1*38fd1498Szrj // Special functions -*- C++ -*-
2*38fd1498Szrj 
3*38fd1498Szrj // Copyright (C) 2006-2018 Free Software Foundation, Inc.
4*38fd1498Szrj //
5*38fd1498Szrj // This file is part of the GNU ISO C++ Library.  This library is free
6*38fd1498Szrj // software; you can redistribute it and/or modify it under the
7*38fd1498Szrj // terms of the GNU General Public License as published by the
8*38fd1498Szrj // Free Software Foundation; either version 3, or (at your option)
9*38fd1498Szrj // any later version.
10*38fd1498Szrj //
11*38fd1498Szrj // This library is distributed in the hope that it will be useful,
12*38fd1498Szrj // but WITHOUT ANY WARRANTY; without even the implied warranty of
13*38fd1498Szrj // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14*38fd1498Szrj // GNU General Public License for more details.
15*38fd1498Szrj //
16*38fd1498Szrj // Under Section 7 of GPL version 3, you are granted additional
17*38fd1498Szrj // permissions described in the GCC Runtime Library Exception, version
18*38fd1498Szrj // 3.1, as published by the Free Software Foundation.
19*38fd1498Szrj 
20*38fd1498Szrj // You should have received a copy of the GNU General Public License and
21*38fd1498Szrj // a copy of the GCC Runtime Library Exception along with this program;
22*38fd1498Szrj // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23*38fd1498Szrj // <http://www.gnu.org/licenses/>.
24*38fd1498Szrj 
25*38fd1498Szrj /** @file tr1/poly_laguerre.tcc
26*38fd1498Szrj  *  This is an internal header file, included by other library headers.
27*38fd1498Szrj  *  Do not attempt to use it directly. @headername{tr1/cmath}
28*38fd1498Szrj  */
29*38fd1498Szrj 
30*38fd1498Szrj //
31*38fd1498Szrj // ISO C++ 14882 TR1: 5.2  Special functions
32*38fd1498Szrj //
33*38fd1498Szrj 
34*38fd1498Szrj // Written by Edward Smith-Rowland based on:
35*38fd1498Szrj //   (1) Handbook of Mathematical Functions,
36*38fd1498Szrj //       Ed. Milton Abramowitz and Irene A. Stegun,
37*38fd1498Szrj //       Dover Publications,
38*38fd1498Szrj //       Section 13, pp. 509-510, Section 22 pp. 773-802
39*38fd1498Szrj //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
40*38fd1498Szrj 
41*38fd1498Szrj #ifndef _GLIBCXX_TR1_POLY_LAGUERRE_TCC
42*38fd1498Szrj #define _GLIBCXX_TR1_POLY_LAGUERRE_TCC 1
43*38fd1498Szrj 
44*38fd1498Szrj namespace std _GLIBCXX_VISIBILITY(default)
45*38fd1498Szrj {
46*38fd1498Szrj _GLIBCXX_BEGIN_NAMESPACE_VERSION
47*38fd1498Szrj 
48*38fd1498Szrj #if _GLIBCXX_USE_STD_SPEC_FUNCS
49*38fd1498Szrj # define _GLIBCXX_MATH_NS ::std
50*38fd1498Szrj #elif defined(_GLIBCXX_TR1_CMATH)
51*38fd1498Szrj namespace tr1
52*38fd1498Szrj {
53*38fd1498Szrj # define _GLIBCXX_MATH_NS ::std::tr1
54*38fd1498Szrj #else
55*38fd1498Szrj # error do not include this header directly, use <cmath> or <tr1/cmath>
56*38fd1498Szrj #endif
57*38fd1498Szrj   // [5.2] Special functions
58*38fd1498Szrj 
59*38fd1498Szrj   // Implementation-space details.
60*38fd1498Szrj   namespace __detail
61*38fd1498Szrj   {
62*38fd1498Szrj     /**
63*38fd1498Szrj      *   @brief This routine returns the associated Laguerre polynomial
64*38fd1498Szrj      *          of order @f$ n @f$, degree @f$ \alpha @f$ for large n.
65*38fd1498Szrj      *   Abramowitz & Stegun, 13.5.21
66*38fd1498Szrj      *
67*38fd1498Szrj      *   @param __n The order of the Laguerre function.
68*38fd1498Szrj      *   @param __alpha The degree of the Laguerre function.
69*38fd1498Szrj      *   @param __x The argument of the Laguerre function.
70*38fd1498Szrj      *   @return The value of the Laguerre function of order n,
71*38fd1498Szrj      *           degree @f$ \alpha @f$, and argument x.
72*38fd1498Szrj      *
73*38fd1498Szrj      *  This is from the GNU Scientific Library.
74*38fd1498Szrj      */
75*38fd1498Szrj     template<typename _Tpa, typename _Tp>
76*38fd1498Szrj     _Tp
__poly_laguerre_large_n(unsigned __n,_Tpa __alpha1,_Tp __x)77*38fd1498Szrj     __poly_laguerre_large_n(unsigned __n, _Tpa __alpha1, _Tp __x)
78*38fd1498Szrj     {
79*38fd1498Szrj       const _Tp __a = -_Tp(__n);
80*38fd1498Szrj       const _Tp __b = _Tp(__alpha1) + _Tp(1);
81*38fd1498Szrj       const _Tp __eta = _Tp(2) * __b - _Tp(4) * __a;
82*38fd1498Szrj       const _Tp __cos2th = __x / __eta;
83*38fd1498Szrj       const _Tp __sin2th = _Tp(1) - __cos2th;
84*38fd1498Szrj       const _Tp __th = std::acos(std::sqrt(__cos2th));
85*38fd1498Szrj       const _Tp __pre_h = __numeric_constants<_Tp>::__pi_2()
86*38fd1498Szrj                         * __numeric_constants<_Tp>::__pi_2()
87*38fd1498Szrj                         * __eta * __eta * __cos2th * __sin2th;
88*38fd1498Szrj 
89*38fd1498Szrj #if _GLIBCXX_USE_C99_MATH_TR1
90*38fd1498Szrj       const _Tp __lg_b = _GLIBCXX_MATH_NS::lgamma(_Tp(__n) + __b);
91*38fd1498Szrj       const _Tp __lnfact = _GLIBCXX_MATH_NS::lgamma(_Tp(__n + 1));
92*38fd1498Szrj #else
93*38fd1498Szrj       const _Tp __lg_b = __log_gamma(_Tp(__n) + __b);
94*38fd1498Szrj       const _Tp __lnfact = __log_gamma(_Tp(__n + 1));
95*38fd1498Szrj #endif
96*38fd1498Szrj 
97*38fd1498Szrj       _Tp __pre_term1 = _Tp(0.5L) * (_Tp(1) - __b)
98*38fd1498Szrj                       * std::log(_Tp(0.25L) * __x * __eta);
99*38fd1498Szrj       _Tp __pre_term2 = _Tp(0.25L) * std::log(__pre_h);
100*38fd1498Szrj       _Tp __lnpre = __lg_b - __lnfact + _Tp(0.5L) * __x
101*38fd1498Szrj                       + __pre_term1 - __pre_term2;
102*38fd1498Szrj       _Tp __ser_term1 = std::sin(__a * __numeric_constants<_Tp>::__pi());
103*38fd1498Szrj       _Tp __ser_term2 = std::sin(_Tp(0.25L) * __eta
104*38fd1498Szrj                               * (_Tp(2) * __th
105*38fd1498Szrj                                - std::sin(_Tp(2) * __th))
106*38fd1498Szrj                                + __numeric_constants<_Tp>::__pi_4());
107*38fd1498Szrj       _Tp __ser = __ser_term1 + __ser_term2;
108*38fd1498Szrj 
109*38fd1498Szrj       return std::exp(__lnpre) * __ser;
110*38fd1498Szrj     }
111*38fd1498Szrj 
112*38fd1498Szrj 
113*38fd1498Szrj     /**
114*38fd1498Szrj      *  @brief  Evaluate the polynomial based on the confluent hypergeometric
115*38fd1498Szrj      *          function in a safe way, with no restriction on the arguments.
116*38fd1498Szrj      *
117*38fd1498Szrj      *   The associated Laguerre function is defined by
118*38fd1498Szrj      *   @f[
119*38fd1498Szrj      *       L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
120*38fd1498Szrj      *                       _1F_1(-n; \alpha + 1; x)
121*38fd1498Szrj      *   @f]
122*38fd1498Szrj      *   where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
123*38fd1498Szrj      *   @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
124*38fd1498Szrj      *
125*38fd1498Szrj      *  This function assumes x != 0.
126*38fd1498Szrj      *
127*38fd1498Szrj      *  This is from the GNU Scientific Library.
128*38fd1498Szrj      */
129*38fd1498Szrj     template<typename _Tpa, typename _Tp>
130*38fd1498Szrj     _Tp
__poly_laguerre_hyperg(unsigned int __n,_Tpa __alpha1,_Tp __x)131*38fd1498Szrj     __poly_laguerre_hyperg(unsigned int __n, _Tpa __alpha1, _Tp __x)
132*38fd1498Szrj     {
133*38fd1498Szrj       const _Tp __b = _Tp(__alpha1) + _Tp(1);
134*38fd1498Szrj       const _Tp __mx = -__x;
135*38fd1498Szrj       const _Tp __tc_sgn = (__x < _Tp(0) ? _Tp(1)
136*38fd1498Szrj                          : ((__n % 2 == 1) ? -_Tp(1) : _Tp(1)));
137*38fd1498Szrj       //  Get |x|^n/n!
138*38fd1498Szrj       _Tp __tc = _Tp(1);
139*38fd1498Szrj       const _Tp __ax = std::abs(__x);
140*38fd1498Szrj       for (unsigned int __k = 1; __k <= __n; ++__k)
141*38fd1498Szrj         __tc *= (__ax / __k);
142*38fd1498Szrj 
143*38fd1498Szrj       _Tp __term = __tc * __tc_sgn;
144*38fd1498Szrj       _Tp __sum = __term;
145*38fd1498Szrj       for (int __k = int(__n) - 1; __k >= 0; --__k)
146*38fd1498Szrj         {
147*38fd1498Szrj           __term *= ((__b + _Tp(__k)) / _Tp(int(__n) - __k))
148*38fd1498Szrj                   * _Tp(__k + 1) / __mx;
149*38fd1498Szrj           __sum += __term;
150*38fd1498Szrj         }
151*38fd1498Szrj 
152*38fd1498Szrj       return __sum;
153*38fd1498Szrj     }
154*38fd1498Szrj 
155*38fd1498Szrj 
156*38fd1498Szrj     /**
157*38fd1498Szrj      *   @brief This routine returns the associated Laguerre polynomial
158*38fd1498Szrj      *          of order @f$ n @f$, degree @f$ \alpha @f$: @f$ L_n^\alpha(x) @f$
159*38fd1498Szrj      *          by recursion.
160*38fd1498Szrj      *
161*38fd1498Szrj      *   The associated Laguerre function is defined by
162*38fd1498Szrj      *   @f[
163*38fd1498Szrj      *       L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
164*38fd1498Szrj      *                       _1F_1(-n; \alpha + 1; x)
165*38fd1498Szrj      *   @f]
166*38fd1498Szrj      *   where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
167*38fd1498Szrj      *   @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
168*38fd1498Szrj      *
169*38fd1498Szrj      *   The associated Laguerre polynomial is defined for integral
170*38fd1498Szrj      *   @f$ \alpha = m @f$ by:
171*38fd1498Szrj      *   @f[
172*38fd1498Szrj      *       L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
173*38fd1498Szrj      *   @f]
174*38fd1498Szrj      *   where the Laguerre polynomial is defined by:
175*38fd1498Szrj      *   @f[
176*38fd1498Szrj      *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
177*38fd1498Szrj      *   @f]
178*38fd1498Szrj      *
179*38fd1498Szrj      *   @param __n The order of the Laguerre function.
180*38fd1498Szrj      *   @param __alpha The degree of the Laguerre function.
181*38fd1498Szrj      *   @param __x The argument of the Laguerre function.
182*38fd1498Szrj      *   @return The value of the Laguerre function of order n,
183*38fd1498Szrj      *           degree @f$ \alpha @f$, and argument x.
184*38fd1498Szrj      */
185*38fd1498Szrj     template<typename _Tpa, typename _Tp>
186*38fd1498Szrj     _Tp
__poly_laguerre_recursion(unsigned int __n,_Tpa __alpha1,_Tp __x)187*38fd1498Szrj     __poly_laguerre_recursion(unsigned int __n, _Tpa __alpha1, _Tp __x)
188*38fd1498Szrj     {
189*38fd1498Szrj       //   Compute l_0.
190*38fd1498Szrj       _Tp __l_0 = _Tp(1);
191*38fd1498Szrj       if  (__n == 0)
192*38fd1498Szrj         return __l_0;
193*38fd1498Szrj 
194*38fd1498Szrj       //  Compute l_1^alpha.
195*38fd1498Szrj       _Tp __l_1 = -__x + _Tp(1) + _Tp(__alpha1);
196*38fd1498Szrj       if  (__n == 1)
197*38fd1498Szrj         return __l_1;
198*38fd1498Szrj 
199*38fd1498Szrj       //  Compute l_n^alpha by recursion on n.
200*38fd1498Szrj       _Tp __l_n2 = __l_0;
201*38fd1498Szrj       _Tp __l_n1 = __l_1;
202*38fd1498Szrj       _Tp __l_n = _Tp(0);
203*38fd1498Szrj       for  (unsigned int __nn = 2; __nn <= __n; ++__nn)
204*38fd1498Szrj         {
205*38fd1498Szrj             __l_n = (_Tp(2 * __nn - 1) + _Tp(__alpha1) - __x)
206*38fd1498Szrj                   * __l_n1 / _Tp(__nn)
207*38fd1498Szrj                   - (_Tp(__nn - 1) + _Tp(__alpha1)) * __l_n2 / _Tp(__nn);
208*38fd1498Szrj             __l_n2 = __l_n1;
209*38fd1498Szrj             __l_n1 = __l_n;
210*38fd1498Szrj         }
211*38fd1498Szrj 
212*38fd1498Szrj       return __l_n;
213*38fd1498Szrj     }
214*38fd1498Szrj 
215*38fd1498Szrj 
216*38fd1498Szrj     /**
217*38fd1498Szrj      *   @brief This routine returns the associated Laguerre polynomial
218*38fd1498Szrj      *          of order n, degree @f$ \alpha @f$: @f$ L_n^alpha(x) @f$.
219*38fd1498Szrj      *
220*38fd1498Szrj      *   The associated Laguerre function is defined by
221*38fd1498Szrj      *   @f[
222*38fd1498Szrj      *       L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
223*38fd1498Szrj      *                       _1F_1(-n; \alpha + 1; x)
224*38fd1498Szrj      *   @f]
225*38fd1498Szrj      *   where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
226*38fd1498Szrj      *   @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
227*38fd1498Szrj      *
228*38fd1498Szrj      *   The associated Laguerre polynomial is defined for integral
229*38fd1498Szrj      *   @f$ \alpha = m @f$ by:
230*38fd1498Szrj      *   @f[
231*38fd1498Szrj      *       L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
232*38fd1498Szrj      *   @f]
233*38fd1498Szrj      *   where the Laguerre polynomial is defined by:
234*38fd1498Szrj      *   @f[
235*38fd1498Szrj      *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
236*38fd1498Szrj      *   @f]
237*38fd1498Szrj      *
238*38fd1498Szrj      *   @param __n The order of the Laguerre function.
239*38fd1498Szrj      *   @param __alpha The degree of the Laguerre function.
240*38fd1498Szrj      *   @param __x The argument of the Laguerre function.
241*38fd1498Szrj      *   @return The value of the Laguerre function of order n,
242*38fd1498Szrj      *           degree @f$ \alpha @f$, and argument x.
243*38fd1498Szrj      */
244*38fd1498Szrj     template<typename _Tpa, typename _Tp>
245*38fd1498Szrj     _Tp
__poly_laguerre(unsigned int __n,_Tpa __alpha1,_Tp __x)246*38fd1498Szrj     __poly_laguerre(unsigned int __n, _Tpa __alpha1, _Tp __x)
247*38fd1498Szrj     {
248*38fd1498Szrj       if (__x < _Tp(0))
249*38fd1498Szrj         std::__throw_domain_error(__N("Negative argument "
250*38fd1498Szrj                                       "in __poly_laguerre."));
251*38fd1498Szrj       //  Return NaN on NaN input.
252*38fd1498Szrj       else if (__isnan(__x))
253*38fd1498Szrj         return std::numeric_limits<_Tp>::quiet_NaN();
254*38fd1498Szrj       else if (__n == 0)
255*38fd1498Szrj         return _Tp(1);
256*38fd1498Szrj       else if (__n == 1)
257*38fd1498Szrj         return _Tp(1) + _Tp(__alpha1) - __x;
258*38fd1498Szrj       else if (__x == _Tp(0))
259*38fd1498Szrj         {
260*38fd1498Szrj           _Tp __prod = _Tp(__alpha1) + _Tp(1);
261*38fd1498Szrj           for (unsigned int __k = 2; __k <= __n; ++__k)
262*38fd1498Szrj             __prod *= (_Tp(__alpha1) + _Tp(__k)) / _Tp(__k);
263*38fd1498Szrj           return __prod;
264*38fd1498Szrj         }
265*38fd1498Szrj       else if (__n > 10000000 && _Tp(__alpha1) > -_Tp(1)
266*38fd1498Szrj             && __x < _Tp(2) * (_Tp(__alpha1) + _Tp(1)) + _Tp(4 * __n))
267*38fd1498Szrj         return __poly_laguerre_large_n(__n, __alpha1, __x);
268*38fd1498Szrj       else if (_Tp(__alpha1) >= _Tp(0)
269*38fd1498Szrj            || (__x > _Tp(0) && _Tp(__alpha1) < -_Tp(__n + 1)))
270*38fd1498Szrj         return __poly_laguerre_recursion(__n, __alpha1, __x);
271*38fd1498Szrj       else
272*38fd1498Szrj         return __poly_laguerre_hyperg(__n, __alpha1, __x);
273*38fd1498Szrj     }
274*38fd1498Szrj 
275*38fd1498Szrj 
276*38fd1498Szrj     /**
277*38fd1498Szrj      *   @brief This routine returns the associated Laguerre polynomial
278*38fd1498Szrj      *          of order n, degree m: @f$ L_n^m(x) @f$.
279*38fd1498Szrj      *
280*38fd1498Szrj      *   The associated Laguerre polynomial is defined for integral
281*38fd1498Szrj      *   @f$ \alpha = m @f$ by:
282*38fd1498Szrj      *   @f[
283*38fd1498Szrj      *       L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
284*38fd1498Szrj      *   @f]
285*38fd1498Szrj      *   where the Laguerre polynomial is defined by:
286*38fd1498Szrj      *   @f[
287*38fd1498Szrj      *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
288*38fd1498Szrj      *   @f]
289*38fd1498Szrj      *
290*38fd1498Szrj      *   @param __n The order of the Laguerre polynomial.
291*38fd1498Szrj      *   @param __m The degree of the Laguerre polynomial.
292*38fd1498Szrj      *   @param __x The argument of the Laguerre polynomial.
293*38fd1498Szrj      *   @return The value of the associated Laguerre polynomial of order n,
294*38fd1498Szrj      *           degree m, and argument x.
295*38fd1498Szrj      */
296*38fd1498Szrj     template<typename _Tp>
297*38fd1498Szrj     inline _Tp
__assoc_laguerre(unsigned int __n,unsigned int __m,_Tp __x)298*38fd1498Szrj     __assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x)
299*38fd1498Szrj     { return __poly_laguerre<unsigned int, _Tp>(__n, __m, __x); }
300*38fd1498Szrj 
301*38fd1498Szrj 
302*38fd1498Szrj     /**
303*38fd1498Szrj      *   @brief This routine returns the Laguerre polynomial
304*38fd1498Szrj      *          of order n: @f$ L_n(x) @f$.
305*38fd1498Szrj      *
306*38fd1498Szrj      *   The Laguerre polynomial is defined by:
307*38fd1498Szrj      *   @f[
308*38fd1498Szrj      *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
309*38fd1498Szrj      *   @f]
310*38fd1498Szrj      *
311*38fd1498Szrj      *   @param __n The order of the Laguerre polynomial.
312*38fd1498Szrj      *   @param __x The argument of the Laguerre polynomial.
313*38fd1498Szrj      *   @return The value of the Laguerre polynomial of order n
314*38fd1498Szrj      *           and argument x.
315*38fd1498Szrj      */
316*38fd1498Szrj     template<typename _Tp>
317*38fd1498Szrj     inline _Tp
__laguerre(unsigned int __n,_Tp __x)318*38fd1498Szrj     __laguerre(unsigned int __n, _Tp __x)
319*38fd1498Szrj     { return __poly_laguerre<unsigned int, _Tp>(__n, 0, __x); }
320*38fd1498Szrj   } // namespace __detail
321*38fd1498Szrj #undef _GLIBCXX_MATH_NS
322*38fd1498Szrj #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
323*38fd1498Szrj } // namespace tr1
324*38fd1498Szrj #endif
325*38fd1498Szrj 
326*38fd1498Szrj _GLIBCXX_END_NAMESPACE_VERSION
327*38fd1498Szrj }
328*38fd1498Szrj 
329*38fd1498Szrj #endif // _GLIBCXX_TR1_POLY_LAGUERRE_TCC
330