1 /* Software floating-point emulation.
2    Basic one-word fraction declaration and manipulation.
3    Copyright (C) 1997-2016 Free Software Foundation, Inc.
4    This file is part of the GNU C Library.
5    Contributed by Richard Henderson (rth@cygnus.com),
6 		  Jakub Jelinek (jj@ultra.linux.cz),
7 		  David S. Miller (davem@redhat.com) and
8 		  Peter Maydell (pmaydell@chiark.greenend.org.uk).
9 
10    The GNU C Library is free software; you can redistribute it and/or
11    modify it under the terms of the GNU Lesser General Public
12    License as published by the Free Software Foundation; either
13    version 2.1 of the License, or (at your option) any later version.
14 
15    In addition to the permissions in the GNU Lesser General Public
16    License, the Free Software Foundation gives you unlimited
17    permission to link the compiled version of this file into
18    combinations with other programs, and to distribute those
19    combinations without any restriction coming from the use of this
20    file.  (The Lesser General Public License restrictions do apply in
21    other respects; for example, they cover modification of the file,
22    and distribution when not linked into a combine executable.)
23 
24    The GNU C Library is distributed in the hope that it will be useful,
25    but WITHOUT ANY WARRANTY; without even the implied warranty of
26    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27    Lesser General Public License for more details.
28 
29    You should have received a copy of the GNU Lesser General Public
30    License along with the GNU C Library; if not, see
31    <http://www.gnu.org/licenses/>.  */
32 
33 #ifndef SOFT_FP_OP_1_H
34 #define SOFT_FP_OP_1_H	1
35 
36 #define _FP_FRAC_DECL_1(X)	_FP_W_TYPE X##_f _FP_ZERO_INIT
37 #define _FP_FRAC_COPY_1(D, S)	(D##_f = S##_f)
38 #define _FP_FRAC_SET_1(X, I)	(X##_f = I)
39 #define _FP_FRAC_HIGH_1(X)	(X##_f)
40 #define _FP_FRAC_LOW_1(X)	(X##_f)
41 #define _FP_FRAC_WORD_1(X, w)	(X##_f)
42 
43 #define _FP_FRAC_ADDI_1(X, I)	(X##_f += I)
44 #define _FP_FRAC_SLL_1(X, N)			\
45   do						\
46     {						\
47       if (__builtin_constant_p (N) && (N) == 1)	\
48 	X##_f += X##_f;				\
49       else					\
50 	X##_f <<= (N);				\
51     }						\
52   while (0)
53 #define _FP_FRAC_SRL_1(X, N)	(X##_f >>= N)
54 
55 /* Right shift with sticky-lsb.  */
56 #define _FP_FRAC_SRST_1(X, S, N, sz)	__FP_FRAC_SRST_1 (X##_f, S, (N), (sz))
57 #define _FP_FRAC_SRS_1(X, N, sz)	__FP_FRAC_SRS_1 (X##_f, (N), (sz))
58 
59 #define __FP_FRAC_SRST_1(X, S, N, sz)			\
60   do							\
61     {							\
62       S = (__builtin_constant_p (N) && (N) == 1		\
63 	   ? X & 1					\
64 	   : (X << (_FP_W_TYPE_SIZE - (N))) != 0);	\
65       X = X >> (N);					\
66     }							\
67   while (0)
68 
69 #define __FP_FRAC_SRS_1(X, N, sz)				\
70   (X = (X >> (N) | (__builtin_constant_p (N) && (N) == 1	\
71 		    ? X & 1					\
72 		    : (X << (_FP_W_TYPE_SIZE - (N))) != 0)))
73 
74 #define _FP_FRAC_ADD_1(R, X, Y)	(R##_f = X##_f + Y##_f)
75 #define _FP_FRAC_SUB_1(R, X, Y)	(R##_f = X##_f - Y##_f)
76 #define _FP_FRAC_DEC_1(X, Y)	(X##_f -= Y##_f)
77 #define _FP_FRAC_CLZ_1(z, X)	__FP_CLZ ((z), X##_f)
78 
79 /* Predicates.  */
80 #define _FP_FRAC_NEGP_1(X)	((_FP_WS_TYPE) X##_f < 0)
81 #define _FP_FRAC_ZEROP_1(X)	(X##_f == 0)
82 #define _FP_FRAC_OVERP_1(fs, X)	(X##_f & _FP_OVERFLOW_##fs)
83 #define _FP_FRAC_CLEAR_OVERP_1(fs, X)	(X##_f &= ~_FP_OVERFLOW_##fs)
84 #define _FP_FRAC_HIGHBIT_DW_1(fs, X)	(X##_f & _FP_HIGHBIT_DW_##fs)
85 #define _FP_FRAC_EQ_1(X, Y)	(X##_f == Y##_f)
86 #define _FP_FRAC_GE_1(X, Y)	(X##_f >= Y##_f)
87 #define _FP_FRAC_GT_1(X, Y)	(X##_f > Y##_f)
88 
89 #define _FP_ZEROFRAC_1		0
90 #define _FP_MINFRAC_1		1
91 #define _FP_MAXFRAC_1		(~(_FP_WS_TYPE) 0)
92 
93 /* Unpack the raw bits of a native fp value.  Do not classify or
94    normalize the data.  */
95 
96 #define _FP_UNPACK_RAW_1(fs, X, val)			\
97   do							\
98     {							\
99       union _FP_UNION_##fs _FP_UNPACK_RAW_1_flo;	\
100       _FP_UNPACK_RAW_1_flo.flt = (val);			\
101 							\
102       X##_f = _FP_UNPACK_RAW_1_flo.bits.frac;		\
103       X##_e = _FP_UNPACK_RAW_1_flo.bits.exp;		\
104       X##_s = _FP_UNPACK_RAW_1_flo.bits.sign;		\
105     }							\
106   while (0)
107 
108 #define _FP_UNPACK_RAW_1_P(fs, X, val)			\
109   do							\
110     {							\
111       union _FP_UNION_##fs *_FP_UNPACK_RAW_1_P_flo	\
112 	= (union _FP_UNION_##fs *) (val);		\
113 							\
114       X##_f = _FP_UNPACK_RAW_1_P_flo->bits.frac;	\
115       X##_e = _FP_UNPACK_RAW_1_P_flo->bits.exp;		\
116       X##_s = _FP_UNPACK_RAW_1_P_flo->bits.sign;	\
117     }							\
118   while (0)
119 
120 /* Repack the raw bits of a native fp value.  */
121 
122 #define _FP_PACK_RAW_1(fs, val, X)		\
123   do						\
124     {						\
125       union _FP_UNION_##fs _FP_PACK_RAW_1_flo;	\
126 						\
127       _FP_PACK_RAW_1_flo.bits.frac = X##_f;	\
128       _FP_PACK_RAW_1_flo.bits.exp  = X##_e;	\
129       _FP_PACK_RAW_1_flo.bits.sign = X##_s;	\
130 						\
131       (val) = _FP_PACK_RAW_1_flo.flt;		\
132     }						\
133   while (0)
134 
135 #define _FP_PACK_RAW_1_P(fs, val, X)			\
136   do							\
137     {							\
138       union _FP_UNION_##fs *_FP_PACK_RAW_1_P_flo	\
139 	= (union _FP_UNION_##fs *) (val);		\
140 							\
141       _FP_PACK_RAW_1_P_flo->bits.frac = X##_f;		\
142       _FP_PACK_RAW_1_P_flo->bits.exp  = X##_e;		\
143       _FP_PACK_RAW_1_P_flo->bits.sign = X##_s;		\
144     }							\
145   while (0)
146 
147 
148 /* Multiplication algorithms: */
149 
150 /* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the
151    multiplication immediately.  */
152 
153 #define _FP_MUL_MEAT_DW_1_imm(wfracbits, R, X, Y)	\
154   do							\
155     {							\
156       R##_f = X##_f * Y##_f;				\
157     }							\
158   while (0)
159 
160 #define _FP_MUL_MEAT_1_imm(wfracbits, R, X, Y)				\
161   do									\
162     {									\
163       _FP_MUL_MEAT_DW_1_imm ((wfracbits), R, X, Y);			\
164       /* Normalize since we know where the msb of the multiplicands	\
165 	 were (bit B), we know that the msb of the of the product is	\
166 	 at either 2B or 2B-1.  */					\
167       _FP_FRAC_SRS_1 (R, (wfracbits)-1, 2*(wfracbits));			\
168     }									\
169   while (0)
170 
171 /* Given a 1W * 1W => 2W primitive, do the extended multiplication.  */
172 
173 #define _FP_MUL_MEAT_DW_1_wide(wfracbits, R, X, Y, doit)	\
174   do								\
175     {								\
176       doit (R##_f1, R##_f0, X##_f, Y##_f);			\
177     }								\
178   while (0)
179 
180 #define _FP_MUL_MEAT_1_wide(wfracbits, R, X, Y, doit)			\
181   do									\
182     {									\
183       _FP_FRAC_DECL_2 (_FP_MUL_MEAT_1_wide_Z);				\
184       _FP_MUL_MEAT_DW_1_wide ((wfracbits), _FP_MUL_MEAT_1_wide_Z,	\
185 			      X, Y, doit);				\
186       /* Normalize since we know where the msb of the multiplicands	\
187 	 were (bit B), we know that the msb of the of the product is	\
188 	 at either 2B or 2B-1.  */					\
189       _FP_FRAC_SRS_2 (_FP_MUL_MEAT_1_wide_Z, (wfracbits)-1,		\
190 		      2*(wfracbits));					\
191       R##_f = _FP_MUL_MEAT_1_wide_Z_f0;					\
192     }									\
193   while (0)
194 
195 /* Finally, a simple widening multiply algorithm.  What fun!  */
196 
197 #define _FP_MUL_MEAT_DW_1_hard(wfracbits, R, X, Y)			\
198   do									\
199     {									\
200       _FP_W_TYPE _FP_MUL_MEAT_DW_1_hard_xh, _FP_MUL_MEAT_DW_1_hard_xl;	\
201       _FP_W_TYPE _FP_MUL_MEAT_DW_1_hard_yh, _FP_MUL_MEAT_DW_1_hard_yl;	\
202       _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_1_hard_a);			\
203 									\
204       /* Split the words in half.  */					\
205       _FP_MUL_MEAT_DW_1_hard_xh = X##_f >> (_FP_W_TYPE_SIZE/2);		\
206       _FP_MUL_MEAT_DW_1_hard_xl						\
207 	= X##_f & (((_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2)) - 1);	\
208       _FP_MUL_MEAT_DW_1_hard_yh = Y##_f >> (_FP_W_TYPE_SIZE/2);		\
209       _FP_MUL_MEAT_DW_1_hard_yl						\
210 	= Y##_f & (((_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2)) - 1);	\
211 									\
212       /* Multiply the pieces.  */					\
213       R##_f0 = _FP_MUL_MEAT_DW_1_hard_xl * _FP_MUL_MEAT_DW_1_hard_yl;	\
214       _FP_MUL_MEAT_DW_1_hard_a_f0					\
215 	= _FP_MUL_MEAT_DW_1_hard_xh * _FP_MUL_MEAT_DW_1_hard_yl;	\
216       _FP_MUL_MEAT_DW_1_hard_a_f1					\
217 	= _FP_MUL_MEAT_DW_1_hard_xl * _FP_MUL_MEAT_DW_1_hard_yh;	\
218       R##_f1 = _FP_MUL_MEAT_DW_1_hard_xh * _FP_MUL_MEAT_DW_1_hard_yh;	\
219 									\
220       /* Reassemble into two full words.  */				\
221       if ((_FP_MUL_MEAT_DW_1_hard_a_f0 += _FP_MUL_MEAT_DW_1_hard_a_f1)	\
222 	  < _FP_MUL_MEAT_DW_1_hard_a_f1)				\
223 	R##_f1 += (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2);		\
224       _FP_MUL_MEAT_DW_1_hard_a_f1					\
225 	= _FP_MUL_MEAT_DW_1_hard_a_f0 >> (_FP_W_TYPE_SIZE/2);		\
226       _FP_MUL_MEAT_DW_1_hard_a_f0					\
227 	= _FP_MUL_MEAT_DW_1_hard_a_f0 << (_FP_W_TYPE_SIZE/2);		\
228       _FP_FRAC_ADD_2 (R, R, _FP_MUL_MEAT_DW_1_hard_a);			\
229     }									\
230   while (0)
231 
232 #define _FP_MUL_MEAT_1_hard(wfracbits, R, X, Y)			\
233   do								\
234     {								\
235       _FP_FRAC_DECL_2 (_FP_MUL_MEAT_1_hard_z);			\
236       _FP_MUL_MEAT_DW_1_hard ((wfracbits),			\
237 			      _FP_MUL_MEAT_1_hard_z, X, Y);	\
238 								\
239       /* Normalize.  */						\
240       _FP_FRAC_SRS_2 (_FP_MUL_MEAT_1_hard_z,			\
241 		      (wfracbits) - 1, 2*(wfracbits));		\
242       R##_f = _FP_MUL_MEAT_1_hard_z_f0;				\
243     }								\
244   while (0)
245 
246 
247 /* Division algorithms: */
248 
249 /* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the
250    division immediately.  Give this macro either _FP_DIV_HELP_imm for
251    C primitives or _FP_DIV_HELP_ldiv for the ISO function.  Which you
252    choose will depend on what the compiler does with divrem4.  */
253 
254 #define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit)				\
255   do									\
256     {									\
257       _FP_W_TYPE _FP_DIV_MEAT_1_imm_q, _FP_DIV_MEAT_1_imm_r;		\
258       X##_f <<= (X##_f < Y##_f						\
259 		 ? R##_e--, _FP_WFRACBITS_##fs				\
260 		 : _FP_WFRACBITS_##fs - 1);				\
261       doit (_FP_DIV_MEAT_1_imm_q, _FP_DIV_MEAT_1_imm_r, X##_f, Y##_f);	\
262       R##_f = _FP_DIV_MEAT_1_imm_q | (_FP_DIV_MEAT_1_imm_r != 0);	\
263     }									\
264   while (0)
265 
266 /* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd
267    that may be useful in this situation.  This first is for a primitive
268    that requires normalization, the second for one that does not.  Look
269    for UDIV_NEEDS_NORMALIZATION to tell which your machine needs.  */
270 
271 #define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y)				\
272   do									\
273     {									\
274       _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_nh;				\
275       _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_nl;				\
276       _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_q;				\
277       _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_r;				\
278       _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_y;				\
279 									\
280       /* Normalize Y -- i.e. make the most significant bit set.  */	\
281       _FP_DIV_MEAT_1_udiv_norm_y = Y##_f << _FP_WFRACXBITS_##fs;	\
282 									\
283       /* Shift X op correspondingly high, that is, up one full word.  */ \
284       if (X##_f < Y##_f)						\
285 	{								\
286 	  R##_e--;							\
287 	  _FP_DIV_MEAT_1_udiv_norm_nl = 0;				\
288 	  _FP_DIV_MEAT_1_udiv_norm_nh = X##_f;				\
289 	}								\
290       else								\
291 	{								\
292 	  _FP_DIV_MEAT_1_udiv_norm_nl = X##_f << (_FP_W_TYPE_SIZE - 1);	\
293 	  _FP_DIV_MEAT_1_udiv_norm_nh = X##_f >> 1;			\
294 	}								\
295 									\
296       udiv_qrnnd (_FP_DIV_MEAT_1_udiv_norm_q,				\
297 		  _FP_DIV_MEAT_1_udiv_norm_r,				\
298 		  _FP_DIV_MEAT_1_udiv_norm_nh,				\
299 		  _FP_DIV_MEAT_1_udiv_norm_nl,				\
300 		  _FP_DIV_MEAT_1_udiv_norm_y);				\
301       R##_f = (_FP_DIV_MEAT_1_udiv_norm_q				\
302 	       | (_FP_DIV_MEAT_1_udiv_norm_r != 0));			\
303     }									\
304   while (0)
305 
306 #define _FP_DIV_MEAT_1_udiv(fs, R, X, Y)				\
307   do									\
308     {									\
309       _FP_W_TYPE _FP_DIV_MEAT_1_udiv_nh, _FP_DIV_MEAT_1_udiv_nl;	\
310       _FP_W_TYPE _FP_DIV_MEAT_1_udiv_q, _FP_DIV_MEAT_1_udiv_r;		\
311       if (X##_f < Y##_f)						\
312 	{								\
313 	  R##_e--;							\
314 	  _FP_DIV_MEAT_1_udiv_nl = X##_f << _FP_WFRACBITS_##fs;		\
315 	  _FP_DIV_MEAT_1_udiv_nh = X##_f >> _FP_WFRACXBITS_##fs;	\
316 	}								\
317       else								\
318 	{								\
319 	  _FP_DIV_MEAT_1_udiv_nl = X##_f << (_FP_WFRACBITS_##fs - 1);	\
320 	  _FP_DIV_MEAT_1_udiv_nh = X##_f >> (_FP_WFRACXBITS_##fs + 1);	\
321 	}								\
322       udiv_qrnnd (_FP_DIV_MEAT_1_udiv_q, _FP_DIV_MEAT_1_udiv_r,		\
323 		  _FP_DIV_MEAT_1_udiv_nh, _FP_DIV_MEAT_1_udiv_nl,	\
324 		  Y##_f);						\
325       R##_f = _FP_DIV_MEAT_1_udiv_q | (_FP_DIV_MEAT_1_udiv_r != 0);	\
326     }									\
327   while (0)
328 
329 
330 /* Square root algorithms:
331    We have just one right now, maybe Newton approximation
332    should be added for those machines where division is fast.  */
333 
334 #define _FP_SQRT_MEAT_1(R, S, T, X, q)		\
335   do						\
336     {						\
337       while ((q) != _FP_WORK_ROUND)		\
338 	{					\
339 	  T##_f = S##_f + (q);			\
340 	  if (T##_f <= X##_f)			\
341 	    {					\
342 	      S##_f = T##_f + (q);		\
343 	      X##_f -= T##_f;			\
344 	      R##_f += (q);			\
345 	    }					\
346 	  _FP_FRAC_SLL_1 (X, 1);		\
347 	  (q) >>= 1;				\
348 	}					\
349       if (X##_f)				\
350 	{					\
351 	  if (S##_f < X##_f)			\
352 	    R##_f |= _FP_WORK_ROUND;		\
353 	  R##_f |= _FP_WORK_STICKY;		\
354 	}					\
355     }						\
356   while (0)
357 
358 /* Assembly/disassembly for converting to/from integral types.
359    No shifting or overflow handled here.  */
360 
361 #define _FP_FRAC_ASSEMBLE_1(r, X, rsize)	((r) = X##_f)
362 #define _FP_FRAC_DISASSEMBLE_1(X, r, rsize)	(X##_f = (r))
363 
364 
365 /* Convert FP values between word sizes.  */
366 
367 #define _FP_FRAC_COPY_1_1(D, S)		(D##_f = S##_f)
368 
369 #endif /* !SOFT_FP_OP_1_H */
370