1 // hashtable.h header -*- C++ -*-
2 
3 // Copyright (C) 2007-2018 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file bits/hashtable.h
26  *  This is an internal header file, included by other library headers.
27  *  Do not attempt to use it directly. @headername{unordered_map, unordered_set}
28  */
29 
30 #ifndef _HASHTABLE_H
31 #define _HASHTABLE_H 1
32 
33 #pragma GCC system_header
34 
35 #include <bits/hashtable_policy.h>
36 #if __cplusplus > 201402L
37 # include <bits/node_handle.h>
38 #endif
39 
40 namespace std _GLIBCXX_VISIBILITY(default)
41 {
42 _GLIBCXX_BEGIN_NAMESPACE_VERSION
43 
44   template<typename _Tp, typename _Hash>
45     using __cache_default
46       =  __not_<__and_<// Do not cache for fast hasher.
47 		       __is_fast_hash<_Hash>,
48 		       // Mandatory to have erase not throwing.
49 		       __is_nothrow_invocable<const _Hash&, const _Tp&>>>;
50 
51   /**
52    *  Primary class template _Hashtable.
53    *
54    *  @ingroup hashtable-detail
55    *
56    *  @tparam _Value  CopyConstructible type.
57    *
58    *  @tparam _Key    CopyConstructible type.
59    *
60    *  @tparam _Alloc  An allocator type
61    *  ([lib.allocator.requirements]) whose _Alloc::value_type is
62    *  _Value.  As a conforming extension, we allow for
63    *  _Alloc::value_type != _Value.
64    *
65    *  @tparam _ExtractKey  Function object that takes an object of type
66    *  _Value and returns a value of type _Key.
67    *
68    *  @tparam _Equal  Function object that takes two objects of type k
69    *  and returns a bool-like value that is true if the two objects
70    *  are considered equal.
71    *
72    *  @tparam _H1  The hash function. A unary function object with
73    *  argument type _Key and result type size_t. Return values should
74    *  be distributed over the entire range [0, numeric_limits<size_t>:::max()].
75    *
76    *  @tparam _H2  The range-hashing function (in the terminology of
77    *  Tavori and Dreizin).  A binary function object whose argument
78    *  types and result type are all size_t.  Given arguments r and N,
79    *  the return value is in the range [0, N).
80    *
81    *  @tparam _Hash  The ranged hash function (Tavori and Dreizin). A
82    *  binary function whose argument types are _Key and size_t and
83    *  whose result type is size_t.  Given arguments k and N, the
84    *  return value is in the range [0, N).  Default: hash(k, N) =
85    *  h2(h1(k), N).  If _Hash is anything other than the default, _H1
86    *  and _H2 are ignored.
87    *
88    *  @tparam _RehashPolicy  Policy class with three members, all of
89    *  which govern the bucket count. _M_next_bkt(n) returns a bucket
90    *  count no smaller than n.  _M_bkt_for_elements(n) returns a
91    *  bucket count appropriate for an element count of n.
92    *  _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the
93    *  current bucket count is n_bkt and the current element count is
94    *  n_elt, we need to increase the bucket count.  If so, returns
95    *  make_pair(true, n), where n is the new bucket count.  If not,
96    *  returns make_pair(false, <anything>)
97    *
98    *  @tparam _Traits  Compile-time class with three boolean
99    *  std::integral_constant members:  __cache_hash_code, __constant_iterators,
100    *   __unique_keys.
101    *
102    *  Each _Hashtable data structure has:
103    *
104    *  - _Bucket[]       _M_buckets
105    *  - _Hash_node_base _M_before_begin
106    *  - size_type       _M_bucket_count
107    *  - size_type       _M_element_count
108    *
109    *  with _Bucket being _Hash_node* and _Hash_node containing:
110    *
111    *  - _Hash_node*   _M_next
112    *  - Tp            _M_value
113    *  - size_t        _M_hash_code if cache_hash_code is true
114    *
115    *  In terms of Standard containers the hashtable is like the aggregation of:
116    *
117    *  - std::forward_list<_Node> containing the elements
118    *  - std::vector<std::forward_list<_Node>::iterator> representing the buckets
119    *
120    *  The non-empty buckets contain the node before the first node in the
121    *  bucket. This design makes it possible to implement something like a
122    *  std::forward_list::insert_after on container insertion and
123    *  std::forward_list::erase_after on container erase
124    *  calls. _M_before_begin is equivalent to
125    *  std::forward_list::before_begin. Empty buckets contain
126    *  nullptr.  Note that one of the non-empty buckets contains
127    *  &_M_before_begin which is not a dereferenceable node so the
128    *  node pointer in a bucket shall never be dereferenced, only its
129    *  next node can be.
130    *
131    *  Walking through a bucket's nodes requires a check on the hash code to
132    *  see if each node is still in the bucket. Such a design assumes a
133    *  quite efficient hash functor and is one of the reasons it is
134    *  highly advisable to set __cache_hash_code to true.
135    *
136    *  The container iterators are simply built from nodes. This way
137    *  incrementing the iterator is perfectly efficient independent of
138    *  how many empty buckets there are in the container.
139    *
140    *  On insert we compute the element's hash code and use it to find the
141    *  bucket index. If the element must be inserted in an empty bucket
142    *  we add it at the beginning of the singly linked list and make the
143    *  bucket point to _M_before_begin. The bucket that used to point to
144    *  _M_before_begin, if any, is updated to point to its new before
145    *  begin node.
146    *
147    *  On erase, the simple iterator design requires using the hash
148    *  functor to get the index of the bucket to update. For this
149    *  reason, when __cache_hash_code is set to false the hash functor must
150    *  not throw and this is enforced by a static assertion.
151    *
152    *  Functionality is implemented by decomposition into base classes,
153    *  where the derived _Hashtable class is used in _Map_base,
154    *  _Insert, _Rehash_base, and _Equality base classes to access the
155    *  "this" pointer. _Hashtable_base is used in the base classes as a
156    *  non-recursive, fully-completed-type so that detailed nested type
157    *  information, such as iterator type and node type, can be
158    *  used. This is similar to the "Curiously Recurring Template
159    *  Pattern" (CRTP) technique, but uses a reconstructed, not
160    *  explicitly passed, template pattern.
161    *
162    *  Base class templates are:
163    *    - __detail::_Hashtable_base
164    *    - __detail::_Map_base
165    *    - __detail::_Insert
166    *    - __detail::_Rehash_base
167    *    - __detail::_Equality
168    */
169   template<typename _Key, typename _Value, typename _Alloc,
170 	   typename _ExtractKey, typename _Equal,
171 	   typename _H1, typename _H2, typename _Hash,
172 	   typename _RehashPolicy, typename _Traits>
173     class _Hashtable
174     : public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal,
175 				       _H1, _H2, _Hash, _Traits>,
176       public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
177 				 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
178       public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
179 			       _H1, _H2, _Hash, _RehashPolicy, _Traits>,
180       public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
181 				    _H1, _H2, _Hash, _RehashPolicy, _Traits>,
182       public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
183 				 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
184       private __detail::_Hashtable_alloc<
185 	__alloc_rebind<_Alloc,
186 		       __detail::_Hash_node<_Value,
187 					    _Traits::__hash_cached::value>>>
188     {
189       static_assert(is_same<typename remove_cv<_Value>::type, _Value>::value,
190 	  "unordered container must have a non-const, non-volatile value_type");
191 #ifdef __STRICT_ANSI__
192       static_assert(is_same<typename _Alloc::value_type, _Value>{},
193 	  "unordered container must have the same value_type as its allocator");
194 #endif
195       static_assert(__is_invocable<const _H1&, const _Key&>{},
196 	  "hash function must be invocable with an argument of key type");
197       static_assert(__is_invocable<const _Equal&, const _Key&, const _Key&>{},
198 	  "key equality predicate must be invocable with two arguments of "
199 	  "key type");
200 
201       using __traits_type = _Traits;
202       using __hash_cached = typename __traits_type::__hash_cached;
203       using __node_type = __detail::_Hash_node<_Value, __hash_cached::value>;
204       using __node_alloc_type = __alloc_rebind<_Alloc, __node_type>;
205 
206       using __hashtable_alloc = __detail::_Hashtable_alloc<__node_alloc_type>;
207 
208       using __value_alloc_traits =
209 	typename __hashtable_alloc::__value_alloc_traits;
210       using __node_alloc_traits =
211 	typename __hashtable_alloc::__node_alloc_traits;
212       using __node_base = typename __hashtable_alloc::__node_base;
213       using __bucket_type = typename __hashtable_alloc::__bucket_type;
214 
215     public:
216       typedef _Key						key_type;
217       typedef _Value						value_type;
218       typedef _Alloc						allocator_type;
219       typedef _Equal						key_equal;
220 
221       // mapped_type, if present, comes from _Map_base.
222       // hasher, if present, comes from _Hash_code_base/_Hashtable_base.
223       typedef typename __value_alloc_traits::pointer		pointer;
224       typedef typename __value_alloc_traits::const_pointer	const_pointer;
225       typedef value_type&					reference;
226       typedef const value_type&					const_reference;
227 
228     private:
229       using __rehash_type = _RehashPolicy;
230       using __rehash_state = typename __rehash_type::_State;
231 
232       using __constant_iterators = typename __traits_type::__constant_iterators;
233       using __unique_keys = typename __traits_type::__unique_keys;
234 
235       using __key_extract = typename std::conditional<
236 					     __constant_iterators::value,
237 				       	     __detail::_Identity,
238 					     __detail::_Select1st>::type;
239 
240       using __hashtable_base = __detail::
241 			       _Hashtable_base<_Key, _Value, _ExtractKey,
242 					      _Equal, _H1, _H2, _Hash, _Traits>;
243 
244       using __hash_code_base =  typename __hashtable_base::__hash_code_base;
245       using __hash_code =  typename __hashtable_base::__hash_code;
246       using __ireturn_type = typename __hashtable_base::__ireturn_type;
247 
248       using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey,
249 					     _Equal, _H1, _H2, _Hash,
250 					     _RehashPolicy, _Traits>;
251 
252       using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc,
253 						   _ExtractKey, _Equal,
254 						   _H1, _H2, _Hash,
255 						   _RehashPolicy, _Traits>;
256 
257       using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey,
258 					    _Equal, _H1, _H2, _Hash,
259 					    _RehashPolicy, _Traits>;
260 
261       using __reuse_or_alloc_node_type =
262 	__detail::_ReuseOrAllocNode<__node_alloc_type>;
263 
264       // Metaprogramming for picking apart hash caching.
265       template<typename _Cond>
266 	using __if_hash_cached = __or_<__not_<__hash_cached>, _Cond>;
267 
268       template<typename _Cond>
269 	using __if_hash_not_cached = __or_<__hash_cached, _Cond>;
270 
271       // Compile-time diagnostics.
272 
273       // _Hash_code_base has everything protected, so use this derived type to
274       // access it.
275       struct __hash_code_base_access : __hash_code_base
276       { using __hash_code_base::_M_bucket_index; };
277 
278       // Getting a bucket index from a node shall not throw because it is used
279       // in methods (erase, swap...) that shall not throw.
280       static_assert(noexcept(declval<const __hash_code_base_access&>()
281 			     ._M_bucket_index((const __node_type*)nullptr,
282 					      (std::size_t)0)),
283 		    "Cache the hash code or qualify your functors involved"
284 		    " in hash code and bucket index computation with noexcept");
285 
286       // Following two static assertions are necessary to guarantee
287       // that local_iterator will be default constructible.
288 
289       // When hash codes are cached local iterator inherits from H2 functor
290       // which must then be default constructible.
291       static_assert(__if_hash_cached<is_default_constructible<_H2>>::value,
292 		    "Functor used to map hash code to bucket index"
293 		    " must be default constructible");
294 
295       template<typename _Keya, typename _Valuea, typename _Alloca,
296 	       typename _ExtractKeya, typename _Equala,
297 	       typename _H1a, typename _H2a, typename _Hasha,
298 	       typename _RehashPolicya, typename _Traitsa,
299 	       bool _Unique_keysa>
300 	friend struct __detail::_Map_base;
301 
302       template<typename _Keya, typename _Valuea, typename _Alloca,
303 	       typename _ExtractKeya, typename _Equala,
304 	       typename _H1a, typename _H2a, typename _Hasha,
305 	       typename _RehashPolicya, typename _Traitsa>
306 	friend struct __detail::_Insert_base;
307 
308       template<typename _Keya, typename _Valuea, typename _Alloca,
309 	       typename _ExtractKeya, typename _Equala,
310 	       typename _H1a, typename _H2a, typename _Hasha,
311 	       typename _RehashPolicya, typename _Traitsa,
312 	       bool _Constant_iteratorsa>
313 	friend struct __detail::_Insert;
314 
315     public:
316       using size_type = typename __hashtable_base::size_type;
317       using difference_type = typename __hashtable_base::difference_type;
318 
319       using iterator = typename __hashtable_base::iterator;
320       using const_iterator = typename __hashtable_base::const_iterator;
321 
322       using local_iterator = typename __hashtable_base::local_iterator;
323       using const_local_iterator = typename __hashtable_base::
324 				   const_local_iterator;
325 
326 #if __cplusplus > 201402L
327       using node_type = _Node_handle<_Key, _Value, __node_alloc_type>;
328       using insert_return_type = _Node_insert_return<iterator, node_type>;
329 #endif
330 
331     private:
332       __bucket_type*		_M_buckets		= &_M_single_bucket;
333       size_type			_M_bucket_count		= 1;
334       __node_base		_M_before_begin;
335       size_type			_M_element_count	= 0;
336       _RehashPolicy		_M_rehash_policy;
337 
338       // A single bucket used when only need for 1 bucket. Especially
339       // interesting in move semantic to leave hashtable with only 1 buckets
340       // which is not allocated so that we can have those operations noexcept
341       // qualified.
342       // Note that we can't leave hashtable with 0 bucket without adding
343       // numerous checks in the code to avoid 0 modulus.
344       __bucket_type		_M_single_bucket	= nullptr;
345 
346       bool
347       _M_uses_single_bucket(__bucket_type* __bkts) const
348       { return __builtin_expect(__bkts == &_M_single_bucket, false); }
349 
350       bool
351       _M_uses_single_bucket() const
352       { return _M_uses_single_bucket(_M_buckets); }
353 
354       __hashtable_alloc&
355       _M_base_alloc() { return *this; }
356 
357       __bucket_type*
358       _M_allocate_buckets(size_type __n)
359       {
360 	if (__builtin_expect(__n == 1, false))
361 	  {
362 	    _M_single_bucket = nullptr;
363 	    return &_M_single_bucket;
364 	  }
365 
366 	return __hashtable_alloc::_M_allocate_buckets(__n);
367       }
368 
369       void
370       _M_deallocate_buckets(__bucket_type* __bkts, size_type __n)
371       {
372 	if (_M_uses_single_bucket(__bkts))
373 	  return;
374 
375 	__hashtable_alloc::_M_deallocate_buckets(__bkts, __n);
376       }
377 
378       void
379       _M_deallocate_buckets()
380       { _M_deallocate_buckets(_M_buckets, _M_bucket_count); }
381 
382       // Gets bucket begin, deals with the fact that non-empty buckets contain
383       // their before begin node.
384       __node_type*
385       _M_bucket_begin(size_type __bkt) const;
386 
387       __node_type*
388       _M_begin() const
389       { return static_cast<__node_type*>(_M_before_begin._M_nxt); }
390 
391       template<typename _NodeGenerator>
392 	void
393 	_M_assign(const _Hashtable&, const _NodeGenerator&);
394 
395       void
396       _M_move_assign(_Hashtable&&, std::true_type);
397 
398       void
399       _M_move_assign(_Hashtable&&, std::false_type);
400 
401       void
402       _M_reset() noexcept;
403 
404       _Hashtable(const _H1& __h1, const _H2& __h2, const _Hash& __h,
405 		 const _Equal& __eq, const _ExtractKey& __exk,
406 		 const allocator_type& __a)
407 	: __hashtable_base(__exk, __h1, __h2, __h, __eq),
408 	  __hashtable_alloc(__node_alloc_type(__a))
409       { }
410 
411     public:
412       // Constructor, destructor, assignment, swap
413       _Hashtable() = default;
414       _Hashtable(size_type __bucket_hint,
415 		 const _H1&, const _H2&, const _Hash&,
416 		 const _Equal&, const _ExtractKey&,
417 		 const allocator_type&);
418 
419       template<typename _InputIterator>
420 	_Hashtable(_InputIterator __first, _InputIterator __last,
421 		   size_type __bucket_hint,
422 		   const _H1&, const _H2&, const _Hash&,
423 		   const _Equal&, const _ExtractKey&,
424 		   const allocator_type&);
425 
426       _Hashtable(const _Hashtable&);
427 
428       _Hashtable(_Hashtable&&) noexcept;
429 
430       _Hashtable(const _Hashtable&, const allocator_type&);
431 
432       _Hashtable(_Hashtable&&, const allocator_type&);
433 
434       // Use delegating constructors.
435       explicit
436       _Hashtable(const allocator_type& __a)
437 	: __hashtable_alloc(__node_alloc_type(__a))
438       { }
439 
440       explicit
441       _Hashtable(size_type __n,
442 		 const _H1& __hf = _H1(),
443 		 const key_equal& __eql = key_equal(),
444 		 const allocator_type& __a = allocator_type())
445       : _Hashtable(__n, __hf, _H2(), _Hash(), __eql,
446 		   __key_extract(), __a)
447       { }
448 
449       template<typename _InputIterator>
450 	_Hashtable(_InputIterator __f, _InputIterator __l,
451 		   size_type __n = 0,
452 		   const _H1& __hf = _H1(),
453 		   const key_equal& __eql = key_equal(),
454 		   const allocator_type& __a = allocator_type())
455 	: _Hashtable(__f, __l, __n, __hf, _H2(), _Hash(), __eql,
456 		     __key_extract(), __a)
457 	{ }
458 
459       _Hashtable(initializer_list<value_type> __l,
460 		 size_type __n = 0,
461 		 const _H1& __hf = _H1(),
462 		 const key_equal& __eql = key_equal(),
463 		 const allocator_type& __a = allocator_type())
464       : _Hashtable(__l.begin(), __l.end(), __n, __hf, _H2(), _Hash(), __eql,
465 		   __key_extract(), __a)
466       { }
467 
468       _Hashtable&
469       operator=(const _Hashtable& __ht);
470 
471       _Hashtable&
472       operator=(_Hashtable&& __ht)
473       noexcept(__node_alloc_traits::_S_nothrow_move()
474 	       && is_nothrow_move_assignable<_H1>::value
475 	       && is_nothrow_move_assignable<_Equal>::value)
476       {
477         constexpr bool __move_storage =
478 	  __node_alloc_traits::_S_propagate_on_move_assign()
479 	  || __node_alloc_traits::_S_always_equal();
480 	_M_move_assign(std::move(__ht), __bool_constant<__move_storage>());
481 	return *this;
482       }
483 
484       _Hashtable&
485       operator=(initializer_list<value_type> __l)
486       {
487 	__reuse_or_alloc_node_type __roan(_M_begin(), *this);
488 	_M_before_begin._M_nxt = nullptr;
489 	clear();
490 	this->_M_insert_range(__l.begin(), __l.end(), __roan, __unique_keys());
491 	return *this;
492       }
493 
494       ~_Hashtable() noexcept;
495 
496       void
497       swap(_Hashtable&)
498       noexcept(__and_<__is_nothrow_swappable<_H1>,
499 	                  __is_nothrow_swappable<_Equal>>::value);
500 
501       // Basic container operations
502       iterator
503       begin() noexcept
504       { return iterator(_M_begin()); }
505 
506       const_iterator
507       begin() const noexcept
508       { return const_iterator(_M_begin()); }
509 
510       iterator
511       end() noexcept
512       { return iterator(nullptr); }
513 
514       const_iterator
515       end() const noexcept
516       { return const_iterator(nullptr); }
517 
518       const_iterator
519       cbegin() const noexcept
520       { return const_iterator(_M_begin()); }
521 
522       const_iterator
523       cend() const noexcept
524       { return const_iterator(nullptr); }
525 
526       size_type
527       size() const noexcept
528       { return _M_element_count; }
529 
530       bool
531       empty() const noexcept
532       { return size() == 0; }
533 
534       allocator_type
535       get_allocator() const noexcept
536       { return allocator_type(this->_M_node_allocator()); }
537 
538       size_type
539       max_size() const noexcept
540       { return __node_alloc_traits::max_size(this->_M_node_allocator()); }
541 
542       // Observers
543       key_equal
544       key_eq() const
545       { return this->_M_eq(); }
546 
547       // hash_function, if present, comes from _Hash_code_base.
548 
549       // Bucket operations
550       size_type
551       bucket_count() const noexcept
552       { return _M_bucket_count; }
553 
554       size_type
555       max_bucket_count() const noexcept
556       { return max_size(); }
557 
558       size_type
559       bucket_size(size_type __n) const
560       { return std::distance(begin(__n), end(__n)); }
561 
562       size_type
563       bucket(const key_type& __k) const
564       { return _M_bucket_index(__k, this->_M_hash_code(__k)); }
565 
566       local_iterator
567       begin(size_type __n)
568       {
569 	return local_iterator(*this, _M_bucket_begin(__n),
570 			      __n, _M_bucket_count);
571       }
572 
573       local_iterator
574       end(size_type __n)
575       { return local_iterator(*this, nullptr, __n, _M_bucket_count); }
576 
577       const_local_iterator
578       begin(size_type __n) const
579       {
580 	return const_local_iterator(*this, _M_bucket_begin(__n),
581 				    __n, _M_bucket_count);
582       }
583 
584       const_local_iterator
585       end(size_type __n) const
586       { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
587 
588       // DR 691.
589       const_local_iterator
590       cbegin(size_type __n) const
591       {
592 	return const_local_iterator(*this, _M_bucket_begin(__n),
593 				    __n, _M_bucket_count);
594       }
595 
596       const_local_iterator
597       cend(size_type __n) const
598       { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
599 
600       float
601       load_factor() const noexcept
602       {
603 	return static_cast<float>(size()) / static_cast<float>(bucket_count());
604       }
605 
606       // max_load_factor, if present, comes from _Rehash_base.
607 
608       // Generalization of max_load_factor.  Extension, not found in
609       // TR1.  Only useful if _RehashPolicy is something other than
610       // the default.
611       const _RehashPolicy&
612       __rehash_policy() const
613       { return _M_rehash_policy; }
614 
615       void
616       __rehash_policy(const _RehashPolicy& __pol)
617       { _M_rehash_policy = __pol; }
618 
619       // Lookup.
620       iterator
621       find(const key_type& __k);
622 
623       const_iterator
624       find(const key_type& __k) const;
625 
626       size_type
627       count(const key_type& __k) const;
628 
629       std::pair<iterator, iterator>
630       equal_range(const key_type& __k);
631 
632       std::pair<const_iterator, const_iterator>
633       equal_range(const key_type& __k) const;
634 
635     protected:
636       // Bucket index computation helpers.
637       size_type
638       _M_bucket_index(__node_type* __n) const noexcept
639       { return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); }
640 
641       size_type
642       _M_bucket_index(const key_type& __k, __hash_code __c) const
643       { return __hash_code_base::_M_bucket_index(__k, __c, _M_bucket_count); }
644 
645       // Find and insert helper functions and types
646       // Find the node before the one matching the criteria.
647       __node_base*
648       _M_find_before_node(size_type, const key_type&, __hash_code) const;
649 
650       __node_type*
651       _M_find_node(size_type __bkt, const key_type& __key,
652 		   __hash_code __c) const
653       {
654 	__node_base* __before_n = _M_find_before_node(__bkt, __key, __c);
655 	if (__before_n)
656 	  return static_cast<__node_type*>(__before_n->_M_nxt);
657 	return nullptr;
658       }
659 
660       // Insert a node at the beginning of a bucket.
661       void
662       _M_insert_bucket_begin(size_type, __node_type*);
663 
664       // Remove the bucket first node
665       void
666       _M_remove_bucket_begin(size_type __bkt, __node_type* __next_n,
667 			     size_type __next_bkt);
668 
669       // Get the node before __n in the bucket __bkt
670       __node_base*
671       _M_get_previous_node(size_type __bkt, __node_base* __n);
672 
673       // Insert node with hash code __code, in bucket bkt if no rehash (assumes
674       // no element with its key already present). Take ownership of the node,
675       // deallocate it on exception.
676       iterator
677       _M_insert_unique_node(size_type __bkt, __hash_code __code,
678 			    __node_type* __n, size_type __n_elt = 1);
679 
680       // Insert node with hash code __code. Take ownership of the node,
681       // deallocate it on exception.
682       iterator
683       _M_insert_multi_node(__node_type* __hint,
684 			   __hash_code __code, __node_type* __n);
685 
686       template<typename... _Args>
687 	std::pair<iterator, bool>
688 	_M_emplace(std::true_type, _Args&&... __args);
689 
690       template<typename... _Args>
691 	iterator
692 	_M_emplace(std::false_type __uk, _Args&&... __args)
693 	{ return _M_emplace(cend(), __uk, std::forward<_Args>(__args)...); }
694 
695       // Emplace with hint, useless when keys are unique.
696       template<typename... _Args>
697 	iterator
698 	_M_emplace(const_iterator, std::true_type __uk, _Args&&... __args)
699 	{ return _M_emplace(__uk, std::forward<_Args>(__args)...).first; }
700 
701       template<typename... _Args>
702 	iterator
703 	_M_emplace(const_iterator, std::false_type, _Args&&... __args);
704 
705       template<typename _Arg, typename _NodeGenerator>
706 	std::pair<iterator, bool>
707 	_M_insert(_Arg&&, const _NodeGenerator&, true_type, size_type = 1);
708 
709       template<typename _Arg, typename _NodeGenerator>
710 	iterator
711 	_M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen,
712 		  false_type __uk)
713 	{
714 	  return _M_insert(cend(), std::forward<_Arg>(__arg), __node_gen,
715 			   __uk);
716 	}
717 
718       // Insert with hint, not used when keys are unique.
719       template<typename _Arg, typename _NodeGenerator>
720 	iterator
721 	_M_insert(const_iterator, _Arg&& __arg,
722 		  const _NodeGenerator& __node_gen, true_type __uk)
723 	{
724 	  return
725 	    _M_insert(std::forward<_Arg>(__arg), __node_gen, __uk).first;
726 	}
727 
728       // Insert with hint when keys are not unique.
729       template<typename _Arg, typename _NodeGenerator>
730 	iterator
731 	_M_insert(const_iterator, _Arg&&,
732 		  const _NodeGenerator&, false_type);
733 
734       size_type
735       _M_erase(std::true_type, const key_type&);
736 
737       size_type
738       _M_erase(std::false_type, const key_type&);
739 
740       iterator
741       _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n);
742 
743     public:
744       // Emplace
745       template<typename... _Args>
746 	__ireturn_type
747 	emplace(_Args&&... __args)
748 	{ return _M_emplace(__unique_keys(), std::forward<_Args>(__args)...); }
749 
750       template<typename... _Args>
751 	iterator
752 	emplace_hint(const_iterator __hint, _Args&&... __args)
753 	{
754 	  return _M_emplace(__hint, __unique_keys(),
755 			    std::forward<_Args>(__args)...);
756 	}
757 
758       // Insert member functions via inheritance.
759 
760       // Erase
761       iterator
762       erase(const_iterator);
763 
764       // LWG 2059.
765       iterator
766       erase(iterator __it)
767       { return erase(const_iterator(__it)); }
768 
769       size_type
770       erase(const key_type& __k)
771       { return _M_erase(__unique_keys(), __k); }
772 
773       iterator
774       erase(const_iterator, const_iterator);
775 
776       void
777       clear() noexcept;
778 
779       // Set number of buckets to be appropriate for container of n element.
780       void rehash(size_type __n);
781 
782       // DR 1189.
783       // reserve, if present, comes from _Rehash_base.
784 
785 #if __cplusplus > 201402L
786       /// Re-insert an extracted node into a container with unique keys.
787       insert_return_type
788       _M_reinsert_node(node_type&& __nh)
789       {
790 	insert_return_type __ret;
791 	if (__nh.empty())
792 	  __ret.position = end();
793 	else
794 	  {
795 	    __glibcxx_assert(get_allocator() == __nh.get_allocator());
796 
797 	    const key_type& __k = __nh._M_key();
798 	    __hash_code __code = this->_M_hash_code(__k);
799 	    size_type __bkt = _M_bucket_index(__k, __code);
800 	    if (__node_type* __n = _M_find_node(__bkt, __k, __code))
801 	      {
802 		__ret.node = std::move(__nh);
803 		__ret.position = iterator(__n);
804 		__ret.inserted = false;
805 	      }
806 	    else
807 	      {
808 		__ret.position
809 		  = _M_insert_unique_node(__bkt, __code, __nh._M_ptr);
810 		__nh._M_ptr = nullptr;
811 		__ret.inserted = true;
812 	      }
813 	  }
814 	return __ret;
815       }
816 
817       /// Re-insert an extracted node into a container with equivalent keys.
818       iterator
819       _M_reinsert_node_multi(const_iterator __hint, node_type&& __nh)
820       {
821 	iterator __ret;
822 	if (__nh.empty())
823 	  __ret = end();
824 	else
825 	  {
826 	    __glibcxx_assert(get_allocator() == __nh.get_allocator());
827 
828 	    auto __code = this->_M_hash_code(__nh._M_key());
829 	    auto __node = std::exchange(__nh._M_ptr, nullptr);
830 	    // FIXME: this deallocates the node on exception.
831 	    __ret = _M_insert_multi_node(__hint._M_cur, __code, __node);
832 	  }
833 	return __ret;
834       }
835 
836       /// Extract a node.
837       node_type
838       extract(const_iterator __pos)
839       {
840 	__node_type* __n = __pos._M_cur;
841 	size_t __bkt = _M_bucket_index(__n);
842 
843 	// Look for previous node to unlink it from the erased one, this
844 	// is why we need buckets to contain the before begin to make
845 	// this search fast.
846 	__node_base* __prev_n = _M_get_previous_node(__bkt, __n);
847 
848 	if (__prev_n == _M_buckets[__bkt])
849 	  _M_remove_bucket_begin(__bkt, __n->_M_next(),
850 	     __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
851 	else if (__n->_M_nxt)
852 	  {
853 	    size_type __next_bkt = _M_bucket_index(__n->_M_next());
854 	    if (__next_bkt != __bkt)
855 	      _M_buckets[__next_bkt] = __prev_n;
856 	  }
857 
858 	__prev_n->_M_nxt = __n->_M_nxt;
859 	__n->_M_nxt = nullptr;
860 	--_M_element_count;
861 	return { __n, this->_M_node_allocator() };
862       }
863 
864       /// Extract a node.
865       node_type
866       extract(const _Key& __k)
867       {
868 	node_type __nh;
869 	auto __pos = find(__k);
870 	if (__pos != end())
871 	  __nh = extract(const_iterator(__pos));
872 	return __nh;
873       }
874 
875       /// Merge from a compatible container into one with unique keys.
876       template<typename _Compatible_Hashtable>
877 	void
878 	_M_merge_unique(_Compatible_Hashtable& __src) noexcept
879 	{
880 	  static_assert(is_same_v<typename _Compatible_Hashtable::node_type,
881 	      node_type>, "Node types are compatible");
882 	  __glibcxx_assert(get_allocator() == __src.get_allocator());
883 
884 	  auto __n_elt = __src.size();
885 	  for (auto __i = __src.begin(), __end = __src.end(); __i != __end;)
886 	    {
887 	      auto __pos = __i++;
888 	      const key_type& __k = this->_M_extract()(__pos._M_cur->_M_v());
889 	      __hash_code __code = this->_M_hash_code(__k);
890 	      size_type __bkt = _M_bucket_index(__k, __code);
891 	      if (_M_find_node(__bkt, __k, __code) == nullptr)
892 		{
893 		  auto __nh = __src.extract(__pos);
894 		  _M_insert_unique_node(__bkt, __code, __nh._M_ptr, __n_elt);
895 		  __nh._M_ptr = nullptr;
896 		  __n_elt = 1;
897 		}
898 	      else if (__n_elt != 1)
899 		--__n_elt;
900 	    }
901 	}
902 
903       /// Merge from a compatible container into one with equivalent keys.
904       template<typename _Compatible_Hashtable>
905 	void
906 	_M_merge_multi(_Compatible_Hashtable& __src) noexcept
907 	{
908 	  static_assert(is_same_v<typename _Compatible_Hashtable::node_type,
909 	      node_type>, "Node types are compatible");
910 	  __glibcxx_assert(get_allocator() == __src.get_allocator());
911 
912 	  this->reserve(size() + __src.size());
913 	  for (auto __i = __src.begin(), __end = __src.end(); __i != __end;)
914 	    _M_reinsert_node_multi(cend(), __src.extract(__i++));
915 	}
916 #endif // C++17
917 
918     private:
919       // Helper rehash method used when keys are unique.
920       void _M_rehash_aux(size_type __n, std::true_type);
921 
922       // Helper rehash method used when keys can be non-unique.
923       void _M_rehash_aux(size_type __n, std::false_type);
924 
925       // Unconditionally change size of bucket array to n, restore
926       // hash policy state to __state on exception.
927       void _M_rehash(size_type __n, const __rehash_state& __state);
928     };
929 
930 
931   // Definitions of class template _Hashtable's out-of-line member functions.
932   template<typename _Key, typename _Value,
933 	   typename _Alloc, typename _ExtractKey, typename _Equal,
934 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
935 	   typename _Traits>
936     auto
937     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
938 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
939     _M_bucket_begin(size_type __bkt) const
940     -> __node_type*
941     {
942       __node_base* __n = _M_buckets[__bkt];
943       return __n ? static_cast<__node_type*>(__n->_M_nxt) : nullptr;
944     }
945 
946   template<typename _Key, typename _Value,
947 	   typename _Alloc, typename _ExtractKey, typename _Equal,
948 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
949 	   typename _Traits>
950     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
951 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
952     _Hashtable(size_type __bucket_hint,
953 	       const _H1& __h1, const _H2& __h2, const _Hash& __h,
954 	       const _Equal& __eq, const _ExtractKey& __exk,
955 	       const allocator_type& __a)
956       : _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
957     {
958       auto __bkt = _M_rehash_policy._M_next_bkt(__bucket_hint);
959       if (__bkt > _M_bucket_count)
960 	{
961 	  _M_buckets = _M_allocate_buckets(__bkt);
962 	  _M_bucket_count = __bkt;
963 	}
964     }
965 
966   template<typename _Key, typename _Value,
967 	   typename _Alloc, typename _ExtractKey, typename _Equal,
968 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
969 	   typename _Traits>
970     template<typename _InputIterator>
971       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
972 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
973       _Hashtable(_InputIterator __f, _InputIterator __l,
974 		 size_type __bucket_hint,
975 		 const _H1& __h1, const _H2& __h2, const _Hash& __h,
976 		 const _Equal& __eq, const _ExtractKey& __exk,
977 		 const allocator_type& __a)
978 	: _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
979       {
980 	auto __nb_elems = __detail::__distance_fw(__f, __l);
981 	auto __bkt_count =
982 	  _M_rehash_policy._M_next_bkt(
983 	    std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems),
984 		     __bucket_hint));
985 
986 	if (__bkt_count > _M_bucket_count)
987 	  {
988 	    _M_buckets = _M_allocate_buckets(__bkt_count);
989 	    _M_bucket_count = __bkt_count;
990 	  }
991 
992 	for (; __f != __l; ++__f)
993 	  this->insert(*__f);
994       }
995 
996   template<typename _Key, typename _Value,
997 	   typename _Alloc, typename _ExtractKey, typename _Equal,
998 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
999 	   typename _Traits>
1000     auto
1001     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1002 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1003     operator=(const _Hashtable& __ht)
1004     -> _Hashtable&
1005     {
1006       if (&__ht == this)
1007 	return *this;
1008 
1009       if (__node_alloc_traits::_S_propagate_on_copy_assign())
1010 	{
1011 	  auto& __this_alloc = this->_M_node_allocator();
1012 	  auto& __that_alloc = __ht._M_node_allocator();
1013 	  if (!__node_alloc_traits::_S_always_equal()
1014 	      && __this_alloc != __that_alloc)
1015 	    {
1016 	      // Replacement allocator cannot free existing storage.
1017 	      this->_M_deallocate_nodes(_M_begin());
1018 	      _M_before_begin._M_nxt = nullptr;
1019 	      _M_deallocate_buckets();
1020 	      _M_buckets = nullptr;
1021 	      std::__alloc_on_copy(__this_alloc, __that_alloc);
1022 	      __hashtable_base::operator=(__ht);
1023 	      _M_bucket_count = __ht._M_bucket_count;
1024 	      _M_element_count = __ht._M_element_count;
1025 	      _M_rehash_policy = __ht._M_rehash_policy;
1026 	      __try
1027 		{
1028 		  _M_assign(__ht,
1029 			    [this](const __node_type* __n)
1030 			    { return this->_M_allocate_node(__n->_M_v()); });
1031 		}
1032 	      __catch(...)
1033 		{
1034 		  // _M_assign took care of deallocating all memory. Now we
1035 		  // must make sure this instance remains in a usable state.
1036 		  _M_reset();
1037 		  __throw_exception_again;
1038 		}
1039 	      return *this;
1040 	    }
1041 	  std::__alloc_on_copy(__this_alloc, __that_alloc);
1042 	}
1043 
1044       // Reuse allocated buckets and nodes.
1045       __bucket_type* __former_buckets = nullptr;
1046       std::size_t __former_bucket_count = _M_bucket_count;
1047       const __rehash_state& __former_state = _M_rehash_policy._M_state();
1048 
1049       if (_M_bucket_count != __ht._M_bucket_count)
1050 	{
1051 	  __former_buckets = _M_buckets;
1052 	  _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
1053 	  _M_bucket_count = __ht._M_bucket_count;
1054 	}
1055       else
1056 	__builtin_memset(_M_buckets, 0,
1057 			 _M_bucket_count * sizeof(__bucket_type));
1058 
1059       __try
1060 	{
1061 	  __hashtable_base::operator=(__ht);
1062 	  _M_element_count = __ht._M_element_count;
1063 	  _M_rehash_policy = __ht._M_rehash_policy;
1064 	  __reuse_or_alloc_node_type __roan(_M_begin(), *this);
1065 	  _M_before_begin._M_nxt = nullptr;
1066 	  _M_assign(__ht,
1067 		    [&__roan](const __node_type* __n)
1068 		    { return __roan(__n->_M_v()); });
1069 	  if (__former_buckets)
1070 	    _M_deallocate_buckets(__former_buckets, __former_bucket_count);
1071 	}
1072       __catch(...)
1073 	{
1074 	  if (__former_buckets)
1075 	    {
1076 	      // Restore previous buckets.
1077 	      _M_deallocate_buckets();
1078 	      _M_rehash_policy._M_reset(__former_state);
1079 	      _M_buckets = __former_buckets;
1080 	      _M_bucket_count = __former_bucket_count;
1081 	    }
1082 	  __builtin_memset(_M_buckets, 0,
1083 			   _M_bucket_count * sizeof(__bucket_type));
1084 	  __throw_exception_again;
1085 	}
1086       return *this;
1087     }
1088 
1089   template<typename _Key, typename _Value,
1090 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1091 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1092 	   typename _Traits>
1093     template<typename _NodeGenerator>
1094       void
1095       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1096 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1097       _M_assign(const _Hashtable& __ht, const _NodeGenerator& __node_gen)
1098       {
1099 	__bucket_type* __buckets = nullptr;
1100 	if (!_M_buckets)
1101 	  _M_buckets = __buckets = _M_allocate_buckets(_M_bucket_count);
1102 
1103 	__try
1104 	  {
1105 	    if (!__ht._M_before_begin._M_nxt)
1106 	      return;
1107 
1108 	    // First deal with the special first node pointed to by
1109 	    // _M_before_begin.
1110 	    __node_type* __ht_n = __ht._M_begin();
1111 	    __node_type* __this_n = __node_gen(__ht_n);
1112 	    this->_M_copy_code(__this_n, __ht_n);
1113 	    _M_before_begin._M_nxt = __this_n;
1114 	    _M_buckets[_M_bucket_index(__this_n)] = &_M_before_begin;
1115 
1116 	    // Then deal with other nodes.
1117 	    __node_base* __prev_n = __this_n;
1118 	    for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next())
1119 	      {
1120 		__this_n = __node_gen(__ht_n);
1121 		__prev_n->_M_nxt = __this_n;
1122 		this->_M_copy_code(__this_n, __ht_n);
1123 		size_type __bkt = _M_bucket_index(__this_n);
1124 		if (!_M_buckets[__bkt])
1125 		  _M_buckets[__bkt] = __prev_n;
1126 		__prev_n = __this_n;
1127 	      }
1128 	  }
1129 	__catch(...)
1130 	  {
1131 	    clear();
1132 	    if (__buckets)
1133 	      _M_deallocate_buckets();
1134 	    __throw_exception_again;
1135 	  }
1136       }
1137 
1138   template<typename _Key, typename _Value,
1139 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1140 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1141 	   typename _Traits>
1142     void
1143     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1144 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1145     _M_reset() noexcept
1146     {
1147       _M_rehash_policy._M_reset();
1148       _M_bucket_count = 1;
1149       _M_single_bucket = nullptr;
1150       _M_buckets = &_M_single_bucket;
1151       _M_before_begin._M_nxt = nullptr;
1152       _M_element_count = 0;
1153     }
1154 
1155   template<typename _Key, typename _Value,
1156 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1157 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1158 	   typename _Traits>
1159     void
1160     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1161 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1162     _M_move_assign(_Hashtable&& __ht, std::true_type)
1163     {
1164       this->_M_deallocate_nodes(_M_begin());
1165       _M_deallocate_buckets();
1166       __hashtable_base::operator=(std::move(__ht));
1167       _M_rehash_policy = __ht._M_rehash_policy;
1168       if (!__ht._M_uses_single_bucket())
1169 	_M_buckets = __ht._M_buckets;
1170       else
1171 	{
1172 	  _M_buckets = &_M_single_bucket;
1173 	  _M_single_bucket = __ht._M_single_bucket;
1174 	}
1175       _M_bucket_count = __ht._M_bucket_count;
1176       _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1177       _M_element_count = __ht._M_element_count;
1178       std::__alloc_on_move(this->_M_node_allocator(), __ht._M_node_allocator());
1179 
1180       // Fix buckets containing the _M_before_begin pointers that can't be
1181       // moved.
1182       if (_M_begin())
1183 	_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1184       __ht._M_reset();
1185     }
1186 
1187   template<typename _Key, typename _Value,
1188 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1189 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1190 	   typename _Traits>
1191     void
1192     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1193 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1194     _M_move_assign(_Hashtable&& __ht, std::false_type)
1195     {
1196       if (__ht._M_node_allocator() == this->_M_node_allocator())
1197 	_M_move_assign(std::move(__ht), std::true_type());
1198       else
1199 	{
1200 	  // Can't move memory, move elements then.
1201 	  __bucket_type* __former_buckets = nullptr;
1202 	  size_type __former_bucket_count = _M_bucket_count;
1203 	  const __rehash_state& __former_state = _M_rehash_policy._M_state();
1204 
1205 	  if (_M_bucket_count != __ht._M_bucket_count)
1206 	    {
1207 	      __former_buckets = _M_buckets;
1208 	      _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
1209 	      _M_bucket_count = __ht._M_bucket_count;
1210 	    }
1211 	  else
1212 	    __builtin_memset(_M_buckets, 0,
1213 			     _M_bucket_count * sizeof(__bucket_type));
1214 
1215 	  __try
1216 	    {
1217 	      __hashtable_base::operator=(std::move(__ht));
1218 	      _M_element_count = __ht._M_element_count;
1219 	      _M_rehash_policy = __ht._M_rehash_policy;
1220 	      __reuse_or_alloc_node_type __roan(_M_begin(), *this);
1221 	      _M_before_begin._M_nxt = nullptr;
1222 	      _M_assign(__ht,
1223 			[&__roan](__node_type* __n)
1224 			{ return __roan(std::move_if_noexcept(__n->_M_v())); });
1225 
1226 	      if (__former_buckets)
1227 		_M_deallocate_buckets(__former_buckets, __former_bucket_count);
1228 	      __ht.clear();
1229 	    }
1230 	  __catch(...)
1231 	    {
1232 	      if (__former_buckets)
1233 		{
1234 		  _M_deallocate_buckets();
1235 		  _M_rehash_policy._M_reset(__former_state);
1236 		  _M_buckets = __former_buckets;
1237 		  _M_bucket_count = __former_bucket_count;
1238 		}
1239 	      __builtin_memset(_M_buckets, 0,
1240 			       _M_bucket_count * sizeof(__bucket_type));
1241 	      __throw_exception_again;
1242 	    }
1243 	}
1244     }
1245 
1246   template<typename _Key, typename _Value,
1247 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1248 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1249 	   typename _Traits>
1250     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1251 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1252     _Hashtable(const _Hashtable& __ht)
1253     : __hashtable_base(__ht),
1254       __map_base(__ht),
1255       __rehash_base(__ht),
1256       __hashtable_alloc(
1257 	__node_alloc_traits::_S_select_on_copy(__ht._M_node_allocator())),
1258       _M_buckets(nullptr),
1259       _M_bucket_count(__ht._M_bucket_count),
1260       _M_element_count(__ht._M_element_count),
1261       _M_rehash_policy(__ht._M_rehash_policy)
1262     {
1263       _M_assign(__ht,
1264 		[this](const __node_type* __n)
1265 		{ return this->_M_allocate_node(__n->_M_v()); });
1266     }
1267 
1268   template<typename _Key, typename _Value,
1269 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1270 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1271 	   typename _Traits>
1272     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1273 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1274     _Hashtable(_Hashtable&& __ht) noexcept
1275     : __hashtable_base(__ht),
1276       __map_base(__ht),
1277       __rehash_base(__ht),
1278       __hashtable_alloc(std::move(__ht._M_base_alloc())),
1279       _M_buckets(__ht._M_buckets),
1280       _M_bucket_count(__ht._M_bucket_count),
1281       _M_before_begin(__ht._M_before_begin._M_nxt),
1282       _M_element_count(__ht._M_element_count),
1283       _M_rehash_policy(__ht._M_rehash_policy)
1284     {
1285       // Update, if necessary, buckets if __ht is using its single bucket.
1286       if (__ht._M_uses_single_bucket())
1287 	{
1288 	  _M_buckets = &_M_single_bucket;
1289 	  _M_single_bucket = __ht._M_single_bucket;
1290 	}
1291 
1292       // Update, if necessary, bucket pointing to before begin that hasn't
1293       // moved.
1294       if (_M_begin())
1295 	_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1296 
1297       __ht._M_reset();
1298     }
1299 
1300   template<typename _Key, typename _Value,
1301 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1302 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1303 	   typename _Traits>
1304     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1305 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1306     _Hashtable(const _Hashtable& __ht, const allocator_type& __a)
1307     : __hashtable_base(__ht),
1308       __map_base(__ht),
1309       __rehash_base(__ht),
1310       __hashtable_alloc(__node_alloc_type(__a)),
1311       _M_buckets(),
1312       _M_bucket_count(__ht._M_bucket_count),
1313       _M_element_count(__ht._M_element_count),
1314       _M_rehash_policy(__ht._M_rehash_policy)
1315     {
1316       _M_assign(__ht,
1317 		[this](const __node_type* __n)
1318 		{ return this->_M_allocate_node(__n->_M_v()); });
1319     }
1320 
1321   template<typename _Key, typename _Value,
1322 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1323 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1324 	   typename _Traits>
1325     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1326 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1327     _Hashtable(_Hashtable&& __ht, const allocator_type& __a)
1328     : __hashtable_base(__ht),
1329       __map_base(__ht),
1330       __rehash_base(__ht),
1331       __hashtable_alloc(__node_alloc_type(__a)),
1332       _M_buckets(nullptr),
1333       _M_bucket_count(__ht._M_bucket_count),
1334       _M_element_count(__ht._M_element_count),
1335       _M_rehash_policy(__ht._M_rehash_policy)
1336     {
1337       if (__ht._M_node_allocator() == this->_M_node_allocator())
1338 	{
1339 	  if (__ht._M_uses_single_bucket())
1340 	    {
1341 	      _M_buckets = &_M_single_bucket;
1342 	      _M_single_bucket = __ht._M_single_bucket;
1343 	    }
1344 	  else
1345 	    _M_buckets = __ht._M_buckets;
1346 
1347 	  _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1348 	  // Update, if necessary, bucket pointing to before begin that hasn't
1349 	  // moved.
1350 	  if (_M_begin())
1351 	    _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1352 	  __ht._M_reset();
1353 	}
1354       else
1355 	{
1356 	  _M_assign(__ht,
1357 		    [this](__node_type* __n)
1358 		    {
1359 		      return this->_M_allocate_node(
1360 					std::move_if_noexcept(__n->_M_v()));
1361 		    });
1362 	  __ht.clear();
1363 	}
1364     }
1365 
1366   template<typename _Key, typename _Value,
1367 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1368 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1369 	   typename _Traits>
1370     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1371 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1372     ~_Hashtable() noexcept
1373     {
1374       clear();
1375       _M_deallocate_buckets();
1376     }
1377 
1378   template<typename _Key, typename _Value,
1379 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1380 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1381 	   typename _Traits>
1382     void
1383     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1384 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1385     swap(_Hashtable& __x)
1386     noexcept(__and_<__is_nothrow_swappable<_H1>,
1387 	                __is_nothrow_swappable<_Equal>>::value)
1388     {
1389       // The only base class with member variables is hash_code_base.
1390       // We define _Hash_code_base::_M_swap because different
1391       // specializations have different members.
1392       this->_M_swap(__x);
1393 
1394       std::__alloc_on_swap(this->_M_node_allocator(), __x._M_node_allocator());
1395       std::swap(_M_rehash_policy, __x._M_rehash_policy);
1396 
1397       // Deal properly with potentially moved instances.
1398       if (this->_M_uses_single_bucket())
1399 	{
1400 	  if (!__x._M_uses_single_bucket())
1401 	    {
1402 	      _M_buckets = __x._M_buckets;
1403 	      __x._M_buckets = &__x._M_single_bucket;
1404 	    }
1405 	}
1406       else if (__x._M_uses_single_bucket())
1407 	{
1408 	  __x._M_buckets = _M_buckets;
1409 	  _M_buckets = &_M_single_bucket;
1410 	}
1411       else
1412 	std::swap(_M_buckets, __x._M_buckets);
1413 
1414       std::swap(_M_bucket_count, __x._M_bucket_count);
1415       std::swap(_M_before_begin._M_nxt, __x._M_before_begin._M_nxt);
1416       std::swap(_M_element_count, __x._M_element_count);
1417       std::swap(_M_single_bucket, __x._M_single_bucket);
1418 
1419       // Fix buckets containing the _M_before_begin pointers that can't be
1420       // swapped.
1421       if (_M_begin())
1422 	_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1423 
1424       if (__x._M_begin())
1425 	__x._M_buckets[__x._M_bucket_index(__x._M_begin())]
1426 	  = &__x._M_before_begin;
1427     }
1428 
1429   template<typename _Key, typename _Value,
1430 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1431 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1432 	   typename _Traits>
1433     auto
1434     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1435 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1436     find(const key_type& __k)
1437     -> iterator
1438     {
1439       __hash_code __code = this->_M_hash_code(__k);
1440       std::size_t __n = _M_bucket_index(__k, __code);
1441       __node_type* __p = _M_find_node(__n, __k, __code);
1442       return __p ? iterator(__p) : end();
1443     }
1444 
1445   template<typename _Key, typename _Value,
1446 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1447 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1448 	   typename _Traits>
1449     auto
1450     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1451 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1452     find(const key_type& __k) const
1453     -> const_iterator
1454     {
1455       __hash_code __code = this->_M_hash_code(__k);
1456       std::size_t __n = _M_bucket_index(__k, __code);
1457       __node_type* __p = _M_find_node(__n, __k, __code);
1458       return __p ? const_iterator(__p) : end();
1459     }
1460 
1461   template<typename _Key, typename _Value,
1462 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1463 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1464 	   typename _Traits>
1465     auto
1466     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1467 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1468     count(const key_type& __k) const
1469     -> size_type
1470     {
1471       __hash_code __code = this->_M_hash_code(__k);
1472       std::size_t __n = _M_bucket_index(__k, __code);
1473       __node_type* __p = _M_bucket_begin(__n);
1474       if (!__p)
1475 	return 0;
1476 
1477       std::size_t __result = 0;
1478       for (;; __p = __p->_M_next())
1479 	{
1480 	  if (this->_M_equals(__k, __code, __p))
1481 	    ++__result;
1482 	  else if (__result)
1483 	    // All equivalent values are next to each other, if we
1484 	    // found a non-equivalent value after an equivalent one it
1485 	    // means that we won't find any new equivalent value.
1486 	    break;
1487 	  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1488 	    break;
1489 	}
1490       return __result;
1491     }
1492 
1493   template<typename _Key, typename _Value,
1494 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1495 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1496 	   typename _Traits>
1497     auto
1498     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1499 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1500     equal_range(const key_type& __k)
1501     -> pair<iterator, iterator>
1502     {
1503       __hash_code __code = this->_M_hash_code(__k);
1504       std::size_t __n = _M_bucket_index(__k, __code);
1505       __node_type* __p = _M_find_node(__n, __k, __code);
1506 
1507       if (__p)
1508 	{
1509 	  __node_type* __p1 = __p->_M_next();
1510 	  while (__p1 && _M_bucket_index(__p1) == __n
1511 		 && this->_M_equals(__k, __code, __p1))
1512 	    __p1 = __p1->_M_next();
1513 
1514 	  return std::make_pair(iterator(__p), iterator(__p1));
1515 	}
1516       else
1517 	return std::make_pair(end(), end());
1518     }
1519 
1520   template<typename _Key, typename _Value,
1521 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1522 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1523 	   typename _Traits>
1524     auto
1525     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1526 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1527     equal_range(const key_type& __k) const
1528     -> pair<const_iterator, const_iterator>
1529     {
1530       __hash_code __code = this->_M_hash_code(__k);
1531       std::size_t __n = _M_bucket_index(__k, __code);
1532       __node_type* __p = _M_find_node(__n, __k, __code);
1533 
1534       if (__p)
1535 	{
1536 	  __node_type* __p1 = __p->_M_next();
1537 	  while (__p1 && _M_bucket_index(__p1) == __n
1538 		 && this->_M_equals(__k, __code, __p1))
1539 	    __p1 = __p1->_M_next();
1540 
1541 	  return std::make_pair(const_iterator(__p), const_iterator(__p1));
1542 	}
1543       else
1544 	return std::make_pair(end(), end());
1545     }
1546 
1547   // Find the node whose key compares equal to k in the bucket n.
1548   // Return nullptr if no node is found.
1549   template<typename _Key, typename _Value,
1550 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1551 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1552 	   typename _Traits>
1553     auto
1554     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1555 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1556     _M_find_before_node(size_type __n, const key_type& __k,
1557 			__hash_code __code) const
1558     -> __node_base*
1559     {
1560       __node_base* __prev_p = _M_buckets[__n];
1561       if (!__prev_p)
1562 	return nullptr;
1563 
1564       for (__node_type* __p = static_cast<__node_type*>(__prev_p->_M_nxt);;
1565 	   __p = __p->_M_next())
1566 	{
1567 	  if (this->_M_equals(__k, __code, __p))
1568 	    return __prev_p;
1569 
1570 	  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1571 	    break;
1572 	  __prev_p = __p;
1573 	}
1574       return nullptr;
1575     }
1576 
1577   template<typename _Key, typename _Value,
1578 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1579 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1580 	   typename _Traits>
1581     void
1582     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1583 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1584     _M_insert_bucket_begin(size_type __bkt, __node_type* __node)
1585     {
1586       if (_M_buckets[__bkt])
1587 	{
1588 	  // Bucket is not empty, we just need to insert the new node
1589 	  // after the bucket before begin.
1590 	  __node->_M_nxt = _M_buckets[__bkt]->_M_nxt;
1591 	  _M_buckets[__bkt]->_M_nxt = __node;
1592 	}
1593       else
1594 	{
1595 	  // The bucket is empty, the new node is inserted at the
1596 	  // beginning of the singly-linked list and the bucket will
1597 	  // contain _M_before_begin pointer.
1598 	  __node->_M_nxt = _M_before_begin._M_nxt;
1599 	  _M_before_begin._M_nxt = __node;
1600 	  if (__node->_M_nxt)
1601 	    // We must update former begin bucket that is pointing to
1602 	    // _M_before_begin.
1603 	    _M_buckets[_M_bucket_index(__node->_M_next())] = __node;
1604 	  _M_buckets[__bkt] = &_M_before_begin;
1605 	}
1606     }
1607 
1608   template<typename _Key, typename _Value,
1609 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1610 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1611 	   typename _Traits>
1612     void
1613     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1614 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1615     _M_remove_bucket_begin(size_type __bkt, __node_type* __next,
1616 			   size_type __next_bkt)
1617     {
1618       if (!__next || __next_bkt != __bkt)
1619 	{
1620 	  // Bucket is now empty
1621 	  // First update next bucket if any
1622 	  if (__next)
1623 	    _M_buckets[__next_bkt] = _M_buckets[__bkt];
1624 
1625 	  // Second update before begin node if necessary
1626 	  if (&_M_before_begin == _M_buckets[__bkt])
1627 	    _M_before_begin._M_nxt = __next;
1628 	  _M_buckets[__bkt] = nullptr;
1629 	}
1630     }
1631 
1632   template<typename _Key, typename _Value,
1633 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1634 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1635 	   typename _Traits>
1636     auto
1637     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1638 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1639     _M_get_previous_node(size_type __bkt, __node_base* __n)
1640     -> __node_base*
1641     {
1642       __node_base* __prev_n = _M_buckets[__bkt];
1643       while (__prev_n->_M_nxt != __n)
1644 	__prev_n = __prev_n->_M_nxt;
1645       return __prev_n;
1646     }
1647 
1648   template<typename _Key, typename _Value,
1649 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1650 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1651 	   typename _Traits>
1652     template<typename... _Args>
1653       auto
1654       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1655 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1656       _M_emplace(std::true_type, _Args&&... __args)
1657       -> pair<iterator, bool>
1658       {
1659 	// First build the node to get access to the hash code
1660 	__node_type* __node = this->_M_allocate_node(std::forward<_Args>(__args)...);
1661 	const key_type& __k = this->_M_extract()(__node->_M_v());
1662 	__hash_code __code;
1663 	__try
1664 	  {
1665 	    __code = this->_M_hash_code(__k);
1666 	  }
1667 	__catch(...)
1668 	  {
1669 	    this->_M_deallocate_node(__node);
1670 	    __throw_exception_again;
1671 	  }
1672 
1673 	size_type __bkt = _M_bucket_index(__k, __code);
1674 	if (__node_type* __p = _M_find_node(__bkt, __k, __code))
1675 	  {
1676 	    // There is already an equivalent node, no insertion
1677 	    this->_M_deallocate_node(__node);
1678 	    return std::make_pair(iterator(__p), false);
1679 	  }
1680 
1681 	// Insert the node
1682 	return std::make_pair(_M_insert_unique_node(__bkt, __code, __node),
1683 			      true);
1684       }
1685 
1686   template<typename _Key, typename _Value,
1687 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1688 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1689 	   typename _Traits>
1690     template<typename... _Args>
1691       auto
1692       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1693 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1694       _M_emplace(const_iterator __hint, std::false_type, _Args&&... __args)
1695       -> iterator
1696       {
1697 	// First build the node to get its hash code.
1698 	__node_type* __node =
1699 	  this->_M_allocate_node(std::forward<_Args>(__args)...);
1700 
1701 	__hash_code __code;
1702 	__try
1703 	  {
1704 	    __code = this->_M_hash_code(this->_M_extract()(__node->_M_v()));
1705 	  }
1706 	__catch(...)
1707 	  {
1708 	    this->_M_deallocate_node(__node);
1709 	    __throw_exception_again;
1710 	  }
1711 
1712 	return _M_insert_multi_node(__hint._M_cur, __code, __node);
1713       }
1714 
1715   template<typename _Key, typename _Value,
1716 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1717 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1718 	   typename _Traits>
1719     auto
1720     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1721 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1722     _M_insert_unique_node(size_type __bkt, __hash_code __code,
1723 			  __node_type* __node, size_type __n_elt)
1724     -> iterator
1725     {
1726       const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1727       std::pair<bool, std::size_t> __do_rehash
1728 	= _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count,
1729 					  __n_elt);
1730 
1731       __try
1732 	{
1733 	  if (__do_rehash.first)
1734 	    {
1735 	      _M_rehash(__do_rehash.second, __saved_state);
1736 	      __bkt = _M_bucket_index(this->_M_extract()(__node->_M_v()), __code);
1737 	    }
1738 
1739 	  this->_M_store_code(__node, __code);
1740 
1741 	  // Always insert at the beginning of the bucket.
1742 	  _M_insert_bucket_begin(__bkt, __node);
1743 	  ++_M_element_count;
1744 	  return iterator(__node);
1745 	}
1746       __catch(...)
1747 	{
1748 	  this->_M_deallocate_node(__node);
1749 	  __throw_exception_again;
1750 	}
1751     }
1752 
1753   // Insert node, in bucket bkt if no rehash (assumes no element with its key
1754   // already present). Take ownership of the node, deallocate it on exception.
1755   template<typename _Key, typename _Value,
1756 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1757 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1758 	   typename _Traits>
1759     auto
1760     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1761 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1762     _M_insert_multi_node(__node_type* __hint, __hash_code __code,
1763 			 __node_type* __node)
1764     -> iterator
1765     {
1766       const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1767       std::pair<bool, std::size_t> __do_rehash
1768 	= _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1769 
1770       __try
1771 	{
1772 	  if (__do_rehash.first)
1773 	    _M_rehash(__do_rehash.second, __saved_state);
1774 
1775 	  this->_M_store_code(__node, __code);
1776 	  const key_type& __k = this->_M_extract()(__node->_M_v());
1777 	  size_type __bkt = _M_bucket_index(__k, __code);
1778 
1779 	  // Find the node before an equivalent one or use hint if it exists and
1780 	  // if it is equivalent.
1781 	  __node_base* __prev
1782 	    = __builtin_expect(__hint != nullptr, false)
1783 	      && this->_M_equals(__k, __code, __hint)
1784 		? __hint
1785 		: _M_find_before_node(__bkt, __k, __code);
1786 	  if (__prev)
1787 	    {
1788 	      // Insert after the node before the equivalent one.
1789 	      __node->_M_nxt = __prev->_M_nxt;
1790 	      __prev->_M_nxt = __node;
1791 	      if (__builtin_expect(__prev == __hint, false))
1792 	      	// hint might be the last bucket node, in this case we need to
1793 	      	// update next bucket.
1794 	      	if (__node->_M_nxt
1795 	      	    && !this->_M_equals(__k, __code, __node->_M_next()))
1796 	      	  {
1797 	      	    size_type __next_bkt = _M_bucket_index(__node->_M_next());
1798 	      	    if (__next_bkt != __bkt)
1799 	      	      _M_buckets[__next_bkt] = __node;
1800 	      	  }
1801 	    }
1802 	  else
1803 	    // The inserted node has no equivalent in the
1804 	    // hashtable. We must insert the new node at the
1805 	    // beginning of the bucket to preserve equivalent
1806 	    // elements' relative positions.
1807 	    _M_insert_bucket_begin(__bkt, __node);
1808 	  ++_M_element_count;
1809 	  return iterator(__node);
1810 	}
1811       __catch(...)
1812 	{
1813 	  this->_M_deallocate_node(__node);
1814 	  __throw_exception_again;
1815 	}
1816     }
1817 
1818   // Insert v if no element with its key is already present.
1819   template<typename _Key, typename _Value,
1820 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1821 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1822 	   typename _Traits>
1823     template<typename _Arg, typename _NodeGenerator>
1824       auto
1825       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1826 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1827       _M_insert(_Arg&& __v, const _NodeGenerator& __node_gen, true_type,
1828 		size_type __n_elt)
1829       -> pair<iterator, bool>
1830       {
1831 	const key_type& __k = this->_M_extract()(__v);
1832 	__hash_code __code = this->_M_hash_code(__k);
1833 	size_type __bkt = _M_bucket_index(__k, __code);
1834 
1835 	__node_type* __n = _M_find_node(__bkt, __k, __code);
1836 	if (__n)
1837 	  return std::make_pair(iterator(__n), false);
1838 
1839 	__n = __node_gen(std::forward<_Arg>(__v));
1840 	return { _M_insert_unique_node(__bkt, __code, __n, __n_elt), true };
1841       }
1842 
1843   // Insert v unconditionally.
1844   template<typename _Key, typename _Value,
1845 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1846 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1847 	   typename _Traits>
1848     template<typename _Arg, typename _NodeGenerator>
1849       auto
1850       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1851 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1852       _M_insert(const_iterator __hint, _Arg&& __v,
1853 		const _NodeGenerator& __node_gen, false_type)
1854       -> iterator
1855       {
1856 	// First compute the hash code so that we don't do anything if it
1857 	// throws.
1858 	__hash_code __code = this->_M_hash_code(this->_M_extract()(__v));
1859 
1860 	// Second allocate new node so that we don't rehash if it throws.
1861 	__node_type* __node = __node_gen(std::forward<_Arg>(__v));
1862 
1863 	return _M_insert_multi_node(__hint._M_cur, __code, __node);
1864       }
1865 
1866   template<typename _Key, typename _Value,
1867 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1868 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1869 	   typename _Traits>
1870     auto
1871     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1872 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1873     erase(const_iterator __it)
1874     -> iterator
1875     {
1876       __node_type* __n = __it._M_cur;
1877       std::size_t __bkt = _M_bucket_index(__n);
1878 
1879       // Look for previous node to unlink it from the erased one, this
1880       // is why we need buckets to contain the before begin to make
1881       // this search fast.
1882       __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1883       return _M_erase(__bkt, __prev_n, __n);
1884     }
1885 
1886   template<typename _Key, typename _Value,
1887 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1888 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1889 	   typename _Traits>
1890     auto
1891     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1892 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1893     _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n)
1894     -> iterator
1895     {
1896       if (__prev_n == _M_buckets[__bkt])
1897 	_M_remove_bucket_begin(__bkt, __n->_M_next(),
1898 	   __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
1899       else if (__n->_M_nxt)
1900 	{
1901 	  size_type __next_bkt = _M_bucket_index(__n->_M_next());
1902 	  if (__next_bkt != __bkt)
1903 	    _M_buckets[__next_bkt] = __prev_n;
1904 	}
1905 
1906       __prev_n->_M_nxt = __n->_M_nxt;
1907       iterator __result(__n->_M_next());
1908       this->_M_deallocate_node(__n);
1909       --_M_element_count;
1910 
1911       return __result;
1912     }
1913 
1914   template<typename _Key, typename _Value,
1915 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1916 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1917 	   typename _Traits>
1918     auto
1919     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1920 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1921     _M_erase(std::true_type, const key_type& __k)
1922     -> size_type
1923     {
1924       __hash_code __code = this->_M_hash_code(__k);
1925       std::size_t __bkt = _M_bucket_index(__k, __code);
1926 
1927       // Look for the node before the first matching node.
1928       __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1929       if (!__prev_n)
1930 	return 0;
1931 
1932       // We found a matching node, erase it.
1933       __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1934       _M_erase(__bkt, __prev_n, __n);
1935       return 1;
1936     }
1937 
1938   template<typename _Key, typename _Value,
1939 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1940 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1941 	   typename _Traits>
1942     auto
1943     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1944 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1945     _M_erase(std::false_type, const key_type& __k)
1946     -> size_type
1947     {
1948       __hash_code __code = this->_M_hash_code(__k);
1949       std::size_t __bkt = _M_bucket_index(__k, __code);
1950 
1951       // Look for the node before the first matching node.
1952       __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1953       if (!__prev_n)
1954 	return 0;
1955 
1956       // _GLIBCXX_RESOLVE_LIB_DEFECTS
1957       // 526. Is it undefined if a function in the standard changes
1958       // in parameters?
1959       // We use one loop to find all matching nodes and another to deallocate
1960       // them so that the key stays valid during the first loop. It might be
1961       // invalidated indirectly when destroying nodes.
1962       __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1963       __node_type* __n_last = __n;
1964       std::size_t __n_last_bkt = __bkt;
1965       do
1966 	{
1967 	  __n_last = __n_last->_M_next();
1968 	  if (!__n_last)
1969 	    break;
1970 	  __n_last_bkt = _M_bucket_index(__n_last);
1971 	}
1972       while (__n_last_bkt == __bkt && this->_M_equals(__k, __code, __n_last));
1973 
1974       // Deallocate nodes.
1975       size_type __result = 0;
1976       do
1977 	{
1978 	  __node_type* __p = __n->_M_next();
1979 	  this->_M_deallocate_node(__n);
1980 	  __n = __p;
1981 	  ++__result;
1982 	  --_M_element_count;
1983 	}
1984       while (__n != __n_last);
1985 
1986       if (__prev_n == _M_buckets[__bkt])
1987 	_M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt);
1988       else if (__n_last && __n_last_bkt != __bkt)
1989 	_M_buckets[__n_last_bkt] = __prev_n;
1990       __prev_n->_M_nxt = __n_last;
1991       return __result;
1992     }
1993 
1994   template<typename _Key, typename _Value,
1995 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1996 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1997 	   typename _Traits>
1998     auto
1999     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2000 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2001     erase(const_iterator __first, const_iterator __last)
2002     -> iterator
2003     {
2004       __node_type* __n = __first._M_cur;
2005       __node_type* __last_n = __last._M_cur;
2006       if (__n == __last_n)
2007 	return iterator(__n);
2008 
2009       std::size_t __bkt = _M_bucket_index(__n);
2010 
2011       __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
2012       bool __is_bucket_begin = __n == _M_bucket_begin(__bkt);
2013       std::size_t __n_bkt = __bkt;
2014       for (;;)
2015 	{
2016 	  do
2017 	    {
2018 	      __node_type* __tmp = __n;
2019 	      __n = __n->_M_next();
2020 	      this->_M_deallocate_node(__tmp);
2021 	      --_M_element_count;
2022 	      if (!__n)
2023 		break;
2024 	      __n_bkt = _M_bucket_index(__n);
2025 	    }
2026 	  while (__n != __last_n && __n_bkt == __bkt);
2027 	  if (__is_bucket_begin)
2028 	    _M_remove_bucket_begin(__bkt, __n, __n_bkt);
2029 	  if (__n == __last_n)
2030 	    break;
2031 	  __is_bucket_begin = true;
2032 	  __bkt = __n_bkt;
2033 	}
2034 
2035       if (__n && (__n_bkt != __bkt || __is_bucket_begin))
2036 	_M_buckets[__n_bkt] = __prev_n;
2037       __prev_n->_M_nxt = __n;
2038       return iterator(__n);
2039     }
2040 
2041   template<typename _Key, typename _Value,
2042 	   typename _Alloc, typename _ExtractKey, typename _Equal,
2043 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2044 	   typename _Traits>
2045     void
2046     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2047 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2048     clear() noexcept
2049     {
2050       this->_M_deallocate_nodes(_M_begin());
2051       __builtin_memset(_M_buckets, 0, _M_bucket_count * sizeof(__bucket_type));
2052       _M_element_count = 0;
2053       _M_before_begin._M_nxt = nullptr;
2054     }
2055 
2056   template<typename _Key, typename _Value,
2057 	   typename _Alloc, typename _ExtractKey, typename _Equal,
2058 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2059 	   typename _Traits>
2060     void
2061     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2062 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2063     rehash(size_type __n)
2064     {
2065       const __rehash_state& __saved_state = _M_rehash_policy._M_state();
2066       std::size_t __buckets
2067 	= std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1),
2068 		   __n);
2069       __buckets = _M_rehash_policy._M_next_bkt(__buckets);
2070 
2071       if (__buckets != _M_bucket_count)
2072 	_M_rehash(__buckets, __saved_state);
2073       else
2074 	// No rehash, restore previous state to keep a consistent state.
2075 	_M_rehash_policy._M_reset(__saved_state);
2076     }
2077 
2078   template<typename _Key, typename _Value,
2079 	   typename _Alloc, typename _ExtractKey, typename _Equal,
2080 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2081 	   typename _Traits>
2082     void
2083     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2084 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2085     _M_rehash(size_type __n, const __rehash_state& __state)
2086     {
2087       __try
2088 	{
2089 	  _M_rehash_aux(__n, __unique_keys());
2090 	}
2091       __catch(...)
2092 	{
2093 	  // A failure here means that buckets allocation failed.  We only
2094 	  // have to restore hash policy previous state.
2095 	  _M_rehash_policy._M_reset(__state);
2096 	  __throw_exception_again;
2097 	}
2098     }
2099 
2100   // Rehash when there is no equivalent elements.
2101   template<typename _Key, typename _Value,
2102 	   typename _Alloc, typename _ExtractKey, typename _Equal,
2103 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2104 	   typename _Traits>
2105     void
2106     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2107 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2108     _M_rehash_aux(size_type __n, std::true_type)
2109     {
2110       __bucket_type* __new_buckets = _M_allocate_buckets(__n);
2111       __node_type* __p = _M_begin();
2112       _M_before_begin._M_nxt = nullptr;
2113       std::size_t __bbegin_bkt = 0;
2114       while (__p)
2115 	{
2116 	  __node_type* __next = __p->_M_next();
2117 	  std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
2118 	  if (!__new_buckets[__bkt])
2119 	    {
2120 	      __p->_M_nxt = _M_before_begin._M_nxt;
2121 	      _M_before_begin._M_nxt = __p;
2122 	      __new_buckets[__bkt] = &_M_before_begin;
2123 	      if (__p->_M_nxt)
2124 		__new_buckets[__bbegin_bkt] = __p;
2125 	      __bbegin_bkt = __bkt;
2126 	    }
2127 	  else
2128 	    {
2129 	      __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2130 	      __new_buckets[__bkt]->_M_nxt = __p;
2131 	    }
2132 	  __p = __next;
2133 	}
2134 
2135       _M_deallocate_buckets();
2136       _M_bucket_count = __n;
2137       _M_buckets = __new_buckets;
2138     }
2139 
2140   // Rehash when there can be equivalent elements, preserve their relative
2141   // order.
2142   template<typename _Key, typename _Value,
2143 	   typename _Alloc, typename _ExtractKey, typename _Equal,
2144 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2145 	   typename _Traits>
2146     void
2147     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2148 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2149     _M_rehash_aux(size_type __n, std::false_type)
2150     {
2151       __bucket_type* __new_buckets = _M_allocate_buckets(__n);
2152 
2153       __node_type* __p = _M_begin();
2154       _M_before_begin._M_nxt = nullptr;
2155       std::size_t __bbegin_bkt = 0;
2156       std::size_t __prev_bkt = 0;
2157       __node_type* __prev_p = nullptr;
2158       bool __check_bucket = false;
2159 
2160       while (__p)
2161 	{
2162 	  __node_type* __next = __p->_M_next();
2163 	  std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
2164 
2165 	  if (__prev_p && __prev_bkt == __bkt)
2166 	    {
2167 	      // Previous insert was already in this bucket, we insert after
2168 	      // the previously inserted one to preserve equivalent elements
2169 	      // relative order.
2170 	      __p->_M_nxt = __prev_p->_M_nxt;
2171 	      __prev_p->_M_nxt = __p;
2172 
2173 	      // Inserting after a node in a bucket require to check that we
2174 	      // haven't change the bucket last node, in this case next
2175 	      // bucket containing its before begin node must be updated. We
2176 	      // schedule a check as soon as we move out of the sequence of
2177 	      // equivalent nodes to limit the number of checks.
2178 	      __check_bucket = true;
2179 	    }
2180 	  else
2181 	    {
2182 	      if (__check_bucket)
2183 		{
2184 		  // Check if we shall update the next bucket because of
2185 		  // insertions into __prev_bkt bucket.
2186 		  if (__prev_p->_M_nxt)
2187 		    {
2188 		      std::size_t __next_bkt
2189 			= __hash_code_base::_M_bucket_index(__prev_p->_M_next(),
2190 							    __n);
2191 		      if (__next_bkt != __prev_bkt)
2192 			__new_buckets[__next_bkt] = __prev_p;
2193 		    }
2194 		  __check_bucket = false;
2195 		}
2196 
2197 	      if (!__new_buckets[__bkt])
2198 		{
2199 		  __p->_M_nxt = _M_before_begin._M_nxt;
2200 		  _M_before_begin._M_nxt = __p;
2201 		  __new_buckets[__bkt] = &_M_before_begin;
2202 		  if (__p->_M_nxt)
2203 		    __new_buckets[__bbegin_bkt] = __p;
2204 		  __bbegin_bkt = __bkt;
2205 		}
2206 	      else
2207 		{
2208 		  __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2209 		  __new_buckets[__bkt]->_M_nxt = __p;
2210 		}
2211 	    }
2212 	  __prev_p = __p;
2213 	  __prev_bkt = __bkt;
2214 	  __p = __next;
2215 	}
2216 
2217       if (__check_bucket && __prev_p->_M_nxt)
2218 	{
2219 	  std::size_t __next_bkt
2220 	    = __hash_code_base::_M_bucket_index(__prev_p->_M_next(), __n);
2221 	  if (__next_bkt != __prev_bkt)
2222 	    __new_buckets[__next_bkt] = __prev_p;
2223 	}
2224 
2225       _M_deallocate_buckets();
2226       _M_bucket_count = __n;
2227       _M_buckets = __new_buckets;
2228     }
2229 
2230 #if __cplusplus > 201402L
2231   template<typename, typename, typename> class _Hash_merge_helper { };
2232 #endif // C++17
2233 
2234 _GLIBCXX_END_NAMESPACE_VERSION
2235 } // namespace std
2236 
2237 #endif // _HASHTABLE_H
2238