xref: /dragonfly/contrib/gcc-8.0/libiberty/regex.c (revision 8bf5b238)
1 /* Extended regular expression matching and search library,
2    version 0.12.
3    (Implements POSIX draft P1003.2/D11.2, except for some of the
4    internationalization features.)
5 
6    Copyright (C) 1993-2018 Free Software Foundation, Inc.
7    This file is part of the GNU C Library.
8 
9    The GNU C Library is free software; you can redistribute it and/or
10    modify it under the terms of the GNU Lesser General Public
11    License as published by the Free Software Foundation; either
12    version 2.1 of the License, or (at your option) any later version.
13 
14    The GNU C Library is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17    Lesser General Public License for more details.
18 
19    You should have received a copy of the GNU Lesser General Public
20    License along with the GNU C Library; if not, write to the Free
21    Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
22    02110-1301 USA.  */
23 
24 /* This file has been modified for usage in libiberty.  It includes "xregex.h"
25    instead of <regex.h>.  The "xregex.h" header file renames all external
26    routines with an "x" prefix so they do not collide with the native regex
27    routines or with other components regex routines. */
28 /* AIX requires this to be the first thing in the file. */
29 #if defined _AIX && !defined __GNUC__ && !defined REGEX_MALLOC
30   #pragma alloca
31 #endif
32 
33 #undef	_GNU_SOURCE
34 #define _GNU_SOURCE
35 
36 #ifndef INSIDE_RECURSION
37 # ifdef HAVE_CONFIG_H
38 #  include <config.h>
39 # endif
40 #endif
41 
42 #include <ansidecl.h>
43 
44 #ifndef INSIDE_RECURSION
45 
46 # if defined STDC_HEADERS && !defined emacs
47 #  include <stddef.h>
48 #  define PTR_INT_TYPE ptrdiff_t
49 # else
50 /* We need this for `regex.h', and perhaps for the Emacs include files.  */
51 #  include <sys/types.h>
52 #  define PTR_INT_TYPE long
53 # endif
54 
55 # define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
56 
57 /* For platform which support the ISO C amendement 1 functionality we
58    support user defined character classes.  */
59 # if defined _LIBC || WIDE_CHAR_SUPPORT
60 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>.  */
61 #  include <wchar.h>
62 #  include <wctype.h>
63 # endif
64 
65 # ifdef _LIBC
66 /* We have to keep the namespace clean.  */
67 #  define regfree(preg) __regfree (preg)
68 #  define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
69 #  define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
70 #  define regerror(errcode, preg, errbuf, errbuf_size) \
71 	__regerror(errcode, preg, errbuf, errbuf_size)
72 #  define re_set_registers(bu, re, nu, st, en) \
73 	__re_set_registers (bu, re, nu, st, en)
74 #  define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
75 	__re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
76 #  define re_match(bufp, string, size, pos, regs) \
77 	__re_match (bufp, string, size, pos, regs)
78 #  define re_search(bufp, string, size, startpos, range, regs) \
79 	__re_search (bufp, string, size, startpos, range, regs)
80 #  define re_compile_pattern(pattern, length, bufp) \
81 	__re_compile_pattern (pattern, length, bufp)
82 #  define re_set_syntax(syntax) __re_set_syntax (syntax)
83 #  define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
84 	__re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
85 #  define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
86 
87 #  define btowc __btowc
88 
89 /* We are also using some library internals.  */
90 #  include <locale/localeinfo.h>
91 #  include <locale/elem-hash.h>
92 #  include <langinfo.h>
93 #  include <locale/coll-lookup.h>
94 # endif
95 
96 /* This is for other GNU distributions with internationalized messages.  */
97 # if (HAVE_LIBINTL_H && ENABLE_NLS) || defined _LIBC
98 #  include <libintl.h>
99 #  ifdef _LIBC
100 #   undef gettext
101 #   define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
102 #  endif
103 # else
104 #  define gettext(msgid) (msgid)
105 # endif
106 
107 # ifndef gettext_noop
108 /* This define is so xgettext can find the internationalizable
109    strings.  */
110 #  define gettext_noop(String) String
111 # endif
112 
113 /* The `emacs' switch turns on certain matching commands
114    that make sense only in Emacs. */
115 # ifdef emacs
116 
117 #  include "lisp.h"
118 #  include "buffer.h"
119 #  include "syntax.h"
120 
121 # else  /* not emacs */
122 
123 /* If we are not linking with Emacs proper,
124    we can't use the relocating allocator
125    even if config.h says that we can.  */
126 #  undef REL_ALLOC
127 
128 #  if defined STDC_HEADERS || defined _LIBC
129 #   include <stdlib.h>
130 #  else
131 char *malloc ();
132 char *realloc ();
133 #  endif
134 
135 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
136    If nothing else has been done, use the method below.  */
137 #  ifdef INHIBIT_STRING_HEADER
138 #   if !(defined HAVE_BZERO && defined HAVE_BCOPY)
139 #    if !defined bzero && !defined bcopy
140 #     undef INHIBIT_STRING_HEADER
141 #    endif
142 #   endif
143 #  endif
144 
145 /* This is the normal way of making sure we have a bcopy and a bzero.
146    This is used in most programs--a few other programs avoid this
147    by defining INHIBIT_STRING_HEADER.  */
148 #  ifndef INHIBIT_STRING_HEADER
149 #   if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
150 #    include <string.h>
151 #    ifndef bzero
152 #     ifndef _LIBC
153 #      define bzero(s, n)	((void) memset (s, '\0', n))
154 #     else
155 #      define bzero(s, n)	__bzero (s, n)
156 #     endif
157 #    endif
158 #   else
159 #    include <strings.h>
160 #    ifndef memcmp
161 #     define memcmp(s1, s2, n)	bcmp (s1, s2, n)
162 #    endif
163 #    ifndef memcpy
164 #     define memcpy(d, s, n)	(bcopy (s, d, n), (d))
165 #    endif
166 #   endif
167 #  endif
168 
169 /* Define the syntax stuff for \<, \>, etc.  */
170 
171 /* This must be nonzero for the wordchar and notwordchar pattern
172    commands in re_match_2.  */
173 #  ifndef Sword
174 #   define Sword 1
175 #  endif
176 
177 #  ifdef SWITCH_ENUM_BUG
178 #   define SWITCH_ENUM_CAST(x) ((int)(x))
179 #  else
180 #   define SWITCH_ENUM_CAST(x) (x)
181 #  endif
182 
183 # endif /* not emacs */
184 
185 # if defined _LIBC || HAVE_LIMITS_H
186 #  include <limits.h>
187 # endif
188 
189 # ifndef MB_LEN_MAX
190 #  define MB_LEN_MAX 1
191 # endif
192 
193 /* Get the interface, including the syntax bits.  */
194 # include "xregex.h"  /* change for libiberty */
195 
196 /* isalpha etc. are used for the character classes.  */
197 # include <ctype.h>
198 
199 /* Jim Meyering writes:
200 
201    "... Some ctype macros are valid only for character codes that
202    isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
203    using /bin/cc or gcc but without giving an ansi option).  So, all
204    ctype uses should be through macros like ISPRINT...  If
205    STDC_HEADERS is defined, then autoconf has verified that the ctype
206    macros don't need to be guarded with references to isascii. ...
207    Defining isascii to 1 should let any compiler worth its salt
208    eliminate the && through constant folding."
209    Solaris defines some of these symbols so we must undefine them first.  */
210 
211 # undef ISASCII
212 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
213 #  define ISASCII(c) 1
214 # else
215 #  define ISASCII(c) isascii(c)
216 # endif
217 
218 # ifdef isblank
219 #  define ISBLANK(c) (ISASCII (c) && isblank (c))
220 # else
221 #  define ISBLANK(c) ((c) == ' ' || (c) == '\t')
222 # endif
223 # ifdef isgraph
224 #  define ISGRAPH(c) (ISASCII (c) && isgraph (c))
225 # else
226 #  define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
227 # endif
228 
229 # undef ISPRINT
230 # define ISPRINT(c) (ISASCII (c) && isprint (c))
231 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
232 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
233 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
234 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
235 # define ISLOWER(c) (ISASCII (c) && islower (c))
236 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
237 # define ISSPACE(c) (ISASCII (c) && isspace (c))
238 # define ISUPPER(c) (ISASCII (c) && isupper (c))
239 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
240 
241 # ifdef _tolower
242 #  define TOLOWER(c) _tolower(c)
243 # else
244 #  define TOLOWER(c) tolower(c)
245 # endif
246 
247 # ifndef NULL
248 #  define NULL (void *)0
249 # endif
250 
251 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
252    since ours (we hope) works properly with all combinations of
253    machines, compilers, `char' and `unsigned char' argument types.
254    (Per Bothner suggested the basic approach.)  */
255 # undef SIGN_EXTEND_CHAR
256 # if __STDC__
257 #  define SIGN_EXTEND_CHAR(c) ((signed char) (c))
258 # else  /* not __STDC__ */
259 /* As in Harbison and Steele.  */
260 #  define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
261 # endif
262 
263 # ifndef emacs
264 /* How many characters in the character set.  */
265 #  define CHAR_SET_SIZE 256
266 
267 #  ifdef SYNTAX_TABLE
268 
269 extern char *re_syntax_table;
270 
271 #  else /* not SYNTAX_TABLE */
272 
273 static char re_syntax_table[CHAR_SET_SIZE];
274 
275 static void init_syntax_once (void);
276 
277 static void
278 init_syntax_once (void)
279 {
280    register int c;
281    static int done = 0;
282 
283    if (done)
284      return;
285    bzero (re_syntax_table, sizeof re_syntax_table);
286 
287    for (c = 0; c < CHAR_SET_SIZE; ++c)
288      if (ISALNUM (c))
289 	re_syntax_table[c] = Sword;
290 
291    re_syntax_table['_'] = Sword;
292 
293    done = 1;
294 }
295 
296 #  endif /* not SYNTAX_TABLE */
297 
298 #  define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
299 
300 # endif /* emacs */
301 
302 /* Integer type for pointers.  */
303 # if !defined _LIBC && !defined HAVE_UINTPTR_T
304 typedef unsigned long int uintptr_t;
305 # endif
306 
307 /* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
308    use `alloca' instead of `malloc'.  This is because using malloc in
309    re_search* or re_match* could cause memory leaks when C-g is used in
310    Emacs; also, malloc is slower and causes storage fragmentation.  On
311    the other hand, malloc is more portable, and easier to debug.
312 
313    Because we sometimes use alloca, some routines have to be macros,
314    not functions -- `alloca'-allocated space disappears at the end of the
315    function it is called in.  */
316 
317 # ifdef REGEX_MALLOC
318 
319 #  define REGEX_ALLOCATE malloc
320 #  define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
321 #  define REGEX_FREE free
322 
323 # else /* not REGEX_MALLOC  */
324 
325 /* Emacs already defines alloca, sometimes.  */
326 #  ifndef alloca
327 
328 /* Make alloca work the best possible way.  */
329 #   ifdef __GNUC__
330 #    define alloca __builtin_alloca
331 #   else /* not __GNUC__ */
332 #    if HAVE_ALLOCA_H
333 #     include <alloca.h>
334 #    endif /* HAVE_ALLOCA_H */
335 #   endif /* not __GNUC__ */
336 
337 #  endif /* not alloca */
338 
339 #  define REGEX_ALLOCATE alloca
340 
341 /* Assumes a `char *destination' variable.  */
342 #  define REGEX_REALLOCATE(source, osize, nsize)			\
343   (destination = (char *) alloca (nsize),				\
344    memcpy (destination, source, osize))
345 
346 /* No need to do anything to free, after alloca.  */
347 #  define REGEX_FREE(arg) ((void)0) /* Do nothing!  But inhibit gcc warning.  */
348 
349 # endif /* not REGEX_MALLOC */
350 
351 /* Define how to allocate the failure stack.  */
352 
353 # if defined REL_ALLOC && defined REGEX_MALLOC
354 
355 #  define REGEX_ALLOCATE_STACK(size)				\
356   r_alloc (&failure_stack_ptr, (size))
357 #  define REGEX_REALLOCATE_STACK(source, osize, nsize)		\
358   r_re_alloc (&failure_stack_ptr, (nsize))
359 #  define REGEX_FREE_STACK(ptr)					\
360   r_alloc_free (&failure_stack_ptr)
361 
362 # else /* not using relocating allocator */
363 
364 #  ifdef REGEX_MALLOC
365 
366 #   define REGEX_ALLOCATE_STACK malloc
367 #   define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
368 #   define REGEX_FREE_STACK free
369 
370 #  else /* not REGEX_MALLOC */
371 
372 #   define REGEX_ALLOCATE_STACK alloca
373 
374 #   define REGEX_REALLOCATE_STACK(source, osize, nsize)			\
375    REGEX_REALLOCATE (source, osize, nsize)
376 /* No need to explicitly free anything.  */
377 #   define REGEX_FREE_STACK(arg)
378 
379 #  endif /* not REGEX_MALLOC */
380 # endif /* not using relocating allocator */
381 
382 
383 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
384    `string1' or just past its end.  This works if PTR is NULL, which is
385    a good thing.  */
386 # define FIRST_STRING_P(ptr) 					\
387   (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
388 
389 /* (Re)Allocate N items of type T using malloc, or fail.  */
390 # define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
391 # define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
392 # define RETALLOC_IF(addr, n, t) \
393   if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
394 # define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
395 
396 # define BYTEWIDTH 8 /* In bits.  */
397 
398 # define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
399 
400 # undef MAX
401 # undef MIN
402 # define MAX(a, b) ((a) > (b) ? (a) : (b))
403 # define MIN(a, b) ((a) < (b) ? (a) : (b))
404 
405 typedef char boolean;
406 # define false 0
407 # define true 1
408 
409 static reg_errcode_t byte_regex_compile (const char *pattern, size_t size,
410                                          reg_syntax_t syntax,
411                                          struct re_pattern_buffer *bufp);
412 
413 static int byte_re_match_2_internal (struct re_pattern_buffer *bufp,
414                                      const char *string1, int size1,
415                                      const char *string2, int size2,
416                                      int pos,
417                                      struct re_registers *regs,
418                                      int stop);
419 static int byte_re_search_2 (struct re_pattern_buffer *bufp,
420                              const char *string1, int size1,
421                              const char *string2, int size2,
422                              int startpos, int range,
423                              struct re_registers *regs, int stop);
424 static int byte_re_compile_fastmap (struct re_pattern_buffer *bufp);
425 
426 #ifdef MBS_SUPPORT
427 static reg_errcode_t wcs_regex_compile (const char *pattern, size_t size,
428                                         reg_syntax_t syntax,
429                                         struct re_pattern_buffer *bufp);
430 
431 
432 static int wcs_re_match_2_internal (struct re_pattern_buffer *bufp,
433                                     const char *cstring1, int csize1,
434                                     const char *cstring2, int csize2,
435                                     int pos,
436                                     struct re_registers *regs,
437                                     int stop,
438                                     wchar_t *string1, int size1,
439                                     wchar_t *string2, int size2,
440                                     int *mbs_offset1, int *mbs_offset2);
441 static int wcs_re_search_2 (struct re_pattern_buffer *bufp,
442                             const char *string1, int size1,
443                             const char *string2, int size2,
444                             int startpos, int range,
445                             struct re_registers *regs, int stop);
446 static int wcs_re_compile_fastmap (struct re_pattern_buffer *bufp);
447 #endif
448 
449 /* These are the command codes that appear in compiled regular
450    expressions.  Some opcodes are followed by argument bytes.  A
451    command code can specify any interpretation whatsoever for its
452    arguments.  Zero bytes may appear in the compiled regular expression.  */
453 
454 typedef enum
455 {
456   no_op = 0,
457 
458   /* Succeed right away--no more backtracking.  */
459   succeed,
460 
461         /* Followed by one byte giving n, then by n literal bytes.  */
462   exactn,
463 
464 # ifdef MBS_SUPPORT
465 	/* Same as exactn, but contains binary data.  */
466   exactn_bin,
467 # endif
468 
469         /* Matches any (more or less) character.  */
470   anychar,
471 
472         /* Matches any one char belonging to specified set.  First
473            following byte is number of bitmap bytes.  Then come bytes
474            for a bitmap saying which chars are in.  Bits in each byte
475            are ordered low-bit-first.  A character is in the set if its
476            bit is 1.  A character too large to have a bit in the map is
477            automatically not in the set.  */
478         /* ifdef MBS_SUPPORT, following element is length of character
479 	   classes, length of collating symbols, length of equivalence
480 	   classes, length of character ranges, and length of characters.
481 	   Next, character class element, collating symbols elements,
482 	   equivalence class elements, range elements, and character
483 	   elements follow.
484 	   See regex_compile function.  */
485   charset,
486 
487         /* Same parameters as charset, but match any character that is
488            not one of those specified.  */
489   charset_not,
490 
491         /* Start remembering the text that is matched, for storing in a
492            register.  Followed by one byte with the register number, in
493            the range 0 to one less than the pattern buffer's re_nsub
494            field.  Then followed by one byte with the number of groups
495            inner to this one.  (This last has to be part of the
496            start_memory only because we need it in the on_failure_jump
497            of re_match_2.)  */
498   start_memory,
499 
500         /* Stop remembering the text that is matched and store it in a
501            memory register.  Followed by one byte with the register
502            number, in the range 0 to one less than `re_nsub' in the
503            pattern buffer, and one byte with the number of inner groups,
504            just like `start_memory'.  (We need the number of inner
505            groups here because we don't have any easy way of finding the
506            corresponding start_memory when we're at a stop_memory.)  */
507   stop_memory,
508 
509         /* Match a duplicate of something remembered. Followed by one
510            byte containing the register number.  */
511   duplicate,
512 
513         /* Fail unless at beginning of line.  */
514   begline,
515 
516         /* Fail unless at end of line.  */
517   endline,
518 
519         /* Succeeds if at beginning of buffer (if emacs) or at beginning
520            of string to be matched (if not).  */
521   begbuf,
522 
523         /* Analogously, for end of buffer/string.  */
524   endbuf,
525 
526         /* Followed by two byte relative address to which to jump.  */
527   jump,
528 
529 	/* Same as jump, but marks the end of an alternative.  */
530   jump_past_alt,
531 
532         /* Followed by two-byte relative address of place to resume at
533            in case of failure.  */
534         /* ifdef MBS_SUPPORT, the size of address is 1.  */
535   on_failure_jump,
536 
537         /* Like on_failure_jump, but pushes a placeholder instead of the
538            current string position when executed.  */
539   on_failure_keep_string_jump,
540 
541         /* Throw away latest failure point and then jump to following
542            two-byte relative address.  */
543         /* ifdef MBS_SUPPORT, the size of address is 1.  */
544   pop_failure_jump,
545 
546         /* Change to pop_failure_jump if know won't have to backtrack to
547            match; otherwise change to jump.  This is used to jump
548            back to the beginning of a repeat.  If what follows this jump
549            clearly won't match what the repeat does, such that we can be
550            sure that there is no use backtracking out of repetitions
551            already matched, then we change it to a pop_failure_jump.
552            Followed by two-byte address.  */
553         /* ifdef MBS_SUPPORT, the size of address is 1.  */
554   maybe_pop_jump,
555 
556         /* Jump to following two-byte address, and push a dummy failure
557            point. This failure point will be thrown away if an attempt
558            is made to use it for a failure.  A `+' construct makes this
559            before the first repeat.  Also used as an intermediary kind
560            of jump when compiling an alternative.  */
561         /* ifdef MBS_SUPPORT, the size of address is 1.  */
562   dummy_failure_jump,
563 
564 	/* Push a dummy failure point and continue.  Used at the end of
565 	   alternatives.  */
566   push_dummy_failure,
567 
568         /* Followed by two-byte relative address and two-byte number n.
569            After matching N times, jump to the address upon failure.  */
570         /* ifdef MBS_SUPPORT, the size of address is 1.  */
571   succeed_n,
572 
573         /* Followed by two-byte relative address, and two-byte number n.
574            Jump to the address N times, then fail.  */
575         /* ifdef MBS_SUPPORT, the size of address is 1.  */
576   jump_n,
577 
578         /* Set the following two-byte relative address to the
579            subsequent two-byte number.  The address *includes* the two
580            bytes of number.  */
581         /* ifdef MBS_SUPPORT, the size of address is 1.  */
582   set_number_at,
583 
584   wordchar,	/* Matches any word-constituent character.  */
585   notwordchar,	/* Matches any char that is not a word-constituent.  */
586 
587   wordbeg,	/* Succeeds if at word beginning.  */
588   wordend,	/* Succeeds if at word end.  */
589 
590   wordbound,	/* Succeeds if at a word boundary.  */
591   notwordbound	/* Succeeds if not at a word boundary.  */
592 
593 # ifdef emacs
594   ,before_dot,	/* Succeeds if before point.  */
595   at_dot,	/* Succeeds if at point.  */
596   after_dot,	/* Succeeds if after point.  */
597 
598 	/* Matches any character whose syntax is specified.  Followed by
599            a byte which contains a syntax code, e.g., Sword.  */
600   syntaxspec,
601 
602 	/* Matches any character whose syntax is not that specified.  */
603   notsyntaxspec
604 # endif /* emacs */
605 } re_opcode_t;
606 #endif /* not INSIDE_RECURSION */
607 
608 
609 #ifdef BYTE
610 # define CHAR_T char
611 # define UCHAR_T unsigned char
612 # define COMPILED_BUFFER_VAR bufp->buffer
613 # define OFFSET_ADDRESS_SIZE 2
614 # define PREFIX(name) byte_##name
615 # define ARG_PREFIX(name) name
616 # define PUT_CHAR(c) putchar (c)
617 #else
618 # ifdef WCHAR
619 #  define CHAR_T wchar_t
620 #  define UCHAR_T wchar_t
621 #  define COMPILED_BUFFER_VAR wc_buffer
622 #  define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
623 #  define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1)
624 #  define PREFIX(name) wcs_##name
625 #  define ARG_PREFIX(name) c##name
626 /* Should we use wide stream??  */
627 #  define PUT_CHAR(c) printf ("%C", c);
628 #  define TRUE 1
629 #  define FALSE 0
630 # else
631 #  ifdef MBS_SUPPORT
632 #   define WCHAR
633 #   define INSIDE_RECURSION
634 #   include "regex.c"
635 #   undef INSIDE_RECURSION
636 #  endif
637 #  define BYTE
638 #  define INSIDE_RECURSION
639 #  include "regex.c"
640 #  undef INSIDE_RECURSION
641 # endif
642 #endif
643 
644 #ifdef INSIDE_RECURSION
645 /* Common operations on the compiled pattern.  */
646 
647 /* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
648 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
649 
650 # ifdef WCHAR
651 #  define STORE_NUMBER(destination, number)				\
652   do {									\
653     *(destination) = (UCHAR_T)(number);				\
654   } while (0)
655 # else /* BYTE */
656 #  define STORE_NUMBER(destination, number)				\
657   do {									\
658     (destination)[0] = (number) & 0377;					\
659     (destination)[1] = (number) >> 8;					\
660   } while (0)
661 # endif /* WCHAR */
662 
663 /* Same as STORE_NUMBER, except increment DESTINATION to
664    the byte after where the number is stored.  Therefore, DESTINATION
665    must be an lvalue.  */
666 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
667 
668 # define STORE_NUMBER_AND_INCR(destination, number)			\
669   do {									\
670     STORE_NUMBER (destination, number);					\
671     (destination) += OFFSET_ADDRESS_SIZE;				\
672   } while (0)
673 
674 /* Put into DESTINATION a number stored in two contiguous bytes starting
675    at SOURCE.  */
676 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
677 
678 # ifdef WCHAR
679 #  define EXTRACT_NUMBER(destination, source)				\
680   do {									\
681     (destination) = *(source);						\
682   } while (0)
683 # else /* BYTE */
684 #  define EXTRACT_NUMBER(destination, source)				\
685   do {									\
686     (destination) = *(source) & 0377;					\
687     (destination) += ((unsigned) SIGN_EXTEND_CHAR (*((source) + 1))) << 8; \
688   } while (0)
689 # endif
690 
691 # ifdef DEBUG
692 static void PREFIX(extract_number) (int *dest, UCHAR_T *source);
693 static void
694 PREFIX(extract_number) (int *dest, UCHAR_T *source)
695 {
696 #  ifdef WCHAR
697   *dest = *source;
698 #  else /* BYTE */
699   int temp = SIGN_EXTEND_CHAR (*(source + 1));
700   *dest = *source & 0377;
701   *dest += temp << 8;
702 #  endif
703 }
704 
705 #  ifndef EXTRACT_MACROS /* To debug the macros.  */
706 #   undef EXTRACT_NUMBER
707 #   define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src)
708 #  endif /* not EXTRACT_MACROS */
709 
710 # endif /* DEBUG */
711 
712 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
713    SOURCE must be an lvalue.  */
714 
715 # define EXTRACT_NUMBER_AND_INCR(destination, source)			\
716   do {									\
717     EXTRACT_NUMBER (destination, source);				\
718     (source) += OFFSET_ADDRESS_SIZE; 					\
719   } while (0)
720 
721 # ifdef DEBUG
722 static void PREFIX(extract_number_and_incr) (int *destination,
723                                              UCHAR_T **source);
724 static void
725 PREFIX(extract_number_and_incr) (int *destination, UCHAR_T **source)
726 {
727   PREFIX(extract_number) (destination, *source);
728   *source += OFFSET_ADDRESS_SIZE;
729 }
730 
731 #  ifndef EXTRACT_MACROS
732 #   undef EXTRACT_NUMBER_AND_INCR
733 #   define EXTRACT_NUMBER_AND_INCR(dest, src) \
734   PREFIX(extract_number_and_incr) (&dest, &src)
735 #  endif /* not EXTRACT_MACROS */
736 
737 # endif /* DEBUG */
738 
739 
740 
741 /* If DEBUG is defined, Regex prints many voluminous messages about what
742    it is doing (if the variable `debug' is nonzero).  If linked with the
743    main program in `iregex.c', you can enter patterns and strings
744    interactively.  And if linked with the main program in `main.c' and
745    the other test files, you can run the already-written tests.  */
746 
747 # ifdef DEBUG
748 
749 #  ifndef DEFINED_ONCE
750 
751 /* We use standard I/O for debugging.  */
752 #   include <stdio.h>
753 
754 /* It is useful to test things that ``must'' be true when debugging.  */
755 #   include <assert.h>
756 
757 static int debug;
758 
759 #   define DEBUG_STATEMENT(e) e
760 #   define DEBUG_PRINT1(x) if (debug) printf (x)
761 #   define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
762 #   define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
763 #   define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
764 #  endif /* not DEFINED_ONCE */
765 
766 #  define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) 			\
767   if (debug) PREFIX(print_partial_compiled_pattern) (s, e)
768 #  define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)		\
769   if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2)
770 
771 
772 /* Print the fastmap in human-readable form.  */
773 
774 #  ifndef DEFINED_ONCE
775 void
776 print_fastmap (char *fastmap)
777 {
778   unsigned was_a_range = 0;
779   unsigned i = 0;
780 
781   while (i < (1 << BYTEWIDTH))
782     {
783       if (fastmap[i++])
784 	{
785 	  was_a_range = 0;
786           putchar (i - 1);
787           while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
788             {
789               was_a_range = 1;
790               i++;
791             }
792 	  if (was_a_range)
793             {
794               printf ("-");
795               putchar (i - 1);
796             }
797         }
798     }
799   putchar ('\n');
800 }
801 #  endif /* not DEFINED_ONCE */
802 
803 
804 /* Print a compiled pattern string in human-readable form, starting at
805    the START pointer into it and ending just before the pointer END.  */
806 
807 void
808 PREFIX(print_partial_compiled_pattern) (UCHAR_T *start, UCHAR_T *end)
809 {
810   int mcnt, mcnt2;
811   UCHAR_T *p1;
812   UCHAR_T *p = start;
813   UCHAR_T *pend = end;
814 
815   if (start == NULL)
816     {
817       printf ("(null)\n");
818       return;
819     }
820 
821   /* Loop over pattern commands.  */
822   while (p < pend)
823     {
824 #  ifdef _LIBC
825       printf ("%td:\t", p - start);
826 #  else
827       printf ("%ld:\t", (long int) (p - start));
828 #  endif
829 
830       switch ((re_opcode_t) *p++)
831 	{
832         case no_op:
833           printf ("/no_op");
834           break;
835 
836 	case exactn:
837 	  mcnt = *p++;
838           printf ("/exactn/%d", mcnt);
839           do
840 	    {
841               putchar ('/');
842 	      PUT_CHAR (*p++);
843             }
844           while (--mcnt);
845           break;
846 
847 #  ifdef MBS_SUPPORT
848 	case exactn_bin:
849 	  mcnt = *p++;
850 	  printf ("/exactn_bin/%d", mcnt);
851           do
852 	    {
853 	      printf("/%lx", (long int) *p++);
854             }
855           while (--mcnt);
856           break;
857 #  endif /* MBS_SUPPORT */
858 
859 	case start_memory:
860           mcnt = *p++;
861           printf ("/start_memory/%d/%ld", mcnt, (long int) *p++);
862           break;
863 
864 	case stop_memory:
865           mcnt = *p++;
866 	  printf ("/stop_memory/%d/%ld", mcnt, (long int) *p++);
867           break;
868 
869 	case duplicate:
870 	  printf ("/duplicate/%ld", (long int) *p++);
871 	  break;
872 
873 	case anychar:
874 	  printf ("/anychar");
875 	  break;
876 
877 	case charset:
878         case charset_not:
879           {
880 #  ifdef WCHAR
881 	    int i, length;
882 	    wchar_t *workp = p;
883 	    printf ("/charset [%s",
884 	            (re_opcode_t) *(workp - 1) == charset_not ? "^" : "");
885 	    p += 5;
886 	    length = *workp++; /* the length of char_classes */
887 	    for (i=0 ; i<length ; i++)
888 	      printf("[:%lx:]", (long int) *p++);
889 	    length = *workp++; /* the length of collating_symbol */
890 	    for (i=0 ; i<length ;)
891 	      {
892 		printf("[.");
893 		while(*p != 0)
894 		  PUT_CHAR((i++,*p++));
895 		i++,p++;
896 		printf(".]");
897 	      }
898 	    length = *workp++; /* the length of equivalence_class */
899 	    for (i=0 ; i<length ;)
900 	      {
901 		printf("[=");
902 		while(*p != 0)
903 		  PUT_CHAR((i++,*p++));
904 		i++,p++;
905 		printf("=]");
906 	      }
907 	    length = *workp++; /* the length of char_range */
908 	    for (i=0 ; i<length ; i++)
909 	      {
910 		wchar_t range_start = *p++;
911 		wchar_t range_end = *p++;
912 		printf("%C-%C", range_start, range_end);
913 	      }
914 	    length = *workp++; /* the length of char */
915 	    for (i=0 ; i<length ; i++)
916 	      printf("%C", *p++);
917 	    putchar (']');
918 #  else
919             register int c, last = -100;
920 	    register int in_range = 0;
921 
922 	    printf ("/charset [%s",
923 	            (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
924 
925             assert (p + *p < pend);
926 
927             for (c = 0; c < 256; c++)
928 	      if (c / 8 < *p
929 		  && (p[1 + (c/8)] & (1 << (c % 8))))
930 		{
931 		  /* Are we starting a range?  */
932 		  if (last + 1 == c && ! in_range)
933 		    {
934 		      putchar ('-');
935 		      in_range = 1;
936 		    }
937 		  /* Have we broken a range?  */
938 		  else if (last + 1 != c && in_range)
939               {
940 		      putchar (last);
941 		      in_range = 0;
942 		    }
943 
944 		  if (! in_range)
945 		    putchar (c);
946 
947 		  last = c;
948               }
949 
950 	    if (in_range)
951 	      putchar (last);
952 
953 	    putchar (']');
954 
955 	    p += 1 + *p;
956 #  endif /* WCHAR */
957 	  }
958 	  break;
959 
960 	case begline:
961 	  printf ("/begline");
962           break;
963 
964 	case endline:
965           printf ("/endline");
966           break;
967 
968 	case on_failure_jump:
969           PREFIX(extract_number_and_incr) (&mcnt, &p);
970 #  ifdef _LIBC
971   	  printf ("/on_failure_jump to %td", p + mcnt - start);
972 #  else
973   	  printf ("/on_failure_jump to %ld", (long int) (p + mcnt - start));
974 #  endif
975           break;
976 
977 	case on_failure_keep_string_jump:
978           PREFIX(extract_number_and_incr) (&mcnt, &p);
979 #  ifdef _LIBC
980   	  printf ("/on_failure_keep_string_jump to %td", p + mcnt - start);
981 #  else
982   	  printf ("/on_failure_keep_string_jump to %ld",
983 		  (long int) (p + mcnt - start));
984 #  endif
985           break;
986 
987 	case dummy_failure_jump:
988           PREFIX(extract_number_and_incr) (&mcnt, &p);
989 #  ifdef _LIBC
990   	  printf ("/dummy_failure_jump to %td", p + mcnt - start);
991 #  else
992   	  printf ("/dummy_failure_jump to %ld", (long int) (p + mcnt - start));
993 #  endif
994           break;
995 
996 	case push_dummy_failure:
997           printf ("/push_dummy_failure");
998           break;
999 
1000         case maybe_pop_jump:
1001           PREFIX(extract_number_and_incr) (&mcnt, &p);
1002 #  ifdef _LIBC
1003   	  printf ("/maybe_pop_jump to %td", p + mcnt - start);
1004 #  else
1005   	  printf ("/maybe_pop_jump to %ld", (long int) (p + mcnt - start));
1006 #  endif
1007 	  break;
1008 
1009         case pop_failure_jump:
1010 	  PREFIX(extract_number_and_incr) (&mcnt, &p);
1011 #  ifdef _LIBC
1012   	  printf ("/pop_failure_jump to %td", p + mcnt - start);
1013 #  else
1014   	  printf ("/pop_failure_jump to %ld", (long int) (p + mcnt - start));
1015 #  endif
1016 	  break;
1017 
1018         case jump_past_alt:
1019 	  PREFIX(extract_number_and_incr) (&mcnt, &p);
1020 #  ifdef _LIBC
1021   	  printf ("/jump_past_alt to %td", p + mcnt - start);
1022 #  else
1023   	  printf ("/jump_past_alt to %ld", (long int) (p + mcnt - start));
1024 #  endif
1025 	  break;
1026 
1027         case jump:
1028 	  PREFIX(extract_number_and_incr) (&mcnt, &p);
1029 #  ifdef _LIBC
1030   	  printf ("/jump to %td", p + mcnt - start);
1031 #  else
1032   	  printf ("/jump to %ld", (long int) (p + mcnt - start));
1033 #  endif
1034 	  break;
1035 
1036         case succeed_n:
1037           PREFIX(extract_number_and_incr) (&mcnt, &p);
1038 	  p1 = p + mcnt;
1039           PREFIX(extract_number_and_incr) (&mcnt2, &p);
1040 #  ifdef _LIBC
1041 	  printf ("/succeed_n to %td, %d times", p1 - start, mcnt2);
1042 #  else
1043 	  printf ("/succeed_n to %ld, %d times",
1044 		  (long int) (p1 - start), mcnt2);
1045 #  endif
1046           break;
1047 
1048         case jump_n:
1049           PREFIX(extract_number_and_incr) (&mcnt, &p);
1050 	  p1 = p + mcnt;
1051           PREFIX(extract_number_and_incr) (&mcnt2, &p);
1052 	  printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
1053           break;
1054 
1055         case set_number_at:
1056           PREFIX(extract_number_and_incr) (&mcnt, &p);
1057 	  p1 = p + mcnt;
1058           PREFIX(extract_number_and_incr) (&mcnt2, &p);
1059 #  ifdef _LIBC
1060 	  printf ("/set_number_at location %td to %d", p1 - start, mcnt2);
1061 #  else
1062 	  printf ("/set_number_at location %ld to %d",
1063 		  (long int) (p1 - start), mcnt2);
1064 #  endif
1065           break;
1066 
1067         case wordbound:
1068 	  printf ("/wordbound");
1069 	  break;
1070 
1071 	case notwordbound:
1072 	  printf ("/notwordbound");
1073           break;
1074 
1075 	case wordbeg:
1076 	  printf ("/wordbeg");
1077 	  break;
1078 
1079 	case wordend:
1080 	  printf ("/wordend");
1081 	  break;
1082 
1083 #  ifdef emacs
1084 	case before_dot:
1085 	  printf ("/before_dot");
1086           break;
1087 
1088 	case at_dot:
1089 	  printf ("/at_dot");
1090           break;
1091 
1092 	case after_dot:
1093 	  printf ("/after_dot");
1094           break;
1095 
1096 	case syntaxspec:
1097           printf ("/syntaxspec");
1098 	  mcnt = *p++;
1099 	  printf ("/%d", mcnt);
1100           break;
1101 
1102 	case notsyntaxspec:
1103           printf ("/notsyntaxspec");
1104 	  mcnt = *p++;
1105 	  printf ("/%d", mcnt);
1106 	  break;
1107 #  endif /* emacs */
1108 
1109 	case wordchar:
1110 	  printf ("/wordchar");
1111           break;
1112 
1113 	case notwordchar:
1114 	  printf ("/notwordchar");
1115           break;
1116 
1117 	case begbuf:
1118 	  printf ("/begbuf");
1119           break;
1120 
1121 	case endbuf:
1122 	  printf ("/endbuf");
1123           break;
1124 
1125         default:
1126           printf ("?%ld", (long int) *(p-1));
1127 	}
1128 
1129       putchar ('\n');
1130     }
1131 
1132 #  ifdef _LIBC
1133   printf ("%td:\tend of pattern.\n", p - start);
1134 #  else
1135   printf ("%ld:\tend of pattern.\n", (long int) (p - start));
1136 #  endif
1137 }
1138 
1139 
1140 void
1141 PREFIX(print_compiled_pattern) (struct re_pattern_buffer *bufp)
1142 {
1143   UCHAR_T *buffer = (UCHAR_T*) bufp->buffer;
1144 
1145   PREFIX(print_partial_compiled_pattern) (buffer, buffer
1146 				  + bufp->used / sizeof(UCHAR_T));
1147   printf ("%ld bytes used/%ld bytes allocated.\n",
1148 	  bufp->used, bufp->allocated);
1149 
1150   if (bufp->fastmap_accurate && bufp->fastmap)
1151     {
1152       printf ("fastmap: ");
1153       print_fastmap (bufp->fastmap);
1154     }
1155 
1156 #  ifdef _LIBC
1157   printf ("re_nsub: %Zd\t", bufp->re_nsub);
1158 #  else
1159   printf ("re_nsub: %ld\t", (long int) bufp->re_nsub);
1160 #  endif
1161   printf ("regs_alloc: %d\t", bufp->regs_allocated);
1162   printf ("can_be_null: %d\t", bufp->can_be_null);
1163   printf ("newline_anchor: %d\n", bufp->newline_anchor);
1164   printf ("no_sub: %d\t", bufp->no_sub);
1165   printf ("not_bol: %d\t", bufp->not_bol);
1166   printf ("not_eol: %d\t", bufp->not_eol);
1167   printf ("syntax: %lx\n", bufp->syntax);
1168   /* Perhaps we should print the translate table?  */
1169 }
1170 
1171 
1172 void
1173 PREFIX(print_double_string) (const CHAR_T *where, const CHAR_T *string1,
1174                              int size1, const CHAR_T *string2, int size2)
1175 {
1176   int this_char;
1177 
1178   if (where == NULL)
1179     printf ("(null)");
1180   else
1181     {
1182       int cnt;
1183 
1184       if (FIRST_STRING_P (where))
1185         {
1186           for (this_char = where - string1; this_char < size1; this_char++)
1187 	    PUT_CHAR (string1[this_char]);
1188 
1189           where = string2;
1190         }
1191 
1192       cnt = 0;
1193       for (this_char = where - string2; this_char < size2; this_char++)
1194 	{
1195 	  PUT_CHAR (string2[this_char]);
1196 	  if (++cnt > 100)
1197 	    {
1198 	      fputs ("...", stdout);
1199 	      break;
1200 	    }
1201 	}
1202     }
1203 }
1204 
1205 #  ifndef DEFINED_ONCE
1206 void
1207 printchar (int c)
1208 {
1209   putc (c, stderr);
1210 }
1211 #  endif
1212 
1213 # else /* not DEBUG */
1214 
1215 #  ifndef DEFINED_ONCE
1216 #   undef assert
1217 #   define assert(e)
1218 
1219 #   define DEBUG_STATEMENT(e)
1220 #   define DEBUG_PRINT1(x)
1221 #   define DEBUG_PRINT2(x1, x2)
1222 #   define DEBUG_PRINT3(x1, x2, x3)
1223 #   define DEBUG_PRINT4(x1, x2, x3, x4)
1224 #  endif /* not DEFINED_ONCE */
1225 #  define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1226 #  define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1227 
1228 # endif /* not DEBUG */
1229 
1230 
1231 
1232 # ifdef WCHAR
1233 /* This  convert a multibyte string to a wide character string.
1234    And write their correspondances to offset_buffer(see below)
1235    and write whether each wchar_t is binary data to is_binary.
1236    This assume invalid multibyte sequences as binary data.
1237    We assume offset_buffer and is_binary is already allocated
1238    enough space.  */
1239 
1240 static size_t convert_mbs_to_wcs (CHAR_T *dest, const unsigned char* src,
1241 				  size_t len, int *offset_buffer,
1242 				  char *is_binary);
1243 static size_t
1244 convert_mbs_to_wcs (CHAR_T *dest, const unsigned char*src, size_t len,
1245                     int *offset_buffer, char *is_binary)
1246      /* It hold correspondances between src(char string) and
1247 	dest(wchar_t string) for optimization.
1248 	e.g. src  = "xxxyzz"
1249              dest = {'X', 'Y', 'Z'}
1250 	      (each "xxx", "y" and "zz" represent one multibyte character
1251 	       corresponding to 'X', 'Y' and 'Z'.)
1252 	  offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")}
1253 	  	        = {0, 3, 4, 6}
1254      */
1255 {
1256   wchar_t *pdest = dest;
1257   const unsigned char *psrc = src;
1258   size_t wc_count = 0;
1259 
1260   mbstate_t mbs;
1261   int i, consumed;
1262   size_t mb_remain = len;
1263   size_t mb_count = 0;
1264 
1265   /* Initialize the conversion state.  */
1266   memset (&mbs, 0, sizeof (mbstate_t));
1267 
1268   offset_buffer[0] = 0;
1269   for( ; mb_remain > 0 ; ++wc_count, ++pdest, mb_remain -= consumed,
1270 	 psrc += consumed)
1271     {
1272 #ifdef _LIBC
1273       consumed = __mbrtowc (pdest, psrc, mb_remain, &mbs);
1274 #else
1275       consumed = mbrtowc (pdest, psrc, mb_remain, &mbs);
1276 #endif
1277 
1278       if (consumed <= 0)
1279 	/* failed to convert. maybe src contains binary data.
1280 	   So we consume 1 byte manualy.  */
1281 	{
1282 	  *pdest = *psrc;
1283 	  consumed = 1;
1284 	  is_binary[wc_count] = TRUE;
1285 	}
1286       else
1287 	is_binary[wc_count] = FALSE;
1288       /* In sjis encoding, we use yen sign as escape character in
1289 	 place of reverse solidus. So we convert 0x5c(yen sign in
1290 	 sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1291 	 solidus in UCS2).  */
1292       if (consumed == 1 && (int) *psrc == 0x5c && (int) *pdest == 0xa5)
1293 	*pdest = (wchar_t) *psrc;
1294 
1295       offset_buffer[wc_count + 1] = mb_count += consumed;
1296     }
1297 
1298   /* Fill remain of the buffer with sentinel.  */
1299   for (i = wc_count + 1 ; i <= len ; i++)
1300     offset_buffer[i] = mb_count + 1;
1301 
1302   return wc_count;
1303 }
1304 
1305 # endif /* WCHAR */
1306 
1307 #else /* not INSIDE_RECURSION */
1308 
1309 /* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
1310    also be assigned to arbitrarily: each pattern buffer stores its own
1311    syntax, so it can be changed between regex compilations.  */
1312 /* This has no initializer because initialized variables in Emacs
1313    become read-only after dumping.  */
1314 reg_syntax_t re_syntax_options;
1315 
1316 
1317 /* Specify the precise syntax of regexps for compilation.  This provides
1318    for compatibility for various utilities which historically have
1319    different, incompatible syntaxes.
1320 
1321    The argument SYNTAX is a bit mask comprised of the various bits
1322    defined in regex.h.  We return the old syntax.  */
1323 
1324 reg_syntax_t
1325 re_set_syntax (reg_syntax_t syntax)
1326 {
1327   reg_syntax_t ret = re_syntax_options;
1328 
1329   re_syntax_options = syntax;
1330 # ifdef DEBUG
1331   if (syntax & RE_DEBUG)
1332     debug = 1;
1333   else if (debug) /* was on but now is not */
1334     debug = 0;
1335 # endif /* DEBUG */
1336   return ret;
1337 }
1338 # ifdef _LIBC
1339 weak_alias (__re_set_syntax, re_set_syntax)
1340 # endif
1341 
1342 /* This table gives an error message for each of the error codes listed
1343    in regex.h.  Obviously the order here has to be same as there.
1344    POSIX doesn't require that we do anything for REG_NOERROR,
1345    but why not be nice?  */
1346 
1347 static const char *re_error_msgid[] =
1348   {
1349     gettext_noop ("Success"),	/* REG_NOERROR */
1350     gettext_noop ("No match"),	/* REG_NOMATCH */
1351     gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1352     gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1353     gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1354     gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1355     gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1356     gettext_noop ("Unmatched [ or [^"),	/* REG_EBRACK */
1357     gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1358     gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1359     gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1360     gettext_noop ("Invalid range end"),	/* REG_ERANGE */
1361     gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1362     gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1363     gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1364     gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1365     gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1366   };
1367 
1368 #endif /* INSIDE_RECURSION */
1369 
1370 #ifndef DEFINED_ONCE
1371 /* Avoiding alloca during matching, to placate r_alloc.  */
1372 
1373 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1374    searching and matching functions should not call alloca.  On some
1375    systems, alloca is implemented in terms of malloc, and if we're
1376    using the relocating allocator routines, then malloc could cause a
1377    relocation, which might (if the strings being searched are in the
1378    ralloc heap) shift the data out from underneath the regexp
1379    routines.
1380 
1381    Here's another reason to avoid allocation: Emacs
1382    processes input from X in a signal handler; processing X input may
1383    call malloc; if input arrives while a matching routine is calling
1384    malloc, then we're scrod.  But Emacs can't just block input while
1385    calling matching routines; then we don't notice interrupts when
1386    they come in.  So, Emacs blocks input around all regexp calls
1387    except the matching calls, which it leaves unprotected, in the
1388    faith that they will not malloc.  */
1389 
1390 /* Normally, this is fine.  */
1391 # define MATCH_MAY_ALLOCATE
1392 
1393 /* When using GNU C, we are not REALLY using the C alloca, no matter
1394    what config.h may say.  So don't take precautions for it.  */
1395 # ifdef __GNUC__
1396 #  undef C_ALLOCA
1397 # endif
1398 
1399 /* The match routines may not allocate if (1) they would do it with malloc
1400    and (2) it's not safe for them to use malloc.
1401    Note that if REL_ALLOC is defined, matching would not use malloc for the
1402    failure stack, but we would still use it for the register vectors;
1403    so REL_ALLOC should not affect this.  */
1404 # if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1405 #  undef MATCH_MAY_ALLOCATE
1406 # endif
1407 #endif /* not DEFINED_ONCE */
1408 
1409 #ifdef INSIDE_RECURSION
1410 /* Failure stack declarations and macros; both re_compile_fastmap and
1411    re_match_2 use a failure stack.  These have to be macros because of
1412    REGEX_ALLOCATE_STACK.  */
1413 
1414 
1415 /* Number of failure points for which to initially allocate space
1416    when matching.  If this number is exceeded, we allocate more
1417    space, so it is not a hard limit.  */
1418 # ifndef INIT_FAILURE_ALLOC
1419 #  define INIT_FAILURE_ALLOC 5
1420 # endif
1421 
1422 /* Roughly the maximum number of failure points on the stack.  Would be
1423    exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1424    This is a variable only so users of regex can assign to it; we never
1425    change it ourselves.  */
1426 
1427 # ifdef INT_IS_16BIT
1428 
1429 #  ifndef DEFINED_ONCE
1430 #   if defined MATCH_MAY_ALLOCATE
1431 /* 4400 was enough to cause a crash on Alpha OSF/1,
1432    whose default stack limit is 2mb.  */
1433 long int re_max_failures = 4000;
1434 #   else
1435 long int re_max_failures = 2000;
1436 #   endif
1437 #  endif
1438 
1439 union PREFIX(fail_stack_elt)
1440 {
1441   UCHAR_T *pointer;
1442   long int integer;
1443 };
1444 
1445 typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1446 
1447 typedef struct
1448 {
1449   PREFIX(fail_stack_elt_t) *stack;
1450   unsigned long int size;
1451   unsigned long int avail;		/* Offset of next open position.  */
1452 } PREFIX(fail_stack_type);
1453 
1454 # else /* not INT_IS_16BIT */
1455 
1456 #  ifndef DEFINED_ONCE
1457 #   if defined MATCH_MAY_ALLOCATE
1458 /* 4400 was enough to cause a crash on Alpha OSF/1,
1459    whose default stack limit is 2mb.  */
1460 int re_max_failures = 4000;
1461 #   else
1462 int re_max_failures = 2000;
1463 #   endif
1464 #  endif
1465 
1466 union PREFIX(fail_stack_elt)
1467 {
1468   UCHAR_T *pointer;
1469   int integer;
1470 };
1471 
1472 typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1473 
1474 typedef struct
1475 {
1476   PREFIX(fail_stack_elt_t) *stack;
1477   unsigned size;
1478   unsigned avail;			/* Offset of next open position.  */
1479 } PREFIX(fail_stack_type);
1480 
1481 # endif /* INT_IS_16BIT */
1482 
1483 # ifndef DEFINED_ONCE
1484 #  define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
1485 #  define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1486 #  define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
1487 # endif
1488 
1489 
1490 /* Define macros to initialize and free the failure stack.
1491    Do `return -2' if the alloc fails.  */
1492 
1493 # ifdef MATCH_MAY_ALLOCATE
1494 #  define INIT_FAIL_STACK()						\
1495   do {									\
1496     fail_stack.stack = (PREFIX(fail_stack_elt_t) *)		\
1497       REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t))); \
1498 									\
1499     if (fail_stack.stack == NULL)				\
1500       return -2;							\
1501 									\
1502     fail_stack.size = INIT_FAILURE_ALLOC;			\
1503     fail_stack.avail = 0;					\
1504   } while (0)
1505 
1506 #  define RESET_FAIL_STACK()  REGEX_FREE_STACK (fail_stack.stack)
1507 # else
1508 #  define INIT_FAIL_STACK()						\
1509   do {									\
1510     fail_stack.avail = 0;					\
1511   } while (0)
1512 
1513 #  define RESET_FAIL_STACK()
1514 # endif
1515 
1516 
1517 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1518 
1519    Return 1 if succeeds, and 0 if either ran out of memory
1520    allocating space for it or it was already too large.
1521 
1522    REGEX_REALLOCATE_STACK requires `destination' be declared.   */
1523 
1524 # define DOUBLE_FAIL_STACK(fail_stack)					\
1525   ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS)	\
1526    ? 0									\
1527    : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *)			\
1528         REGEX_REALLOCATE_STACK ((fail_stack).stack, 			\
1529           (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)),	\
1530           ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t))),\
1531 									\
1532       (fail_stack).stack == NULL					\
1533       ? 0								\
1534       : ((fail_stack).size <<= 1, 					\
1535          1)))
1536 
1537 
1538 /* Push pointer POINTER on FAIL_STACK.
1539    Return 1 if was able to do so and 0 if ran out of memory allocating
1540    space to do so.  */
1541 # define PUSH_PATTERN_OP(POINTER, FAIL_STACK)				\
1542   ((FAIL_STACK_FULL ()							\
1543     && !DOUBLE_FAIL_STACK (FAIL_STACK))					\
1544    ? 0									\
1545    : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER,	\
1546       1))
1547 
1548 /* Push a pointer value onto the failure stack.
1549    Assumes the variable `fail_stack'.  Probably should only
1550    be called from within `PUSH_FAILURE_POINT'.  */
1551 # define PUSH_FAILURE_POINTER(item)					\
1552   fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item)
1553 
1554 /* This pushes an integer-valued item onto the failure stack.
1555    Assumes the variable `fail_stack'.  Probably should only
1556    be called from within `PUSH_FAILURE_POINT'.  */
1557 # define PUSH_FAILURE_INT(item)					\
1558   fail_stack.stack[fail_stack.avail++].integer = (item)
1559 
1560 /* Push a fail_stack_elt_t value onto the failure stack.
1561    Assumes the variable `fail_stack'.  Probably should only
1562    be called from within `PUSH_FAILURE_POINT'.  */
1563 # define PUSH_FAILURE_ELT(item)					\
1564   fail_stack.stack[fail_stack.avail++] =  (item)
1565 
1566 /* These three POP... operations complement the three PUSH... operations.
1567    All assume that `fail_stack' is nonempty.  */
1568 # define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1569 # define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1570 # define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1571 
1572 /* Used to omit pushing failure point id's when we're not debugging.  */
1573 # ifdef DEBUG
1574 #  define DEBUG_PUSH PUSH_FAILURE_INT
1575 #  define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1576 # else
1577 #  define DEBUG_PUSH(item)
1578 #  define DEBUG_POP(item_addr)
1579 # endif
1580 
1581 
1582 /* Push the information about the state we will need
1583    if we ever fail back to it.
1584 
1585    Requires variables fail_stack, regstart, regend, reg_info, and
1586    num_regs_pushed be declared.  DOUBLE_FAIL_STACK requires `destination'
1587    be declared.
1588 
1589    Does `return FAILURE_CODE' if runs out of memory.  */
1590 
1591 # define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)	\
1592   do {									\
1593     char *destination;							\
1594     /* Must be int, so when we don't save any registers, the arithmetic	\
1595        of 0 + -1 isn't done as unsigned.  */				\
1596     /* Can't be int, since there is not a shred of a guarantee that int	\
1597        is wide enough to hold a value of something to which pointer can	\
1598        be assigned */							\
1599     active_reg_t this_reg;						\
1600     									\
1601     DEBUG_STATEMENT (failure_id++);					\
1602     DEBUG_STATEMENT (nfailure_points_pushed++);				\
1603     DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);		\
1604     DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
1605     DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
1606 									\
1607     DEBUG_PRINT2 ("  slots needed: %ld\n", NUM_FAILURE_ITEMS);		\
1608     DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS);	\
1609 									\
1610     /* Ensure we have enough space allocated for what we will push.  */	\
1611     while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)			\
1612       {									\
1613         if (!DOUBLE_FAIL_STACK (fail_stack))				\
1614           return failure_code;						\
1615 									\
1616         DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",		\
1617 		       (fail_stack).size);				\
1618         DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1619       }									\
1620 									\
1621     /* Push the info, starting with the registers.  */			\
1622     DEBUG_PRINT1 ("\n");						\
1623 									\
1624     if (1)								\
1625       for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1626 	   this_reg++)							\
1627 	{								\
1628 	  DEBUG_PRINT2 ("  Pushing reg: %lu\n", this_reg);		\
1629 	  DEBUG_STATEMENT (num_regs_pushed++);				\
1630 									\
1631 	  DEBUG_PRINT2 ("    start: %p\n", regstart[this_reg]);		\
1632 	  PUSH_FAILURE_POINTER (regstart[this_reg]);			\
1633 									\
1634 	  DEBUG_PRINT2 ("    end: %p\n", regend[this_reg]);		\
1635 	  PUSH_FAILURE_POINTER (regend[this_reg]);			\
1636 									\
1637 	  DEBUG_PRINT2 ("    info: %p\n      ",				\
1638 			reg_info[this_reg].word.pointer);		\
1639 	  DEBUG_PRINT2 (" match_null=%d",				\
1640 			REG_MATCH_NULL_STRING_P (reg_info[this_reg]));	\
1641 	  DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));	\
1642 	  DEBUG_PRINT2 (" matched_something=%d",			\
1643 			MATCHED_SOMETHING (reg_info[this_reg]));	\
1644 	  DEBUG_PRINT2 (" ever_matched=%d",				\
1645 			EVER_MATCHED_SOMETHING (reg_info[this_reg]));	\
1646 	  DEBUG_PRINT1 ("\n");						\
1647 	  PUSH_FAILURE_ELT (reg_info[this_reg].word);			\
1648 	}								\
1649 									\
1650     DEBUG_PRINT2 ("  Pushing  low active reg: %ld\n", lowest_active_reg);\
1651     PUSH_FAILURE_INT (lowest_active_reg);				\
1652 									\
1653     DEBUG_PRINT2 ("  Pushing high active reg: %ld\n", highest_active_reg);\
1654     PUSH_FAILURE_INT (highest_active_reg);				\
1655 									\
1656     DEBUG_PRINT2 ("  Pushing pattern %p:\n", pattern_place);		\
1657     DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);		\
1658     PUSH_FAILURE_POINTER (pattern_place);				\
1659 									\
1660     DEBUG_PRINT2 ("  Pushing string %p: `", string_place);		\
1661     DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,   \
1662 				 size2);				\
1663     DEBUG_PRINT1 ("'\n");						\
1664     PUSH_FAILURE_POINTER (string_place);				\
1665 									\
1666     DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);		\
1667     DEBUG_PUSH (failure_id);						\
1668   } while (0)
1669 
1670 # ifndef DEFINED_ONCE
1671 /* This is the number of items that are pushed and popped on the stack
1672    for each register.  */
1673 #  define NUM_REG_ITEMS  3
1674 
1675 /* Individual items aside from the registers.  */
1676 #  ifdef DEBUG
1677 #   define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
1678 #  else
1679 #   define NUM_NONREG_ITEMS 4
1680 #  endif
1681 
1682 /* We push at most this many items on the stack.  */
1683 /* We used to use (num_regs - 1), which is the number of registers
1684    this regexp will save; but that was changed to 5
1685    to avoid stack overflow for a regexp with lots of parens.  */
1686 #  define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1687 
1688 /* We actually push this many items.  */
1689 #  define NUM_FAILURE_ITEMS				\
1690   (((0							\
1691      ? 0 : highest_active_reg - lowest_active_reg + 1)	\
1692     * NUM_REG_ITEMS)					\
1693    + NUM_NONREG_ITEMS)
1694 
1695 /* How many items can still be added to the stack without overflowing it.  */
1696 #  define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1697 # endif /* not DEFINED_ONCE */
1698 
1699 
1700 /* Pops what PUSH_FAIL_STACK pushes.
1701 
1702    We restore into the parameters, all of which should be lvalues:
1703      STR -- the saved data position.
1704      PAT -- the saved pattern position.
1705      LOW_REG, HIGH_REG -- the highest and lowest active registers.
1706      REGSTART, REGEND -- arrays of string positions.
1707      REG_INFO -- array of information about each subexpression.
1708 
1709    Also assumes the variables `fail_stack' and (if debugging), `bufp',
1710    `pend', `string1', `size1', `string2', and `size2'.  */
1711 # define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1712 {									\
1713   DEBUG_STATEMENT (unsigned failure_id;)				\
1714   active_reg_t this_reg;						\
1715   const UCHAR_T *string_temp;						\
1716 									\
1717   assert (!FAIL_STACK_EMPTY ());					\
1718 									\
1719   /* Remove failure points and point to how many regs pushed.  */	\
1720   DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");				\
1721   DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);	\
1722   DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size);	\
1723 									\
1724   assert (fail_stack.avail >= NUM_NONREG_ITEMS);			\
1725 									\
1726   DEBUG_POP (&failure_id);						\
1727   DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);		\
1728 									\
1729   /* If the saved string location is NULL, it came from an		\
1730      on_failure_keep_string_jump opcode, and we want to throw away the	\
1731      saved NULL, thus retaining our current position in the string.  */	\
1732   string_temp = POP_FAILURE_POINTER ();					\
1733   if (string_temp != NULL)						\
1734     str = (const CHAR_T *) string_temp;					\
1735 									\
1736   DEBUG_PRINT2 ("  Popping string %p: `", str);				\
1737   DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);	\
1738   DEBUG_PRINT1 ("'\n");							\
1739 									\
1740   pat = (UCHAR_T *) POP_FAILURE_POINTER ();				\
1741   DEBUG_PRINT2 ("  Popping pattern %p:\n", pat);			\
1742   DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);			\
1743 									\
1744   /* Restore register info.  */						\
1745   high_reg = (active_reg_t) POP_FAILURE_INT ();				\
1746   DEBUG_PRINT2 ("  Popping high active reg: %ld\n", high_reg);		\
1747 									\
1748   low_reg = (active_reg_t) POP_FAILURE_INT ();				\
1749   DEBUG_PRINT2 ("  Popping  low active reg: %ld\n", low_reg);		\
1750 									\
1751   if (1)								\
1752     for (this_reg = high_reg; this_reg >= low_reg; this_reg--)		\
1753       {									\
1754 	DEBUG_PRINT2 ("    Popping reg: %ld\n", this_reg);		\
1755 									\
1756 	reg_info[this_reg].word = POP_FAILURE_ELT ();			\
1757 	DEBUG_PRINT2 ("      info: %p\n",				\
1758 		      reg_info[this_reg].word.pointer);			\
1759 									\
1760 	regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER ();	\
1761 	DEBUG_PRINT2 ("      end: %p\n", regend[this_reg]);		\
1762 									\
1763 	regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER ();	\
1764 	DEBUG_PRINT2 ("      start: %p\n", regstart[this_reg]);		\
1765       }									\
1766   else									\
1767     {									\
1768       for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1769 	{								\
1770 	  reg_info[this_reg].word.integer = 0;				\
1771 	  regend[this_reg] = 0;						\
1772 	  regstart[this_reg] = 0;					\
1773 	}								\
1774       highest_active_reg = high_reg;					\
1775     }									\
1776 									\
1777   set_regs_matched_done = 0;						\
1778   DEBUG_STATEMENT (nfailure_points_popped++);				\
1779 } /* POP_FAILURE_POINT */
1780 
1781 /* Structure for per-register (a.k.a. per-group) information.
1782    Other register information, such as the
1783    starting and ending positions (which are addresses), and the list of
1784    inner groups (which is a bits list) are maintained in separate
1785    variables.
1786 
1787    We are making a (strictly speaking) nonportable assumption here: that
1788    the compiler will pack our bit fields into something that fits into
1789    the type of `word', i.e., is something that fits into one item on the
1790    failure stack.  */
1791 
1792 
1793 /* Declarations and macros for re_match_2.  */
1794 
1795 typedef union
1796 {
1797   PREFIX(fail_stack_elt_t) word;
1798   struct
1799   {
1800       /* This field is one if this group can match the empty string,
1801          zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
1802 # define MATCH_NULL_UNSET_VALUE 3
1803     unsigned match_null_string_p : 2;
1804     unsigned is_active : 1;
1805     unsigned matched_something : 1;
1806     unsigned ever_matched_something : 1;
1807   } bits;
1808 } PREFIX(register_info_type);
1809 
1810 # ifndef DEFINED_ONCE
1811 #  define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
1812 #  define IS_ACTIVE(R)  ((R).bits.is_active)
1813 #  define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
1814 #  define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
1815 
1816 
1817 /* Call this when have matched a real character; it sets `matched' flags
1818    for the subexpressions which we are currently inside.  Also records
1819    that those subexprs have matched.  */
1820 #  define SET_REGS_MATCHED()						\
1821   do									\
1822     {									\
1823       if (!set_regs_matched_done)					\
1824 	{								\
1825 	  active_reg_t r;						\
1826 	  set_regs_matched_done = 1;					\
1827 	  for (r = lowest_active_reg; r <= highest_active_reg; r++)	\
1828 	    {								\
1829 	      MATCHED_SOMETHING (reg_info[r])				\
1830 		= EVER_MATCHED_SOMETHING (reg_info[r])			\
1831 		= 1;							\
1832 	    }								\
1833 	}								\
1834     }									\
1835   while (0)
1836 # endif /* not DEFINED_ONCE */
1837 
1838 /* Registers are set to a sentinel when they haven't yet matched.  */
1839 static CHAR_T PREFIX(reg_unset_dummy);
1840 # define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy))
1841 # define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1842 
1843 /* Subroutine declarations and macros for regex_compile.  */
1844 static void PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg);
1845 static void PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc,
1846                                int arg1, int arg2);
1847 static void PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc,
1848                                 int arg, UCHAR_T *end);
1849 static void PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc,
1850                                 int arg1, int arg2, UCHAR_T *end);
1851 static boolean PREFIX(at_begline_loc_p) (const CHAR_T *pattern,
1852                                          const CHAR_T *p,
1853                                          reg_syntax_t syntax);
1854 static boolean PREFIX(at_endline_loc_p) (const CHAR_T *p,
1855                                          const CHAR_T *pend,
1856                                          reg_syntax_t syntax);
1857 # ifdef WCHAR
1858 static reg_errcode_t wcs_compile_range (CHAR_T range_start,
1859                                         const CHAR_T **p_ptr,
1860                                         const CHAR_T *pend,
1861                                         char *translate,
1862                                         reg_syntax_t syntax,
1863                                         UCHAR_T *b,
1864                                         CHAR_T *char_set);
1865 static void insert_space (int num, CHAR_T *loc, CHAR_T *end);
1866 # else /* BYTE */
1867 static reg_errcode_t byte_compile_range (unsigned int range_start,
1868                                          const char **p_ptr,
1869                                          const char *pend,
1870                                          char *translate,
1871                                          reg_syntax_t syntax,
1872                                          unsigned char *b);
1873 # endif /* WCHAR */
1874 
1875 /* Fetch the next character in the uncompiled pattern---translating it
1876    if necessary.  Also cast from a signed character in the constant
1877    string passed to us by the user to an unsigned char that we can use
1878    as an array index (in, e.g., `translate').  */
1879 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1880    because it is impossible to allocate 4GB array for some encodings
1881    which have 4 byte character_set like UCS4.  */
1882 # ifndef PATFETCH
1883 #  ifdef WCHAR
1884 #   define PATFETCH(c)							\
1885   do {if (p == pend) return REG_EEND;					\
1886     c = (UCHAR_T) *p++;							\
1887     if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c];		\
1888   } while (0)
1889 #  else /* BYTE */
1890 #   define PATFETCH(c)							\
1891   do {if (p == pend) return REG_EEND;					\
1892     c = (unsigned char) *p++;						\
1893     if (translate) c = (unsigned char) translate[c];			\
1894   } while (0)
1895 #  endif /* WCHAR */
1896 # endif
1897 
1898 /* Fetch the next character in the uncompiled pattern, with no
1899    translation.  */
1900 # define PATFETCH_RAW(c)						\
1901   do {if (p == pend) return REG_EEND;					\
1902     c = (UCHAR_T) *p++; 	       					\
1903   } while (0)
1904 
1905 /* Go backwards one character in the pattern.  */
1906 # define PATUNFETCH p--
1907 
1908 
1909 /* If `translate' is non-null, return translate[D], else just D.  We
1910    cast the subscript to translate because some data is declared as
1911    `char *', to avoid warnings when a string constant is passed.  But
1912    when we use a character as a subscript we must make it unsigned.  */
1913 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1914    because it is impossible to allocate 4GB array for some encodings
1915    which have 4 byte character_set like UCS4.  */
1916 
1917 # ifndef TRANSLATE
1918 #  ifdef WCHAR
1919 #   define TRANSLATE(d) \
1920   ((translate && ((UCHAR_T) (d)) <= 0xff) \
1921    ? (char) translate[(unsigned char) (d)] : (d))
1922 # else /* BYTE */
1923 #   define TRANSLATE(d) \
1924   (translate ? (char) translate[(unsigned char) (d)] : (char) (d))
1925 #  endif /* WCHAR */
1926 # endif
1927 
1928 
1929 /* Macros for outputting the compiled pattern into `buffer'.  */
1930 
1931 /* If the buffer isn't allocated when it comes in, use this.  */
1932 # define INIT_BUF_SIZE  (32 * sizeof(UCHAR_T))
1933 
1934 /* Make sure we have at least N more bytes of space in buffer.  */
1935 # ifdef WCHAR
1936 #  define GET_BUFFER_SPACE(n)						\
1937     while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR	\
1938             + (n)*sizeof(CHAR_T)) > bufp->allocated)			\
1939       EXTEND_BUFFER ()
1940 # else /* BYTE */
1941 #  define GET_BUFFER_SPACE(n)						\
1942     while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated)	\
1943       EXTEND_BUFFER ()
1944 # endif /* WCHAR */
1945 
1946 /* Make sure we have one more byte of buffer space and then add C to it.  */
1947 # define BUF_PUSH(c)							\
1948   do {									\
1949     GET_BUFFER_SPACE (1);						\
1950     *b++ = (UCHAR_T) (c);						\
1951   } while (0)
1952 
1953 
1954 /* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
1955 # define BUF_PUSH_2(c1, c2)						\
1956   do {									\
1957     GET_BUFFER_SPACE (2);						\
1958     *b++ = (UCHAR_T) (c1);						\
1959     *b++ = (UCHAR_T) (c2);						\
1960   } while (0)
1961 
1962 
1963 /* As with BUF_PUSH_2, except for three bytes.  */
1964 # define BUF_PUSH_3(c1, c2, c3)						\
1965   do {									\
1966     GET_BUFFER_SPACE (3);						\
1967     *b++ = (UCHAR_T) (c1);						\
1968     *b++ = (UCHAR_T) (c2);						\
1969     *b++ = (UCHAR_T) (c3);						\
1970   } while (0)
1971 
1972 /* Store a jump with opcode OP at LOC to location TO.  We store a
1973    relative address offset by the three bytes the jump itself occupies.  */
1974 # define STORE_JUMP(op, loc, to) \
1975  PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
1976 
1977 /* Likewise, for a two-argument jump.  */
1978 # define STORE_JUMP2(op, loc, to, arg) \
1979   PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
1980 
1981 /* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */
1982 # define INSERT_JUMP(op, loc, to) \
1983   PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
1984 
1985 /* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
1986 # define INSERT_JUMP2(op, loc, to, arg) \
1987   PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
1988 	      arg, b)
1989 
1990 /* This is not an arbitrary limit: the arguments which represent offsets
1991    into the pattern are two bytes long.  So if 2^16 bytes turns out to
1992    be too small, many things would have to change.  */
1993 /* Any other compiler which, like MSC, has allocation limit below 2^16
1994    bytes will have to use approach similar to what was done below for
1995    MSC and drop MAX_BUF_SIZE a bit.  Otherwise you may end up
1996    reallocating to 0 bytes.  Such thing is not going to work too well.
1997    You have been warned!!  */
1998 # ifndef DEFINED_ONCE
1999 #  if defined _MSC_VER  && !defined WIN32
2000 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
2001    The REALLOC define eliminates a flurry of conversion warnings,
2002    but is not required. */
2003 #   define MAX_BUF_SIZE  65500L
2004 #   define REALLOC(p,s) realloc ((p), (size_t) (s))
2005 #  else
2006 #   define MAX_BUF_SIZE (1L << 16)
2007 #   define REALLOC(p,s) realloc ((p), (s))
2008 #  endif
2009 
2010 /* Extend the buffer by twice its current size via realloc and
2011    reset the pointers that pointed into the old block to point to the
2012    correct places in the new one.  If extending the buffer results in it
2013    being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
2014 #  if __BOUNDED_POINTERS__
2015 #   define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2016 #   define MOVE_BUFFER_POINTER(P) \
2017   (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2018 #   define ELSE_EXTEND_BUFFER_HIGH_BOUND	\
2019   else						\
2020     {						\
2021       SET_HIGH_BOUND (b);			\
2022       SET_HIGH_BOUND (begalt);			\
2023       if (fixup_alt_jump)			\
2024 	SET_HIGH_BOUND (fixup_alt_jump);	\
2025       if (laststart)				\
2026 	SET_HIGH_BOUND (laststart);		\
2027       if (pending_exact)			\
2028 	SET_HIGH_BOUND (pending_exact);		\
2029     }
2030 #  else
2031 #   define MOVE_BUFFER_POINTER(P) (P) += incr
2032 #   define ELSE_EXTEND_BUFFER_HIGH_BOUND
2033 #  endif
2034 # endif /* not DEFINED_ONCE */
2035 
2036 # ifdef WCHAR
2037 #  define EXTEND_BUFFER()						\
2038   do {									\
2039     UCHAR_T *old_buffer = COMPILED_BUFFER_VAR;				\
2040     int wchar_count;							\
2041     if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE)		\
2042       return REG_ESIZE;							\
2043     bufp->allocated <<= 1;						\
2044     if (bufp->allocated > MAX_BUF_SIZE)					\
2045       bufp->allocated = MAX_BUF_SIZE;					\
2046     /* How many characters the new buffer can have?  */			\
2047     wchar_count = bufp->allocated / sizeof(UCHAR_T);			\
2048     if (wchar_count == 0) wchar_count = 1;				\
2049     /* Truncate the buffer to CHAR_T align.  */				\
2050     bufp->allocated = wchar_count * sizeof(UCHAR_T);			\
2051     RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T);		\
2052     bufp->buffer = (char*)COMPILED_BUFFER_VAR;				\
2053     if (COMPILED_BUFFER_VAR == NULL)					\
2054       return REG_ESPACE;						\
2055     /* If the buffer moved, move all the pointers into it.  */		\
2056     if (old_buffer != COMPILED_BUFFER_VAR)				\
2057       {									\
2058 	PTR_INT_TYPE incr = COMPILED_BUFFER_VAR - old_buffer;		\
2059 	MOVE_BUFFER_POINTER (b);					\
2060 	MOVE_BUFFER_POINTER (begalt);					\
2061 	if (fixup_alt_jump)						\
2062 	  MOVE_BUFFER_POINTER (fixup_alt_jump);				\
2063 	if (laststart)							\
2064 	  MOVE_BUFFER_POINTER (laststart);				\
2065 	if (pending_exact)						\
2066 	  MOVE_BUFFER_POINTER (pending_exact);				\
2067       }									\
2068     ELSE_EXTEND_BUFFER_HIGH_BOUND					\
2069   } while (0)
2070 # else /* BYTE */
2071 #  define EXTEND_BUFFER()						\
2072   do {									\
2073     UCHAR_T *old_buffer = COMPILED_BUFFER_VAR;				\
2074     if (bufp->allocated == MAX_BUF_SIZE)				\
2075       return REG_ESIZE;							\
2076     bufp->allocated <<= 1;						\
2077     if (bufp->allocated > MAX_BUF_SIZE)					\
2078       bufp->allocated = MAX_BUF_SIZE;					\
2079     bufp->buffer = (UCHAR_T *) REALLOC (COMPILED_BUFFER_VAR,		\
2080 						bufp->allocated);	\
2081     if (COMPILED_BUFFER_VAR == NULL)					\
2082       return REG_ESPACE;						\
2083     /* If the buffer moved, move all the pointers into it.  */		\
2084     if (old_buffer != COMPILED_BUFFER_VAR)				\
2085       {									\
2086 	PTR_INT_TYPE incr = COMPILED_BUFFER_VAR - old_buffer;		\
2087 	MOVE_BUFFER_POINTER (b);					\
2088 	MOVE_BUFFER_POINTER (begalt);					\
2089 	if (fixup_alt_jump)						\
2090 	  MOVE_BUFFER_POINTER (fixup_alt_jump);				\
2091 	if (laststart)							\
2092 	  MOVE_BUFFER_POINTER (laststart);				\
2093 	if (pending_exact)						\
2094 	  MOVE_BUFFER_POINTER (pending_exact);				\
2095       }									\
2096     ELSE_EXTEND_BUFFER_HIGH_BOUND					\
2097   } while (0)
2098 # endif /* WCHAR */
2099 
2100 # ifndef DEFINED_ONCE
2101 /* Since we have one byte reserved for the register number argument to
2102    {start,stop}_memory, the maximum number of groups we can report
2103    things about is what fits in that byte.  */
2104 #  define MAX_REGNUM 255
2105 
2106 /* But patterns can have more than `MAX_REGNUM' registers.  We just
2107    ignore the excess.  */
2108 typedef unsigned regnum_t;
2109 
2110 
2111 /* Macros for the compile stack.  */
2112 
2113 /* Since offsets can go either forwards or backwards, this type needs to
2114    be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
2115 /* int may be not enough when sizeof(int) == 2.  */
2116 typedef long pattern_offset_t;
2117 
2118 typedef struct
2119 {
2120   pattern_offset_t begalt_offset;
2121   pattern_offset_t fixup_alt_jump;
2122   pattern_offset_t inner_group_offset;
2123   pattern_offset_t laststart_offset;
2124   regnum_t regnum;
2125 } compile_stack_elt_t;
2126 
2127 
2128 typedef struct
2129 {
2130   compile_stack_elt_t *stack;
2131   unsigned size;
2132   unsigned avail;			/* Offset of next open position.  */
2133 } compile_stack_type;
2134 
2135 
2136 #  define INIT_COMPILE_STACK_SIZE 32
2137 
2138 #  define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
2139 #  define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
2140 
2141 /* The next available element.  */
2142 #  define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
2143 
2144 # endif /* not DEFINED_ONCE */
2145 
2146 /* Set the bit for character C in a list.  */
2147 # ifndef DEFINED_ONCE
2148 #  define SET_LIST_BIT(c)                               \
2149   (b[((unsigned char) (c)) / BYTEWIDTH]               \
2150    |= 1 << (((unsigned char) c) % BYTEWIDTH))
2151 # endif /* DEFINED_ONCE */
2152 
2153 /* Get the next unsigned number in the uncompiled pattern.  */
2154 # define GET_UNSIGNED_NUMBER(num) \
2155   {									\
2156     while (p != pend)							\
2157       {									\
2158 	PATFETCH (c);							\
2159 	if (c < '0' || c > '9')						\
2160 	  break;							\
2161 	if (num <= RE_DUP_MAX)						\
2162 	  {								\
2163 	    if (num < 0)						\
2164 	      num = 0;							\
2165 	    num = num * 10 + c - '0';					\
2166 	  }								\
2167       }									\
2168   }
2169 
2170 # ifndef DEFINED_ONCE
2171 #  if defined _LIBC || WIDE_CHAR_SUPPORT
2172 /* The GNU C library provides support for user-defined character classes
2173    and the functions from ISO C amendement 1.  */
2174 #   ifdef CHARCLASS_NAME_MAX
2175 #    define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
2176 #   else
2177 /* This shouldn't happen but some implementation might still have this
2178    problem.  Use a reasonable default value.  */
2179 #    define CHAR_CLASS_MAX_LENGTH 256
2180 #   endif
2181 
2182 #   ifdef _LIBC
2183 #    define IS_CHAR_CLASS(string) __wctype (string)
2184 #   else
2185 #    define IS_CHAR_CLASS(string) wctype (string)
2186 #   endif
2187 #  else
2188 #   define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
2189 
2190 #   define IS_CHAR_CLASS(string)					\
2191    (STREQ (string, "alpha") || STREQ (string, "upper")			\
2192     || STREQ (string, "lower") || STREQ (string, "digit")		\
2193     || STREQ (string, "alnum") || STREQ (string, "xdigit")		\
2194     || STREQ (string, "space") || STREQ (string, "print")		\
2195     || STREQ (string, "punct") || STREQ (string, "graph")		\
2196     || STREQ (string, "cntrl") || STREQ (string, "blank"))
2197 #  endif
2198 # endif /* DEFINED_ONCE */
2199 
2200 # ifndef MATCH_MAY_ALLOCATE
2201 
2202 /* If we cannot allocate large objects within re_match_2_internal,
2203    we make the fail stack and register vectors global.
2204    The fail stack, we grow to the maximum size when a regexp
2205    is compiled.
2206    The register vectors, we adjust in size each time we
2207    compile a regexp, according to the number of registers it needs.  */
2208 
2209 static PREFIX(fail_stack_type) fail_stack;
2210 
2211 /* Size with which the following vectors are currently allocated.
2212    That is so we can make them bigger as needed,
2213    but never make them smaller.  */
2214 #  ifdef DEFINED_ONCE
2215 static int regs_allocated_size;
2216 
2217 static const char **     regstart, **     regend;
2218 static const char ** old_regstart, ** old_regend;
2219 static const char **best_regstart, **best_regend;
2220 static const char **reg_dummy;
2221 #  endif /* DEFINED_ONCE */
2222 
2223 static PREFIX(register_info_type) *PREFIX(reg_info);
2224 static PREFIX(register_info_type) *PREFIX(reg_info_dummy);
2225 
2226 /* Make the register vectors big enough for NUM_REGS registers,
2227    but don't make them smaller.  */
2228 
2229 static void
2230 PREFIX(regex_grow_registers) (int num_regs)
2231 {
2232   if (num_regs > regs_allocated_size)
2233     {
2234       RETALLOC_IF (regstart,	 num_regs, const char *);
2235       RETALLOC_IF (regend,	 num_regs, const char *);
2236       RETALLOC_IF (old_regstart, num_regs, const char *);
2237       RETALLOC_IF (old_regend,	 num_regs, const char *);
2238       RETALLOC_IF (best_regstart, num_regs, const char *);
2239       RETALLOC_IF (best_regend,	 num_regs, const char *);
2240       RETALLOC_IF (PREFIX(reg_info), num_regs, PREFIX(register_info_type));
2241       RETALLOC_IF (reg_dummy,	 num_regs, const char *);
2242       RETALLOC_IF (PREFIX(reg_info_dummy), num_regs, PREFIX(register_info_type));
2243 
2244       regs_allocated_size = num_regs;
2245     }
2246 }
2247 
2248 # endif /* not MATCH_MAY_ALLOCATE */
2249 
2250 # ifndef DEFINED_ONCE
2251 static boolean group_in_compile_stack (compile_stack_type compile_stack,
2252                                        regnum_t regnum);
2253 # endif /* not DEFINED_ONCE */
2254 
2255 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2256    Returns one of error codes defined in `regex.h', or zero for success.
2257 
2258    Assumes the `allocated' (and perhaps `buffer') and `translate'
2259    fields are set in BUFP on entry.
2260 
2261    If it succeeds, results are put in BUFP (if it returns an error, the
2262    contents of BUFP are undefined):
2263      `buffer' is the compiled pattern;
2264      `syntax' is set to SYNTAX;
2265      `used' is set to the length of the compiled pattern;
2266      `fastmap_accurate' is zero;
2267      `re_nsub' is the number of subexpressions in PATTERN;
2268      `not_bol' and `not_eol' are zero;
2269 
2270    The `fastmap' and `newline_anchor' fields are neither
2271    examined nor set.  */
2272 
2273 /* Return, freeing storage we allocated.  */
2274 # ifdef WCHAR
2275 #  define FREE_STACK_RETURN(value)		\
2276   return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2277 # else
2278 #  define FREE_STACK_RETURN(value)		\
2279   return (free (compile_stack.stack), value)
2280 # endif /* WCHAR */
2281 
2282 static reg_errcode_t
2283 PREFIX(regex_compile) (const char *ARG_PREFIX(pattern),
2284                        size_t ARG_PREFIX(size), reg_syntax_t syntax,
2285                        struct re_pattern_buffer *bufp)
2286 {
2287   /* We fetch characters from PATTERN here.  Even though PATTERN is
2288      `char *' (i.e., signed), we declare these variables as unsigned, so
2289      they can be reliably used as array indices.  */
2290   register UCHAR_T c, c1;
2291 
2292 #ifdef WCHAR
2293   /* A temporary space to keep wchar_t pattern and compiled pattern.  */
2294   CHAR_T *pattern, *COMPILED_BUFFER_VAR;
2295   size_t size;
2296   /* offset buffer for optimization. See convert_mbs_to_wc.  */
2297   int *mbs_offset = NULL;
2298   /* It hold whether each wchar_t is binary data or not.  */
2299   char *is_binary = NULL;
2300   /* A flag whether exactn is handling binary data or not.  */
2301   char is_exactn_bin = FALSE;
2302 #endif /* WCHAR */
2303 
2304   /* A random temporary spot in PATTERN.  */
2305   const CHAR_T *p1;
2306 
2307   /* Points to the end of the buffer, where we should append.  */
2308   register UCHAR_T *b;
2309 
2310   /* Keeps track of unclosed groups.  */
2311   compile_stack_type compile_stack;
2312 
2313   /* Points to the current (ending) position in the pattern.  */
2314 #ifdef WCHAR
2315   const CHAR_T *p;
2316   const CHAR_T *pend;
2317 #else /* BYTE */
2318   const CHAR_T *p = pattern;
2319   const CHAR_T *pend = pattern + size;
2320 #endif /* WCHAR */
2321 
2322   /* How to translate the characters in the pattern.  */
2323   RE_TRANSLATE_TYPE translate = bufp->translate;
2324 
2325   /* Address of the count-byte of the most recently inserted `exactn'
2326      command.  This makes it possible to tell if a new exact-match
2327      character can be added to that command or if the character requires
2328      a new `exactn' command.  */
2329   UCHAR_T *pending_exact = 0;
2330 
2331   /* Address of start of the most recently finished expression.
2332      This tells, e.g., postfix * where to find the start of its
2333      operand.  Reset at the beginning of groups and alternatives.  */
2334   UCHAR_T *laststart = 0;
2335 
2336   /* Address of beginning of regexp, or inside of last group.  */
2337   UCHAR_T *begalt;
2338 
2339   /* Address of the place where a forward jump should go to the end of
2340      the containing expression.  Each alternative of an `or' -- except the
2341      last -- ends with a forward jump of this sort.  */
2342   UCHAR_T *fixup_alt_jump = 0;
2343 
2344   /* Counts open-groups as they are encountered.  Remembered for the
2345      matching close-group on the compile stack, so the same register
2346      number is put in the stop_memory as the start_memory.  */
2347   regnum_t regnum = 0;
2348 
2349 #ifdef WCHAR
2350   /* Initialize the wchar_t PATTERN and offset_buffer.  */
2351   p = pend = pattern = TALLOC(csize + 1, CHAR_T);
2352   mbs_offset = TALLOC(csize + 1, int);
2353   is_binary = TALLOC(csize + 1, char);
2354   if (pattern == NULL || mbs_offset == NULL || is_binary == NULL)
2355     {
2356       free(pattern);
2357       free(mbs_offset);
2358       free(is_binary);
2359       return REG_ESPACE;
2360     }
2361   pattern[csize] = L'\0';	/* sentinel */
2362   size = convert_mbs_to_wcs(pattern, cpattern, csize, mbs_offset, is_binary);
2363   pend = p + size;
2364   if (size < 0)
2365     {
2366       free(pattern);
2367       free(mbs_offset);
2368       free(is_binary);
2369       return REG_BADPAT;
2370     }
2371 #endif
2372 
2373 #ifdef DEBUG
2374   DEBUG_PRINT1 ("\nCompiling pattern: ");
2375   if (debug)
2376     {
2377       unsigned debug_count;
2378 
2379       for (debug_count = 0; debug_count < size; debug_count++)
2380         PUT_CHAR (pattern[debug_count]);
2381       putchar ('\n');
2382     }
2383 #endif /* DEBUG */
2384 
2385   /* Initialize the compile stack.  */
2386   compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2387   if (compile_stack.stack == NULL)
2388     {
2389 #ifdef WCHAR
2390       free(pattern);
2391       free(mbs_offset);
2392       free(is_binary);
2393 #endif
2394       return REG_ESPACE;
2395     }
2396 
2397   compile_stack.size = INIT_COMPILE_STACK_SIZE;
2398   compile_stack.avail = 0;
2399 
2400   /* Initialize the pattern buffer.  */
2401   bufp->syntax = syntax;
2402   bufp->fastmap_accurate = 0;
2403   bufp->not_bol = bufp->not_eol = 0;
2404 
2405   /* Set `used' to zero, so that if we return an error, the pattern
2406      printer (for debugging) will think there's no pattern.  We reset it
2407      at the end.  */
2408   bufp->used = 0;
2409 
2410   /* Always count groups, whether or not bufp->no_sub is set.  */
2411   bufp->re_nsub = 0;
2412 
2413 #if !defined emacs && !defined SYNTAX_TABLE
2414   /* Initialize the syntax table.  */
2415    init_syntax_once ();
2416 #endif
2417 
2418   if (bufp->allocated == 0)
2419     {
2420       if (bufp->buffer)
2421 	{ /* If zero allocated, but buffer is non-null, try to realloc
2422              enough space.  This loses if buffer's address is bogus, but
2423              that is the user's responsibility.  */
2424 #ifdef WCHAR
2425 	  /* Free bufp->buffer and allocate an array for wchar_t pattern
2426 	     buffer.  */
2427           free(bufp->buffer);
2428           COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE/sizeof(UCHAR_T),
2429 					UCHAR_T);
2430 #else
2431           RETALLOC (COMPILED_BUFFER_VAR, INIT_BUF_SIZE, UCHAR_T);
2432 #endif /* WCHAR */
2433         }
2434       else
2435         { /* Caller did not allocate a buffer.  Do it for them.  */
2436           COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE / sizeof(UCHAR_T),
2437 					UCHAR_T);
2438         }
2439 
2440       if (!COMPILED_BUFFER_VAR) FREE_STACK_RETURN (REG_ESPACE);
2441 #ifdef WCHAR
2442       bufp->buffer = (char*)COMPILED_BUFFER_VAR;
2443 #endif /* WCHAR */
2444       bufp->allocated = INIT_BUF_SIZE;
2445     }
2446 #ifdef WCHAR
2447   else
2448     COMPILED_BUFFER_VAR = (UCHAR_T*) bufp->buffer;
2449 #endif
2450 
2451   begalt = b = COMPILED_BUFFER_VAR;
2452 
2453   /* Loop through the uncompiled pattern until we're at the end.  */
2454   while (p != pend)
2455     {
2456       PATFETCH (c);
2457 
2458       switch (c)
2459         {
2460         case '^':
2461           {
2462             if (   /* If at start of pattern, it's an operator.  */
2463                    p == pattern + 1
2464                    /* If context independent, it's an operator.  */
2465                 || syntax & RE_CONTEXT_INDEP_ANCHORS
2466                    /* Otherwise, depends on what's come before.  */
2467                 || PREFIX(at_begline_loc_p) (pattern, p, syntax))
2468               BUF_PUSH (begline);
2469             else
2470               goto normal_char;
2471           }
2472           break;
2473 
2474 
2475         case '$':
2476           {
2477             if (   /* If at end of pattern, it's an operator.  */
2478                    p == pend
2479                    /* If context independent, it's an operator.  */
2480                 || syntax & RE_CONTEXT_INDEP_ANCHORS
2481                    /* Otherwise, depends on what's next.  */
2482                 || PREFIX(at_endline_loc_p) (p, pend, syntax))
2483                BUF_PUSH (endline);
2484              else
2485                goto normal_char;
2486            }
2487            break;
2488 
2489 
2490 	case '+':
2491         case '?':
2492           if ((syntax & RE_BK_PLUS_QM)
2493               || (syntax & RE_LIMITED_OPS))
2494             goto normal_char;
2495 	  /* Fall through.  */
2496         handle_plus:
2497         case '*':
2498           /* If there is no previous pattern... */
2499           if (!laststart)
2500             {
2501               if (syntax & RE_CONTEXT_INVALID_OPS)
2502                 FREE_STACK_RETURN (REG_BADRPT);
2503               else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2504                 goto normal_char;
2505             }
2506 
2507           {
2508             /* Are we optimizing this jump?  */
2509             boolean keep_string_p = false;
2510 
2511             /* 1 means zero (many) matches is allowed.  */
2512             char zero_times_ok = 0, many_times_ok = 0;
2513 
2514             /* If there is a sequence of repetition chars, collapse it
2515                down to just one (the right one).  We can't combine
2516                interval operators with these because of, e.g., `a{2}*',
2517                which should only match an even number of `a's.  */
2518 
2519             for (;;)
2520               {
2521                 zero_times_ok |= c != '+';
2522                 many_times_ok |= c != '?';
2523 
2524                 if (p == pend)
2525                   break;
2526 
2527                 PATFETCH (c);
2528 
2529                 if (c == '*'
2530                     || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2531                   ;
2532 
2533                 else if (syntax & RE_BK_PLUS_QM  &&  c == '\\')
2534                   {
2535                     if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2536 
2537                     PATFETCH (c1);
2538                     if (!(c1 == '+' || c1 == '?'))
2539                       {
2540                         PATUNFETCH;
2541                         PATUNFETCH;
2542                         break;
2543                       }
2544 
2545                     c = c1;
2546                   }
2547                 else
2548                   {
2549                     PATUNFETCH;
2550                     break;
2551                   }
2552 
2553                 /* If we get here, we found another repeat character.  */
2554                }
2555 
2556             /* Star, etc. applied to an empty pattern is equivalent
2557                to an empty pattern.  */
2558             if (!laststart)
2559               break;
2560 
2561             /* Now we know whether or not zero matches is allowed
2562                and also whether or not two or more matches is allowed.  */
2563             if (many_times_ok)
2564               { /* More than one repetition is allowed, so put in at the
2565                    end a backward relative jump from `b' to before the next
2566                    jump we're going to put in below (which jumps from
2567                    laststart to after this jump).
2568 
2569                    But if we are at the `*' in the exact sequence `.*\n',
2570                    insert an unconditional jump backwards to the .,
2571                    instead of the beginning of the loop.  This way we only
2572                    push a failure point once, instead of every time
2573                    through the loop.  */
2574                 assert (p - 1 > pattern);
2575 
2576                 /* Allocate the space for the jump.  */
2577                 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2578 
2579                 /* We know we are not at the first character of the pattern,
2580                    because laststart was nonzero.  And we've already
2581                    incremented `p', by the way, to be the character after
2582                    the `*'.  Do we have to do something analogous here
2583                    for null bytes, because of RE_DOT_NOT_NULL?  */
2584                 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2585 		    && zero_times_ok
2586                     && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2587                     && !(syntax & RE_DOT_NEWLINE))
2588                   { /* We have .*\n.  */
2589                     STORE_JUMP (jump, b, laststart);
2590                     keep_string_p = true;
2591                   }
2592                 else
2593                   /* Anything else.  */
2594                   STORE_JUMP (maybe_pop_jump, b, laststart -
2595 			      (1 + OFFSET_ADDRESS_SIZE));
2596 
2597                 /* We've added more stuff to the buffer.  */
2598                 b += 1 + OFFSET_ADDRESS_SIZE;
2599               }
2600 
2601             /* On failure, jump from laststart to b + 3, which will be the
2602                end of the buffer after this jump is inserted.  */
2603 	    /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2604 	       'b + 3'.  */
2605             GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2606             INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2607                                        : on_failure_jump,
2608                          laststart, b + 1 + OFFSET_ADDRESS_SIZE);
2609             pending_exact = 0;
2610             b += 1 + OFFSET_ADDRESS_SIZE;
2611 
2612             if (!zero_times_ok)
2613               {
2614                 /* At least one repetition is required, so insert a
2615                    `dummy_failure_jump' before the initial
2616                    `on_failure_jump' instruction of the loop. This
2617                    effects a skip over that instruction the first time
2618                    we hit that loop.  */
2619                 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2620                 INSERT_JUMP (dummy_failure_jump, laststart, laststart +
2621 			     2 + 2 * OFFSET_ADDRESS_SIZE);
2622                 b += 1 + OFFSET_ADDRESS_SIZE;
2623               }
2624             }
2625 	  break;
2626 
2627 
2628 	case '.':
2629           laststart = b;
2630           BUF_PUSH (anychar);
2631           break;
2632 
2633 
2634         case '[':
2635           {
2636             boolean had_char_class = false;
2637 #ifdef WCHAR
2638 	    CHAR_T range_start = 0xffffffff;
2639 #else
2640 	    unsigned int range_start = 0xffffffff;
2641 #endif
2642             if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2643 
2644 #ifdef WCHAR
2645 	    /* We assume a charset(_not) structure as a wchar_t array.
2646 	       charset[0] = (re_opcode_t) charset(_not)
2647                charset[1] = l (= length of char_classes)
2648                charset[2] = m (= length of collating_symbols)
2649                charset[3] = n (= length of equivalence_classes)
2650 	       charset[4] = o (= length of char_ranges)
2651 	       charset[5] = p (= length of chars)
2652 
2653                charset[6] = char_class (wctype_t)
2654                charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2655                          ...
2656                charset[l+5]  = char_class (wctype_t)
2657 
2658                charset[l+6]  = collating_symbol (wchar_t)
2659                             ...
2660                charset[l+m+5]  = collating_symbol (wchar_t)
2661 					ifdef _LIBC we use the index if
2662 					_NL_COLLATE_SYMB_EXTRAMB instead of
2663 					wchar_t string.
2664 
2665                charset[l+m+6]  = equivalence_classes (wchar_t)
2666                               ...
2667                charset[l+m+n+5]  = equivalence_classes (wchar_t)
2668 					ifdef _LIBC we use the index in
2669 					_NL_COLLATE_WEIGHT instead of
2670 					wchar_t string.
2671 
2672 	       charset[l+m+n+6] = range_start
2673 	       charset[l+m+n+7] = range_end
2674 	                       ...
2675 	       charset[l+m+n+2o+4] = range_start
2676 	       charset[l+m+n+2o+5] = range_end
2677 					ifdef _LIBC we use the value looked up
2678 					in _NL_COLLATE_COLLSEQ instead of
2679 					wchar_t character.
2680 
2681 	       charset[l+m+n+2o+6] = char
2682 	                          ...
2683 	       charset[l+m+n+2o+p+5] = char
2684 
2685 	     */
2686 
2687 	    /* We need at least 6 spaces: the opcode, the length of
2688                char_classes, the length of collating_symbols, the length of
2689                equivalence_classes, the length of char_ranges, the length of
2690                chars.  */
2691 	    GET_BUFFER_SPACE (6);
2692 
2693 	    /* Save b as laststart. And We use laststart as the pointer
2694 	       to the first element of the charset here.
2695 	       In other words, laststart[i] indicates charset[i].  */
2696             laststart = b;
2697 
2698             /* We test `*p == '^' twice, instead of using an if
2699                statement, so we only need one BUF_PUSH.  */
2700             BUF_PUSH (*p == '^' ? charset_not : charset);
2701             if (*p == '^')
2702               p++;
2703 
2704             /* Push the length of char_classes, the length of
2705                collating_symbols, the length of equivalence_classes, the
2706                length of char_ranges and the length of chars.  */
2707             BUF_PUSH_3 (0, 0, 0);
2708             BUF_PUSH_2 (0, 0);
2709 
2710             /* Remember the first position in the bracket expression.  */
2711             p1 = p;
2712 
2713             /* charset_not matches newline according to a syntax bit.  */
2714             if ((re_opcode_t) b[-6] == charset_not
2715                 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2716 	      {
2717 		BUF_PUSH('\n');
2718 		laststart[5]++; /* Update the length of characters  */
2719 	      }
2720 
2721             /* Read in characters and ranges, setting map bits.  */
2722             for (;;)
2723               {
2724                 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2725 
2726                 PATFETCH (c);
2727 
2728                 /* \ might escape characters inside [...] and [^...].  */
2729                 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2730                   {
2731                     if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2732 
2733                     PATFETCH (c1);
2734 		    BUF_PUSH(c1);
2735 		    laststart[5]++; /* Update the length of chars  */
2736 		    range_start = c1;
2737                     continue;
2738                   }
2739 
2740                 /* Could be the end of the bracket expression.  If it's
2741                    not (i.e., when the bracket expression is `[]' so
2742                    far), the ']' character bit gets set way below.  */
2743                 if (c == ']' && p != p1 + 1)
2744                   break;
2745 
2746                 /* Look ahead to see if it's a range when the last thing
2747                    was a character class.  */
2748                 if (had_char_class && c == '-' && *p != ']')
2749                   FREE_STACK_RETURN (REG_ERANGE);
2750 
2751                 /* Look ahead to see if it's a range when the last thing
2752                    was a character: if this is a hyphen not at the
2753                    beginning or the end of a list, then it's the range
2754                    operator.  */
2755                 if (c == '-'
2756                     && !(p - 2 >= pattern && p[-2] == '[')
2757                     && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2758                     && *p != ']')
2759                   {
2760                     reg_errcode_t ret;
2761 		    /* Allocate the space for range_start and range_end.  */
2762 		    GET_BUFFER_SPACE (2);
2763 		    /* Update the pointer to indicate end of buffer.  */
2764                     b += 2;
2765                     ret = wcs_compile_range (range_start, &p, pend, translate,
2766                                          syntax, b, laststart);
2767                     if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2768                     range_start = 0xffffffff;
2769                   }
2770                 else if (p[0] == '-' && p[1] != ']')
2771                   { /* This handles ranges made up of characters only.  */
2772                     reg_errcode_t ret;
2773 
2774 		    /* Move past the `-'.  */
2775                     PATFETCH (c1);
2776 		    /* Allocate the space for range_start and range_end.  */
2777 		    GET_BUFFER_SPACE (2);
2778 		    /* Update the pointer to indicate end of buffer.  */
2779                     b += 2;
2780                     ret = wcs_compile_range (c, &p, pend, translate, syntax, b,
2781                                          laststart);
2782                     if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2783 		    range_start = 0xffffffff;
2784                   }
2785 
2786                 /* See if we're at the beginning of a possible character
2787                    class.  */
2788                 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2789                   { /* Leave room for the null.  */
2790                     char str[CHAR_CLASS_MAX_LENGTH + 1];
2791 
2792                     PATFETCH (c);
2793                     c1 = 0;
2794 
2795                     /* If pattern is `[[:'.  */
2796                     if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2797 
2798                     for (;;)
2799                       {
2800                         PATFETCH (c);
2801                         if ((c == ':' && *p == ']') || p == pend)
2802                           break;
2803 			if (c1 < CHAR_CLASS_MAX_LENGTH)
2804 			  str[c1++] = c;
2805 			else
2806 			  /* This is in any case an invalid class name.  */
2807 			  str[0] = '\0';
2808                       }
2809                     str[c1] = '\0';
2810 
2811                     /* If isn't a word bracketed by `[:' and `:]':
2812                        undo the ending character, the letters, and leave
2813                        the leading `:' and `[' (but store them as character).  */
2814                     if (c == ':' && *p == ']')
2815                       {
2816 			wctype_t wt;
2817 			uintptr_t alignedp;
2818 
2819 			/* Query the character class as wctype_t.  */
2820 			wt = IS_CHAR_CLASS (str);
2821 			if (wt == 0)
2822 			  FREE_STACK_RETURN (REG_ECTYPE);
2823 
2824                         /* Throw away the ] at the end of the character
2825                            class.  */
2826                         PATFETCH (c);
2827 
2828                         if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2829 
2830 			/* Allocate the space for character class.  */
2831                         GET_BUFFER_SPACE(CHAR_CLASS_SIZE);
2832 			/* Update the pointer to indicate end of buffer.  */
2833                         b += CHAR_CLASS_SIZE;
2834 			/* Move data which follow character classes
2835 			    not to violate the data.  */
2836                         insert_space(CHAR_CLASS_SIZE,
2837 				     laststart + 6 + laststart[1],
2838 				     b - 1);
2839 			alignedp = ((uintptr_t)(laststart + 6 + laststart[1])
2840 				    + __alignof__(wctype_t) - 1)
2841 			  	    & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2842 			/* Store the character class.  */
2843                         *((wctype_t*)alignedp) = wt;
2844                         /* Update length of char_classes */
2845                         laststart[1] += CHAR_CLASS_SIZE;
2846 
2847                         had_char_class = true;
2848                       }
2849                     else
2850                       {
2851                         c1++;
2852                         while (c1--)
2853                           PATUNFETCH;
2854                         BUF_PUSH ('[');
2855                         BUF_PUSH (':');
2856                         laststart[5] += 2; /* Update the length of characters  */
2857 			range_start = ':';
2858                         had_char_class = false;
2859                       }
2860                   }
2861                 else if (syntax & RE_CHAR_CLASSES && c == '[' && (*p == '='
2862 							  || *p == '.'))
2863 		  {
2864 		    CHAR_T str[128];	/* Should be large enough.  */
2865 		    CHAR_T delim = *p; /* '=' or '.'  */
2866 # ifdef _LIBC
2867 		    uint32_t nrules =
2868 		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
2869 # endif
2870 		    PATFETCH (c);
2871 		    c1 = 0;
2872 
2873 		    /* If pattern is `[[=' or '[[.'.  */
2874 		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2875 
2876 		    for (;;)
2877 		      {
2878 			PATFETCH (c);
2879 			if ((c == delim && *p == ']') || p == pend)
2880 			  break;
2881 			if (c1 < sizeof (str) - 1)
2882 			  str[c1++] = c;
2883 			else
2884 			  /* This is in any case an invalid class name.  */
2885 			  str[0] = '\0';
2886                       }
2887 		    str[c1] = '\0';
2888 
2889 		    if (c == delim && *p == ']' && str[0] != '\0')
2890 		      {
2891                         unsigned int i, offset;
2892 			/* If we have no collation data we use the default
2893 			   collation in which each character is in a class
2894 			   by itself.  It also means that ASCII is the
2895 			   character set and therefore we cannot have character
2896 			   with more than one byte in the multibyte
2897 			   representation.  */
2898 
2899                         /* If not defined _LIBC, we push the name and
2900 			   `\0' for the sake of matching performance.  */
2901 			int datasize = c1 + 1;
2902 
2903 # ifdef _LIBC
2904 			int32_t idx = 0;
2905 			if (nrules == 0)
2906 # endif
2907 			  {
2908 			    if (c1 != 1)
2909 			      FREE_STACK_RETURN (REG_ECOLLATE);
2910 			  }
2911 # ifdef _LIBC
2912 			else
2913 			  {
2914 			    const int32_t *table;
2915 			    const int32_t *weights;
2916 			    const int32_t *extra;
2917 			    const int32_t *indirect;
2918 			    wint_t *cp;
2919 
2920 			    /* This #include defines a local function!  */
2921 #  include <locale/weightwc.h>
2922 
2923 			    if(delim == '=')
2924 			      {
2925 				/* We push the index for equivalence class.  */
2926 				cp = (wint_t*)str;
2927 
2928 				table = (const int32_t *)
2929 				  _NL_CURRENT (LC_COLLATE,
2930 					       _NL_COLLATE_TABLEWC);
2931 				weights = (const int32_t *)
2932 				  _NL_CURRENT (LC_COLLATE,
2933 					       _NL_COLLATE_WEIGHTWC);
2934 				extra = (const int32_t *)
2935 				  _NL_CURRENT (LC_COLLATE,
2936 					       _NL_COLLATE_EXTRAWC);
2937 				indirect = (const int32_t *)
2938 				  _NL_CURRENT (LC_COLLATE,
2939 					       _NL_COLLATE_INDIRECTWC);
2940 
2941 				idx = findidx ((const wint_t**)&cp);
2942 				if (idx == 0 || cp < (wint_t*) str + c1)
2943 				  /* This is no valid character.  */
2944 				  FREE_STACK_RETURN (REG_ECOLLATE);
2945 
2946 				str[0] = (wchar_t)idx;
2947 			      }
2948 			    else /* delim == '.' */
2949 			      {
2950 				/* We push collation sequence value
2951 				   for collating symbol.  */
2952 				int32_t table_size;
2953 				const int32_t *symb_table;
2954 				const unsigned char *extra;
2955 				int32_t idx;
2956 				int32_t elem;
2957 				int32_t second;
2958 				int32_t hash;
2959 				char char_str[c1];
2960 
2961 				/* We have to convert the name to a single-byte
2962 				   string.  This is possible since the names
2963 				   consist of ASCII characters and the internal
2964 				   representation is UCS4.  */
2965 				for (i = 0; i < c1; ++i)
2966 				  char_str[i] = str[i];
2967 
2968 				table_size =
2969 				  _NL_CURRENT_WORD (LC_COLLATE,
2970 						    _NL_COLLATE_SYMB_HASH_SIZEMB);
2971 				symb_table = (const int32_t *)
2972 				  _NL_CURRENT (LC_COLLATE,
2973 					       _NL_COLLATE_SYMB_TABLEMB);
2974 				extra = (const unsigned char *)
2975 				  _NL_CURRENT (LC_COLLATE,
2976 					       _NL_COLLATE_SYMB_EXTRAMB);
2977 
2978 				/* Locate the character in the hashing table.  */
2979 				hash = elem_hash (char_str, c1);
2980 
2981 				idx = 0;
2982 				elem = hash % table_size;
2983 				second = hash % (table_size - 2);
2984 				while (symb_table[2 * elem] != 0)
2985 				  {
2986 				    /* First compare the hashing value.  */
2987 				    if (symb_table[2 * elem] == hash
2988 					&& c1 == extra[symb_table[2 * elem + 1]]
2989 					&& memcmp (char_str,
2990 						   &extra[symb_table[2 * elem + 1]
2991 							 + 1], c1) == 0)
2992 				      {
2993 					/* Yep, this is the entry.  */
2994 					idx = symb_table[2 * elem + 1];
2995 					idx += 1 + extra[idx];
2996 					break;
2997 				      }
2998 
2999 				    /* Next entry.  */
3000 				    elem += second;
3001 				  }
3002 
3003 				if (symb_table[2 * elem] != 0)
3004 				  {
3005 				    /* Compute the index of the byte sequence
3006 				       in the table.  */
3007 				    idx += 1 + extra[idx];
3008 				    /* Adjust for the alignment.  */
3009 				    idx = (idx + 3) & ~3;
3010 
3011 				    str[0] = (wchar_t) idx + 4;
3012 				  }
3013 				else if (symb_table[2 * elem] == 0 && c1 == 1)
3014 				  {
3015 				    /* No valid character.  Match it as a
3016 				       single byte character.  */
3017 				    had_char_class = false;
3018 				    BUF_PUSH(str[0]);
3019 				    /* Update the length of characters  */
3020 				    laststart[5]++;
3021 				    range_start = str[0];
3022 
3023 				    /* Throw away the ] at the end of the
3024 				       collating symbol.  */
3025 				    PATFETCH (c);
3026 				    /* exit from the switch block.  */
3027 				    continue;
3028 				  }
3029 				else
3030 				  FREE_STACK_RETURN (REG_ECOLLATE);
3031 			      }
3032 			    datasize = 1;
3033 			  }
3034 # endif
3035                         /* Throw away the ] at the end of the equivalence
3036                            class (or collating symbol).  */
3037                         PATFETCH (c);
3038 
3039 			/* Allocate the space for the equivalence class
3040 			   (or collating symbol) (and '\0' if needed).  */
3041                         GET_BUFFER_SPACE(datasize);
3042 			/* Update the pointer to indicate end of buffer.  */
3043                         b += datasize;
3044 
3045 			if (delim == '=')
3046 			  { /* equivalence class  */
3047 			    /* Calculate the offset of char_ranges,
3048 			       which is next to equivalence_classes.  */
3049 			    offset = laststart[1] + laststart[2]
3050 			      + laststart[3] +6;
3051 			    /* Insert space.  */
3052 			    insert_space(datasize, laststart + offset, b - 1);
3053 
3054 			    /* Write the equivalence_class and \0.  */
3055 			    for (i = 0 ; i < datasize ; i++)
3056 			      laststart[offset + i] = str[i];
3057 
3058 			    /* Update the length of equivalence_classes.  */
3059 			    laststart[3] += datasize;
3060 			    had_char_class = true;
3061 			  }
3062 			else /* delim == '.' */
3063 			  { /* collating symbol  */
3064 			    /* Calculate the offset of the equivalence_classes,
3065 			       which is next to collating_symbols.  */
3066 			    offset = laststart[1] + laststart[2] + 6;
3067 			    /* Insert space and write the collationg_symbol
3068 			       and \0.  */
3069 			    insert_space(datasize, laststart + offset, b-1);
3070 			    for (i = 0 ; i < datasize ; i++)
3071 			      laststart[offset + i] = str[i];
3072 
3073 			    /* In re_match_2_internal if range_start < -1, we
3074 			       assume -range_start is the offset of the
3075 			       collating symbol which is specified as
3076 			       the character of the range start.  So we assign
3077 			       -(laststart[1] + laststart[2] + 6) to
3078 			       range_start.  */
3079 			    range_start = -(laststart[1] + laststart[2] + 6);
3080 			    /* Update the length of collating_symbol.  */
3081 			    laststart[2] += datasize;
3082 			    had_char_class = false;
3083 			  }
3084 		      }
3085                     else
3086                       {
3087                         c1++;
3088                         while (c1--)
3089                           PATUNFETCH;
3090                         BUF_PUSH ('[');
3091                         BUF_PUSH (delim);
3092                         laststart[5] += 2; /* Update the length of characters  */
3093 			range_start = delim;
3094                         had_char_class = false;
3095                       }
3096 		  }
3097                 else
3098                   {
3099                     had_char_class = false;
3100 		    BUF_PUSH(c);
3101 		    laststart[5]++;  /* Update the length of characters  */
3102 		    range_start = c;
3103                   }
3104 	      }
3105 
3106 #else /* BYTE */
3107             /* Ensure that we have enough space to push a charset: the
3108                opcode, the length count, and the bitset; 34 bytes in all.  */
3109 	    GET_BUFFER_SPACE (34);
3110 
3111             laststart = b;
3112 
3113             /* We test `*p == '^' twice, instead of using an if
3114                statement, so we only need one BUF_PUSH.  */
3115             BUF_PUSH (*p == '^' ? charset_not : charset);
3116             if (*p == '^')
3117               p++;
3118 
3119             /* Remember the first position in the bracket expression.  */
3120             p1 = p;
3121 
3122             /* Push the number of bytes in the bitmap.  */
3123             BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
3124 
3125             /* Clear the whole map.  */
3126             bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
3127 
3128             /* charset_not matches newline according to a syntax bit.  */
3129             if ((re_opcode_t) b[-2] == charset_not
3130                 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
3131               SET_LIST_BIT ('\n');
3132 
3133             /* Read in characters and ranges, setting map bits.  */
3134             for (;;)
3135               {
3136                 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3137 
3138                 PATFETCH (c);
3139 
3140                 /* \ might escape characters inside [...] and [^...].  */
3141                 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
3142                   {
3143                     if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3144 
3145                     PATFETCH (c1);
3146                     SET_LIST_BIT (c1);
3147 		    range_start = c1;
3148                     continue;
3149                   }
3150 
3151                 /* Could be the end of the bracket expression.  If it's
3152                    not (i.e., when the bracket expression is `[]' so
3153                    far), the ']' character bit gets set way below.  */
3154                 if (c == ']' && p != p1 + 1)
3155                   break;
3156 
3157                 /* Look ahead to see if it's a range when the last thing
3158                    was a character class.  */
3159                 if (had_char_class && c == '-' && *p != ']')
3160                   FREE_STACK_RETURN (REG_ERANGE);
3161 
3162                 /* Look ahead to see if it's a range when the last thing
3163                    was a character: if this is a hyphen not at the
3164                    beginning or the end of a list, then it's the range
3165                    operator.  */
3166                 if (c == '-'
3167                     && !(p - 2 >= pattern && p[-2] == '[')
3168                     && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
3169                     && *p != ']')
3170                   {
3171                     reg_errcode_t ret
3172                       = byte_compile_range (range_start, &p, pend, translate,
3173 					    syntax, b);
3174                     if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3175 		    range_start = 0xffffffff;
3176                   }
3177 
3178                 else if (p[0] == '-' && p[1] != ']')
3179                   { /* This handles ranges made up of characters only.  */
3180                     reg_errcode_t ret;
3181 
3182 		    /* Move past the `-'.  */
3183                     PATFETCH (c1);
3184 
3185                     ret = byte_compile_range (c, &p, pend, translate, syntax, b);
3186                     if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3187 		    range_start = 0xffffffff;
3188                   }
3189 
3190                 /* See if we're at the beginning of a possible character
3191                    class.  */
3192 
3193                 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
3194                   { /* Leave room for the null.  */
3195                     char str[CHAR_CLASS_MAX_LENGTH + 1];
3196 
3197                     PATFETCH (c);
3198                     c1 = 0;
3199 
3200                     /* If pattern is `[[:'.  */
3201                     if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3202 
3203                     for (;;)
3204                       {
3205                         PATFETCH (c);
3206                         if ((c == ':' && *p == ']') || p == pend)
3207                           break;
3208 			if (c1 < CHAR_CLASS_MAX_LENGTH)
3209 			  str[c1++] = c;
3210 			else
3211 			  /* This is in any case an invalid class name.  */
3212 			  str[0] = '\0';
3213                       }
3214                     str[c1] = '\0';
3215 
3216                     /* If isn't a word bracketed by `[:' and `:]':
3217                        undo the ending character, the letters, and leave
3218                        the leading `:' and `[' (but set bits for them).  */
3219                     if (c == ':' && *p == ']')
3220                       {
3221 # if defined _LIBC || WIDE_CHAR_SUPPORT
3222                         boolean is_lower = STREQ (str, "lower");
3223                         boolean is_upper = STREQ (str, "upper");
3224 			wctype_t wt;
3225                         int ch;
3226 
3227 			wt = IS_CHAR_CLASS (str);
3228 			if (wt == 0)
3229 			  FREE_STACK_RETURN (REG_ECTYPE);
3230 
3231                         /* Throw away the ] at the end of the character
3232                            class.  */
3233                         PATFETCH (c);
3234 
3235                         if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3236 
3237                         for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
3238 			  {
3239 #  ifdef _LIBC
3240 			    if (__iswctype (__btowc (ch), wt))
3241 			      SET_LIST_BIT (ch);
3242 #  else
3243 			    if (iswctype (btowc (ch), wt))
3244 			      SET_LIST_BIT (ch);
3245 #  endif
3246 
3247 			    if (translate && (is_upper || is_lower)
3248 				&& (ISUPPER (ch) || ISLOWER (ch)))
3249 			      SET_LIST_BIT (ch);
3250 			  }
3251 
3252                         had_char_class = true;
3253 # else
3254                         int ch;
3255                         boolean is_alnum = STREQ (str, "alnum");
3256                         boolean is_alpha = STREQ (str, "alpha");
3257                         boolean is_blank = STREQ (str, "blank");
3258                         boolean is_cntrl = STREQ (str, "cntrl");
3259                         boolean is_digit = STREQ (str, "digit");
3260                         boolean is_graph = STREQ (str, "graph");
3261                         boolean is_lower = STREQ (str, "lower");
3262                         boolean is_print = STREQ (str, "print");
3263                         boolean is_punct = STREQ (str, "punct");
3264                         boolean is_space = STREQ (str, "space");
3265                         boolean is_upper = STREQ (str, "upper");
3266                         boolean is_xdigit = STREQ (str, "xdigit");
3267 
3268                         if (!IS_CHAR_CLASS (str))
3269 			  FREE_STACK_RETURN (REG_ECTYPE);
3270 
3271                         /* Throw away the ] at the end of the character
3272                            class.  */
3273                         PATFETCH (c);
3274 
3275                         if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3276 
3277                         for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
3278                           {
3279 			    /* This was split into 3 if's to
3280 			       avoid an arbitrary limit in some compiler.  */
3281                             if (   (is_alnum  && ISALNUM (ch))
3282                                 || (is_alpha  && ISALPHA (ch))
3283                                 || (is_blank  && ISBLANK (ch))
3284                                 || (is_cntrl  && ISCNTRL (ch)))
3285 			      SET_LIST_BIT (ch);
3286 			    if (   (is_digit  && ISDIGIT (ch))
3287                                 || (is_graph  && ISGRAPH (ch))
3288                                 || (is_lower  && ISLOWER (ch))
3289                                 || (is_print  && ISPRINT (ch)))
3290 			      SET_LIST_BIT (ch);
3291 			    if (   (is_punct  && ISPUNCT (ch))
3292                                 || (is_space  && ISSPACE (ch))
3293                                 || (is_upper  && ISUPPER (ch))
3294                                 || (is_xdigit && ISXDIGIT (ch)))
3295 			      SET_LIST_BIT (ch);
3296 			    if (   translate && (is_upper || is_lower)
3297 				&& (ISUPPER (ch) || ISLOWER (ch)))
3298 			      SET_LIST_BIT (ch);
3299                           }
3300                         had_char_class = true;
3301 # endif	/* libc || wctype.h */
3302                       }
3303                     else
3304                       {
3305                         c1++;
3306                         while (c1--)
3307                           PATUNFETCH;
3308                         SET_LIST_BIT ('[');
3309                         SET_LIST_BIT (':');
3310 			range_start = ':';
3311                         had_char_class = false;
3312                       }
3313                   }
3314                 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '=')
3315 		  {
3316 		    unsigned char str[MB_LEN_MAX + 1];
3317 # ifdef _LIBC
3318 		    uint32_t nrules =
3319 		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3320 # endif
3321 
3322 		    PATFETCH (c);
3323 		    c1 = 0;
3324 
3325 		    /* If pattern is `[[='.  */
3326 		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3327 
3328 		    for (;;)
3329 		      {
3330 			PATFETCH (c);
3331 			if ((c == '=' && *p == ']') || p == pend)
3332 			  break;
3333 			if (c1 < MB_LEN_MAX)
3334 			  str[c1++] = c;
3335 			else
3336 			  /* This is in any case an invalid class name.  */
3337 			  str[0] = '\0';
3338                       }
3339 		    str[c1] = '\0';
3340 
3341 		    if (c == '=' && *p == ']' && str[0] != '\0')
3342 		      {
3343 			/* If we have no collation data we use the default
3344 			   collation in which each character is in a class
3345 			   by itself.  It also means that ASCII is the
3346 			   character set and therefore we cannot have character
3347 			   with more than one byte in the multibyte
3348 			   representation.  */
3349 # ifdef _LIBC
3350 			if (nrules == 0)
3351 # endif
3352 			  {
3353 			    if (c1 != 1)
3354 			      FREE_STACK_RETURN (REG_ECOLLATE);
3355 
3356 			    /* Throw away the ] at the end of the equivalence
3357 			       class.  */
3358 			    PATFETCH (c);
3359 
3360 			    /* Set the bit for the character.  */
3361 			    SET_LIST_BIT (str[0]);
3362 			  }
3363 # ifdef _LIBC
3364 			else
3365 			  {
3366 			    /* Try to match the byte sequence in `str' against
3367 			       those known to the collate implementation.
3368 			       First find out whether the bytes in `str' are
3369 			       actually from exactly one character.  */
3370 			    const int32_t *table;
3371 			    const unsigned char *weights;
3372 			    const unsigned char *extra;
3373 			    const int32_t *indirect;
3374 			    int32_t idx;
3375 			    const unsigned char *cp = str;
3376 			    int ch;
3377 
3378 			    /* This #include defines a local function!  */
3379 #  include <locale/weight.h>
3380 
3381 			    table = (const int32_t *)
3382 			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
3383 			    weights = (const unsigned char *)
3384 			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
3385 			    extra = (const unsigned char *)
3386 			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
3387 			    indirect = (const int32_t *)
3388 			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
3389 
3390 			    idx = findidx (&cp);
3391 			    if (idx == 0 || cp < str + c1)
3392 			      /* This is no valid character.  */
3393 			      FREE_STACK_RETURN (REG_ECOLLATE);
3394 
3395 			    /* Throw away the ] at the end of the equivalence
3396 			       class.  */
3397 			    PATFETCH (c);
3398 
3399 			    /* Now we have to go through the whole table
3400 			       and find all characters which have the same
3401 			       first level weight.
3402 
3403 			       XXX Note that this is not entirely correct.
3404 			       we would have to match multibyte sequences
3405 			       but this is not possible with the current
3406 			       implementation.  */
3407 			    for (ch = 1; ch < 256; ++ch)
3408 			      /* XXX This test would have to be changed if we
3409 				 would allow matching multibyte sequences.  */
3410 			      if (table[ch] > 0)
3411 				{
3412 				  int32_t idx2 = table[ch];
3413 				  size_t len = weights[idx2];
3414 
3415 				  /* Test whether the lenghts match.  */
3416 				  if (weights[idx] == len)
3417 				    {
3418 				      /* They do.  New compare the bytes of
3419 					 the weight.  */
3420 				      size_t cnt = 0;
3421 
3422 				      while (cnt < len
3423 					     && (weights[idx + 1 + cnt]
3424 						 == weights[idx2 + 1 + cnt]))
3425 					++cnt;
3426 
3427 				      if (cnt == len)
3428 					/* They match.  Mark the character as
3429 					   acceptable.  */
3430 					SET_LIST_BIT (ch);
3431 				    }
3432 				}
3433 			  }
3434 # endif
3435 			had_char_class = true;
3436 		      }
3437                     else
3438                       {
3439                         c1++;
3440                         while (c1--)
3441                           PATUNFETCH;
3442                         SET_LIST_BIT ('[');
3443                         SET_LIST_BIT ('=');
3444 			range_start = '=';
3445                         had_char_class = false;
3446                       }
3447 		  }
3448                 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '.')
3449 		  {
3450 		    unsigned char str[128];	/* Should be large enough.  */
3451 # ifdef _LIBC
3452 		    uint32_t nrules =
3453 		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3454 # endif
3455 
3456 		    PATFETCH (c);
3457 		    c1 = 0;
3458 
3459 		    /* If pattern is `[[.'.  */
3460 		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3461 
3462 		    for (;;)
3463 		      {
3464 			PATFETCH (c);
3465 			if ((c == '.' && *p == ']') || p == pend)
3466 			  break;
3467 			if (c1 < sizeof (str))
3468 			  str[c1++] = c;
3469 			else
3470 			  /* This is in any case an invalid class name.  */
3471 			  str[0] = '\0';
3472                       }
3473 		    str[c1] = '\0';
3474 
3475 		    if (c == '.' && *p == ']' && str[0] != '\0')
3476 		      {
3477 			/* If we have no collation data we use the default
3478 			   collation in which each character is the name
3479 			   for its own class which contains only the one
3480 			   character.  It also means that ASCII is the
3481 			   character set and therefore we cannot have character
3482 			   with more than one byte in the multibyte
3483 			   representation.  */
3484 # ifdef _LIBC
3485 			if (nrules == 0)
3486 # endif
3487 			  {
3488 			    if (c1 != 1)
3489 			      FREE_STACK_RETURN (REG_ECOLLATE);
3490 
3491 			    /* Throw away the ] at the end of the equivalence
3492 			       class.  */
3493 			    PATFETCH (c);
3494 
3495 			    /* Set the bit for the character.  */
3496 			    SET_LIST_BIT (str[0]);
3497 			    range_start = ((const unsigned char *) str)[0];
3498 			  }
3499 # ifdef _LIBC
3500 			else
3501 			  {
3502 			    /* Try to match the byte sequence in `str' against
3503 			       those known to the collate implementation.
3504 			       First find out whether the bytes in `str' are
3505 			       actually from exactly one character.  */
3506 			    int32_t table_size;
3507 			    const int32_t *symb_table;
3508 			    const unsigned char *extra;
3509 			    int32_t idx;
3510 			    int32_t elem;
3511 			    int32_t second;
3512 			    int32_t hash;
3513 
3514 			    table_size =
3515 			      _NL_CURRENT_WORD (LC_COLLATE,
3516 						_NL_COLLATE_SYMB_HASH_SIZEMB);
3517 			    symb_table = (const int32_t *)
3518 			      _NL_CURRENT (LC_COLLATE,
3519 					   _NL_COLLATE_SYMB_TABLEMB);
3520 			    extra = (const unsigned char *)
3521 			      _NL_CURRENT (LC_COLLATE,
3522 					   _NL_COLLATE_SYMB_EXTRAMB);
3523 
3524 			    /* Locate the character in the hashing table.  */
3525 			    hash = elem_hash (str, c1);
3526 
3527 			    idx = 0;
3528 			    elem = hash % table_size;
3529 			    second = hash % (table_size - 2);
3530 			    while (symb_table[2 * elem] != 0)
3531 			      {
3532 				/* First compare the hashing value.  */
3533 				if (symb_table[2 * elem] == hash
3534 				    && c1 == extra[symb_table[2 * elem + 1]]
3535 				    && memcmp (str,
3536 					       &extra[symb_table[2 * elem + 1]
3537 						     + 1],
3538 					       c1) == 0)
3539 				  {
3540 				    /* Yep, this is the entry.  */
3541 				    idx = symb_table[2 * elem + 1];
3542 				    idx += 1 + extra[idx];
3543 				    break;
3544 				  }
3545 
3546 				/* Next entry.  */
3547 				elem += second;
3548 			      }
3549 
3550 			    if (symb_table[2 * elem] == 0)
3551 			      /* This is no valid character.  */
3552 			      FREE_STACK_RETURN (REG_ECOLLATE);
3553 
3554 			    /* Throw away the ] at the end of the equivalence
3555 			       class.  */
3556 			    PATFETCH (c);
3557 
3558 			    /* Now add the multibyte character(s) we found
3559 			       to the accept list.
3560 
3561 			       XXX Note that this is not entirely correct.
3562 			       we would have to match multibyte sequences
3563 			       but this is not possible with the current
3564 			       implementation.  Also, we have to match
3565 			       collating symbols, which expand to more than
3566 			       one file, as a whole and not allow the
3567 			       individual bytes.  */
3568 			    c1 = extra[idx++];
3569 			    if (c1 == 1)
3570 			      range_start = extra[idx];
3571 			    while (c1-- > 0)
3572 			      {
3573 				SET_LIST_BIT (extra[idx]);
3574 				++idx;
3575 			      }
3576 			  }
3577 # endif
3578 			had_char_class = false;
3579 		      }
3580                     else
3581                       {
3582                         c1++;
3583                         while (c1--)
3584                           PATUNFETCH;
3585                         SET_LIST_BIT ('[');
3586                         SET_LIST_BIT ('.');
3587 			range_start = '.';
3588                         had_char_class = false;
3589                       }
3590 		  }
3591                 else
3592                   {
3593                     had_char_class = false;
3594                     SET_LIST_BIT (c);
3595 		    range_start = c;
3596                   }
3597               }
3598 
3599             /* Discard any (non)matching list bytes that are all 0 at the
3600                end of the map.  Decrease the map-length byte too.  */
3601             while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3602               b[-1]--;
3603             b += b[-1];
3604 #endif /* WCHAR */
3605           }
3606           break;
3607 
3608 
3609 	case '(':
3610           if (syntax & RE_NO_BK_PARENS)
3611             goto handle_open;
3612           else
3613             goto normal_char;
3614 
3615 
3616         case ')':
3617           if (syntax & RE_NO_BK_PARENS)
3618             goto handle_close;
3619           else
3620             goto normal_char;
3621 
3622 
3623         case '\n':
3624           if (syntax & RE_NEWLINE_ALT)
3625             goto handle_alt;
3626           else
3627             goto normal_char;
3628 
3629 
3630 	case '|':
3631           if (syntax & RE_NO_BK_VBAR)
3632             goto handle_alt;
3633           else
3634             goto normal_char;
3635 
3636 
3637         case '{':
3638            if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3639              goto handle_interval;
3640            else
3641              goto normal_char;
3642 
3643 
3644         case '\\':
3645           if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3646 
3647           /* Do not translate the character after the \, so that we can
3648              distinguish, e.g., \B from \b, even if we normally would
3649              translate, e.g., B to b.  */
3650           PATFETCH_RAW (c);
3651 
3652           switch (c)
3653             {
3654             case '(':
3655               if (syntax & RE_NO_BK_PARENS)
3656                 goto normal_backslash;
3657 
3658             handle_open:
3659               bufp->re_nsub++;
3660               regnum++;
3661 
3662               if (COMPILE_STACK_FULL)
3663                 {
3664                   RETALLOC (compile_stack.stack, compile_stack.size << 1,
3665                             compile_stack_elt_t);
3666                   if (compile_stack.stack == NULL) return REG_ESPACE;
3667 
3668                   compile_stack.size <<= 1;
3669                 }
3670 
3671               /* These are the values to restore when we hit end of this
3672                  group.  They are all relative offsets, so that if the
3673                  whole pattern moves because of realloc, they will still
3674                  be valid.  */
3675               COMPILE_STACK_TOP.begalt_offset = begalt - COMPILED_BUFFER_VAR;
3676               COMPILE_STACK_TOP.fixup_alt_jump
3677                 = fixup_alt_jump ? fixup_alt_jump - COMPILED_BUFFER_VAR + 1 : 0;
3678               COMPILE_STACK_TOP.laststart_offset = b - COMPILED_BUFFER_VAR;
3679               COMPILE_STACK_TOP.regnum = regnum;
3680 
3681               /* We will eventually replace the 0 with the number of
3682                  groups inner to this one.  But do not push a
3683                  start_memory for groups beyond the last one we can
3684                  represent in the compiled pattern.  */
3685               if (regnum <= MAX_REGNUM)
3686                 {
3687                   COMPILE_STACK_TOP.inner_group_offset = b
3688 		    - COMPILED_BUFFER_VAR + 2;
3689                   BUF_PUSH_3 (start_memory, regnum, 0);
3690                 }
3691 
3692               compile_stack.avail++;
3693 
3694               fixup_alt_jump = 0;
3695               laststart = 0;
3696               begalt = b;
3697 	      /* If we've reached MAX_REGNUM groups, then this open
3698 		 won't actually generate any code, so we'll have to
3699 		 clear pending_exact explicitly.  */
3700 	      pending_exact = 0;
3701               break;
3702 
3703 
3704             case ')':
3705               if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3706 
3707               if (COMPILE_STACK_EMPTY)
3708 		{
3709 		  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3710 		    goto normal_backslash;
3711 		  else
3712 		    FREE_STACK_RETURN (REG_ERPAREN);
3713 		}
3714 
3715             handle_close:
3716               if (fixup_alt_jump)
3717                 { /* Push a dummy failure point at the end of the
3718                      alternative for a possible future
3719                      `pop_failure_jump' to pop.  See comments at
3720                      `push_dummy_failure' in `re_match_2'.  */
3721                   BUF_PUSH (push_dummy_failure);
3722 
3723                   /* We allocated space for this jump when we assigned
3724                      to `fixup_alt_jump', in the `handle_alt' case below.  */
3725                   STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
3726                 }
3727 
3728               /* See similar code for backslashed left paren above.  */
3729               if (COMPILE_STACK_EMPTY)
3730 		{
3731 		  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3732 		    goto normal_char;
3733 		  else
3734 		    FREE_STACK_RETURN (REG_ERPAREN);
3735 		}
3736 
3737               /* Since we just checked for an empty stack above, this
3738                  ``can't happen''.  */
3739               assert (compile_stack.avail != 0);
3740               {
3741                 /* We don't just want to restore into `regnum', because
3742                    later groups should continue to be numbered higher,
3743                    as in `(ab)c(de)' -- the second group is #2.  */
3744                 regnum_t this_group_regnum;
3745 
3746                 compile_stack.avail--;
3747                 begalt = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.begalt_offset;
3748                 fixup_alt_jump
3749                   = COMPILE_STACK_TOP.fixup_alt_jump
3750                     ? COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.fixup_alt_jump - 1
3751                     : 0;
3752                 laststart = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.laststart_offset;
3753                 this_group_regnum = COMPILE_STACK_TOP.regnum;
3754 		/* If we've reached MAX_REGNUM groups, then this open
3755 		   won't actually generate any code, so we'll have to
3756 		   clear pending_exact explicitly.  */
3757 		pending_exact = 0;
3758 
3759                 /* We're at the end of the group, so now we know how many
3760                    groups were inside this one.  */
3761                 if (this_group_regnum <= MAX_REGNUM)
3762                   {
3763 		    UCHAR_T *inner_group_loc
3764                       = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.inner_group_offset;
3765 
3766                     *inner_group_loc = regnum - this_group_regnum;
3767                     BUF_PUSH_3 (stop_memory, this_group_regnum,
3768                                 regnum - this_group_regnum);
3769                   }
3770               }
3771               break;
3772 
3773 
3774             case '|':					/* `\|'.  */
3775               if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3776                 goto normal_backslash;
3777             handle_alt:
3778               if (syntax & RE_LIMITED_OPS)
3779                 goto normal_char;
3780 
3781               /* Insert before the previous alternative a jump which
3782                  jumps to this alternative if the former fails.  */
3783               GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3784               INSERT_JUMP (on_failure_jump, begalt,
3785 			   b + 2 + 2 * OFFSET_ADDRESS_SIZE);
3786               pending_exact = 0;
3787               b += 1 + OFFSET_ADDRESS_SIZE;
3788 
3789               /* The alternative before this one has a jump after it
3790                  which gets executed if it gets matched.  Adjust that
3791                  jump so it will jump to this alternative's analogous
3792                  jump (put in below, which in turn will jump to the next
3793                  (if any) alternative's such jump, etc.).  The last such
3794                  jump jumps to the correct final destination.  A picture:
3795                           _____ _____
3796                           |   | |   |
3797                           |   v |   v
3798                          a | b   | c
3799 
3800                  If we are at `b', then fixup_alt_jump right now points to a
3801                  three-byte space after `a'.  We'll put in the jump, set
3802                  fixup_alt_jump to right after `b', and leave behind three
3803                  bytes which we'll fill in when we get to after `c'.  */
3804 
3805               if (fixup_alt_jump)
3806                 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
3807 
3808               /* Mark and leave space for a jump after this alternative,
3809                  to be filled in later either by next alternative or
3810                  when know we're at the end of a series of alternatives.  */
3811               fixup_alt_jump = b;
3812               GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3813               b += 1 + OFFSET_ADDRESS_SIZE;
3814 
3815               laststart = 0;
3816               begalt = b;
3817               break;
3818 
3819 
3820             case '{':
3821               /* If \{ is a literal.  */
3822               if (!(syntax & RE_INTERVALS)
3823                      /* If we're at `\{' and it's not the open-interval
3824                         operator.  */
3825 		  || (syntax & RE_NO_BK_BRACES))
3826                 goto normal_backslash;
3827 
3828             handle_interval:
3829               {
3830                 /* If got here, then the syntax allows intervals.  */
3831 
3832                 /* At least (most) this many matches must be made.  */
3833                 int lower_bound = -1, upper_bound = -1;
3834 
3835 		/* Place in the uncompiled pattern (i.e., just after
3836 		   the '{') to go back to if the interval is invalid.  */
3837 		const CHAR_T *beg_interval = p;
3838 
3839                 if (p == pend)
3840 		  goto invalid_interval;
3841 
3842                 GET_UNSIGNED_NUMBER (lower_bound);
3843 
3844                 if (c == ',')
3845                   {
3846                     GET_UNSIGNED_NUMBER (upper_bound);
3847 		    if (upper_bound < 0)
3848 		      upper_bound = RE_DUP_MAX;
3849                   }
3850                 else
3851                   /* Interval such as `{1}' => match exactly once. */
3852                   upper_bound = lower_bound;
3853 
3854                 if (! (0 <= lower_bound && lower_bound <= upper_bound))
3855 		  goto invalid_interval;
3856 
3857                 if (!(syntax & RE_NO_BK_BRACES))
3858                   {
3859 		    if (c != '\\' || p == pend)
3860 		      goto invalid_interval;
3861                     PATFETCH (c);
3862                   }
3863 
3864                 if (c != '}')
3865 		  goto invalid_interval;
3866 
3867                 /* If it's invalid to have no preceding re.  */
3868                 if (!laststart)
3869                   {
3870 		    if (syntax & RE_CONTEXT_INVALID_OPS
3871 			&& !(syntax & RE_INVALID_INTERVAL_ORD))
3872                       FREE_STACK_RETURN (REG_BADRPT);
3873                     else if (syntax & RE_CONTEXT_INDEP_OPS)
3874                       laststart = b;
3875                     else
3876                       goto unfetch_interval;
3877                   }
3878 
3879                 /* We just parsed a valid interval.  */
3880 
3881                 if (RE_DUP_MAX < upper_bound)
3882 		  FREE_STACK_RETURN (REG_BADBR);
3883 
3884                 /* If the upper bound is zero, don't want to succeed at
3885                    all; jump from `laststart' to `b + 3', which will be
3886 		   the end of the buffer after we insert the jump.  */
3887 		/* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE'
3888 		   instead of 'b + 3'.  */
3889                  if (upper_bound == 0)
3890                    {
3891                      GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3892                      INSERT_JUMP (jump, laststart, b + 1
3893 				  + OFFSET_ADDRESS_SIZE);
3894                      b += 1 + OFFSET_ADDRESS_SIZE;
3895                    }
3896 
3897                  /* Otherwise, we have a nontrivial interval.  When
3898                     we're all done, the pattern will look like:
3899                       set_number_at <jump count> <upper bound>
3900                       set_number_at <succeed_n count> <lower bound>
3901                       succeed_n <after jump addr> <succeed_n count>
3902                       <body of loop>
3903                       jump_n <succeed_n addr> <jump count>
3904                     (The upper bound and `jump_n' are omitted if
3905                     `upper_bound' is 1, though.)  */
3906                  else
3907                    { /* If the upper bound is > 1, we need to insert
3908                         more at the end of the loop.  */
3909                      unsigned nbytes = 2 + 4 * OFFSET_ADDRESS_SIZE +
3910 		       (upper_bound > 1) * (2 + 4 * OFFSET_ADDRESS_SIZE);
3911 
3912                      GET_BUFFER_SPACE (nbytes);
3913 
3914                      /* Initialize lower bound of the `succeed_n', even
3915                         though it will be set during matching by its
3916                         attendant `set_number_at' (inserted next),
3917                         because `re_compile_fastmap' needs to know.
3918                         Jump to the `jump_n' we might insert below.  */
3919                      INSERT_JUMP2 (succeed_n, laststart,
3920                                    b + 1 + 2 * OFFSET_ADDRESS_SIZE
3921 				   + (upper_bound > 1) * (1 + 2 * OFFSET_ADDRESS_SIZE)
3922 				   , lower_bound);
3923                      b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3924 
3925                      /* Code to initialize the lower bound.  Insert
3926                         before the `succeed_n'.  The `5' is the last two
3927                         bytes of this `set_number_at', plus 3 bytes of
3928                         the following `succeed_n'.  */
3929 		     /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE'
3930 			is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
3931 			of the following `succeed_n'.  */
3932                      PREFIX(insert_op2) (set_number_at, laststart, 1
3933 				 + 2 * OFFSET_ADDRESS_SIZE, lower_bound, b);
3934                      b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3935 
3936                      if (upper_bound > 1)
3937                        { /* More than one repetition is allowed, so
3938                             append a backward jump to the `succeed_n'
3939                             that starts this interval.
3940 
3941                             When we've reached this during matching,
3942                             we'll have matched the interval once, so
3943                             jump back only `upper_bound - 1' times.  */
3944                          STORE_JUMP2 (jump_n, b, laststart
3945 				      + 2 * OFFSET_ADDRESS_SIZE + 1,
3946                                       upper_bound - 1);
3947                          b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3948 
3949                          /* The location we want to set is the second
3950                             parameter of the `jump_n'; that is `b-2' as
3951                             an absolute address.  `laststart' will be
3952                             the `set_number_at' we're about to insert;
3953                             `laststart+3' the number to set, the source
3954                             for the relative address.  But we are
3955                             inserting into the middle of the pattern --
3956                             so everything is getting moved up by 5.
3957                             Conclusion: (b - 2) - (laststart + 3) + 5,
3958                             i.e., b - laststart.
3959 
3960                             We insert this at the beginning of the loop
3961                             so that if we fail during matching, we'll
3962                             reinitialize the bounds.  */
3963                          PREFIX(insert_op2) (set_number_at, laststart,
3964 					     b - laststart,
3965 					     upper_bound - 1, b);
3966                          b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3967                        }
3968                    }
3969                 pending_exact = 0;
3970 		break;
3971 
3972 	      invalid_interval:
3973 		if (!(syntax & RE_INVALID_INTERVAL_ORD))
3974 		  FREE_STACK_RETURN (p == pend ? REG_EBRACE : REG_BADBR);
3975 	      unfetch_interval:
3976 		/* Match the characters as literals.  */
3977 		p = beg_interval;
3978 		c = '{';
3979 		if (syntax & RE_NO_BK_BRACES)
3980 		  goto normal_char;
3981 		else
3982 		  goto normal_backslash;
3983 	      }
3984 
3985 #ifdef emacs
3986             /* There is no way to specify the before_dot and after_dot
3987                operators.  rms says this is ok.  --karl  */
3988             case '=':
3989               BUF_PUSH (at_dot);
3990               break;
3991 
3992             case 's':
3993               laststart = b;
3994               PATFETCH (c);
3995               BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3996               break;
3997 
3998             case 'S':
3999               laststart = b;
4000               PATFETCH (c);
4001               BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
4002               break;
4003 #endif /* emacs */
4004 
4005 
4006             case 'w':
4007 	      if (syntax & RE_NO_GNU_OPS)
4008 		goto normal_char;
4009               laststart = b;
4010               BUF_PUSH (wordchar);
4011               break;
4012 
4013 
4014             case 'W':
4015 	      if (syntax & RE_NO_GNU_OPS)
4016 		goto normal_char;
4017               laststart = b;
4018               BUF_PUSH (notwordchar);
4019               break;
4020 
4021 
4022             case '<':
4023 	      if (syntax & RE_NO_GNU_OPS)
4024 		goto normal_char;
4025               BUF_PUSH (wordbeg);
4026               break;
4027 
4028             case '>':
4029 	      if (syntax & RE_NO_GNU_OPS)
4030 		goto normal_char;
4031               BUF_PUSH (wordend);
4032               break;
4033 
4034             case 'b':
4035 	      if (syntax & RE_NO_GNU_OPS)
4036 		goto normal_char;
4037               BUF_PUSH (wordbound);
4038               break;
4039 
4040             case 'B':
4041 	      if (syntax & RE_NO_GNU_OPS)
4042 		goto normal_char;
4043               BUF_PUSH (notwordbound);
4044               break;
4045 
4046             case '`':
4047 	      if (syntax & RE_NO_GNU_OPS)
4048 		goto normal_char;
4049               BUF_PUSH (begbuf);
4050               break;
4051 
4052             case '\'':
4053 	      if (syntax & RE_NO_GNU_OPS)
4054 		goto normal_char;
4055               BUF_PUSH (endbuf);
4056               break;
4057 
4058             case '1': case '2': case '3': case '4': case '5':
4059             case '6': case '7': case '8': case '9':
4060               if (syntax & RE_NO_BK_REFS)
4061                 goto normal_char;
4062 
4063               c1 = c - '0';
4064 
4065               if (c1 > regnum)
4066                 FREE_STACK_RETURN (REG_ESUBREG);
4067 
4068               /* Can't back reference to a subexpression if inside of it.  */
4069               if (group_in_compile_stack (compile_stack, (regnum_t) c1))
4070                 goto normal_char;
4071 
4072               laststart = b;
4073               BUF_PUSH_2 (duplicate, c1);
4074               break;
4075 
4076 
4077             case '+':
4078             case '?':
4079               if (syntax & RE_BK_PLUS_QM)
4080                 goto handle_plus;
4081               else
4082                 goto normal_backslash;
4083 
4084             default:
4085             normal_backslash:
4086               /* You might think it would be useful for \ to mean
4087                  not to translate; but if we don't translate it
4088                  it will never match anything.  */
4089               c = TRANSLATE (c);
4090               goto normal_char;
4091             }
4092           break;
4093 
4094 
4095 	default:
4096         /* Expects the character in `c'.  */
4097 	normal_char:
4098 	      /* If no exactn currently being built.  */
4099           if (!pending_exact
4100 #ifdef WCHAR
4101 	      /* If last exactn handle binary(or character) and
4102 		 new exactn handle character(or binary).  */
4103 	      || is_exactn_bin != is_binary[p - 1 - pattern]
4104 #endif /* WCHAR */
4105 
4106               /* If last exactn not at current position.  */
4107               || pending_exact + *pending_exact + 1 != b
4108 
4109               /* We have only one byte following the exactn for the count.  */
4110 	      || *pending_exact == (1 << BYTEWIDTH) - 1
4111 
4112               /* If followed by a repetition operator.  */
4113               || *p == '*' || *p == '^'
4114 	      || ((syntax & RE_BK_PLUS_QM)
4115 		  ? *p == '\\' && (p[1] == '+' || p[1] == '?')
4116 		  : (*p == '+' || *p == '?'))
4117 	      || ((syntax & RE_INTERVALS)
4118                   && ((syntax & RE_NO_BK_BRACES)
4119 		      ? *p == '{'
4120                       : (p[0] == '\\' && p[1] == '{'))))
4121 	    {
4122 	      /* Start building a new exactn.  */
4123 
4124               laststart = b;
4125 
4126 #ifdef WCHAR
4127 	      /* Is this exactn binary data or character? */
4128 	      is_exactn_bin = is_binary[p - 1 - pattern];
4129 	      if (is_exactn_bin)
4130 		  BUF_PUSH_2 (exactn_bin, 0);
4131 	      else
4132 		  BUF_PUSH_2 (exactn, 0);
4133 #else
4134 	      BUF_PUSH_2 (exactn, 0);
4135 #endif /* WCHAR */
4136 	      pending_exact = b - 1;
4137             }
4138 
4139 	  BUF_PUSH (c);
4140           (*pending_exact)++;
4141 	  break;
4142         } /* switch (c) */
4143     } /* while p != pend */
4144 
4145 
4146   /* Through the pattern now.  */
4147 
4148   if (fixup_alt_jump)
4149     STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
4150 
4151   if (!COMPILE_STACK_EMPTY)
4152     FREE_STACK_RETURN (REG_EPAREN);
4153 
4154   /* If we don't want backtracking, force success
4155      the first time we reach the end of the compiled pattern.  */
4156   if (syntax & RE_NO_POSIX_BACKTRACKING)
4157     BUF_PUSH (succeed);
4158 
4159 #ifdef WCHAR
4160   free (pattern);
4161   free (mbs_offset);
4162   free (is_binary);
4163 #endif
4164   free (compile_stack.stack);
4165 
4166   /* We have succeeded; set the length of the buffer.  */
4167 #ifdef WCHAR
4168   bufp->used = (uintptr_t) b - (uintptr_t) COMPILED_BUFFER_VAR;
4169 #else
4170   bufp->used = b - bufp->buffer;
4171 #endif
4172 
4173 #ifdef DEBUG
4174   if (debug)
4175     {
4176       DEBUG_PRINT1 ("\nCompiled pattern: \n");
4177       PREFIX(print_compiled_pattern) (bufp);
4178     }
4179 #endif /* DEBUG */
4180 
4181 #ifndef MATCH_MAY_ALLOCATE
4182   /* Initialize the failure stack to the largest possible stack.  This
4183      isn't necessary unless we're trying to avoid calling alloca in
4184      the search and match routines.  */
4185   {
4186     int num_regs = bufp->re_nsub + 1;
4187 
4188     /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4189        is strictly greater than re_max_failures, the largest possible stack
4190        is 2 * re_max_failures failure points.  */
4191     if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
4192       {
4193 	fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
4194 
4195 # ifdef emacs
4196 	if (! fail_stack.stack)
4197 	  fail_stack.stack
4198 	    = (PREFIX(fail_stack_elt_t) *) xmalloc (fail_stack.size
4199 				    * sizeof (PREFIX(fail_stack_elt_t)));
4200 	else
4201 	  fail_stack.stack
4202 	    = (PREFIX(fail_stack_elt_t) *) xrealloc (fail_stack.stack,
4203 				     (fail_stack.size
4204 				      * sizeof (PREFIX(fail_stack_elt_t))));
4205 # else /* not emacs */
4206 	if (! fail_stack.stack)
4207 	  fail_stack.stack
4208 	    = (PREFIX(fail_stack_elt_t) *) malloc (fail_stack.size
4209 				   * sizeof (PREFIX(fail_stack_elt_t)));
4210 	else
4211 	  fail_stack.stack
4212 	    = (PREFIX(fail_stack_elt_t) *) realloc (fail_stack.stack,
4213 					    (fail_stack.size
4214 				     * sizeof (PREFIX(fail_stack_elt_t))));
4215 # endif /* not emacs */
4216       }
4217 
4218    PREFIX(regex_grow_registers) (num_regs);
4219   }
4220 #endif /* not MATCH_MAY_ALLOCATE */
4221 
4222   return REG_NOERROR;
4223 } /* regex_compile */
4224 
4225 /* Subroutines for `regex_compile'.  */
4226 
4227 /* Store OP at LOC followed by two-byte integer parameter ARG.  */
4228 /* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4229 
4230 static void
4231 PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg)
4232 {
4233   *loc = (UCHAR_T) op;
4234   STORE_NUMBER (loc + 1, arg);
4235 }
4236 
4237 
4238 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
4239 /* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4240 
4241 static void
4242 PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc, int arg1, int arg2)
4243 {
4244   *loc = (UCHAR_T) op;
4245   STORE_NUMBER (loc + 1, arg1);
4246   STORE_NUMBER (loc + 1 + OFFSET_ADDRESS_SIZE, arg2);
4247 }
4248 
4249 
4250 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
4251    for OP followed by two-byte integer parameter ARG.  */
4252 /* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4253 
4254 static void
4255 PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc, int arg, UCHAR_T *end)
4256 {
4257   register UCHAR_T *pfrom = end;
4258   register UCHAR_T *pto = end + 1 + OFFSET_ADDRESS_SIZE;
4259 
4260   while (pfrom != loc)
4261     *--pto = *--pfrom;
4262 
4263   PREFIX(store_op1) (op, loc, arg);
4264 }
4265 
4266 
4267 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
4268 /* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4269 
4270 static void
4271 PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc, int arg1,
4272                     int arg2, UCHAR_T *end)
4273 {
4274   register UCHAR_T *pfrom = end;
4275   register UCHAR_T *pto = end + 1 + 2 * OFFSET_ADDRESS_SIZE;
4276 
4277   while (pfrom != loc)
4278     *--pto = *--pfrom;
4279 
4280   PREFIX(store_op2) (op, loc, arg1, arg2);
4281 }
4282 
4283 
4284 /* P points to just after a ^ in PATTERN.  Return true if that ^ comes
4285    after an alternative or a begin-subexpression.  We assume there is at
4286    least one character before the ^.  */
4287 
4288 static boolean
4289 PREFIX(at_begline_loc_p) (const CHAR_T *pattern, const CHAR_T *p,
4290                           reg_syntax_t syntax)
4291 {
4292   const CHAR_T *prev = p - 2;
4293   boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
4294 
4295   return
4296        /* After a subexpression?  */
4297        (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
4298        /* After an alternative?  */
4299     || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
4300 }
4301 
4302 
4303 /* The dual of at_begline_loc_p.  This one is for $.  We assume there is
4304    at least one character after the $, i.e., `P < PEND'.  */
4305 
4306 static boolean
4307 PREFIX(at_endline_loc_p) (const CHAR_T *p, const CHAR_T *pend,
4308                           reg_syntax_t syntax)
4309 {
4310   const CHAR_T *next = p;
4311   boolean next_backslash = *next == '\\';
4312   const CHAR_T *next_next = p + 1 < pend ? p + 1 : 0;
4313 
4314   return
4315        /* Before a subexpression?  */
4316        (syntax & RE_NO_BK_PARENS ? *next == ')'
4317         : next_backslash && next_next && *next_next == ')')
4318        /* Before an alternative?  */
4319     || (syntax & RE_NO_BK_VBAR ? *next == '|'
4320         : next_backslash && next_next && *next_next == '|');
4321 }
4322 
4323 #else /* not INSIDE_RECURSION */
4324 
4325 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4326    false if it's not.  */
4327 
4328 static boolean
4329 group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum)
4330 {
4331   int this_element;
4332 
4333   for (this_element = compile_stack.avail - 1;
4334        this_element >= 0;
4335        this_element--)
4336     if (compile_stack.stack[this_element].regnum == regnum)
4337       return true;
4338 
4339   return false;
4340 }
4341 #endif /* not INSIDE_RECURSION */
4342 
4343 #ifdef INSIDE_RECURSION
4344 
4345 #ifdef WCHAR
4346 /* This insert space, which size is "num", into the pattern at "loc".
4347    "end" must point the end of the allocated buffer.  */
4348 static void
4349 insert_space (int num, CHAR_T *loc, CHAR_T *end)
4350 {
4351   register CHAR_T *pto = end;
4352   register CHAR_T *pfrom = end - num;
4353 
4354   while (pfrom >= loc)
4355     *pto-- = *pfrom--;
4356 }
4357 #endif /* WCHAR */
4358 
4359 #ifdef WCHAR
4360 static reg_errcode_t
4361 wcs_compile_range (CHAR_T range_start_char, const CHAR_T **p_ptr,
4362                    const CHAR_T *pend, RE_TRANSLATE_TYPE translate,
4363                    reg_syntax_t syntax, CHAR_T *b, CHAR_T *char_set)
4364 {
4365   const CHAR_T *p = *p_ptr;
4366   CHAR_T range_start, range_end;
4367   reg_errcode_t ret;
4368 # ifdef _LIBC
4369   uint32_t nrules;
4370   uint32_t start_val, end_val;
4371 # endif
4372   if (p == pend)
4373     return REG_ERANGE;
4374 
4375 # ifdef _LIBC
4376   nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
4377   if (nrules != 0)
4378     {
4379       const char *collseq = (const char *) _NL_CURRENT(LC_COLLATE,
4380 						       _NL_COLLATE_COLLSEQWC);
4381       const unsigned char *extra = (const unsigned char *)
4382 	_NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
4383 
4384       if (range_start_char < -1)
4385 	{
4386 	  /* range_start is a collating symbol.  */
4387 	  int32_t *wextra;
4388 	  /* Retreive the index and get collation sequence value.  */
4389 	  wextra = (int32_t*)(extra + char_set[-range_start_char]);
4390 	  start_val = wextra[1 + *wextra];
4391 	}
4392       else
4393 	start_val = collseq_table_lookup(collseq, TRANSLATE(range_start_char));
4394 
4395       end_val = collseq_table_lookup (collseq, TRANSLATE (p[0]));
4396 
4397       /* Report an error if the range is empty and the syntax prohibits
4398 	 this.  */
4399       ret = ((syntax & RE_NO_EMPTY_RANGES)
4400 	     && (start_val > end_val))? REG_ERANGE : REG_NOERROR;
4401 
4402       /* Insert space to the end of the char_ranges.  */
4403       insert_space(2, b - char_set[5] - 2, b - 1);
4404       *(b - char_set[5] - 2) = (wchar_t)start_val;
4405       *(b - char_set[5] - 1) = (wchar_t)end_val;
4406       char_set[4]++; /* ranges_index */
4407     }
4408   else
4409 # endif
4410     {
4411       range_start = (range_start_char >= 0)? TRANSLATE (range_start_char):
4412 	range_start_char;
4413       range_end = TRANSLATE (p[0]);
4414       /* Report an error if the range is empty and the syntax prohibits
4415 	 this.  */
4416       ret = ((syntax & RE_NO_EMPTY_RANGES)
4417 	     && (range_start > range_end))? REG_ERANGE : REG_NOERROR;
4418 
4419       /* Insert space to the end of the char_ranges.  */
4420       insert_space(2, b - char_set[5] - 2, b - 1);
4421       *(b - char_set[5] - 2) = range_start;
4422       *(b - char_set[5] - 1) = range_end;
4423       char_set[4]++; /* ranges_index */
4424     }
4425   /* Have to increment the pointer into the pattern string, so the
4426      caller isn't still at the ending character.  */
4427   (*p_ptr)++;
4428 
4429   return ret;
4430 }
4431 #else /* BYTE */
4432 /* Read the ending character of a range (in a bracket expression) from the
4433    uncompiled pattern *P_PTR (which ends at PEND).  We assume the
4434    starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
4435    Then we set the translation of all bits between the starting and
4436    ending characters (inclusive) in the compiled pattern B.
4437 
4438    Return an error code.
4439 
4440    We use these short variable names so we can use the same macros as
4441    `regex_compile' itself.  */
4442 
4443 static reg_errcode_t
4444 byte_compile_range (unsigned int range_start_char, const char **p_ptr,
4445                     const char *pend, RE_TRANSLATE_TYPE translate,
4446                     reg_syntax_t syntax, unsigned char *b)
4447 {
4448   unsigned this_char;
4449   const char *p = *p_ptr;
4450   reg_errcode_t ret;
4451 # if _LIBC
4452   const unsigned char *collseq;
4453   unsigned int start_colseq;
4454   unsigned int end_colseq;
4455 # else
4456   unsigned end_char;
4457 # endif
4458 
4459   if (p == pend)
4460     return REG_ERANGE;
4461 
4462   /* Have to increment the pointer into the pattern string, so the
4463      caller isn't still at the ending character.  */
4464   (*p_ptr)++;
4465 
4466   /* Report an error if the range is empty and the syntax prohibits this.  */
4467   ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
4468 
4469 # if _LIBC
4470   collseq = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
4471 						 _NL_COLLATE_COLLSEQMB);
4472 
4473   start_colseq = collseq[(unsigned char) TRANSLATE (range_start_char)];
4474   end_colseq = collseq[(unsigned char) TRANSLATE (p[0])];
4475   for (this_char = 0; this_char <= (unsigned char) -1; ++this_char)
4476     {
4477       unsigned int this_colseq = collseq[(unsigned char) TRANSLATE (this_char)];
4478 
4479       if (start_colseq <= this_colseq && this_colseq <= end_colseq)
4480 	{
4481 	  SET_LIST_BIT (TRANSLATE (this_char));
4482 	  ret = REG_NOERROR;
4483 	}
4484     }
4485 # else
4486   /* Here we see why `this_char' has to be larger than an `unsigned
4487      char' -- we would otherwise go into an infinite loop, since all
4488      characters <= 0xff.  */
4489   range_start_char = TRANSLATE (range_start_char);
4490   /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4491      and some compilers cast it to int implicitly, so following for_loop
4492      may fall to (almost) infinite loop.
4493      e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4494      To avoid this, we cast p[0] to unsigned int and truncate it.  */
4495   end_char = ((unsigned)TRANSLATE(p[0]) & ((1 << BYTEWIDTH) - 1));
4496 
4497   for (this_char = range_start_char; this_char <= end_char; ++this_char)
4498     {
4499       SET_LIST_BIT (TRANSLATE (this_char));
4500       ret = REG_NOERROR;
4501     }
4502 # endif
4503 
4504   return ret;
4505 }
4506 #endif /* WCHAR */
4507 
4508 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4509    BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
4510    characters can start a string that matches the pattern.  This fastmap
4511    is used by re_search to skip quickly over impossible starting points.
4512 
4513    The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4514    area as BUFP->fastmap.
4515 
4516    We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4517    the pattern buffer.
4518 
4519    Returns 0 if we succeed, -2 if an internal error.   */
4520 
4521 #ifdef WCHAR
4522 /* local function for re_compile_fastmap.
4523    truncate wchar_t character to char.  */
4524 static unsigned char truncate_wchar (CHAR_T c);
4525 
4526 static unsigned char
4527 truncate_wchar (CHAR_T c)
4528 {
4529   unsigned char buf[MB_CUR_MAX];
4530   mbstate_t state;
4531   int retval;
4532   memset (&state, '\0', sizeof (state));
4533 # ifdef _LIBC
4534   retval = __wcrtomb (buf, c, &state);
4535 # else
4536   retval = wcrtomb (buf, c, &state);
4537 # endif
4538   return retval > 0 ? buf[0] : (unsigned char) c;
4539 }
4540 #endif /* WCHAR */
4541 
4542 static int
4543 PREFIX(re_compile_fastmap) (struct re_pattern_buffer *bufp)
4544 {
4545   int j, k;
4546 #ifdef MATCH_MAY_ALLOCATE
4547   PREFIX(fail_stack_type) fail_stack;
4548 #endif
4549 #ifndef REGEX_MALLOC
4550   char *destination;
4551 #endif
4552 
4553   register char *fastmap = bufp->fastmap;
4554 
4555 #ifdef WCHAR
4556   /* We need to cast pattern to (wchar_t*), because we casted this compiled
4557      pattern to (char*) in regex_compile.  */
4558   UCHAR_T *pattern = (UCHAR_T*)bufp->buffer;
4559   register UCHAR_T *pend = (UCHAR_T*) (bufp->buffer + bufp->used);
4560 #else /* BYTE */
4561   UCHAR_T *pattern = bufp->buffer;
4562   register UCHAR_T *pend = pattern + bufp->used;
4563 #endif /* WCHAR */
4564   UCHAR_T *p = pattern;
4565 
4566 #ifdef REL_ALLOC
4567   /* This holds the pointer to the failure stack, when
4568      it is allocated relocatably.  */
4569   fail_stack_elt_t *failure_stack_ptr;
4570 #endif
4571 
4572   /* Assume that each path through the pattern can be null until
4573      proven otherwise.  We set this false at the bottom of switch
4574      statement, to which we get only if a particular path doesn't
4575      match the empty string.  */
4576   boolean path_can_be_null = true;
4577 
4578   /* We aren't doing a `succeed_n' to begin with.  */
4579   boolean succeed_n_p = false;
4580 
4581   assert (fastmap != NULL && p != NULL);
4582 
4583   INIT_FAIL_STACK ();
4584   bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.  */
4585   bufp->fastmap_accurate = 1;	    /* It will be when we're done.  */
4586   bufp->can_be_null = 0;
4587 
4588   while (1)
4589     {
4590       if (p == pend || *p == (UCHAR_T) succeed)
4591 	{
4592 	  /* We have reached the (effective) end of pattern.  */
4593 	  if (!FAIL_STACK_EMPTY ())
4594 	    {
4595 	      bufp->can_be_null |= path_can_be_null;
4596 
4597 	      /* Reset for next path.  */
4598 	      path_can_be_null = true;
4599 
4600 	      p = fail_stack.stack[--fail_stack.avail].pointer;
4601 
4602 	      continue;
4603 	    }
4604 	  else
4605 	    break;
4606 	}
4607 
4608       /* We should never be about to go beyond the end of the pattern.  */
4609       assert (p < pend);
4610 
4611       switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4612 	{
4613 
4614         /* I guess the idea here is to simply not bother with a fastmap
4615            if a backreference is used, since it's too hard to figure out
4616            the fastmap for the corresponding group.  Setting
4617            `can_be_null' stops `re_search_2' from using the fastmap, so
4618            that is all we do.  */
4619 	case duplicate:
4620 	  bufp->can_be_null = 1;
4621           goto done;
4622 
4623 
4624       /* Following are the cases which match a character.  These end
4625          with `break'.  */
4626 
4627 #ifdef WCHAR
4628 	case exactn:
4629           fastmap[truncate_wchar(p[1])] = 1;
4630 	  break;
4631 #else /* BYTE */
4632 	case exactn:
4633           fastmap[p[1]] = 1;
4634 	  break;
4635 #endif /* WCHAR */
4636 #ifdef MBS_SUPPORT
4637 	case exactn_bin:
4638 	  fastmap[p[1]] = 1;
4639 	  break;
4640 #endif
4641 
4642 #ifdef WCHAR
4643         /* It is hard to distinguish fastmap from (multi byte) characters
4644            which depends on current locale.  */
4645         case charset:
4646 	case charset_not:
4647 	case wordchar:
4648 	case notwordchar:
4649           bufp->can_be_null = 1;
4650           goto done;
4651 #else /* BYTE */
4652         case charset:
4653           for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4654 	    if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
4655               fastmap[j] = 1;
4656 	  break;
4657 
4658 
4659 	case charset_not:
4660 	  /* Chars beyond end of map must be allowed.  */
4661 	  for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
4662             fastmap[j] = 1;
4663 
4664 	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4665 	    if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
4666               fastmap[j] = 1;
4667           break;
4668 
4669 
4670 	case wordchar:
4671 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4672 	    if (SYNTAX (j) == Sword)
4673 	      fastmap[j] = 1;
4674 	  break;
4675 
4676 
4677 	case notwordchar:
4678 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4679 	    if (SYNTAX (j) != Sword)
4680 	      fastmap[j] = 1;
4681 	  break;
4682 #endif /* WCHAR */
4683 
4684         case anychar:
4685 	  {
4686 	    int fastmap_newline = fastmap['\n'];
4687 
4688 	    /* `.' matches anything ...  */
4689 	    for (j = 0; j < (1 << BYTEWIDTH); j++)
4690 	      fastmap[j] = 1;
4691 
4692 	    /* ... except perhaps newline.  */
4693 	    if (!(bufp->syntax & RE_DOT_NEWLINE))
4694 	      fastmap['\n'] = fastmap_newline;
4695 
4696 	    /* Return if we have already set `can_be_null'; if we have,
4697 	       then the fastmap is irrelevant.  Something's wrong here.  */
4698 	    else if (bufp->can_be_null)
4699 	      goto done;
4700 
4701 	    /* Otherwise, have to check alternative paths.  */
4702 	    break;
4703 	  }
4704 
4705 #ifdef emacs
4706         case syntaxspec:
4707 	  k = *p++;
4708 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4709 	    if (SYNTAX (j) == (enum syntaxcode) k)
4710 	      fastmap[j] = 1;
4711 	  break;
4712 
4713 
4714 	case notsyntaxspec:
4715 	  k = *p++;
4716 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4717 	    if (SYNTAX (j) != (enum syntaxcode) k)
4718 	      fastmap[j] = 1;
4719 	  break;
4720 
4721 
4722       /* All cases after this match the empty string.  These end with
4723          `continue'.  */
4724 
4725 
4726 	case before_dot:
4727 	case at_dot:
4728 	case after_dot:
4729           continue;
4730 #endif /* emacs */
4731 
4732 
4733         case no_op:
4734         case begline:
4735         case endline:
4736 	case begbuf:
4737 	case endbuf:
4738 	case wordbound:
4739 	case notwordbound:
4740 	case wordbeg:
4741 	case wordend:
4742         case push_dummy_failure:
4743           continue;
4744 
4745 
4746 	case jump_n:
4747         case pop_failure_jump:
4748 	case maybe_pop_jump:
4749 	case jump:
4750         case jump_past_alt:
4751 	case dummy_failure_jump:
4752           EXTRACT_NUMBER_AND_INCR (j, p);
4753 	  p += j;
4754 	  if (j > 0)
4755 	    continue;
4756 
4757           /* Jump backward implies we just went through the body of a
4758              loop and matched nothing.  Opcode jumped to should be
4759              `on_failure_jump' or `succeed_n'.  Just treat it like an
4760              ordinary jump.  For a * loop, it has pushed its failure
4761              point already; if so, discard that as redundant.  */
4762           if ((re_opcode_t) *p != on_failure_jump
4763 	      && (re_opcode_t) *p != succeed_n)
4764 	    continue;
4765 
4766           p++;
4767           EXTRACT_NUMBER_AND_INCR (j, p);
4768           p += j;
4769 
4770           /* If what's on the stack is where we are now, pop it.  */
4771           if (!FAIL_STACK_EMPTY ()
4772 	      && fail_stack.stack[fail_stack.avail - 1].pointer == p)
4773             fail_stack.avail--;
4774 
4775           continue;
4776 
4777 
4778         case on_failure_jump:
4779         case on_failure_keep_string_jump:
4780 	handle_on_failure_jump:
4781           EXTRACT_NUMBER_AND_INCR (j, p);
4782 
4783           /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4784              end of the pattern.  We don't want to push such a point,
4785              since when we restore it above, entering the switch will
4786              increment `p' past the end of the pattern.  We don't need
4787              to push such a point since we obviously won't find any more
4788              fastmap entries beyond `pend'.  Such a pattern can match
4789              the null string, though.  */
4790           if (p + j < pend)
4791             {
4792               if (!PUSH_PATTERN_OP (p + j, fail_stack))
4793 		{
4794 		  RESET_FAIL_STACK ();
4795 		  return -2;
4796 		}
4797             }
4798           else
4799             bufp->can_be_null = 1;
4800 
4801           if (succeed_n_p)
4802             {
4803               EXTRACT_NUMBER_AND_INCR (k, p);	/* Skip the n.  */
4804               succeed_n_p = false;
4805 	    }
4806 
4807           continue;
4808 
4809 
4810 	case succeed_n:
4811           /* Get to the number of times to succeed.  */
4812           p += OFFSET_ADDRESS_SIZE;
4813 
4814           /* Increment p past the n for when k != 0.  */
4815           EXTRACT_NUMBER_AND_INCR (k, p);
4816           if (k == 0)
4817 	    {
4818               p -= 2 * OFFSET_ADDRESS_SIZE;
4819   	      succeed_n_p = true;  /* Spaghetti code alert.  */
4820               goto handle_on_failure_jump;
4821             }
4822           continue;
4823 
4824 
4825 	case set_number_at:
4826           p += 2 * OFFSET_ADDRESS_SIZE;
4827           continue;
4828 
4829 
4830 	case start_memory:
4831         case stop_memory:
4832 	  p += 2;
4833 	  continue;
4834 
4835 
4836 	default:
4837           abort (); /* We have listed all the cases.  */
4838         } /* switch *p++ */
4839 
4840       /* Getting here means we have found the possible starting
4841          characters for one path of the pattern -- and that the empty
4842          string does not match.  We need not follow this path further.
4843          Instead, look at the next alternative (remembered on the
4844          stack), or quit if no more.  The test at the top of the loop
4845          does these things.  */
4846       path_can_be_null = false;
4847       p = pend;
4848     } /* while p */
4849 
4850   /* Set `can_be_null' for the last path (also the first path, if the
4851      pattern is empty).  */
4852   bufp->can_be_null |= path_can_be_null;
4853 
4854  done:
4855   RESET_FAIL_STACK ();
4856   return 0;
4857 }
4858 
4859 #else /* not INSIDE_RECURSION */
4860 
4861 int
4862 re_compile_fastmap (struct re_pattern_buffer *bufp)
4863 {
4864 # ifdef MBS_SUPPORT
4865   if (MB_CUR_MAX != 1)
4866     return wcs_re_compile_fastmap(bufp);
4867   else
4868 # endif
4869     return byte_re_compile_fastmap(bufp);
4870 } /* re_compile_fastmap */
4871 #ifdef _LIBC
4872 weak_alias (__re_compile_fastmap, re_compile_fastmap)
4873 #endif
4874 
4875 
4876 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4877    ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
4878    this memory for recording register information.  STARTS and ENDS
4879    must be allocated using the malloc library routine, and must each
4880    be at least NUM_REGS * sizeof (regoff_t) bytes long.
4881 
4882    If NUM_REGS == 0, then subsequent matches should allocate their own
4883    register data.
4884 
4885    Unless this function is called, the first search or match using
4886    PATTERN_BUFFER will allocate its own register data, without
4887    freeing the old data.  */
4888 
4889 void
4890 re_set_registers (struct re_pattern_buffer *bufp,
4891                   struct re_registers *regs, unsigned num_regs,
4892                   regoff_t *starts, regoff_t *ends)
4893 {
4894   if (num_regs)
4895     {
4896       bufp->regs_allocated = REGS_REALLOCATE;
4897       regs->num_regs = num_regs;
4898       regs->start = starts;
4899       regs->end = ends;
4900     }
4901   else
4902     {
4903       bufp->regs_allocated = REGS_UNALLOCATED;
4904       regs->num_regs = 0;
4905       regs->start = regs->end = (regoff_t *) 0;
4906     }
4907 }
4908 #ifdef _LIBC
4909 weak_alias (__re_set_registers, re_set_registers)
4910 #endif
4911 
4912 /* Searching routines.  */
4913 
4914 /* Like re_search_2, below, but only one string is specified, and
4915    doesn't let you say where to stop matching.  */
4916 
4917 int
4918 re_search (struct re_pattern_buffer *bufp, const char *string, int size,
4919            int startpos, int range, struct re_registers *regs)
4920 {
4921   return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4922 		      regs, size);
4923 }
4924 #ifdef _LIBC
4925 weak_alias (__re_search, re_search)
4926 #endif
4927 
4928 
4929 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4930    virtual concatenation of STRING1 and STRING2, starting first at index
4931    STARTPOS, then at STARTPOS + 1, and so on.
4932 
4933    STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4934 
4935    RANGE is how far to scan while trying to match.  RANGE = 0 means try
4936    only at STARTPOS; in general, the last start tried is STARTPOS +
4937    RANGE.
4938 
4939    In REGS, return the indices of the virtual concatenation of STRING1
4940    and STRING2 that matched the entire BUFP->buffer and its contained
4941    subexpressions.
4942 
4943    Do not consider matching one past the index STOP in the virtual
4944    concatenation of STRING1 and STRING2.
4945 
4946    We return either the position in the strings at which the match was
4947    found, -1 if no match, or -2 if error (such as failure
4948    stack overflow).  */
4949 
4950 int
4951 re_search_2 (struct re_pattern_buffer *bufp, const char *string1, int size1,
4952              const char *string2, int size2, int startpos, int range,
4953              struct re_registers *regs, int stop)
4954 {
4955 # ifdef MBS_SUPPORT
4956   if (MB_CUR_MAX != 1)
4957     return wcs_re_search_2 (bufp, string1, size1, string2, size2, startpos,
4958 			    range, regs, stop);
4959   else
4960 # endif
4961     return byte_re_search_2 (bufp, string1, size1, string2, size2, startpos,
4962 			     range, regs, stop);
4963 } /* re_search_2 */
4964 #ifdef _LIBC
4965 weak_alias (__re_search_2, re_search_2)
4966 #endif
4967 
4968 #endif /* not INSIDE_RECURSION */
4969 
4970 #ifdef INSIDE_RECURSION
4971 
4972 #ifdef MATCH_MAY_ALLOCATE
4973 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
4974 #else
4975 # define FREE_VAR(var) free (var); var = NULL
4976 #endif
4977 
4978 #ifdef WCHAR
4979 # define MAX_ALLOCA_SIZE	2000
4980 
4981 # define FREE_WCS_BUFFERS() \
4982   do {									      \
4983     if (size1 > MAX_ALLOCA_SIZE)					      \
4984       {									      \
4985 	free (wcs_string1);						      \
4986 	free (mbs_offset1);						      \
4987       }									      \
4988     else								      \
4989       {									      \
4990 	FREE_VAR (wcs_string1);						      \
4991 	FREE_VAR (mbs_offset1);						      \
4992       }									      \
4993     if (size2 > MAX_ALLOCA_SIZE) 					      \
4994       {									      \
4995 	free (wcs_string2);						      \
4996 	free (mbs_offset2);						      \
4997       }									      \
4998     else								      \
4999       {									      \
5000 	FREE_VAR (wcs_string2);						      \
5001 	FREE_VAR (mbs_offset2);						      \
5002       }									      \
5003   } while (0)
5004 
5005 #endif
5006 
5007 
5008 static int
5009 PREFIX(re_search_2) (struct re_pattern_buffer *bufp, const char *string1,
5010                      int size1, const char *string2, int size2,
5011                      int startpos, int range,
5012                      struct re_registers *regs, int stop)
5013 {
5014   int val;
5015   register char *fastmap = bufp->fastmap;
5016   register RE_TRANSLATE_TYPE translate = bufp->translate;
5017   int total_size = size1 + size2;
5018   int endpos = startpos + range;
5019 #ifdef WCHAR
5020   /* We need wchar_t* buffers correspond to cstring1, cstring2.  */
5021   wchar_t *wcs_string1 = NULL, *wcs_string2 = NULL;
5022   /* We need the size of wchar_t buffers correspond to csize1, csize2.  */
5023   int wcs_size1 = 0, wcs_size2 = 0;
5024   /* offset buffer for optimizatoin. See convert_mbs_to_wc.  */
5025   int *mbs_offset1 = NULL, *mbs_offset2 = NULL;
5026   /* They hold whether each wchar_t is binary data or not.  */
5027   char *is_binary = NULL;
5028 #endif /* WCHAR */
5029 
5030   /* Check for out-of-range STARTPOS.  */
5031   if (startpos < 0 || startpos > total_size)
5032     return -1;
5033 
5034   /* Fix up RANGE if it might eventually take us outside
5035      the virtual concatenation of STRING1 and STRING2.
5036      Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
5037   if (endpos < 0)
5038     range = 0 - startpos;
5039   else if (endpos > total_size)
5040     range = total_size - startpos;
5041 
5042   /* If the search isn't to be a backwards one, don't waste time in a
5043      search for a pattern that must be anchored.  */
5044   if (bufp->used > 0 && range > 0
5045       && ((re_opcode_t) bufp->buffer[0] == begbuf
5046 	  /* `begline' is like `begbuf' if it cannot match at newlines.  */
5047 	  || ((re_opcode_t) bufp->buffer[0] == begline
5048 	      && !bufp->newline_anchor)))
5049     {
5050       if (startpos > 0)
5051 	return -1;
5052       else
5053 	range = 1;
5054     }
5055 
5056 #ifdef emacs
5057   /* In a forward search for something that starts with \=.
5058      don't keep searching past point.  */
5059   if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
5060     {
5061       range = PT - startpos;
5062       if (range <= 0)
5063 	return -1;
5064     }
5065 #endif /* emacs */
5066 
5067   /* Update the fastmap now if not correct already.  */
5068   if (fastmap && !bufp->fastmap_accurate)
5069     if (re_compile_fastmap (bufp) == -2)
5070       return -2;
5071 
5072 #ifdef WCHAR
5073   /* Allocate wchar_t array for wcs_string1 and wcs_string2 and
5074      fill them with converted string.  */
5075   if (size1 != 0)
5076     {
5077       if (size1 > MAX_ALLOCA_SIZE)
5078 	{
5079 	  wcs_string1 = TALLOC (size1 + 1, CHAR_T);
5080 	  mbs_offset1 = TALLOC (size1 + 1, int);
5081 	  is_binary = TALLOC (size1 + 1, char);
5082 	}
5083       else
5084 	{
5085 	  wcs_string1 = REGEX_TALLOC (size1 + 1, CHAR_T);
5086 	  mbs_offset1 = REGEX_TALLOC (size1 + 1, int);
5087 	  is_binary = REGEX_TALLOC (size1 + 1, char);
5088 	}
5089       if (!wcs_string1 || !mbs_offset1 || !is_binary)
5090 	{
5091 	  if (size1 > MAX_ALLOCA_SIZE)
5092 	    {
5093 	      free (wcs_string1);
5094 	      free (mbs_offset1);
5095 	      free (is_binary);
5096 	    }
5097 	  else
5098 	    {
5099 	      FREE_VAR (wcs_string1);
5100 	      FREE_VAR (mbs_offset1);
5101 	      FREE_VAR (is_binary);
5102 	    }
5103 	  return -2;
5104 	}
5105       wcs_size1 = convert_mbs_to_wcs(wcs_string1, string1, size1,
5106 				     mbs_offset1, is_binary);
5107       wcs_string1[wcs_size1] = L'\0'; /* for a sentinel  */
5108       if (size1 > MAX_ALLOCA_SIZE)
5109 	free (is_binary);
5110       else
5111 	FREE_VAR (is_binary);
5112     }
5113   if (size2 != 0)
5114     {
5115       if (size2 > MAX_ALLOCA_SIZE)
5116 	{
5117 	  wcs_string2 = TALLOC (size2 + 1, CHAR_T);
5118 	  mbs_offset2 = TALLOC (size2 + 1, int);
5119 	  is_binary = TALLOC (size2 + 1, char);
5120 	}
5121       else
5122 	{
5123 	  wcs_string2 = REGEX_TALLOC (size2 + 1, CHAR_T);
5124 	  mbs_offset2 = REGEX_TALLOC (size2 + 1, int);
5125 	  is_binary = REGEX_TALLOC (size2 + 1, char);
5126 	}
5127       if (!wcs_string2 || !mbs_offset2 || !is_binary)
5128 	{
5129 	  FREE_WCS_BUFFERS ();
5130 	  if (size2 > MAX_ALLOCA_SIZE)
5131 	    free (is_binary);
5132 	  else
5133 	    FREE_VAR (is_binary);
5134 	  return -2;
5135 	}
5136       wcs_size2 = convert_mbs_to_wcs(wcs_string2, string2, size2,
5137 				     mbs_offset2, is_binary);
5138       wcs_string2[wcs_size2] = L'\0'; /* for a sentinel  */
5139       if (size2 > MAX_ALLOCA_SIZE)
5140 	free (is_binary);
5141       else
5142 	FREE_VAR (is_binary);
5143     }
5144 #endif /* WCHAR */
5145 
5146 
5147   /* Loop through the string, looking for a place to start matching.  */
5148   for (;;)
5149     {
5150       /* If a fastmap is supplied, skip quickly over characters that
5151          cannot be the start of a match.  If the pattern can match the
5152          null string, however, we don't need to skip characters; we want
5153          the first null string.  */
5154       if (fastmap && startpos < total_size && !bufp->can_be_null)
5155 	{
5156 	  if (range > 0)	/* Searching forwards.  */
5157 	    {
5158 	      register const char *d;
5159 	      register int lim = 0;
5160 	      int irange = range;
5161 
5162               if (startpos < size1 && startpos + range >= size1)
5163                 lim = range - (size1 - startpos);
5164 
5165 	      d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
5166 
5167               /* Written out as an if-else to avoid testing `translate'
5168                  inside the loop.  */
5169 	      if (translate)
5170                 while (range > lim
5171                        && !fastmap[(unsigned char)
5172 				   translate[(unsigned char) *d++]])
5173                   range--;
5174 	      else
5175                 while (range > lim && !fastmap[(unsigned char) *d++])
5176                   range--;
5177 
5178 	      startpos += irange - range;
5179 	    }
5180 	  else				/* Searching backwards.  */
5181 	    {
5182 	      register CHAR_T c = (size1 == 0 || startpos >= size1
5183 				      ? string2[startpos - size1]
5184 				      : string1[startpos]);
5185 
5186 	      if (!fastmap[(unsigned char) TRANSLATE (c)])
5187 		goto advance;
5188 	    }
5189 	}
5190 
5191       /* If can't match the null string, and that's all we have left, fail.  */
5192       if (range >= 0 && startpos == total_size && fastmap
5193           && !bufp->can_be_null)
5194        {
5195 #ifdef WCHAR
5196          FREE_WCS_BUFFERS ();
5197 #endif
5198          return -1;
5199        }
5200 
5201 #ifdef WCHAR
5202       val = wcs_re_match_2_internal (bufp, string1, size1, string2,
5203 				     size2, startpos, regs, stop,
5204 				     wcs_string1, wcs_size1,
5205 				     wcs_string2, wcs_size2,
5206 				     mbs_offset1, mbs_offset2);
5207 #else /* BYTE */
5208       val = byte_re_match_2_internal (bufp, string1, size1, string2,
5209 				      size2, startpos, regs, stop);
5210 #endif /* BYTE */
5211 
5212 #ifndef REGEX_MALLOC
5213 # ifdef C_ALLOCA
5214       alloca (0);
5215 # endif
5216 #endif
5217 
5218       if (val >= 0)
5219 	{
5220 #ifdef WCHAR
5221 	  FREE_WCS_BUFFERS ();
5222 #endif
5223 	  return startpos;
5224 	}
5225 
5226       if (val == -2)
5227 	{
5228 #ifdef WCHAR
5229 	  FREE_WCS_BUFFERS ();
5230 #endif
5231 	  return -2;
5232 	}
5233 
5234     advance:
5235       if (!range)
5236         break;
5237       else if (range > 0)
5238         {
5239           range--;
5240           startpos++;
5241         }
5242       else
5243         {
5244           range++;
5245           startpos--;
5246         }
5247     }
5248 #ifdef WCHAR
5249   FREE_WCS_BUFFERS ();
5250 #endif
5251   return -1;
5252 }
5253 
5254 #ifdef WCHAR
5255 /* This converts PTR, a pointer into one of the search wchar_t strings
5256    `string1' and `string2' into an multibyte string offset from the
5257    beginning of that string. We use mbs_offset to optimize.
5258    See convert_mbs_to_wcs.  */
5259 # define POINTER_TO_OFFSET(ptr)						\
5260   (FIRST_STRING_P (ptr)							\
5261    ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0))	\
5262    : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0)	\
5263 		 + csize1)))
5264 #else /* BYTE */
5265 /* This converts PTR, a pointer into one of the search strings `string1'
5266    and `string2' into an offset from the beginning of that string.  */
5267 # define POINTER_TO_OFFSET(ptr)			\
5268   (FIRST_STRING_P (ptr)				\
5269    ? ((regoff_t) ((ptr) - string1))		\
5270    : ((regoff_t) ((ptr) - string2 + size1)))
5271 #endif /* WCHAR */
5272 
5273 /* Macros for dealing with the split strings in re_match_2.  */
5274 
5275 #define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
5276 
5277 /* Call before fetching a character with *d.  This switches over to
5278    string2 if necessary.  */
5279 #define PREFETCH()							\
5280   while (d == dend)						    	\
5281     {									\
5282       /* End of string2 => fail.  */					\
5283       if (dend == end_match_2) 						\
5284         goto fail;							\
5285       /* End of string1 => advance to string2.  */ 			\
5286       d = string2;						        \
5287       dend = end_match_2;						\
5288     }
5289 
5290 /* Test if at very beginning or at very end of the virtual concatenation
5291    of `string1' and `string2'.  If only one string, it's `string2'.  */
5292 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5293 #define AT_STRINGS_END(d) ((d) == end2)
5294 
5295 
5296 /* Test if D points to a character which is word-constituent.  We have
5297    two special cases to check for: if past the end of string1, look at
5298    the first character in string2; and if before the beginning of
5299    string2, look at the last character in string1.  */
5300 #ifdef WCHAR
5301 /* Use internationalized API instead of SYNTAX.  */
5302 # define WORDCHAR_P(d)							\
5303   (iswalnum ((wint_t)((d) == end1 ? *string2				\
5304            : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0		\
5305    || ((d) == end1 ? *string2						\
5306        : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_')
5307 #else /* BYTE */
5308 # define WORDCHAR_P(d)							\
5309   (SYNTAX ((d) == end1 ? *string2					\
5310            : (d) == string2 - 1 ? *(end1 - 1) : *(d))			\
5311    == Sword)
5312 #endif /* WCHAR */
5313 
5314 /* Disabled due to a compiler bug -- see comment at case wordbound */
5315 #if 0
5316 /* Test if the character before D and the one at D differ with respect
5317    to being word-constituent.  */
5318 #define AT_WORD_BOUNDARY(d)						\
5319   (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)				\
5320    || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5321 #endif
5322 
5323 /* Free everything we malloc.  */
5324 #ifdef MATCH_MAY_ALLOCATE
5325 # ifdef WCHAR
5326 #  define FREE_VARIABLES()						\
5327   do {									\
5328     REGEX_FREE_STACK (fail_stack.stack);				\
5329     FREE_VAR (regstart);						\
5330     FREE_VAR (regend);							\
5331     FREE_VAR (old_regstart);						\
5332     FREE_VAR (old_regend);						\
5333     FREE_VAR (best_regstart);						\
5334     FREE_VAR (best_regend);						\
5335     FREE_VAR (reg_info);						\
5336     FREE_VAR (reg_dummy);						\
5337     FREE_VAR (reg_info_dummy);						\
5338     if (!cant_free_wcs_buf)						\
5339       {									\
5340         FREE_VAR (string1);						\
5341         FREE_VAR (string2);						\
5342         FREE_VAR (mbs_offset1);						\
5343         FREE_VAR (mbs_offset2);						\
5344       }									\
5345   } while (0)
5346 # else /* BYTE */
5347 #  define FREE_VARIABLES()						\
5348   do {									\
5349     REGEX_FREE_STACK (fail_stack.stack);				\
5350     FREE_VAR (regstart);						\
5351     FREE_VAR (regend);							\
5352     FREE_VAR (old_regstart);						\
5353     FREE_VAR (old_regend);						\
5354     FREE_VAR (best_regstart);						\
5355     FREE_VAR (best_regend);						\
5356     FREE_VAR (reg_info);						\
5357     FREE_VAR (reg_dummy);						\
5358     FREE_VAR (reg_info_dummy);						\
5359   } while (0)
5360 # endif /* WCHAR */
5361 #else
5362 # ifdef WCHAR
5363 #  define FREE_VARIABLES()						\
5364   do {									\
5365     if (!cant_free_wcs_buf)						\
5366       {									\
5367         FREE_VAR (string1);						\
5368         FREE_VAR (string2);						\
5369         FREE_VAR (mbs_offset1);						\
5370         FREE_VAR (mbs_offset2);						\
5371       }									\
5372   } while (0)
5373 # else /* BYTE */
5374 #  define FREE_VARIABLES() ((void)0) /* Do nothing!  But inhibit gcc warning. */
5375 # endif /* WCHAR */
5376 #endif /* not MATCH_MAY_ALLOCATE */
5377 
5378 /* These values must meet several constraints.  They must not be valid
5379    register values; since we have a limit of 255 registers (because
5380    we use only one byte in the pattern for the register number), we can
5381    use numbers larger than 255.  They must differ by 1, because of
5382    NUM_FAILURE_ITEMS above.  And the value for the lowest register must
5383    be larger than the value for the highest register, so we do not try
5384    to actually save any registers when none are active.  */
5385 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
5386 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5387 
5388 #else /* not INSIDE_RECURSION */
5389 /* Matching routines.  */
5390 
5391 #ifndef emacs   /* Emacs never uses this.  */
5392 /* re_match is like re_match_2 except it takes only a single string.  */
5393 
5394 int
5395 re_match (struct re_pattern_buffer *bufp, const char *string,
5396           int size, int pos, struct re_registers *regs)
5397 {
5398   int result;
5399 # ifdef MBS_SUPPORT
5400   if (MB_CUR_MAX != 1)
5401     result = wcs_re_match_2_internal (bufp, NULL, 0, string, size,
5402 				      pos, regs, size,
5403 				      NULL, 0, NULL, 0, NULL, NULL);
5404   else
5405 # endif
5406     result = byte_re_match_2_internal (bufp, NULL, 0, string, size,
5407 				  pos, regs, size);
5408 # ifndef REGEX_MALLOC
5409 #  ifdef C_ALLOCA
5410   alloca (0);
5411 #  endif
5412 # endif
5413   return result;
5414 }
5415 # ifdef _LIBC
5416 weak_alias (__re_match, re_match)
5417 # endif
5418 #endif /* not emacs */
5419 
5420 #endif /* not INSIDE_RECURSION */
5421 
5422 #ifdef INSIDE_RECURSION
5423 static boolean PREFIX(group_match_null_string_p) (UCHAR_T **p,
5424                                                   UCHAR_T *end,
5425 					PREFIX(register_info_type) *reg_info);
5426 static boolean PREFIX(alt_match_null_string_p) (UCHAR_T *p,
5427                                                 UCHAR_T *end,
5428 					PREFIX(register_info_type) *reg_info);
5429 static boolean PREFIX(common_op_match_null_string_p) (UCHAR_T **p,
5430                                                       UCHAR_T *end,
5431 					PREFIX(register_info_type) *reg_info);
5432 static int PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2,
5433                                    int len, char *translate);
5434 #else /* not INSIDE_RECURSION */
5435 
5436 /* re_match_2 matches the compiled pattern in BUFP against the
5437    the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5438    and SIZE2, respectively).  We start matching at POS, and stop
5439    matching at STOP.
5440 
5441    If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5442    store offsets for the substring each group matched in REGS.  See the
5443    documentation for exactly how many groups we fill.
5444 
5445    We return -1 if no match, -2 if an internal error (such as the
5446    failure stack overflowing).  Otherwise, we return the length of the
5447    matched substring.  */
5448 
5449 int
5450 re_match_2 (struct re_pattern_buffer *bufp, const char *string1, int size1,
5451             const char *string2, int size2, int pos,
5452             struct re_registers *regs, int stop)
5453 {
5454   int result;
5455 # ifdef MBS_SUPPORT
5456   if (MB_CUR_MAX != 1)
5457     result = wcs_re_match_2_internal (bufp, string1, size1, string2, size2,
5458 				      pos, regs, stop,
5459 				      NULL, 0, NULL, 0, NULL, NULL);
5460   else
5461 # endif
5462     result = byte_re_match_2_internal (bufp, string1, size1, string2, size2,
5463 				  pos, regs, stop);
5464 
5465 #ifndef REGEX_MALLOC
5466 # ifdef C_ALLOCA
5467   alloca (0);
5468 # endif
5469 #endif
5470   return result;
5471 }
5472 #ifdef _LIBC
5473 weak_alias (__re_match_2, re_match_2)
5474 #endif
5475 
5476 #endif /* not INSIDE_RECURSION */
5477 
5478 #ifdef INSIDE_RECURSION
5479 
5480 #ifdef WCHAR
5481 static int count_mbs_length (int *, int);
5482 
5483 /* This check the substring (from 0, to length) of the multibyte string,
5484    to which offset_buffer correspond. And count how many wchar_t_characters
5485    the substring occupy. We use offset_buffer to optimization.
5486    See convert_mbs_to_wcs.  */
5487 
5488 static int
5489 count_mbs_length(int *offset_buffer, int length)
5490 {
5491   int upper, lower;
5492 
5493   /* Check whether the size is valid.  */
5494   if (length < 0)
5495     return -1;
5496 
5497   if (offset_buffer == NULL)
5498     return 0;
5499 
5500   /* If there are no multibyte character, offset_buffer[i] == i.
5501    Optmize for this case.  */
5502   if (offset_buffer[length] == length)
5503     return length;
5504 
5505   /* Set up upper with length. (because for all i, offset_buffer[i] >= i)  */
5506   upper = length;
5507   lower = 0;
5508 
5509   while (true)
5510     {
5511       int middle = (lower + upper) / 2;
5512       if (middle == lower || middle == upper)
5513 	break;
5514       if (offset_buffer[middle] > length)
5515 	upper = middle;
5516       else if (offset_buffer[middle] < length)
5517 	lower = middle;
5518       else
5519 	return middle;
5520     }
5521 
5522   return -1;
5523 }
5524 #endif /* WCHAR */
5525 
5526 /* This is a separate function so that we can force an alloca cleanup
5527    afterwards.  */
5528 #ifdef WCHAR
5529 static int
5530 wcs_re_match_2_internal (struct re_pattern_buffer *bufp,
5531                          const char *cstring1, int csize1,
5532                          const char *cstring2, int csize2,
5533                          int pos,
5534 			 struct re_registers *regs,
5535                          int stop,
5536      /* string1 == string2 == NULL means string1/2, size1/2 and
5537 	mbs_offset1/2 need seting up in this function.  */
5538      /* We need wchar_t* buffers correspond to cstring1, cstring2.  */
5539                          wchar_t *string1, int size1,
5540                          wchar_t *string2, int size2,
5541      /* offset buffer for optimizatoin. See convert_mbs_to_wc.  */
5542 			 int *mbs_offset1, int *mbs_offset2)
5543 #else /* BYTE */
5544 static int
5545 byte_re_match_2_internal (struct re_pattern_buffer *bufp,
5546                           const char *string1, int size1,
5547                           const char *string2, int size2,
5548                           int pos,
5549 			  struct re_registers *regs, int stop)
5550 #endif /* BYTE */
5551 {
5552   /* General temporaries.  */
5553   int mcnt;
5554   UCHAR_T *p1;
5555 #ifdef WCHAR
5556   /* They hold whether each wchar_t is binary data or not.  */
5557   char *is_binary = NULL;
5558   /* If true, we can't free string1/2, mbs_offset1/2.  */
5559   int cant_free_wcs_buf = 1;
5560 #endif /* WCHAR */
5561 
5562   /* Just past the end of the corresponding string.  */
5563   const CHAR_T *end1, *end2;
5564 
5565   /* Pointers into string1 and string2, just past the last characters in
5566      each to consider matching.  */
5567   const CHAR_T *end_match_1, *end_match_2;
5568 
5569   /* Where we are in the data, and the end of the current string.  */
5570   const CHAR_T *d, *dend;
5571 
5572   /* Where we are in the pattern, and the end of the pattern.  */
5573 #ifdef WCHAR
5574   UCHAR_T *pattern, *p;
5575   register UCHAR_T *pend;
5576 #else /* BYTE */
5577   UCHAR_T *p = bufp->buffer;
5578   register UCHAR_T *pend = p + bufp->used;
5579 #endif /* WCHAR */
5580 
5581   /* Mark the opcode just after a start_memory, so we can test for an
5582      empty subpattern when we get to the stop_memory.  */
5583   UCHAR_T *just_past_start_mem = 0;
5584 
5585   /* We use this to map every character in the string.  */
5586   RE_TRANSLATE_TYPE translate = bufp->translate;
5587 
5588   /* Failure point stack.  Each place that can handle a failure further
5589      down the line pushes a failure point on this stack.  It consists of
5590      restart, regend, and reg_info for all registers corresponding to
5591      the subexpressions we're currently inside, plus the number of such
5592      registers, and, finally, two char *'s.  The first char * is where
5593      to resume scanning the pattern; the second one is where to resume
5594      scanning the strings.  If the latter is zero, the failure point is
5595      a ``dummy''; if a failure happens and the failure point is a dummy,
5596      it gets discarded and the next next one is tried.  */
5597 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
5598   PREFIX(fail_stack_type) fail_stack;
5599 #endif
5600 #ifdef DEBUG
5601   static unsigned failure_id;
5602   unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5603 #endif
5604 
5605 #ifdef REL_ALLOC
5606   /* This holds the pointer to the failure stack, when
5607      it is allocated relocatably.  */
5608   fail_stack_elt_t *failure_stack_ptr;
5609 #endif
5610 
5611   /* We fill all the registers internally, independent of what we
5612      return, for use in backreferences.  The number here includes
5613      an element for register zero.  */
5614   size_t num_regs = bufp->re_nsub + 1;
5615 
5616   /* The currently active registers.  */
5617   active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
5618   active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
5619 
5620   /* Information on the contents of registers. These are pointers into
5621      the input strings; they record just what was matched (on this
5622      attempt) by a subexpression part of the pattern, that is, the
5623      regnum-th regstart pointer points to where in the pattern we began
5624      matching and the regnum-th regend points to right after where we
5625      stopped matching the regnum-th subexpression.  (The zeroth register
5626      keeps track of what the whole pattern matches.)  */
5627 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5628   const CHAR_T **regstart, **regend;
5629 #endif
5630 
5631   /* If a group that's operated upon by a repetition operator fails to
5632      match anything, then the register for its start will need to be
5633      restored because it will have been set to wherever in the string we
5634      are when we last see its open-group operator.  Similarly for a
5635      register's end.  */
5636 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5637   const CHAR_T **old_regstart, **old_regend;
5638 #endif
5639 
5640   /* The is_active field of reg_info helps us keep track of which (possibly
5641      nested) subexpressions we are currently in. The matched_something
5642      field of reg_info[reg_num] helps us tell whether or not we have
5643      matched any of the pattern so far this time through the reg_num-th
5644      subexpression.  These two fields get reset each time through any
5645      loop their register is in.  */
5646 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
5647   PREFIX(register_info_type) *reg_info;
5648 #endif
5649 
5650   /* The following record the register info as found in the above
5651      variables when we find a match better than any we've seen before.
5652      This happens as we backtrack through the failure points, which in
5653      turn happens only if we have not yet matched the entire string. */
5654   unsigned best_regs_set = false;
5655 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5656   const CHAR_T **best_regstart, **best_regend;
5657 #endif
5658 
5659   /* Logically, this is `best_regend[0]'.  But we don't want to have to
5660      allocate space for that if we're not allocating space for anything
5661      else (see below).  Also, we never need info about register 0 for
5662      any of the other register vectors, and it seems rather a kludge to
5663      treat `best_regend' differently than the rest.  So we keep track of
5664      the end of the best match so far in a separate variable.  We
5665      initialize this to NULL so that when we backtrack the first time
5666      and need to test it, it's not garbage.  */
5667   const CHAR_T *match_end = NULL;
5668 
5669   /* This helps SET_REGS_MATCHED avoid doing redundant work.  */
5670   int set_regs_matched_done = 0;
5671 
5672   /* Used when we pop values we don't care about.  */
5673 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5674   const CHAR_T **reg_dummy;
5675   PREFIX(register_info_type) *reg_info_dummy;
5676 #endif
5677 
5678 #ifdef DEBUG
5679   /* Counts the total number of registers pushed.  */
5680   unsigned num_regs_pushed = 0;
5681 #endif
5682 
5683   DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5684 
5685   INIT_FAIL_STACK ();
5686 
5687 #ifdef MATCH_MAY_ALLOCATE
5688   /* Do not bother to initialize all the register variables if there are
5689      no groups in the pattern, as it takes a fair amount of time.  If
5690      there are groups, we include space for register 0 (the whole
5691      pattern), even though we never use it, since it simplifies the
5692      array indexing.  We should fix this.  */
5693   if (bufp->re_nsub)
5694     {
5695       regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5696       regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5697       old_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5698       old_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5699       best_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5700       best_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5701       reg_info = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5702       reg_dummy = REGEX_TALLOC (num_regs, const CHAR_T *);
5703       reg_info_dummy = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5704 
5705       if (!(regstart && regend && old_regstart && old_regend && reg_info
5706             && best_regstart && best_regend && reg_dummy && reg_info_dummy))
5707         {
5708           FREE_VARIABLES ();
5709           return -2;
5710         }
5711     }
5712   else
5713     {
5714       /* We must initialize all our variables to NULL, so that
5715          `FREE_VARIABLES' doesn't try to free them.  */
5716       regstart = regend = old_regstart = old_regend = best_regstart
5717         = best_regend = reg_dummy = NULL;
5718       reg_info = reg_info_dummy = (PREFIX(register_info_type) *) NULL;
5719     }
5720 #endif /* MATCH_MAY_ALLOCATE */
5721 
5722   /* The starting position is bogus.  */
5723 #ifdef WCHAR
5724   if (pos < 0 || pos > csize1 + csize2)
5725 #else /* BYTE */
5726   if (pos < 0 || pos > size1 + size2)
5727 #endif
5728     {
5729       FREE_VARIABLES ();
5730       return -1;
5731     }
5732 
5733 #ifdef WCHAR
5734   /* Allocate wchar_t array for string1 and string2 and
5735      fill them with converted string.  */
5736   if (string1 == NULL && string2 == NULL)
5737     {
5738       /* We need seting up buffers here.  */
5739 
5740       /* We must free wcs buffers in this function.  */
5741       cant_free_wcs_buf = 0;
5742 
5743       if (csize1 != 0)
5744 	{
5745 	  string1 = REGEX_TALLOC (csize1 + 1, CHAR_T);
5746 	  mbs_offset1 = REGEX_TALLOC (csize1 + 1, int);
5747 	  is_binary = REGEX_TALLOC (csize1 + 1, char);
5748 	  if (!string1 || !mbs_offset1 || !is_binary)
5749 	    {
5750 	      FREE_VAR (string1);
5751 	      FREE_VAR (mbs_offset1);
5752 	      FREE_VAR (is_binary);
5753 	      return -2;
5754 	    }
5755 	}
5756       if (csize2 != 0)
5757 	{
5758 	  string2 = REGEX_TALLOC (csize2 + 1, CHAR_T);
5759 	  mbs_offset2 = REGEX_TALLOC (csize2 + 1, int);
5760 	  is_binary = REGEX_TALLOC (csize2 + 1, char);
5761 	  if (!string2 || !mbs_offset2 || !is_binary)
5762 	    {
5763 	      FREE_VAR (string1);
5764 	      FREE_VAR (mbs_offset1);
5765 	      FREE_VAR (string2);
5766 	      FREE_VAR (mbs_offset2);
5767 	      FREE_VAR (is_binary);
5768 	      return -2;
5769 	    }
5770 	  size2 = convert_mbs_to_wcs(string2, cstring2, csize2,
5771 				     mbs_offset2, is_binary);
5772 	  string2[size2] = L'\0'; /* for a sentinel  */
5773 	  FREE_VAR (is_binary);
5774 	}
5775     }
5776 
5777   /* We need to cast pattern to (wchar_t*), because we casted this compiled
5778      pattern to (char*) in regex_compile.  */
5779   p = pattern = (CHAR_T*)bufp->buffer;
5780   pend = (CHAR_T*)(bufp->buffer + bufp->used);
5781 
5782 #endif /* WCHAR */
5783 
5784   /* Initialize subexpression text positions to -1 to mark ones that no
5785      start_memory/stop_memory has been seen for. Also initialize the
5786      register information struct.  */
5787   for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5788     {
5789       regstart[mcnt] = regend[mcnt]
5790         = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
5791 
5792       REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
5793       IS_ACTIVE (reg_info[mcnt]) = 0;
5794       MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5795       EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5796     }
5797 
5798   /* We move `string1' into `string2' if the latter's empty -- but not if
5799      `string1' is null.  */
5800   if (size2 == 0 && string1 != NULL)
5801     {
5802       string2 = string1;
5803       size2 = size1;
5804       string1 = 0;
5805       size1 = 0;
5806 #ifdef WCHAR
5807       mbs_offset2 = mbs_offset1;
5808       csize2 = csize1;
5809       mbs_offset1 = NULL;
5810       csize1 = 0;
5811 #endif
5812     }
5813   end1 = string1 + size1;
5814   end2 = string2 + size2;
5815 
5816   /* Compute where to stop matching, within the two strings.  */
5817 #ifdef WCHAR
5818   if (stop <= csize1)
5819     {
5820       mcnt = count_mbs_length(mbs_offset1, stop);
5821       end_match_1 = string1 + mcnt;
5822       end_match_2 = string2;
5823     }
5824   else
5825     {
5826       if (stop > csize1 + csize2)
5827 	stop = csize1 + csize2;
5828       end_match_1 = end1;
5829       mcnt = count_mbs_length(mbs_offset2, stop-csize1);
5830       end_match_2 = string2 + mcnt;
5831     }
5832   if (mcnt < 0)
5833     { /* count_mbs_length return error.  */
5834       FREE_VARIABLES ();
5835       return -1;
5836     }
5837 #else
5838   if (stop <= size1)
5839     {
5840       end_match_1 = string1 + stop;
5841       end_match_2 = string2;
5842     }
5843   else
5844     {
5845       end_match_1 = end1;
5846       end_match_2 = string2 + stop - size1;
5847     }
5848 #endif /* WCHAR */
5849 
5850   /* `p' scans through the pattern as `d' scans through the data.
5851      `dend' is the end of the input string that `d' points within.  `d'
5852      is advanced into the following input string whenever necessary, but
5853      this happens before fetching; therefore, at the beginning of the
5854      loop, `d' can be pointing at the end of a string, but it cannot
5855      equal `string2'.  */
5856 #ifdef WCHAR
5857   if (size1 > 0 && pos <= csize1)
5858     {
5859       mcnt = count_mbs_length(mbs_offset1, pos);
5860       d = string1 + mcnt;
5861       dend = end_match_1;
5862     }
5863   else
5864     {
5865       mcnt = count_mbs_length(mbs_offset2, pos-csize1);
5866       d = string2 + mcnt;
5867       dend = end_match_2;
5868     }
5869 
5870   if (mcnt < 0)
5871     { /* count_mbs_length return error.  */
5872       FREE_VARIABLES ();
5873       return -1;
5874     }
5875 #else
5876   if (size1 > 0 && pos <= size1)
5877     {
5878       d = string1 + pos;
5879       dend = end_match_1;
5880     }
5881   else
5882     {
5883       d = string2 + pos - size1;
5884       dend = end_match_2;
5885     }
5886 #endif /* WCHAR */
5887 
5888   DEBUG_PRINT1 ("The compiled pattern is:\n");
5889   DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5890   DEBUG_PRINT1 ("The string to match is: `");
5891   DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5892   DEBUG_PRINT1 ("'\n");
5893 
5894   /* This loops over pattern commands.  It exits by returning from the
5895      function if the match is complete, or it drops through if the match
5896      fails at this starting point in the input data.  */
5897   for (;;)
5898     {
5899 #ifdef _LIBC
5900       DEBUG_PRINT2 ("\n%p: ", p);
5901 #else
5902       DEBUG_PRINT2 ("\n0x%x: ", p);
5903 #endif
5904 
5905       if (p == pend)
5906 	{ /* End of pattern means we might have succeeded.  */
5907           DEBUG_PRINT1 ("end of pattern ... ");
5908 
5909 	  /* If we haven't matched the entire string, and we want the
5910              longest match, try backtracking.  */
5911           if (d != end_match_2)
5912 	    {
5913 	      /* 1 if this match ends in the same string (string1 or string2)
5914 		 as the best previous match.  */
5915 	      boolean same_str_p;
5916 
5917 	      /* 1 if this match is the best seen so far.  */
5918 	      boolean best_match_p;
5919 
5920               same_str_p = (FIRST_STRING_P (match_end)
5921                             == MATCHING_IN_FIRST_STRING);
5922 
5923 	      /* AIX compiler got confused when this was combined
5924 		 with the previous declaration.  */
5925 	      if (same_str_p)
5926 		best_match_p = d > match_end;
5927 	      else
5928 		best_match_p = !MATCHING_IN_FIRST_STRING;
5929 
5930               DEBUG_PRINT1 ("backtracking.\n");
5931 
5932               if (!FAIL_STACK_EMPTY ())
5933                 { /* More failure points to try.  */
5934 
5935                   /* If exceeds best match so far, save it.  */
5936                   if (!best_regs_set || best_match_p)
5937                     {
5938                       best_regs_set = true;
5939                       match_end = d;
5940 
5941                       DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5942 
5943                       for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5944                         {
5945                           best_regstart[mcnt] = regstart[mcnt];
5946                           best_regend[mcnt] = regend[mcnt];
5947                         }
5948                     }
5949                   goto fail;
5950                 }
5951 
5952               /* If no failure points, don't restore garbage.  And if
5953                  last match is real best match, don't restore second
5954                  best one. */
5955               else if (best_regs_set && !best_match_p)
5956                 {
5957   	        restore_best_regs:
5958                   /* Restore best match.  It may happen that `dend ==
5959                      end_match_1' while the restored d is in string2.
5960                      For example, the pattern `x.*y.*z' against the
5961                      strings `x-' and `y-z-', if the two strings are
5962                      not consecutive in memory.  */
5963                   DEBUG_PRINT1 ("Restoring best registers.\n");
5964 
5965                   d = match_end;
5966                   dend = ((d >= string1 && d <= end1)
5967 		           ? end_match_1 : end_match_2);
5968 
5969 		  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5970 		    {
5971 		      regstart[mcnt] = best_regstart[mcnt];
5972 		      regend[mcnt] = best_regend[mcnt];
5973 		    }
5974                 }
5975             } /* d != end_match_2 */
5976 
5977 	succeed_label:
5978           DEBUG_PRINT1 ("Accepting match.\n");
5979           /* If caller wants register contents data back, do it.  */
5980           if (regs && !bufp->no_sub)
5981 	    {
5982 	      /* Have the register data arrays been allocated?  */
5983               if (bufp->regs_allocated == REGS_UNALLOCATED)
5984                 { /* No.  So allocate them with malloc.  We need one
5985                      extra element beyond `num_regs' for the `-1' marker
5986                      GNU code uses.  */
5987                   regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5988                   regs->start = TALLOC (regs->num_regs, regoff_t);
5989                   regs->end = TALLOC (regs->num_regs, regoff_t);
5990                   if (regs->start == NULL || regs->end == NULL)
5991 		    {
5992 		      FREE_VARIABLES ();
5993 		      return -2;
5994 		    }
5995                   bufp->regs_allocated = REGS_REALLOCATE;
5996                 }
5997               else if (bufp->regs_allocated == REGS_REALLOCATE)
5998                 { /* Yes.  If we need more elements than were already
5999                      allocated, reallocate them.  If we need fewer, just
6000                      leave it alone.  */
6001                   if (regs->num_regs < num_regs + 1)
6002                     {
6003                       regs->num_regs = num_regs + 1;
6004                       RETALLOC (regs->start, regs->num_regs, regoff_t);
6005                       RETALLOC (regs->end, regs->num_regs, regoff_t);
6006                       if (regs->start == NULL || regs->end == NULL)
6007 			{
6008 			  FREE_VARIABLES ();
6009 			  return -2;
6010 			}
6011                     }
6012                 }
6013               else
6014 		{
6015 		  /* These braces fend off a "empty body in an else-statement"
6016 		     warning under GCC when assert expands to nothing.  */
6017 		  assert (bufp->regs_allocated == REGS_FIXED);
6018 		}
6019 
6020               /* Convert the pointer data in `regstart' and `regend' to
6021                  indices.  Register zero has to be set differently,
6022                  since we haven't kept track of any info for it.  */
6023               if (regs->num_regs > 0)
6024                 {
6025                   regs->start[0] = pos;
6026 #ifdef WCHAR
6027 		  if (MATCHING_IN_FIRST_STRING)
6028 		    regs->end[0] = mbs_offset1 != NULL ?
6029 					mbs_offset1[d-string1] : 0;
6030 		  else
6031 		    regs->end[0] = csize1 + (mbs_offset2 != NULL ?
6032 					     mbs_offset2[d-string2] : 0);
6033 #else
6034                   regs->end[0] = (MATCHING_IN_FIRST_STRING
6035 				  ? ((regoff_t) (d - string1))
6036 			          : ((regoff_t) (d - string2 + size1)));
6037 #endif /* WCHAR */
6038                 }
6039 
6040               /* Go through the first `min (num_regs, regs->num_regs)'
6041                  registers, since that is all we initialized.  */
6042 	      for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
6043 		   mcnt++)
6044 		{
6045                   if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
6046                     regs->start[mcnt] = regs->end[mcnt] = -1;
6047                   else
6048                     {
6049 		      regs->start[mcnt]
6050 			= (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
6051                       regs->end[mcnt]
6052 			= (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
6053                     }
6054 		}
6055 
6056               /* If the regs structure we return has more elements than
6057                  were in the pattern, set the extra elements to -1.  If
6058                  we (re)allocated the registers, this is the case,
6059                  because we always allocate enough to have at least one
6060                  -1 at the end.  */
6061               for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
6062                 regs->start[mcnt] = regs->end[mcnt] = -1;
6063 	    } /* regs && !bufp->no_sub */
6064 
6065           DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
6066                         nfailure_points_pushed, nfailure_points_popped,
6067                         nfailure_points_pushed - nfailure_points_popped);
6068           DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
6069 
6070 #ifdef WCHAR
6071 	  if (MATCHING_IN_FIRST_STRING)
6072 	    mcnt = mbs_offset1 != NULL ? mbs_offset1[d-string1] : 0;
6073 	  else
6074 	    mcnt = (mbs_offset2 != NULL ? mbs_offset2[d-string2] : 0) +
6075 			csize1;
6076           mcnt -= pos;
6077 #else
6078           mcnt = d - pos - (MATCHING_IN_FIRST_STRING
6079 			    ? string1
6080 			    : string2 - size1);
6081 #endif /* WCHAR */
6082 
6083           DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
6084 
6085           FREE_VARIABLES ();
6086           return mcnt;
6087         }
6088 
6089       /* Otherwise match next pattern command.  */
6090       switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
6091 	{
6092         /* Ignore these.  Used to ignore the n of succeed_n's which
6093            currently have n == 0.  */
6094         case no_op:
6095           DEBUG_PRINT1 ("EXECUTING no_op.\n");
6096           break;
6097 
6098 	case succeed:
6099           DEBUG_PRINT1 ("EXECUTING succeed.\n");
6100 	  goto succeed_label;
6101 
6102         /* Match the next n pattern characters exactly.  The following
6103            byte in the pattern defines n, and the n bytes after that
6104            are the characters to match.  */
6105 	case exactn:
6106 #ifdef MBS_SUPPORT
6107 	case exactn_bin:
6108 #endif
6109 	  mcnt = *p++;
6110           DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
6111 
6112           /* This is written out as an if-else so we don't waste time
6113              testing `translate' inside the loop.  */
6114           if (translate)
6115 	    {
6116 	      do
6117 		{
6118 		  PREFETCH ();
6119 #ifdef WCHAR
6120 		  if (*d <= 0xff)
6121 		    {
6122 		      if ((UCHAR_T) translate[(unsigned char) *d++]
6123 			  != (UCHAR_T) *p++)
6124 			goto fail;
6125 		    }
6126 		  else
6127 		    {
6128 		      if (*d++ != (CHAR_T) *p++)
6129 			goto fail;
6130 		    }
6131 #else
6132 		  if ((UCHAR_T) translate[(unsigned char) *d++]
6133 		      != (UCHAR_T) *p++)
6134                     goto fail;
6135 #endif /* WCHAR */
6136 		}
6137 	      while (--mcnt);
6138 	    }
6139 	  else
6140 	    {
6141 	      do
6142 		{
6143 		  PREFETCH ();
6144 		  if (*d++ != (CHAR_T) *p++) goto fail;
6145 		}
6146 	      while (--mcnt);
6147 	    }
6148 	  SET_REGS_MATCHED ();
6149           break;
6150 
6151 
6152         /* Match any character except possibly a newline or a null.  */
6153 	case anychar:
6154           DEBUG_PRINT1 ("EXECUTING anychar.\n");
6155 
6156           PREFETCH ();
6157 
6158           if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
6159               || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
6160 	    goto fail;
6161 
6162           SET_REGS_MATCHED ();
6163           DEBUG_PRINT2 ("  Matched `%ld'.\n", (long int) *d);
6164           d++;
6165 	  break;
6166 
6167 
6168 	case charset:
6169 	case charset_not:
6170 	  {
6171 	    register UCHAR_T c;
6172 #ifdef WCHAR
6173 	    unsigned int i, char_class_length, coll_symbol_length,
6174               equiv_class_length, ranges_length, chars_length, length;
6175 	    CHAR_T *workp, *workp2, *charset_top;
6176 #define WORK_BUFFER_SIZE 128
6177             CHAR_T str_buf[WORK_BUFFER_SIZE];
6178 # ifdef _LIBC
6179 	    uint32_t nrules;
6180 # endif /* _LIBC */
6181 #endif /* WCHAR */
6182 	    boolean negate = (re_opcode_t) *(p - 1) == charset_not;
6183 
6184             DEBUG_PRINT2 ("EXECUTING charset%s.\n", negate ? "_not" : "");
6185 	    PREFETCH ();
6186 	    c = TRANSLATE (*d); /* The character to match.  */
6187 #ifdef WCHAR
6188 # ifdef _LIBC
6189 	    nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
6190 # endif /* _LIBC */
6191 	    charset_top = p - 1;
6192 	    char_class_length = *p++;
6193 	    coll_symbol_length = *p++;
6194 	    equiv_class_length = *p++;
6195 	    ranges_length = *p++;
6196 	    chars_length = *p++;
6197 	    /* p points charset[6], so the address of the next instruction
6198 	       (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
6199 	       where l=length of char_classes, m=length of collating_symbol,
6200 	       n=equivalence_class, o=length of char_range,
6201 	       p'=length of character.  */
6202 	    workp = p;
6203 	    /* Update p to indicate the next instruction.  */
6204 	    p += char_class_length + coll_symbol_length+ equiv_class_length +
6205               2*ranges_length + chars_length;
6206 
6207             /* match with char_class?  */
6208 	    for (i = 0; i < char_class_length ; i += CHAR_CLASS_SIZE)
6209 	      {
6210 		wctype_t wctype;
6211 		uintptr_t alignedp = ((uintptr_t)workp
6212 				      + __alignof__(wctype_t) - 1)
6213 		  		      & ~(uintptr_t)(__alignof__(wctype_t) - 1);
6214 		wctype = *((wctype_t*)alignedp);
6215 		workp += CHAR_CLASS_SIZE;
6216 # ifdef _LIBC
6217 		if (__iswctype((wint_t)c, wctype))
6218 		  goto char_set_matched;
6219 # else
6220 		if (iswctype((wint_t)c, wctype))
6221 		  goto char_set_matched;
6222 # endif
6223 	      }
6224 
6225             /* match with collating_symbol?  */
6226 # ifdef _LIBC
6227 	    if (nrules != 0)
6228 	      {
6229 		const unsigned char *extra = (const unsigned char *)
6230 		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
6231 
6232 		for (workp2 = workp + coll_symbol_length ; workp < workp2 ;
6233 		     workp++)
6234 		  {
6235 		    int32_t *wextra;
6236 		    wextra = (int32_t*)(extra + *workp++);
6237 		    for (i = 0; i < *wextra; ++i)
6238 		      if (TRANSLATE(d[i]) != wextra[1 + i])
6239 			break;
6240 
6241 		    if (i == *wextra)
6242 		      {
6243 			/* Update d, however d will be incremented at
6244 			   char_set_matched:, we decrement d here.  */
6245 			d += i - 1;
6246 			goto char_set_matched;
6247 		      }
6248 		  }
6249 	      }
6250 	    else /* (nrules == 0) */
6251 # endif
6252 	      /* If we can't look up collation data, we use wcscoll
6253 		 instead.  */
6254 	      {
6255 		for (workp2 = workp + coll_symbol_length ; workp < workp2 ;)
6256 		  {
6257 		    const CHAR_T *backup_d = d, *backup_dend = dend;
6258 # ifdef _LIBC
6259 		    length = __wcslen (workp);
6260 # else
6261 		    length = wcslen (workp);
6262 # endif
6263 
6264 		    /* If wcscoll(the collating symbol, whole string) > 0,
6265 		       any substring of the string never match with the
6266 		       collating symbol.  */
6267 # ifdef _LIBC
6268 		    if (__wcscoll (workp, d) > 0)
6269 # else
6270 		    if (wcscoll (workp, d) > 0)
6271 # endif
6272 		      {
6273 			workp += length + 1;
6274 			continue;
6275 		      }
6276 
6277 		    /* First, we compare the collating symbol with
6278 		       the first character of the string.
6279 		       If it don't match, we add the next character to
6280 		       the compare buffer in turn.  */
6281 		    for (i = 0 ; i < WORK_BUFFER_SIZE-1 ; i++, d++)
6282 		      {
6283 			int match;
6284 			if (d == dend)
6285 			  {
6286 			    if (dend == end_match_2)
6287 			      break;
6288 			    d = string2;
6289 			    dend = end_match_2;
6290 			  }
6291 
6292 			/* add next character to the compare buffer.  */
6293 			str_buf[i] = TRANSLATE(*d);
6294 			str_buf[i+1] = '\0';
6295 
6296 # ifdef _LIBC
6297 			match = __wcscoll (workp, str_buf);
6298 # else
6299 			match = wcscoll (workp, str_buf);
6300 # endif
6301 			if (match == 0)
6302 			  goto char_set_matched;
6303 
6304 			if (match < 0)
6305 			  /* (str_buf > workp) indicate (str_buf + X > workp),
6306 			     because for all X (str_buf + X > str_buf).
6307 			     So we don't need continue this loop.  */
6308 			  break;
6309 
6310 			/* Otherwise(str_buf < workp),
6311 			   (str_buf+next_character) may equals (workp).
6312 			   So we continue this loop.  */
6313 		      }
6314 		    /* not matched */
6315 		    d = backup_d;
6316 		    dend = backup_dend;
6317 		    workp += length + 1;
6318 		  }
6319               }
6320             /* match with equivalence_class?  */
6321 # ifdef _LIBC
6322 	    if (nrules != 0)
6323 	      {
6324                 const CHAR_T *backup_d = d, *backup_dend = dend;
6325 		/* Try to match the equivalence class against
6326 		   those known to the collate implementation.  */
6327 		const int32_t *table;
6328 		const int32_t *weights;
6329 		const int32_t *extra;
6330 		const int32_t *indirect;
6331 		int32_t idx, idx2;
6332 		wint_t *cp;
6333 		size_t len;
6334 
6335 		/* This #include defines a local function!  */
6336 #  include <locale/weightwc.h>
6337 
6338 		table = (const int32_t *)
6339 		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEWC);
6340 		weights = (const wint_t *)
6341 		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTWC);
6342 		extra = (const wint_t *)
6343 		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAWC);
6344 		indirect = (const int32_t *)
6345 		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTWC);
6346 
6347 		/* Write 1 collating element to str_buf, and
6348 		   get its index.  */
6349 		idx2 = 0;
6350 
6351 		for (i = 0 ; idx2 == 0 && i < WORK_BUFFER_SIZE - 1; i++)
6352 		  {
6353 		    cp = (wint_t*)str_buf;
6354 		    if (d == dend)
6355 		      {
6356 			if (dend == end_match_2)
6357 			  break;
6358 			d = string2;
6359 			dend = end_match_2;
6360 		      }
6361 		    str_buf[i] = TRANSLATE(*(d+i));
6362 		    str_buf[i+1] = '\0'; /* sentinel */
6363 		    idx2 = findidx ((const wint_t**)&cp);
6364 		  }
6365 
6366 		/* Update d, however d will be incremented at
6367 		   char_set_matched:, we decrement d here.  */
6368 		d = backup_d + ((wchar_t*)cp - (wchar_t*)str_buf - 1);
6369 		if (d >= dend)
6370 		  {
6371 		    if (dend == end_match_2)
6372 			d = dend;
6373 		    else
6374 		      {
6375 			d = string2;
6376 			dend = end_match_2;
6377 		      }
6378 		  }
6379 
6380 		len = weights[idx2];
6381 
6382 		for (workp2 = workp + equiv_class_length ; workp < workp2 ;
6383 		     workp++)
6384 		  {
6385 		    idx = (int32_t)*workp;
6386 		    /* We already checked idx != 0 in regex_compile. */
6387 
6388 		    if (idx2 != 0 && len == weights[idx])
6389 		      {
6390 			int cnt = 0;
6391 			while (cnt < len && (weights[idx + 1 + cnt]
6392 					     == weights[idx2 + 1 + cnt]))
6393 			  ++cnt;
6394 
6395 			if (cnt == len)
6396 			  goto char_set_matched;
6397 		      }
6398 		  }
6399 		/* not matched */
6400                 d = backup_d;
6401                 dend = backup_dend;
6402 	      }
6403 	    else /* (nrules == 0) */
6404 # endif
6405 	      /* If we can't look up collation data, we use wcscoll
6406 		 instead.  */
6407 	      {
6408 		for (workp2 = workp + equiv_class_length ; workp < workp2 ;)
6409 		  {
6410 		    const CHAR_T *backup_d = d, *backup_dend = dend;
6411 # ifdef _LIBC
6412 		    length = __wcslen (workp);
6413 # else
6414 		    length = wcslen (workp);
6415 # endif
6416 
6417 		    /* If wcscoll(the collating symbol, whole string) > 0,
6418 		       any substring of the string never match with the
6419 		       collating symbol.  */
6420 # ifdef _LIBC
6421 		    if (__wcscoll (workp, d) > 0)
6422 # else
6423 		    if (wcscoll (workp, d) > 0)
6424 # endif
6425 		      {
6426 			workp += length + 1;
6427 			break;
6428 		      }
6429 
6430 		    /* First, we compare the equivalence class with
6431 		       the first character of the string.
6432 		       If it don't match, we add the next character to
6433 		       the compare buffer in turn.  */
6434 		    for (i = 0 ; i < WORK_BUFFER_SIZE - 1 ; i++, d++)
6435 		      {
6436 			int match;
6437 			if (d == dend)
6438 			  {
6439 			    if (dend == end_match_2)
6440 			      break;
6441 			    d = string2;
6442 			    dend = end_match_2;
6443 			  }
6444 
6445 			/* add next character to the compare buffer.  */
6446 			str_buf[i] = TRANSLATE(*d);
6447 			str_buf[i+1] = '\0';
6448 
6449 # ifdef _LIBC
6450 			match = __wcscoll (workp, str_buf);
6451 # else
6452 			match = wcscoll (workp, str_buf);
6453 # endif
6454 
6455 			if (match == 0)
6456 			  goto char_set_matched;
6457 
6458 			if (match < 0)
6459 			/* (str_buf > workp) indicate (str_buf + X > workp),
6460 			   because for all X (str_buf + X > str_buf).
6461 			   So we don't need continue this loop.  */
6462 			  break;
6463 
6464 			/* Otherwise(str_buf < workp),
6465 			   (str_buf+next_character) may equals (workp).
6466 			   So we continue this loop.  */
6467 		      }
6468 		    /* not matched */
6469 		    d = backup_d;
6470 		    dend = backup_dend;
6471 		    workp += length + 1;
6472 		  }
6473 	      }
6474 
6475             /* match with char_range?  */
6476 # ifdef _LIBC
6477 	    if (nrules != 0)
6478 	      {
6479 		uint32_t collseqval;
6480 		const char *collseq = (const char *)
6481 		  _NL_CURRENT(LC_COLLATE, _NL_COLLATE_COLLSEQWC);
6482 
6483 		collseqval = collseq_table_lookup (collseq, c);
6484 
6485 		for (; workp < p - chars_length ;)
6486 		  {
6487 		    uint32_t start_val, end_val;
6488 
6489 		    /* We already compute the collation sequence value
6490 		       of the characters (or collating symbols).  */
6491 		    start_val = (uint32_t) *workp++; /* range_start */
6492 		    end_val = (uint32_t) *workp++; /* range_end */
6493 
6494 		    if (start_val <= collseqval && collseqval <= end_val)
6495 		      goto char_set_matched;
6496 		  }
6497 	      }
6498 	    else
6499 # endif
6500 	      {
6501 		/* We set range_start_char at str_buf[0], range_end_char
6502 		   at str_buf[4], and compared char at str_buf[2].  */
6503 		str_buf[1] = 0;
6504 		str_buf[2] = c;
6505 		str_buf[3] = 0;
6506 		str_buf[5] = 0;
6507 		for (; workp < p - chars_length ;)
6508 		  {
6509 		    wchar_t *range_start_char, *range_end_char;
6510 
6511 		    /* match if (range_start_char <= c <= range_end_char).  */
6512 
6513 		    /* If range_start(or end) < 0, we assume -range_start(end)
6514 		       is the offset of the collating symbol which is specified
6515 		       as the character of the range start(end).  */
6516 
6517 		    /* range_start */
6518 		    if (*workp < 0)
6519 		      range_start_char = charset_top - (*workp++);
6520 		    else
6521 		      {
6522 			str_buf[0] = *workp++;
6523 			range_start_char = str_buf;
6524 		      }
6525 
6526 		    /* range_end */
6527 		    if (*workp < 0)
6528 		      range_end_char = charset_top - (*workp++);
6529 		    else
6530 		      {
6531 			str_buf[4] = *workp++;
6532 			range_end_char = str_buf + 4;
6533 		      }
6534 
6535 # ifdef _LIBC
6536 		    if (__wcscoll (range_start_char, str_buf+2) <= 0
6537 			&& __wcscoll (str_buf+2, range_end_char) <= 0)
6538 # else
6539 		    if (wcscoll (range_start_char, str_buf+2) <= 0
6540 			&& wcscoll (str_buf+2, range_end_char) <= 0)
6541 # endif
6542 		      goto char_set_matched;
6543 		  }
6544 	      }
6545 
6546             /* match with char?  */
6547 	    for (; workp < p ; workp++)
6548 	      if (c == *workp)
6549 		goto char_set_matched;
6550 
6551 	    negate = !negate;
6552 
6553 	  char_set_matched:
6554 	    if (negate) goto fail;
6555 #else
6556             /* Cast to `unsigned' instead of `unsigned char' in case the
6557                bit list is a full 32 bytes long.  */
6558 	    if (c < (unsigned) (*p * BYTEWIDTH)
6559 		&& p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
6560 	      negate = !negate;
6561 
6562 	    p += 1 + *p;
6563 
6564 	    if (!negate) goto fail;
6565 #undef WORK_BUFFER_SIZE
6566 #endif /* WCHAR */
6567 	    SET_REGS_MATCHED ();
6568             d++;
6569 	    break;
6570 	  }
6571 
6572 
6573         /* The beginning of a group is represented by start_memory.
6574            The arguments are the register number in the next byte, and the
6575            number of groups inner to this one in the next.  The text
6576            matched within the group is recorded (in the internal
6577            registers data structure) under the register number.  */
6578         case start_memory:
6579 	  DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6580 			(long int) *p, (long int) p[1]);
6581 
6582           /* Find out if this group can match the empty string.  */
6583 	  p1 = p;		/* To send to group_match_null_string_p.  */
6584 
6585           if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
6586             REG_MATCH_NULL_STRING_P (reg_info[*p])
6587               = PREFIX(group_match_null_string_p) (&p1, pend, reg_info);
6588 
6589           /* Save the position in the string where we were the last time
6590              we were at this open-group operator in case the group is
6591              operated upon by a repetition operator, e.g., with `(a*)*b'
6592              against `ab'; then we want to ignore where we are now in
6593              the string in case this attempt to match fails.  */
6594           old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6595                              ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
6596                              : regstart[*p];
6597 	  DEBUG_PRINT2 ("  old_regstart: %d\n",
6598 			 POINTER_TO_OFFSET (old_regstart[*p]));
6599 
6600           regstart[*p] = d;
6601 	  DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
6602 
6603           IS_ACTIVE (reg_info[*p]) = 1;
6604           MATCHED_SOMETHING (reg_info[*p]) = 0;
6605 
6606 	  /* Clear this whenever we change the register activity status.  */
6607 	  set_regs_matched_done = 0;
6608 
6609           /* This is the new highest active register.  */
6610           highest_active_reg = *p;
6611 
6612           /* If nothing was active before, this is the new lowest active
6613              register.  */
6614           if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6615             lowest_active_reg = *p;
6616 
6617           /* Move past the register number and inner group count.  */
6618           p += 2;
6619 	  just_past_start_mem = p;
6620 
6621           break;
6622 
6623 
6624         /* The stop_memory opcode represents the end of a group.  Its
6625            arguments are the same as start_memory's: the register
6626            number, and the number of inner groups.  */
6627 	case stop_memory:
6628 	  DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6629 			(long int) *p, (long int) p[1]);
6630 
6631           /* We need to save the string position the last time we were at
6632              this close-group operator in case the group is operated
6633              upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6634              against `aba'; then we want to ignore where we are now in
6635              the string in case this attempt to match fails.  */
6636           old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6637                            ? REG_UNSET (regend[*p]) ? d : regend[*p]
6638 			   : regend[*p];
6639 	  DEBUG_PRINT2 ("      old_regend: %d\n",
6640 			 POINTER_TO_OFFSET (old_regend[*p]));
6641 
6642           regend[*p] = d;
6643 	  DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
6644 
6645           /* This register isn't active anymore.  */
6646           IS_ACTIVE (reg_info[*p]) = 0;
6647 
6648 	  /* Clear this whenever we change the register activity status.  */
6649 	  set_regs_matched_done = 0;
6650 
6651           /* If this was the only register active, nothing is active
6652              anymore.  */
6653           if (lowest_active_reg == highest_active_reg)
6654             {
6655               lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6656               highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6657             }
6658           else
6659             { /* We must scan for the new highest active register, since
6660                  it isn't necessarily one less than now: consider
6661                  (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
6662                  new highest active register is 1.  */
6663               UCHAR_T r = *p - 1;
6664               while (r > 0 && !IS_ACTIVE (reg_info[r]))
6665                 r--;
6666 
6667               /* If we end up at register zero, that means that we saved
6668                  the registers as the result of an `on_failure_jump', not
6669                  a `start_memory', and we jumped to past the innermost
6670                  `stop_memory'.  For example, in ((.)*) we save
6671                  registers 1 and 2 as a result of the *, but when we pop
6672                  back to the second ), we are at the stop_memory 1.
6673                  Thus, nothing is active.  */
6674 	      if (r == 0)
6675                 {
6676                   lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6677                   highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6678                 }
6679               else
6680                 highest_active_reg = r;
6681             }
6682 
6683           /* If just failed to match something this time around with a
6684              group that's operated on by a repetition operator, try to
6685              force exit from the ``loop'', and restore the register
6686              information for this group that we had before trying this
6687              last match.  */
6688           if ((!MATCHED_SOMETHING (reg_info[*p])
6689                || just_past_start_mem == p - 1)
6690 	      && (p + 2) < pend)
6691             {
6692               boolean is_a_jump_n = false;
6693 
6694               p1 = p + 2;
6695               mcnt = 0;
6696               switch ((re_opcode_t) *p1++)
6697                 {
6698                   case jump_n:
6699 		    is_a_jump_n = true;
6700 		    /* Fall through.  */
6701                   case pop_failure_jump:
6702 		  case maybe_pop_jump:
6703 		  case jump:
6704 		  case dummy_failure_jump:
6705                     EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6706 		    if (is_a_jump_n)
6707 		      p1 += OFFSET_ADDRESS_SIZE;
6708                     break;
6709 
6710                   default:
6711                     /* do nothing */ ;
6712                 }
6713 	      p1 += mcnt;
6714 
6715               /* If the next operation is a jump backwards in the pattern
6716 	         to an on_failure_jump right before the start_memory
6717                  corresponding to this stop_memory, exit from the loop
6718                  by forcing a failure after pushing on the stack the
6719                  on_failure_jump's jump in the pattern, and d.  */
6720               if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
6721                   && (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == start_memory
6722 		  && p1[2+OFFSET_ADDRESS_SIZE] == *p)
6723 		{
6724                   /* If this group ever matched anything, then restore
6725                      what its registers were before trying this last
6726                      failed match, e.g., with `(a*)*b' against `ab' for
6727                      regstart[1], and, e.g., with `((a*)*(b*)*)*'
6728                      against `aba' for regend[3].
6729 
6730                      Also restore the registers for inner groups for,
6731                      e.g., `((a*)(b*))*' against `aba' (register 3 would
6732                      otherwise get trashed).  */
6733 
6734                   if (EVER_MATCHED_SOMETHING (reg_info[*p]))
6735 		    {
6736 		      unsigned r;
6737 
6738                       EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
6739 
6740 		      /* Restore this and inner groups' (if any) registers.  */
6741                       for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
6742 			   r++)
6743                         {
6744                           regstart[r] = old_regstart[r];
6745 
6746                           /* xx why this test?  */
6747                           if (old_regend[r] >= regstart[r])
6748                             regend[r] = old_regend[r];
6749                         }
6750                     }
6751 		  p1++;
6752                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6753                   PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
6754 
6755                   goto fail;
6756                 }
6757             }
6758 
6759           /* Move past the register number and the inner group count.  */
6760           p += 2;
6761           break;
6762 
6763 
6764 	/* \<digit> has been turned into a `duplicate' command which is
6765            followed by the numeric value of <digit> as the register number.  */
6766         case duplicate:
6767 	  {
6768 	    register const CHAR_T *d2, *dend2;
6769 	    int regno = *p++;   /* Get which register to match against.  */
6770 	    DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
6771 
6772 	    /* Can't back reference a group which we've never matched.  */
6773             if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
6774               goto fail;
6775 
6776             /* Where in input to try to start matching.  */
6777             d2 = regstart[regno];
6778 
6779             /* Where to stop matching; if both the place to start and
6780                the place to stop matching are in the same string, then
6781                set to the place to stop, otherwise, for now have to use
6782                the end of the first string.  */
6783 
6784             dend2 = ((FIRST_STRING_P (regstart[regno])
6785 		      == FIRST_STRING_P (regend[regno]))
6786 		     ? regend[regno] : end_match_1);
6787 	    for (;;)
6788 	      {
6789 		/* If necessary, advance to next segment in register
6790                    contents.  */
6791 		while (d2 == dend2)
6792 		  {
6793 		    if (dend2 == end_match_2) break;
6794 		    if (dend2 == regend[regno]) break;
6795 
6796                     /* End of string1 => advance to string2. */
6797                     d2 = string2;
6798                     dend2 = regend[regno];
6799 		  }
6800 		/* At end of register contents => success */
6801 		if (d2 == dend2) break;
6802 
6803 		/* If necessary, advance to next segment in data.  */
6804 		PREFETCH ();
6805 
6806 		/* How many characters left in this segment to match.  */
6807 		mcnt = dend - d;
6808 
6809 		/* Want how many consecutive characters we can match in
6810                    one shot, so, if necessary, adjust the count.  */
6811                 if (mcnt > dend2 - d2)
6812 		  mcnt = dend2 - d2;
6813 
6814 		/* Compare that many; failure if mismatch, else move
6815                    past them.  */
6816 		if (translate
6817                     ? PREFIX(bcmp_translate) (d, d2, mcnt, translate)
6818                     : memcmp (d, d2, mcnt*sizeof(UCHAR_T)))
6819 		  goto fail;
6820 		d += mcnt, d2 += mcnt;
6821 
6822 		/* Do this because we've match some characters.  */
6823 		SET_REGS_MATCHED ();
6824 	      }
6825 	  }
6826 	  break;
6827 
6828 
6829         /* begline matches the empty string at the beginning of the string
6830            (unless `not_bol' is set in `bufp'), and, if
6831            `newline_anchor' is set, after newlines.  */
6832 	case begline:
6833           DEBUG_PRINT1 ("EXECUTING begline.\n");
6834 
6835           if (AT_STRINGS_BEG (d))
6836             {
6837               if (!bufp->not_bol) break;
6838             }
6839           else if (d[-1] == '\n' && bufp->newline_anchor)
6840             {
6841               break;
6842             }
6843           /* In all other cases, we fail.  */
6844           goto fail;
6845 
6846 
6847         /* endline is the dual of begline.  */
6848 	case endline:
6849           DEBUG_PRINT1 ("EXECUTING endline.\n");
6850 
6851           if (AT_STRINGS_END (d))
6852             {
6853               if (!bufp->not_eol) break;
6854             }
6855 
6856           /* We have to ``prefetch'' the next character.  */
6857           else if ((d == end1 ? *string2 : *d) == '\n'
6858                    && bufp->newline_anchor)
6859             {
6860               break;
6861             }
6862           goto fail;
6863 
6864 
6865 	/* Match at the very beginning of the data.  */
6866         case begbuf:
6867           DEBUG_PRINT1 ("EXECUTING begbuf.\n");
6868           if (AT_STRINGS_BEG (d))
6869             break;
6870           goto fail;
6871 
6872 
6873 	/* Match at the very end of the data.  */
6874         case endbuf:
6875           DEBUG_PRINT1 ("EXECUTING endbuf.\n");
6876 	  if (AT_STRINGS_END (d))
6877 	    break;
6878           goto fail;
6879 
6880 
6881         /* on_failure_keep_string_jump is used to optimize `.*\n'.  It
6882            pushes NULL as the value for the string on the stack.  Then
6883            `pop_failure_point' will keep the current value for the
6884            string, instead of restoring it.  To see why, consider
6885            matching `foo\nbar' against `.*\n'.  The .* matches the foo;
6886            then the . fails against the \n.  But the next thing we want
6887            to do is match the \n against the \n; if we restored the
6888            string value, we would be back at the foo.
6889 
6890            Because this is used only in specific cases, we don't need to
6891            check all the things that `on_failure_jump' does, to make
6892            sure the right things get saved on the stack.  Hence we don't
6893            share its code.  The only reason to push anything on the
6894            stack at all is that otherwise we would have to change
6895            `anychar's code to do something besides goto fail in this
6896            case; that seems worse than this.  */
6897         case on_failure_keep_string_jump:
6898           DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
6899 
6900           EXTRACT_NUMBER_AND_INCR (mcnt, p);
6901 #ifdef _LIBC
6902           DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
6903 #else
6904           DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
6905 #endif
6906 
6907           PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
6908           break;
6909 
6910 
6911 	/* Uses of on_failure_jump:
6912 
6913            Each alternative starts with an on_failure_jump that points
6914            to the beginning of the next alternative.  Each alternative
6915            except the last ends with a jump that in effect jumps past
6916            the rest of the alternatives.  (They really jump to the
6917            ending jump of the following alternative, because tensioning
6918            these jumps is a hassle.)
6919 
6920            Repeats start with an on_failure_jump that points past both
6921            the repetition text and either the following jump or
6922            pop_failure_jump back to this on_failure_jump.  */
6923 	case on_failure_jump:
6924         on_failure:
6925           DEBUG_PRINT1 ("EXECUTING on_failure_jump");
6926 
6927           EXTRACT_NUMBER_AND_INCR (mcnt, p);
6928 #ifdef _LIBC
6929           DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
6930 #else
6931           DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
6932 #endif
6933 
6934           /* If this on_failure_jump comes right before a group (i.e.,
6935              the original * applied to a group), save the information
6936              for that group and all inner ones, so that if we fail back
6937              to this point, the group's information will be correct.
6938              For example, in \(a*\)*\1, we need the preceding group,
6939              and in \(zz\(a*\)b*\)\2, we need the inner group.  */
6940 
6941           /* We can't use `p' to check ahead because we push
6942              a failure point to `p + mcnt' after we do this.  */
6943           p1 = p;
6944 
6945           /* We need to skip no_op's before we look for the
6946              start_memory in case this on_failure_jump is happening as
6947              the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
6948              against aba.  */
6949           while (p1 < pend && (re_opcode_t) *p1 == no_op)
6950             p1++;
6951 
6952           if (p1 < pend && (re_opcode_t) *p1 == start_memory)
6953             {
6954               /* We have a new highest active register now.  This will
6955                  get reset at the start_memory we are about to get to,
6956                  but we will have saved all the registers relevant to
6957                  this repetition op, as described above.  */
6958               highest_active_reg = *(p1 + 1) + *(p1 + 2);
6959               if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6960                 lowest_active_reg = *(p1 + 1);
6961             }
6962 
6963           DEBUG_PRINT1 (":\n");
6964           PUSH_FAILURE_POINT (p + mcnt, d, -2);
6965           break;
6966 
6967 
6968         /* A smart repeat ends with `maybe_pop_jump'.
6969 	   We change it to either `pop_failure_jump' or `jump'.  */
6970         case maybe_pop_jump:
6971           EXTRACT_NUMBER_AND_INCR (mcnt, p);
6972           DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
6973           {
6974 	    register UCHAR_T *p2 = p;
6975 
6976             /* Compare the beginning of the repeat with what in the
6977                pattern follows its end. If we can establish that there
6978                is nothing that they would both match, i.e., that we
6979                would have to backtrack because of (as in, e.g., `a*a')
6980                then we can change to pop_failure_jump, because we'll
6981                never have to backtrack.
6982 
6983                This is not true in the case of alternatives: in
6984                `(a|ab)*' we do need to backtrack to the `ab' alternative
6985                (e.g., if the string was `ab').  But instead of trying to
6986                detect that here, the alternative has put on a dummy
6987                failure point which is what we will end up popping.  */
6988 
6989 	    /* Skip over open/close-group commands.
6990 	       If what follows this loop is a ...+ construct,
6991 	       look at what begins its body, since we will have to
6992 	       match at least one of that.  */
6993 	    while (1)
6994 	      {
6995 		if (p2 + 2 < pend
6996 		    && ((re_opcode_t) *p2 == stop_memory
6997 			|| (re_opcode_t) *p2 == start_memory))
6998 		  p2 += 3;
6999 		else if (p2 + 2 + 2 * OFFSET_ADDRESS_SIZE < pend
7000 			 && (re_opcode_t) *p2 == dummy_failure_jump)
7001 		  p2 += 2 + 2 * OFFSET_ADDRESS_SIZE;
7002 		else
7003 		  break;
7004 	      }
7005 
7006 	    p1 = p + mcnt;
7007 	    /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
7008 	       to the `maybe_finalize_jump' of this case.  Examine what
7009 	       follows.  */
7010 
7011             /* If we're at the end of the pattern, we can change.  */
7012             if (p2 == pend)
7013 	      {
7014 		/* Consider what happens when matching ":\(.*\)"
7015 		   against ":/".  I don't really understand this code
7016 		   yet.  */
7017   	        p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7018 		  pop_failure_jump;
7019                 DEBUG_PRINT1
7020                   ("  End of pattern: change to `pop_failure_jump'.\n");
7021               }
7022 
7023             else if ((re_opcode_t) *p2 == exactn
7024 #ifdef MBS_SUPPORT
7025 		     || (re_opcode_t) *p2 == exactn_bin
7026 #endif
7027 		     || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
7028 	      {
7029 		register UCHAR_T c
7030                   = *p2 == (UCHAR_T) endline ? '\n' : p2[2];
7031 
7032                 if (((re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn
7033 #ifdef MBS_SUPPORT
7034 		     || (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn_bin
7035 #endif
7036 		    ) && p1[3+OFFSET_ADDRESS_SIZE] != c)
7037                   {
7038   		    p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7039 		      pop_failure_jump;
7040 #ifdef WCHAR
7041 		      DEBUG_PRINT3 ("  %C != %C => pop_failure_jump.\n",
7042 				    (wint_t) c,
7043 				    (wint_t) p1[3+OFFSET_ADDRESS_SIZE]);
7044 #else
7045 		      DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
7046 				    (char) c,
7047 				    (char) p1[3+OFFSET_ADDRESS_SIZE]);
7048 #endif
7049                   }
7050 
7051 #ifndef WCHAR
7052 		else if ((re_opcode_t) p1[3] == charset
7053 			 || (re_opcode_t) p1[3] == charset_not)
7054 		  {
7055 		    int negate = (re_opcode_t) p1[3] == charset_not;
7056 
7057 		    if (c < (unsigned) (p1[4] * BYTEWIDTH)
7058 			&& p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
7059 		      negate = !negate;
7060 
7061                     /* `negate' is equal to 1 if c would match, which means
7062                         that we can't change to pop_failure_jump.  */
7063 		    if (!negate)
7064                       {
7065   		        p[-3] = (unsigned char) pop_failure_jump;
7066                         DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7067                       }
7068 		  }
7069 #endif /* not WCHAR */
7070 	      }
7071 #ifndef WCHAR
7072             else if ((re_opcode_t) *p2 == charset)
7073 	      {
7074 		/* We win if the first character of the loop is not part
7075                    of the charset.  */
7076                 if ((re_opcode_t) p1[3] == exactn
7077  		    && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
7078  			  && (p2[2 + p1[5] / BYTEWIDTH]
7079  			      & (1 << (p1[5] % BYTEWIDTH)))))
7080 		  {
7081 		    p[-3] = (unsigned char) pop_failure_jump;
7082 		    DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7083                   }
7084 
7085 		else if ((re_opcode_t) p1[3] == charset_not)
7086 		  {
7087 		    int idx;
7088 		    /* We win if the charset_not inside the loop
7089 		       lists every character listed in the charset after.  */
7090 		    for (idx = 0; idx < (int) p2[1]; idx++)
7091 		      if (! (p2[2 + idx] == 0
7092 			     || (idx < (int) p1[4]
7093 				 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
7094 			break;
7095 
7096 		    if (idx == p2[1])
7097                       {
7098   		        p[-3] = (unsigned char) pop_failure_jump;
7099                         DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7100                       }
7101 		  }
7102 		else if ((re_opcode_t) p1[3] == charset)
7103 		  {
7104 		    int idx;
7105 		    /* We win if the charset inside the loop
7106 		       has no overlap with the one after the loop.  */
7107 		    for (idx = 0;
7108 			 idx < (int) p2[1] && idx < (int) p1[4];
7109 			 idx++)
7110 		      if ((p2[2 + idx] & p1[5 + idx]) != 0)
7111 			break;
7112 
7113 		    if (idx == p2[1] || idx == p1[4])
7114                       {
7115   		        p[-3] = (unsigned char) pop_failure_jump;
7116                         DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7117                       }
7118 		  }
7119 	      }
7120 #endif /* not WCHAR */
7121 	  }
7122 	  p -= OFFSET_ADDRESS_SIZE;	/* Point at relative address again.  */
7123 	  if ((re_opcode_t) p[-1] != pop_failure_jump)
7124 	    {
7125 	      p[-1] = (UCHAR_T) jump;
7126               DEBUG_PRINT1 ("  Match => jump.\n");
7127 	      goto unconditional_jump;
7128 	    }
7129         /* Fall through.  */
7130 
7131 
7132 	/* The end of a simple repeat has a pop_failure_jump back to
7133            its matching on_failure_jump, where the latter will push a
7134            failure point.  The pop_failure_jump takes off failure
7135            points put on by this pop_failure_jump's matching
7136            on_failure_jump; we got through the pattern to here from the
7137            matching on_failure_jump, so didn't fail.  */
7138         case pop_failure_jump:
7139           {
7140             /* We need to pass separate storage for the lowest and
7141                highest registers, even though we don't care about the
7142                actual values.  Otherwise, we will restore only one
7143                register from the stack, since lowest will == highest in
7144                `pop_failure_point'.  */
7145             active_reg_t dummy_low_reg, dummy_high_reg;
7146             UCHAR_T *pdummy ATTRIBUTE_UNUSED = NULL;
7147             const CHAR_T *sdummy ATTRIBUTE_UNUSED = NULL;
7148 
7149             DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
7150             POP_FAILURE_POINT (sdummy, pdummy,
7151                                dummy_low_reg, dummy_high_reg,
7152                                reg_dummy, reg_dummy, reg_info_dummy);
7153           }
7154 	  /* Fall through.  */
7155 
7156 	unconditional_jump:
7157 #ifdef _LIBC
7158 	  DEBUG_PRINT2 ("\n%p: ", p);
7159 #else
7160 	  DEBUG_PRINT2 ("\n0x%x: ", p);
7161 #endif
7162           /* Note fall through.  */
7163 
7164         /* Unconditionally jump (without popping any failure points).  */
7165         case jump:
7166 	  EXTRACT_NUMBER_AND_INCR (mcnt, p);	/* Get the amount to jump.  */
7167           DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
7168 	  p += mcnt;				/* Do the jump.  */
7169 #ifdef _LIBC
7170           DEBUG_PRINT2 ("(to %p).\n", p);
7171 #else
7172           DEBUG_PRINT2 ("(to 0x%x).\n", p);
7173 #endif
7174 	  break;
7175 
7176 
7177         /* We need this opcode so we can detect where alternatives end
7178            in `group_match_null_string_p' et al.  */
7179         case jump_past_alt:
7180           DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
7181           goto unconditional_jump;
7182 
7183 
7184         /* Normally, the on_failure_jump pushes a failure point, which
7185            then gets popped at pop_failure_jump.  We will end up at
7186            pop_failure_jump, also, and with a pattern of, say, `a+', we
7187            are skipping over the on_failure_jump, so we have to push
7188            something meaningless for pop_failure_jump to pop.  */
7189         case dummy_failure_jump:
7190           DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
7191           /* It doesn't matter what we push for the string here.  What
7192              the code at `fail' tests is the value for the pattern.  */
7193           PUSH_FAILURE_POINT (NULL, NULL, -2);
7194           goto unconditional_jump;
7195 
7196 
7197         /* At the end of an alternative, we need to push a dummy failure
7198            point in case we are followed by a `pop_failure_jump', because
7199            we don't want the failure point for the alternative to be
7200            popped.  For example, matching `(a|ab)*' against `aab'
7201            requires that we match the `ab' alternative.  */
7202         case push_dummy_failure:
7203           DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
7204           /* See comments just above at `dummy_failure_jump' about the
7205              two zeroes.  */
7206           PUSH_FAILURE_POINT (NULL, NULL, -2);
7207           break;
7208 
7209         /* Have to succeed matching what follows at least n times.
7210            After that, handle like `on_failure_jump'.  */
7211         case succeed_n:
7212           EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7213           DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
7214 
7215           assert (mcnt >= 0);
7216           /* Originally, this is how many times we HAVE to succeed.  */
7217           if (mcnt > 0)
7218             {
7219                mcnt--;
7220 	       p += OFFSET_ADDRESS_SIZE;
7221                STORE_NUMBER_AND_INCR (p, mcnt);
7222 #ifdef _LIBC
7223                DEBUG_PRINT3 ("  Setting %p to %d.\n", p - OFFSET_ADDRESS_SIZE
7224 			     , mcnt);
7225 #else
7226                DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p - OFFSET_ADDRESS_SIZE
7227 			     , mcnt);
7228 #endif
7229             }
7230 	  else if (mcnt == 0)
7231             {
7232 #ifdef _LIBC
7233               DEBUG_PRINT2 ("  Setting two bytes from %p to no_op.\n",
7234 			    p + OFFSET_ADDRESS_SIZE);
7235 #else
7236               DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n",
7237 			    p + OFFSET_ADDRESS_SIZE);
7238 #endif /* _LIBC */
7239 
7240 #ifdef WCHAR
7241 	      p[1] = (UCHAR_T) no_op;
7242 #else
7243 	      p[2] = (UCHAR_T) no_op;
7244               p[3] = (UCHAR_T) no_op;
7245 #endif /* WCHAR */
7246               goto on_failure;
7247             }
7248           break;
7249 
7250         case jump_n:
7251           EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7252           DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
7253 
7254           /* Originally, this is how many times we CAN jump.  */
7255           if (mcnt)
7256             {
7257                mcnt--;
7258                STORE_NUMBER (p + OFFSET_ADDRESS_SIZE, mcnt);
7259 
7260 #ifdef _LIBC
7261                DEBUG_PRINT3 ("  Setting %p to %d.\n", p + OFFSET_ADDRESS_SIZE,
7262 			     mcnt);
7263 #else
7264                DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p + OFFSET_ADDRESS_SIZE,
7265 			     mcnt);
7266 #endif /* _LIBC */
7267 	       goto unconditional_jump;
7268             }
7269           /* If don't have to jump any more, skip over the rest of command.  */
7270 	  else
7271 	    p += 2 * OFFSET_ADDRESS_SIZE;
7272           break;
7273 
7274 	case set_number_at:
7275 	  {
7276             DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7277 
7278             EXTRACT_NUMBER_AND_INCR (mcnt, p);
7279             p1 = p + mcnt;
7280             EXTRACT_NUMBER_AND_INCR (mcnt, p);
7281 #ifdef _LIBC
7282             DEBUG_PRINT3 ("  Setting %p to %d.\n", p1, mcnt);
7283 #else
7284             DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
7285 #endif
7286 	    STORE_NUMBER (p1, mcnt);
7287             break;
7288           }
7289 
7290 #if 0
7291 	/* The DEC Alpha C compiler 3.x generates incorrect code for the
7292 	   test  WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
7293 	   AT_WORD_BOUNDARY, so this code is disabled.  Expanding the
7294 	   macro and introducing temporary variables works around the bug.  */
7295 
7296 	case wordbound:
7297 	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7298 	  if (AT_WORD_BOUNDARY (d))
7299 	    break;
7300 	  goto fail;
7301 
7302 	case notwordbound:
7303 	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7304 	  if (AT_WORD_BOUNDARY (d))
7305 	    goto fail;
7306 	  break;
7307 #else
7308 	case wordbound:
7309 	{
7310 	  boolean prevchar, thischar;
7311 
7312 	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7313 	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7314 	    break;
7315 
7316 	  prevchar = WORDCHAR_P (d - 1);
7317 	  thischar = WORDCHAR_P (d);
7318 	  if (prevchar != thischar)
7319 	    break;
7320 	  goto fail;
7321 	}
7322 
7323       case notwordbound:
7324 	{
7325 	  boolean prevchar, thischar;
7326 
7327 	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7328 	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7329 	    goto fail;
7330 
7331 	  prevchar = WORDCHAR_P (d - 1);
7332 	  thischar = WORDCHAR_P (d);
7333 	  if (prevchar != thischar)
7334 	    goto fail;
7335 	  break;
7336 	}
7337 #endif
7338 
7339 	case wordbeg:
7340           DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7341 	  if (!AT_STRINGS_END (d) && WORDCHAR_P (d)
7342 	      && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
7343 	    break;
7344           goto fail;
7345 
7346 	case wordend:
7347           DEBUG_PRINT1 ("EXECUTING wordend.\n");
7348 	  if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
7349               && (AT_STRINGS_END (d) || !WORDCHAR_P (d)))
7350 	    break;
7351           goto fail;
7352 
7353 #ifdef emacs
7354   	case before_dot:
7355           DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7356  	  if (PTR_CHAR_POS ((unsigned char *) d) >= point)
7357   	    goto fail;
7358   	  break;
7359 
7360   	case at_dot:
7361           DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7362  	  if (PTR_CHAR_POS ((unsigned char *) d) != point)
7363   	    goto fail;
7364   	  break;
7365 
7366   	case after_dot:
7367           DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7368           if (PTR_CHAR_POS ((unsigned char *) d) <= point)
7369   	    goto fail;
7370   	  break;
7371 
7372 	case syntaxspec:
7373           DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
7374 	  mcnt = *p++;
7375 	  goto matchsyntax;
7376 
7377         case wordchar:
7378           DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7379 	  mcnt = (int) Sword;
7380         matchsyntax:
7381 	  PREFETCH ();
7382 	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
7383 	  d++;
7384 	  if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
7385 	    goto fail;
7386           SET_REGS_MATCHED ();
7387 	  break;
7388 
7389 	case notsyntaxspec:
7390           DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
7391 	  mcnt = *p++;
7392 	  goto matchnotsyntax;
7393 
7394         case notwordchar:
7395           DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7396 	  mcnt = (int) Sword;
7397         matchnotsyntax:
7398 	  PREFETCH ();
7399 	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
7400 	  d++;
7401 	  if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
7402 	    goto fail;
7403 	  SET_REGS_MATCHED ();
7404           break;
7405 
7406 #else /* not emacs */
7407 	case wordchar:
7408           DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7409 	  PREFETCH ();
7410           if (!WORDCHAR_P (d))
7411             goto fail;
7412 	  SET_REGS_MATCHED ();
7413           d++;
7414 	  break;
7415 
7416 	case notwordchar:
7417           DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7418 	  PREFETCH ();
7419 	  if (WORDCHAR_P (d))
7420             goto fail;
7421           SET_REGS_MATCHED ();
7422           d++;
7423 	  break;
7424 #endif /* not emacs */
7425 
7426         default:
7427           abort ();
7428 	}
7429       continue;  /* Successfully executed one pattern command; keep going.  */
7430 
7431 
7432     /* We goto here if a matching operation fails. */
7433     fail:
7434       if (!FAIL_STACK_EMPTY ())
7435 	{ /* A restart point is known.  Restore to that state.  */
7436           DEBUG_PRINT1 ("\nFAIL:\n");
7437           POP_FAILURE_POINT (d, p,
7438                              lowest_active_reg, highest_active_reg,
7439                              regstart, regend, reg_info);
7440 
7441           /* If this failure point is a dummy, try the next one.  */
7442           if (!p)
7443 	    goto fail;
7444 
7445           /* If we failed to the end of the pattern, don't examine *p.  */
7446 	  assert (p <= pend);
7447           if (p < pend)
7448             {
7449               boolean is_a_jump_n = false;
7450 
7451               /* If failed to a backwards jump that's part of a repetition
7452                  loop, need to pop this failure point and use the next one.  */
7453               switch ((re_opcode_t) *p)
7454                 {
7455                 case jump_n:
7456                   is_a_jump_n = true;
7457 		  /* Fall through.  */
7458                 case maybe_pop_jump:
7459                 case pop_failure_jump:
7460                 case jump:
7461                   p1 = p + 1;
7462                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7463                   p1 += mcnt;
7464 
7465                   if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
7466                       || (!is_a_jump_n
7467                           && (re_opcode_t) *p1 == on_failure_jump))
7468                     goto fail;
7469                   break;
7470                 default:
7471                   /* do nothing */ ;
7472                 }
7473             }
7474 
7475           if (d >= string1 && d <= end1)
7476 	    dend = end_match_1;
7477         }
7478       else
7479         break;   /* Matching at this starting point really fails.  */
7480     } /* for (;;) */
7481 
7482   if (best_regs_set)
7483     goto restore_best_regs;
7484 
7485   FREE_VARIABLES ();
7486 
7487   return -1;         			/* Failure to match.  */
7488 } /* re_match_2 */
7489 
7490 /* Subroutine definitions for re_match_2.  */
7491 
7492 
7493 /* We are passed P pointing to a register number after a start_memory.
7494 
7495    Return true if the pattern up to the corresponding stop_memory can
7496    match the empty string, and false otherwise.
7497 
7498    If we find the matching stop_memory, sets P to point to one past its number.
7499    Otherwise, sets P to an undefined byte less than or equal to END.
7500 
7501    We don't handle duplicates properly (yet).  */
7502 
7503 static boolean
7504 PREFIX(group_match_null_string_p) (UCHAR_T **p, UCHAR_T *end,
7505                                    PREFIX(register_info_type) *reg_info)
7506 {
7507   int mcnt;
7508   /* Point to after the args to the start_memory.  */
7509   UCHAR_T *p1 = *p + 2;
7510 
7511   while (p1 < end)
7512     {
7513       /* Skip over opcodes that can match nothing, and return true or
7514 	 false, as appropriate, when we get to one that can't, or to the
7515          matching stop_memory.  */
7516 
7517       switch ((re_opcode_t) *p1)
7518         {
7519         /* Could be either a loop or a series of alternatives.  */
7520         case on_failure_jump:
7521           p1++;
7522           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7523 
7524           /* If the next operation is not a jump backwards in the
7525 	     pattern.  */
7526 
7527 	  if (mcnt >= 0)
7528 	    {
7529               /* Go through the on_failure_jumps of the alternatives,
7530                  seeing if any of the alternatives cannot match nothing.
7531                  The last alternative starts with only a jump,
7532                  whereas the rest start with on_failure_jump and end
7533                  with a jump, e.g., here is the pattern for `a|b|c':
7534 
7535                  /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7536                  /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7537                  /exactn/1/c
7538 
7539                  So, we have to first go through the first (n-1)
7540                  alternatives and then deal with the last one separately.  */
7541 
7542 
7543               /* Deal with the first (n-1) alternatives, which start
7544                  with an on_failure_jump (see above) that jumps to right
7545                  past a jump_past_alt.  */
7546 
7547               while ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] ==
7548 		     jump_past_alt)
7549                 {
7550                   /* `mcnt' holds how many bytes long the alternative
7551                      is, including the ending `jump_past_alt' and
7552                      its number.  */
7553 
7554                   if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt -
7555 						(1 + OFFSET_ADDRESS_SIZE),
7556 						reg_info))
7557                     return false;
7558 
7559                   /* Move to right after this alternative, including the
7560 		     jump_past_alt.  */
7561                   p1 += mcnt;
7562 
7563                   /* Break if it's the beginning of an n-th alternative
7564                      that doesn't begin with an on_failure_jump.  */
7565                   if ((re_opcode_t) *p1 != on_failure_jump)
7566                     break;
7567 
7568 		  /* Still have to check that it's not an n-th
7569 		     alternative that starts with an on_failure_jump.  */
7570 		  p1++;
7571                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7572                   if ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] !=
7573 		      jump_past_alt)
7574                     {
7575 		      /* Get to the beginning of the n-th alternative.  */
7576                       p1 -= 1 + OFFSET_ADDRESS_SIZE;
7577                       break;
7578                     }
7579                 }
7580 
7581               /* Deal with the last alternative: go back and get number
7582                  of the `jump_past_alt' just before it.  `mcnt' contains
7583                  the length of the alternative.  */
7584               EXTRACT_NUMBER (mcnt, p1 - OFFSET_ADDRESS_SIZE);
7585 
7586               if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt, reg_info))
7587                 return false;
7588 
7589               p1 += mcnt;	/* Get past the n-th alternative.  */
7590             } /* if mcnt > 0 */
7591           break;
7592 
7593 
7594         case stop_memory:
7595 	  assert (p1[1] == **p);
7596           *p = p1 + 2;
7597           return true;
7598 
7599 
7600         default:
7601           if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7602             return false;
7603         }
7604     } /* while p1 < end */
7605 
7606   return false;
7607 } /* group_match_null_string_p */
7608 
7609 
7610 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7611    It expects P to be the first byte of a single alternative and END one
7612    byte past the last. The alternative can contain groups.  */
7613 
7614 static boolean
7615 PREFIX(alt_match_null_string_p) (UCHAR_T *p, UCHAR_T *end,
7616                                  PREFIX(register_info_type) *reg_info)
7617 {
7618   int mcnt;
7619   UCHAR_T *p1 = p;
7620 
7621   while (p1 < end)
7622     {
7623       /* Skip over opcodes that can match nothing, and break when we get
7624          to one that can't.  */
7625 
7626       switch ((re_opcode_t) *p1)
7627         {
7628 	/* It's a loop.  */
7629         case on_failure_jump:
7630           p1++;
7631           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7632           p1 += mcnt;
7633           break;
7634 
7635 	default:
7636           if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7637             return false;
7638         }
7639     }  /* while p1 < end */
7640 
7641   return true;
7642 } /* alt_match_null_string_p */
7643 
7644 
7645 /* Deals with the ops common to group_match_null_string_p and
7646    alt_match_null_string_p.
7647 
7648    Sets P to one after the op and its arguments, if any.  */
7649 
7650 static boolean
7651 PREFIX(common_op_match_null_string_p) (UCHAR_T **p, UCHAR_T *end,
7652                                        PREFIX(register_info_type) *reg_info)
7653 {
7654   int mcnt;
7655   boolean ret;
7656   int reg_no;
7657   UCHAR_T *p1 = *p;
7658 
7659   switch ((re_opcode_t) *p1++)
7660     {
7661     case no_op:
7662     case begline:
7663     case endline:
7664     case begbuf:
7665     case endbuf:
7666     case wordbeg:
7667     case wordend:
7668     case wordbound:
7669     case notwordbound:
7670 #ifdef emacs
7671     case before_dot:
7672     case at_dot:
7673     case after_dot:
7674 #endif
7675       break;
7676 
7677     case start_memory:
7678       reg_no = *p1;
7679       assert (reg_no > 0 && reg_no <= MAX_REGNUM);
7680       ret = PREFIX(group_match_null_string_p) (&p1, end, reg_info);
7681 
7682       /* Have to set this here in case we're checking a group which
7683          contains a group and a back reference to it.  */
7684 
7685       if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
7686         REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
7687 
7688       if (!ret)
7689         return false;
7690       break;
7691 
7692     /* If this is an optimized succeed_n for zero times, make the jump.  */
7693     case jump:
7694       EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7695       if (mcnt >= 0)
7696         p1 += mcnt;
7697       else
7698         return false;
7699       break;
7700 
7701     case succeed_n:
7702       /* Get to the number of times to succeed.  */
7703       p1 += OFFSET_ADDRESS_SIZE;
7704       EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7705 
7706       if (mcnt == 0)
7707         {
7708           p1 -= 2 * OFFSET_ADDRESS_SIZE;
7709           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7710           p1 += mcnt;
7711         }
7712       else
7713         return false;
7714       break;
7715 
7716     case duplicate:
7717       if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
7718         return false;
7719       break;
7720 
7721     case set_number_at:
7722       p1 += 2 * OFFSET_ADDRESS_SIZE;
7723       return false;
7724 
7725     default:
7726       /* All other opcodes mean we cannot match the empty string.  */
7727       return false;
7728   }
7729 
7730   *p = p1;
7731   return true;
7732 } /* common_op_match_null_string_p */
7733 
7734 
7735 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7736    bytes; nonzero otherwise.  */
7737 
7738 static int
7739 PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2, register int len,
7740                         RE_TRANSLATE_TYPE translate)
7741 {
7742   register const UCHAR_T *p1 = (const UCHAR_T *) s1;
7743   register const UCHAR_T *p2 = (const UCHAR_T *) s2;
7744   while (len)
7745     {
7746 #ifdef WCHAR
7747       if (((*p1<=0xff)?translate[*p1++]:*p1++)
7748 	  != ((*p2<=0xff)?translate[*p2++]:*p2++))
7749 	return 1;
7750 #else /* BYTE */
7751       if (translate[*p1++] != translate[*p2++]) return 1;
7752 #endif /* WCHAR */
7753       len--;
7754     }
7755   return 0;
7756 }
7757 
7758 
7759 #else /* not INSIDE_RECURSION */
7760 
7761 /* Entry points for GNU code.  */
7762 
7763 /* re_compile_pattern is the GNU regular expression compiler: it
7764    compiles PATTERN (of length SIZE) and puts the result in BUFP.
7765    Returns 0 if the pattern was valid, otherwise an error string.
7766 
7767    Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7768    are set in BUFP on entry.
7769 
7770    We call regex_compile to do the actual compilation.  */
7771 
7772 const char *
7773 re_compile_pattern (const char *pattern, size_t length,
7774                     struct re_pattern_buffer *bufp)
7775 {
7776   reg_errcode_t ret;
7777 
7778   /* GNU code is written to assume at least RE_NREGS registers will be set
7779      (and at least one extra will be -1).  */
7780   bufp->regs_allocated = REGS_UNALLOCATED;
7781 
7782   /* And GNU code determines whether or not to get register information
7783      by passing null for the REGS argument to re_match, etc., not by
7784      setting no_sub.  */
7785   bufp->no_sub = 0;
7786 
7787   /* Match anchors at newline.  */
7788   bufp->newline_anchor = 1;
7789 
7790 # ifdef MBS_SUPPORT
7791   if (MB_CUR_MAX != 1)
7792     ret = wcs_regex_compile (pattern, length, re_syntax_options, bufp);
7793   else
7794 # endif
7795     ret = byte_regex_compile (pattern, length, re_syntax_options, bufp);
7796 
7797   if (!ret)
7798     return NULL;
7799   return gettext (re_error_msgid[(int) ret]);
7800 }
7801 #ifdef _LIBC
7802 weak_alias (__re_compile_pattern, re_compile_pattern)
7803 #endif
7804 
7805 /* Entry points compatible with 4.2 BSD regex library.  We don't define
7806    them unless specifically requested.  */
7807 
7808 #if defined _REGEX_RE_COMP || defined _LIBC
7809 
7810 /* BSD has one and only one pattern buffer.  */
7811 static struct re_pattern_buffer re_comp_buf;
7812 
7813 char *
7814 #ifdef _LIBC
7815 /* Make these definitions weak in libc, so POSIX programs can redefine
7816    these names if they don't use our functions, and still use
7817    regcomp/regexec below without link errors.  */
7818 weak_function
7819 #endif
7820 re_comp (const char *s)
7821 {
7822   reg_errcode_t ret;
7823 
7824   if (!s)
7825     {
7826       if (!re_comp_buf.buffer)
7827 	return (char *) gettext ("No previous regular expression");
7828       return 0;
7829     }
7830 
7831   if (!re_comp_buf.buffer)
7832     {
7833       re_comp_buf.buffer = (unsigned char *) malloc (200);
7834       if (re_comp_buf.buffer == NULL)
7835         return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
7836       re_comp_buf.allocated = 200;
7837 
7838       re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
7839       if (re_comp_buf.fastmap == NULL)
7840 	return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
7841     }
7842 
7843   /* Since `re_exec' always passes NULL for the `regs' argument, we
7844      don't need to initialize the pattern buffer fields which affect it.  */
7845 
7846   /* Match anchors at newlines.  */
7847   re_comp_buf.newline_anchor = 1;
7848 
7849 # ifdef MBS_SUPPORT
7850   if (MB_CUR_MAX != 1)
7851     ret = wcs_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7852   else
7853 # endif
7854     ret = byte_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7855 
7856   if (!ret)
7857     return NULL;
7858 
7859   /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
7860   return (char *) gettext (re_error_msgid[(int) ret]);
7861 }
7862 
7863 
7864 int
7865 #ifdef _LIBC
7866 weak_function
7867 #endif
7868 re_exec (const char *s)
7869 {
7870   const int len = strlen (s);
7871   return
7872     0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
7873 }
7874 
7875 #endif /* _REGEX_RE_COMP */
7876 
7877 /* POSIX.2 functions.  Don't define these for Emacs.  */
7878 
7879 #ifndef emacs
7880 
7881 /* regcomp takes a regular expression as a string and compiles it.
7882 
7883    PREG is a regex_t *.  We do not expect any fields to be initialized,
7884    since POSIX says we shouldn't.  Thus, we set
7885 
7886      `buffer' to the compiled pattern;
7887      `used' to the length of the compiled pattern;
7888      `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
7889        REG_EXTENDED bit in CFLAGS is set; otherwise, to
7890        RE_SYNTAX_POSIX_BASIC;
7891      `newline_anchor' to REG_NEWLINE being set in CFLAGS;
7892      `fastmap' to an allocated space for the fastmap;
7893      `fastmap_accurate' to zero;
7894      `re_nsub' to the number of subexpressions in PATTERN.
7895 
7896    PATTERN is the address of the pattern string.
7897 
7898    CFLAGS is a series of bits which affect compilation.
7899 
7900      If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
7901      use POSIX basic syntax.
7902 
7903      If REG_NEWLINE is set, then . and [^...] don't match newline.
7904      Also, regexec will try a match beginning after every newline.
7905 
7906      If REG_ICASE is set, then we considers upper- and lowercase
7907      versions of letters to be equivalent when matching.
7908 
7909      If REG_NOSUB is set, then when PREG is passed to regexec, that
7910      routine will report only success or failure, and nothing about the
7911      registers.
7912 
7913    It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
7914    the return codes and their meanings.)  */
7915 
7916 int
7917 regcomp (regex_t *preg, const char *pattern, int cflags)
7918 {
7919   reg_errcode_t ret;
7920   reg_syntax_t syntax
7921     = (cflags & REG_EXTENDED) ?
7922       RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
7923 
7924   /* regex_compile will allocate the space for the compiled pattern.  */
7925   preg->buffer = 0;
7926   preg->allocated = 0;
7927   preg->used = 0;
7928 
7929   /* Try to allocate space for the fastmap.  */
7930   preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
7931 
7932   if (cflags & REG_ICASE)
7933     {
7934       int i;
7935 
7936       preg->translate
7937 	= (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
7938 				      * sizeof (*(RE_TRANSLATE_TYPE)0));
7939       if (preg->translate == NULL)
7940         return (int) REG_ESPACE;
7941 
7942       /* Map uppercase characters to corresponding lowercase ones.  */
7943       for (i = 0; i < CHAR_SET_SIZE; i++)
7944         preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
7945     }
7946   else
7947     preg->translate = NULL;
7948 
7949   /* If REG_NEWLINE is set, newlines are treated differently.  */
7950   if (cflags & REG_NEWLINE)
7951     { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
7952       syntax &= ~RE_DOT_NEWLINE;
7953       syntax |= RE_HAT_LISTS_NOT_NEWLINE;
7954       /* It also changes the matching behavior.  */
7955       preg->newline_anchor = 1;
7956     }
7957   else
7958     preg->newline_anchor = 0;
7959 
7960   preg->no_sub = !!(cflags & REG_NOSUB);
7961 
7962   /* POSIX says a null character in the pattern terminates it, so we
7963      can use strlen here in compiling the pattern.  */
7964 # ifdef MBS_SUPPORT
7965   if (MB_CUR_MAX != 1)
7966     ret = wcs_regex_compile (pattern, strlen (pattern), syntax, preg);
7967   else
7968 # endif
7969     ret = byte_regex_compile (pattern, strlen (pattern), syntax, preg);
7970 
7971   /* POSIX doesn't distinguish between an unmatched open-group and an
7972      unmatched close-group: both are REG_EPAREN.  */
7973   if (ret == REG_ERPAREN) ret = REG_EPAREN;
7974 
7975   if (ret == REG_NOERROR && preg->fastmap)
7976     {
7977       /* Compute the fastmap now, since regexec cannot modify the pattern
7978 	 buffer.  */
7979       if (re_compile_fastmap (preg) == -2)
7980 	{
7981 	  /* Some error occurred while computing the fastmap, just forget
7982 	     about it.  */
7983 	  free (preg->fastmap);
7984 	  preg->fastmap = NULL;
7985 	}
7986     }
7987 
7988   return (int) ret;
7989 }
7990 #ifdef _LIBC
7991 weak_alias (__regcomp, regcomp)
7992 #endif
7993 
7994 
7995 /* regexec searches for a given pattern, specified by PREG, in the
7996    string STRING.
7997 
7998    If NMATCH is zero or REG_NOSUB was set in the cflags argument to
7999    `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
8000    least NMATCH elements, and we set them to the offsets of the
8001    corresponding matched substrings.
8002 
8003    EFLAGS specifies `execution flags' which affect matching: if
8004    REG_NOTBOL is set, then ^ does not match at the beginning of the
8005    string; if REG_NOTEOL is set, then $ does not match at the end.
8006 
8007    We return 0 if we find a match and REG_NOMATCH if not.  */
8008 
8009 int
8010 regexec (const regex_t *preg, const char *string, size_t nmatch,
8011          regmatch_t pmatch[], int eflags)
8012 {
8013   int ret;
8014   struct re_registers regs;
8015   regex_t private_preg;
8016   int len = strlen (string);
8017   boolean want_reg_info = !preg->no_sub && nmatch > 0;
8018 
8019   private_preg = *preg;
8020 
8021   private_preg.not_bol = !!(eflags & REG_NOTBOL);
8022   private_preg.not_eol = !!(eflags & REG_NOTEOL);
8023 
8024   /* The user has told us exactly how many registers to return
8025      information about, via `nmatch'.  We have to pass that on to the
8026      matching routines.  */
8027   private_preg.regs_allocated = REGS_FIXED;
8028 
8029   if (want_reg_info)
8030     {
8031       regs.num_regs = nmatch;
8032       regs.start = TALLOC (nmatch * 2, regoff_t);
8033       if (regs.start == NULL)
8034         return (int) REG_NOMATCH;
8035       regs.end = regs.start + nmatch;
8036     }
8037 
8038   /* Perform the searching operation.  */
8039   ret = re_search (&private_preg, string, len,
8040                    /* start: */ 0, /* range: */ len,
8041                    want_reg_info ? &regs : (struct re_registers *) 0);
8042 
8043   /* Copy the register information to the POSIX structure.  */
8044   if (want_reg_info)
8045     {
8046       if (ret >= 0)
8047         {
8048           unsigned r;
8049 
8050           for (r = 0; r < nmatch; r++)
8051             {
8052               pmatch[r].rm_so = regs.start[r];
8053               pmatch[r].rm_eo = regs.end[r];
8054             }
8055         }
8056 
8057       /* If we needed the temporary register info, free the space now.  */
8058       free (regs.start);
8059     }
8060 
8061   /* We want zero return to mean success, unlike `re_search'.  */
8062   return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
8063 }
8064 #ifdef _LIBC
8065 weak_alias (__regexec, regexec)
8066 #endif
8067 
8068 
8069 /* Returns a message corresponding to an error code, ERRCODE, returned
8070    from either regcomp or regexec.   We don't use PREG here.  */
8071 
8072 size_t
8073 regerror (int errcode, const regex_t *preg ATTRIBUTE_UNUSED,
8074           char *errbuf, size_t errbuf_size)
8075 {
8076   const char *msg;
8077   size_t msg_size;
8078 
8079   if (errcode < 0
8080       || errcode >= (int) (sizeof (re_error_msgid)
8081 			   / sizeof (re_error_msgid[0])))
8082     /* Only error codes returned by the rest of the code should be passed
8083        to this routine.  If we are given anything else, or if other regex
8084        code generates an invalid error code, then the program has a bug.
8085        Dump core so we can fix it.  */
8086     abort ();
8087 
8088   msg = gettext (re_error_msgid[errcode]);
8089 
8090   msg_size = strlen (msg) + 1; /* Includes the null.  */
8091 
8092   if (errbuf_size != 0)
8093     {
8094       if (msg_size > errbuf_size)
8095         {
8096 #if defined HAVE_MEMPCPY || defined _LIBC
8097 	  *((char *) mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
8098 #else
8099           (void) memcpy (errbuf, msg, errbuf_size - 1);
8100           errbuf[errbuf_size - 1] = 0;
8101 #endif
8102         }
8103       else
8104         (void) memcpy (errbuf, msg, msg_size);
8105     }
8106 
8107   return msg_size;
8108 }
8109 #ifdef _LIBC
8110 weak_alias (__regerror, regerror)
8111 #endif
8112 
8113 
8114 /* Free dynamically allocated space used by PREG.  */
8115 
8116 void
8117 regfree (regex_t *preg)
8118 {
8119   free (preg->buffer);
8120   preg->buffer = NULL;
8121 
8122   preg->allocated = 0;
8123   preg->used = 0;
8124 
8125   free (preg->fastmap);
8126   preg->fastmap = NULL;
8127   preg->fastmap_accurate = 0;
8128 
8129   free (preg->translate);
8130   preg->translate = NULL;
8131 }
8132 #ifdef _LIBC
8133 weak_alias (__regfree, regfree)
8134 #endif
8135 
8136 #endif /* not emacs  */
8137 
8138 #endif /* not INSIDE_RECURSION */
8139 
8140 
8141 #undef STORE_NUMBER
8142 #undef STORE_NUMBER_AND_INCR
8143 #undef EXTRACT_NUMBER
8144 #undef EXTRACT_NUMBER_AND_INCR
8145 
8146 #undef DEBUG_PRINT_COMPILED_PATTERN
8147 #undef DEBUG_PRINT_DOUBLE_STRING
8148 
8149 #undef INIT_FAIL_STACK
8150 #undef RESET_FAIL_STACK
8151 #undef DOUBLE_FAIL_STACK
8152 #undef PUSH_PATTERN_OP
8153 #undef PUSH_FAILURE_POINTER
8154 #undef PUSH_FAILURE_INT
8155 #undef PUSH_FAILURE_ELT
8156 #undef POP_FAILURE_POINTER
8157 #undef POP_FAILURE_INT
8158 #undef POP_FAILURE_ELT
8159 #undef DEBUG_PUSH
8160 #undef DEBUG_POP
8161 #undef PUSH_FAILURE_POINT
8162 #undef POP_FAILURE_POINT
8163 
8164 #undef REG_UNSET_VALUE
8165 #undef REG_UNSET
8166 
8167 #undef PATFETCH
8168 #undef PATFETCH_RAW
8169 #undef PATUNFETCH
8170 #undef TRANSLATE
8171 
8172 #undef INIT_BUF_SIZE
8173 #undef GET_BUFFER_SPACE
8174 #undef BUF_PUSH
8175 #undef BUF_PUSH_2
8176 #undef BUF_PUSH_3
8177 #undef STORE_JUMP
8178 #undef STORE_JUMP2
8179 #undef INSERT_JUMP
8180 #undef INSERT_JUMP2
8181 #undef EXTEND_BUFFER
8182 #undef GET_UNSIGNED_NUMBER
8183 #undef FREE_STACK_RETURN
8184 
8185 # undef POINTER_TO_OFFSET
8186 # undef MATCHING_IN_FRST_STRING
8187 # undef PREFETCH
8188 # undef AT_STRINGS_BEG
8189 # undef AT_STRINGS_END
8190 # undef WORDCHAR_P
8191 # undef FREE_VAR
8192 # undef FREE_VARIABLES
8193 # undef NO_HIGHEST_ACTIVE_REG
8194 # undef NO_LOWEST_ACTIVE_REG
8195 
8196 # undef CHAR_T
8197 # undef UCHAR_T
8198 # undef COMPILED_BUFFER_VAR
8199 # undef OFFSET_ADDRESS_SIZE
8200 # undef CHAR_CLASS_SIZE
8201 # undef PREFIX
8202 # undef ARG_PREFIX
8203 # undef PUT_CHAR
8204 # undef BYTE
8205 # undef WCHAR
8206 
8207 # define DEFINED_ONCE
8208