYPE_PRECISION (wtype))
8541 	    win = fold_convert (t, win);
8542 	}
8543     }
8544 
8545   return win;
8546 }
8547 
8548 /* Return OP or a simpler expression for a narrower value
8549    which can be sign-extended or zero-extended to give back OP.
8550    Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8551    or 0 if the value should be sign-extended.  */
8552 
8553 tree
8554 get_narrower (tree op, int *unsignedp_ptr)
8555 {
8556   int uns = 0;
8557   int first = 1;
8558   tree win = op;
8559   bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8560 
8561   while (TREE_CODE (op) == NOP_EXPR)
8562     {
8563       int bitschange
8564 	= (TYPE_PRECISION (TREE_TYPE (op))
8565 	   - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8566 
8567       /* Truncations are many-one so cannot be removed.  */
8568       if (bitschange < 0)
8569 	break;
8570 
8571       /* See what's inside this conversion.  If we decide to strip it,
8572 	 we will set WIN.  */
8573 
8574       if (bitschange > 0)
8575 	{
8576 	  op = TREE_OPERAND (op, 0);
8577 	  /* An extension: the outermost one can be stripped,
8578 	     but remember whether it is zero or sign extension.  */
8579 	  if (first)
8580 	    uns = TYPE_UNSIGNED (TREE_TYPE (op));
8581 	  /* Otherwise, if a sign extension has been stripped,
8582 	     only sign extensions can now be stripped;
8583 	     if a zero extension has been stripped, only zero-extensions.  */
8584 	  else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
8585 	    break;
8586 	  first = 0;
8587 	}
8588       else /* bitschange == 0 */
8589 	{
8590 	  /* A change in nominal type can always be stripped, but we must
8591 	     preserve the unsignedness.  */
8592 	  if (first)
8593 	    uns = TYPE_UNSIGNED (TREE_TYPE (op));
8594 	  first = 0;
8595 	  op = TREE_OPERAND (op, 0);
8596 	  /* Keep trying to narrow, but don't assign op to win if it
8597 	     would turn an integral type into something else.  */
8598 	  if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
8599 	    continue;
8600 	}
8601 
8602       win = op;
8603     }
8604 
8605   if (TREE_CODE (op) == COMPONENT_REF
8606       /* Since type_for_size always gives an integer type.  */
8607       && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
8608       && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
8609       /* Ensure field is laid out already.  */
8610       && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
8611       && tree_fits_uhwi_p (DECL_SIZE (TREE_OPERAND (op, 1))))
8612     {
8613       unsigned HOST_WIDE_INT innerprec
8614 	= tree_to_uhwi (DECL_SIZE (TREE_OPERAND (op, 1)));
8615       int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
8616 		       || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
8617       tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
8618 
8619       /* We can get this structure field in a narrower type that fits it,
8620 	 but the resulting extension to its nominal type (a fullword type)
8621 	 must satisfy the same conditions as for other extensions.
8622 
8623 	 Do this only for fields that are aligned (not bit-fields),
8624 	 because when bit-field insns will be used there is no
8625 	 advantage in doing this.  */
8626 
8627       if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8628 	  && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8629 	  && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8630 	  && type != 0)
8631 	{
8632 	  if (first)
8633 	    uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8634 	  win = fold_convert (type, op);
8635 	}
8636     }
8637 
8638   *unsignedp_ptr = uns;
8639   return win;
8640 }
8641 
8642 /* Return true if integer constant C has a value that is permissible
8643    for TYPE, an integral type.  */
8644 
8645 bool
8646 int_fits_type_p (const_tree c, const_tree type)
8647 {
8648   tree type_low_bound, type_high_bound;
8649   bool ok_for_low_bound, ok_for_high_bound;
8650   signop sgn_c = TYPE_SIGN (TREE_TYPE (c));
8651 
8652   /* Non-standard boolean types can have arbitrary precision but various
8653      transformations assume that they can only take values 0 and +/-1.  */
8654   if (TREE_CODE (type) == BOOLEAN_TYPE)
8655     return wi::fits_to_boolean_p (wi::to_wide (c), type);
8656 
8657 retry:
8658   type_low_bound = TYPE_MIN_VALUE (type);
8659   type_high_bound = TYPE_MAX_VALUE (type);
8660 
8661   /* If at least one bound of the type is a constant integer, we can check
8662      ourselves and maybe make a decision. If no such decision is possible, but
8663      this type is a subtype, try checking against that.  Otherwise, use
8664      fits_to_tree_p, which checks against the precision.
8665 
8666      Compute the status for each possibly constant bound, and return if we see
8667      one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8668      for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8669      for "constant known to fit".  */
8670 
8671   /* Check if c >= type_low_bound.  */
8672   if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8673     {
8674       if (tree_int_cst_lt (c, type_low_bound))
8675 	return false;
8676       ok_for_low_bound = true;
8677     }
8678   else
8679     ok_for_low_bound = false;
8680 
8681   /* Check if c <= type_high_bound.  */
8682   if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8683     {
8684       if (tree_int_cst_lt (type_high_bound, c))
8685 	return false;
8686       ok_for_high_bound = true;
8687     }
8688   else
8689     ok_for_high_bound = false;
8690 
8691   /* If the constant fits both bounds, the result is known.  */
8692   if (ok_for_low_bound && ok_for_high_bound)
8693     return true;
8694 
8695   /* Perform some generic filtering which may allow making a decision
8696      even if the bounds are not constant.  First, negative integers
8697      never fit in unsigned types, */
8698   if (TYPE_UNSIGNED (type) && sgn_c == SIGNED && wi::neg_p (wi::to_wide (c)))
8699     return false;
8700 
8701   /* Second, narrower types always fit in wider ones.  */
8702   if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8703     return true;
8704 
8705   /* Third, unsigned integers with top bit set never fit signed types.  */
8706   if (!TYPE_UNSIGNED (type) && sgn_c == UNSIGNED)
8707     {
8708       int prec = GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (TREE_TYPE (c))) - 1;
8709       if (prec < TYPE_PRECISION (TREE_TYPE (c)))
8710 	{
8711 	  /* When a tree_cst is converted to a wide-int, the precision
8712 	     is taken from the type.  However, if the precision of the
8713 	     mode underneath the type is smaller than that, it is
8714 	     possible that the value will not fit.  The test below
8715 	     fails if any bit is set between the sign bit of the
8716 	     underlying mode and the top bit of the type.  */
8717 	  if (wi::zext (wi::to_wide (c), prec - 1) != wi::to_wide (c))
8718 	    return false;
8719 	}
8720       else if (wi::neg_p (wi::to_wide (c)))
8721 	return false;
8722     }
8723 
8724   /* If we haven't been able to decide at this point, there nothing more we
8725      can check ourselves here.  Look at the base type if we have one and it
8726      has the same precision.  */
8727   if (TREE_CODE (type) == INTEGER_TYPE
8728       && TREE_TYPE (type) != 0
8729       && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8730     {
8731       type = TREE_TYPE (type);
8732       goto retry;
8733     }
8734 
8735   /* Or to fits_to_tree_p, if nothing else.  */
8736   return wi::fits_to_tree_p (wi::to_wide (c), type);
8737 }
8738 
8739 /* Stores bounds of an integer TYPE in MIN and MAX.  If TYPE has non-constant
8740    bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8741    represented (assuming two's-complement arithmetic) within the bit
8742    precision of the type are returned instead.  */
8743 
8744 void
8745 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8746 {
8747   if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8748       && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8749     wi::to_mpz (wi::to_wide (TYPE_MIN_VALUE (type)), min, TYPE_SIGN (type));
8750   else
8751     {
8752       if (TYPE_UNSIGNED (type))
8753 	mpz_set_ui (min, 0);
8754       else
8755 	{
8756 	  wide_int mn = wi::min_value (TYPE_PRECISION (type), SIGNED);
8757 	  wi::to_mpz (mn, min, SIGNED);
8758 	}
8759     }
8760 
8761   if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8762       && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8763     wi::to_mpz (wi::to_wide (TYPE_MAX_VALUE (type)), max, TYPE_SIGN (type));
8764   else
8765     {
8766       wide_int mn = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type));
8767       wi::to_mpz (mn, max, TYPE_SIGN (type));
8768     }
8769 }
8770 
8771 /* Return true if VAR is an automatic variable defined in function FN.  */
8772 
8773 bool
8774 auto_var_in_fn_p (const_tree var, const_tree fn)
8775 {
8776   return (DECL_P (var) && DECL_CONTEXT (var) == fn
8777 	  && ((((VAR_P (var) && ! DECL_EXTERNAL (var))
8778 		|| TREE_CODE (var) == PARM_DECL)
8779 	       && ! TREE_STATIC (var))
8780 	      || TREE_CODE (var) == LABEL_DECL
8781 	      || TREE_CODE (var) == RESULT_DECL));
8782 }
8783 
8784 /* Subprogram of following function.  Called by walk_tree.
8785 
8786    Return *TP if it is an automatic variable or parameter of the
8787    function passed in as DATA.  */
8788 
8789 static tree
8790 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8791 {
8792   tree fn = (tree) data;
8793 
8794   if (TYPE_P (*tp))
8795     *walk_subtrees = 0;
8796 
8797   else if (DECL_P (*tp)
8798 	   && auto_var_in_fn_p (*tp, fn))
8799     return *tp;
8800 
8801   return NULL_TREE;
8802 }
8803 
8804 /* Returns true if T is, contains, or refers to a type with variable
8805    size.  For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8806    arguments, but not the return type.  If FN is nonzero, only return
8807    true if a modifier of the type or position of FN is a variable or
8808    parameter inside FN.
8809 
8810    This concept is more general than that of C99 'variably modified types':
8811    in C99, a struct type is never variably modified because a VLA may not
8812    appear as a structure member.  However, in GNU C code like:
8813 
8814      struct S { int i[f()]; };
8815 
8816    is valid, and other languages may define similar constructs.  */
8817 
8818 bool
8819 variably_modified_type_p (tree type, tree fn)
8820 {
8821   tree t;
8822 
8823 /* Test if T is either variable (if FN is zero) or an expression containing
8824    a variable in FN.  If TYPE isn't gimplified, return true also if
8825    gimplify_one_sizepos would gimplify the expression into a local
8826    variable.  */
8827 #define RETURN_TRUE_IF_VAR(T)						\
8828   do { tree _t = (T);							\
8829     if (_t != NULL_TREE							\
8830 	&& _t != error_mark_node					\
8831 	&& !CONSTANT_CLASS_P (_t)					\
8832 	&& TREE_CODE (_t) != PLACEHOLDER_EXPR				\
8833 	&& (!fn								\
8834 	    || (!TYPE_SIZES_GIMPLIFIED (type)				\
8835 		&& (TREE_CODE (_t) != VAR_DECL				\
8836 		    && !CONTAINS_PLACEHOLDER_P (_t)))			\
8837 	    || walk_tree (&_t, find_var_from_fn, fn, NULL)))		\
8838       return true;  } while (0)
8839 
8840   if (type == error_mark_node)
8841     return false;
8842 
8843   /* If TYPE itself has variable size, it is variably modified.  */
8844   RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8845   RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8846 
8847   switch (TREE_CODE (type))
8848     {
8849     case POINTER_TYPE:
8850     case REFERENCE_TYPE:
8851     case VECTOR_TYPE:
8852       /* Ada can have pointer types refering to themselves indirectly.  */
8853       if (TREE_VISITED (type))
8854 	return false;
8855       TREE_VISITED (type) = true;
8856       if (variably_modified_type_p (TREE_TYPE (type), fn))
8857 	{
8858 	  TREE_VISITED (type) = false;
8859 	  return true;
8860 	}
8861       TREE_VISITED (type) = false;
8862       break;
8863 
8864     case FUNCTION_TYPE:
8865     case METHOD_TYPE:
8866       /* If TYPE is a function type, it is variably modified if the
8867 	 return type is variably modified.  */
8868       if (variably_modified_type_p (TREE_TYPE (type), fn))
8869 	  return true;
8870       break;
8871 
8872     case INTEGER_TYPE:
8873     case REAL_TYPE:
8874     case FIXED_POINT_TYPE:
8875     case ENUMERAL_TYPE:
8876     case BOOLEAN_TYPE:
8877       /* Scalar types are variably modified if their end points
8878 	 aren't constant.  */
8879       RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8880       RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8881       break;
8882 
8883     case RECORD_TYPE:
8884     case UNION_TYPE:
8885     case QUAL_UNION_TYPE:
8886       /* We can't see if any of the fields are variably-modified by the
8887 	 definition we normally use, since that would produce infinite
8888 	 recursion via pointers.  */
8889       /* This is variably modified if some field's type is.  */
8890       for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
8891 	if (TREE_CODE (t) == FIELD_DECL)
8892 	  {
8893 	    RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8894 	    RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8895 	    RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8896 
8897 	    if (TREE_CODE (type) == QUAL_UNION_TYPE)
8898 	      RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8899 	  }
8900       break;
8901 
8902     case ARRAY_TYPE:
8903       /* Do not call ourselves to avoid infinite recursion.  This is
8904 	 variably modified if the element type is.  */
8905       RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8906       RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8907       break;
8908 
8909     default:
8910       break;
8911     }
8912 
8913   /* The current language may have other cases to check, but in general,
8914      all other types are not variably modified.  */
8915   return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8916 
8917 #undef RETURN_TRUE_IF_VAR
8918 }
8919 
8920 /* Given a DECL or TYPE, return the scope in which it was declared, or
8921    NULL_TREE if there is no containing scope.  */
8922 
8923 tree
8924 get_containing_scope (const_tree t)
8925 {
8926   return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8927 }
8928 
8929 /* Returns the ultimate TRANSLATION_UNIT_DECL context of DECL or NULL.  */
8930 
8931 const_tree
8932 get_ultimate_context (const_tree decl)
8933 {
8934   while (decl && TREE_CODE (decl) != TRANSLATION_UNIT_DECL)
8935     {
8936       if (TREE_CODE (decl) == BLOCK)
8937 	decl = BLOCK_SUPERCONTEXT (decl);
8938       else
8939 	decl = get_containing_scope (decl);
8940     }
8941   return decl;
8942 }
8943 
8944 /* Return the innermost context enclosing DECL that is
8945    a FUNCTION_DECL, or zero if none.  */
8946 
8947 tree
8948 decl_function_context (const_tree decl)
8949 {
8950   tree context;
8951 
8952   if (TREE_CODE (decl) == ERROR_MARK)
8953     return 0;
8954 
8955   /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8956      where we look up the function at runtime.  Such functions always take
8957      a first argument of type 'pointer to real context'.
8958 
8959      C++ should really be fixed to use DECL_CONTEXT for the real context,
8960      and use something else for the "virtual context".  */
8961   else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8962     context
8963       = TYPE_MAIN_VARIANT
8964 	(TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8965   else
8966     context = DECL_CONTEXT (decl);
8967 
8968   while (context && TREE_CODE (context) != FUNCTION_DECL)
8969     {
8970       if (TREE_CODE (context) == BLOCK)
8971 	context = BLOCK_SUPERCONTEXT (context);
8972       else
8973 	context = get_containing_scope (context);
8974     }
8975 
8976   return context;
8977 }
8978 
8979 /* Return the innermost context enclosing DECL that is
8980    a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8981    TYPE_DECLs and FUNCTION_DECLs are transparent to this function.  */
8982 
8983 tree
8984 decl_type_context (const_tree decl)
8985 {
8986   tree context = DECL_CONTEXT (decl);
8987 
8988   while (context)
8989     switch (TREE_CODE (context))
8990       {
8991       case NAMESPACE_DECL:
8992       case TRANSLATION_UNIT_DECL:
8993 	return NULL_TREE;
8994 
8995       case RECORD_TYPE:
8996       case UNION_TYPE:
8997       case QUAL_UNION_TYPE:
8998 	return context;
8999 
9000       case TYPE_DECL:
9001       case FUNCTION_DECL:
9002 	context = DECL_CONTEXT (context);
9003 	break;
9004 
9005       case BLOCK:
9006 	context = BLOCK_SUPERCONTEXT (context);
9007 	break;
9008 
9009       default:
9010 	gcc_unreachable ();
9011       }
9012 
9013   return NULL_TREE;
9014 }
9015 
9016 /* CALL is a CALL_EXPR.  Return the declaration for the function
9017    called, or NULL_TREE if the called function cannot be
9018    determined.  */
9019 
9020 tree
9021 get_callee_fndecl (const_tree call)
9022 {
9023   tree addr;
9024 
9025   if (call == error_mark_node)
9026     return error_mark_node;
9027 
9028   /* It's invalid to call this function with anything but a
9029      CALL_EXPR.  */
9030   gcc_assert (TREE_CODE (call) == CALL_EXPR);
9031 
9032   /* The first operand to the CALL is the address of the function
9033      called.  */
9034   addr = CALL_EXPR_FN (call);
9035 
9036   /* If there is no function, return early.  */
9037   if (addr == NULL_TREE)
9038     return NULL_TREE;
9039 
9040   STRIP_NOPS (addr);
9041 
9042   /* If this is a readonly function pointer, extract its initial value.  */
9043   if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
9044       && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
9045       && DECL_INITIAL (addr))
9046     addr = DECL_INITIAL (addr);
9047 
9048   /* If the address is just `&f' for some function `f', then we know
9049      that `f' is being called.  */
9050   if (TREE_CODE (addr) == ADDR_EXPR
9051       && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
9052     return TREE_OPERAND (addr, 0);
9053 
9054   /* We couldn't figure out what was being called.  */
9055   return NULL_TREE;
9056 }
9057 
9058 /* If CALL_EXPR CALL calls a normal built-in function or an internal function,
9059    return the associated function code, otherwise return CFN_LAST.  */
9060 
9061 combined_fn
9062 get_call_combined_fn (const_tree call)
9063 {
9064   /* It's invalid to call this function with anything but a CALL_EXPR.  */
9065   gcc_assert (TREE_CODE (call) == CALL_EXPR);
9066 
9067   if (!CALL_EXPR_FN (call))
9068     return as_combined_fn (CALL_EXPR_IFN (call));
9069 
9070   tree fndecl = get_callee_fndecl (call);
9071   if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
9072     return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
9073 
9074   return CFN_LAST;
9075 }
9076 
9077 #define TREE_MEM_USAGE_SPACES 40
9078 
9079 /* Print debugging information about tree nodes generated during the compile,
9080    and any language-specific information.  */
9081 
9082 void
9083 dump_tree_statistics (void)
9084 {
9085   if (GATHER_STATISTICS)
9086     {
9087       int i;
9088       uint64_t total_nodes, total_bytes;
9089       fprintf (stderr, "\nKind                   Nodes      Bytes\n");
9090       mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9091       total_nodes = total_bytes = 0;
9092       for (i = 0; i < (int) all_kinds; i++)
9093 	{
9094 	  fprintf (stderr, "%-20s %7" PRIu64 " %10" PRIu64 "\n",
9095 		   tree_node_kind_names[i], tree_node_counts[i],
9096 		   tree_node_sizes[i]);
9097 	  total_nodes += tree_node_counts[i];
9098 	  total_bytes += tree_node_sizes[i];
9099 	}
9100       mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9101       fprintf (stderr, "%-20s %7" PRIu64 " %10" PRIu64 "\n", "Total",
9102 	       total_nodes, total_bytes);
9103       mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9104       fprintf (stderr, "Code                   Nodes\n");
9105       mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9106       for (i = 0; i < (int) MAX_TREE_CODES; i++)
9107 	fprintf (stderr, "%-32s %7" PRIu64 "\n",
9108 		 get_tree_code_name ((enum tree_code) i), tree_code_counts[i]);
9109       mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9110       fprintf (stderr, "\n");
9111       ssanames_print_statistics ();
9112       fprintf (stderr, "\n");
9113       phinodes_print_statistics ();
9114       fprintf (stderr, "\n");
9115     }
9116   else
9117     fprintf (stderr, "(No per-node statistics)\n");
9118 
9119   print_type_hash_statistics ();
9120   print_debug_expr_statistics ();
9121   print_value_expr_statistics ();
9122   lang_hooks.print_statistics ();
9123 }
9124 
9125 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
9126 
9127 /* Generate a crc32 of the low BYTES bytes of VALUE.  */
9128 
9129 unsigned
9130 crc32_unsigned_n (unsigned chksum, unsigned value, unsigned bytes)
9131 {
9132   /* This relies on the raw feedback's top 4 bits being zero.  */
9133 #define FEEDBACK(X) ((X) * 0x04c11db7)
9134 #define SYNDROME(X) (FEEDBACK ((X) & 1) ^ FEEDBACK ((X) & 2) \
9135 		     ^ FEEDBACK ((X) & 4) ^ FEEDBACK ((X) & 8))
9136   static const unsigned syndromes[16] =
9137     {
9138       SYNDROME(0x0), SYNDROME(0x1), SYNDROME(0x2), SYNDROME(0x3),
9139       SYNDROME(0x4), SYNDROME(0x5), SYNDROME(0x6), SYNDROME(0x7),
9140       SYNDROME(0x8), SYNDROME(0x9), SYNDROME(0xa), SYNDROME(0xb),
9141       SYNDROME(0xc), SYNDROME(0xd), SYNDROME(0xe), SYNDROME(0xf),
9142     };
9143 #undef FEEDBACK
9144 #undef SYNDROME
9145 
9146   value <<= (32 - bytes * 8);
9147   for (unsigned ix = bytes * 2; ix--; value <<= 4)
9148     {
9149       unsigned feedback = syndromes[((value ^ chksum) >> 28) & 0xf];
9150 
9151       chksum = (chksum << 4) ^ feedback;
9152     }
9153 
9154   return chksum;
9155 }
9156 
9157 /* Generate a crc32 of a string.  */
9158 
9159 unsigned
9160 crc32_string (unsigned chksum, const char *string)
9161 {
9162   do
9163     chksum = crc32_byte (chksum, *string);
9164   while (*string++);
9165   return chksum;
9166 }
9167 
9168 /* P is a string that will be used in a symbol.  Mask out any characters
9169    that are not valid in that context.  */
9170 
9171 void
9172 clean_symbol_name (char *p)
9173 {
9174   for (; *p; p++)
9175     if (! (ISALNUM (*p)
9176 #ifndef NO_DOLLAR_IN_LABEL	/* this for `$'; unlikely, but... -- kr */
9177 	    || *p == '$'
9178 #endif
9179 #ifndef NO_DOT_IN_LABEL		/* this for `.'; unlikely, but...  */
9180 	    || *p == '.'
9181 #endif
9182 	   ))
9183       *p = '_';
9184 }
9185 
9186 /* For anonymous aggregate types, we need some sort of name to
9187    hold on to.  In practice, this should not appear, but it should
9188    not be harmful if it does.  */
9189 bool
9190 anon_aggrname_p(const_tree id_node)
9191 {
9192 #ifndef NO_DOT_IN_LABEL
9193  return (IDENTIFIER_POINTER (id_node)[0] == '.'
9194 	 && IDENTIFIER_POINTER (id_node)[1] == '_');
9195 #else /* NO_DOT_IN_LABEL */
9196 #ifndef NO_DOLLAR_IN_LABEL
9197   return (IDENTIFIER_POINTER (id_node)[0] == '$' \
9198 	  && IDENTIFIER_POINTER (id_node)[1] == '_');
9199 #else /* NO_DOLLAR_IN_LABEL */
9200 #define ANON_AGGRNAME_PREFIX "__anon_"
9201   return (!strncmp (IDENTIFIER_POINTER (id_node), ANON_AGGRNAME_PREFIX,
9202 		    sizeof (ANON_AGGRNAME_PREFIX) - 1));
9203 #endif	/* NO_DOLLAR_IN_LABEL */
9204 #endif	/* NO_DOT_IN_LABEL */
9205 }
9206 
9207 /* Return a format for an anonymous aggregate name.  */
9208 const char *
9209 anon_aggrname_format()
9210 {
9211 #ifndef NO_DOT_IN_LABEL
9212  return "._%d";
9213 #else /* NO_DOT_IN_LABEL */
9214 #ifndef NO_DOLLAR_IN_LABEL
9215   return "$_%d";
9216 #else /* NO_DOLLAR_IN_LABEL */
9217   return "__anon_%d";
9218 #endif	/* NO_DOLLAR_IN_LABEL */
9219 #endif	/* NO_DOT_IN_LABEL */
9220 }
9221 
9222 /* Generate a name for a special-purpose function.
9223    The generated name may need to be unique across the whole link.
9224    Changes to this function may also require corresponding changes to
9225    xstrdup_mask_random.
9226    TYPE is some string to identify the purpose of this function to the
9227    linker or collect2; it must start with an uppercase letter,
9228    one of:
9229    I - for constructors
9230    D - for destructors
9231    N - for C++ anonymous namespaces
9232    F - for DWARF unwind frame information.  */
9233 
9234 tree
9235 get_file_function_name (const char *type)
9236 {
9237   char *buf;
9238   const char *p;
9239   char *q;
9240 
9241   /* If we already have a name we know to be unique, just use that.  */
9242   if (first_global_object_name)
9243     p = q = ASTRDUP (first_global_object_name);
9244   /* If the target is handling the constructors/destructors, they
9245      will be local to this file and the name is only necessary for
9246      debugging purposes.
9247      We also assign sub_I and sub_D sufixes to constructors called from
9248      the global static constructors.  These are always local.  */
9249   else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
9250 	   || (strncmp (type, "sub_", 4) == 0
9251 	       && (type[4] == 'I' || type[4] == 'D')))
9252     {
9253       const char *file = main_input_filename;
9254       if (! file)
9255 	file = LOCATION_FILE (input_location);
9256       /* Just use the file's basename, because the full pathname
9257 	 might be quite long.  */
9258       p = q = ASTRDUP (lbasename (file));
9259     }
9260   else
9261     {
9262       /* Otherwise, the name must be unique across the entire link.
9263 	 We don't have anything that we know to be unique to this translation
9264 	 unit, so use what we do have and throw in some randomness.  */
9265       unsigned len;
9266       const char *name = weak_global_object_name;
9267       const char *file = main_input_filename;
9268 
9269       if (! name)
9270 	name = "";
9271       if (! file)
9272 	file = LOCATION_FILE (input_location);
9273 
9274       len = strlen (file);
9275       q = (char *) alloca (9 + 19 + len + 1);
9276       memcpy (q, file, len + 1);
9277 
9278       snprintf (q + len, 9 + 19 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
9279 		crc32_string (0, name), get_random_seed (false));
9280 
9281       p = q;
9282     }
9283 
9284   clean_symbol_name (q);
9285   buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
9286 			 + strlen (type));
9287 
9288   /* Set up the name of the file-level functions we may need.
9289      Use a global object (which is already required to be unique over
9290      the program) rather than the file name (which imposes extra
9291      constraints).  */
9292   sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
9293 
9294   return get_identifier (buf);
9295 }
9296 
9297 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
9298 
9299 /* Complain that the tree code of NODE does not match the expected 0
9300    terminated list of trailing codes. The trailing code list can be
9301    empty, for a more vague error message.  FILE, LINE, and FUNCTION
9302    are of the caller.  */
9303 
9304 void
9305 tree_check_failed (const_tree node, const char *file,
9306 		   int line, const char *function, ...)
9307 {
9308   va_list args;
9309   const char *buffer;
9310   unsigned length = 0;
9311   enum tree_code code;
9312 
9313   va_start (args, function);
9314   while ((code = (enum tree_code) va_arg (args, int)))
9315     length += 4 + strlen (get_tree_code_name (code));
9316   va_end (args);
9317   if (length)
9318     {
9319       char *tmp;
9320       va_start (args, function);
9321       length += strlen ("expected ");
9322       buffer = tmp = (char *) alloca (length);
9323       length = 0;
9324       while ((code = (enum tree_code) va_arg (args, int)))
9325 	{
9326 	  const char *prefix = length ? " or " : "expected ";
9327 
9328 	  strcpy (tmp + length, prefix);
9329 	  length += strlen (prefix);
9330 	  strcpy (tmp + length, get_tree_code_name (code));
9331 	  length += strlen (get_tree_code_name (code));
9332 	}
9333       va_end (args);
9334     }
9335   else
9336     buffer = "unexpected node";
9337 
9338   internal_error ("tree check: %s, have %s in %s, at %s:%d",
9339 		  buffer, get_tree_code_name (TREE_CODE (node)),
9340 		  function, trim_filename (file), line);
9341 }
9342 
9343 /* Complain that the tree code of NODE does match the expected 0
9344    terminated list of trailing codes. FILE, LINE, and FUNCTION are of
9345    the caller.  */
9346 
9347 void
9348 tree_not_check_failed (const_tree node, const char *file,
9349 		       int line, const char *function, ...)
9350 {
9351   va_list args;
9352   char *buffer;
9353   unsigned length = 0;
9354   enum tree_code code;
9355 
9356   va_start (args, function);
9357   while ((code = (enum tree_code) va_arg (args, int)))
9358     length += 4 + strlen (get_tree_code_name (code));
9359   va_end (args);
9360   va_start (args, function);
9361   buffer = (char *) alloca (length);
9362   length = 0;
9363   while ((code = (enum tree_code) va_arg (args, int)))
9364     {
9365       if (length)
9366 	{
9367 	  strcpy (buffer + length, " or ");
9368 	  length += 4;
9369 	}
9370       strcpy (buffer + length, get_tree_code_name (code));
9371       length += strlen (get_tree_code_name (code));
9372     }
9373   va_end (args);
9374 
9375   internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
9376 		  buffer, get_tree_code_name (TREE_CODE (node)),
9377 		  function, trim_filename (file), line);
9378 }
9379 
9380 /* Similar to tree_check_failed, except that we check for a class of tree
9381    code, given in CL.  */
9382 
9383 void
9384 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
9385 			 const char *file, int line, const char *function)
9386 {
9387   internal_error
9388     ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
9389      TREE_CODE_CLASS_STRING (cl),
9390      TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9391      get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9392 }
9393 
9394 /* Similar to tree_check_failed, except that instead of specifying a
9395    dozen codes, use the knowledge that they're all sequential.  */
9396 
9397 void
9398 tree_range_check_failed (const_tree node, const char *file, int line,
9399 			 const char *function, enum tree_code c1,
9400 			 enum tree_code c2)
9401 {
9402   char *buffer;
9403   unsigned length = 0;
9404   unsigned int c;
9405 
9406   for (c = c1; c <= c2; ++c)
9407     length += 4 + strlen (get_tree_code_name ((enum tree_code) c));
9408 
9409   length += strlen ("expected ");
9410   buffer = (char *) alloca (length);
9411   length = 0;
9412 
9413   for (c = c1; c <= c2; ++c)
9414     {
9415       const char *prefix = length ? " or " : "expected ";
9416 
9417       strcpy (buffer + length, prefix);
9418       length += strlen (prefix);
9419       strcpy (buffer + length, get_tree_code_name ((enum tree_code) c));
9420       length += strlen (get_tree_code_name ((enum tree_code) c));
9421     }
9422 
9423   internal_error ("tree check: %s, have %s in %s, at %s:%d",
9424 		  buffer, get_tree_code_name (TREE_CODE (node)),
9425 		  function, trim_filename (file), line);
9426 }
9427 
9428 
9429 /* Similar to tree_check_failed, except that we check that a tree does
9430    not have the specified code, given in CL.  */
9431 
9432 void
9433 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
9434 			     const char *file, int line, const char *function)
9435 {
9436   internal_error
9437     ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
9438      TREE_CODE_CLASS_STRING (cl),
9439      TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9440      get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9441 }
9442 
9443 
9444 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes.  */
9445 
9446 void
9447 omp_clause_check_failed (const_tree node, const char *file, int line,
9448                          const char *function, enum omp_clause_code code)
9449 {
9450   internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
9451 		  omp_clause_code_name[code], get_tree_code_name (TREE_CODE (node)),
9452 		  function, trim_filename (file), line);
9453 }
9454 
9455 
9456 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes.  */
9457 
9458 void
9459 omp_clause_range_check_failed (const_tree node, const char *file, int line,
9460 			       const char *function, enum omp_clause_code c1,
9461 			       enum omp_clause_code c2)
9462 {
9463   char *buffer;
9464   unsigned length = 0;
9465   unsigned int c;
9466 
9467   for (c = c1; c <= c2; ++c)
9468     length += 4 + strlen (omp_clause_code_name[c]);
9469 
9470   length += strlen ("expected ");
9471   buffer = (char *) alloca (length);
9472   length = 0;
9473 
9474   for (c = c1; c <= c2; ++c)
9475     {
9476       const char *prefix = length ? " or " : "expected ";
9477 
9478       strcpy (buffer + length, prefix);
9479       length += strlen (prefix);
9480       strcpy (buffer + length, omp_clause_code_name[c]);
9481       length += strlen (omp_clause_code_name[c]);
9482     }
9483 
9484   internal_error ("tree check: %s, have %s in %s, at %s:%d",
9485 		  buffer, omp_clause_code_name[TREE_CODE (node)],
9486 		  function, trim_filename (file), line);
9487 }
9488 
9489 
9490 #undef DEFTREESTRUCT
9491 #define DEFTREESTRUCT(VAL, NAME) NAME,
9492 
9493 static const char *ts_enum_names[] = {
9494 #include "treestruct.def"
9495 };
9496 #undef DEFTREESTRUCT
9497 
9498 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
9499 
9500 /* Similar to tree_class_check_failed, except that we check for
9501    whether CODE contains the tree structure identified by EN.  */
9502 
9503 void
9504 tree_contains_struct_check_failed (const_tree node,
9505 				   const enum tree_node_structure_enum en,
9506 				   const char *file, int line,
9507 				   const char *function)
9508 {
9509   internal_error
9510     ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
9511      TS_ENUM_NAME (en),
9512      get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9513 }
9514 
9515 
9516 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9517    (dynamically sized) vector.  */
9518 
9519 void
9520 tree_int_cst_elt_check_failed (int idx, int len, const char *file, int line,
9521 			       const char *function)
9522 {
9523   internal_error
9524     ("tree check: accessed elt %d of tree_int_cst with %d elts in %s, at %s:%d",
9525      idx + 1, len, function, trim_filename (file), line);
9526 }
9527 
9528 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9529    (dynamically sized) vector.  */
9530 
9531 void
9532 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
9533 			   const char *function)
9534 {
9535   internal_error
9536     ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
9537      idx + 1, len, function, trim_filename (file), line);
9538 }
9539 
9540 /* Similar to above, except that the check is for the bounds of the operand
9541    vector of an expression node EXP.  */
9542 
9543 void
9544 tree_operand_check_failed (int idx, const_tree exp, const char *file,
9545 			   int line, const char *function)
9546 {
9547   enum tree_code code = TREE_CODE (exp);
9548   internal_error
9549     ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
9550      idx + 1, get_tree_code_name (code), TREE_OPERAND_LENGTH (exp),
9551      function, trim_filename (file), line);
9552 }
9553 
9554 /* Similar to above, except that the check is for the number of
9555    operands of an OMP_CLAUSE node.  */
9556 
9557 void
9558 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
9559 			         int line, const char *function)
9560 {
9561   internal_error
9562     ("tree check: accessed operand %d of omp_clause %s with %d operands "
9563      "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
9564      omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
9565      trim_filename (file), line);
9566 }
9567 #endif /* ENABLE_TREE_CHECKING */
9568 
9569 /* Create a new vector type node holding NUNITS units of type INNERTYPE,
9570    and mapped to the machine mode MODE.  Initialize its fields and build
9571    the information necessary for debugging output.  */
9572 
9573 static tree
9574 make_vector_type (tree innertype, poly_int64 nunits, machine_mode mode)
9575 {
9576   tree t;
9577   tree mv_innertype = TYPE_MAIN_VARIANT (innertype);
9578 
9579   t = make_node (VECTOR_TYPE);
9580   TREE_TYPE (t) = mv_innertype;
9581   SET_TYPE_VECTOR_SUBPARTS (t, nunits);
9582   SET_TYPE_MODE (t, mode);
9583 
9584   if (TYPE_STRUCTURAL_EQUALITY_P (mv_innertype) || in_lto_p)
9585     SET_TYPE_STRUCTURAL_EQUALITY (t);
9586   else if ((TYPE_CANONICAL (mv_innertype) != innertype
9587 	    || mode != VOIDmode)
9588 	   && !VECTOR_BOOLEAN_TYPE_P (t))
9589     TYPE_CANONICAL (t)
9590       = make_vector_type (TYPE_CANONICAL (mv_innertype), nunits, VOIDmode);
9591 
9592   layout_type (t);
9593 
9594   hashval_t hash = type_hash_canon_hash (t);
9595   t = type_hash_canon (hash, t);
9596 
9597   /* We have built a main variant, based on the main variant of the
9598      inner type. Use it to build the variant we return.  */
9599   if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
9600       && TREE_TYPE (t) != innertype)
9601     return build_type_attribute_qual_variant (t,
9602 					      TYPE_ATTRIBUTES (innertype),
9603 					      TYPE_QUALS (innertype));
9604 
9605   return t;
9606 }
9607 
9608 static tree
9609 make_or_reuse_type (unsigned size, int unsignedp)
9610 {
9611   int i;
9612 
9613   if (size == INT_TYPE_SIZE)
9614     return unsignedp ? unsigned_type_node : integer_type_node;
9615   if (size == CHAR_TYPE_SIZE)
9616     return unsignedp ? unsigned_char_type_node : signed_char_type_node;
9617   if (size == SHORT_TYPE_SIZE)
9618     return unsignedp ? short_unsigned_type_node : short_integer_type_node;
9619   if (size == LONG_TYPE_SIZE)
9620     return unsignedp ? long_unsigned_type_node : long_integer_type_node;
9621   if (size == LONG_LONG_TYPE_SIZE)
9622     return (unsignedp ? long_long_unsigned_type_node
9623             : long_long_integer_type_node);
9624 
9625   for (i = 0; i < NUM_INT_N_ENTS; i ++)
9626     if (size == int_n_data[i].bitsize
9627 	&& int_n_enabled_p[i])
9628       return (unsignedp ? int_n_trees[i].unsigned_type
9629 	      : int_n_trees[i].signed_type);
9630 
9631   if (unsignedp)
9632     return make_unsigned_type (size);
9633   else
9634     return make_signed_type (size);
9635 }
9636 
9637 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP.  */
9638 
9639 static tree
9640 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
9641 {
9642   if (satp)
9643     {
9644       if (size == SHORT_FRACT_TYPE_SIZE)
9645 	return unsignedp ? sat_unsigned_short_fract_type_node
9646 			 : sat_short_fract_type_node;
9647       if (size == FRACT_TYPE_SIZE)
9648 	return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
9649       if (size == LONG_FRACT_TYPE_SIZE)
9650 	return unsignedp ? sat_unsigned_long_fract_type_node
9651 			 : sat_long_fract_type_node;
9652       if (size == LONG_LONG_FRACT_TYPE_SIZE)
9653 	return unsignedp ? sat_unsigned_long_long_fract_type_node
9654 			 : sat_long_long_fract_type_node;
9655     }
9656   else
9657     {
9658       if (size == SHORT_FRACT_TYPE_SIZE)
9659 	return unsignedp ? unsigned_short_fract_type_node
9660 			 : short_fract_type_node;
9661       if (size == FRACT_TYPE_SIZE)
9662 	return unsignedp ? unsigned_fract_type_node : fract_type_node;
9663       if (size == LONG_FRACT_TYPE_SIZE)
9664 	return unsignedp ? unsigned_long_fract_type_node
9665 			 : long_fract_type_node;
9666       if (size == LONG_LONG_FRACT_TYPE_SIZE)
9667 	return unsignedp ? unsigned_long_long_fract_type_node
9668 			 : long_long_fract_type_node;
9669     }
9670 
9671   return make_fract_type (size, unsignedp, satp);
9672 }
9673 
9674 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP.  */
9675 
9676 static tree
9677 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
9678 {
9679   if (satp)
9680     {
9681       if (size == SHORT_ACCUM_TYPE_SIZE)
9682 	return unsignedp ? sat_unsigned_short_accum_type_node
9683 			 : sat_short_accum_type_node;
9684       if (size == ACCUM_TYPE_SIZE)
9685 	return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
9686       if (size == LONG_ACCUM_TYPE_SIZE)
9687 	return unsignedp ? sat_unsigned_long_accum_type_node
9688 			 : sat_long_accum_type_node;
9689       if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9690 	return unsignedp ? sat_unsigned_long_long_accum_type_node
9691 			 : sat_long_long_accum_type_node;
9692     }
9693   else
9694     {
9695       if (size == SHORT_ACCUM_TYPE_SIZE)
9696 	return unsignedp ? unsigned_short_accum_type_node
9697 			 : short_accum_type_node;
9698       if (size == ACCUM_TYPE_SIZE)
9699 	return unsignedp ? unsigned_accum_type_node : accum_type_node;
9700       if (size == LONG_ACCUM_TYPE_SIZE)
9701 	return unsignedp ? unsigned_long_accum_type_node
9702 			 : long_accum_type_node;
9703       if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9704 	return unsignedp ? unsigned_long_long_accum_type_node
9705 			 : long_long_accum_type_node;
9706     }
9707 
9708   return make_accum_type (size, unsignedp, satp);
9709 }
9710 
9711 
9712 /* Create an atomic variant node for TYPE.  This routine is called
9713    during initialization of data types to create the 5 basic atomic
9714    types. The generic build_variant_type function requires these to
9715    already be set up in order to function properly, so cannot be
9716    called from there.  If ALIGN is non-zero, then ensure alignment is
9717    overridden to this value.  */
9718 
9719 static tree
9720 build_atomic_base (tree type, unsigned int align)
9721 {
9722   tree t;
9723 
9724   /* Make sure its not already registered.  */
9725   if ((t = get_qualified_type (type, TYPE_QUAL_ATOMIC)))
9726     return t;
9727 
9728   t = build_variant_type_copy (type);
9729   set_type_quals (t, TYPE_QUAL_ATOMIC);
9730 
9731   if (align)
9732     SET_TYPE_ALIGN (t, align);
9733 
9734   return t;
9735 }
9736 
9737 /* Information about the _FloatN and _FloatNx types.  This must be in
9738    the same order as the corresponding TI_* enum values.  */
9739 const floatn_type_info floatn_nx_types[NUM_FLOATN_NX_TYPES] =
9740   {
9741     { 16, false },
9742     { 32, false },
9743     { 64, false },
9744     { 128, false },
9745     { 32, true },
9746     { 64, true },
9747     { 128, true },
9748   };
9749 
9750 
9751 /* Create nodes for all integer types (and error_mark_node) using the sizes
9752    of C datatypes.  SIGNED_CHAR specifies whether char is signed.  */
9753 
9754 void
9755 build_common_tree_nodes (bool signed_char)
9756 {
9757   int i;
9758 
9759   error_mark_node = make_node (ERROR_MARK);
9760   TREE_TYPE (error_mark_node) = error_mark_node;
9761 
9762   initialize_sizetypes ();
9763 
9764   /* Define both `signed char' and `unsigned char'.  */
9765   signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
9766   TYPE_STRING_FLAG (signed_char_type_node) = 1;
9767   unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
9768   TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
9769 
9770   /* Define `char', which is like either `signed char' or `unsigned char'
9771      but not the same as either.  */
9772   char_type_node
9773     = (signed_char
9774        ? make_signed_type (CHAR_TYPE_SIZE)
9775        : make_unsigned_type (CHAR_TYPE_SIZE));
9776   TYPE_STRING_FLAG (char_type_node) = 1;
9777 
9778   short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
9779   short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
9780   integer_type_node = make_signed_type (INT_TYPE_SIZE);
9781   unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
9782   long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
9783   long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
9784   long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
9785   long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
9786 
9787   for (i = 0; i < NUM_INT_N_ENTS; i ++)
9788     {
9789       int_n_trees[i].signed_type = make_signed_type (int_n_data[i].bitsize);
9790       int_n_trees[i].unsigned_type = make_unsigned_type (int_n_data[i].bitsize);
9791       TYPE_SIZE (int_n_trees[i].signed_type) = bitsize_int (int_n_data[i].bitsize);
9792       TYPE_SIZE (int_n_trees[i].unsigned_type) = bitsize_int (int_n_data[i].bitsize);
9793 
9794       if (int_n_enabled_p[i])
9795 	{
9796 	  integer_types[itk_intN_0 + i * 2] = int_n_trees[i].signed_type;
9797 	  integer_types[itk_unsigned_intN_0 + i * 2] = int_n_trees[i].unsigned_type;
9798 	}
9799     }
9800 
9801   /* Define a boolean type.  This type only represents boolean values but
9802      may be larger than char depending on the value of BOOL_TYPE_SIZE.  */
9803   boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
9804   TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
9805   TYPE_PRECISION (boolean_type_node) = 1;
9806   TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
9807 
9808   /* Define what type to use for size_t.  */
9809   if (strcmp (SIZE_TYPE, "unsigned int") == 0)
9810     size_type_node = unsigned_type_node;
9811   else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
9812     size_type_node = long_unsigned_type_node;
9813   else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
9814     size_type_node = long_long_unsigned_type_node;
9815   else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
9816     size_type_node = short_unsigned_type_node;
9817   else
9818     {
9819       int i;
9820 
9821       size_type_node = NULL_TREE;
9822       for (i = 0; i < NUM_INT_N_ENTS; i++)
9823 	if (int_n_enabled_p[i])
9824 	  {
9825 	    char name[50];
9826 	    sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
9827 
9828 	    if (strcmp (name, SIZE_TYPE) == 0)
9829 	      {
9830 		size_type_node = int_n_trees[i].unsigned_type;
9831 	      }
9832 	  }
9833       if (size_type_node == NULL_TREE)
9834 	gcc_unreachable ();
9835     }
9836 
9837   /* Define what type to use for ptrdiff_t.  */
9838   if (strcmp (PTRDIFF_TYPE, "int") == 0)
9839     ptrdiff_type_node = integer_type_node;
9840   else if (strcmp (PTRDIFF_TYPE, "long int") == 0)
9841     ptrdiff_type_node = long_integer_type_node;
9842   else if (strcmp (PTRDIFF_TYPE, "long long int") == 0)
9843     ptrdiff_type_node = long_long_integer_type_node;
9844   else if (strcmp (PTRDIFF_TYPE, "short int") == 0)
9845     ptrdiff_type_node = short_integer_type_node;
9846   else
9847     {
9848       ptrdiff_type_node = NULL_TREE;
9849       for (int i = 0; i < NUM_INT_N_ENTS; i++)
9850 	if (int_n_enabled_p[i])
9851 	  {
9852 	    char name[50];
9853 	    sprintf (name, "__int%d", int_n_data[i].bitsize);
9854 	    if (strcmp (name, PTRDIFF_TYPE) == 0)
9855 	      ptrdiff_type_node = int_n_trees[i].signed_type;
9856 	  }
9857       if (ptrdiff_type_node == NULL_TREE)
9858 	gcc_unreachable ();
9859     }
9860 
9861   /* Fill in the rest of the sized types.  Reuse existing type nodes
9862      when possible.  */
9863   intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
9864   intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
9865   intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
9866   intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
9867   intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
9868 
9869   unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
9870   unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
9871   unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
9872   unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
9873   unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
9874 
9875   /* Don't call build_qualified type for atomics.  That routine does
9876      special processing for atomics, and until they are initialized
9877      it's better not to make that call.
9878 
9879      Check to see if there is a target override for atomic types.  */
9880 
9881   atomicQI_type_node = build_atomic_base (unsigned_intQI_type_node,
9882 					targetm.atomic_align_for_mode (QImode));
9883   atomicHI_type_node = build_atomic_base (unsigned_intHI_type_node,
9884 					targetm.atomic_align_for_mode (HImode));
9885   atomicSI_type_node = build_atomic_base (unsigned_intSI_type_node,
9886 					targetm.atomic_align_for_mode (SImode));
9887   atomicDI_type_node = build_atomic_base (unsigned_intDI_type_node,
9888 					targetm.atomic_align_for_mode (DImode));
9889   atomicTI_type_node = build_atomic_base (unsigned_intTI_type_node,
9890 					targetm.atomic_align_for_mode (TImode));
9891 
9892   access_public_node = get_identifier ("public");
9893   access_protected_node = get_identifier ("protected");
9894   access_private_node = get_identifier ("private");
9895 
9896   /* Define these next since types below may used them.  */
9897   integer_zero_node = build_int_cst (integer_type_node, 0);
9898   integer_one_node = build_int_cst (integer_type_node, 1);
9899   integer_three_node = build_int_cst (integer_type_node, 3);
9900   integer_minus_one_node = build_int_cst (integer_type_node, -1);
9901 
9902   size_zero_node = size_int (0);
9903   size_one_node = size_int (1);
9904   bitsize_zero_node = bitsize_int (0);
9905   bitsize_one_node = bitsize_int (1);
9906   bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
9907 
9908   boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
9909   boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
9910 
9911   void_type_node = make_node (VOID_TYPE);
9912   layout_type (void_type_node);
9913 
9914   pointer_bounds_type_node = targetm.chkp_bound_type ();
9915 
9916   /* We are not going to have real types in C with less than byte alignment,
9917      so we might as well not have any types that claim to have it.  */
9918   SET_TYPE_ALIGN (void_type_node, BITS_PER_UNIT);
9919   TYPE_USER_ALIGN (void_type_node) = 0;
9920 
9921   void_node = make_node (VOID_CST);
9922   TREE_TYPE (void_node) = void_type_node;
9923 
9924   null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9925   layout_type (TREE_TYPE (null_pointer_node));
9926 
9927   ptr_type_node = build_pointer_type (void_type_node);
9928   const_ptr_type_node
9929     = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9930   for (unsigned i = 0;
9931        i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
9932        ++i)
9933     builtin_structptr_types[i].node = builtin_structptr_types[i].base;
9934 
9935   pointer_sized_int_node = build_nonstandard_integer_type (POINTER_SIZE, 1);
9936 
9937   float_type_node = make_node (REAL_TYPE);
9938   TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9939   layout_type (float_type_node);
9940 
9941   double_type_node = make_node (REAL_TYPE);
9942   TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9943   layout_type (double_type_node);
9944 
9945   long_double_type_node = make_node (REAL_TYPE);
9946   TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9947   layout_type (long_double_type_node);
9948 
9949   for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
9950     {
9951       int n = floatn_nx_types[i].n;
9952       bool extended = floatn_nx_types[i].extended;
9953       scalar_float_mode mode;
9954       if (!targetm.floatn_mode (n, extended).exists (&mode))
9955 	continue;
9956       int precision = GET_MODE_PRECISION (mode);
9957       /* Work around the rs6000 KFmode having precision 113 not
9958 	 128.  */
9959       const struct real_format *fmt = REAL_MODE_FORMAT (mode);
9960       gcc_assert (fmt->b == 2 && fmt->emin + fmt->emax == 3);
9961       int min_precision = fmt->p + ceil_log2 (fmt->emax - fmt->emin);
9962       if (!extended)
9963 	gcc_assert (min_precision == n);
9964       if (precision < min_precision)
9965 	precision = min_precision;
9966       FLOATN_NX_TYPE_NODE (i) = make_node (REAL_TYPE);
9967       TYPE_PRECISION (FLOATN_NX_TYPE_NODE (i)) = precision;
9968       layout_type (FLOATN_NX_TYPE_NODE (i));
9969       SET_TYPE_MODE (FLOATN_NX_TYPE_NODE (i), mode);
9970     }
9971 
9972   float_ptr_type_node = build_pointer_type (float_type_node);
9973   double_ptr_type_node = build_pointer_type (double_type_node);
9974   long_double_ptr_type_node = build_pointer_type (long_double_type_node);
9975   integer_ptr_type_node = build_pointer_type (integer_type_node);
9976 
9977   /* Fixed size integer types.  */
9978   uint16_type_node = make_or_reuse_type (16, 1);
9979   uint32_type_node = make_or_reuse_type (32, 1);
9980   uint64_type_node = make_or_reuse_type (64, 1);
9981 
9982   /* Decimal float types. */
9983   dfloat32_type_node = make_node (REAL_TYPE);
9984   TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
9985   SET_TYPE_MODE (dfloat32_type_node, SDmode);
9986   layout_type (dfloat32_type_node);
9987   dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
9988 
9989   dfloat64_type_node = make_node (REAL_TYPE);
9990   TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
9991   SET_TYPE_MODE (dfloat64_type_node, DDmode);
9992   layout_type (dfloat64_type_node);
9993   dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
9994 
9995   dfloat128_type_node = make_node (REAL_TYPE);
9996   TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
9997   SET_TYPE_MODE (dfloat128_type_node, TDmode);
9998   layout_type (dfloat128_type_node);
9999   dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
10000 
10001   complex_integer_type_node = build_complex_type (integer_type_node, true);
10002   complex_float_type_node = build_complex_type (float_type_node, true);
10003   complex_double_type_node = build_complex_type (double_type_node, true);
10004   complex_long_double_type_node = build_complex_type (long_double_type_node,
10005 						      true);
10006 
10007   for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
10008     {
10009       if (FLOATN_NX_TYPE_NODE (i) != NULL_TREE)
10010 	COMPLEX_FLOATN_NX_TYPE_NODE (i)
10011 	  = build_complex_type (FLOATN_NX_TYPE_NODE (i));
10012     }
10013 
10014 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned.  */
10015 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
10016   sat_ ## KIND ## _type_node = \
10017     make_sat_signed_ ## KIND ## _type (SIZE); \
10018   sat_unsigned_ ## KIND ## _type_node = \
10019     make_sat_unsigned_ ## KIND ## _type (SIZE); \
10020   KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10021   unsigned_ ## KIND ## _type_node = \
10022     make_unsigned_ ## KIND ## _type (SIZE);
10023 
10024 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
10025   sat_ ## WIDTH ## KIND ## _type_node = \
10026     make_sat_signed_ ## KIND ## _type (SIZE); \
10027   sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
10028     make_sat_unsigned_ ## KIND ## _type (SIZE); \
10029   WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10030   unsigned_ ## WIDTH ## KIND ## _type_node = \
10031     make_unsigned_ ## KIND ## _type (SIZE);
10032 
10033 /* Make fixed-point type nodes based on four different widths.  */
10034 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
10035   MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
10036   MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
10037   MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
10038   MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
10039 
10040 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned.  */
10041 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
10042   NAME ## _type_node = \
10043     make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
10044   u ## NAME ## _type_node = \
10045     make_or_reuse_unsigned_ ## KIND ## _type \
10046       (GET_MODE_BITSIZE (U ## MODE ## mode)); \
10047   sat_ ## NAME ## _type_node = \
10048     make_or_reuse_sat_signed_ ## KIND ## _type \
10049       (GET_MODE_BITSIZE (MODE ## mode)); \
10050   sat_u ## NAME ## _type_node = \
10051     make_or_reuse_sat_unsigned_ ## KIND ## _type \
10052       (GET_MODE_BITSIZE (U ## MODE ## mode));
10053 
10054   /* Fixed-point type and mode nodes.  */
10055   MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
10056   MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
10057   MAKE_FIXED_MODE_NODE (fract, qq, QQ)
10058   MAKE_FIXED_MODE_NODE (fract, hq, HQ)
10059   MAKE_FIXED_MODE_NODE (fract, sq, SQ)
10060   MAKE_FIXED_MODE_NODE (fract, dq, DQ)
10061   MAKE_FIXED_MODE_NODE (fract, tq, TQ)
10062   MAKE_FIXED_MODE_NODE (accum, ha, HA)
10063   MAKE_FIXED_MODE_NODE (accum, sa, SA)
10064   MAKE_FIXED_MODE_NODE (accum, da, DA)
10065   MAKE_FIXED_MODE_NODE (accum, ta, TA)
10066 
10067   {
10068     tree t = targetm.build_builtin_va_list ();
10069 
10070     /* Many back-ends define record types without setting TYPE_NAME.
10071        If we copied the record type here, we'd keep the original
10072        record type without a name.  This breaks name mangling.  So,
10073        don't copy record types and let c_common_nodes_and_builtins()
10074        declare the type to be __builtin_va_list.  */
10075     if (TREE_CODE (t) != RECORD_TYPE)
10076       t = build_variant_type_copy (t);
10077 
10078     va_list_type_node = t;
10079   }
10080 }
10081 
10082 /* Modify DECL for given flags.
10083    TM_PURE attribute is set only on types, so the function will modify
10084    DECL's type when ECF_TM_PURE is used.  */
10085 
10086 void
10087 set_call_expr_flags (tree decl, int flags)
10088 {
10089   if (flags & ECF_NOTHROW)
10090     TREE_NOTHROW (decl) = 1;
10091   if (flags & ECF_CONST)
10092     TREE_READONLY (decl) = 1;
10093   if (flags & ECF_PURE)
10094     DECL_PURE_P (decl) = 1;
10095   if (flags & ECF_LOOPING_CONST_OR_PURE)
10096     DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
10097   if (flags & ECF_NOVOPS)
10098     DECL_IS_NOVOPS (decl) = 1;
10099   if (flags & ECF_NORETURN)
10100     TREE_THIS_VOLATILE (decl) = 1;
10101   if (flags & ECF_MALLOC)
10102     DECL_IS_MALLOC (decl) = 1;
10103   if (flags & ECF_RETURNS_TWICE)
10104     DECL_IS_RETURNS_TWICE (decl) = 1;
10105   if (flags & ECF_LEAF)
10106     DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
10107 					NULL, DECL_ATTRIBUTES (decl));
10108   if (flags & ECF_COLD)
10109     DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("cold"),
10110 					NULL, DECL_ATTRIBUTES (decl));
10111   if (flags & ECF_RET1)
10112     DECL_ATTRIBUTES (decl)
10113       = tree_cons (get_identifier ("fn spec"),
10114 		   build_tree_list (NULL_TREE, build_string (1, "1")),
10115 		   DECL_ATTRIBUTES (decl));
10116   if ((flags & ECF_TM_PURE) && flag_tm)
10117     apply_tm_attr (decl, get_identifier ("transaction_pure"));
10118   /* Looping const or pure is implied by noreturn.
10119      There is currently no way to declare looping const or looping pure alone.  */
10120   gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
10121 	      || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
10122 }
10123 
10124 
10125 /* A subroutine of build_common_builtin_nodes.  Define a builtin function.  */
10126 
10127 static void
10128 local_define_builtin (const char *name, tree type, enum built_in_function code,
10129                       const char *library_name, int ecf_flags)
10130 {
10131   tree decl;
10132 
10133   decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
10134 			       library_name, NULL_TREE);
10135   set_call_expr_flags (decl, ecf_flags);
10136 
10137   set_builtin_decl (code, decl, true);
10138 }
10139 
10140 /* Call this function after instantiating all builtins that the language
10141    front end cares about.  This will build the rest of the builtins
10142    and internal functions that are relied upon by the tree optimizers and
10143    the middle-end.  */
10144 
10145 void
10146 build_common_builtin_nodes (void)
10147 {
10148   tree tmp, ftype;
10149   int ecf_flags;
10150 
10151   if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE)
10152       || !builtin_decl_explicit_p (BUILT_IN_ABORT))
10153     {
10154       ftype = build_function_type (void_type_node, void_list_node);
10155       if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
10156 	local_define_builtin ("__builtin_unreachable", ftype,
10157 			      BUILT_IN_UNREACHABLE,
10158 			      "__builtin_unreachable",
10159 			      ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
10160 			      | ECF_CONST | ECF_COLD);
10161       if (!builtin_decl_explicit_p (BUILT_IN_ABORT))
10162 	local_define_builtin ("__builtin_abort", ftype, BUILT_IN_ABORT,
10163 			      "abort",
10164 			      ECF_LEAF | ECF_NORETURN | ECF_CONST | ECF_COLD);
10165     }
10166 
10167   if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
10168       || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10169     {
10170       ftype = build_function_type_list (ptr_type_node,
10171 					ptr_type_node, const_ptr_type_node,
10172 					size_type_node, NULL_TREE);
10173 
10174       if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
10175 	local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
10176 			      "memcpy", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10177       if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10178 	local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
10179 			      "memmove", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10180     }
10181 
10182   if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
10183     {
10184       ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10185 					const_ptr_type_node, size_type_node,
10186 					NULL_TREE);
10187       local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
10188 			    "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10189     }
10190 
10191   if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
10192     {
10193       ftype = build_function_type_list (ptr_type_node,
10194 					ptr_type_node, integer_type_node,
10195 					size_type_node, NULL_TREE);
10196       local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
10197 			    "memset", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10198     }
10199 
10200   /* If we're checking the stack, `alloca' can throw.  */
10201   const int alloca_flags
10202     = ECF_MALLOC | ECF_LEAF | (flag_stack_check ? 0 : ECF_NOTHROW);
10203 
10204   if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
10205     {
10206       ftype = build_function_type_list (ptr_type_node,
10207 					size_type_node, NULL_TREE);
10208       local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
10209 			    "alloca", alloca_flags);
10210     }
10211 
10212   ftype = build_function_type_list (ptr_type_node, size_type_node,
10213 				    size_type_node, NULL_TREE);
10214   local_define_builtin ("__builtin_alloca_with_align", ftype,
10215 			BUILT_IN_ALLOCA_WITH_ALIGN,
10216 			"__builtin_alloca_with_align",
10217 			alloca_flags);
10218 
10219   ftype = build_function_type_list (ptr_type_node, size_type_node,
10220 				    size_type_node, size_type_node, NULL_TREE);
10221   local_define_builtin ("__builtin_alloca_with_align_and_max", ftype,
10222 			BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX,
10223 			"__builtin_alloca_with_align_and_max",
10224 			alloca_flags);
10225 
10226   ftype = build_function_type_list (void_type_node,
10227 				    ptr_type_node, ptr_type_node,
10228 				    ptr_type_node, NULL_TREE);
10229   local_define_builtin ("__builtin_init_trampoline", ftype,
10230 			BUILT_IN_INIT_TRAMPOLINE,
10231 			"__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
10232   local_define_builtin ("__builtin_init_heap_trampoline", ftype,
10233 			BUILT_IN_INIT_HEAP_TRAMPOLINE,
10234 			"__builtin_init_heap_trampoline",
10235 			ECF_NOTHROW | ECF_LEAF);
10236   local_define_builtin ("__builtin_init_descriptor", ftype,
10237 			BUILT_IN_INIT_DESCRIPTOR,
10238 			"__builtin_init_descriptor", ECF_NOTHROW | ECF_LEAF);
10239 
10240   ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
10241   local_define_builtin ("__builtin_adjust_trampoline", ftype,
10242 			BUILT_IN_ADJUST_TRAMPOLINE,
10243 			"__builtin_adjust_trampoline",
10244 			ECF_CONST | ECF_NOTHROW);
10245   local_define_builtin ("__builtin_adjust_descriptor", ftype,
10246 			BUILT_IN_ADJUST_DESCRIPTOR,
10247 			"__builtin_adjust_descriptor",
10248 			ECF_CONST | ECF_NOTHROW);
10249 
10250   ftype = build_function_type_list (void_type_node,
10251 				    ptr_type_node, ptr_type_node, NULL_TREE);
10252   local_define_builtin ("__builtin_nonlocal_goto", ftype,
10253 			BUILT_IN_NONLOCAL_GOTO,
10254 			"__builtin_nonlocal_goto",
10255 			ECF_NORETURN | ECF_NOTHROW);
10256 
10257   ftype = build_function_type_list (void_type_node,
10258 				    ptr_type_node, ptr_type_node, NULL_TREE);
10259   local_define_builtin ("__builtin_setjmp_setup", ftype,
10260 			BUILT_IN_SETJMP_SETUP,
10261 			"__builtin_setjmp_setup", ECF_NOTHROW);
10262 
10263   ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10264   local_define_builtin ("__builtin_setjmp_receiver", ftype,
10265 			BUILT_IN_SETJMP_RECEIVER,
10266 			"__builtin_setjmp_receiver", ECF_NOTHROW | ECF_LEAF);
10267 
10268   ftype = build_function_type_list (ptr_type_node, NULL_TREE);
10269   local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
10270 			"__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
10271 
10272   ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10273   local_define_builtin ("__builtin_stack_restore", ftype,
10274 			BUILT_IN_STACK_RESTORE,
10275 			"__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
10276 
10277   ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10278 				    const_ptr_type_node, size_type_node,
10279 				    NULL_TREE);
10280   local_define_builtin ("__builtin_memcmp_eq", ftype, BUILT_IN_MEMCMP_EQ,
10281 			"__builtin_memcmp_eq",
10282 			ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10283 
10284   /* If there's a possibility that we might use the ARM EABI, build the
10285     alternate __cxa_end_cleanup node used to resume from C++.  */
10286   if (targetm.arm_eabi_unwinder)
10287     {
10288       ftype = build_function_type_list (void_type_node, NULL_TREE);
10289       local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
10290 			    BUILT_IN_CXA_END_CLEANUP,
10291 			    "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
10292     }
10293 
10294   ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10295   local_define_builtin ("__builtin_unwind_resume", ftype,
10296 			BUILT_IN_UNWIND_RESUME,
10297 			((targetm_common.except_unwind_info (&global_options)
10298 			  == UI_SJLJ)
10299 			 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
10300 			ECF_NORETURN);
10301 
10302   if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
10303     {
10304       ftype = build_function_type_list (ptr_type_node, integer_type_node,
10305 					NULL_TREE);
10306       local_define_builtin ("__builtin_return_address", ftype,
10307 			    BUILT_IN_RETURN_ADDRESS,
10308 			    "__builtin_return_address",
10309 			    ECF_NOTHROW);
10310     }
10311 
10312   if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
10313       || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10314     {
10315       ftype = build_function_type_list (void_type_node, ptr_type_node,
10316 					ptr_type_node, NULL_TREE);
10317       if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
10318 	local_define_builtin ("__cyg_profile_func_enter", ftype,
10319 			      BUILT_IN_PROFILE_FUNC_ENTER,
10320 			      "__cyg_profile_func_enter", 0);
10321       if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10322 	local_define_builtin ("__cyg_profile_func_exit", ftype,
10323 			      BUILT_IN_PROFILE_FUNC_EXIT,
10324 			      "__cyg_profile_func_exit", 0);
10325     }
10326 
10327   /* The exception object and filter values from the runtime.  The argument
10328      must be zero before exception lowering, i.e. from the front end.  After
10329      exception lowering, it will be the region number for the exception
10330      landing pad.  These functions are PURE instead of CONST to prevent
10331      them from being hoisted past the exception edge that will initialize
10332      its value in the landing pad.  */
10333   ftype = build_function_type_list (ptr_type_node,
10334 				    integer_type_node, NULL_TREE);
10335   ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
10336   /* Only use TM_PURE if we have TM language support.  */
10337   if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
10338     ecf_flags |= ECF_TM_PURE;
10339   local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
10340 			"__builtin_eh_pointer", ecf_flags);
10341 
10342   tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
10343   ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
10344   local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
10345 			"__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10346 
10347   ftype = build_function_type_list (void_type_node,
10348 				    integer_type_node, integer_type_node,
10349 				    NULL_TREE);
10350   local_define_builtin ("__builtin_eh_copy_values", ftype,
10351 			BUILT_IN_EH_COPY_VALUES,
10352 			"__builtin_eh_copy_values", ECF_NOTHROW);
10353 
10354   /* Complex multiplication and division.  These are handled as builtins
10355      rather than optabs because emit_library_call_value doesn't support
10356      complex.  Further, we can do slightly better with folding these
10357      beasties if the real and complex parts of the arguments are separate.  */
10358   {
10359     int mode;
10360 
10361     for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
10362       {
10363 	char mode_name_buf[4], *q;
10364 	const char *p;
10365 	enum built_in_function mcode, dcode;
10366 	tree type, inner_type;
10367 	const char *prefix = "__";
10368 
10369 	if (targetm.libfunc_gnu_prefix)
10370 	  prefix = "__gnu_";
10371 
10372 	type = lang_hooks.types.type_for_mode ((machine_mode) mode, 0);
10373 	if (type == NULL)
10374 	  continue;
10375 	inner_type = TREE_TYPE (type);
10376 
10377 	ftype = build_function_type_list (type, inner_type, inner_type,
10378 					  inner_type, inner_type, NULL_TREE);
10379 
10380         mcode = ((enum built_in_function)
10381 		 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10382         dcode = ((enum built_in_function)
10383 		 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10384 
10385         for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
10386 	  *q = TOLOWER (*p);
10387 	*q = '\0';
10388 
10389 	built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
10390 					NULL);
10391         local_define_builtin (built_in_names[mcode], ftype, mcode,
10392 			      built_in_names[mcode],
10393 			      ECF_CONST | ECF_NOTHROW | ECF_LEAF);
10394 
10395 	built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
10396 					NULL);
10397         local_define_builtin (built_in_names[dcode], ftype, dcode,
10398 			      built_in_names[dcode],
10399 			      ECF_CONST | ECF_NOTHROW | ECF_LEAF);
10400       }
10401   }
10402 
10403   init_internal_fns ();
10404 }
10405 
10406 /* HACK.  GROSS.  This is absolutely disgusting.  I wish there was a
10407    better way.
10408 
10409    If we requested a pointer to a vector, build up the pointers that
10410    we stripped off while looking for the inner type.  Similarly for
10411    return values from functions.
10412 
10413    The argument TYPE is the top of the chain, and BOTTOM is the
10414    new type which we will point to.  */
10415 
10416 tree
10417 reconstruct_complex_type (tree type, tree bottom)
10418 {
10419   tree inner, outer;
10420 
10421   if (TREE_CODE (type) == POINTER_TYPE)
10422     {
10423       inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10424       outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
10425 					   TYPE_REF_CAN_ALIAS_ALL (type));
10426     }
10427   else if (TREE_CODE (type) == REFERENCE_TYPE)
10428     {
10429       inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10430       outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
10431 					     TYPE_REF_CAN_ALIAS_ALL (type));
10432     }
10433   else if (TREE_CODE (type) == ARRAY_TYPE)
10434     {
10435       inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10436       outer = build_array_type (inner, TYPE_DOMAIN (type));
10437     }
10438   else if (TREE_CODE (type) == FUNCTION_TYPE)
10439     {
10440       inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10441       outer = build_function_type (inner, TYPE_ARG_TYPES (type));
10442     }
10443   else if (TREE_CODE (type) == METHOD_TYPE)
10444     {
10445       inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10446       /* The build_method_type_directly() routine prepends 'this' to argument list,
10447          so we must compensate by getting rid of it.  */
10448       outer
10449 	= build_method_type_directly
10450 	    (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
10451 	     inner,
10452 	     TREE_CHAIN (TYPE_ARG_TYPES (type)));
10453     }
10454   else if (TREE_CODE (type) == OFFSET_TYPE)
10455     {
10456       inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10457       outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
10458     }
10459   else
10460     return bottom;
10461 
10462   return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
10463 					    TYPE_QUALS (type));
10464 }
10465 
10466 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
10467    the inner type.  */
10468 tree
10469 build_vector_type_for_mode (tree innertype, machine_mode mode)
10470 {
10471   poly_int64 nunits;
10472   unsigned int bitsize;
10473 
10474   switch (GET_MODE_CLASS (mode))
10475     {
10476     case MODE_VECTOR_BOOL:
10477     case MODE_VECTOR_INT:
10478     case MODE_VECTOR_FLOAT:
10479     case MODE_VECTOR_FRACT:
10480     case MODE_VECTOR_UFRACT:
10481     case MODE_VECTOR_ACCUM:
10482     case MODE_VECTOR_UACCUM:
10483       nunits = GET_MODE_NUNITS (mode);
10484       break;
10485 
10486     case MODE_INT:
10487       /* Check that there are no leftover bits.  */
10488       bitsize = GET_MODE_BITSIZE (as_a <scalar_int_mode> (mode));
10489       gcc_assert (bitsize % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
10490       nunits = bitsize / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
10491       break;
10492 
10493     default:
10494       gcc_unreachable ();
10495     }
10496 
10497   return make_vector_type (innertype, nunits, mode);
10498 }
10499 
10500 /* Similarly, but takes the inner type and number of units, which must be
10501    a power of two.  */
10502 
10503 tree
10504 build_vector_type (tree innertype, poly_int64 nunits)
10505 {
10506   return make_vector_type (innertype, nunits, VOIDmode);
10507 }
10508 
10509 /* Build truth vector with specified length and number of units.  */
10510 
10511 tree
10512 build_truth_vector_type (poly_uint64 nunits, poly_uint64 vector_size)
10513 {
10514   machine_mode mask_mode
10515     = targetm.vectorize.get_mask_mode (nunits, vector_size).else_blk ();
10516 
10517   poly_uint64 vsize;
10518   if (mask_mode == BLKmode)
10519     vsize = vector_size * BITS_PER_UNIT;
10520   else
10521     vsize = GET_MODE_BITSIZE (mask_mode);
10522 
10523   unsigned HOST_WIDE_INT esize = vector_element_size (vsize, nunits);
10524 
10525   tree bool_type = build_nonstandard_boolean_type (esize);
10526 
10527   return make_vector_type (bool_type, nunits, mask_mode);
10528 }
10529 
10530 /* Returns a vector type corresponding to a comparison of VECTYPE.  */
10531 
10532 tree
10533 build_same_sized_truth_vector_type (tree vectype)
10534 {
10535   if (VECTOR_BOOLEAN_TYPE_P (vectype))
10536     return vectype;
10537 
10538   poly_uint64 size = GET_MODE_SIZE (TYPE_MODE (vectype));
10539 
10540   if (known_eq (size, 0U))
10541     size = tree_to_uhwi (TYPE_SIZE_UNIT (vectype));
10542 
10543   return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (vectype), size);
10544 }
10545 
10546 /* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set.  */
10547 
10548 tree
10549 build_opaque_vector_type (tree innertype, poly_int64 nunits)
10550 {
10551   tree t = make_vector_type (innertype, nunits, VOIDmode);
10552   tree cand;
10553   /* We always build the non-opaque variant before the opaque one,
10554      so if it already exists, it is TYPE_NEXT_VARIANT of this one.  */
10555   cand = TYPE_NEXT_VARIANT (t);
10556   if (cand
10557       && TYPE_VECTOR_OPAQUE (cand)
10558       && check_qualified_type (cand, t, TYPE_QUALS (t)))
10559     return cand;
10560   /* Othewise build a variant type and make sure to queue it after
10561      the non-opaque type.  */
10562   cand = build_distinct_type_copy (t);
10563   TYPE_VECTOR_OPAQUE (cand) = true;
10564   TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
10565   TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
10566   TYPE_NEXT_VARIANT (t) = cand;
10567   TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
10568   return cand;
10569 }
10570 
10571 /* Return the value of element I of VECTOR_CST T as a wide_int.  */
10572 
10573 wide_int
10574 vector_cst_int_elt (const_tree t, unsigned int i)
10575 {
10576   /* First handle elements that are directly encoded.  */
10577   unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
10578   if (i < encoded_nelts)
10579     return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, i));
10580 
10581   /* Identify the pattern that contains element I and work out the index of
10582      the last encoded element for that pattern.  */
10583   unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
10584   unsigned int pattern = i % npatterns;
10585   unsigned int count = i / npatterns;
10586   unsigned int final_i = encoded_nelts - npatterns + pattern;
10587 
10588   /* If there are no steps, the final encoded value is the right one.  */
10589   if (!VECTOR_CST_STEPPED_P (t))
10590     return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, final_i));
10591 
10592   /* Otherwise work out the value from the last two encoded elements.  */
10593   tree v1 = VECTOR_CST_ENCODED_ELT (t, final_i - npatterns);
10594   tree v2 = VECTOR_CST_ENCODED_ELT (t, final_i);
10595   wide_int diff = wi::to_wide (v2) - wi::to_wide (v1);
10596   return wi::to_wide (v2) + (count - 2) * diff;
10597 }
10598 
10599 /* Return the value of element I of VECTOR_CST T.  */
10600 
10601 tree
10602 vector_cst_elt (const_tree t, unsigned int i)
10603 {
10604   /* First handle elements that are directly encoded.  */
10605   unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
10606   if (i < encoded_nelts)
10607     return VECTOR_CST_ENCODED_ELT (t, i);
10608 
10609   /* If there are no steps, the final encoded value is the right one.  */
10610   if (!VECTOR_CST_STEPPED_P (t))
10611     {
10612       /* Identify the pattern that contains element I and work out the index of
10613 	 the last encoded element for that pattern.  */
10614       unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
10615       unsigned int pattern = i % npatterns;
10616       unsigned int final_i = encoded_nelts - npatterns + pattern;
10617       return VECTOR_CST_ENCODED_ELT (t, final_i);
10618     }
10619 
10620   /* Otherwise work out the value from the last two encoded elements.  */
10621   return wide_int_to_tree (TREE_TYPE (TREE_TYPE (t)),
10622 			   vector_cst_int_elt (t, i));
10623 }
10624 
10625 /* Given an initializer INIT, return TRUE if INIT is zero or some
10626    aggregate of zeros.  Otherwise return FALSE.  */
10627 bool
10628 initializer_zerop (const_tree init)
10629 {
10630   tree elt;
10631 
10632   STRIP_NOPS (init);
10633 
10634   switch (TREE_CODE (init))
10635     {
10636     case INTEGER_CST:
10637       return integer_zerop (init);
10638 
10639     case REAL_CST:
10640       /* ??? Note that this is not correct for C4X float formats.  There,
10641 	 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
10642 	 negative exponent.  */
10643       return real_zerop (init)
10644 	&& ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
10645 
10646     case FIXED_CST:
10647       return fixed_zerop (init);
10648 
10649     case COMPLEX_CST:
10650       return integer_zerop (init)
10651 	|| (real_zerop (init)
10652 	    && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
10653 	    && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
10654 
10655     case VECTOR_CST:
10656       return (VECTOR_CST_NPATTERNS (init) == 1
10657 	      && VECTOR_CST_DUPLICATE_P (init)
10658 	      && initializer_zerop (VECTOR_CST_ENCODED_ELT (init, 0)));
10659 
10660     case CONSTRUCTOR:
10661       {
10662 	unsigned HOST_WIDE_INT idx;
10663 
10664 	if (TREE_CLOBBER_P (init))
10665 	  return false;
10666 	FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
10667 	  if (!initializer_zerop (elt))
10668 	    return false;
10669 	return true;
10670       }
10671 
10672     case STRING_CST:
10673       {
10674 	int i;
10675 
10676 	/* We need to loop through all elements to handle cases like
10677 	   "\0" and "\0foobar".  */
10678 	for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
10679 	  if (TREE_STRING_POINTER (init)[i] != '\0')
10680 	    return false;
10681 
10682 	return true;
10683       }
10684 
10685     default:
10686       return false;
10687     }
10688 }
10689 
10690 /* Check if vector VEC consists of all the equal elements and
10691    that the number of elements corresponds to the type of VEC.
10692    The function returns first element of the vector
10693    or NULL_TREE if the vector is not uniform.  */
10694 tree
10695 uniform_vector_p (const_tree vec)
10696 {
10697   tree first, t;
10698   unsigned HOST_WIDE_INT i, nelts;
10699 
10700   if (vec == NULL_TREE)
10701     return NULL_TREE;
10702 
10703   gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec)));
10704 
10705   if (TREE_CODE (vec) == VEC_DUPLICATE_EXPR)
10706     return TREE_OPERAND (vec, 0);
10707 
10708   else if (TREE_CODE (vec) == VECTOR_CST)
10709     {
10710       if (VECTOR_CST_NPATTERNS (vec) == 1 && VECTOR_CST_DUPLICATE_P (vec))
10711 	return VECTOR_CST_ENCODED_ELT (vec, 0);
10712       return NULL_TREE;
10713     }
10714 
10715   else if (TREE_CODE (vec) == CONSTRUCTOR
10716 	   && TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)).is_constant (&nelts))
10717     {
10718       first = error_mark_node;
10719 
10720       FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t)
10721         {
10722           if (i == 0)
10723             {
10724               first = t;
10725               continue;
10726             }
10727 	  if (!operand_equal_p (first, t, 0))
10728 	    return NULL_TREE;
10729         }
10730       if (i != nelts)
10731 	return NULL_TREE;
10732 
10733       return first;
10734     }
10735 
10736   return NULL_TREE;
10737 }
10738 
10739 /* Build an empty statement at location LOC.  */
10740 
10741 tree
10742 build_empty_stmt (location_t loc)
10743 {
10744   tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
10745   SET_EXPR_LOCATION (t, loc);
10746   return t;
10747 }
10748 
10749 
10750 /* Build an OpenMP clause with code CODE.  LOC is the location of the
10751    clause.  */
10752 
10753 tree
10754 build_omp_clause (location_t loc, enum omp_clause_code code)
10755 {
10756   tree t;
10757   int size, length;
10758 
10759   length = omp_clause_num_ops[code];
10760   size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
10761 
10762   record_node_allocation_statistics (OMP_CLAUSE, size);
10763 
10764   t = (tree) ggc_internal_alloc (size);
10765   memset (t, 0, size);
10766   TREE_SET_CODE (t, OMP_CLAUSE);
10767   OMP_CLAUSE_SET_CODE (t, code);
10768   OMP_CLAUSE_LOCATION (t) = loc;
10769 
10770   return t;
10771 }
10772 
10773 /* Build a tcc_vl_exp object with code CODE and room for LEN operands.  LEN
10774    includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
10775    Except for the CODE and operand count field, other storage for the
10776    object is initialized to zeros.  */
10777 
10778 tree
10779 build_vl_exp (enum tree_code code, int len MEM_STAT_DECL)
10780 {
10781   tree t;
10782   int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
10783 
10784   gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
10785   gcc_assert (len >= 1);
10786 
10787   record_node_allocation_statistics (code, length);
10788 
10789   t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
10790 
10791   TREE_SET_CODE (t, code);
10792 
10793   /* Can't use TREE_OPERAND to store the length because if checking is
10794      enabled, it will try to check the length before we store it.  :-P  */
10795   t->exp.operands[0] = build_int_cst (sizetype, len);
10796 
10797   return t;
10798 }
10799 
10800 /* Helper function for build_call_* functions; build a CALL_EXPR with
10801    indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
10802    the argument slots.  */
10803 
10804 static tree
10805 build_call_1 (tree return_type, tree fn, int nargs)
10806 {
10807   tree t;
10808 
10809   t = build_vl_exp (CALL_EXPR, nargs + 3);
10810   TREE_TYPE (t) = return_type;
10811   CALL_EXPR_FN (t) = fn;
10812   CALL_EXPR_STATIC_CHAIN (t) = NULL;
10813 
10814   return t;
10815 }
10816 
10817 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10818    FN and a null static chain slot.  NARGS is the number of call arguments
10819    which are specified as "..." arguments.  */
10820 
10821 tree
10822 build_call_nary (tree return_type, tree fn, int nargs, ...)
10823 {
10824   tree ret;
10825   va_list args;
10826   va_start (args, nargs);
10827   ret = build_call_valist (return_type, fn, nargs, args);
10828   va_end (args);
10829   return ret;
10830 }
10831 
10832 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10833    FN and a null static chain slot.  NARGS is the number of call arguments
10834    which are specified as a va_list ARGS.  */
10835 
10836 tree
10837 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
10838 {
10839   tree t;
10840   int i;
10841 
10842   t = build_call_1 (return_type, fn, nargs);
10843   for (i = 0; i < nargs; i++)
10844     CALL_EXPR_ARG (t, i) = va_arg (args, tree);
10845   process_call_operands (t);
10846   return t;
10847 }
10848 
10849 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10850    FN and a null static chain slot.  NARGS is the number of call arguments
10851    which are specified as a tree array ARGS.  */
10852 
10853 tree
10854 build_call_array_loc (location_t loc, tree return_type, tree fn,
10855 		      int nargs, const tree *args)
10856 {
10857   tree t;
10858   int i;
10859 
10860   t = build_call_1 (return_type, fn, nargs);
10861   for (i = 0; i < nargs; i++)
10862     CALL_EXPR_ARG (t, i) = args[i];
10863   process_call_operands (t);
10864   SET_EXPR_LOCATION (t, loc);
10865   return t;
10866 }
10867 
10868 /* Like build_call_array, but takes a vec.  */
10869 
10870 tree
10871 build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args)
10872 {
10873   tree ret, t;
10874   unsigned int ix;
10875 
10876   ret = build_call_1 (return_type, fn, vec_safe_length (args));
10877   FOR_EACH_VEC_SAFE_ELT (args, ix, t)
10878     CALL_EXPR_ARG (ret, ix) = t;
10879   process_call_operands (ret);
10880   return ret;
10881 }
10882 
10883 /* Conveniently construct a function call expression.  FNDECL names the
10884    function to be called and N arguments are passed in the array
10885    ARGARRAY.  */
10886 
10887 tree
10888 build_call_expr_loc_array (location_t loc, tree fndecl, int n, tree *argarray)
10889 {
10890   tree fntype = TREE_TYPE (fndecl);
10891   tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
10892 
10893   return fold_build_call_array_loc (loc, TREE_TYPE (fntype), fn, n, argarray);
10894 }
10895 
10896 /* Conveniently construct a function call expression.  FNDECL names the
10897    function to be called and the arguments are passed in the vector
10898    VEC.  */
10899 
10900 tree
10901 build_call_expr_loc_vec (location_t loc, tree fndecl, vec<tree, va_gc> *vec)
10902 {
10903   return build_call_expr_loc_array (loc, fndecl, vec_safe_length (vec),
10904 				    vec_safe_address (vec));
10905 }
10906 
10907 
10908 /* Conveniently construct a function call expression.  FNDECL names the
10909    function to be called, N is the number of arguments, and the "..."
10910    parameters are the argument expressions.  */
10911 
10912 tree
10913 build_call_expr_loc (location_t loc, tree fndecl, int n, ...)
10914 {
10915   va_list ap;
10916   tree *argarray = XALLOCAVEC (tree, n);
10917   int i;
10918 
10919   va_start (ap, n);
10920   for (i = 0; i < n; i++)
10921     argarray[i] = va_arg (ap, tree);
10922   va_end (ap);
10923   return build_call_expr_loc_array (loc, fndecl, n, argarray);
10924 }
10925 
10926 /* Like build_call_expr_loc (UNKNOWN_LOCATION, ...).  Duplicated because
10927    varargs macros aren't supported by all bootstrap compilers.  */
10928 
10929 tree
10930 build_call_expr (tree fndecl, int n, ...)
10931 {
10932   va_list ap;
10933   tree *argarray = XALLOCAVEC (tree, n);
10934   int i;
10935 
10936   va_start (ap, n);
10937   for (i = 0; i < n; i++)
10938     argarray[i] = va_arg (ap, tree);
10939   va_end (ap);
10940   return build_call_expr_loc_array (UNKNOWN_LOCATION, fndecl, n, argarray);
10941 }
10942 
10943 /* Build an internal call to IFN, with arguments ARGS[0:N-1] and with return
10944    type TYPE.  This is just like CALL_EXPR, except its CALL_EXPR_FN is NULL.
10945    It will get gimplified later into an ordinary internal function.  */
10946 
10947 tree
10948 build_call_expr_internal_loc_array (location_t loc, internal_fn ifn,
10949 				    tree type, int n, const tree *args)
10950 {
10951   tree t = build_call_1 (type, NULL_TREE, n);
10952   for (int i = 0; i < n; ++i)
10953     CALL_EXPR_ARG (t, i) = args[i];
10954   SET_EXPR_LOCATION (t, loc);
10955   CALL_EXPR_IFN (t) = ifn;
10956   return t;
10957 }
10958 
10959 /* Build internal call expression.  This is just like CALL_EXPR, except
10960    its CALL_EXPR_FN is NULL.  It will get gimplified later into ordinary
10961    internal function.  */
10962 
10963 tree
10964 build_call_expr_internal_loc (location_t loc, enum internal_fn ifn,
10965 			      tree type, int n, ...)
10966 {
10967   va_list ap;
10968   tree *argarray = XALLOCAVEC (tree, n);
10969   int i;
10970 
10971   va_start (ap, n);
10972   for (i = 0; i < n; i++)
10973     argarray[i] = va_arg (ap, tree);
10974   va_end (ap);
10975   return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
10976 }
10977 
10978 /* Return a function call to FN, if the target is guaranteed to support it,
10979    or null otherwise.
10980 
10981    N is the number of arguments, passed in the "...", and TYPE is the
10982    type of the return value.  */
10983 
10984 tree
10985 maybe_build_call_expr_loc (location_t loc, combined_fn fn, tree type,
10986 			   int n, ...)
10987 {
10988   va_list ap;
10989   tree *argarray = XALLOCAVEC (tree, n);
10990   int i;
10991 
10992   va_start (ap, n);
10993   for (i = 0; i < n; i++)
10994     argarray[i] = va_arg (ap, tree);
10995   va_end (ap);
10996   if (internal_fn_p (fn))
10997     {
10998       internal_fn ifn = as_internal_fn (fn);
10999       if (direct_internal_fn_p (ifn))
11000 	{
11001 	  tree_pair types = direct_internal_fn_types (ifn, type, argarray);
11002 	  if (!direct_internal_fn_supported_p (ifn, types,
11003 					       OPTIMIZE_FOR_BOTH))
11004 	    return NULL_TREE;
11005 	}
11006       return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
11007     }
11008   else
11009     {
11010       tree fndecl = builtin_decl_implicit (as_builtin_fn (fn));
11011       if (!fndecl)
11012 	return NULL_TREE;
11013       return build_call_expr_loc_array (loc, fndecl, n, argarray);
11014     }
11015 }
11016 
11017 /* Return a function call to the appropriate builtin alloca variant.
11018 
11019    SIZE is the size to be allocated.  ALIGN, if non-zero, is the requested
11020    alignment of the allocated area.  MAX_SIZE, if non-negative, is an upper
11021    bound for SIZE in case it is not a fixed value.  */
11022 
11023 tree
11024 build_alloca_call_expr (tree size, unsigned int align, HOST_WIDE_INT max_size)
11025 {
11026   if (max_size >= 0)
11027     {
11028       tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX);
11029       return
11030 	build_call_expr (t, 3, size, size_int (align), size_int (max_size));
11031     }
11032   else if (align > 0)
11033     {
11034       tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
11035       return build_call_expr (t, 2, size, size_int (align));
11036     }
11037   else
11038     {
11039       tree t = builtin_decl_explicit (BUILT_IN_ALLOCA);
11040       return build_call_expr (t, 1, size);
11041     }
11042 }
11043 
11044 /* Create a new constant string literal and return a char* pointer to it.
11045    The STRING_CST value is the LEN characters at STR.  */
11046 tree
11047 build_string_literal (int len, const char *str)
11048 {
11049   tree t, elem, index, type;
11050 
11051   t = build_string (len, str);
11052   elem = build_type_variant (char_type_node, 1, 0);
11053   index = build_index_type (size_int (len - 1));
11054   type = build_array_type (elem, index);
11055   TREE_TYPE (t) = type;
11056   TREE_CONSTANT (t) = 1;
11057   TREE_READONLY (t) = 1;
11058   TREE_STATIC (t) = 1;
11059 
11060   type = build_pointer_type (elem);
11061   t = build1 (ADDR_EXPR, type,
11062 	      build4 (ARRAY_REF, elem,
11063 		      t, integer_zero_node, NULL_TREE, NULL_TREE));
11064   return t;
11065 }
11066 
11067 
11068 
11069 /* Return true if T (assumed to be a DECL) must be assigned a memory
11070    location.  */
11071 
11072 bool
11073 needs_to_live_in_memory (const_tree t)
11074 {
11075   return (TREE_ADDRESSABLE (t)
11076 	  || is_global_var (t)
11077 	  || (TREE_CODE (t) == RESULT_DECL
11078 	      && !DECL_BY_REFERENCE (t)
11079 	      && aggregate_value_p (t, current_function_decl)));
11080 }
11081 
11082 /* Return value of a constant X and sign-extend it.  */
11083 
11084 HOST_WIDE_INT
11085 int_cst_value (const_tree x)
11086 {
11087   unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
11088   unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
11089 
11090   /* Make sure the sign-extended value will fit in a HOST_WIDE_INT.  */
11091   gcc_assert (cst_and_fits_in_hwi (x));
11092 
11093   if (bits < HOST_BITS_PER_WIDE_INT)
11094     {
11095       bool negative = ((val >> (bits - 1)) & 1) != 0;
11096       if (negative)
11097 	val |= HOST_WIDE_INT_M1U << (bits - 1) << 1;
11098       else
11099 	val &= ~(HOST_WIDE_INT_M1U << (bits - 1) << 1);
11100     }
11101 
11102   return val;
11103 }
11104 
11105 /* If TYPE is an integral or pointer type, return an integer type with
11106    the same precision which is unsigned iff UNSIGNEDP is true, or itself
11107    if TYPE is already an integer type of signedness UNSIGNEDP.  */
11108 
11109 tree
11110 signed_or_unsigned_type_for (int unsignedp, tree type)
11111 {
11112   if (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type) == unsignedp)
11113     return type;
11114 
11115   if (TREE_CODE (type) == VECTOR_TYPE)
11116     {
11117       tree inner = TREE_TYPE (type);
11118       tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
11119       if (!inner2)
11120 	return NULL_TREE;
11121       if (inner == inner2)
11122 	return type;
11123       return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
11124     }
11125 
11126   if (!INTEGRAL_TYPE_P (type)
11127       && !POINTER_TYPE_P (type)
11128       && TREE_CODE (type) != OFFSET_TYPE)
11129     return NULL_TREE;
11130 
11131   return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
11132 }
11133 
11134 /* If TYPE is an integral or pointer type, return an integer type with
11135    the same precision which is unsigned, or itself if TYPE is already an
11136    unsigned integer type.  */
11137 
11138 tree
11139 unsigned_type_for (tree type)
11140 {
11141   return signed_or_unsigned_type_for (1, type);
11142 }
11143 
11144 /* If TYPE is an integral or pointer type, return an integer type with
11145    the same precision which is signed, or itself if TYPE is already a
11146    signed integer type.  */
11147 
11148 tree
11149 signed_type_for (tree type)
11150 {
11151   return signed_or_unsigned_type_for (0, type);
11152 }
11153 
11154 /* If TYPE is a vector type, return a signed integer vector type with the
11155    same width and number of subparts. Otherwise return boolean_type_node.  */
11156 
11157 tree
11158 truth_type_for (tree type)
11159 {
11160   if (TREE_CODE (type) == VECTOR_TYPE)
11161     {
11162       if (VECTOR_BOOLEAN_TYPE_P (type))
11163 	return type;
11164       return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (type),
11165 				      GET_MODE_SIZE (TYPE_MODE (type)));
11166     }
11167   else
11168     return boolean_type_node;
11169 }
11170 
11171 /* Returns the largest value obtainable by casting something in INNER type to
11172    OUTER type.  */
11173 
11174 tree
11175 upper_bound_in_type (tree outer, tree inner)
11176 {
11177   unsigned int det = 0;
11178   unsigned oprec = TYPE_PRECISION (outer);
11179   unsigned iprec = TYPE_PRECISION (inner);
11180   unsigned prec;
11181 
11182   /* Compute a unique number for every combination.  */
11183   det |= (oprec > iprec) ? 4 : 0;
11184   det |= TYPE_UNSIGNED (outer) ? 2 : 0;
11185   det |= TYPE_UNSIGNED (inner) ? 1 : 0;
11186 
11187   /* Determine the exponent to use.  */
11188   switch (det)
11189     {
11190     case 0:
11191     case 1:
11192       /* oprec <= iprec, outer: signed, inner: don't care.  */
11193       prec = oprec - 1;
11194       break;
11195     case 2:
11196     case 3:
11197       /* oprec <= iprec, outer: unsigned, inner: don't care.  */
11198       prec = oprec;
11199       break;
11200     case 4:
11201       /* oprec > iprec, outer: signed, inner: signed.  */
11202       prec = iprec - 1;
11203       break;
11204     case 5:
11205       /* oprec > iprec, outer: signed, inner: unsigned.  */
11206       prec = iprec;
11207       break;
11208     case 6:
11209       /* oprec > iprec, outer: unsigned, inner: signed.  */
11210       prec = oprec;
11211       break;
11212     case 7:
11213       /* oprec > iprec, outer: unsigned, inner: unsigned.  */
11214       prec = iprec;
11215       break;
11216     default:
11217       gcc_unreachable ();
11218     }
11219 
11220   return wide_int_to_tree (outer,
11221 			   wi::mask (prec, false, TYPE_PRECISION (outer)));
11222 }
11223 
11224 /* Returns the smallest value obtainable by casting something in INNER type to
11225    OUTER type.  */
11226 
11227 tree
11228 lower_bound_in_type (tree outer, tree inner)
11229 {
11230   unsigned oprec = TYPE_PRECISION (outer);
11231   unsigned iprec = TYPE_PRECISION (inner);
11232 
11233   /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
11234      and obtain 0.  */
11235   if (TYPE_UNSIGNED (outer)
11236       /* If we are widening something of an unsigned type, OUTER type
11237 	 contains all values of INNER type.  In particular, both INNER
11238 	 and OUTER types have zero in common.  */
11239       || (oprec > iprec && TYPE_UNSIGNED (inner)))
11240     return build_int_cst (outer, 0);
11241   else
11242     {
11243       /* If we are widening a signed type to another signed type, we
11244 	 want to obtain -2^^(iprec-1).  If we are keeping the
11245 	 precision or narrowing to a signed type, we want to obtain
11246 	 -2^(oprec-1).  */
11247       unsigned prec = oprec > iprec ? iprec : oprec;
11248       return wide_int_to_tree (outer,
11249 			       wi::mask (prec - 1, true,
11250 					 TYPE_PRECISION (outer)));
11251     }
11252 }
11253 
11254 /* Return nonzero if two operands that are suitable for PHI nodes are
11255    necessarily equal.  Specifically, both ARG0 and ARG1 must be either
11256    SSA_NAME or invariant.  Note that this is strictly an optimization.
11257    That is, callers of this function can directly call operand_equal_p
11258    and get the same result, only slower.  */
11259 
11260 int
11261 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
11262 {
11263   if (arg0 == arg1)
11264     return 1;
11265   if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
11266     return 0;
11267   return operand_equal_p (arg0, arg1, 0);
11268 }
11269 
11270 /* Returns number of zeros at the end of binary representation of X.  */
11271 
11272 tree
11273 num_ending_zeros (const_tree x)
11274 {
11275   return build_int_cst (TREE_TYPE (x), wi::ctz (wi::to_wide (x)));
11276 }
11277 
11278 
11279 #define WALK_SUBTREE(NODE)				\
11280   do							\
11281     {							\
11282       result = walk_tree_1 (&(NODE), func, data, pset, lh);	\
11283       if (result)					\
11284 	return result;					\
11285     }							\
11286   while (0)
11287 
11288 /* This is a subroutine of walk_tree that walks field of TYPE that are to
11289    be walked whenever a type is seen in the tree.  Rest of operands and return
11290    value are as for walk_tree.  */
11291 
11292 static tree
11293 walk_type_fields (tree type, walk_tree_fn func, void *data,
11294 		  hash_set<tree> *pset, walk_tree_lh lh)
11295 {
11296   tree result = NULL_TREE;
11297 
11298   switch (TREE_CODE (type))
11299     {
11300     case POINTER_TYPE:
11301     case REFERENCE_TYPE:
11302     case VECTOR_TYPE:
11303       /* We have to worry about mutually recursive pointers.  These can't
11304 	 be written in C.  They can in Ada.  It's pathological, but
11305 	 there's an ACATS test (c38102a) that checks it.  Deal with this
11306 	 by checking if we're pointing to another pointer, that one
11307 	 points to another pointer, that one does too, and we have no htab.
11308 	 If so, get a hash table.  We check three levels deep to avoid
11309 	 the cost of the hash table if we don't need one.  */
11310       if (POINTER_TYPE_P (TREE_TYPE (type))
11311 	  && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
11312 	  && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
11313 	  && !pset)
11314 	{
11315 	  result = walk_tree_without_duplicates (&TREE_TYPE (type),
11316 						 func, data);
11317 	  if (result)
11318 	    return result;
11319 
11320 	  break;
11321 	}
11322 
11323       /* fall through */
11324 
11325     case COMPLEX_TYPE:
11326       WALK_SUBTREE (TREE_TYPE (type));
11327       break;
11328 
11329     case METHOD_TYPE:
11330       WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
11331 
11332       /* Fall through.  */
11333 
11334     case FUNCTION_TYPE:
11335       WALK_SUBTREE (TREE_TYPE (type));
11336       {
11337 	tree arg;
11338 
11339 	/* We never want to walk into default arguments.  */
11340 	for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
11341 	  WALK_SUBTREE (TREE_VALUE (arg));
11342       }
11343       break;
11344 
11345     case ARRAY_TYPE:
11346       /* Don't follow this nodes's type if a pointer for fear that
11347 	 we'll have infinite recursion.  If we have a PSET, then we
11348 	 need not fear.  */
11349       if (pset
11350 	  || (!POINTER_TYPE_P (TREE_TYPE (type))
11351 	      && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
11352 	WALK_SUBTREE (TREE_TYPE (type));
11353       WALK_SUBTREE (TYPE_DOMAIN (type));
11354       break;
11355 
11356     case OFFSET_TYPE:
11357       WALK_SUBTREE (TREE_TYPE (type));
11358       WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
11359       break;
11360 
11361     default:
11362       break;
11363     }
11364 
11365   return NULL_TREE;
11366 }
11367 
11368 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal.  FUNC is
11369    called with the DATA and the address of each sub-tree.  If FUNC returns a
11370    non-NULL value, the traversal is stopped, and the value returned by FUNC
11371    is returned.  If PSET is non-NULL it is used to record the nodes visited,
11372    and to avoid visiting a node more than once.  */
11373 
11374 tree
11375 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
11376 	     hash_set<tree> *pset, walk_tree_lh lh)
11377 {
11378   enum tree_code code;
11379   int walk_subtrees;
11380   tree result;
11381 
11382 #define WALK_SUBTREE_TAIL(NODE)				\
11383   do							\
11384     {							\
11385        tp = & (NODE);					\
11386        goto tail_recurse;				\
11387     }							\
11388   while (0)
11389 
11390  tail_recurse:
11391   /* Skip empty subtrees.  */
11392   if (!*tp)
11393     return NULL_TREE;
11394 
11395   /* Don't walk the same tree twice, if the user has requested
11396      that we avoid doing so.  */
11397   if (pset && pset->add (*tp))
11398     return NULL_TREE;
11399 
11400   /* Call the function.  */
11401   walk_subtrees = 1;
11402   result = (*func) (tp, &walk_subtrees, data);
11403 
11404   /* If we found something, return it.  */
11405   if (result)
11406     return result;
11407 
11408   code = TREE_CODE (*tp);
11409 
11410   /* Even if we didn't, FUNC may have decided that there was nothing
11411      interesting below this point in the tree.  */
11412   if (!walk_subtrees)
11413     {
11414       /* But we still need to check our siblings.  */
11415       if (code == TREE_LIST)
11416 	WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
11417       else if (code == OMP_CLAUSE)
11418 	WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11419       else
11420 	return NULL_TREE;
11421     }
11422 
11423   if (lh)
11424     {
11425       result = (*lh) (tp, &walk_subtrees, func, data, pset);
11426       if (result || !walk_subtrees)
11427         return result;
11428     }
11429 
11430   switch (code)
11431     {
11432     case ERROR_MARK:
11433     case IDENTIFIER_NODE:
11434     case INTEGER_CST:
11435     case REAL_CST:
11436     case FIXED_CST:
11437     case VECTOR_CST:
11438     case STRING_CST:
11439     case BLOCK:
11440     case PLACEHOLDER_EXPR:
11441     case SSA_NAME:
11442     case FIELD_DECL:
11443     case RESULT_DECL:
11444       /* None of these have subtrees other than those already walked
11445 	 above.  */
11446       break;
11447 
11448     case TREE_LIST:
11449       WALK_SUBTREE (TREE_VALUE (*tp));
11450       WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
11451       break;
11452 
11453     case TREE_VEC:
11454       {
11455 	int len = TREE_VEC_LENGTH (*tp);
11456 
11457 	if (len == 0)
11458 	  break;
11459 
11460 	/* Walk all elements but the first.  */
11461 	while (--len)
11462 	  WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
11463 
11464 	/* Now walk the first one as a tail call.  */
11465 	WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
11466       }
11467 
11468     case COMPLEX_CST:
11469       WALK_SUBTREE (TREE_REALPART (*tp));
11470       WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
11471 
11472     case CONSTRUCTOR:
11473       {
11474 	unsigned HOST_WIDE_INT idx;
11475 	constructor_elt *ce;
11476 
11477 	for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (*tp), idx, &ce);
11478 	     idx++)
11479 	  WALK_SUBTREE (ce->value);
11480       }
11481       break;
11482 
11483     case SAVE_EXPR:
11484       WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
11485 
11486     case BIND_EXPR:
11487       {
11488 	tree decl;
11489 	for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
11490 	  {
11491 	    /* Walk the DECL_INITIAL and DECL_SIZE.  We don't want to walk
11492 	       into declarations that are just mentioned, rather than
11493 	       declared; they don't really belong to this part of the tree.
11494 	       And, we can see cycles: the initializer for a declaration
11495 	       can refer to the declaration itself.  */
11496 	    WALK_SUBTREE (DECL_INITIAL (decl));
11497 	    WALK_SUBTREE (DECL_SIZE (decl));
11498 	    WALK_SUBTREE (DECL_SIZE_UNIT (decl));
11499 	  }
11500 	WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
11501       }
11502 
11503     case STATEMENT_LIST:
11504       {
11505 	tree_stmt_iterator i;
11506 	for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
11507 	  WALK_SUBTREE (*tsi_stmt_ptr (i));
11508       }
11509       break;
11510 
11511     case OMP_CLAUSE:
11512       switch (OMP_CLAUSE_CODE (*tp))
11513 	{
11514 	case OMP_CLAUSE_GANG:
11515 	case OMP_CLAUSE__GRIDDIM_:
11516 	  WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
11517 	  /* FALLTHRU */
11518 
11519 	case OMP_CLAUSE_ASYNC:
11520 	case OMP_CLAUSE_WAIT:
11521 	case OMP_CLAUSE_WORKER:
11522 	case OMP_CLAUSE_VECTOR:
11523 	case OMP_CLAUSE_NUM_GANGS:
11524 	case OMP_CLAUSE_NUM_WORKERS:
11525 	case OMP_CLAUSE_VECTOR_LENGTH:
11526 	case OMP_CLAUSE_PRIVATE:
11527 	case OMP_CLAUSE_SHARED:
11528 	case OMP_CLAUSE_FIRSTPRIVATE:
11529 	case OMP_CLAUSE_COPYIN:
11530 	case OMP_CLAUSE_COPYPRIVATE:
11531 	case OMP_CLAUSE_FINAL:
11532 	case OMP_CLAUSE_IF:
11533 	case OMP_CLAUSE_NUM_THREADS:
11534 	case OMP_CLAUSE_SCHEDULE:
11535 	case OMP_CLAUSE_UNIFORM:
11536 	case OMP_CLAUSE_DEPEND:
11537 	case OMP_CLAUSE_NUM_TEAMS:
11538 	case OMP_CLAUSE_THREAD_LIMIT:
11539 	case OMP_CLAUSE_DEVICE:
11540 	case OMP_CLAUSE_DIST_SCHEDULE:
11541 	case OMP_CLAUSE_SAFELEN:
11542 	case OMP_CLAUSE_SIMDLEN:
11543 	case OMP_CLAUSE_ORDERED:
11544 	case OMP_CLAUSE_PRIORITY:
11545 	case OMP_CLAUSE_GRAINSIZE:
11546 	case OMP_CLAUSE_NUM_TASKS:
11547 	case OMP_CLAUSE_HINT:
11548 	case OMP_CLAUSE_TO_DECLARE:
11549 	case OMP_CLAUSE_LINK:
11550 	case OMP_CLAUSE_USE_DEVICE_PTR:
11551 	case OMP_CLAUSE_IS_DEVICE_PTR:
11552 	case OMP_CLAUSE__LOOPTEMP_:
11553 	case OMP_CLAUSE__SIMDUID_:
11554 	  WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
11555 	  /* FALLTHRU */
11556 
11557 	case OMP_CLAUSE_INDEPENDENT:
11558 	case OMP_CLAUSE_NOWAIT:
11559 	case OMP_CLAUSE_DEFAULT:
11560 	case OMP_CLAUSE_UNTIED:
11561 	case OMP_CLAUSE_MERGEABLE:
11562 	case OMP_CLAUSE_PROC_BIND:
11563 	case OMP_CLAUSE_INBRANCH:
11564 	case OMP_CLAUSE_NOTINBRANCH:
11565 	case OMP_CLAUSE_FOR:
11566 	case OMP_CLAUSE_PARALLEL:
11567 	case OMP_CLAUSE_SECTIONS:
11568 	case OMP_CLAUSE_TASKGROUP:
11569 	case OMP_CLAUSE_NOGROUP:
11570 	case OMP_CLAUSE_THREADS:
11571 	case OMP_CLAUSE_SIMD:
11572 	case OMP_CLAUSE_DEFAULTMAP:
11573 	case OMP_CLAUSE_AUTO:
11574 	case OMP_CLAUSE_SEQ:
11575 	case OMP_CLAUSE_TILE:
11576 	case OMP_CLAUSE__SIMT_:
11577 	  WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11578 
11579 	case OMP_CLAUSE_LASTPRIVATE:
11580 	  WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11581 	  WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
11582 	  WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11583 
11584 	case OMP_CLAUSE_COLLAPSE:
11585 	  {
11586 	    int i;
11587 	    for (i = 0; i < 3; i++)
11588 	      WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11589 	    WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11590 	  }
11591 
11592 	case OMP_CLAUSE_LINEAR:
11593 	  WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11594 	  WALK_SUBTREE (OMP_CLAUSE_LINEAR_STEP (*tp));
11595 	  WALK_SUBTREE (OMP_CLAUSE_LINEAR_STMT (*tp));
11596 	  WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11597 
11598 	case OMP_CLAUSE_ALIGNED:
11599 	case OMP_CLAUSE_FROM:
11600 	case OMP_CLAUSE_TO:
11601 	case OMP_CLAUSE_MAP:
11602 	case OMP_CLAUSE__CACHE_:
11603 	  WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11604 	  WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
11605 	  WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11606 
11607 	case OMP_CLAUSE_REDUCTION:
11608 	  {
11609 	    int i;
11610 	    for (i = 0; i < 5; i++)
11611 	      WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11612 	    WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11613 	  }
11614 
11615 	default:
11616 	  gcc_unreachable ();
11617 	}
11618       break;
11619 
11620     case TARGET_EXPR:
11621       {
11622 	int i, len;
11623 
11624 	/* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
11625 	   But, we only want to walk once.  */
11626 	len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
11627 	for (i = 0; i < len; ++i)
11628 	  WALK_SUBTREE (TREE_OPERAND (*tp, i));
11629 	WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
11630       }
11631 
11632     case DECL_EXPR:
11633       /* If this is a TYPE_DECL, walk into the fields of the type that it's
11634 	 defining.  We only want to walk into these fields of a type in this
11635 	 case and not in the general case of a mere reference to the type.
11636 
11637 	 The criterion is as follows: if the field can be an expression, it
11638 	 must be walked only here.  This should be in keeping with the fields
11639 	 that are directly gimplified in gimplify_type_sizes in order for the
11640 	 mark/copy-if-shared/unmark machinery of the gimplifier to work with
11641 	 variable-sized types.
11642 
11643 	 Note that DECLs get walked as part of processing the BIND_EXPR.  */
11644       if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
11645 	{
11646 	  tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
11647 	  if (TREE_CODE (*type_p) == ERROR_MARK)
11648 	    return NULL_TREE;
11649 
11650 	  /* Call the function for the type.  See if it returns anything or
11651 	     doesn't want us to continue.  If we are to continue, walk both
11652 	     the normal fields and those for the declaration case.  */
11653 	  result = (*func) (type_p, &walk_subtrees, data);
11654 	  if (result || !walk_subtrees)
11655 	    return result;
11656 
11657 	  /* But do not walk a pointed-to type since it may itself need to
11658 	     be walked in the declaration case if it isn't anonymous.  */
11659 	  if (!POINTER_TYPE_P (*type_p))
11660 	    {
11661 	      result = walk_type_fields (*type_p, func, data, pset, lh);
11662 	      if (result)
11663 		return result;
11664 	    }
11665 
11666 	  /* If this is a record type, also walk the fields.  */
11667 	  if (RECORD_OR_UNION_TYPE_P (*type_p))
11668 	    {
11669 	      tree field;
11670 
11671 	      for (field = TYPE_FIELDS (*type_p); field;
11672 		   field = DECL_CHAIN (field))
11673 		{
11674 		  /* We'd like to look at the type of the field, but we can
11675 		     easily get infinite recursion.  So assume it's pointed
11676 		     to elsewhere in the tree.  Also, ignore things that
11677 		     aren't fields.  */
11678 		  if (TREE_CODE (field) != FIELD_DECL)
11679 		    continue;
11680 
11681 		  WALK_SUBTREE (DECL_FIELD_OFFSET (field));
11682 		  WALK_SUBTREE (DECL_SIZE (field));
11683 		  WALK_SUBTREE (DECL_SIZE_UNIT (field));
11684 		  if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
11685 		    WALK_SUBTREE (DECL_QUALIFIER (field));
11686 		}
11687 	    }
11688 
11689 	  /* Same for scalar types.  */
11690 	  else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
11691 		   || TREE_CODE (*type_p) == ENUMERAL_TYPE
11692 		   || TREE_CODE (*type_p) == INTEGER_TYPE
11693 		   || TREE_CODE (*type_p) == FIXED_POINT_TYPE
11694 		   || TREE_CODE (*type_p) == REAL_TYPE)
11695 	    {
11696 	      WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
11697 	      WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
11698 	    }
11699 
11700 	  WALK_SUBTREE (TYPE_SIZE (*type_p));
11701 	  WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
11702 	}
11703       /* FALLTHRU */
11704 
11705     default:
11706       if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
11707 	{
11708 	  int i, len;
11709 
11710 	  /* Walk over all the sub-trees of this operand.  */
11711 	  len = TREE_OPERAND_LENGTH (*tp);
11712 
11713 	  /* Go through the subtrees.  We need to do this in forward order so
11714 	     that the scope of a FOR_EXPR is handled properly.  */
11715 	  if (len)
11716 	    {
11717 	      for (i = 0; i < len - 1; ++i)
11718 		WALK_SUBTREE (TREE_OPERAND (*tp, i));
11719 	      WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
11720 	    }
11721 	}
11722       /* If this is a type, walk the needed fields in the type.  */
11723       else if (TYPE_P (*tp))
11724 	return walk_type_fields (*tp, func, data, pset, lh);
11725       break;
11726     }
11727 
11728   /* We didn't find what we were looking for.  */
11729   return NULL_TREE;
11730 
11731 #undef WALK_SUBTREE_TAIL
11732 }
11733 #undef WALK_SUBTREE
11734 
11735 /* Like walk_tree, but does not walk duplicate nodes more than once.  */
11736 
11737 tree
11738 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
11739 				walk_tree_lh lh)
11740 {
11741   tree result;
11742 
11743   hash_set<tree> pset;
11744   result = walk_tree_1 (tp, func, data, &pset, lh);
11745   return result;
11746 }
11747 
11748 
11749 tree
11750 tree_block (tree t)
11751 {
11752   const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
11753 
11754   if (IS_EXPR_CODE_CLASS (c))
11755     return LOCATION_BLOCK (t->exp.locus);
11756   gcc_unreachable ();
11757   return NULL;
11758 }
11759 
11760 void
11761 tree_set_block (tree t, tree b)
11762 {
11763   const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
11764 
11765   if (IS_EXPR_CODE_CLASS (c))
11766     {
11767       t->exp.locus = set_block (t->exp.locus, b);
11768     }
11769   else
11770     gcc_unreachable ();
11771 }
11772 
11773 /* Create a nameless artificial label and put it in the current
11774    function context.  The label has a location of LOC.  Returns the
11775    newly created label.  */
11776 
11777 tree
11778 create_artificial_label (location_t loc)
11779 {
11780   tree lab = build_decl (loc,
11781       			 LABEL_DECL, NULL_TREE, void_type_node);
11782 
11783   DECL_ARTIFICIAL (lab) = 1;
11784   DECL_IGNORED_P (lab) = 1;
11785   DECL_CONTEXT (lab) = current_function_decl;
11786   return lab;
11787 }
11788 
11789 /*  Given a tree, try to return a useful variable name that we can use
11790     to prefix a temporary that is being assigned the value of the tree.
11791     I.E. given  <temp> = &A, return A.  */
11792 
11793 const char *
11794 get_name (tree t)
11795 {
11796   tree stripped_decl;
11797 
11798   stripped_decl = t;
11799   STRIP_NOPS (stripped_decl);
11800   if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
11801     return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
11802   else if (TREE_CODE (stripped_decl) == SSA_NAME)
11803     {
11804       tree name = SSA_NAME_IDENTIFIER (stripped_decl);
11805       if (!name)
11806 	return NULL;
11807       return IDENTIFIER_POINTER (name);
11808     }
11809   else
11810     {
11811       switch (TREE_CODE (stripped_decl))
11812 	{
11813 	case ADDR_EXPR:
11814 	  return get_name (TREE_OPERAND (stripped_decl, 0));
11815 	default:
11816 	  return NULL;
11817 	}
11818     }
11819 }
11820 
11821 /* Return true if TYPE has a variable argument list.  */
11822 
11823 bool
11824 stdarg_p (const_tree fntype)
11825 {
11826   function_args_iterator args_iter;
11827   tree n = NULL_TREE, t;
11828 
11829   if (!fntype)
11830     return false;
11831 
11832   FOREACH_FUNCTION_ARGS (fntype, t, args_iter)
11833     {
11834       n = t;
11835     }
11836 
11837   return n != NULL_TREE && n != void_type_node;
11838 }
11839 
11840 /* Return true if TYPE has a prototype.  */
11841 
11842 bool
11843 prototype_p (const_tree fntype)
11844 {
11845   tree t;
11846 
11847   gcc_assert (fntype != NULL_TREE);
11848 
11849   t = TYPE_ARG_TYPES (fntype);
11850   return (t != NULL_TREE);
11851 }
11852 
11853 /* If BLOCK is inlined from an __attribute__((__artificial__))
11854    routine, return pointer to location from where it has been
11855    called.  */
11856 location_t *
11857 block_nonartificial_location (tree block)
11858 {
11859   location_t *ret = NULL;
11860 
11861   while (block && TREE_CODE (block) == BLOCK
11862 	 && BLOCK_ABSTRACT_ORIGIN (block))
11863     {
11864       tree ao = BLOCK_ABSTRACT_ORIGIN (block);
11865 
11866       while (TREE_CODE (ao) == BLOCK
11867 	     && BLOCK_ABSTRACT_ORIGIN (ao)
11868 	     && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
11869 	ao = BLOCK_ABSTRACT_ORIGIN (ao);
11870 
11871       if (TREE_CODE (ao) == FUNCTION_DECL)
11872 	{
11873 	  /* If AO is an artificial inline, point RET to the
11874 	     call site locus at which it has been inlined and continue
11875 	     the loop, in case AO's caller is also an artificial
11876 	     inline.  */
11877 	  if (DECL_DECLARED_INLINE_P (ao)
11878 	      && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
11879 	    ret = &BLOCK_SOURCE_LOCATION (block);
11880 	  else
11881 	    break;
11882 	}
11883       else if (TREE_CODE (ao) != BLOCK)
11884 	break;
11885 
11886       block = BLOCK_SUPERCONTEXT (block);
11887     }
11888   return ret;
11889 }
11890 
11891 
11892 /* If EXP is inlined from an __attribute__((__artificial__))
11893    function, return the location of the original call expression.  */
11894 
11895 location_t
11896 tree_nonartificial_location (tree exp)
11897 {
11898   location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
11899 
11900   if (loc)
11901     return *loc;
11902   else
11903     return EXPR_LOCATION (exp);
11904 }
11905 
11906 
11907 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
11908    nodes.  */
11909 
11910 /* Return the hash code X, an OPTIMIZATION_NODE or TARGET_OPTION code.  */
11911 
11912 hashval_t
11913 cl_option_hasher::hash (tree x)
11914 {
11915   const_tree const t = x;
11916   const char *p;
11917   size_t i;
11918   size_t len = 0;
11919   hashval_t hash = 0;
11920 
11921   if (TREE_CODE (t) == OPTIMIZATION_NODE)
11922     {
11923       p = (const char *)TREE_OPTIMIZATION (t);
11924       len = sizeof (struct cl_optimization);
11925     }
11926 
11927   else if (TREE_CODE (t) == TARGET_OPTION_NODE)
11928     return cl_target_option_hash (TREE_TARGET_OPTION (t));
11929 
11930   else
11931     gcc_unreachable ();
11932 
11933   /* assume most opt flags are just 0/1, some are 2-3, and a few might be
11934      something else.  */
11935   for (i = 0; i < len; i++)
11936     if (p[i])
11937       hash = (hash << 4) ^ ((i << 2) | p[i]);
11938 
11939   return hash;
11940 }
11941 
11942 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
11943    TARGET_OPTION tree node) is the same as that given by *Y, which is the
11944    same.  */
11945 
11946 bool
11947 cl_option_hasher::equal (tree x, tree y)
11948 {
11949   const_tree const xt = x;
11950   const_tree const yt = y;
11951   const char *xp;
11952   const char *yp;
11953   size_t len;
11954 
11955   if (TREE_CODE (xt) != TREE_CODE (yt))
11956     return 0;
11957 
11958   if (TREE_CODE (xt) == OPTIMIZATION_NODE)
11959     {
11960       xp = (const char *)TREE_OPTIMIZATION (xt);
11961       yp = (const char *)TREE_OPTIMIZATION (yt);
11962       len = sizeof (struct cl_optimization);
11963     }
11964 
11965   else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
11966     {
11967       return cl_target_option_eq (TREE_TARGET_OPTION (xt),
11968 				  TREE_TARGET_OPTION (yt));
11969     }
11970 
11971   else
11972     gcc_unreachable ();
11973 
11974   return (memcmp (xp, yp, len) == 0);
11975 }
11976 
11977 /* Build an OPTIMIZATION_NODE based on the options in OPTS.  */
11978 
11979 tree
11980 build_optimization_node (struct gcc_options *opts)
11981 {
11982   tree t;
11983 
11984   /* Use the cache of optimization nodes.  */
11985 
11986   cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
11987 			opts);
11988 
11989   tree *slot = cl_option_hash_table->find_slot (cl_optimization_node, INSERT);
11990   t = *slot;
11991   if (!t)
11992     {
11993       /* Insert this one into the hash table.  */
11994       t = cl_optimization_node;
11995       *slot = t;
11996 
11997       /* Make a new node for next time round.  */
11998       cl_optimization_node = make_node (OPTIMIZATION_NODE);
11999     }
12000 
12001   return t;
12002 }
12003 
12004 /* Build a TARGET_OPTION_NODE based on the options in OPTS.  */
12005 
12006 tree
12007 build_target_option_node (struct gcc_options *opts)
12008 {
12009   tree t;
12010 
12011   /* Use the cache of optimization nodes.  */
12012 
12013   cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
12014 			 opts);
12015 
12016   tree *slot = cl_option_hash_table->find_slot (cl_target_option_node, INSERT);
12017   t = *slot;
12018   if (!t)
12019     {
12020       /* Insert this one into the hash table.  */
12021       t = cl_target_option_node;
12022       *slot = t;
12023 
12024       /* Make a new node for next time round.  */
12025       cl_target_option_node = make_node (TARGET_OPTION_NODE);
12026     }
12027 
12028   return t;
12029 }
12030 
12031 /* Clear TREE_TARGET_GLOBALS of all TARGET_OPTION_NODE trees,
12032    so that they aren't saved during PCH writing.  */
12033 
12034 void
12035 prepare_target_option_nodes_for_pch (void)
12036 {
12037   hash_table<cl_option_hasher>::iterator iter = cl_option_hash_table->begin ();
12038   for (; iter != cl_option_hash_table->end (); ++iter)
12039     if (TREE_CODE (*iter) == TARGET_OPTION_NODE)
12040       TREE_TARGET_GLOBALS (*iter) = NULL;
12041 }
12042 
12043 /* Determine the "ultimate origin" of a block.  The block may be an inlined
12044    instance of an inlined instance of a block which is local to an inline
12045    function, so we have to trace all of the way back through the origin chain
12046    to find out what sort of node actually served as the original seed for the
12047    given block.  */
12048 
12049 tree
12050 block_ultimate_origin (const_tree block)
12051 {
12052   tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
12053 
12054   /* BLOCK_ABSTRACT_ORIGIN can point to itself; ignore that if
12055      we're trying to output the abstract instance of this function.  */
12056   if (BLOCK_ABSTRACT (block) && immediate_origin == block)
12057     return NULL_TREE;
12058 
12059   if (immediate_origin == NULL_TREE)
12060     return NULL_TREE;
12061   else
12062     {
12063       tree ret_val;
12064       tree lookahead = immediate_origin;
12065 
12066       do
12067 	{
12068 	  ret_val = lookahead;
12069 	  lookahead = (TREE_CODE (ret_val) == BLOCK
12070 		       ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
12071 	}
12072       while (lookahead != NULL && lookahead != ret_val);
12073 
12074       /* The block's abstract origin chain may not be the *ultimate* origin of
12075 	 the block. It could lead to a DECL that has an abstract origin set.
12076 	 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
12077 	 will give us if it has one).  Note that DECL's abstract origins are
12078 	 supposed to be the most distant ancestor (or so decl_ultimate_origin
12079 	 claims), so we don't need to loop following the DECL origins.  */
12080       if (DECL_P (ret_val))
12081 	return DECL_ORIGIN (ret_val);
12082 
12083       return ret_val;
12084     }
12085 }
12086 
12087 /* Return true iff conversion from INNER_TYPE to OUTER_TYPE generates
12088    no instruction.  */
12089 
12090 bool
12091 tree_nop_conversion_p (const_tree outer_type, const_tree inner_type)
12092 {
12093   /* Do not strip casts into or out of differing address spaces.  */
12094   if (POINTER_TYPE_P (outer_type)
12095       && TYPE_ADDR_SPACE (TREE_TYPE (outer_type)) != ADDR_SPACE_GENERIC)
12096     {
12097       if (!POINTER_TYPE_P (inner_type)
12098 	  || (TYPE_ADDR_SPACE (TREE_TYPE (outer_type))
12099 	      != TYPE_ADDR_SPACE (TREE_TYPE (inner_type))))
12100 	return false;
12101     }
12102   else if (POINTER_TYPE_P (inner_type)
12103 	   && TYPE_ADDR_SPACE (TREE_TYPE (inner_type)) != ADDR_SPACE_GENERIC)
12104     {
12105       /* We already know that outer_type is not a pointer with
12106 	 a non-generic address space.  */
12107       return false;
12108     }
12109 
12110   /* Use precision rather then machine mode when we can, which gives
12111      the correct answer even for submode (bit-field) types.  */
12112   if ((INTEGRAL_TYPE_P (outer_type)
12113        || POINTER_TYPE_P (outer_type)
12114        || TREE_CODE (outer_type) == OFFSET_TYPE)
12115       && (INTEGRAL_TYPE_P (inner_type)
12116 	  || POINTER_TYPE_P (inner_type)
12117 	  || TREE_CODE (inner_type) == OFFSET_TYPE))
12118     return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
12119 
12120   /* Otherwise fall back on comparing machine modes (e.g. for
12121      aggregate types, floats).  */
12122   return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
12123 }
12124 
12125 /* Return true iff conversion in EXP generates no instruction.  Mark
12126    it inline so that we fully inline into the stripping functions even
12127    though we have two uses of this function.  */
12128 
12129 static inline bool
12130 tree_nop_conversion (const_tree exp)
12131 {
12132   tree outer_type, inner_type;
12133 
12134   if (location_wrapper_p (exp))
12135     return true;
12136   if (!CONVERT_EXPR_P (exp)
12137       && TREE_CODE (exp) != NON_LVALUE_EXPR)
12138     return false;
12139   if (TREE_OPERAND (exp, 0) == error_mark_node)
12140     return false;
12141 
12142   outer_type = TREE_TYPE (exp);
12143   inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12144 
12145   if (!inner_type)
12146     return false;
12147 
12148   return tree_nop_conversion_p (outer_type, inner_type);
12149 }
12150 
12151 /* Return true iff conversion in EXP generates no instruction.  Don't
12152    consider conversions changing the signedness.  */
12153 
12154 static bool
12155 tree_sign_nop_conversion (const_tree exp)
12156 {
12157   tree outer_type, inner_type;
12158 
12159   if (!tree_nop_conversion (exp))
12160     return false;
12161 
12162   outer_type = TREE_TYPE (exp);
12163   inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12164 
12165   return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
12166 	  && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
12167 }
12168 
12169 /* Strip conversions from EXP according to tree_nop_conversion and
12170    return the resulting expression.  */
12171 
12172 tree
12173 tree_strip_nop_conversions (tree exp)
12174 {
12175   while (tree_nop_conversion (exp))
12176     exp = TREE_OPERAND (exp, 0);
12177   return exp;
12178 }
12179 
12180 /* Strip conversions from EXP according to tree_sign_nop_conversion
12181    and return the resulting expression.  */
12182 
12183 tree
12184 tree_strip_sign_nop_conversions (tree exp)
12185 {
12186   while (tree_sign_nop_conversion (exp))
12187     exp = TREE_OPERAND (exp, 0);
12188   return exp;
12189 }
12190 
12191 /* Avoid any floating point extensions from EXP.  */
12192 tree
12193 strip_float_extensions (tree exp)
12194 {
12195   tree sub, expt, subt;
12196 
12197   /*  For floating point constant look up the narrowest type that can hold
12198       it properly and handle it like (type)(narrowest_type)constant.
12199       This way we can optimize for instance a=a*2.0 where "a" is float
12200       but 2.0 is double constant.  */
12201   if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
12202     {
12203       REAL_VALUE_TYPE orig;
12204       tree type = NULL;
12205 
12206       orig = TREE_REAL_CST (exp);
12207       if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
12208 	  && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
12209 	type = float_type_node;
12210       else if (TYPE_PRECISION (TREE_TYPE (exp))
12211 	       > TYPE_PRECISION (double_type_node)
12212 	       && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
12213 	type = double_type_node;
12214       if (type)
12215 	return build_real_truncate (type, orig);
12216     }
12217 
12218   if (!CONVERT_EXPR_P (exp))
12219     return exp;
12220 
12221   sub = TREE_OPERAND (exp, 0);
12222   subt = TREE_TYPE (sub);
12223   expt = TREE_TYPE (exp);
12224 
12225   if (!FLOAT_TYPE_P (subt))
12226     return exp;
12227 
12228   if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
12229     return exp;
12230 
12231   if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
12232     return exp;
12233 
12234   return strip_float_extensions (sub);
12235 }
12236 
12237 /* Strip out all handled components that produce invariant
12238    offsets.  */
12239 
12240 const_tree
12241 strip_invariant_refs (const_tree op)
12242 {
12243   while (handled_component_p (op))
12244     {
12245       switch (TREE_CODE (op))
12246 	{
12247 	case ARRAY_REF:
12248 	case ARRAY_RANGE_REF:
12249 	  if (!is_gimple_constant (TREE_OPERAND (op, 1))
12250 	      || TREE_OPERAND (op, 2) != NULL_TREE
12251 	      || TREE_OPERAND (op, 3) != NULL_TREE)
12252 	    return NULL;
12253 	  break;
12254 
12255 	case COMPONENT_REF:
12256 	  if (TREE_OPERAND (op, 2) != NULL_TREE)
12257 	    return NULL;
12258 	  break;
12259 
12260 	default:;
12261 	}
12262       op = TREE_OPERAND (op, 0);
12263     }
12264 
12265   return op;
12266 }
12267 
12268 static GTY(()) tree gcc_eh_personality_decl;
12269 
12270 /* Return the GCC personality function decl.  */
12271 
12272 tree
12273 lhd_gcc_personality (void)
12274 {
12275   if (!gcc_eh_personality_decl)
12276     gcc_eh_personality_decl = build_personality_function ("gcc");
12277   return gcc_eh_personality_decl;
12278 }
12279 
12280 /* TARGET is a call target of GIMPLE call statement
12281    (obtained by gimple_call_fn).  Return true if it is
12282    OBJ_TYPE_REF representing an virtual call of C++ method.
12283    (As opposed to OBJ_TYPE_REF representing objc calls
12284    through a cast where middle-end devirtualization machinery
12285    can't apply.) */
12286 
12287 bool
12288 virtual_method_call_p (const_tree target)
12289 {
12290   if (TREE_CODE (target) != OBJ_TYPE_REF)
12291     return false;
12292   tree t = TREE_TYPE (target);
12293   gcc_checking_assert (TREE_CODE (t) == POINTER_TYPE);
12294   t = TREE_TYPE (t);
12295   if (TREE_CODE (t) == FUNCTION_TYPE)
12296     return false;
12297   gcc_checking_assert (TREE_CODE (t) == METHOD_TYPE);
12298   /* If we do not have BINFO associated, it means that type was built
12299      without devirtualization enabled.  Do not consider this a virtual
12300      call.  */
12301   if (!TYPE_BINFO (obj_type_ref_class (target)))
12302     return false;
12303   return true;
12304 }
12305 
12306 /* REF is OBJ_TYPE_REF, return the class the ref corresponds to.  */
12307 
12308 tree
12309 obj_type_ref_class (const_tree ref)
12310 {
12311   gcc_checking_assert (TREE_CODE (ref) == OBJ_TYPE_REF);
12312   ref = TREE_TYPE (ref);
12313   gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
12314   ref = TREE_TYPE (ref);
12315   /* We look for type THIS points to.  ObjC also builds
12316      OBJ_TYPE_REF with non-method calls, Their first parameter
12317      ID however also corresponds to class type. */
12318   gcc_checking_assert (TREE_CODE (ref) == METHOD_TYPE
12319 		       || TREE_CODE (ref) == FUNCTION_TYPE);
12320   ref = TREE_VALUE (TYPE_ARG_TYPES (ref));
12321   gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
12322   return TREE_TYPE (ref);
12323 }
12324 
12325 /* Lookup sub-BINFO of BINFO of TYPE at offset POS.  */
12326 
12327 static tree
12328 lookup_binfo_at_offset (tree binfo, tree type, HOST_WIDE_INT pos)
12329 {
12330   unsigned int i;
12331   tree base_binfo, b;
12332 
12333   for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
12334     if (pos == tree_to_shwi (BINFO_OFFSET (base_binfo))
12335 	&& types_same_for_odr (TREE_TYPE (base_binfo), type))
12336       return base_binfo;
12337     else if ((b = lookup_binfo_at_offset (base_binfo, type, pos)) != NULL)
12338       return b;
12339   return NULL;
12340 }
12341 
12342 /* Try to find a base info of BINFO that would have its field decl at offset
12343    OFFSET within the BINFO type and which is of EXPECTED_TYPE.  If it can be
12344    found, return, otherwise return NULL_TREE.  */
12345 
12346 tree
12347 get_binfo_at_offset (tree binfo, poly_int64 offset, tree expected_type)
12348 {
12349   tree type = BINFO_TYPE (binfo);
12350 
12351   while (true)
12352     {
12353       HOST_WIDE_INT pos, size;
12354       tree fld;
12355       int i;
12356 
12357       if (types_same_for_odr (type, expected_type))
12358 	  return binfo;
12359       if (maybe_lt (offset, 0))
12360 	return NULL_TREE;
12361 
12362       for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
12363 	{
12364 	  if (TREE_CODE (fld) != FIELD_DECL || !DECL_ARTIFICIAL (fld))
12365 	    continue;
12366 
12367 	  pos = int_bit_position (fld);
12368 	  size = tree_to_uhwi (DECL_SIZE (fld));
12369 	  if (known_in_range_p (offset, pos, size))
12370 	    break;
12371 	}
12372       if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
12373 	return NULL_TREE;
12374 
12375       /* Offset 0 indicates the primary base, whose vtable contents are
12376 	 represented in the binfo for the derived class.  */
12377       else if (maybe_ne (offset, 0))
12378 	{
12379 	  tree found_binfo = NULL, base_binfo;
12380 	  /* Offsets in BINFO are in bytes relative to the whole structure
12381 	     while POS is in bits relative to the containing field.  */
12382 	  int binfo_offset = (tree_to_shwi (BINFO_OFFSET (binfo)) + pos
12383 			     / BITS_PER_UNIT);
12384 
12385 	  for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
12386 	    if (tree_to_shwi (BINFO_OFFSET (base_binfo)) == binfo_offset
12387 		&& types_same_for_odr (TREE_TYPE (base_binfo), TREE_TYPE (fld)))
12388 	      {
12389 		found_binfo = base_binfo;
12390 		break;
12391 	      }
12392 	  if (found_binfo)
12393 	    binfo = found_binfo;
12394 	  else
12395 	    binfo = lookup_binfo_at_offset (binfo, TREE_TYPE (fld),
12396 					    binfo_offset);
12397 	 }
12398 
12399       type = TREE_TYPE (fld);
12400       offset -= pos;
12401     }
12402 }
12403 
12404 /* Returns true if X is a typedef decl.  */
12405 
12406 bool
12407 is_typedef_decl (const_tree x)
12408 {
12409   return (x && TREE_CODE (x) == TYPE_DECL
12410           && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
12411 }
12412 
12413 /* Returns true iff TYPE is a type variant created for a typedef. */
12414 
12415 bool
12416 typedef_variant_p (const_tree type)
12417 {
12418   return is_typedef_decl (TYPE_NAME (type));
12419 }
12420 
12421 /* Warn about a use of an identifier which was marked deprecated.  */
12422 void
12423 warn_deprecated_use (tree node, tree attr)
12424 {
12425   const char *msg;
12426 
12427   if (node == 0 || !warn_deprecated_decl)
12428     return;
12429 
12430   if (!attr)
12431     {
12432       if (DECL_P (node))
12433 	attr = DECL_ATTRIBUTES (node);
12434       else if (TYPE_P (node))
12435 	{
12436 	  tree decl = TYPE_STUB_DECL (node);
12437 	  if (decl)
12438 	    attr = lookup_attribute ("deprecated",
12439 				     TYPE_ATTRIBUTES (TREE_TYPE (decl)));
12440 	}
12441     }
12442 
12443   if (attr)
12444     attr = lookup_attribute ("deprecated", attr);
12445 
12446   if (attr)
12447     msg = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)));
12448   else
12449     msg = NULL;
12450 
12451   bool w;
12452   if (DECL_P (node))
12453     {
12454       if (msg)
12455 	w = warning (OPT_Wdeprecated_declarations,
12456 		     "%qD is deprecated: %s", node, msg);
12457       else
12458 	w = warning (OPT_Wdeprecated_declarations,
12459 		     "%qD is deprecated", node);
12460       if (w)
12461 	inform (DECL_SOURCE_LOCATION (node), "declared here");
12462     }
12463   else if (TYPE_P (node))
12464     {
12465       tree what = NULL_TREE;
12466       tree decl = TYPE_STUB_DECL (node);
12467 
12468       if (TYPE_NAME (node))
12469 	{
12470 	  if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
12471 	    what = TYPE_NAME (node);
12472 	  else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
12473 		   && DECL_NAME (TYPE_NAME (node)))
12474 	    what = DECL_NAME (TYPE_NAME (node));
12475 	}
12476 
12477       if (decl)
12478 	{
12479 	  if (what)
12480 	    {
12481 	      if (msg)
12482 		w = warning (OPT_Wdeprecated_declarations,
12483 			     "%qE is deprecated: %s", what, msg);
12484 	      else
12485 		w = warning (OPT_Wdeprecated_declarations,
12486 			     "%qE is deprecated", what);
12487 	    }
12488 	  else
12489 	    {
12490 	      if (msg)
12491 		w = warning (OPT_Wdeprecated_declarations,
12492 			     "type is deprecated: %s", msg);
12493 	      else
12494 		w = warning (OPT_Wdeprecated_declarations,
12495 			     "type is deprecated");
12496 	    }
12497 	  if (w)
12498 	    inform (DECL_SOURCE_LOCATION (decl), "declared here");
12499 	}
12500       else
12501 	{
12502 	  if (what)
12503 	    {
12504 	      if (msg)
12505 		warning (OPT_Wdeprecated_declarations, "%qE is deprecated: %s",
12506 			 what, msg);
12507 	      else
12508 		warning (OPT_Wdeprecated_declarations, "%qE is deprecated", what);
12509 	    }
12510 	  else
12511 	    {
12512 	      if (msg)
12513 		warning (OPT_Wdeprecated_declarations, "type is deprecated: %s",
12514 			 msg);
12515 	      else
12516 		warning (OPT_Wdeprecated_declarations, "type is deprecated");
12517 	    }
12518 	}
12519     }
12520 }
12521 
12522 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
12523    somewhere in it.  */
12524 
12525 bool
12526 contains_bitfld_component_ref_p (const_tree ref)
12527 {
12528   while (handled_component_p (ref))
12529     {
12530       if (TREE_CODE (ref) == COMPONENT_REF
12531           && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
12532         return true;
12533       ref = TREE_OPERAND (ref, 0);
12534     }
12535 
12536   return false;
12537 }
12538 
12539 /* Try to determine whether a TRY_CATCH expression can fall through.
12540    This is a subroutine of block_may_fallthru.  */
12541 
12542 static bool
12543 try_catch_may_fallthru (const_tree stmt)
12544 {
12545   tree_stmt_iterator i;
12546 
12547   /* If the TRY block can fall through, the whole TRY_CATCH can
12548      fall through.  */
12549   if (block_may_fallthru (TREE_OPERAND (stmt, 0)))
12550     return true;
12551 
12552   i = tsi_start (TREE_OPERAND (stmt, 1));
12553   switch (TREE_CODE (tsi_stmt (i)))
12554     {
12555     case CATCH_EXPR:
12556       /* We expect to see a sequence of CATCH_EXPR trees, each with a
12557 	 catch expression and a body.  The whole TRY_CATCH may fall
12558 	 through iff any of the catch bodies falls through.  */
12559       for (; !tsi_end_p (i); tsi_next (&i))
12560 	{
12561 	  if (block_may_fallthru (CATCH_BODY (tsi_stmt (i))))
12562 	    return true;
12563 	}
12564       return false;
12565 
12566     case EH_FILTER_EXPR:
12567       /* The exception filter expression only matters if there is an
12568 	 exception.  If the exception does not match EH_FILTER_TYPES,
12569 	 we will execute EH_FILTER_FAILURE, and we will fall through
12570 	 if that falls through.  If the exception does match
12571 	 EH_FILTER_TYPES, the stack unwinder will continue up the
12572 	 stack, so we will not fall through.  We don't know whether we
12573 	 will throw an exception which matches EH_FILTER_TYPES or not,
12574 	 so we just ignore EH_FILTER_TYPES and assume that we might
12575 	 throw an exception which doesn't match.  */
12576       return block_may_fallthru (EH_FILTER_FAILURE (tsi_stmt (i)));
12577 
12578     default:
12579       /* This case represents statements to be executed when an
12580 	 exception occurs.  Those statements are implicitly followed
12581 	 by a RESX statement to resume execution after the exception.
12582 	 So in this case the TRY_CATCH never falls through.  */
12583       return false;
12584     }
12585 }
12586 
12587 /* Try to determine if we can fall out of the bottom of BLOCK.  This guess
12588    need not be 100% accurate; simply be conservative and return true if we
12589    don't know.  This is used only to avoid stupidly generating extra code.
12590    If we're wrong, we'll just delete the extra code later.  */
12591 
12592 bool
12593 block_may_fallthru (const_tree block)
12594 {
12595   /* This CONST_CAST is okay because expr_last returns its argument
12596      unmodified and we assign it to a const_tree.  */
12597   const_tree stmt = expr_last (CONST_CAST_TREE (block));
12598 
12599   switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
12600     {
12601     case GOTO_EXPR:
12602     case RETURN_EXPR:
12603       /* Easy cases.  If the last statement of the block implies
12604 	 control transfer, then we can't fall through.  */
12605       return false;
12606 
12607     case SWITCH_EXPR:
12608       /* If there is a default: label or case labels cover all possible
12609 	 SWITCH_COND values, then the SWITCH_EXPR will transfer control
12610 	 to some case label in all cases and all we care is whether the
12611 	 SWITCH_BODY falls through.  */
12612       if (SWITCH_ALL_CASES_P (stmt))
12613 	return block_may_fallthru (SWITCH_BODY (stmt));
12614       return true;
12615 
12616     case COND_EXPR:
12617       if (block_may_fallthru (COND_EXPR_THEN (stmt)))
12618 	return true;
12619       return block_may_fallthru (COND_EXPR_ELSE (stmt));
12620 
12621     case BIND_EXPR:
12622       return block_may_fallthru (BIND_EXPR_BODY (stmt));
12623 
12624     case TRY_CATCH_EXPR:
12625       return try_catch_may_fallthru (stmt);
12626 
12627     case TRY_FINALLY_EXPR:
12628       /* The finally clause is always executed after the try clause,
12629 	 so if it does not fall through, then the try-finally will not
12630 	 fall through.  Otherwise, if the try clause does not fall
12631 	 through, then when the finally clause falls through it will
12632 	 resume execution wherever the try clause was going.  So the
12633 	 whole try-finally will only fall through if both the try
12634 	 clause and the finally clause fall through.  */
12635       return (block_may_fallthru (TREE_OPERAND (stmt, 0))
12636 	      && block_may_fallthru (TREE_OPERAND (stmt, 1)));
12637 
12638     case MODIFY_EXPR:
12639       if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
12640 	stmt = TREE_OPERAND (stmt, 1);
12641       else
12642 	return true;
12643       /* FALLTHRU */
12644 
12645     case CALL_EXPR:
12646       /* Functions that do not return do not fall through.  */
12647       return (call_expr_flags (stmt) & ECF_NORETURN) == 0;
12648 
12649     case CLEANUP_POINT_EXPR:
12650       return block_may_fallthru (TREE_OPERAND (stmt, 0));
12651 
12652     case TARGET_EXPR:
12653       return block_may_fallthru (TREE_OPERAND (stmt, 1));
12654 
12655     case ERROR_MARK:
12656       return true;
12657 
12658     default:
12659       return lang_hooks.block_may_fallthru (stmt);
12660     }
12661 }
12662 
12663 /* True if we are using EH to handle cleanups.  */
12664 static bool using_eh_for_cleanups_flag = false;
12665 
12666 /* This routine is called from front ends to indicate eh should be used for
12667    cleanups.  */
12668 void
12669 using_eh_for_cleanups (void)
12670 {
12671   using_eh_for_cleanups_flag = true;
12672 }
12673 
12674 /* Query whether EH is used for cleanups.  */
12675 bool
12676 using_eh_for_cleanups_p (void)
12677 {
12678   return using_eh_for_cleanups_flag;
12679 }
12680 
12681 /* Wrapper for tree_code_name to ensure that tree code is valid */
12682 const char *
12683 get_tree_code_name (enum tree_code code)
12684 {
12685   const char *invalid = "<invalid tree code>";
12686 
12687   if (code >= MAX_TREE_CODES)
12688     return invalid;
12689 
12690   return tree_code_name[code];
12691 }
12692 
12693 /* Drops the TREE_OVERFLOW flag from T.  */
12694 
12695 tree
12696 drop_tree_overflow (tree t)
12697 {
12698   gcc_checking_assert (TREE_OVERFLOW (t));
12699 
12700   /* For tree codes with a sharing machinery re-build the result.  */
12701   if (poly_int_tree_p (t))
12702     return wide_int_to_tree (TREE_TYPE (t), wi::to_poly_wide (t));
12703 
12704   /* For VECTOR_CST, remove the overflow bits from the encoded elements
12705      and canonicalize the result.  */
12706   if (TREE_CODE (t) == VECTOR_CST)
12707     {
12708       tree_vector_builder builder;
12709       builder.new_unary_operation (TREE_TYPE (t), t, true);
12710       unsigned int count = builder.encoded_nelts ();
12711       for (unsigned int i = 0; i < count; ++i)
12712 	{
12713 	  tree elt = VECTOR_CST_ELT (t, i);
12714 	  if (TREE_OVERFLOW (elt))
12715 	    elt = drop_tree_overflow (elt);
12716 	  builder.quick_push (elt);
12717 	}
12718       return builder.build ();
12719     }
12720 
12721   /* Otherwise, as all tcc_constants are possibly shared, copy the node
12722      and drop the flag.  */
12723   t = copy_node (t);
12724   TREE_OVERFLOW (t) = 0;
12725 
12726   /* For constants that contain nested constants, drop the flag
12727      from those as well.  */
12728   if (TREE_CODE (t) == COMPLEX_CST)
12729     {
12730       if (TREE_OVERFLOW (TREE_REALPART (t)))
12731 	TREE_REALPART (t) = drop_tree_overflow (TREE_REALPART (t));
12732       if (TREE_OVERFLOW (TREE_IMAGPART (t)))
12733 	TREE_IMAGPART (t) = drop_tree_overflow (TREE_IMAGPART (t));
12734     }
12735 
12736   return t;
12737 }
12738 
12739 /* Given a memory reference expression T, return its base address.
12740    The base address of a memory reference expression is the main
12741    object being referenced.  For instance, the base address for
12742    'array[i].fld[j]' is 'array'.  You can think of this as stripping
12743    away the offset part from a memory address.
12744 
12745    This function calls handled_component_p to strip away all the inner
12746    parts of the memory reference until it reaches the base object.  */
12747 
12748 tree
12749 get_base_address (tree t)
12750 {
12751   while (handled_component_p (t))
12752     t = TREE_OPERAND (t, 0);
12753 
12754   if ((TREE_CODE (t) == MEM_REF
12755        || TREE_CODE (t) == TARGET_MEM_REF)
12756       && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
12757     t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
12758 
12759   /* ???  Either the alias oracle or all callers need to properly deal
12760      with WITH_SIZE_EXPRs before we can look through those.  */
12761   if (TREE_CODE (t) == WITH_SIZE_EXPR)
12762     return NULL_TREE;
12763 
12764   return t;
12765 }
12766 
12767 /* Return a tree of sizetype representing the size, in bytes, of the element
12768    of EXP, an ARRAY_REF or an ARRAY_RANGE_REF.  */
12769 
12770 tree
12771 array_ref_element_size (tree exp)
12772 {
12773   tree aligned_size = TREE_OPERAND (exp, 3);
12774   tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
12775   location_t loc = EXPR_LOCATION (exp);
12776 
12777   /* If a size was specified in the ARRAY_REF, it's the size measured
12778      in alignment units of the element type.  So multiply by that value.  */
12779   if (aligned_size)
12780     {
12781       /* ??? tree_ssa_useless_type_conversion will eliminate casts to
12782 	 sizetype from another type of the same width and signedness.  */
12783       if (TREE_TYPE (aligned_size) != sizetype)
12784 	aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
12785       return size_binop_loc (loc, MULT_EXPR, aligned_size,
12786 			     size_int (TYPE_ALIGN_UNIT (elmt_type)));
12787     }
12788 
12789   /* Otherwise, take the size from that of the element type.  Substitute
12790      any PLACEHOLDER_EXPR that we have.  */
12791   else
12792     return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
12793 }
12794 
12795 /* Return a tree representing the lower bound of the array mentioned in
12796    EXP, an ARRAY_REF or an ARRAY_RANGE_REF.  */
12797 
12798 tree
12799 array_ref_low_bound (tree exp)
12800 {
12801   tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
12802 
12803   /* If a lower bound is specified in EXP, use it.  */
12804   if (TREE_OPERAND (exp, 2))
12805     return TREE_OPERAND (exp, 2);
12806 
12807   /* Otherwise, if there is a domain type and it has a lower bound, use it,
12808      substituting for a PLACEHOLDER_EXPR as needed.  */
12809   if (domain_type && TYPE_MIN_VALUE (domain_type))
12810     return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
12811 
12812   /* Otherwise, return a zero of the appropriate type.  */
12813   return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
12814 }
12815 
12816 /* Return a tree representing the upper bound of the array mentioned in
12817    EXP, an ARRAY_REF or an ARRAY_RANGE_REF.  */
12818 
12819 tree
12820 array_ref_up_bound (tree exp)
12821 {
12822   tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
12823 
12824   /* If there is a domain type and it has an upper bound, use it, substituting
12825      for a PLACEHOLDER_EXPR as needed.  */
12826   if (domain_type && TYPE_MAX_VALUE (domain_type))
12827     return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
12828 
12829   /* Otherwise fail.  */
12830   return NULL_TREE;
12831 }
12832 
12833 /* Returns true if REF is an array reference or a component reference
12834    to an array at the end of a structure.
12835    If this is the case, the array may be allocated larger
12836    than its upper bound implies.  */
12837 
12838 bool
12839 array_at_struct_end_p (tree ref)
12840 {
12841   tree atype;
12842 
12843   if (TREE_CODE (ref) == ARRAY_REF
12844       || TREE_CODE (ref) == ARRAY_RANGE_REF)
12845     {
12846       atype = TREE_TYPE (TREE_OPERAND (ref, 0));
12847       ref = TREE_OPERAND (ref, 0);
12848     }
12849   else if (TREE_CODE (ref) == COMPONENT_REF
12850 	   && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 1))) == ARRAY_TYPE)
12851     atype = TREE_TYPE (TREE_OPERAND (ref, 1));
12852   else
12853     return false;
12854 
12855   if (TREE_CODE (ref) == STRING_CST)
12856     return false;
12857 
12858   tree ref_to_array = ref;
12859   while (handled_component_p (ref))
12860     {
12861       /* If the reference chain contains a component reference to a
12862          non-union type and there follows another field the reference
12863 	 is not at the end of a structure.  */
12864       if (TREE_CODE (ref) == COMPONENT_REF)
12865 	{
12866 	  if (TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
12867 	    {
12868 	      tree nextf = DECL_CHAIN (TREE_OPERAND (ref, 1));
12869 	      while (nextf && TREE_CODE (nextf) != FIELD_DECL)
12870 		nextf = DECL_CHAIN (nextf);
12871 	      if (nextf)
12872 		return false;
12873 	    }
12874 	}
12875       /* If we have a multi-dimensional array we do not consider
12876          a non-innermost dimension as flex array if the whole
12877 	 multi-dimensional array is at struct end.
12878 	 Same for an array of aggregates with a trailing array
12879 	 member.  */
12880       else if (TREE_CODE (ref) == ARRAY_REF)
12881 	return false;
12882       else if (TREE_CODE (ref) == ARRAY_RANGE_REF)
12883 	;
12884       /* If we view an underlying object as sth else then what we
12885          gathered up to now is what we have to rely on.  */
12886       else if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
12887 	break;
12888       else
12889 	gcc_unreachable ();
12890 
12891       ref = TREE_OPERAND (ref, 0);
12892     }
12893 
12894   /* The array now is at struct end.  Treat flexible arrays as
12895      always subject to extend, even into just padding constrained by
12896      an underlying decl.  */
12897   if (! TYPE_SIZE (atype)
12898       || ! TYPE_DOMAIN (atype)
12899       || ! TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
12900     return true;
12901 
12902   if (TREE_CODE (ref) == MEM_REF
12903       && TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR)
12904     ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
12905 
12906   /* If the reference is based on a declared entity, the size of the array
12907      is constrained by its given domain.  (Do not trust commons PR/69368).  */
12908   if (DECL_P (ref)
12909       && !(flag_unconstrained_commons
12910 	   && VAR_P (ref) && DECL_COMMON (ref))
12911       && DECL_SIZE_UNIT (ref)
12912       && TREE_CODE (DECL_SIZE_UNIT (ref)) == INTEGER_CST)
12913     {
12914       /* Check whether the array domain covers all of the available
12915          padding.  */
12916       poly_int64 offset;
12917       if (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (atype))) != INTEGER_CST
12918 	  || TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST
12919           || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST)
12920 	return true;
12921       if (! get_addr_base_and_unit_offset (ref_to_array, &offset))
12922 	return true;
12923 
12924       /* If at least one extra element fits it is a flexarray.  */
12925       if (known_le ((wi::to_offset (TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
12926 		     - wi::to_offset (TYPE_MIN_VALUE (TYPE_DOMAIN (atype)))
12927 		     + 2)
12928 		    * wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (atype))),
12929 		    wi::to_offset (DECL_SIZE_UNIT (ref)) - offset))
12930 	return true;
12931 
12932       return false;
12933     }
12934 
12935   return true;
12936 }
12937 
12938 /* Return a tree representing the offset, in bytes, of the field referenced
12939    by EXP.  This does not include any offset in DECL_FIELD_BIT_OFFSET.  */
12940 
12941 tree
12942 component_ref_field_offset (tree exp)
12943 {
12944   tree aligned_offset = TREE_OPERAND (exp, 2);
12945   tree field = TREE_OPERAND (exp, 1);
12946   location_t loc = EXPR_LOCATION (exp);
12947 
12948   /* If an offset was specified in the COMPONENT_REF, it's the offset measured
12949      in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT.  So multiply by that
12950      value.  */
12951   if (aligned_offset)
12952     {
12953       /* ??? tree_ssa_useless_type_conversion will eliminate casts to
12954 	 sizetype from another type of the same width and signedness.  */
12955       if (TREE_TYPE (aligned_offset) != sizetype)
12956 	aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
12957       return size_binop_loc (loc, MULT_EXPR, aligned_offset,
12958 			     size_int (DECL_OFFSET_ALIGN (field)
12959 				       / BITS_PER_UNIT));
12960     }
12961 
12962   /* Otherwise, take the offset from that of the field.  Substitute
12963      any PLACEHOLDER_EXPR that we have.  */
12964   else
12965     return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
12966 }
12967 
12968 /* Return the machine mode of T.  For vectors, returns the mode of the
12969    inner type.  The main use case is to feed the result to HONOR_NANS,
12970    avoiding the BLKmode that a direct TYPE_MODE (T) might return.  */
12971 
12972 machine_mode
12973 element_mode (const_tree t)
12974 {
12975   if (!TYPE_P (t))
12976     t = TREE_TYPE (t);
12977   if (VECTOR_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
12978     t = TREE_TYPE (t);
12979   return TYPE_MODE (t);
12980 }
12981 
12982 /* Vector types need to re-check the target flags each time we report
12983    the machine mode.  We need to do this because attribute target can
12984    change the result of vector_mode_supported_p and have_regs_of_mode
12985    on a per-function basis.  Thus the TYPE_MODE of a VECTOR_TYPE can
12986    change on a per-function basis.  */
12987 /* ??? Possibly a better solution is to run through all the types
12988    referenced by a function and re-compute the TYPE_MODE once, rather
12989    than make the TYPE_MODE macro call a function.  */
12990 
12991 machine_mode
12992 vector_type_mode (const_tree t)
12993 {
12994   machine_mode mode;
12995 
12996   gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
12997 
12998   mode = t->type_common.mode;
12999   if (VECTOR_MODE_P (mode)
13000       && (!targetm.vector_mode_supported_p (mode)
13001 	  || !have_regs_of_mode[mode]))
13002     {
13003       scalar_int_mode innermode;
13004 
13005       /* For integers, try mapping it to a same-sized scalar mode.  */
13006       if (is_int_mode (TREE_TYPE (t)->type_common.mode, &innermode))
13007 	{
13008 	  poly_int64 size = (TYPE_VECTOR_SUBPARTS (t)
13009 			     * GET_MODE_BITSIZE (innermode));
13010 	  scalar_int_mode mode;
13011 	  if (int_mode_for_size (size, 0).exists (&mode)
13012 	      && have_regs_of_mode[mode])
13013 	    return mode;
13014 	}
13015 
13016       return BLKmode;
13017     }
13018 
13019   return mode;
13020 }
13021 
13022 /* Verify that basic properties of T match TV and thus T can be a variant of
13023    TV.  TV should be the more specified variant (i.e. the main variant).  */
13024 
13025 static bool
13026 verify_type_variant (const_tree t, tree tv)
13027 {
13028   /* Type variant can differ by:
13029 
13030      - TYPE_QUALS: TYPE_READONLY, TYPE_VOLATILE, TYPE_ATOMIC, TYPE_RESTRICT,
13031                    ENCODE_QUAL_ADDR_SPACE.
13032      - main variant may be TYPE_COMPLETE_P and variant types !TYPE_COMPLETE_P
13033        in this case some values may not be set in the variant types
13034        (see TYPE_COMPLETE_P checks).
13035      - it is possible to have TYPE_ARTIFICIAL variant of non-artifical type
13036      - by TYPE_NAME and attributes (i.e. when variant originate by typedef)
13037      - TYPE_CANONICAL (TYPE_ALIAS_SET is the same among variants)
13038      - by the alignment: TYPE_ALIGN and TYPE_USER_ALIGN
13039      - during LTO by TYPE_CONTEXT if type is TYPE_FILE_SCOPE_P
13040        this is necessary to make it possible to merge types form different TUs
13041      - arrays, pointers and references may have TREE_TYPE that is a variant
13042        of TREE_TYPE of their main variants.
13043      - aggregates may have new TYPE_FIELDS list that list variants of
13044        the main variant TYPE_FIELDS.
13045      - vector types may differ by TYPE_VECTOR_OPAQUE
13046    */
13047 
13048   /* Convenience macro for matching individual fields.  */
13049 #define verify_variant_match(flag)					    \
13050   do {									    \
13051     if (flag (tv) != flag (t))						    \
13052       {									    \
13053 	error ("type variant differs by %s", #flag);			    \
13054 	debug_tree (tv);						    \
13055 	return false;							    \
13056       }									    \
13057   } while (false)
13058 
13059   /* tree_base checks.  */
13060 
13061   verify_variant_match (TREE_CODE);
13062   /* FIXME: Ada builds non-artificial variants of artificial types.  */
13063   if (TYPE_ARTIFICIAL (tv) && 0)
13064     verify_variant_match (TYPE_ARTIFICIAL);
13065   if (POINTER_TYPE_P (tv))
13066     verify_variant_match (TYPE_REF_CAN_ALIAS_ALL);
13067   /* FIXME: TYPE_SIZES_GIMPLIFIED may differs for Ada build.  */
13068   verify_variant_match (TYPE_UNSIGNED);
13069   verify_variant_match (TYPE_PACKED);
13070   if (TREE_CODE (t) == REFERENCE_TYPE)
13071     verify_variant_match (TYPE_REF_IS_RVALUE);
13072   if (AGGREGATE_TYPE_P (t))
13073     verify_variant_match (TYPE_REVERSE_STORAGE_ORDER);
13074   else
13075     verify_variant_match (TYPE_SATURATING);
13076   /* FIXME: This check trigger during libstdc++ build.  */
13077   if (RECORD_OR_UNION_TYPE_P (t) && COMPLETE_TYPE_P (t) && 0)
13078     verify_variant_match (TYPE_FINAL_P);
13079 
13080   /* tree_type_common checks.  */
13081 
13082   if (COMPLETE_TYPE_P (t))
13083     {
13084       verify_variant_match (TYPE_MODE);
13085       if (TREE_CODE (TYPE_SIZE (t)) != PLACEHOLDER_EXPR
13086 	  && TREE_CODE (TYPE_SIZE (tv)) != PLACEHOLDER_EXPR)
13087 	verify_variant_match (TYPE_SIZE);
13088       if (TREE_CODE (TYPE_SIZE_UNIT (t)) != PLACEHOLDER_EXPR
13089 	  && TREE_CODE (TYPE_SIZE_UNIT (tv)) != PLACEHOLDER_EXPR
13090 	  && TYPE_SIZE_UNIT (t) != TYPE_SIZE_UNIT (tv))
13091 	{
13092 	  gcc_assert (!operand_equal_p (TYPE_SIZE_UNIT (t),
13093 					TYPE_SIZE_UNIT (tv), 0));
13094 	  error ("type variant has different TYPE_SIZE_UNIT");
13095 	  debug_tree (tv);
13096 	  error ("type variant's TYPE_SIZE_UNIT");
13097 	  debug_tree (TYPE_SIZE_UNIT (tv));
13098 	  error ("type's TYPE_SIZE_UNIT");
13099 	  debug_tree (TYPE_SIZE_UNIT (t));
13100 	  return false;
13101 	}
13102     }
13103   verify_variant_match (TYPE_PRECISION);
13104   verify_variant_match (TYPE_NEEDS_CONSTRUCTING);
13105   if (RECORD_OR_UNION_TYPE_P (t))
13106     verify_variant_match (TYPE_TRANSPARENT_AGGR);
13107   else if (TREE_CODE (t) == ARRAY_TYPE)
13108     verify_variant_match (TYPE_NONALIASED_COMPONENT);
13109   /* During LTO we merge variant lists from diferent translation units
13110      that may differ BY TYPE_CONTEXT that in turn may point
13111      to TRANSLATION_UNIT_DECL.
13112      Ada also builds variants of types with different TYPE_CONTEXT.   */
13113   if ((!in_lto_p || !TYPE_FILE_SCOPE_P (t)) && 0)
13114     verify_variant_match (TYPE_CONTEXT);
13115   verify_variant_match (TYPE_STRING_FLAG);
13116   if (TYPE_ALIAS_SET_KNOWN_P (t))
13117     {
13118       error ("type variant with TYPE_ALIAS_SET_KNOWN_P");
13119       debug_tree (tv);
13120       return false;
13121     }
13122 
13123   /* tree_type_non_common checks.  */
13124 
13125   /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
13126      and dangle the pointer from time to time.  */
13127   if (RECORD_OR_UNION_TYPE_P (t) && TYPE_VFIELD (t) != TYPE_VFIELD (tv)
13128       && (in_lto_p || !TYPE_VFIELD (tv)
13129 	  || TREE_CODE (TYPE_VFIELD (tv)) != TREE_LIST))
13130     {
13131       error ("type variant has different TYPE_VFIELD");
13132       debug_tree (tv);
13133       return false;
13134     }
13135   if ((TREE_CODE (t) == ENUMERAL_TYPE && COMPLETE_TYPE_P (t))
13136        || TREE_CODE (t) == INTEGER_TYPE
13137        || TREE_CODE (t) == BOOLEAN_TYPE
13138        || TREE_CODE (t) == REAL_TYPE
13139        || TREE_CODE (t) == FIXED_POINT_TYPE)
13140     {
13141       verify_variant_match (TYPE_MAX_VALUE);
13142       verify_variant_match (TYPE_MIN_VALUE);
13143     }
13144   if (TREE_CODE (t) == METHOD_TYPE)
13145     verify_variant_match (TYPE_METHOD_BASETYPE);
13146   if (TREE_CODE (t) == OFFSET_TYPE)
13147     verify_variant_match (TYPE_OFFSET_BASETYPE);
13148   if (TREE_CODE (t) == ARRAY_TYPE)
13149     verify_variant_match (TYPE_ARRAY_MAX_SIZE);
13150   /* FIXME: Be lax and allow TYPE_BINFO to be missing in variant types
13151      or even type's main variant.  This is needed to make bootstrap pass
13152      and the bug seems new in GCC 5.
13153      C++ FE should be updated to make this consistent and we should check
13154      that TYPE_BINFO is always NULL for !COMPLETE_TYPE_P and otherwise there
13155      is a match with main variant.
13156 
13157      Also disable the check for Java for now because of parser hack that builds
13158      first an dummy BINFO and then sometimes replace it by real BINFO in some
13159      of the copies.  */
13160   if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t) && TYPE_BINFO (tv)
13161       && TYPE_BINFO (t) != TYPE_BINFO (tv)
13162       /* FIXME: Java sometimes keep dump TYPE_BINFOs on variant types.
13163 	 Since there is no cheap way to tell C++/Java type w/o LTO, do checking
13164 	 at LTO time only.  */
13165       && (in_lto_p && odr_type_p (t)))
13166     {
13167       error ("type variant has different TYPE_BINFO");
13168       debug_tree (tv);
13169       error ("type variant's TYPE_BINFO");
13170       debug_tree (TYPE_BINFO (tv));
13171       error ("type's TYPE_BINFO");
13172       debug_tree (TYPE_BINFO (t));
13173       return false;
13174     }
13175 
13176   /* Check various uses of TYPE_VALUES_RAW.  */
13177   if (TREE_CODE (t) == ENUMERAL_TYPE)
13178     verify_variant_match (TYPE_VALUES);
13179   else if (TREE_CODE (t) == ARRAY_TYPE)
13180     verify_variant_match (TYPE_DOMAIN);
13181   /* Permit incomplete variants of complete type.  While FEs may complete
13182      all variants, this does not happen for C++ templates in all cases.  */
13183   else if (RECORD_OR_UNION_TYPE_P (t)
13184 	   && COMPLETE_TYPE_P (t)
13185 	   && TYPE_FIELDS (t) != TYPE_FIELDS (tv))
13186     {
13187       tree f1, f2;
13188 
13189       /* Fortran builds qualified variants as new records with items of
13190 	 qualified type. Verify that they looks same.  */
13191       for (f1 = TYPE_FIELDS (t), f2 = TYPE_FIELDS (tv);
13192 	   f1 && f2;
13193 	   f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
13194 	if (TREE_CODE (f1) != FIELD_DECL || TREE_CODE (f2) != FIELD_DECL
13195 	    || (TYPE_MAIN_VARIANT (TREE_TYPE (f1))
13196 		 != TYPE_MAIN_VARIANT (TREE_TYPE (f2))
13197 		/* FIXME: gfc_nonrestricted_type builds all types as variants
13198 		   with exception of pointer types.  It deeply copies the type
13199 		   which means that we may end up with a variant type
13200 		   referring non-variant pointer.  We may change it to
13201 		   produce types as variants, too, like
13202 		   objc_get_protocol_qualified_type does.  */
13203 		&& !POINTER_TYPE_P (TREE_TYPE (f1)))
13204 	    || DECL_FIELD_OFFSET (f1) != DECL_FIELD_OFFSET (f2)
13205 	    || DECL_FIELD_BIT_OFFSET (f1) != DECL_FIELD_BIT_OFFSET (f2))
13206 	  break;
13207       if (f1 || f2)
13208 	{
13209 	  error ("type variant has different TYPE_FIELDS");
13210 	  debug_tree (tv);
13211 	  error ("first mismatch is field");
13212 	  debug_tree (f1);
13213 	  error ("and field");
13214 	  debug_tree (f2);
13215           return false;
13216 	}
13217     }
13218   else if ((TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE))
13219     verify_variant_match (TYPE_ARG_TYPES);
13220   /* For C++ the qualified variant of array type is really an array type
13221      of qualified TREE_TYPE.
13222      objc builds variants of pointer where pointer to type is a variant, too
13223      in objc_get_protocol_qualified_type.  */
13224   if (TREE_TYPE (t) != TREE_TYPE (tv)
13225       && ((TREE_CODE (t) != ARRAY_TYPE
13226 	   && !POINTER_TYPE_P (t))
13227 	  || TYPE_MAIN_VARIANT (TREE_TYPE (t))
13228 	     != TYPE_MAIN_VARIANT (TREE_TYPE (tv))))
13229     {
13230       error ("type variant has different TREE_TYPE");
13231       debug_tree (tv);
13232       error ("type variant's TREE_TYPE");
13233       debug_tree (TREE_TYPE (tv));
13234       error ("type's TREE_TYPE");
13235       debug_tree (TREE_TYPE (t));
13236       return false;
13237     }
13238   if (type_with_alias_set_p (t)
13239       && !gimple_canonical_types_compatible_p (t, tv, false))
13240     {
13241       error ("type is not compatible with its variant");
13242       debug_tree (tv);
13243       error ("type variant's TREE_TYPE");
13244       debug_tree (TREE_TYPE (tv));
13245       error ("type's TREE_TYPE");
13246       debug_tree (TREE_TYPE (t));
13247       return false;
13248     }
13249   return true;
13250 #undef verify_variant_match
13251 }
13252 
13253 
13254 /* The TYPE_CANONICAL merging machinery.  It should closely resemble
13255    the middle-end types_compatible_p function.  It needs to avoid
13256    claiming types are different for types that should be treated
13257    the same with respect to TBAA.  Canonical types are also used
13258    for IL consistency checks via the useless_type_conversion_p
13259    predicate which does not handle all type kinds itself but falls
13260    back to pointer-comparison of TYPE_CANONICAL for aggregates
13261    for example.  */
13262 
13263 /* Return true if TYPE_UNSIGNED of TYPE should be ignored for canonical
13264    type calculation because we need to allow inter-operability between signed
13265    and unsigned variants.  */
13266 
13267 bool
13268 type_with_interoperable_signedness (const_tree type)
13269 {
13270   /* Fortran standard require C_SIGNED_CHAR to be interoperable with both
13271      signed char and unsigned char.  Similarly fortran FE builds
13272      C_SIZE_T as signed type, while C defines it unsigned.  */
13273 
13274   return tree_code_for_canonical_type_merging (TREE_CODE (type))
13275 	   == INTEGER_TYPE
13276          && (TYPE_PRECISION (type) == TYPE_PRECISION (signed_char_type_node)
13277 	     || TYPE_PRECISION (type) == TYPE_PRECISION (size_type_node));
13278 }
13279 
13280 /* Return true iff T1 and T2 are structurally identical for what
13281    TBAA is concerned.
13282    This function is used both by lto.c canonical type merging and by the
13283    verifier.  If TRUST_TYPE_CANONICAL we do not look into structure of types
13284    that have TYPE_CANONICAL defined and assume them equivalent.  This is useful
13285    only for LTO because only in these cases TYPE_CANONICAL equivalence
13286    correspond to one defined by gimple_canonical_types_compatible_p.  */
13287 
13288 bool
13289 gimple_canonical_types_compatible_p (const_tree t1, const_tree t2,
13290 				     bool trust_type_canonical)
13291 {
13292   /* Type variants should be same as the main variant.  When not doing sanity
13293      checking to verify this fact, go to main variants and save some work.  */
13294   if (trust_type_canonical)
13295     {
13296       t1 = TYPE_MAIN_VARIANT (t1);
13297       t2 = TYPE_MAIN_VARIANT (t2);
13298     }
13299 
13300   /* Check first for the obvious case of pointer identity.  */
13301   if (t1 == t2)
13302     return true;
13303 
13304   /* Check that we have two types to compare.  */
13305   if (t1 == NULL_TREE || t2 == NULL_TREE)
13306     return false;
13307 
13308   /* We consider complete types always compatible with incomplete type.
13309      This does not make sense for canonical type calculation and thus we
13310      need to ensure that we are never called on it.
13311 
13312      FIXME: For more correctness the function probably should have three modes
13313 	1) mode assuming that types are complete mathcing their structure
13314 	2) mode allowing incomplete types but producing equivalence classes
13315 	   and thus ignoring all info from complete types
13316 	3) mode allowing incomplete types to match complete but checking
13317 	   compatibility between complete types.
13318 
13319      1 and 2 can be used for canonical type calculation. 3 is the real
13320      definition of type compatibility that can be used i.e. for warnings during
13321      declaration merging.  */
13322 
13323   gcc_assert (!trust_type_canonical
13324 	      || (type_with_alias_set_p (t1) && type_with_alias_set_p (t2)));
13325   /* If the types have been previously registered and found equal
13326      they still are.  */
13327 
13328   if (TYPE_CANONICAL (t1) && TYPE_CANONICAL (t2)
13329       && trust_type_canonical)
13330     {
13331       /* Do not use TYPE_CANONICAL of pointer types.  For LTO streamed types
13332 	 they are always NULL, but they are set to non-NULL for types
13333 	 constructed by build_pointer_type and variants.  In this case the
13334 	 TYPE_CANONICAL is more fine grained than the equivalnce we test (where
13335 	 all pointers are considered equal.  Be sure to not return false
13336 	 negatives.  */
13337       gcc_checking_assert (canonical_type_used_p (t1)
13338 			   && canonical_type_used_p (t2));
13339       return TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2);
13340     }
13341 
13342   /* Can't be the same type if the types don't have the same code.  */
13343   enum tree_code code = tree_code_for_canonical_type_merging (TREE_CODE (t1));
13344   if (code != tree_code_for_canonical_type_merging (TREE_CODE (t2)))
13345     return false;
13346 
13347   /* Qualifiers do not matter for canonical type comparison purposes.  */
13348 
13349   /* Void types and nullptr types are always the same.  */
13350   if (TREE_CODE (t1) == VOID_TYPE
13351       || TREE_CODE (t1) == NULLPTR_TYPE)
13352     return true;
13353 
13354   /* Can't be the same type if they have different mode.  */
13355   if (TYPE_MODE (t1) != TYPE_MODE (t2))
13356     return false;
13357 
13358   /* Non-aggregate types can be handled cheaply.  */
13359   if (INTEGRAL_TYPE_P (t1)
13360       || SCALAR_FLOAT_TYPE_P (t1)
13361       || FIXED_POINT_TYPE_P (t1)
13362       || TREE_CODE (t1) == VECTOR_TYPE
13363       || TREE_CODE (t1) == COMPLEX_TYPE
13364       || TREE_CODE (t1) == OFFSET_TYPE
13365       || POINTER_TYPE_P (t1))
13366     {
13367       /* Can't be the same type if they have different recision.  */
13368       if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2))
13369 	return false;
13370 
13371       /* In some cases the signed and unsigned types are required to be
13372 	 inter-operable.  */
13373       if (TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2)
13374 	  && !type_with_interoperable_signedness (t1))
13375 	return false;
13376 
13377       /* Fortran's C_SIGNED_CHAR is !TYPE_STRING_FLAG but needs to be
13378 	 interoperable with "signed char".  Unless all frontends are revisited
13379 	 to agree on these types, we must ignore the flag completely.  */
13380 
13381       /* Fortran standard define C_PTR type that is compatible with every
13382  	 C pointer.  For this reason we need to glob all pointers into one.
13383 	 Still pointers in different address spaces are not compatible.  */
13384       if (POINTER_TYPE_P (t1))
13385 	{
13386 	  if (TYPE_ADDR_SPACE (TREE_TYPE (t1))
13387 	      != TYPE_ADDR_SPACE (TREE_TYPE (t2)))
13388 	    return false;
13389 	}
13390 
13391       /* Tail-recurse to components.  */
13392       if (TREE_CODE (t1) == VECTOR_TYPE
13393 	  || TREE_CODE (t1) == COMPLEX_TYPE)
13394 	return gimple_canonical_types_compatible_p (TREE_TYPE (t1),
13395 						    TREE_TYPE (t2),
13396 						    trust_type_canonical);
13397 
13398       return true;
13399     }
13400 
13401   /* Do type-specific comparisons.  */
13402   switch (TREE_CODE (t1))
13403     {
13404     case ARRAY_TYPE:
13405       /* Array types are the same if the element types are the same and
13406 	 the number of elements are the same.  */
13407       if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
13408 						trust_type_canonical)
13409 	  || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
13410 	  || TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2)
13411 	  || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
13412 	return false;
13413       else
13414 	{
13415 	  tree i1 = TYPE_DOMAIN (t1);
13416 	  tree i2 = TYPE_DOMAIN (t2);
13417 
13418 	  /* For an incomplete external array, the type domain can be
13419  	     NULL_TREE.  Check this condition also.  */
13420 	  if (i1 == NULL_TREE && i2 == NULL_TREE)
13421 	    return true;
13422 	  else if (i1 == NULL_TREE || i2 == NULL_TREE)
13423 	    return false;
13424 	  else
13425 	    {
13426 	      tree min1 = TYPE_MIN_VALUE (i1);
13427 	      tree min2 = TYPE_MIN_VALUE (i2);
13428 	      tree max1 = TYPE_MAX_VALUE (i1);
13429 	      tree max2 = TYPE_MAX_VALUE (i2);
13430 
13431 	      /* The minimum/maximum values have to be the same.  */
13432 	      if ((min1 == min2
13433 		   || (min1 && min2
13434 		       && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
13435 			    && TREE_CODE (min2) == PLACEHOLDER_EXPR)
13436 		           || operand_equal_p (min1, min2, 0))))
13437 		  && (max1 == max2
13438 		      || (max1 && max2
13439 			  && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
13440 			       && TREE_CODE (max2) == PLACEHOLDER_EXPR)
13441 			      || operand_equal_p (max1, max2, 0)))))
13442 		return true;
13443 	      else
13444 		return false;
13445 	    }
13446 	}
13447 
13448     case METHOD_TYPE:
13449     case FUNCTION_TYPE:
13450       /* Function types are the same if the return type and arguments types
13451 	 are the same.  */
13452       if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
13453 						trust_type_canonical))
13454 	return false;
13455 
13456       if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
13457 	return true;
13458       else
13459 	{
13460 	  tree parms1, parms2;
13461 
13462 	  for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
13463 	       parms1 && parms2;
13464 	       parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
13465 	    {
13466 	      if (!gimple_canonical_types_compatible_p
13467 		     (TREE_VALUE (parms1), TREE_VALUE (parms2),
13468 		      trust_type_canonical))
13469 		return false;
13470 	    }
13471 
13472 	  if (parms1 || parms2)
13473 	    return false;
13474 
13475 	  return true;
13476 	}
13477 
13478     case RECORD_TYPE:
13479     case UNION_TYPE:
13480     case QUAL_UNION_TYPE:
13481       {
13482 	tree f1, f2;
13483 
13484 	/* Don't try to compare variants of an incomplete type, before
13485 	   TYPE_FIELDS has been copied around.  */
13486 	if (!COMPLETE_TYPE_P (t1) && !COMPLETE_TYPE_P (t2))
13487 	  return true;
13488 
13489 
13490 	if (TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2))
13491 	  return false;
13492 
13493 	/* For aggregate types, all the fields must be the same.  */
13494 	for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
13495 	     f1 || f2;
13496 	     f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
13497 	  {
13498 	    /* Skip non-fields and zero-sized fields.  */
13499 	    while (f1 && (TREE_CODE (f1) != FIELD_DECL
13500 			  || (DECL_SIZE (f1)
13501 			      && integer_zerop (DECL_SIZE (f1)))))
13502 	      f1 = TREE_CHAIN (f1);
13503 	    while (f2 && (TREE_CODE (f2) != FIELD_DECL
13504 			  || (DECL_SIZE (f2)
13505 			      && integer_zerop (DECL_SIZE (f2)))))
13506 	      f2 = TREE_CHAIN (f2);
13507 	    if (!f1 || !f2)
13508 	      break;
13509 	    /* The fields must have the same name, offset and type.  */
13510 	    if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
13511 		|| !gimple_compare_field_offset (f1, f2)
13512 		|| !gimple_canonical_types_compatible_p
13513 		      (TREE_TYPE (f1), TREE_TYPE (f2),
13514 		       trust_type_canonical))
13515 	      return false;
13516 	  }
13517 
13518 	/* If one aggregate has more fields than the other, they
13519 	   are not the same.  */
13520 	if (f1 || f2)
13521 	  return false;
13522 
13523 	return true;
13524       }
13525 
13526     default:
13527       /* Consider all types with language specific trees in them mutually
13528 	 compatible.  This is executed only from verify_type and false
13529          positives can be tolerated.  */
13530       gcc_assert (!in_lto_p);
13531       return true;
13532     }
13533 }
13534 
13535 /* Verify type T.  */
13536 
13537 void
13538 verify_type (const_tree t)
13539 {
13540   bool error_found = false;
13541   tree mv = TYPE_MAIN_VARIANT (t);
13542   if (!mv)
13543     {
13544       error ("Main variant is not defined");
13545       error_found = true;
13546     }
13547   else if (mv != TYPE_MAIN_VARIANT (mv))
13548     {
13549       error ("TYPE_MAIN_VARIANT has different TYPE_MAIN_VARIANT");
13550       debug_tree (mv);
13551       error_found = true;
13552     }
13553   else if (t != mv && !verify_type_variant (t, mv))
13554     error_found = true;
13555 
13556   tree ct = TYPE_CANONICAL (t);
13557   if (!ct)
13558     ;
13559   else if (TYPE_CANONICAL (t) != ct)
13560     {
13561       error ("TYPE_CANONICAL has different TYPE_CANONICAL");
13562       debug_tree (ct);
13563       error_found = true;
13564     }
13565   /* Method and function types can not be used to address memory and thus
13566      TYPE_CANONICAL really matters only for determining useless conversions.
13567 
13568      FIXME: C++ FE produce declarations of builtin functions that are not
13569      compatible with main variants.  */
13570   else if (TREE_CODE (t) == FUNCTION_TYPE)
13571     ;
13572   else if (t != ct
13573 	   /* FIXME: gimple_canonical_types_compatible_p can not compare types
13574 	      with variably sized arrays because their sizes possibly
13575 	      gimplified to different variables.  */
13576 	   && !variably_modified_type_p (ct, NULL)
13577 	   && !gimple_canonical_types_compatible_p (t, ct, false))
13578     {
13579       error ("TYPE_CANONICAL is not compatible");
13580       debug_tree (ct);
13581       error_found = true;
13582     }
13583 
13584   if (COMPLETE_TYPE_P (t) && TYPE_CANONICAL (t)
13585       && TYPE_MODE (t) != TYPE_MODE (TYPE_CANONICAL (t)))
13586     {
13587       error ("TYPE_MODE of TYPE_CANONICAL is not compatible");
13588       debug_tree (ct);
13589       error_found = true;
13590     }
13591   if (TYPE_MAIN_VARIANT (t) == t && ct && TYPE_MAIN_VARIANT (ct) != ct)
13592    {
13593       error ("TYPE_CANONICAL of main variant is not main variant");
13594       debug_tree (ct);
13595       debug_tree (TYPE_MAIN_VARIANT (ct));
13596       error_found = true;
13597    }
13598 
13599 
13600   /* Check various uses of TYPE_MIN_VALUE_RAW.  */
13601   if (RECORD_OR_UNION_TYPE_P (t))
13602     {
13603       /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
13604 	 and danagle the pointer from time to time.  */
13605       if (TYPE_VFIELD (t)
13606 	  && TREE_CODE (TYPE_VFIELD (t)) != FIELD_DECL
13607 	  && TREE_CODE (TYPE_VFIELD (t)) != TREE_LIST)
13608 	{
13609 	  error ("TYPE_VFIELD is not FIELD_DECL nor TREE_LIST");
13610 	  debug_tree (TYPE_VFIELD (t));
13611 	  error_found = true;
13612 	}
13613     }
13614   else if (TREE_CODE (t) == POINTER_TYPE)
13615     {
13616       if (TYPE_NEXT_PTR_TO (t)
13617 	  && TREE_CODE (TYPE_NEXT_PTR_TO (t)) != POINTER_TYPE)
13618 	{
13619 	  error ("TYPE_NEXT_PTR_TO is not POINTER_TYPE");
13620 	  debug_tree (TYPE_NEXT_PTR_TO (t));
13621 	  error_found = true;
13622 	}
13623     }
13624   else if (TREE_CODE (t) == REFERENCE_TYPE)
13625     {
13626       if (TYPE_NEXT_REF_TO (t)
13627 	  && TREE_CODE (TYPE_NEXT_REF_TO (t)) != REFERENCE_TYPE)
13628 	{
13629 	  error ("TYPE_NEXT_REF_TO is not REFERENCE_TYPE");
13630 	  debug_tree (TYPE_NEXT_REF_TO (t));
13631 	  error_found = true;
13632 	}
13633     }
13634   else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
13635 	   || TREE_CODE (t) == FIXED_POINT_TYPE)
13636     {
13637       /* FIXME: The following check should pass:
13638 	  useless_type_conversion_p (const_cast <tree> (t),
13639 				     TREE_TYPE (TYPE_MIN_VALUE (t))
13640 	 but does not for C sizetypes in LTO.  */
13641     }
13642 
13643   /* Check various uses of TYPE_MAXVAL_RAW.  */
13644   if (RECORD_OR_UNION_TYPE_P (t))
13645     {
13646       if (!TYPE_BINFO (t))
13647 	;
13648       else if (TREE_CODE (TYPE_BINFO (t)) != TREE_BINFO)
13649 	{
13650 	  error ("TYPE_BINFO is not TREE_BINFO");
13651 	  debug_tree (TYPE_BINFO (t));
13652 	  error_found = true;
13653 	}
13654       else if (TREE_TYPE (TYPE_BINFO (t)) != TYPE_MAIN_VARIANT (t))
13655 	{
13656 	  error ("TYPE_BINFO type is not TYPE_MAIN_VARIANT");
13657 	  debug_tree (TREE_TYPE (TYPE_BINFO (t)));
13658 	  error_found = true;
13659 	}
13660     }
13661   else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
13662     {
13663       if (TYPE_METHOD_BASETYPE (t)
13664 	  && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != RECORD_TYPE
13665 	  && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != UNION_TYPE)
13666 	{
13667 	  error ("TYPE_METHOD_BASETYPE is not record nor union");
13668 	  debug_tree (TYPE_METHOD_BASETYPE (t));
13669 	  error_found = true;
13670 	}
13671     }
13672   else if (TREE_CODE (t) == OFFSET_TYPE)
13673     {
13674       if (TYPE_OFFSET_BASETYPE (t)
13675 	  && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != RECORD_TYPE
13676 	  && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != UNION_TYPE)
13677 	{
13678 	  error ("TYPE_OFFSET_BASETYPE is not record nor union");
13679 	  debug_tree (TYPE_OFFSET_BASETYPE (t));
13680 	  error_found = true;
13681 	}
13682     }
13683   else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
13684 	   || TREE_CODE (t) == FIXED_POINT_TYPE)
13685     {
13686       /* FIXME: The following check should pass:
13687 	  useless_type_conversion_p (const_cast <tree> (t),
13688 				     TREE_TYPE (TYPE_MAX_VALUE (t))
13689 	 but does not for C sizetypes in LTO.  */
13690     }
13691   else if (TREE_CODE (t) == ARRAY_TYPE)
13692     {
13693       if (TYPE_ARRAY_MAX_SIZE (t)
13694 	  && TREE_CODE (TYPE_ARRAY_MAX_SIZE (t)) != INTEGER_CST)
13695         {
13696 	  error ("TYPE_ARRAY_MAX_SIZE not INTEGER_CST");
13697 	  debug_tree (TYPE_ARRAY_MAX_SIZE (t));
13698 	  error_found = true;
13699         }
13700     }
13701   else if (TYPE_MAX_VALUE_RAW (t))
13702     {
13703       error ("TYPE_MAX_VALUE_RAW non-NULL");
13704       debug_tree (TYPE_MAX_VALUE_RAW (t));
13705       error_found = true;
13706     }
13707 
13708   if (TYPE_LANG_SLOT_1 (t) && in_lto_p)
13709     {
13710       error ("TYPE_LANG_SLOT_1 (binfo) field is non-NULL");
13711       debug_tree (TYPE_LANG_SLOT_1 (t));
13712       error_found = true;
13713     }
13714 
13715   /* Check various uses of TYPE_VALUES_RAW.  */
13716   if (TREE_CODE (t) == ENUMERAL_TYPE)
13717     for (tree l = TYPE_VALUES (t); l; l = TREE_CHAIN (l))
13718       {
13719 	tree value = TREE_VALUE (l);
13720 	tree name = TREE_PURPOSE (l);
13721 
13722 	/* C FE porduce INTEGER_CST of INTEGER_TYPE, while C++ FE uses
13723  	   CONST_DECL of ENUMERAL TYPE.  */
13724 	if (TREE_CODE (value) != INTEGER_CST && TREE_CODE (value) != CONST_DECL)
13725 	  {
13726 	    error ("Enum value is not CONST_DECL or INTEGER_CST");
13727 	    debug_tree (value);
13728 	    debug_tree (name);
13729 	    error_found = true;
13730 	  }
13731 	if (TREE_CODE (TREE_TYPE (value)) != INTEGER_TYPE
13732 	    && !useless_type_conversion_p (const_cast <tree> (t), TREE_TYPE (value)))
13733 	  {
13734 	    error ("Enum value type is not INTEGER_TYPE nor convertible to the enum");
13735 	    debug_tree (value);
13736 	    debug_tree (name);
13737 	    error_found = true;
13738 	  }
13739 	if (TREE_CODE (name) != IDENTIFIER_NODE)
13740 	  {
13741 	    error ("Enum value name is not IDENTIFIER_NODE");
13742 	    debug_tree (value);
13743 	    debug_tree (name);
13744 	    error_found = true;
13745 	  }
13746       }
13747   else if (TREE_CODE (t) == ARRAY_TYPE)
13748     {
13749       if (TYPE_DOMAIN (t) && TREE_CODE (TYPE_DOMAIN (t)) != INTEGER_TYPE)
13750 	{
13751 	  error ("Array TYPE_DOMAIN is not integer type");
13752 	  debug_tree (TYPE_DOMAIN (t));
13753 	  error_found = true;
13754 	}
13755     }
13756   else if (RECORD_OR_UNION_TYPE_P (t))
13757     {
13758       if (TYPE_FIELDS (t) && !COMPLETE_TYPE_P (t) && in_lto_p)
13759 	{
13760 	  error ("TYPE_FIELDS defined in incomplete type");
13761 	  error_found = true;
13762 	}
13763       for (tree fld = TYPE_FIELDS (t); fld; fld = TREE_CHAIN (fld))
13764 	{
13765 	  /* TODO: verify properties of decls.  */
13766 	  if (TREE_CODE (fld) == FIELD_DECL)
13767 	    ;
13768 	  else if (TREE_CODE (fld) == TYPE_DECL)
13769 	    ;
13770 	  else if (TREE_CODE (fld) == CONST_DECL)
13771 	    ;
13772 	  else if (VAR_P (fld))
13773 	    ;
13774 	  else if (TREE_CODE (fld) == TEMPLATE_DECL)
13775 	    ;
13776 	  else if (TREE_CODE (fld) == USING_DECL)
13777 	    ;
13778 	  else if (TREE_CODE (fld) == FUNCTION_DECL)
13779 	    ;
13780 	  else
13781 	    {
13782 	      error ("Wrong tree in TYPE_FIELDS list");
13783 	      debug_tree (fld);
13784 	      error_found = true;
13785 	    }
13786 	}
13787     }
13788   else if (TREE_CODE (t) == INTEGER_TYPE
13789 	   || TREE_CODE (t) == BOOLEAN_TYPE
13790 	   || TREE_CODE (t) == OFFSET_TYPE
13791 	   || TREE_CODE (t) == REFERENCE_TYPE
13792 	   || TREE_CODE (t) == NULLPTR_TYPE
13793 	   || TREE_CODE (t) == POINTER_TYPE)
13794     {
13795       if (TYPE_CACHED_VALUES_P (t) != (TYPE_CACHED_VALUES (t) != NULL))
13796 	{
13797 	  error ("TYPE_CACHED_VALUES_P is %i while TYPE_CACHED_VALUES is %p",
13798 		 TYPE_CACHED_VALUES_P (t), (void *)TYPE_CACHED_VALUES (t));
13799 	  error_found = true;
13800 	}
13801       else if (TYPE_CACHED_VALUES_P (t) && TREE_CODE (TYPE_CACHED_VALUES (t)) != TREE_VEC)
13802 	{
13803 	  error ("TYPE_CACHED_VALUES is not TREE_VEC");
13804 	  debug_tree (TYPE_CACHED_VALUES (t));
13805 	  error_found = true;
13806 	}
13807       /* Verify just enough of cache to ensure that no one copied it to new type.
13808  	 All copying should go by copy_node that should clear it.  */
13809       else if (TYPE_CACHED_VALUES_P (t))
13810 	{
13811 	  int i;
13812 	  for (i = 0; i < TREE_VEC_LENGTH (TYPE_CACHED_VALUES (t)); i++)
13813 	    if (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)
13814 		&& TREE_TYPE (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)) != t)
13815 	      {
13816 		error ("wrong TYPE_CACHED_VALUES entry");
13817 		debug_tree (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i));
13818 		error_found = true;
13819 		break;
13820 	      }
13821 	}
13822     }
13823   else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
13824     for (tree l = TYPE_ARG_TYPES (t); l; l = TREE_CHAIN (l))
13825       {
13826 	/* C++ FE uses TREE_PURPOSE to store initial values.  */
13827 	if (TREE_PURPOSE (l) && in_lto_p)
13828 	  {
13829 	    error ("TREE_PURPOSE is non-NULL in TYPE_ARG_TYPES list");
13830 	    debug_tree (l);
13831 	    error_found = true;
13832 	  }
13833 	if (!TYPE_P (TREE_VALUE (l)))
13834 	  {
13835 	    error ("Wrong entry in TYPE_ARG_TYPES list");
13836 	    debug_tree (l);
13837 	    error_found = true;
13838 	  }
13839       }
13840   else if (!is_lang_specific (t) && TYPE_VALUES_RAW (t))
13841     {
13842       error ("TYPE_VALUES_RAW field is non-NULL");
13843       debug_tree (TYPE_VALUES_RAW (t));
13844       error_found = true;
13845     }
13846   if (TREE_CODE (t) != INTEGER_TYPE
13847       && TREE_CODE (t) != BOOLEAN_TYPE
13848       && TREE_CODE (t) != OFFSET_TYPE
13849       && TREE_CODE (t) != REFERENCE_TYPE
13850       && TREE_CODE (t) != NULLPTR_TYPE
13851       && TREE_CODE (t) != POINTER_TYPE
13852       && TYPE_CACHED_VALUES_P (t))
13853     {
13854       error ("TYPE_CACHED_VALUES_P is set while it should not");
13855       error_found = true;
13856     }
13857   if (TYPE_STRING_FLAG (t)
13858       && TREE_CODE (t) != ARRAY_TYPE && TREE_CODE (t) != INTEGER_TYPE)
13859     {
13860       error ("TYPE_STRING_FLAG is set on wrong type code");
13861       error_found = true;
13862     }
13863 
13864   /* ipa-devirt makes an assumption that TYPE_METHOD_BASETYPE is always
13865      TYPE_MAIN_VARIANT and it would be odd to add methods only to variatns
13866      of a type. */
13867   if (TREE_CODE (t) == METHOD_TYPE
13868       && TYPE_MAIN_VARIANT (TYPE_METHOD_BASETYPE (t)) != TYPE_METHOD_BASETYPE (t))
13869     {
13870 	error ("TYPE_METHOD_BASETYPE is not main variant");
13871 	error_found = true;
13872     }
13873 
13874   if (error_found)
13875     {
13876       debug_tree (const_cast <tree> (t));
13877       internal_error ("verify_type failed");
13878     }
13879 }
13880 
13881 
13882 /* Return 1 if ARG interpreted as signed in its precision is known to be
13883    always positive or 2 if ARG is known to be always negative, or 3 if
13884    ARG may be positive or negative.  */
13885 
13886 int
13887 get_range_pos_neg (tree arg)
13888 {
13889   if (arg == error_mark_node)
13890     return 3;
13891 
13892   int prec = TYPE_PRECISION (TREE_TYPE (arg));
13893   int cnt = 0;
13894   if (TREE_CODE (arg) == INTEGER_CST)
13895     {
13896       wide_int w = wi::sext (wi::to_wide (arg), prec);
13897       if (wi::neg_p (w))
13898 	return 2;
13899       else
13900 	return 1;
13901     }
13902   while (CONVERT_EXPR_P (arg)
13903 	 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
13904 	 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) <= prec)
13905     {
13906       arg = TREE_OPERAND (arg, 0);
13907       /* Narrower value zero extended into wider type
13908 	 will always result in positive values.  */
13909       if (TYPE_UNSIGNED (TREE_TYPE (arg))
13910 	  && TYPE_PRECISION (TREE_TYPE (arg)) < prec)
13911 	return 1;
13912       prec = TYPE_PRECISION (TREE_TYPE (arg));
13913       if (++cnt > 30)
13914 	return 3;
13915     }
13916 
13917   if (TREE_CODE (arg) != SSA_NAME)
13918     return 3;
13919   wide_int arg_min, arg_max;
13920   while (get_range_info (arg, &arg_min, &arg_max) != VR_RANGE)
13921     {
13922       gimple *g = SSA_NAME_DEF_STMT (arg);
13923       if (is_gimple_assign (g)
13924 	  && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g)))
13925 	{
13926 	  tree t = gimple_assign_rhs1 (g);
13927 	  if (INTEGRAL_TYPE_P (TREE_TYPE (t))
13928 	      && TYPE_PRECISION (TREE_TYPE (t)) <= prec)
13929 	    {
13930 	      if (TYPE_UNSIGNED (TREE_TYPE (t))
13931 		  && TYPE_PRECISION (TREE_TYPE (t)) < prec)
13932 		return 1;
13933 	      prec = TYPE_PRECISION (TREE_TYPE (t));
13934 	      arg = t;
13935 	      if (++cnt > 30)
13936 		return 3;
13937 	      continue;
13938 	    }
13939 	}
13940       return 3;
13941     }
13942   if (TYPE_UNSIGNED (TREE_TYPE (arg)))
13943     {
13944       /* For unsigned values, the "positive" range comes
13945 	 below the "negative" range.  */
13946       if (!wi::neg_p (wi::sext (arg_max, prec), SIGNED))
13947 	return 1;
13948       if (wi::neg_p (wi::sext (arg_min, prec), SIGNED))
13949 	return 2;
13950     }
13951   else
13952     {
13953       if (!wi::neg_p (wi::sext (arg_min, prec), SIGNED))
13954 	return 1;
13955       if (wi::neg_p (wi::sext (arg_max, prec), SIGNED))
13956 	return 2;
13957     }
13958   return 3;
13959 }
13960 
13961 
13962 
13963 
13964 /* Return true if ARG is marked with the nonnull attribute in the
13965    current function signature.  */
13966 
13967 bool
13968 nonnull_arg_p (const_tree arg)
13969 {
13970   tree t, attrs, fntype;
13971   unsigned HOST_WIDE_INT arg_num;
13972 
13973   gcc_assert (TREE_CODE (arg) == PARM_DECL
13974 	      && (POINTER_TYPE_P (TREE_TYPE (arg))
13975 		  || TREE_CODE (TREE_TYPE (arg)) == OFFSET_TYPE));
13976 
13977   /* The static chain decl is always non null.  */
13978   if (arg == cfun->static_chain_decl)
13979     return true;
13980 
13981   /* THIS argument of method is always non-NULL.  */
13982   if (TREE_CODE (TREE_TYPE (cfun->decl)) == METHOD_TYPE
13983       && arg == DECL_ARGUMENTS (cfun->decl)
13984       && flag_delete_null_pointer_checks)
13985     return true;
13986 
13987   /* Values passed by reference are always non-NULL.  */
13988   if (TREE_CODE (TREE_TYPE (arg)) == REFERENCE_TYPE
13989       && flag_delete_null_pointer_checks)
13990     return true;
13991 
13992   fntype = TREE_TYPE (cfun->decl);
13993   for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
13994     {
13995       attrs = lookup_attribute ("nonnull", attrs);
13996 
13997       /* If "nonnull" wasn't specified, we know nothing about the argument.  */
13998       if (attrs == NULL_TREE)
13999 	return false;
14000 
14001       /* If "nonnull" applies to all the arguments, then ARG is non-null.  */
14002       if (TREE_VALUE (attrs) == NULL_TREE)
14003 	return true;
14004 
14005       /* Get the position number for ARG in the function signature.  */
14006       for (arg_num = 1, t = DECL_ARGUMENTS (cfun->decl);
14007 	   t;
14008 	   t = DECL_CHAIN (t), arg_num++)
14009 	{
14010 	  if (t == arg)
14011 	    break;
14012 	}
14013 
14014       gcc_assert (t == arg);
14015 
14016       /* Now see if ARG_NUM is mentioned in the nonnull list.  */
14017       for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
14018 	{
14019 	  if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
14020 	    return true;
14021 	}
14022     }
14023 
14024   return false;
14025 }
14026 
14027 /* Combine LOC and BLOCK to a combined adhoc loc, retaining any range
14028    information.  */
14029 
14030 location_t
14031 set_block (location_t loc, tree block)
14032 {
14033   location_t pure_loc = get_pure_location (loc);
14034   source_range src_range = get_range_from_loc (line_table, loc);
14035   return COMBINE_LOCATION_DATA (line_table, pure_loc, src_range, block);
14036 }
14037 
14038 location_t
14039 set_source_range (tree expr, location_t start, location_t finish)
14040 {
14041   source_range src_range;
14042   src_range.m_start = start;
14043   src_range.m_finish = finish;
14044   return set_source_range (expr, src_range);
14045 }
14046 
14047 location_t
14048 set_source_range (tree expr, source_range src_range)
14049 {
14050   if (!EXPR_P (expr))
14051     return UNKNOWN_LOCATION;
14052 
14053   location_t pure_loc = get_pure_location (EXPR_LOCATION (expr));
14054   location_t adhoc = COMBINE_LOCATION_DATA (line_table,
14055 					    pure_loc,
14056 					    src_range,
14057 					    NULL);
14058   SET_EXPR_LOCATION (expr, adhoc);
14059   return adhoc;
14060 }
14061 
14062 /* Return EXPR, potentially wrapped with a node expression LOC,
14063    if !CAN_HAVE_LOCATION_P (expr).
14064 
14065    NON_LVALUE_EXPR is used for wrapping constants, apart from STRING_CST.
14066    VIEW_CONVERT_EXPR is used for wrapping non-constants and STRING_CST.
14067 
14068    Wrapper nodes can be identified using location_wrapper_p.  */
14069 
14070 tree
14071 maybe_wrap_with_location (tree expr, location_t loc)
14072 {
14073   if (expr == NULL)
14074     return NULL;
14075   if (loc == UNKNOWN_LOCATION)
14076     return expr;
14077   if (CAN_HAVE_LOCATION_P (expr))
14078     return expr;
14079   /* We should only be adding wrappers for constants and for decls,
14080      or for some exceptional tree nodes (e.g. BASELINK in the C++ FE).  */
14081   gcc_assert (CONSTANT_CLASS_P (expr)
14082 	      || DECL_P (expr)
14083 	      || EXCEPTIONAL_CLASS_P (expr));
14084 
14085   /* For now, don't add wrappers to exceptional tree nodes, to minimize
14086      any impact of the wrapper nodes.  */
14087   if (EXCEPTIONAL_CLASS_P (expr))
14088     return expr;
14089 
14090   tree_code code
14091     = (((CONSTANT_CLASS_P (expr) && TREE_CODE (expr) != STRING_CST)
14092 	|| (TREE_CODE (expr) == CONST_DECL && !TREE_STATIC (expr)))
14093        ? NON_LVALUE_EXPR : VIEW_CONVERT_EXPR);
14094   tree wrapper = build1_loc (loc, code, TREE_TYPE (expr), expr);
14095   /* Mark this node as being a wrapper.  */
14096   EXPR_LOCATION_WRAPPER_P (wrapper) = 1;
14097   return wrapper;
14098 }
14099 
14100 /* Return the name of combined function FN, for debugging purposes.  */
14101 
14102 const char *
14103 combined_fn_name (combined_fn fn)
14104 {
14105   if (builtin_fn_p (fn))
14106     {
14107       tree fndecl = builtin_decl_explicit (as_builtin_fn (fn));
14108       return IDENTIFIER_POINTER (DECL_NAME (fndecl));
14109     }
14110   else
14111     return internal_fn_name (as_internal_fn (fn));
14112 }
14113 
14114 /* Return a bitmap with a bit set corresponding to each argument in
14115    a function call type FNTYPE declared with attribute nonnull,
14116    or null if none of the function's argument are nonnull.  The caller
14117    must free the bitmap.  */
14118 
14119 bitmap
14120 get_nonnull_args (const_tree fntype)
14121 {
14122   if (fntype == NULL_TREE)
14123     return NULL;
14124 
14125   tree attrs = TYPE_ATTRIBUTES (fntype);
14126   if (!attrs)
14127     return NULL;
14128 
14129   bitmap argmap = NULL;
14130 
14131   /* A function declaration can specify multiple attribute nonnull,
14132      each with zero or more arguments.  The loop below creates a bitmap
14133      representing a union of all the arguments.  An empty (but non-null)
14134      bitmap means that all arguments have been declaraed nonnull.  */
14135   for ( ; attrs; attrs = TREE_CHAIN (attrs))
14136     {
14137       attrs = lookup_attribute ("nonnull", attrs);
14138       if (!attrs)
14139 	break;
14140 
14141       if (!argmap)
14142 	argmap = BITMAP_ALLOC (NULL);
14143 
14144       if (!TREE_VALUE (attrs))
14145 	{
14146 	  /* Clear the bitmap in case a previous attribute nonnull
14147 	     set it and this one overrides it for all arguments.  */
14148 	  bitmap_clear (argmap);
14149 	  return argmap;
14150 	}
14151 
14152       /* Iterate over the indices of the format arguments declared nonnull
14153 	 and set a bit for each.  */
14154       for (tree idx = TREE_VALUE (attrs); idx; idx = TREE_CHAIN (idx))
14155 	{
14156 	  unsigned int val = TREE_INT_CST_LOW (TREE_VALUE (idx)) - 1;
14157 	  bitmap_set_bit (argmap, val);
14158 	}
14159     }
14160 
14161   return argmap;
14162 }
14163 
14164 /* Returns true if TYPE is a type where it and all of its subobjects
14165    (recursively) are of structure, union, or array type.  */
14166 
14167 static bool
14168 default_is_empty_type (tree type)
14169 {
14170   if (RECORD_OR_UNION_TYPE_P (type))
14171     {
14172       for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
14173 	if (TREE_CODE (field) == FIELD_DECL
14174 	    && !DECL_PADDING_P (field)
14175 	    && !default_is_empty_type (TREE_TYPE (field)))
14176 	  return false;
14177       return true;
14178     }
14179   else if (TREE_CODE (type) == ARRAY_TYPE)
14180     return (integer_minus_onep (array_type_nelts (type))
14181 	    || TYPE_DOMAIN (type) == NULL_TREE
14182 	    || default_is_empty_type (TREE_TYPE (type)));
14183   return false;
14184 }
14185 
14186 /* Implement TARGET_EMPTY_RECORD_P.  Return true if TYPE is an empty type
14187    that shouldn't be passed via stack.  */
14188 
14189 bool
14190 default_is_empty_record (const_tree type)
14191 {
14192   if (!abi_version_at_least (12))
14193     return false;
14194 
14195   if (type == error_mark_node)
14196     return false;
14197 
14198   if (TREE_ADDRESSABLE (type))
14199     return false;
14200 
14201   return default_is_empty_type (TYPE_MAIN_VARIANT (type));
14202 }
14203 
14204 /* Like int_size_in_bytes, but handle empty records specially.  */
14205 
14206 HOST_WIDE_INT
14207 arg_int_size_in_bytes (const_tree type)
14208 {
14209   return TYPE_EMPTY_P (type) ? 0 : int_size_in_bytes (type);
14210 }
14211 
14212 /* Like size_in_bytes, but handle empty records specially.  */
14213 
14214 tree
14215 arg_size_in_bytes (const_tree type)
14216 {
14217   return TYPE_EMPTY_P (type) ? size_zero_node : size_in_bytes (type);
14218 }
14219 
14220 /* Return true if an expression with CODE has to have the same result type as
14221    its first operand.  */
14222 
14223 bool
14224 expr_type_first_operand_type_p (tree_code code)
14225 {
14226   switch (code)
14227     {
14228     case NEGATE_EXPR:
14229     case ABS_EXPR:
14230     case BIT_NOT_EXPR:
14231     case PAREN_EXPR:
14232     case CONJ_EXPR:
14233 
14234     case PLUS_EXPR:
14235     case MINUS_EXPR:
14236     case MULT_EXPR:
14237     case TRUNC_DIV_EXPR:
14238     case CEIL_DIV_EXPR:
14239     case FLOOR_DIV_EXPR:
14240     case ROUND_DIV_EXPR:
14241     case TRUNC_MOD_EXPR:
14242     case CEIL_MOD_EXPR:
14243     case FLOOR_MOD_EXPR:
14244     case ROUND_MOD_EXPR:
14245     case RDIV_EXPR:
14246     case EXACT_DIV_EXPR:
14247     case MIN_EXPR:
14248     case MAX_EXPR:
14249     case BIT_IOR_EXPR:
14250     case BIT_XOR_EXPR:
14251     case BIT_AND_EXPR:
14252 
14253     case LSHIFT_EXPR:
14254     case RSHIFT_EXPR:
14255     case LROTATE_EXPR:
14256     case RROTATE_EXPR:
14257       return true;
14258 
14259     default:
14260       return false;
14261     }
14262 }
14263 
14264 /* List of pointer types used to declare builtins before we have seen their
14265    real declaration.
14266 
14267    Keep the size up to date in tree.h !  */
14268 const builtin_structptr_type builtin_structptr_types[6] =
14269 {
14270   { fileptr_type_node, ptr_type_node, "FILE" },
14271   { const_tm_ptr_type_node, const_ptr_type_node, "tm" },
14272   { fenv_t_ptr_type_node, ptr_type_node, "fenv_t" },
14273   { const_fenv_t_ptr_type_node, const_ptr_type_node, "fenv_t" },
14274   { fexcept_t_ptr_type_node, ptr_type_node, "fexcept_t" },
14275   { const_fexcept_t_ptr_type_node, const_ptr_type_node, "fexcept_t" }
14276 };
14277 
14278 #if CHECKING_P
14279 
14280 namespace selftest {
14281 
14282 /* Selftests for tree.  */
14283 
14284 /* Verify that integer constants are sane.  */
14285 
14286 static void
14287 test_integer_constants ()
14288 {
14289   ASSERT_TRUE (integer_type_node != NULL);
14290   ASSERT_TRUE (build_int_cst (integer_type_node, 0) != NULL);
14291 
14292   tree type = integer_type_node;
14293 
14294   tree zero = build_zero_cst (type);
14295   ASSERT_EQ (INTEGER_CST, TREE_CODE (zero));
14296   ASSERT_EQ (type, TREE_TYPE (zero));
14297 
14298   tree one = build_int_cst (type, 1);
14299   ASSERT_EQ (INTEGER_CST, TREE_CODE (one));
14300   ASSERT_EQ (type, TREE_TYPE (zero));
14301 }
14302 
14303 /* Verify identifiers.  */
14304 
14305 static void
14306 test_identifiers ()
14307 {
14308   tree identifier = get_identifier ("foo");
14309   ASSERT_EQ (3, IDENTIFIER_LENGTH (identifier));
14310   ASSERT_STREQ ("foo", IDENTIFIER_POINTER (identifier));
14311 }
14312 
14313 /* Verify LABEL_DECL.  */
14314 
14315 static void
14316 test_labels ()
14317 {
14318   tree identifier = get_identifier ("err");
14319   tree label_decl = build_decl (UNKNOWN_LOCATION, LABEL_DECL,
14320 				identifier, void_type_node);
14321   ASSERT_EQ (-1, LABEL_DECL_UID (label_decl));
14322   ASSERT_FALSE (FORCED_LABEL (label_decl));
14323 }
14324 
14325 /* Return a new VECTOR_CST node whose type is TYPE and whose values
14326    are given by VALS.  */
14327 
14328 static tree
14329 build_vector (tree type, vec<tree> vals MEM_STAT_DECL)
14330 {
14331   gcc_assert (known_eq (vals.length (), TYPE_VECTOR_SUBPARTS (type)));
14332   tree_vector_builder builder (type, vals.length (), 1);
14333   builder.splice (vals);
14334   return builder.build ();
14335 }
14336 
14337 /* Check that VECTOR_CST ACTUAL contains the elements in EXPECTED.  */
14338 
14339 static void
14340 check_vector_cst (vec<tree> expected, tree actual)
14341 {
14342   ASSERT_KNOWN_EQ (expected.length (),
14343 		   TYPE_VECTOR_SUBPARTS (TREE_TYPE (actual)));
14344   for (unsigned int i = 0; i < expected.length (); ++i)
14345     ASSERT_EQ (wi::to_wide (expected[i]),
14346 	       wi::to_wide (vector_cst_elt (actual, i)));
14347 }
14348 
14349 /* Check that VECTOR_CST ACTUAL contains NPATTERNS duplicated elements,
14350    and that its elements match EXPECTED.  */
14351 
14352 static void
14353 check_vector_cst_duplicate (vec<tree> expected, tree actual,
14354 			    unsigned int npatterns)
14355 {
14356   ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
14357   ASSERT_EQ (1, VECTOR_CST_NELTS_PER_PATTERN (actual));
14358   ASSERT_EQ (npatterns, vector_cst_encoded_nelts (actual));
14359   ASSERT_TRUE (VECTOR_CST_DUPLICATE_P (actual));
14360   ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
14361   check_vector_cst (expected, actual);
14362 }
14363 
14364 /* Check that VECTOR_CST ACTUAL contains NPATTERNS foreground elements
14365    and NPATTERNS background elements, and that its elements match
14366    EXPECTED.  */
14367 
14368 static void
14369 check_vector_cst_fill (vec<tree> expected, tree actual,
14370 		       unsigned int npatterns)
14371 {
14372   ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
14373   ASSERT_EQ (2, VECTOR_CST_NELTS_PER_PATTERN (actual));
14374   ASSERT_EQ (2 * npatterns, vector_cst_encoded_nelts (actual));
14375   ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
14376   ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
14377   check_vector_cst (expected, actual);
14378 }
14379 
14380 /* Check that VECTOR_CST ACTUAL contains NPATTERNS stepped patterns,
14381    and that its elements match EXPECTED.  */
14382 
14383 static void
14384 check_vector_cst_stepped (vec<tree> expected, tree actual,
14385 			  unsigned int npatterns)
14386 {
14387   ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
14388   ASSERT_EQ (3, VECTOR_CST_NELTS_PER_PATTERN (actual));
14389   ASSERT_EQ (3 * npatterns, vector_cst_encoded_nelts (actual));
14390   ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
14391   ASSERT_TRUE (VECTOR_CST_STEPPED_P (actual));
14392   check_vector_cst (expected, actual);
14393 }
14394 
14395 /* Test the creation of VECTOR_CSTs.  */
14396 
14397 static void
14398 test_vector_cst_patterns (ALONE_CXX_MEM_STAT_INFO)
14399 {
14400   auto_vec<tree, 8> elements (8);
14401   elements.quick_grow (8);
14402   tree element_type = build_nonstandard_integer_type (16, true);
14403   tree vector_type = build_vector_type (element_type, 8);
14404 
14405   /* Test a simple linear series with a base of 0 and a step of 1:
14406      { 0, 1, 2, 3, 4, 5, 6, 7 }.  */
14407   for (unsigned int i = 0; i < 8; ++i)
14408     elements[i] = build_int_cst (element_type, i);
14409   tree vector = build_vector (vector_type, elements PASS_MEM_STAT);
14410   check_vector_cst_stepped (elements, vector, 1);
14411 
14412   /* Try the same with the first element replaced by 100:
14413      { 100, 1, 2, 3, 4, 5, 6, 7 }.  */
14414   elements[0] = build_int_cst (element_type, 100);
14415   vector = build_vector (vector_type, elements PASS_MEM_STAT);
14416   check_vector_cst_stepped (elements, vector, 1);
14417 
14418   /* Try a series that wraps around.
14419      { 100, 65531, 65532, 65533, 65534, 65535, 0, 1 }.  */
14420   for (unsigned int i = 1; i < 8; ++i)
14421     elements[i] = build_int_cst (element_type, (65530 + i) & 0xffff);
14422   vector = build_vector (vector_type, elements PASS_MEM_STAT);
14423   check_vector_cst_stepped (elements, vector, 1);
14424 
14425   /* Try a downward series:
14426      { 100, 79, 78, 77, 76, 75, 75, 73 }.  */
14427   for (unsigned int i = 1; i < 8; ++i)
14428     elements[i] = build_int_cst (element_type, 80 - i);
14429   vector = build_vector (vector_type, elements PASS_MEM_STAT);
14430   check_vector_cst_stepped (elements, vector, 1);
14431 
14432   /* Try two interleaved series with different bases and steps:
14433      { 100, 53, 66, 206, 62, 212, 58, 218 }.  */
14434   elements[1] = build_int_cst (element_type, 53);
14435   for (unsigned int i = 2; i < 8; i += 2)
14436     {
14437       elements[i] = build_int_cst (element_type, 70 - i * 2);
14438       elements[i + 1] = build_int_cst (element_type, 200 + i * 3);
14439     }
14440   vector = build_vector (vector_type, elements PASS_MEM_STAT);
14441   check_vector_cst_stepped (elements, vector, 2);
14442 
14443   /* Try a duplicated value:
14444      { 100, 100, 100, 100, 100, 100, 100, 100 }.  */
14445   for (unsigned int i = 1; i < 8; ++i)
14446     elements[i] = elements[0];
14447   vector = build_vector (vector_type, elements PASS_MEM_STAT);
14448   check_vector_cst_duplicate (elements, vector, 1);
14449 
14450   /* Try an interleaved duplicated value:
14451      { 100, 55, 100, 55, 100, 55, 100, 55 }.  */
14452   elements[1] = build_int_cst (element_type, 55);
14453   for (unsigned int i = 2; i < 8; ++i)
14454     elements[i] = elements[i - 2];
14455   vector = build_vector (vector_type, elements PASS_MEM_STAT);
14456   check_vector_cst_duplicate (elements, vector, 2);
14457 
14458   /* Try a duplicated value with 2 exceptions
14459      { 41, 97, 100, 55, 100, 55, 100, 55 }.  */
14460   elements[0] = build_int_cst (element_type, 41);
14461   elements[1] = build_int_cst (element_type, 97);
14462   vector = build_vector (vector_type, elements PASS_MEM_STAT);
14463   check_vector_cst_fill (elements, vector, 2);
14464 
14465   /* Try with and without a step
14466      { 41, 97, 100, 21, 100, 35, 100, 49 }.  */
14467   for (unsigned int i = 3; i < 8; i += 2)
14468     elements[i] = build_int_cst (element_type, i * 7);
14469   vector = build_vector (vector_type, elements PASS_MEM_STAT);
14470   check_vector_cst_stepped (elements, vector, 2);
14471 
14472   /* Try a fully-general constant:
14473      { 41, 97, 100, 21, 100, 9990, 100, 49 }.  */
14474   elements[5] = build_int_cst (element_type, 9990);
14475   vector = build_vector (vector_type, elements PASS_MEM_STAT);
14476   check_vector_cst_fill (elements, vector, 4);
14477 }
14478 
14479 /* Verify that STRIP_NOPS (NODE) is EXPECTED.
14480    Helper function for test_location_wrappers, to deal with STRIP_NOPS
14481    modifying its argument in-place.  */
14482 
14483 static void
14484 check_strip_nops (tree node, tree expected)
14485 {
14486   STRIP_NOPS (node);
14487   ASSERT_EQ (expected, node);
14488 }
14489 
14490 /* Verify location wrappers.  */
14491 
14492 static void
14493 test_location_wrappers ()
14494 {
14495   location_t loc = BUILTINS_LOCATION;
14496 
14497   ASSERT_EQ (NULL_TREE, maybe_wrap_with_location (NULL_TREE, loc));
14498 
14499   /* Wrapping a constant.  */
14500   tree int_cst = build_int_cst (integer_type_node, 42);
14501   ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_cst));
14502   ASSERT_FALSE (location_wrapper_p (int_cst));
14503 
14504   tree wrapped_int_cst = maybe_wrap_with_location (int_cst, loc);
14505   ASSERT_TRUE (location_wrapper_p (wrapped_int_cst));
14506   ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_cst));
14507   ASSERT_EQ (int_cst, tree_strip_any_location_wrapper (wrapped_int_cst));
14508 
14509   /* We shouldn't add wrapper nodes for UNKNOWN_LOCATION.  */
14510   ASSERT_EQ (int_cst, maybe_wrap_with_location (int_cst, UNKNOWN_LOCATION));
14511 
14512   /* We shouldn't add wrapper nodes for nodes that CAN_HAVE_LOCATION_P.  */
14513   tree cast = build1 (NOP_EXPR, char_type_node, int_cst);
14514   ASSERT_TRUE (CAN_HAVE_LOCATION_P (cast));
14515   ASSERT_EQ (cast, maybe_wrap_with_location (cast, loc));
14516 
14517   /* Wrapping a STRING_CST.  */
14518   tree string_cst = build_string (4, "foo");
14519   ASSERT_FALSE (CAN_HAVE_LOCATION_P (string_cst));
14520   ASSERT_FALSE (location_wrapper_p (string_cst));
14521 
14522   tree wrapped_string_cst = maybe_wrap_with_location (string_cst, loc);
14523   ASSERT_TRUE (location_wrapper_p (wrapped_string_cst));
14524   ASSERT_EQ (VIEW_CONVERT_EXPR, TREE_CODE (wrapped_string_cst));
14525   ASSERT_EQ (loc, EXPR_LOCATION (wrapped_string_cst));
14526   ASSERT_EQ (string_cst, tree_strip_any_location_wrapper (wrapped_string_cst));
14527 
14528 
14529   /* Wrapping a variable.  */
14530   tree int_var = build_decl (UNKNOWN_LOCATION, VAR_DECL,
14531 			     get_identifier ("some_int_var"),
14532 			     integer_type_node);
14533   ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_var));
14534   ASSERT_FALSE (location_wrapper_p (int_var));
14535 
14536   tree wrapped_int_var = maybe_wrap_with_location (int_var, loc);
14537   ASSERT_TRUE (location_wrapper_p (wrapped_int_var));
14538   ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_var));
14539   ASSERT_EQ (int_var, tree_strip_any_location_wrapper (wrapped_int_var));
14540 
14541   /* Verify that "reinterpret_cast<int>(some_int_var)" is not a location
14542      wrapper.  */
14543   tree r_cast = build1 (NON_LVALUE_EXPR, integer_type_node, int_var);
14544   ASSERT_FALSE (location_wrapper_p (r_cast));
14545   ASSERT_EQ (r_cast, tree_strip_any_location_wrapper (r_cast));
14546 
14547   /* Verify that STRIP_NOPS removes wrappers.  */
14548   check_strip_nops (wrapped_int_cst, int_cst);
14549   check_strip_nops (wrapped_string_cst, string_cst);
14550   check_strip_nops (wrapped_int_var, int_var);
14551 }
14552 
14553 /* Run all of the selftests within this file.  */
14554 
14555 void
14556 tree_c_tests ()
14557 {
14558   test_integer_constants ();
14559   test_identifiers ();
14560   test_labels ();
14561   test_vector_cst_patterns ();
14562   test_location_wrappers ();
14563 }
14564 
14565 } // namespace selftest
14566 
14567 #endif /* CHECKING_P */
14568 
14569 #include "gt-tree.h"
14570