1 // Optimizations for random number functions, x86 version -*- C++ -*-
2 
3 // Copyright (C) 2012-2018 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file bits/opt_random.h
26  *  This is an internal header file, included by other library headers.
27  *  Do not attempt to use it directly. @headername{random}
28  */
29 
30 #ifndef _BITS_OPT_RANDOM_H
31 #define _BITS_OPT_RANDOM_H 1
32 
33 #ifdef __SSE3__
34 #include <pmmintrin.h>
35 #endif
36 
37 
38 #pragma GCC system_header
39 
40 
41 namespace std _GLIBCXX_VISIBILITY(default)
42 {
43 _GLIBCXX_BEGIN_NAMESPACE_VERSION
44 
45 #ifdef __SSE3__
46   template<>
47     template<typename _UniformRandomNumberGenerator>
48       void
49       normal_distribution<double>::
50       __generate(typename normal_distribution<double>::result_type* __f,
51 		 typename normal_distribution<double>::result_type* __t,
52 		 _UniformRandomNumberGenerator& __urng,
53 		 const param_type& __param)
54       {
55 	typedef uint64_t __uctype;
56 
57 	if (__f == __t)
58 	  return;
59 
60 	if (_M_saved_available)
61 	  {
62 	    _M_saved_available = false;
63 	    *__f++ = _M_saved * __param.stddev() + __param.mean();
64 
65 	    if (__f == __t)
66 	      return;
67 	  }
68 
69 	constexpr uint64_t __maskval = 0xfffffffffffffull;
70 	static const __m128i __mask = _mm_set1_epi64x(__maskval);
71 	static const __m128i __two = _mm_set1_epi64x(0x4000000000000000ull);
72 	static const __m128d __three = _mm_set1_pd(3.0);
73 	const __m128d __av = _mm_set1_pd(__param.mean());
74 
75 	const __uctype __urngmin = __urng.min();
76 	const __uctype __urngmax = __urng.max();
77 	const __uctype __urngrange = __urngmax - __urngmin;
78 	const __uctype __uerngrange = __urngrange + 1;
79 
80 	while (__f + 1 < __t)
81 	  {
82 	    double __le;
83 	    __m128d __x;
84 	    do
85 	      {
86                 union
87                 {
88                   __m128i __i;
89                   __m128d __d;
90 		} __v;
91 
92 		if (__urngrange > __maskval)
93 		  {
94 		    if (__detail::_Power_of_2(__uerngrange))
95 		      __v.__i = _mm_and_si128(_mm_set_epi64x(__urng(),
96 							     __urng()),
97 					      __mask);
98 		    else
99 		      {
100 			const __uctype __uerange = __maskval + 1;
101 			const __uctype __scaling = __urngrange / __uerange;
102 			const __uctype __past = __uerange * __scaling;
103 			uint64_t __v1;
104 			do
105 			  __v1 = __uctype(__urng()) - __urngmin;
106 			while (__v1 >= __past);
107 			__v1 /= __scaling;
108 			uint64_t __v2;
109 			do
110 			  __v2 = __uctype(__urng()) - __urngmin;
111 			while (__v2 >= __past);
112 			__v2 /= __scaling;
113 
114 			__v.__i = _mm_set_epi64x(__v1, __v2);
115 		      }
116 		  }
117 		else if (__urngrange == __maskval)
118 		  __v.__i = _mm_set_epi64x(__urng(), __urng());
119 		else if ((__urngrange + 2) * __urngrange >= __maskval
120 			 && __detail::_Power_of_2(__uerngrange))
121 		  {
122 		    uint64_t __v1 = __urng() * __uerngrange + __urng();
123 		    uint64_t __v2 = __urng() * __uerngrange + __urng();
124 
125 		    __v.__i = _mm_and_si128(_mm_set_epi64x(__v1, __v2),
126 					    __mask);
127 		  }
128 		else
129 		  {
130 		    size_t __nrng = 2;
131 		    __uctype __high = __maskval / __uerngrange / __uerngrange;
132 		    while (__high > __uerngrange)
133 		      {
134 			++__nrng;
135 			__high /= __uerngrange;
136 		      }
137 		    const __uctype __highrange = __high + 1;
138 		    const __uctype __scaling = __urngrange / __highrange;
139 		    const __uctype __past = __highrange * __scaling;
140 		    __uctype __tmp;
141 
142 		    uint64_t __v1;
143 		    do
144 		      {
145 			do
146 			  __tmp = __uctype(__urng()) - __urngmin;
147 			while (__tmp >= __past);
148 			__v1 = __tmp / __scaling;
149 			for (size_t __cnt = 0; __cnt < __nrng; ++__cnt)
150 			  {
151 			    __tmp = __v1;
152 			    __v1 *= __uerngrange;
153 			    __v1 += __uctype(__urng()) - __urngmin;
154 			  }
155 		      }
156 		    while (__v1 > __maskval || __v1 < __tmp);
157 
158 		    uint64_t __v2;
159 		    do
160 		      {
161 			do
162 			  __tmp = __uctype(__urng()) - __urngmin;
163 			while (__tmp >= __past);
164 			__v2 = __tmp / __scaling;
165 			for (size_t __cnt = 0; __cnt < __nrng; ++__cnt)
166 			  {
167 			    __tmp = __v2;
168 			    __v2 *= __uerngrange;
169 			    __v2 += __uctype(__urng()) - __urngmin;
170 			  }
171 		      }
172 		    while (__v2 > __maskval || __v2 < __tmp);
173 
174 		    __v.__i = _mm_set_epi64x(__v1, __v2);
175 		  }
176 
177 		__v.__i = _mm_or_si128(__v.__i, __two);
178 		__x = _mm_sub_pd(__v.__d, __three);
179 		__m128d __m = _mm_mul_pd(__x, __x);
180 		__le = _mm_cvtsd_f64(_mm_hadd_pd (__m, __m));
181               }
182             while (__le == 0.0 || __le >= 1.0);
183 
184             double __mult = (std::sqrt(-2.0 * std::log(__le) / __le)
185                              * __param.stddev());
186 
187             __x = _mm_add_pd(_mm_mul_pd(__x, _mm_set1_pd(__mult)), __av);
188 
189             _mm_storeu_pd(__f, __x);
190             __f += 2;
191           }
192 
193         if (__f != __t)
194           {
195             result_type __x, __y, __r2;
196 
197             __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
198               __aurng(__urng);
199 
200             do
201               {
202                 __x = result_type(2.0) * __aurng() - 1.0;
203                 __y = result_type(2.0) * __aurng() - 1.0;
204                 __r2 = __x * __x + __y * __y;
205               }
206             while (__r2 > 1.0 || __r2 == 0.0);
207 
208             const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2);
209             _M_saved = __x * __mult;
210             _M_saved_available = true;
211             *__f = __y * __mult * __param.stddev() + __param.mean();
212           }
213       }
214 #endif
215 
216 
217 _GLIBCXX_END_NAMESPACE_VERSION
218 } // namespace
219 
220 
221 #endif // _BITS_OPT_RANDOM_H
222