1 // Internal policy header for unordered_set and unordered_map -*- C++ -*-
2 
3 // Copyright (C) 2010-2018 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file bits/hashtable_policy.h
26  *  This is an internal header file, included by other library headers.
27  *  Do not attempt to use it directly.
28  *  @headername{unordered_map,unordered_set}
29  */
30 
31 #ifndef _HASHTABLE_POLICY_H
32 #define _HASHTABLE_POLICY_H 1
33 
34 #include <tuple>		// for std::tuple, std::forward_as_tuple
35 #include <cstdint>		// for std::uint_fast64_t
36 #include <bits/stl_algobase.h>	// for std::min.
37 
38 namespace std _GLIBCXX_VISIBILITY(default)
39 {
40 _GLIBCXX_BEGIN_NAMESPACE_VERSION
41 
42   template<typename _Key, typename _Value, typename _Alloc,
43 	   typename _ExtractKey, typename _Equal,
44 	   typename _H1, typename _H2, typename _Hash,
45 	   typename _RehashPolicy, typename _Traits>
46     class _Hashtable;
47 
48 namespace __detail
49 {
50   /**
51    *  @defgroup hashtable-detail Base and Implementation Classes
52    *  @ingroup unordered_associative_containers
53    *  @{
54    */
55   template<typename _Key, typename _Value,
56 	   typename _ExtractKey, typename _Equal,
57 	   typename _H1, typename _H2, typename _Hash, typename _Traits>
58     struct _Hashtable_base;
59 
60   // Helper function: return distance(first, last) for forward
61   // iterators, or 0/1 for input iterators.
62   template<class _Iterator>
63     inline typename std::iterator_traits<_Iterator>::difference_type
64     __distance_fw(_Iterator __first, _Iterator __last,
65 		  std::input_iterator_tag)
66     { return __first != __last ? 1 : 0; }
67 
68   template<class _Iterator>
69     inline typename std::iterator_traits<_Iterator>::difference_type
70     __distance_fw(_Iterator __first, _Iterator __last,
71 		  std::forward_iterator_tag)
72     { return std::distance(__first, __last); }
73 
74   template<class _Iterator>
75     inline typename std::iterator_traits<_Iterator>::difference_type
76     __distance_fw(_Iterator __first, _Iterator __last)
77     { return __distance_fw(__first, __last,
78 			   std::__iterator_category(__first)); }
79 
80   struct _Identity
81   {
82     template<typename _Tp>
83       _Tp&&
84       operator()(_Tp&& __x) const
85       { return std::forward<_Tp>(__x); }
86   };
87 
88   struct _Select1st
89   {
90     template<typename _Tp>
91       auto
92       operator()(_Tp&& __x) const
93       -> decltype(std::get<0>(std::forward<_Tp>(__x)))
94       { return std::get<0>(std::forward<_Tp>(__x)); }
95   };
96 
97   template<typename _NodeAlloc>
98     struct _Hashtable_alloc;
99 
100   // Functor recycling a pool of nodes and using allocation once the pool is
101   // empty.
102   template<typename _NodeAlloc>
103     struct _ReuseOrAllocNode
104     {
105     private:
106       using __node_alloc_type = _NodeAlloc;
107       using __hashtable_alloc = _Hashtable_alloc<__node_alloc_type>;
108       using __node_alloc_traits =
109 	typename __hashtable_alloc::__node_alloc_traits;
110       using __node_type = typename __hashtable_alloc::__node_type;
111 
112     public:
113       _ReuseOrAllocNode(__node_type* __nodes, __hashtable_alloc& __h)
114 	: _M_nodes(__nodes), _M_h(__h) { }
115       _ReuseOrAllocNode(const _ReuseOrAllocNode&) = delete;
116 
117       ~_ReuseOrAllocNode()
118       { _M_h._M_deallocate_nodes(_M_nodes); }
119 
120       template<typename _Arg>
121 	__node_type*
122 	operator()(_Arg&& __arg) const
123 	{
124 	  if (_M_nodes)
125 	    {
126 	      __node_type* __node = _M_nodes;
127 	      _M_nodes = _M_nodes->_M_next();
128 	      __node->_M_nxt = nullptr;
129 	      auto& __a = _M_h._M_node_allocator();
130 	      __node_alloc_traits::destroy(__a, __node->_M_valptr());
131 	      __try
132 		{
133 		  __node_alloc_traits::construct(__a, __node->_M_valptr(),
134 						 std::forward<_Arg>(__arg));
135 		}
136 	      __catch(...)
137 		{
138 		  __node->~__node_type();
139 		  __node_alloc_traits::deallocate(__a, __node, 1);
140 		  __throw_exception_again;
141 		}
142 	      return __node;
143 	    }
144 	  return _M_h._M_allocate_node(std::forward<_Arg>(__arg));
145 	}
146 
147     private:
148       mutable __node_type* _M_nodes;
149       __hashtable_alloc& _M_h;
150     };
151 
152   // Functor similar to the previous one but without any pool of nodes to
153   // recycle.
154   template<typename _NodeAlloc>
155     struct _AllocNode
156     {
157     private:
158       using __hashtable_alloc = _Hashtable_alloc<_NodeAlloc>;
159       using __node_type = typename __hashtable_alloc::__node_type;
160 
161     public:
162       _AllocNode(__hashtable_alloc& __h)
163 	: _M_h(__h) { }
164 
165       template<typename _Arg>
166 	__node_type*
167 	operator()(_Arg&& __arg) const
168 	{ return _M_h._M_allocate_node(std::forward<_Arg>(__arg)); }
169 
170     private:
171       __hashtable_alloc& _M_h;
172     };
173 
174   // Auxiliary types used for all instantiations of _Hashtable nodes
175   // and iterators.
176 
177   /**
178    *  struct _Hashtable_traits
179    *
180    *  Important traits for hash tables.
181    *
182    *  @tparam _Cache_hash_code  Boolean value. True if the value of
183    *  the hash function is stored along with the value. This is a
184    *  time-space tradeoff.  Storing it may improve lookup speed by
185    *  reducing the number of times we need to call the _Equal
186    *  function.
187    *
188    *  @tparam _Constant_iterators  Boolean value. True if iterator and
189    *  const_iterator are both constant iterator types. This is true
190    *  for unordered_set and unordered_multiset, false for
191    *  unordered_map and unordered_multimap.
192    *
193    *  @tparam _Unique_keys  Boolean value. True if the return value
194    *  of _Hashtable::count(k) is always at most one, false if it may
195    *  be an arbitrary number. This is true for unordered_set and
196    *  unordered_map, false for unordered_multiset and
197    *  unordered_multimap.
198    */
199   template<bool _Cache_hash_code, bool _Constant_iterators, bool _Unique_keys>
200     struct _Hashtable_traits
201     {
202       using __hash_cached = __bool_constant<_Cache_hash_code>;
203       using __constant_iterators = __bool_constant<_Constant_iterators>;
204       using __unique_keys = __bool_constant<_Unique_keys>;
205     };
206 
207   /**
208    *  struct _Hash_node_base
209    *
210    *  Nodes, used to wrap elements stored in the hash table.  A policy
211    *  template parameter of class template _Hashtable controls whether
212    *  nodes also store a hash code. In some cases (e.g. strings) this
213    *  may be a performance win.
214    */
215   struct _Hash_node_base
216   {
217     _Hash_node_base* _M_nxt;
218 
219     _Hash_node_base() noexcept : _M_nxt() { }
220 
221     _Hash_node_base(_Hash_node_base* __next) noexcept : _M_nxt(__next) { }
222   };
223 
224   /**
225    *  struct _Hash_node_value_base
226    *
227    *  Node type with the value to store.
228    */
229   template<typename _Value>
230     struct _Hash_node_value_base : _Hash_node_base
231     {
232       typedef _Value value_type;
233 
234       __gnu_cxx::__aligned_buffer<_Value> _M_storage;
235 
236       _Value*
237       _M_valptr() noexcept
238       { return _M_storage._M_ptr(); }
239 
240       const _Value*
241       _M_valptr() const noexcept
242       { return _M_storage._M_ptr(); }
243 
244       _Value&
245       _M_v() noexcept
246       { return *_M_valptr(); }
247 
248       const _Value&
249       _M_v() const noexcept
250       { return *_M_valptr(); }
251     };
252 
253   /**
254    *  Primary template struct _Hash_node.
255    */
256   template<typename _Value, bool _Cache_hash_code>
257     struct _Hash_node;
258 
259   /**
260    *  Specialization for nodes with caches, struct _Hash_node.
261    *
262    *  Base class is __detail::_Hash_node_value_base.
263    */
264   template<typename _Value>
265     struct _Hash_node<_Value, true> : _Hash_node_value_base<_Value>
266     {
267       std::size_t  _M_hash_code;
268 
269       _Hash_node*
270       _M_next() const noexcept
271       { return static_cast<_Hash_node*>(this->_M_nxt); }
272     };
273 
274   /**
275    *  Specialization for nodes without caches, struct _Hash_node.
276    *
277    *  Base class is __detail::_Hash_node_value_base.
278    */
279   template<typename _Value>
280     struct _Hash_node<_Value, false> : _Hash_node_value_base<_Value>
281     {
282       _Hash_node*
283       _M_next() const noexcept
284       { return static_cast<_Hash_node*>(this->_M_nxt); }
285     };
286 
287   /// Base class for node iterators.
288   template<typename _Value, bool _Cache_hash_code>
289     struct _Node_iterator_base
290     {
291       using __node_type = _Hash_node<_Value, _Cache_hash_code>;
292 
293       __node_type*  _M_cur;
294 
295       _Node_iterator_base(__node_type* __p) noexcept
296       : _M_cur(__p) { }
297 
298       void
299       _M_incr() noexcept
300       { _M_cur = _M_cur->_M_next(); }
301     };
302 
303   template<typename _Value, bool _Cache_hash_code>
304     inline bool
305     operator==(const _Node_iterator_base<_Value, _Cache_hash_code>& __x,
306 	       const _Node_iterator_base<_Value, _Cache_hash_code >& __y)
307     noexcept
308     { return __x._M_cur == __y._M_cur; }
309 
310   template<typename _Value, bool _Cache_hash_code>
311     inline bool
312     operator!=(const _Node_iterator_base<_Value, _Cache_hash_code>& __x,
313 	       const _Node_iterator_base<_Value, _Cache_hash_code>& __y)
314     noexcept
315     { return __x._M_cur != __y._M_cur; }
316 
317   /// Node iterators, used to iterate through all the hashtable.
318   template<typename _Value, bool __constant_iterators, bool __cache>
319     struct _Node_iterator
320     : public _Node_iterator_base<_Value, __cache>
321     {
322     private:
323       using __base_type = _Node_iterator_base<_Value, __cache>;
324       using __node_type = typename __base_type::__node_type;
325 
326     public:
327       typedef _Value					value_type;
328       typedef std::ptrdiff_t				difference_type;
329       typedef std::forward_iterator_tag			iterator_category;
330 
331       using pointer = typename std::conditional<__constant_iterators,
332 						const _Value*, _Value*>::type;
333 
334       using reference = typename std::conditional<__constant_iterators,
335 						  const _Value&, _Value&>::type;
336 
337       _Node_iterator() noexcept
338       : __base_type(0) { }
339 
340       explicit
341       _Node_iterator(__node_type* __p) noexcept
342       : __base_type(__p) { }
343 
344       reference
345       operator*() const noexcept
346       { return this->_M_cur->_M_v(); }
347 
348       pointer
349       operator->() const noexcept
350       { return this->_M_cur->_M_valptr(); }
351 
352       _Node_iterator&
353       operator++() noexcept
354       {
355 	this->_M_incr();
356 	return *this;
357       }
358 
359       _Node_iterator
360       operator++(int) noexcept
361       {
362 	_Node_iterator __tmp(*this);
363 	this->_M_incr();
364 	return __tmp;
365       }
366     };
367 
368   /// Node const_iterators, used to iterate through all the hashtable.
369   template<typename _Value, bool __constant_iterators, bool __cache>
370     struct _Node_const_iterator
371     : public _Node_iterator_base<_Value, __cache>
372     {
373     private:
374       using __base_type = _Node_iterator_base<_Value, __cache>;
375       using __node_type = typename __base_type::__node_type;
376 
377     public:
378       typedef _Value					value_type;
379       typedef std::ptrdiff_t				difference_type;
380       typedef std::forward_iterator_tag			iterator_category;
381 
382       typedef const _Value*				pointer;
383       typedef const _Value&				reference;
384 
385       _Node_const_iterator() noexcept
386       : __base_type(0) { }
387 
388       explicit
389       _Node_const_iterator(__node_type* __p) noexcept
390       : __base_type(__p) { }
391 
392       _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
393 			   __cache>& __x) noexcept
394       : __base_type(__x._M_cur) { }
395 
396       reference
397       operator*() const noexcept
398       { return this->_M_cur->_M_v(); }
399 
400       pointer
401       operator->() const noexcept
402       { return this->_M_cur->_M_valptr(); }
403 
404       _Node_const_iterator&
405       operator++() noexcept
406       {
407 	this->_M_incr();
408 	return *this;
409       }
410 
411       _Node_const_iterator
412       operator++(int) noexcept
413       {
414 	_Node_const_iterator __tmp(*this);
415 	this->_M_incr();
416 	return __tmp;
417       }
418     };
419 
420   // Many of class template _Hashtable's template parameters are policy
421   // classes.  These are defaults for the policies.
422 
423   /// Default range hashing function: use division to fold a large number
424   /// into the range [0, N).
425   struct _Mod_range_hashing
426   {
427     typedef std::size_t first_argument_type;
428     typedef std::size_t second_argument_type;
429     typedef std::size_t result_type;
430 
431     result_type
432     operator()(first_argument_type __num,
433 	       second_argument_type __den) const noexcept
434     { return __num % __den; }
435   };
436 
437   /// Default ranged hash function H.  In principle it should be a
438   /// function object composed from objects of type H1 and H2 such that
439   /// h(k, N) = h2(h1(k), N), but that would mean making extra copies of
440   /// h1 and h2.  So instead we'll just use a tag to tell class template
441   /// hashtable to do that composition.
442   struct _Default_ranged_hash { };
443 
444   /// Default value for rehash policy.  Bucket size is (usually) the
445   /// smallest prime that keeps the load factor small enough.
446   struct _Prime_rehash_policy
447   {
448     using __has_load_factor = std::true_type;
449 
450     _Prime_rehash_policy(float __z = 1.0) noexcept
451     : _M_max_load_factor(__z), _M_next_resize(0) { }
452 
453     float
454     max_load_factor() const noexcept
455     { return _M_max_load_factor; }
456 
457     // Return a bucket size no smaller than n.
458     std::size_t
459     _M_next_bkt(std::size_t __n) const;
460 
461     // Return a bucket count appropriate for n elements
462     std::size_t
463     _M_bkt_for_elements(std::size_t __n) const
464     { return __builtin_ceil(__n / (long double)_M_max_load_factor); }
465 
466     // __n_bkt is current bucket count, __n_elt is current element count,
467     // and __n_ins is number of elements to be inserted.  Do we need to
468     // increase bucket count?  If so, return make_pair(true, n), where n
469     // is the new bucket count.  If not, return make_pair(false, 0).
470     std::pair<bool, std::size_t>
471     _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
472 		   std::size_t __n_ins) const;
473 
474     typedef std::size_t _State;
475 
476     _State
477     _M_state() const
478     { return _M_next_resize; }
479 
480     void
481     _M_reset() noexcept
482     { _M_next_resize = 0; }
483 
484     void
485     _M_reset(_State __state)
486     { _M_next_resize = __state; }
487 
488     static const std::size_t _S_growth_factor = 2;
489 
490     float		_M_max_load_factor;
491     mutable std::size_t	_M_next_resize;
492   };
493 
494   /// Range hashing function assuming that second arg is a power of 2.
495   struct _Mask_range_hashing
496   {
497     typedef std::size_t first_argument_type;
498     typedef std::size_t second_argument_type;
499     typedef std::size_t result_type;
500 
501     result_type
502     operator()(first_argument_type __num,
503 	       second_argument_type __den) const noexcept
504     { return __num & (__den - 1); }
505   };
506 
507   /// Compute closest power of 2.
508   _GLIBCXX14_CONSTEXPR
509   inline std::size_t
510   __clp2(std::size_t __n) noexcept
511   {
512 #if __SIZEOF_SIZE_T__ >= 8
513     std::uint_fast64_t __x = __n;
514 #else
515     std::uint_fast32_t __x = __n;
516 #endif
517     // Algorithm from Hacker's Delight, Figure 3-3.
518     __x = __x - 1;
519     __x = __x | (__x >> 1);
520     __x = __x | (__x >> 2);
521     __x = __x | (__x >> 4);
522     __x = __x | (__x >> 8);
523     __x = __x | (__x >>16);
524 #if __SIZEOF_SIZE_T__ >= 8
525     __x = __x | (__x >>32);
526 #endif
527     return __x + 1;
528   }
529 
530   /// Rehash policy providing power of 2 bucket numbers. Avoids modulo
531   /// operations.
532   struct _Power2_rehash_policy
533   {
534     using __has_load_factor = std::true_type;
535 
536     _Power2_rehash_policy(float __z = 1.0) noexcept
537     : _M_max_load_factor(__z), _M_next_resize(0) { }
538 
539     float
540     max_load_factor() const noexcept
541     { return _M_max_load_factor; }
542 
543     // Return a bucket size no smaller than n (as long as n is not above the
544     // highest power of 2).
545     std::size_t
546     _M_next_bkt(std::size_t __n) noexcept
547     {
548       const auto __max_width = std::min<size_t>(sizeof(size_t), 8);
549       const auto __max_bkt = size_t(1) << (__max_width * __CHAR_BIT__ - 1);
550       std::size_t __res = __clp2(__n);
551 
552       if (__res == __n)
553 	__res <<= 1;
554 
555       if (__res == 0)
556 	__res = __max_bkt;
557 
558       if (__res == __max_bkt)
559 	// Set next resize to the max value so that we never try to rehash again
560 	// as we already reach the biggest possible bucket number.
561 	// Note that it might result in max_load_factor not being respected.
562 	_M_next_resize = std::size_t(-1);
563       else
564 	_M_next_resize
565 	  = __builtin_ceil(__res * (long double)_M_max_load_factor);
566 
567       return __res;
568     }
569 
570     // Return a bucket count appropriate for n elements
571     std::size_t
572     _M_bkt_for_elements(std::size_t __n) const noexcept
573     { return __builtin_ceil(__n / (long double)_M_max_load_factor); }
574 
575     // __n_bkt is current bucket count, __n_elt is current element count,
576     // and __n_ins is number of elements to be inserted.  Do we need to
577     // increase bucket count?  If so, return make_pair(true, n), where n
578     // is the new bucket count.  If not, return make_pair(false, 0).
579     std::pair<bool, std::size_t>
580     _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
581 		   std::size_t __n_ins) noexcept
582     {
583       if (__n_elt + __n_ins >= _M_next_resize)
584 	{
585 	  long double __min_bkts = (__n_elt + __n_ins)
586 					/ (long double)_M_max_load_factor;
587 	  if (__min_bkts >= __n_bkt)
588 	    return std::make_pair(true,
589 	      _M_next_bkt(std::max<std::size_t>(__builtin_floor(__min_bkts) + 1,
590 						__n_bkt * _S_growth_factor)));
591 
592 	  _M_next_resize
593 	    = __builtin_floor(__n_bkt * (long double)_M_max_load_factor);
594 	  return std::make_pair(false, 0);
595 	}
596       else
597 	return std::make_pair(false, 0);
598     }
599 
600     typedef std::size_t _State;
601 
602     _State
603     _M_state() const noexcept
604     { return _M_next_resize; }
605 
606     void
607     _M_reset() noexcept
608     { _M_next_resize = 0; }
609 
610     void
611     _M_reset(_State __state) noexcept
612     { _M_next_resize = __state; }
613 
614     static const std::size_t _S_growth_factor = 2;
615 
616     float	_M_max_load_factor;
617     std::size_t	_M_next_resize;
618   };
619 
620   // Base classes for std::_Hashtable.  We define these base classes
621   // because in some cases we want to do different things depending on
622   // the value of a policy class.  In some cases the policy class
623   // affects which member functions and nested typedefs are defined;
624   // we handle that by specializing base class templates.  Several of
625   // the base class templates need to access other members of class
626   // template _Hashtable, so we use a variant of the "Curiously
627   // Recurring Template Pattern" (CRTP) technique.
628 
629   /**
630    *  Primary class template _Map_base.
631    *
632    *  If the hashtable has a value type of the form pair<T1, T2> and a
633    *  key extraction policy (_ExtractKey) that returns the first part
634    *  of the pair, the hashtable gets a mapped_type typedef.  If it
635    *  satisfies those criteria and also has unique keys, then it also
636    *  gets an operator[].
637    */
638   template<typename _Key, typename _Value, typename _Alloc,
639 	   typename _ExtractKey, typename _Equal,
640 	   typename _H1, typename _H2, typename _Hash,
641 	   typename _RehashPolicy, typename _Traits,
642 	   bool _Unique_keys = _Traits::__unique_keys::value>
643     struct _Map_base { };
644 
645   /// Partial specialization, __unique_keys set to false.
646   template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
647 	   typename _H1, typename _H2, typename _Hash,
648 	   typename _RehashPolicy, typename _Traits>
649     struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
650 		     _H1, _H2, _Hash, _RehashPolicy, _Traits, false>
651     {
652       using mapped_type = typename std::tuple_element<1, _Pair>::type;
653     };
654 
655   /// Partial specialization, __unique_keys set to true.
656   template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
657 	   typename _H1, typename _H2, typename _Hash,
658 	   typename _RehashPolicy, typename _Traits>
659     struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
660 		     _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
661     {
662     private:
663       using __hashtable_base = __detail::_Hashtable_base<_Key, _Pair,
664 							 _Select1st,
665 							_Equal, _H1, _H2, _Hash,
666 							  _Traits>;
667 
668       using __hashtable = _Hashtable<_Key, _Pair, _Alloc,
669 				     _Select1st, _Equal,
670 				     _H1, _H2, _Hash, _RehashPolicy, _Traits>;
671 
672       using __hash_code = typename __hashtable_base::__hash_code;
673       using __node_type = typename __hashtable_base::__node_type;
674 
675     public:
676       using key_type = typename __hashtable_base::key_type;
677       using iterator = typename __hashtable_base::iterator;
678       using mapped_type = typename std::tuple_element<1, _Pair>::type;
679 
680       mapped_type&
681       operator[](const key_type& __k);
682 
683       mapped_type&
684       operator[](key_type&& __k);
685 
686       // _GLIBCXX_RESOLVE_LIB_DEFECTS
687       // DR 761. unordered_map needs an at() member function.
688       mapped_type&
689       at(const key_type& __k);
690 
691       const mapped_type&
692       at(const key_type& __k) const;
693     };
694 
695   template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
696 	   typename _H1, typename _H2, typename _Hash,
697 	   typename _RehashPolicy, typename _Traits>
698     auto
699     _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
700 	      _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
701     operator[](const key_type& __k)
702     -> mapped_type&
703     {
704       __hashtable* __h = static_cast<__hashtable*>(this);
705       __hash_code __code = __h->_M_hash_code(__k);
706       std::size_t __n = __h->_M_bucket_index(__k, __code);
707       __node_type* __p = __h->_M_find_node(__n, __k, __code);
708 
709       if (!__p)
710 	{
711 	  __p = __h->_M_allocate_node(std::piecewise_construct,
712 				      std::tuple<const key_type&>(__k),
713 				      std::tuple<>());
714 	  return __h->_M_insert_unique_node(__n, __code, __p)->second;
715 	}
716 
717       return __p->_M_v().second;
718     }
719 
720   template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
721 	   typename _H1, typename _H2, typename _Hash,
722 	   typename _RehashPolicy, typename _Traits>
723     auto
724     _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
725 	      _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
726     operator[](key_type&& __k)
727     -> mapped_type&
728     {
729       __hashtable* __h = static_cast<__hashtable*>(this);
730       __hash_code __code = __h->_M_hash_code(__k);
731       std::size_t __n = __h->_M_bucket_index(__k, __code);
732       __node_type* __p = __h->_M_find_node(__n, __k, __code);
733 
734       if (!__p)
735 	{
736 	  __p = __h->_M_allocate_node(std::piecewise_construct,
737 				      std::forward_as_tuple(std::move(__k)),
738 				      std::tuple<>());
739 	  return __h->_M_insert_unique_node(__n, __code, __p)->second;
740 	}
741 
742       return __p->_M_v().second;
743     }
744 
745   template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
746 	   typename _H1, typename _H2, typename _Hash,
747 	   typename _RehashPolicy, typename _Traits>
748     auto
749     _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
750 	      _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
751     at(const key_type& __k)
752     -> mapped_type&
753     {
754       __hashtable* __h = static_cast<__hashtable*>(this);
755       __hash_code __code = __h->_M_hash_code(__k);
756       std::size_t __n = __h->_M_bucket_index(__k, __code);
757       __node_type* __p = __h->_M_find_node(__n, __k, __code);
758 
759       if (!__p)
760 	__throw_out_of_range(__N("_Map_base::at"));
761       return __p->_M_v().second;
762     }
763 
764   template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
765 	   typename _H1, typename _H2, typename _Hash,
766 	   typename _RehashPolicy, typename _Traits>
767     auto
768     _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
769 	      _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
770     at(const key_type& __k) const
771     -> const mapped_type&
772     {
773       const __hashtable* __h = static_cast<const __hashtable*>(this);
774       __hash_code __code = __h->_M_hash_code(__k);
775       std::size_t __n = __h->_M_bucket_index(__k, __code);
776       __node_type* __p = __h->_M_find_node(__n, __k, __code);
777 
778       if (!__p)
779 	__throw_out_of_range(__N("_Map_base::at"));
780       return __p->_M_v().second;
781     }
782 
783   /**
784    *  Primary class template _Insert_base.
785    *
786    *  Defines @c insert member functions appropriate to all _Hashtables.
787    */
788   template<typename _Key, typename _Value, typename _Alloc,
789 	   typename _ExtractKey, typename _Equal,
790 	   typename _H1, typename _H2, typename _Hash,
791 	   typename _RehashPolicy, typename _Traits>
792     struct _Insert_base
793     {
794     protected:
795       using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
796 				     _Equal, _H1, _H2, _Hash,
797 				     _RehashPolicy, _Traits>;
798 
799       using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey,
800 					       _Equal, _H1, _H2, _Hash,
801 					       _Traits>;
802 
803       using value_type = typename __hashtable_base::value_type;
804       using iterator = typename __hashtable_base::iterator;
805       using const_iterator =  typename __hashtable_base::const_iterator;
806       using size_type = typename __hashtable_base::size_type;
807 
808       using __unique_keys = typename __hashtable_base::__unique_keys;
809       using __ireturn_type = typename __hashtable_base::__ireturn_type;
810       using __node_type = _Hash_node<_Value, _Traits::__hash_cached::value>;
811       using __node_alloc_type = __alloc_rebind<_Alloc, __node_type>;
812       using __node_gen_type = _AllocNode<__node_alloc_type>;
813 
814       __hashtable&
815       _M_conjure_hashtable()
816       { return *(static_cast<__hashtable*>(this)); }
817 
818       template<typename _InputIterator, typename _NodeGetter>
819 	void
820 	_M_insert_range(_InputIterator __first, _InputIterator __last,
821 			const _NodeGetter&, true_type);
822 
823       template<typename _InputIterator, typename _NodeGetter>
824 	void
825 	_M_insert_range(_InputIterator __first, _InputIterator __last,
826 			const _NodeGetter&, false_type);
827 
828     public:
829       __ireturn_type
830       insert(const value_type& __v)
831       {
832 	__hashtable& __h = _M_conjure_hashtable();
833 	__node_gen_type __node_gen(__h);
834 	return __h._M_insert(__v, __node_gen, __unique_keys());
835       }
836 
837       iterator
838       insert(const_iterator __hint, const value_type& __v)
839       {
840 	__hashtable& __h = _M_conjure_hashtable();
841 	__node_gen_type __node_gen(__h);
842 	return __h._M_insert(__hint, __v, __node_gen, __unique_keys());
843       }
844 
845       void
846       insert(initializer_list<value_type> __l)
847       { this->insert(__l.begin(), __l.end()); }
848 
849       template<typename _InputIterator>
850 	void
851 	insert(_InputIterator __first, _InputIterator __last)
852 	{
853 	  __hashtable& __h = _M_conjure_hashtable();
854 	  __node_gen_type __node_gen(__h);
855 	  return _M_insert_range(__first, __last, __node_gen, __unique_keys());
856 	}
857     };
858 
859   template<typename _Key, typename _Value, typename _Alloc,
860 	   typename _ExtractKey, typename _Equal,
861 	   typename _H1, typename _H2, typename _Hash,
862 	   typename _RehashPolicy, typename _Traits>
863     template<typename _InputIterator, typename _NodeGetter>
864       void
865       _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
866 		    _RehashPolicy, _Traits>::
867       _M_insert_range(_InputIterator __first, _InputIterator __last,
868 		      const _NodeGetter& __node_gen, true_type)
869       {
870 	size_type __n_elt = __detail::__distance_fw(__first, __last);
871 	if (__n_elt == 0)
872 	  return;
873 
874 	__hashtable& __h = _M_conjure_hashtable();
875 	for (; __first != __last; ++__first)
876 	  {
877 	    if (__h._M_insert(*__first, __node_gen, __unique_keys(),
878 			      __n_elt).second)
879 	      __n_elt = 1;
880 	    else if (__n_elt != 1)
881 	      --__n_elt;
882 	  }
883       }
884 
885   template<typename _Key, typename _Value, typename _Alloc,
886 	   typename _ExtractKey, typename _Equal,
887 	   typename _H1, typename _H2, typename _Hash,
888 	   typename _RehashPolicy, typename _Traits>
889     template<typename _InputIterator, typename _NodeGetter>
890       void
891       _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
892 		    _RehashPolicy, _Traits>::
893       _M_insert_range(_InputIterator __first, _InputIterator __last,
894 		      const _NodeGetter& __node_gen, false_type)
895       {
896 	using __rehash_type = typename __hashtable::__rehash_type;
897 	using __rehash_state = typename __hashtable::__rehash_state;
898 	using pair_type = std::pair<bool, std::size_t>;
899 
900 	size_type __n_elt = __detail::__distance_fw(__first, __last);
901 	if (__n_elt == 0)
902 	  return;
903 
904 	__hashtable& __h = _M_conjure_hashtable();
905 	__rehash_type& __rehash = __h._M_rehash_policy;
906 	const __rehash_state& __saved_state = __rehash._M_state();
907 	pair_type __do_rehash = __rehash._M_need_rehash(__h._M_bucket_count,
908 							__h._M_element_count,
909 							__n_elt);
910 
911 	if (__do_rehash.first)
912 	  __h._M_rehash(__do_rehash.second, __saved_state);
913 
914 	for (; __first != __last; ++__first)
915 	  __h._M_insert(*__first, __node_gen, __unique_keys());
916       }
917 
918   /**
919    *  Primary class template _Insert.
920    *
921    *  Defines @c insert member functions that depend on _Hashtable policies,
922    *  via partial specializations.
923    */
924   template<typename _Key, typename _Value, typename _Alloc,
925 	   typename _ExtractKey, typename _Equal,
926 	   typename _H1, typename _H2, typename _Hash,
927 	   typename _RehashPolicy, typename _Traits,
928 	   bool _Constant_iterators = _Traits::__constant_iterators::value>
929     struct _Insert;
930 
931   /// Specialization.
932   template<typename _Key, typename _Value, typename _Alloc,
933 	   typename _ExtractKey, typename _Equal,
934 	   typename _H1, typename _H2, typename _Hash,
935 	   typename _RehashPolicy, typename _Traits>
936     struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
937 		   _RehashPolicy, _Traits, true>
938     : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
939 			   _H1, _H2, _Hash, _RehashPolicy, _Traits>
940     {
941       using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
942 					_Equal, _H1, _H2, _Hash,
943 					_RehashPolicy, _Traits>;
944 
945       using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey,
946 					       _Equal, _H1, _H2, _Hash,
947 					       _Traits>;
948 
949       using value_type = typename __base_type::value_type;
950       using iterator = typename __base_type::iterator;
951       using const_iterator =  typename __base_type::const_iterator;
952 
953       using __unique_keys = typename __base_type::__unique_keys;
954       using __ireturn_type = typename __hashtable_base::__ireturn_type;
955       using __hashtable = typename __base_type::__hashtable;
956       using __node_gen_type = typename __base_type::__node_gen_type;
957 
958       using __base_type::insert;
959 
960       __ireturn_type
961       insert(value_type&& __v)
962       {
963 	__hashtable& __h = this->_M_conjure_hashtable();
964 	__node_gen_type __node_gen(__h);
965 	return __h._M_insert(std::move(__v), __node_gen, __unique_keys());
966       }
967 
968       iterator
969       insert(const_iterator __hint, value_type&& __v)
970       {
971 	__hashtable& __h = this->_M_conjure_hashtable();
972 	__node_gen_type __node_gen(__h);
973 	return __h._M_insert(__hint, std::move(__v), __node_gen,
974 			     __unique_keys());
975       }
976     };
977 
978   /// Specialization.
979   template<typename _Key, typename _Value, typename _Alloc,
980 	   typename _ExtractKey, typename _Equal,
981 	   typename _H1, typename _H2, typename _Hash,
982 	   typename _RehashPolicy, typename _Traits>
983     struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
984 		   _RehashPolicy, _Traits, false>
985     : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
986 			   _H1, _H2, _Hash, _RehashPolicy, _Traits>
987     {
988       using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
989 				       _Equal, _H1, _H2, _Hash,
990 				       _RehashPolicy, _Traits>;
991       using value_type = typename __base_type::value_type;
992       using iterator = typename __base_type::iterator;
993       using const_iterator =  typename __base_type::const_iterator;
994 
995       using __unique_keys = typename __base_type::__unique_keys;
996       using __hashtable = typename __base_type::__hashtable;
997       using __ireturn_type = typename __base_type::__ireturn_type;
998 
999       using __base_type::insert;
1000 
1001       template<typename _Pair>
1002 	using __is_cons = std::is_constructible<value_type, _Pair&&>;
1003 
1004       template<typename _Pair>
1005 	using _IFcons = std::enable_if<__is_cons<_Pair>::value>;
1006 
1007       template<typename _Pair>
1008 	using _IFconsp = typename _IFcons<_Pair>::type;
1009 
1010       template<typename _Pair, typename = _IFconsp<_Pair>>
1011 	__ireturn_type
1012 	insert(_Pair&& __v)
1013 	{
1014 	  __hashtable& __h = this->_M_conjure_hashtable();
1015 	  return __h._M_emplace(__unique_keys(), std::forward<_Pair>(__v));
1016 	}
1017 
1018       template<typename _Pair, typename = _IFconsp<_Pair>>
1019 	iterator
1020 	insert(const_iterator __hint, _Pair&& __v)
1021 	{
1022 	  __hashtable& __h = this->_M_conjure_hashtable();
1023 	  return __h._M_emplace(__hint, __unique_keys(),
1024 				std::forward<_Pair>(__v));
1025 	}
1026    };
1027 
1028   template<typename _Policy>
1029     using __has_load_factor = typename _Policy::__has_load_factor;
1030 
1031   /**
1032    *  Primary class template  _Rehash_base.
1033    *
1034    *  Give hashtable the max_load_factor functions and reserve iff the
1035    *  rehash policy supports it.
1036   */
1037   template<typename _Key, typename _Value, typename _Alloc,
1038 	   typename _ExtractKey, typename _Equal,
1039 	   typename _H1, typename _H2, typename _Hash,
1040 	   typename _RehashPolicy, typename _Traits,
1041 	   typename =
1042 	     __detected_or_t<std::false_type, __has_load_factor, _RehashPolicy>>
1043     struct _Rehash_base;
1044 
1045   /// Specialization when rehash policy doesn't provide load factor management.
1046   template<typename _Key, typename _Value, typename _Alloc,
1047 	   typename _ExtractKey, typename _Equal,
1048 	   typename _H1, typename _H2, typename _Hash,
1049 	   typename _RehashPolicy, typename _Traits>
1050     struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1051 		      _H1, _H2, _Hash, _RehashPolicy, _Traits,
1052 		      std::false_type>
1053     {
1054     };
1055 
1056   /// Specialization when rehash policy provide load factor management.
1057   template<typename _Key, typename _Value, typename _Alloc,
1058 	   typename _ExtractKey, typename _Equal,
1059 	   typename _H1, typename _H2, typename _Hash,
1060 	   typename _RehashPolicy, typename _Traits>
1061     struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1062 			_H1, _H2, _Hash, _RehashPolicy, _Traits,
1063 			std::true_type>
1064     {
1065       using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
1066 				     _Equal, _H1, _H2, _Hash,
1067 				     _RehashPolicy, _Traits>;
1068 
1069       float
1070       max_load_factor() const noexcept
1071       {
1072 	const __hashtable* __this = static_cast<const __hashtable*>(this);
1073 	return __this->__rehash_policy().max_load_factor();
1074       }
1075 
1076       void
1077       max_load_factor(float __z)
1078       {
1079 	__hashtable* __this = static_cast<__hashtable*>(this);
1080 	__this->__rehash_policy(_RehashPolicy(__z));
1081       }
1082 
1083       void
1084       reserve(std::size_t __n)
1085       {
1086 	__hashtable* __this = static_cast<__hashtable*>(this);
1087 	__this->rehash(__builtin_ceil(__n / max_load_factor()));
1088       }
1089     };
1090 
1091   /**
1092    *  Primary class template _Hashtable_ebo_helper.
1093    *
1094    *  Helper class using EBO when it is not forbidden (the type is not
1095    *  final) and when it is worth it (the type is empty.)
1096    */
1097   template<int _Nm, typename _Tp,
1098 	   bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)>
1099     struct _Hashtable_ebo_helper;
1100 
1101   /// Specialization using EBO.
1102   template<int _Nm, typename _Tp>
1103     struct _Hashtable_ebo_helper<_Nm, _Tp, true>
1104     : private _Tp
1105     {
1106       _Hashtable_ebo_helper() = default;
1107 
1108       template<typename _OtherTp>
1109 	_Hashtable_ebo_helper(_OtherTp&& __tp)
1110 	  : _Tp(std::forward<_OtherTp>(__tp))
1111 	{ }
1112 
1113       static const _Tp&
1114       _S_cget(const _Hashtable_ebo_helper& __eboh)
1115       { return static_cast<const _Tp&>(__eboh); }
1116 
1117       static _Tp&
1118       _S_get(_Hashtable_ebo_helper& __eboh)
1119       { return static_cast<_Tp&>(__eboh); }
1120     };
1121 
1122   /// Specialization not using EBO.
1123   template<int _Nm, typename _Tp>
1124     struct _Hashtable_ebo_helper<_Nm, _Tp, false>
1125     {
1126       _Hashtable_ebo_helper() = default;
1127 
1128       template<typename _OtherTp>
1129 	_Hashtable_ebo_helper(_OtherTp&& __tp)
1130 	  : _M_tp(std::forward<_OtherTp>(__tp))
1131 	{ }
1132 
1133       static const _Tp&
1134       _S_cget(const _Hashtable_ebo_helper& __eboh)
1135       { return __eboh._M_tp; }
1136 
1137       static _Tp&
1138       _S_get(_Hashtable_ebo_helper& __eboh)
1139       { return __eboh._M_tp; }
1140 
1141     private:
1142       _Tp _M_tp;
1143     };
1144 
1145   /**
1146    *  Primary class template _Local_iterator_base.
1147    *
1148    *  Base class for local iterators, used to iterate within a bucket
1149    *  but not between buckets.
1150    */
1151   template<typename _Key, typename _Value, typename _ExtractKey,
1152 	   typename _H1, typename _H2, typename _Hash,
1153 	   bool __cache_hash_code>
1154     struct _Local_iterator_base;
1155 
1156   /**
1157    *  Primary class template _Hash_code_base.
1158    *
1159    *  Encapsulates two policy issues that aren't quite orthogonal.
1160    *   (1) the difference between using a ranged hash function and using
1161    *       the combination of a hash function and a range-hashing function.
1162    *       In the former case we don't have such things as hash codes, so
1163    *       we have a dummy type as placeholder.
1164    *   (2) Whether or not we cache hash codes.  Caching hash codes is
1165    *       meaningless if we have a ranged hash function.
1166    *
1167    *  We also put the key extraction objects here, for convenience.
1168    *  Each specialization derives from one or more of the template
1169    *  parameters to benefit from Ebo. This is important as this type
1170    *  is inherited in some cases by the _Local_iterator_base type used
1171    *  to implement local_iterator and const_local_iterator. As with
1172    *  any iterator type we prefer to make it as small as possible.
1173    *
1174    *  Primary template is unused except as a hook for specializations.
1175    */
1176   template<typename _Key, typename _Value, typename _ExtractKey,
1177 	   typename _H1, typename _H2, typename _Hash,
1178 	   bool __cache_hash_code>
1179     struct _Hash_code_base;
1180 
1181   /// Specialization: ranged hash function, no caching hash codes.  H1
1182   /// and H2 are provided but ignored.  We define a dummy hash code type.
1183   template<typename _Key, typename _Value, typename _ExtractKey,
1184 	   typename _H1, typename _H2, typename _Hash>
1185     struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, false>
1186     : private _Hashtable_ebo_helper<0, _ExtractKey>,
1187       private _Hashtable_ebo_helper<1, _Hash>
1188     {
1189     private:
1190       using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>;
1191       using __ebo_hash = _Hashtable_ebo_helper<1, _Hash>;
1192 
1193     protected:
1194       typedef void* 					__hash_code;
1195       typedef _Hash_node<_Value, false>			__node_type;
1196 
1197       // We need the default constructor for the local iterators and _Hashtable
1198       // default constructor.
1199       _Hash_code_base() = default;
1200 
1201       _Hash_code_base(const _ExtractKey& __ex, const _H1&, const _H2&,
1202 		      const _Hash& __h)
1203       : __ebo_extract_key(__ex), __ebo_hash(__h) { }
1204 
1205       __hash_code
1206       _M_hash_code(const _Key& __key) const
1207       { return 0; }
1208 
1209       std::size_t
1210       _M_bucket_index(const _Key& __k, __hash_code, std::size_t __n) const
1211       { return _M_ranged_hash()(__k, __n); }
1212 
1213       std::size_t
1214       _M_bucket_index(const __node_type* __p, std::size_t __n) const
1215 	noexcept( noexcept(declval<const _Hash&>()(declval<const _Key&>(),
1216 						   (std::size_t)0)) )
1217       { return _M_ranged_hash()(_M_extract()(__p->_M_v()), __n); }
1218 
1219       void
1220       _M_store_code(__node_type*, __hash_code) const
1221       { }
1222 
1223       void
1224       _M_copy_code(__node_type*, const __node_type*) const
1225       { }
1226 
1227       void
1228       _M_swap(_Hash_code_base& __x)
1229       {
1230 	std::swap(_M_extract(), __x._M_extract());
1231 	std::swap(_M_ranged_hash(), __x._M_ranged_hash());
1232       }
1233 
1234       const _ExtractKey&
1235       _M_extract() const { return __ebo_extract_key::_S_cget(*this); }
1236 
1237       _ExtractKey&
1238       _M_extract() { return __ebo_extract_key::_S_get(*this); }
1239 
1240       const _Hash&
1241       _M_ranged_hash() const { return __ebo_hash::_S_cget(*this); }
1242 
1243       _Hash&
1244       _M_ranged_hash() { return __ebo_hash::_S_get(*this); }
1245     };
1246 
1247   // No specialization for ranged hash function while caching hash codes.
1248   // That combination is meaningless, and trying to do it is an error.
1249 
1250   /// Specialization: ranged hash function, cache hash codes.  This
1251   /// combination is meaningless, so we provide only a declaration
1252   /// and no definition.
1253   template<typename _Key, typename _Value, typename _ExtractKey,
1254 	   typename _H1, typename _H2, typename _Hash>
1255     struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, true>;
1256 
1257   /// Specialization: hash function and range-hashing function, no
1258   /// caching of hash codes.
1259   /// Provides typedef and accessor required by C++ 11.
1260   template<typename _Key, typename _Value, typename _ExtractKey,
1261 	   typename _H1, typename _H2>
1262     struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
1263 			   _Default_ranged_hash, false>
1264     : private _Hashtable_ebo_helper<0, _ExtractKey>,
1265       private _Hashtable_ebo_helper<1, _H1>,
1266       private _Hashtable_ebo_helper<2, _H2>
1267     {
1268     private:
1269       using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>;
1270       using __ebo_h1 = _Hashtable_ebo_helper<1, _H1>;
1271       using __ebo_h2 = _Hashtable_ebo_helper<2, _H2>;
1272 
1273       // Gives the local iterator implementation access to _M_bucket_index().
1274       friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2,
1275 					 _Default_ranged_hash, false>;
1276 
1277     public:
1278       typedef _H1 					hasher;
1279 
1280       hasher
1281       hash_function() const
1282       { return _M_h1(); }
1283 
1284     protected:
1285       typedef std::size_t 				__hash_code;
1286       typedef _Hash_node<_Value, false>			__node_type;
1287 
1288       // We need the default constructor for the local iterators and _Hashtable
1289       // default constructor.
1290       _Hash_code_base() = default;
1291 
1292       _Hash_code_base(const _ExtractKey& __ex,
1293 		      const _H1& __h1, const _H2& __h2,
1294 		      const _Default_ranged_hash&)
1295       : __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { }
1296 
1297       __hash_code
1298       _M_hash_code(const _Key& __k) const
1299       { return _M_h1()(__k); }
1300 
1301       std::size_t
1302       _M_bucket_index(const _Key&, __hash_code __c, std::size_t __n) const
1303       { return _M_h2()(__c, __n); }
1304 
1305       std::size_t
1306       _M_bucket_index(const __node_type* __p, std::size_t __n) const
1307 	noexcept( noexcept(declval<const _H1&>()(declval<const _Key&>()))
1308 		  && noexcept(declval<const _H2&>()((__hash_code)0,
1309 						    (std::size_t)0)) )
1310       { return _M_h2()(_M_h1()(_M_extract()(__p->_M_v())), __n); }
1311 
1312       void
1313       _M_store_code(__node_type*, __hash_code) const
1314       { }
1315 
1316       void
1317       _M_copy_code(__node_type*, const __node_type*) const
1318       { }
1319 
1320       void
1321       _M_swap(_Hash_code_base& __x)
1322       {
1323 	std::swap(_M_extract(), __x._M_extract());
1324 	std::swap(_M_h1(), __x._M_h1());
1325 	std::swap(_M_h2(), __x._M_h2());
1326       }
1327 
1328       const _ExtractKey&
1329       _M_extract() const { return __ebo_extract_key::_S_cget(*this); }
1330 
1331       _ExtractKey&
1332       _M_extract() { return __ebo_extract_key::_S_get(*this); }
1333 
1334       const _H1&
1335       _M_h1() const { return __ebo_h1::_S_cget(*this); }
1336 
1337       _H1&
1338       _M_h1() { return __ebo_h1::_S_get(*this); }
1339 
1340       const _H2&
1341       _M_h2() const { return __ebo_h2::_S_cget(*this); }
1342 
1343       _H2&
1344       _M_h2() { return __ebo_h2::_S_get(*this); }
1345     };
1346 
1347   /// Specialization: hash function and range-hashing function,
1348   /// caching hash codes.  H is provided but ignored.  Provides
1349   /// typedef and accessor required by C++ 11.
1350   template<typename _Key, typename _Value, typename _ExtractKey,
1351 	   typename _H1, typename _H2>
1352     struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
1353 			   _Default_ranged_hash, true>
1354     : private _Hashtable_ebo_helper<0, _ExtractKey>,
1355       private _Hashtable_ebo_helper<1, _H1>,
1356       private _Hashtable_ebo_helper<2, _H2>
1357     {
1358     private:
1359       // Gives the local iterator implementation access to _M_h2().
1360       friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2,
1361 					 _Default_ranged_hash, true>;
1362 
1363       using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>;
1364       using __ebo_h1 = _Hashtable_ebo_helper<1, _H1>;
1365       using __ebo_h2 = _Hashtable_ebo_helper<2, _H2>;
1366 
1367     public:
1368       typedef _H1 					hasher;
1369 
1370       hasher
1371       hash_function() const
1372       { return _M_h1(); }
1373 
1374     protected:
1375       typedef std::size_t 				__hash_code;
1376       typedef _Hash_node<_Value, true>			__node_type;
1377 
1378       // We need the default constructor for _Hashtable default constructor.
1379       _Hash_code_base() = default;
1380       _Hash_code_base(const _ExtractKey& __ex,
1381 		      const _H1& __h1, const _H2& __h2,
1382 		      const _Default_ranged_hash&)
1383       : __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { }
1384 
1385       __hash_code
1386       _M_hash_code(const _Key& __k) const
1387       { return _M_h1()(__k); }
1388 
1389       std::size_t
1390       _M_bucket_index(const _Key&, __hash_code __c,
1391 		      std::size_t __n) const
1392       { return _M_h2()(__c, __n); }
1393 
1394       std::size_t
1395       _M_bucket_index(const __node_type* __p, std::size_t __n) const
1396 	noexcept( noexcept(declval<const _H2&>()((__hash_code)0,
1397 						 (std::size_t)0)) )
1398       { return _M_h2()(__p->_M_hash_code, __n); }
1399 
1400       void
1401       _M_store_code(__node_type* __n, __hash_code __c) const
1402       { __n->_M_hash_code = __c; }
1403 
1404       void
1405       _M_copy_code(__node_type* __to, const __node_type* __from) const
1406       { __to->_M_hash_code = __from->_M_hash_code; }
1407 
1408       void
1409       _M_swap(_Hash_code_base& __x)
1410       {
1411 	std::swap(_M_extract(), __x._M_extract());
1412 	std::swap(_M_h1(), __x._M_h1());
1413 	std::swap(_M_h2(), __x._M_h2());
1414       }
1415 
1416       const _ExtractKey&
1417       _M_extract() const { return __ebo_extract_key::_S_cget(*this); }
1418 
1419       _ExtractKey&
1420       _M_extract() { return __ebo_extract_key::_S_get(*this); }
1421 
1422       const _H1&
1423       _M_h1() const { return __ebo_h1::_S_cget(*this); }
1424 
1425       _H1&
1426       _M_h1() { return __ebo_h1::_S_get(*this); }
1427 
1428       const _H2&
1429       _M_h2() const { return __ebo_h2::_S_cget(*this); }
1430 
1431       _H2&
1432       _M_h2() { return __ebo_h2::_S_get(*this); }
1433     };
1434 
1435   /**
1436    *  Primary class template _Equal_helper.
1437    *
1438    */
1439   template <typename _Key, typename _Value, typename _ExtractKey,
1440 	    typename _Equal, typename _HashCodeType,
1441 	    bool __cache_hash_code>
1442   struct _Equal_helper;
1443 
1444   /// Specialization.
1445   template<typename _Key, typename _Value, typename _ExtractKey,
1446 	   typename _Equal, typename _HashCodeType>
1447   struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, true>
1448   {
1449     static bool
1450     _S_equals(const _Equal& __eq, const _ExtractKey& __extract,
1451 	      const _Key& __k, _HashCodeType __c, _Hash_node<_Value, true>* __n)
1452     { return __c == __n->_M_hash_code && __eq(__k, __extract(__n->_M_v())); }
1453   };
1454 
1455   /// Specialization.
1456   template<typename _Key, typename _Value, typename _ExtractKey,
1457 	   typename _Equal, typename _HashCodeType>
1458   struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, false>
1459   {
1460     static bool
1461     _S_equals(const _Equal& __eq, const _ExtractKey& __extract,
1462 	      const _Key& __k, _HashCodeType, _Hash_node<_Value, false>* __n)
1463     { return __eq(__k, __extract(__n->_M_v())); }
1464   };
1465 
1466 
1467   /// Partial specialization used when nodes contain a cached hash code.
1468   template<typename _Key, typename _Value, typename _ExtractKey,
1469 	   typename _H1, typename _H2, typename _Hash>
1470     struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1471 				_H1, _H2, _Hash, true>
1472     : private _Hashtable_ebo_helper<0, _H2>
1473     {
1474     protected:
1475       using __base_type = _Hashtable_ebo_helper<0, _H2>;
1476       using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1477 					       _H1, _H2, _Hash, true>;
1478 
1479       _Local_iterator_base() = default;
1480       _Local_iterator_base(const __hash_code_base& __base,
1481 			   _Hash_node<_Value, true>* __p,
1482 			   std::size_t __bkt, std::size_t __bkt_count)
1483       : __base_type(__base._M_h2()),
1484 	_M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) { }
1485 
1486       void
1487       _M_incr()
1488       {
1489 	_M_cur = _M_cur->_M_next();
1490 	if (_M_cur)
1491 	  {
1492 	    std::size_t __bkt
1493 	      = __base_type::_S_get(*this)(_M_cur->_M_hash_code,
1494 					   _M_bucket_count);
1495 	    if (__bkt != _M_bucket)
1496 	      _M_cur = nullptr;
1497 	  }
1498       }
1499 
1500       _Hash_node<_Value, true>*  _M_cur;
1501       std::size_t _M_bucket;
1502       std::size_t _M_bucket_count;
1503 
1504     public:
1505       const void*
1506       _M_curr() const { return _M_cur; }  // for equality ops
1507 
1508       std::size_t
1509       _M_get_bucket() const { return _M_bucket; }  // for debug mode
1510     };
1511 
1512   // Uninitialized storage for a _Hash_code_base.
1513   // This type is DefaultConstructible and Assignable even if the
1514   // _Hash_code_base type isn't, so that _Local_iterator_base<..., false>
1515   // can be DefaultConstructible and Assignable.
1516   template<typename _Tp, bool _IsEmpty = std::is_empty<_Tp>::value>
1517     struct _Hash_code_storage
1518     {
1519       __gnu_cxx::__aligned_buffer<_Tp> _M_storage;
1520 
1521       _Tp*
1522       _M_h() { return _M_storage._M_ptr(); }
1523 
1524       const _Tp*
1525       _M_h() const { return _M_storage._M_ptr(); }
1526     };
1527 
1528   // Empty partial specialization for empty _Hash_code_base types.
1529   template<typename _Tp>
1530     struct _Hash_code_storage<_Tp, true>
1531     {
1532       static_assert( std::is_empty<_Tp>::value, "Type must be empty" );
1533 
1534       // As _Tp is an empty type there will be no bytes written/read through
1535       // the cast pointer, so no strict-aliasing violation.
1536       _Tp*
1537       _M_h() { return reinterpret_cast<_Tp*>(this); }
1538 
1539       const _Tp*
1540       _M_h() const { return reinterpret_cast<const _Tp*>(this); }
1541     };
1542 
1543   template<typename _Key, typename _Value, typename _ExtractKey,
1544 	   typename _H1, typename _H2, typename _Hash>
1545     using __hash_code_for_local_iter
1546       = _Hash_code_storage<_Hash_code_base<_Key, _Value, _ExtractKey,
1547 					   _H1, _H2, _Hash, false>>;
1548 
1549   // Partial specialization used when hash codes are not cached
1550   template<typename _Key, typename _Value, typename _ExtractKey,
1551 	   typename _H1, typename _H2, typename _Hash>
1552     struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1553 				_H1, _H2, _Hash, false>
1554     : __hash_code_for_local_iter<_Key, _Value, _ExtractKey, _H1, _H2, _Hash>
1555     {
1556     protected:
1557       using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1558 					       _H1, _H2, _Hash, false>;
1559 
1560       _Local_iterator_base() : _M_bucket_count(-1) { }
1561 
1562       _Local_iterator_base(const __hash_code_base& __base,
1563 			   _Hash_node<_Value, false>* __p,
1564 			   std::size_t __bkt, std::size_t __bkt_count)
1565       : _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count)
1566       { _M_init(__base); }
1567 
1568       ~_Local_iterator_base()
1569       {
1570 	if (_M_bucket_count != -1)
1571 	  _M_destroy();
1572       }
1573 
1574       _Local_iterator_base(const _Local_iterator_base& __iter)
1575       : _M_cur(__iter._M_cur), _M_bucket(__iter._M_bucket),
1576         _M_bucket_count(__iter._M_bucket_count)
1577       {
1578 	if (_M_bucket_count != -1)
1579 	  _M_init(*__iter._M_h());
1580       }
1581 
1582       _Local_iterator_base&
1583       operator=(const _Local_iterator_base& __iter)
1584       {
1585 	if (_M_bucket_count != -1)
1586 	  _M_destroy();
1587 	_M_cur = __iter._M_cur;
1588 	_M_bucket = __iter._M_bucket;
1589 	_M_bucket_count = __iter._M_bucket_count;
1590 	if (_M_bucket_count != -1)
1591 	  _M_init(*__iter._M_h());
1592 	return *this;
1593       }
1594 
1595       void
1596       _M_incr()
1597       {
1598 	_M_cur = _M_cur->_M_next();
1599 	if (_M_cur)
1600 	  {
1601 	    std::size_t __bkt = this->_M_h()->_M_bucket_index(_M_cur,
1602 							      _M_bucket_count);
1603 	    if (__bkt != _M_bucket)
1604 	      _M_cur = nullptr;
1605 	  }
1606       }
1607 
1608       _Hash_node<_Value, false>*  _M_cur;
1609       std::size_t _M_bucket;
1610       std::size_t _M_bucket_count;
1611 
1612       void
1613       _M_init(const __hash_code_base& __base)
1614       { ::new(this->_M_h()) __hash_code_base(__base); }
1615 
1616       void
1617       _M_destroy() { this->_M_h()->~__hash_code_base(); }
1618 
1619     public:
1620       const void*
1621       _M_curr() const { return _M_cur; }  // for equality ops and debug mode
1622 
1623       std::size_t
1624       _M_get_bucket() const { return _M_bucket; }  // for debug mode
1625     };
1626 
1627   template<typename _Key, typename _Value, typename _ExtractKey,
1628 	   typename _H1, typename _H2, typename _Hash, bool __cache>
1629     inline bool
1630     operator==(const _Local_iterator_base<_Key, _Value, _ExtractKey,
1631 					  _H1, _H2, _Hash, __cache>& __x,
1632 	       const _Local_iterator_base<_Key, _Value, _ExtractKey,
1633 					  _H1, _H2, _Hash, __cache>& __y)
1634     { return __x._M_curr() == __y._M_curr(); }
1635 
1636   template<typename _Key, typename _Value, typename _ExtractKey,
1637 	   typename _H1, typename _H2, typename _Hash, bool __cache>
1638     inline bool
1639     operator!=(const _Local_iterator_base<_Key, _Value, _ExtractKey,
1640 					  _H1, _H2, _Hash, __cache>& __x,
1641 	       const _Local_iterator_base<_Key, _Value, _ExtractKey,
1642 					  _H1, _H2, _Hash, __cache>& __y)
1643     { return __x._M_curr() != __y._M_curr(); }
1644 
1645   /// local iterators
1646   template<typename _Key, typename _Value, typename _ExtractKey,
1647 	   typename _H1, typename _H2, typename _Hash,
1648 	   bool __constant_iterators, bool __cache>
1649     struct _Local_iterator
1650     : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1651 				  _H1, _H2, _Hash, __cache>
1652     {
1653     private:
1654       using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
1655 					       _H1, _H2, _Hash, __cache>;
1656       using __hash_code_base = typename __base_type::__hash_code_base;
1657     public:
1658       typedef _Value					value_type;
1659       typedef typename std::conditional<__constant_iterators,
1660 					const _Value*, _Value*>::type
1661 						       pointer;
1662       typedef typename std::conditional<__constant_iterators,
1663 					const _Value&, _Value&>::type
1664 						       reference;
1665       typedef std::ptrdiff_t				difference_type;
1666       typedef std::forward_iterator_tag			iterator_category;
1667 
1668       _Local_iterator() = default;
1669 
1670       _Local_iterator(const __hash_code_base& __base,
1671 		      _Hash_node<_Value, __cache>* __p,
1672 		      std::size_t __bkt, std::size_t __bkt_count)
1673 	: __base_type(__base, __p, __bkt, __bkt_count)
1674       { }
1675 
1676       reference
1677       operator*() const
1678       { return this->_M_cur->_M_v(); }
1679 
1680       pointer
1681       operator->() const
1682       { return this->_M_cur->_M_valptr(); }
1683 
1684       _Local_iterator&
1685       operator++()
1686       {
1687 	this->_M_incr();
1688 	return *this;
1689       }
1690 
1691       _Local_iterator
1692       operator++(int)
1693       {
1694 	_Local_iterator __tmp(*this);
1695 	this->_M_incr();
1696 	return __tmp;
1697       }
1698     };
1699 
1700   /// local const_iterators
1701   template<typename _Key, typename _Value, typename _ExtractKey,
1702 	   typename _H1, typename _H2, typename _Hash,
1703 	   bool __constant_iterators, bool __cache>
1704     struct _Local_const_iterator
1705     : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1706 				  _H1, _H2, _Hash, __cache>
1707     {
1708     private:
1709       using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
1710 					       _H1, _H2, _Hash, __cache>;
1711       using __hash_code_base = typename __base_type::__hash_code_base;
1712 
1713     public:
1714       typedef _Value					value_type;
1715       typedef const _Value*				pointer;
1716       typedef const _Value&				reference;
1717       typedef std::ptrdiff_t				difference_type;
1718       typedef std::forward_iterator_tag			iterator_category;
1719 
1720       _Local_const_iterator() = default;
1721 
1722       _Local_const_iterator(const __hash_code_base& __base,
1723 			    _Hash_node<_Value, __cache>* __p,
1724 			    std::size_t __bkt, std::size_t __bkt_count)
1725 	: __base_type(__base, __p, __bkt, __bkt_count)
1726       { }
1727 
1728       _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey,
1729 						  _H1, _H2, _Hash,
1730 						  __constant_iterators,
1731 						  __cache>& __x)
1732 	: __base_type(__x)
1733       { }
1734 
1735       reference
1736       operator*() const
1737       { return this->_M_cur->_M_v(); }
1738 
1739       pointer
1740       operator->() const
1741       { return this->_M_cur->_M_valptr(); }
1742 
1743       _Local_const_iterator&
1744       operator++()
1745       {
1746 	this->_M_incr();
1747 	return *this;
1748       }
1749 
1750       _Local_const_iterator
1751       operator++(int)
1752       {
1753 	_Local_const_iterator __tmp(*this);
1754 	this->_M_incr();
1755 	return __tmp;
1756       }
1757     };
1758 
1759   /**
1760    *  Primary class template _Hashtable_base.
1761    *
1762    *  Helper class adding management of _Equal functor to
1763    *  _Hash_code_base type.
1764    *
1765    *  Base class templates are:
1766    *    - __detail::_Hash_code_base
1767    *    - __detail::_Hashtable_ebo_helper
1768    */
1769   template<typename _Key, typename _Value,
1770 	   typename _ExtractKey, typename _Equal,
1771 	   typename _H1, typename _H2, typename _Hash, typename _Traits>
1772   struct _Hashtable_base
1773   : public _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash,
1774 			   _Traits::__hash_cached::value>,
1775     private _Hashtable_ebo_helper<0, _Equal>
1776   {
1777   public:
1778     typedef _Key					key_type;
1779     typedef _Value					value_type;
1780     typedef _Equal					key_equal;
1781     typedef std::size_t					size_type;
1782     typedef std::ptrdiff_t				difference_type;
1783 
1784     using __traits_type = _Traits;
1785     using __hash_cached = typename __traits_type::__hash_cached;
1786     using __constant_iterators = typename __traits_type::__constant_iterators;
1787     using __unique_keys = typename __traits_type::__unique_keys;
1788 
1789     using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1790 					     _H1, _H2, _Hash,
1791 					     __hash_cached::value>;
1792 
1793     using __hash_code = typename __hash_code_base::__hash_code;
1794     using __node_type = typename __hash_code_base::__node_type;
1795 
1796     using iterator = __detail::_Node_iterator<value_type,
1797 					      __constant_iterators::value,
1798 					      __hash_cached::value>;
1799 
1800     using const_iterator = __detail::_Node_const_iterator<value_type,
1801 						   __constant_iterators::value,
1802 						   __hash_cached::value>;
1803 
1804     using local_iterator = __detail::_Local_iterator<key_type, value_type,
1805 						  _ExtractKey, _H1, _H2, _Hash,
1806 						  __constant_iterators::value,
1807 						     __hash_cached::value>;
1808 
1809     using const_local_iterator = __detail::_Local_const_iterator<key_type,
1810 								 value_type,
1811 					_ExtractKey, _H1, _H2, _Hash,
1812 					__constant_iterators::value,
1813 					__hash_cached::value>;
1814 
1815     using __ireturn_type = typename std::conditional<__unique_keys::value,
1816 						     std::pair<iterator, bool>,
1817 						     iterator>::type;
1818   private:
1819     using _EqualEBO = _Hashtable_ebo_helper<0, _Equal>;
1820     using _EqualHelper =  _Equal_helper<_Key, _Value, _ExtractKey, _Equal,
1821 					__hash_code, __hash_cached::value>;
1822 
1823   protected:
1824     _Hashtable_base() = default;
1825     _Hashtable_base(const _ExtractKey& __ex, const _H1& __h1, const _H2& __h2,
1826 		    const _Hash& __hash, const _Equal& __eq)
1827     : __hash_code_base(__ex, __h1, __h2, __hash), _EqualEBO(__eq)
1828     { }
1829 
1830     bool
1831     _M_equals(const _Key& __k, __hash_code __c, __node_type* __n) const
1832     {
1833       return _EqualHelper::_S_equals(_M_eq(), this->_M_extract(),
1834 				     __k, __c, __n);
1835     }
1836 
1837     void
1838     _M_swap(_Hashtable_base& __x)
1839     {
1840       __hash_code_base::_M_swap(__x);
1841       std::swap(_M_eq(), __x._M_eq());
1842     }
1843 
1844     const _Equal&
1845     _M_eq() const { return _EqualEBO::_S_cget(*this); }
1846 
1847     _Equal&
1848     _M_eq() { return _EqualEBO::_S_get(*this); }
1849   };
1850 
1851   /**
1852    *  struct _Equality_base.
1853    *
1854    *  Common types and functions for class _Equality.
1855    */
1856   struct _Equality_base
1857   {
1858   protected:
1859     template<typename _Uiterator>
1860       static bool
1861       _S_is_permutation(_Uiterator, _Uiterator, _Uiterator);
1862   };
1863 
1864   // See std::is_permutation in N3068.
1865   template<typename _Uiterator>
1866     bool
1867     _Equality_base::
1868     _S_is_permutation(_Uiterator __first1, _Uiterator __last1,
1869 		      _Uiterator __first2)
1870     {
1871       for (; __first1 != __last1; ++__first1, ++__first2)
1872 	if (!(*__first1 == *__first2))
1873 	  break;
1874 
1875       if (__first1 == __last1)
1876 	return true;
1877 
1878       _Uiterator __last2 = __first2;
1879       std::advance(__last2, std::distance(__first1, __last1));
1880 
1881       for (_Uiterator __it1 = __first1; __it1 != __last1; ++__it1)
1882 	{
1883 	  _Uiterator __tmp =  __first1;
1884 	  while (__tmp != __it1 && !bool(*__tmp == *__it1))
1885 	    ++__tmp;
1886 
1887 	  // We've seen this one before.
1888 	  if (__tmp != __it1)
1889 	    continue;
1890 
1891 	  std::ptrdiff_t __n2 = 0;
1892 	  for (__tmp = __first2; __tmp != __last2; ++__tmp)
1893 	    if (*__tmp == *__it1)
1894 	      ++__n2;
1895 
1896 	  if (!__n2)
1897 	    return false;
1898 
1899 	  std::ptrdiff_t __n1 = 0;
1900 	  for (__tmp = __it1; __tmp != __last1; ++__tmp)
1901 	    if (*__tmp == *__it1)
1902 	      ++__n1;
1903 
1904 	  if (__n1 != __n2)
1905 	    return false;
1906 	}
1907       return true;
1908     }
1909 
1910   /**
1911    *  Primary class template  _Equality.
1912    *
1913    *  This is for implementing equality comparison for unordered
1914    *  containers, per N3068, by John Lakos and Pablo Halpern.
1915    *  Algorithmically, we follow closely the reference implementations
1916    *  therein.
1917    */
1918   template<typename _Key, typename _Value, typename _Alloc,
1919 	   typename _ExtractKey, typename _Equal,
1920 	   typename _H1, typename _H2, typename _Hash,
1921 	   typename _RehashPolicy, typename _Traits,
1922 	   bool _Unique_keys = _Traits::__unique_keys::value>
1923     struct _Equality;
1924 
1925   /// Specialization.
1926   template<typename _Key, typename _Value, typename _Alloc,
1927 	   typename _ExtractKey, typename _Equal,
1928 	   typename _H1, typename _H2, typename _Hash,
1929 	   typename _RehashPolicy, typename _Traits>
1930     struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1931 		     _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
1932     {
1933       using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1934 				     _H1, _H2, _Hash, _RehashPolicy, _Traits>;
1935 
1936       bool
1937       _M_equal(const __hashtable&) const;
1938     };
1939 
1940   template<typename _Key, typename _Value, typename _Alloc,
1941 	   typename _ExtractKey, typename _Equal,
1942 	   typename _H1, typename _H2, typename _Hash,
1943 	   typename _RehashPolicy, typename _Traits>
1944     bool
1945     _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1946 	      _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
1947     _M_equal(const __hashtable& __other) const
1948     {
1949       const __hashtable* __this = static_cast<const __hashtable*>(this);
1950 
1951       if (__this->size() != __other.size())
1952 	return false;
1953 
1954       for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx)
1955 	{
1956 	  const auto __ity = __other.find(_ExtractKey()(*__itx));
1957 	  if (__ity == __other.end() || !bool(*__ity == *__itx))
1958 	    return false;
1959 	}
1960       return true;
1961     }
1962 
1963   /// Specialization.
1964   template<typename _Key, typename _Value, typename _Alloc,
1965 	   typename _ExtractKey, typename _Equal,
1966 	   typename _H1, typename _H2, typename _Hash,
1967 	   typename _RehashPolicy, typename _Traits>
1968     struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1969 		     _H1, _H2, _Hash, _RehashPolicy, _Traits, false>
1970     : public _Equality_base
1971     {
1972       using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1973 				     _H1, _H2, _Hash, _RehashPolicy, _Traits>;
1974 
1975       bool
1976       _M_equal(const __hashtable&) const;
1977     };
1978 
1979   template<typename _Key, typename _Value, typename _Alloc,
1980 	   typename _ExtractKey, typename _Equal,
1981 	   typename _H1, typename _H2, typename _Hash,
1982 	   typename _RehashPolicy, typename _Traits>
1983     bool
1984     _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1985 	      _H1, _H2, _Hash, _RehashPolicy, _Traits, false>::
1986     _M_equal(const __hashtable& __other) const
1987     {
1988       const __hashtable* __this = static_cast<const __hashtable*>(this);
1989 
1990       if (__this->size() != __other.size())
1991 	return false;
1992 
1993       for (auto __itx = __this->begin(); __itx != __this->end();)
1994 	{
1995 	  const auto __xrange = __this->equal_range(_ExtractKey()(*__itx));
1996 	  const auto __yrange = __other.equal_range(_ExtractKey()(*__itx));
1997 
1998 	  if (std::distance(__xrange.first, __xrange.second)
1999 	      != std::distance(__yrange.first, __yrange.second))
2000 	    return false;
2001 
2002 	  if (!_S_is_permutation(__xrange.first, __xrange.second,
2003 				 __yrange.first))
2004 	    return false;
2005 
2006 	  __itx = __xrange.second;
2007 	}
2008       return true;
2009     }
2010 
2011   /**
2012    * This type deals with all allocation and keeps an allocator instance through
2013    * inheritance to benefit from EBO when possible.
2014    */
2015   template<typename _NodeAlloc>
2016     struct _Hashtable_alloc : private _Hashtable_ebo_helper<0, _NodeAlloc>
2017     {
2018     private:
2019       using __ebo_node_alloc = _Hashtable_ebo_helper<0, _NodeAlloc>;
2020     public:
2021       using __node_type = typename _NodeAlloc::value_type;
2022       using __node_alloc_type = _NodeAlloc;
2023       // Use __gnu_cxx to benefit from _S_always_equal and al.
2024       using __node_alloc_traits = __gnu_cxx::__alloc_traits<__node_alloc_type>;
2025 
2026       using __value_alloc_traits = typename __node_alloc_traits::template
2027 	rebind_traits<typename __node_type::value_type>;
2028 
2029       using __node_base = __detail::_Hash_node_base;
2030       using __bucket_type = __node_base*;
2031       using __bucket_alloc_type =
2032 	__alloc_rebind<__node_alloc_type, __bucket_type>;
2033       using __bucket_alloc_traits = std::allocator_traits<__bucket_alloc_type>;
2034 
2035       _Hashtable_alloc() = default;
2036       _Hashtable_alloc(const _Hashtable_alloc&) = default;
2037       _Hashtable_alloc(_Hashtable_alloc&&) = default;
2038 
2039       template<typename _Alloc>
2040 	_Hashtable_alloc(_Alloc&& __a)
2041 	  : __ebo_node_alloc(std::forward<_Alloc>(__a))
2042 	{ }
2043 
2044       __node_alloc_type&
2045       _M_node_allocator()
2046       { return __ebo_node_alloc::_S_get(*this); }
2047 
2048       const __node_alloc_type&
2049       _M_node_allocator() const
2050       { return __ebo_node_alloc::_S_cget(*this); }
2051 
2052       template<typename... _Args>
2053 	__node_type*
2054 	_M_allocate_node(_Args&&... __args);
2055 
2056       void
2057       _M_deallocate_node(__node_type* __n);
2058 
2059       // Deallocate the linked list of nodes pointed to by __n
2060       void
2061       _M_deallocate_nodes(__node_type* __n);
2062 
2063       __bucket_type*
2064       _M_allocate_buckets(std::size_t __n);
2065 
2066       void
2067       _M_deallocate_buckets(__bucket_type*, std::size_t __n);
2068     };
2069 
2070   // Definitions of class template _Hashtable_alloc's out-of-line member
2071   // functions.
2072   template<typename _NodeAlloc>
2073     template<typename... _Args>
2074       typename _Hashtable_alloc<_NodeAlloc>::__node_type*
2075       _Hashtable_alloc<_NodeAlloc>::_M_allocate_node(_Args&&... __args)
2076       {
2077 	auto __nptr = __node_alloc_traits::allocate(_M_node_allocator(), 1);
2078 	__node_type* __n = std::__to_address(__nptr);
2079 	__try
2080 	  {
2081 	    ::new ((void*)__n) __node_type;
2082 	    __node_alloc_traits::construct(_M_node_allocator(),
2083 					   __n->_M_valptr(),
2084 					   std::forward<_Args>(__args)...);
2085 	    return __n;
2086 	  }
2087 	__catch(...)
2088 	  {
2089 	    __node_alloc_traits::deallocate(_M_node_allocator(), __nptr, 1);
2090 	    __throw_exception_again;
2091 	  }
2092       }
2093 
2094   template<typename _NodeAlloc>
2095     void
2096     _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node(__node_type* __n)
2097     {
2098       typedef typename __node_alloc_traits::pointer _Ptr;
2099       auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__n);
2100       __node_alloc_traits::destroy(_M_node_allocator(), __n->_M_valptr());
2101       __n->~__node_type();
2102       __node_alloc_traits::deallocate(_M_node_allocator(), __ptr, 1);
2103     }
2104 
2105   template<typename _NodeAlloc>
2106     void
2107     _Hashtable_alloc<_NodeAlloc>::_M_deallocate_nodes(__node_type* __n)
2108     {
2109       while (__n)
2110 	{
2111 	  __node_type* __tmp = __n;
2112 	  __n = __n->_M_next();
2113 	  _M_deallocate_node(__tmp);
2114 	}
2115     }
2116 
2117   template<typename _NodeAlloc>
2118     typename _Hashtable_alloc<_NodeAlloc>::__bucket_type*
2119     _Hashtable_alloc<_NodeAlloc>::_M_allocate_buckets(std::size_t __n)
2120     {
2121       __bucket_alloc_type __alloc(_M_node_allocator());
2122 
2123       auto __ptr = __bucket_alloc_traits::allocate(__alloc, __n);
2124       __bucket_type* __p = std::__to_address(__ptr);
2125       __builtin_memset(__p, 0, __n * sizeof(__bucket_type));
2126       return __p;
2127     }
2128 
2129   template<typename _NodeAlloc>
2130     void
2131     _Hashtable_alloc<_NodeAlloc>::_M_deallocate_buckets(__bucket_type* __bkts,
2132 							std::size_t __n)
2133     {
2134       typedef typename __bucket_alloc_traits::pointer _Ptr;
2135       auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__bkts);
2136       __bucket_alloc_type __alloc(_M_node_allocator());
2137       __bucket_alloc_traits::deallocate(__alloc, __ptr, __n);
2138     }
2139 
2140  //@} hashtable-detail
2141 } // namespace __detail
2142 _GLIBCXX_END_NAMESPACE_VERSION
2143 } // namespace std
2144 
2145 #endif // _HASHTABLE_POLICY_H
2146