1 // Deque implementation -*- C++ -*-
2 
3 // Copyright (C) 2001-2018 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /*
26  *
27  * Copyright (c) 1994
28  * Hewlett-Packard Company
29  *
30  * Permission to use, copy, modify, distribute and sell this software
31  * and its documentation for any purpose is hereby granted without fee,
32  * provided that the above copyright notice appear in all copies and
33  * that both that copyright notice and this permission notice appear
34  * in supporting documentation.  Hewlett-Packard Company makes no
35  * representations about the suitability of this software for any
36  * purpose.  It is provided "as is" without express or implied warranty.
37  *
38  *
39  * Copyright (c) 1997
40  * Silicon Graphics Computer Systems, Inc.
41  *
42  * Permission to use, copy, modify, distribute and sell this software
43  * and its documentation for any purpose is hereby granted without fee,
44  * provided that the above copyright notice appear in all copies and
45  * that both that copyright notice and this permission notice appear
46  * in supporting documentation.  Silicon Graphics makes no
47  * representations about the suitability of this software for any
48  * purpose.  It is provided "as is" without express or implied warranty.
49  */
50 
51 /** @file bits/stl_deque.h
52  *  This is an internal header file, included by other library headers.
53  *  Do not attempt to use it directly. @headername{deque}
54  */
55 
56 #ifndef _STL_DEQUE_H
57 #define _STL_DEQUE_H 1
58 
59 #include <bits/concept_check.h>
60 #include <bits/stl_iterator_base_types.h>
61 #include <bits/stl_iterator_base_funcs.h>
62 #if __cplusplus >= 201103L
63 #include <initializer_list>
64 #endif
65 
66 #include <debug/assertions.h>
67 
68 namespace std _GLIBCXX_VISIBILITY(default)
69 {
70 _GLIBCXX_BEGIN_NAMESPACE_VERSION
71 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
72 
73   /**
74    *  @brief This function controls the size of memory nodes.
75    *  @param  __size  The size of an element.
76    *  @return   The number (not byte size) of elements per node.
77    *
78    *  This function started off as a compiler kludge from SGI, but
79    *  seems to be a useful wrapper around a repeated constant
80    *  expression.  The @b 512 is tunable (and no other code needs to
81    *  change), but no investigation has been done since inheriting the
82    *  SGI code.  Touch _GLIBCXX_DEQUE_BUF_SIZE only if you know what
83    *  you are doing, however: changing it breaks the binary
84    *  compatibility!!
85   */
86 
87 #ifndef _GLIBCXX_DEQUE_BUF_SIZE
88 #define _GLIBCXX_DEQUE_BUF_SIZE 512
89 #endif
90 
91   _GLIBCXX_CONSTEXPR inline size_t
92   __deque_buf_size(size_t __size)
93   { return (__size < _GLIBCXX_DEQUE_BUF_SIZE
94 	    ? size_t(_GLIBCXX_DEQUE_BUF_SIZE / __size) : size_t(1)); }
95 
96 
97   /**
98    *  @brief A deque::iterator.
99    *
100    *  Quite a bit of intelligence here.  Much of the functionality of
101    *  deque is actually passed off to this class.  A deque holds two
102    *  of these internally, marking its valid range.  Access to
103    *  elements is done as offsets of either of those two, relying on
104    *  operator overloading in this class.
105    *
106    *  All the functions are op overloads except for _M_set_node.
107   */
108   template<typename _Tp, typename _Ref, typename _Ptr>
109     struct _Deque_iterator
110     {
111 #if __cplusplus < 201103L
112       typedef _Deque_iterator<_Tp, _Tp&, _Tp*>	     iterator;
113       typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
114       typedef _Tp*					 _Elt_pointer;
115       typedef _Tp**					_Map_pointer;
116 #else
117     private:
118       template<typename _Up>
119 	using __ptr_to = typename pointer_traits<_Ptr>::template rebind<_Up>;
120       template<typename _CvTp>
121 	using __iter = _Deque_iterator<_Tp, _CvTp&, __ptr_to<_CvTp>>;
122     public:
123       typedef __iter<_Tp>		iterator;
124       typedef __iter<const _Tp>		const_iterator;
125       typedef __ptr_to<_Tp>		_Elt_pointer;
126       typedef __ptr_to<_Elt_pointer>	_Map_pointer;
127 #endif
128 
129       static size_t _S_buffer_size() _GLIBCXX_NOEXCEPT
130       { return __deque_buf_size(sizeof(_Tp)); }
131 
132       typedef std::random_access_iterator_tag	iterator_category;
133       typedef _Tp				value_type;
134       typedef _Ptr				pointer;
135       typedef _Ref				reference;
136       typedef size_t				size_type;
137       typedef ptrdiff_t				difference_type;
138       typedef _Deque_iterator			_Self;
139 
140       _Elt_pointer _M_cur;
141       _Elt_pointer _M_first;
142       _Elt_pointer _M_last;
143       _Map_pointer _M_node;
144 
145       _Deque_iterator(_Elt_pointer __x, _Map_pointer __y) _GLIBCXX_NOEXCEPT
146       : _M_cur(__x), _M_first(*__y),
147 	_M_last(*__y + _S_buffer_size()), _M_node(__y) { }
148 
149       _Deque_iterator() _GLIBCXX_NOEXCEPT
150       : _M_cur(), _M_first(), _M_last(), _M_node() { }
151 
152       _Deque_iterator(const iterator& __x) _GLIBCXX_NOEXCEPT
153       : _M_cur(__x._M_cur), _M_first(__x._M_first),
154 	_M_last(__x._M_last), _M_node(__x._M_node) { }
155 
156       iterator
157       _M_const_cast() const _GLIBCXX_NOEXCEPT
158       { return iterator(_M_cur, _M_node); }
159 
160       reference
161       operator*() const _GLIBCXX_NOEXCEPT
162       { return *_M_cur; }
163 
164       pointer
165       operator->() const _GLIBCXX_NOEXCEPT
166       { return _M_cur; }
167 
168       _Self&
169       operator++() _GLIBCXX_NOEXCEPT
170       {
171 	++_M_cur;
172 	if (_M_cur == _M_last)
173 	  {
174 	    _M_set_node(_M_node + 1);
175 	    _M_cur = _M_first;
176 	  }
177 	return *this;
178       }
179 
180       _Self
181       operator++(int) _GLIBCXX_NOEXCEPT
182       {
183 	_Self __tmp = *this;
184 	++*this;
185 	return __tmp;
186       }
187 
188       _Self&
189       operator--() _GLIBCXX_NOEXCEPT
190       {
191 	if (_M_cur == _M_first)
192 	  {
193 	    _M_set_node(_M_node - 1);
194 	    _M_cur = _M_last;
195 	  }
196 	--_M_cur;
197 	return *this;
198       }
199 
200       _Self
201       operator--(int) _GLIBCXX_NOEXCEPT
202       {
203 	_Self __tmp = *this;
204 	--*this;
205 	return __tmp;
206       }
207 
208       _Self&
209       operator+=(difference_type __n) _GLIBCXX_NOEXCEPT
210       {
211 	const difference_type __offset = __n + (_M_cur - _M_first);
212 	if (__offset >= 0 && __offset < difference_type(_S_buffer_size()))
213 	  _M_cur += __n;
214 	else
215 	  {
216 	    const difference_type __node_offset =
217 	      __offset > 0 ? __offset / difference_type(_S_buffer_size())
218 			   : -difference_type((-__offset - 1)
219 					      / _S_buffer_size()) - 1;
220 	    _M_set_node(_M_node + __node_offset);
221 	    _M_cur = _M_first + (__offset - __node_offset
222 				 * difference_type(_S_buffer_size()));
223 	  }
224 	return *this;
225       }
226 
227       _Self
228       operator+(difference_type __n) const _GLIBCXX_NOEXCEPT
229       {
230 	_Self __tmp = *this;
231 	return __tmp += __n;
232       }
233 
234       _Self&
235       operator-=(difference_type __n) _GLIBCXX_NOEXCEPT
236       { return *this += -__n; }
237 
238       _Self
239       operator-(difference_type __n) const _GLIBCXX_NOEXCEPT
240       {
241 	_Self __tmp = *this;
242 	return __tmp -= __n;
243       }
244 
245       reference
246       operator[](difference_type __n) const _GLIBCXX_NOEXCEPT
247       { return *(*this + __n); }
248 
249       /**
250        *  Prepares to traverse new_node.  Sets everything except
251        *  _M_cur, which should therefore be set by the caller
252        *  immediately afterwards, based on _M_first and _M_last.
253        */
254       void
255       _M_set_node(_Map_pointer __new_node) _GLIBCXX_NOEXCEPT
256       {
257 	_M_node = __new_node;
258 	_M_first = *__new_node;
259 	_M_last = _M_first + difference_type(_S_buffer_size());
260       }
261     };
262 
263   // Note: we also provide overloads whose operands are of the same type in
264   // order to avoid ambiguous overload resolution when std::rel_ops operators
265   // are in scope (for additional details, see libstdc++/3628)
266   template<typename _Tp, typename _Ref, typename _Ptr>
267     inline bool
268     operator==(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
269 	       const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
270     { return __x._M_cur == __y._M_cur; }
271 
272   template<typename _Tp, typename _RefL, typename _PtrL,
273 	   typename _RefR, typename _PtrR>
274     inline bool
275     operator==(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
276 	       const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
277     { return __x._M_cur == __y._M_cur; }
278 
279   template<typename _Tp, typename _Ref, typename _Ptr>
280     inline bool
281     operator!=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
282 	       const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
283     { return !(__x == __y); }
284 
285   template<typename _Tp, typename _RefL, typename _PtrL,
286 	   typename _RefR, typename _PtrR>
287     inline bool
288     operator!=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
289 	       const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
290     { return !(__x == __y); }
291 
292   template<typename _Tp, typename _Ref, typename _Ptr>
293     inline bool
294     operator<(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
295 	      const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
296     { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
297 					  : (__x._M_node < __y._M_node); }
298 
299   template<typename _Tp, typename _RefL, typename _PtrL,
300 	   typename _RefR, typename _PtrR>
301     inline bool
302     operator<(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
303 	      const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
304     { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
305 					  : (__x._M_node < __y._M_node); }
306 
307   template<typename _Tp, typename _Ref, typename _Ptr>
308     inline bool
309     operator>(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
310 	      const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
311     { return __y < __x; }
312 
313   template<typename _Tp, typename _RefL, typename _PtrL,
314 	   typename _RefR, typename _PtrR>
315     inline bool
316     operator>(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
317 	      const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
318     { return __y < __x; }
319 
320   template<typename _Tp, typename _Ref, typename _Ptr>
321     inline bool
322     operator<=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
323 	       const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
324     { return !(__y < __x); }
325 
326   template<typename _Tp, typename _RefL, typename _PtrL,
327 	   typename _RefR, typename _PtrR>
328     inline bool
329     operator<=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
330 	       const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
331     { return !(__y < __x); }
332 
333   template<typename _Tp, typename _Ref, typename _Ptr>
334     inline bool
335     operator>=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
336 	       const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
337     { return !(__x < __y); }
338 
339   template<typename _Tp, typename _RefL, typename _PtrL,
340 	   typename _RefR, typename _PtrR>
341     inline bool
342     operator>=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
343 	       const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
344     { return !(__x < __y); }
345 
346   // _GLIBCXX_RESOLVE_LIB_DEFECTS
347   // According to the resolution of DR179 not only the various comparison
348   // operators but also operator- must accept mixed iterator/const_iterator
349   // parameters.
350   template<typename _Tp, typename _Ref, typename _Ptr>
351     inline typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type
352     operator-(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
353 	      const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
354     {
355       return typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type
356 	(_Deque_iterator<_Tp, _Ref, _Ptr>::_S_buffer_size())
357 	* (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
358 	+ (__y._M_last - __y._M_cur);
359     }
360 
361   template<typename _Tp, typename _RefL, typename _PtrL,
362 	   typename _RefR, typename _PtrR>
363     inline typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
364     operator-(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
365 	      const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
366     {
367       return typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
368 	(_Deque_iterator<_Tp, _RefL, _PtrL>::_S_buffer_size())
369 	* (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
370 	+ (__y._M_last - __y._M_cur);
371     }
372 
373   template<typename _Tp, typename _Ref, typename _Ptr>
374     inline _Deque_iterator<_Tp, _Ref, _Ptr>
375     operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x)
376     _GLIBCXX_NOEXCEPT
377     { return __x + __n; }
378 
379   template<typename _Tp>
380     void
381     fill(const _Deque_iterator<_Tp, _Tp&, _Tp*>&,
382 	 const _Deque_iterator<_Tp, _Tp&, _Tp*>&, const _Tp&);
383 
384   template<typename _Tp>
385     _Deque_iterator<_Tp, _Tp&, _Tp*>
386     copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
387 	 _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
388 	 _Deque_iterator<_Tp, _Tp&, _Tp*>);
389 
390   template<typename _Tp>
391     inline _Deque_iterator<_Tp, _Tp&, _Tp*>
392     copy(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
393 	 _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
394 	 _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
395     { return std::copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first),
396 		       _Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last),
397 		       __result); }
398 
399   template<typename _Tp>
400     _Deque_iterator<_Tp, _Tp&, _Tp*>
401     copy_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
402 		  _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
403 		  _Deque_iterator<_Tp, _Tp&, _Tp*>);
404 
405   template<typename _Tp>
406     inline _Deque_iterator<_Tp, _Tp&, _Tp*>
407     copy_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
408 		  _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
409 		  _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
410     { return std::copy_backward(_Deque_iterator<_Tp,
411 				const _Tp&, const _Tp*>(__first),
412 				_Deque_iterator<_Tp,
413 				const _Tp&, const _Tp*>(__last),
414 				__result); }
415 
416 #if __cplusplus >= 201103L
417   template<typename _Tp>
418     _Deque_iterator<_Tp, _Tp&, _Tp*>
419     move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
420 	 _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
421 	 _Deque_iterator<_Tp, _Tp&, _Tp*>);
422 
423   template<typename _Tp>
424     inline _Deque_iterator<_Tp, _Tp&, _Tp*>
425     move(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
426 	 _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
427 	 _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
428     { return std::move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first),
429 		       _Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last),
430 		       __result); }
431 
432   template<typename _Tp>
433     _Deque_iterator<_Tp, _Tp&, _Tp*>
434     move_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
435 		  _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
436 		  _Deque_iterator<_Tp, _Tp&, _Tp*>);
437 
438   template<typename _Tp>
439     inline _Deque_iterator<_Tp, _Tp&, _Tp*>
440     move_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
441 		  _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
442 		  _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
443     { return std::move_backward(_Deque_iterator<_Tp,
444 				const _Tp&, const _Tp*>(__first),
445 				_Deque_iterator<_Tp,
446 				const _Tp&, const _Tp*>(__last),
447 				__result); }
448 #endif
449 
450   /**
451    *  Deque base class.  This class provides the unified face for %deque's
452    *  allocation.  This class's constructor and destructor allocate and
453    *  deallocate (but do not initialize) storage.  This makes %exception
454    *  safety easier.
455    *
456    *  Nothing in this class ever constructs or destroys an actual Tp element.
457    *  (Deque handles that itself.)  Only/All memory management is performed
458    *  here.
459   */
460   template<typename _Tp, typename _Alloc>
461     class _Deque_base
462     {
463     protected:
464       typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
465 	rebind<_Tp>::other _Tp_alloc_type;
466       typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type>	 _Alloc_traits;
467 
468 #if __cplusplus < 201103L
469       typedef _Tp*					_Ptr;
470       typedef const _Tp*				_Ptr_const;
471 #else
472       typedef typename _Alloc_traits::pointer		_Ptr;
473       typedef typename _Alloc_traits::const_pointer	_Ptr_const;
474 #endif
475 
476       typedef typename _Alloc_traits::template rebind<_Ptr>::other
477 	_Map_alloc_type;
478       typedef __gnu_cxx::__alloc_traits<_Map_alloc_type> _Map_alloc_traits;
479 
480     public:
481       typedef _Alloc		  allocator_type;
482       typedef typename _Alloc_traits::size_type size_type;
483 
484       allocator_type
485       get_allocator() const _GLIBCXX_NOEXCEPT
486       { return allocator_type(_M_get_Tp_allocator()); }
487 
488       typedef _Deque_iterator<_Tp, _Tp&, _Ptr>	  iterator;
489       typedef _Deque_iterator<_Tp, const _Tp&, _Ptr_const>   const_iterator;
490 
491       _Deque_base()
492       : _M_impl()
493       { _M_initialize_map(0); }
494 
495       _Deque_base(size_t __num_elements)
496       : _M_impl()
497       { _M_initialize_map(__num_elements); }
498 
499       _Deque_base(const allocator_type& __a, size_t __num_elements)
500       : _M_impl(__a)
501       { _M_initialize_map(__num_elements); }
502 
503       _Deque_base(const allocator_type& __a)
504       : _M_impl(__a)
505       { /* Caller must initialize map. */ }
506 
507 #if __cplusplus >= 201103L
508       _Deque_base(_Deque_base&& __x, false_type)
509       : _M_impl(__x._M_move_impl())
510       { }
511 
512       _Deque_base(_Deque_base&& __x, true_type)
513       : _M_impl(std::move(__x._M_get_Tp_allocator()))
514       {
515 	_M_initialize_map(0);
516 	if (__x._M_impl._M_map)
517 	  this->_M_impl._M_swap_data(__x._M_impl);
518       }
519 
520       _Deque_base(_Deque_base&& __x)
521       : _Deque_base(std::move(__x), typename _Alloc_traits::is_always_equal{})
522       { }
523 
524       _Deque_base(_Deque_base&& __x, const allocator_type& __a, size_type __n)
525       : _M_impl(__a)
526       {
527 	if (__x.get_allocator() == __a)
528 	  {
529 	    if (__x._M_impl._M_map)
530 	      {
531 		_M_initialize_map(0);
532 		this->_M_impl._M_swap_data(__x._M_impl);
533 	      }
534 	  }
535 	else
536 	  {
537 	    _M_initialize_map(__n);
538 	  }
539       }
540 #endif
541 
542       ~_Deque_base() _GLIBCXX_NOEXCEPT;
543 
544     protected:
545       typedef typename iterator::_Map_pointer _Map_pointer;
546 
547       //This struct encapsulates the implementation of the std::deque
548       //standard container and at the same time makes use of the EBO
549       //for empty allocators.
550       struct _Deque_impl
551       : public _Tp_alloc_type
552       {
553 	_Map_pointer _M_map;
554 	size_t _M_map_size;
555 	iterator _M_start;
556 	iterator _M_finish;
557 
558 	_Deque_impl()
559 	: _Tp_alloc_type(), _M_map(), _M_map_size(0),
560 	  _M_start(), _M_finish()
561 	{ }
562 
563 	_Deque_impl(const _Tp_alloc_type& __a) _GLIBCXX_NOEXCEPT
564 	: _Tp_alloc_type(__a), _M_map(), _M_map_size(0),
565 	  _M_start(), _M_finish()
566 	{ }
567 
568 #if __cplusplus >= 201103L
569 	_Deque_impl(_Deque_impl&&) = default;
570 
571 	_Deque_impl(_Tp_alloc_type&& __a) noexcept
572 	: _Tp_alloc_type(std::move(__a)), _M_map(), _M_map_size(0),
573 	  _M_start(), _M_finish()
574 	{ }
575 #endif
576 
577 	void _M_swap_data(_Deque_impl& __x) _GLIBCXX_NOEXCEPT
578 	{
579 	  using std::swap;
580 	  swap(this->_M_start, __x._M_start);
581 	  swap(this->_M_finish, __x._M_finish);
582 	  swap(this->_M_map, __x._M_map);
583 	  swap(this->_M_map_size, __x._M_map_size);
584 	}
585       };
586 
587       _Tp_alloc_type&
588       _M_get_Tp_allocator() _GLIBCXX_NOEXCEPT
589       { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
590 
591       const _Tp_alloc_type&
592       _M_get_Tp_allocator() const _GLIBCXX_NOEXCEPT
593       { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
594 
595       _Map_alloc_type
596       _M_get_map_allocator() const _GLIBCXX_NOEXCEPT
597       { return _Map_alloc_type(_M_get_Tp_allocator()); }
598 
599       _Ptr
600       _M_allocate_node()
601       {
602 	typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Traits;
603 	return _Traits::allocate(_M_impl, __deque_buf_size(sizeof(_Tp)));
604       }
605 
606       void
607       _M_deallocate_node(_Ptr __p) _GLIBCXX_NOEXCEPT
608       {
609 	typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Traits;
610 	_Traits::deallocate(_M_impl, __p, __deque_buf_size(sizeof(_Tp)));
611       }
612 
613       _Map_pointer
614       _M_allocate_map(size_t __n)
615       {
616 	_Map_alloc_type __map_alloc = _M_get_map_allocator();
617 	return _Map_alloc_traits::allocate(__map_alloc, __n);
618       }
619 
620       void
621       _M_deallocate_map(_Map_pointer __p, size_t __n) _GLIBCXX_NOEXCEPT
622       {
623 	_Map_alloc_type __map_alloc = _M_get_map_allocator();
624 	_Map_alloc_traits::deallocate(__map_alloc, __p, __n);
625       }
626 
627     protected:
628       void _M_initialize_map(size_t);
629       void _M_create_nodes(_Map_pointer __nstart, _Map_pointer __nfinish);
630       void _M_destroy_nodes(_Map_pointer __nstart,
631 			    _Map_pointer __nfinish) _GLIBCXX_NOEXCEPT;
632       enum { _S_initial_map_size = 8 };
633 
634       _Deque_impl _M_impl;
635 
636 #if __cplusplus >= 201103L
637     private:
638       _Deque_impl
639       _M_move_impl()
640       {
641 	if (!_M_impl._M_map)
642 	  return std::move(_M_impl);
643 
644 	// Create a copy of the current allocator.
645 	_Tp_alloc_type __alloc{_M_get_Tp_allocator()};
646 	// Put that copy in a moved-from state.
647 	_Tp_alloc_type __sink __attribute((__unused__)) {std::move(__alloc)};
648 	// Create an empty map that allocates using the moved-from allocator.
649 	_Deque_base __empty{__alloc};
650 	__empty._M_initialize_map(0);
651 	// Now safe to modify current allocator and perform non-throwing swaps.
652 	_Deque_impl __ret{std::move(_M_get_Tp_allocator())};
653 	_M_impl._M_swap_data(__ret);
654 	_M_impl._M_swap_data(__empty._M_impl);
655 	return __ret;
656       }
657 #endif
658     };
659 
660   template<typename _Tp, typename _Alloc>
661     _Deque_base<_Tp, _Alloc>::
662     ~_Deque_base() _GLIBCXX_NOEXCEPT
663     {
664       if (this->_M_impl._M_map)
665 	{
666 	  _M_destroy_nodes(this->_M_impl._M_start._M_node,
667 			   this->_M_impl._M_finish._M_node + 1);
668 	  _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
669 	}
670     }
671 
672   /**
673    *  @brief Layout storage.
674    *  @param  __num_elements  The count of T's for which to allocate space
675    *                          at first.
676    *  @return   Nothing.
677    *
678    *  The initial underlying memory layout is a bit complicated...
679   */
680   template<typename _Tp, typename _Alloc>
681     void
682     _Deque_base<_Tp, _Alloc>::
683     _M_initialize_map(size_t __num_elements)
684     {
685       const size_t __num_nodes = (__num_elements/ __deque_buf_size(sizeof(_Tp))
686 				  + 1);
687 
688       this->_M_impl._M_map_size = std::max((size_t) _S_initial_map_size,
689 					   size_t(__num_nodes + 2));
690       this->_M_impl._M_map = _M_allocate_map(this->_M_impl._M_map_size);
691 
692       // For "small" maps (needing less than _M_map_size nodes), allocation
693       // starts in the middle elements and grows outwards.  So nstart may be
694       // the beginning of _M_map, but for small maps it may be as far in as
695       // _M_map+3.
696 
697       _Map_pointer __nstart = (this->_M_impl._M_map
698 			       + (this->_M_impl._M_map_size - __num_nodes) / 2);
699       _Map_pointer __nfinish = __nstart + __num_nodes;
700 
701       __try
702 	{ _M_create_nodes(__nstart, __nfinish); }
703       __catch(...)
704 	{
705 	  _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
706 	  this->_M_impl._M_map = _Map_pointer();
707 	  this->_M_impl._M_map_size = 0;
708 	  __throw_exception_again;
709 	}
710 
711       this->_M_impl._M_start._M_set_node(__nstart);
712       this->_M_impl._M_finish._M_set_node(__nfinish - 1);
713       this->_M_impl._M_start._M_cur = _M_impl._M_start._M_first;
714       this->_M_impl._M_finish._M_cur = (this->_M_impl._M_finish._M_first
715 					+ __num_elements
716 					% __deque_buf_size(sizeof(_Tp)));
717     }
718 
719   template<typename _Tp, typename _Alloc>
720     void
721     _Deque_base<_Tp, _Alloc>::
722     _M_create_nodes(_Map_pointer __nstart, _Map_pointer __nfinish)
723     {
724       _Map_pointer __cur;
725       __try
726 	{
727 	  for (__cur = __nstart; __cur < __nfinish; ++__cur)
728 	    *__cur = this->_M_allocate_node();
729 	}
730       __catch(...)
731 	{
732 	  _M_destroy_nodes(__nstart, __cur);
733 	  __throw_exception_again;
734 	}
735     }
736 
737   template<typename _Tp, typename _Alloc>
738     void
739     _Deque_base<_Tp, _Alloc>::
740     _M_destroy_nodes(_Map_pointer __nstart,
741 		     _Map_pointer __nfinish) _GLIBCXX_NOEXCEPT
742     {
743       for (_Map_pointer __n = __nstart; __n < __nfinish; ++__n)
744 	_M_deallocate_node(*__n);
745     }
746 
747   /**
748    *  @brief  A standard container using fixed-size memory allocation and
749    *  constant-time manipulation of elements at either end.
750    *
751    *  @ingroup sequences
752    *
753    *  @tparam _Tp  Type of element.
754    *  @tparam _Alloc  Allocator type, defaults to allocator<_Tp>.
755    *
756    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
757    *  <a href="tables.html#66">reversible container</a>, and a
758    *  <a href="tables.html#67">sequence</a>, including the
759    *  <a href="tables.html#68">optional sequence requirements</a>.
760    *
761    *  In previous HP/SGI versions of deque, there was an extra template
762    *  parameter so users could control the node size.  This extension turned
763    *  out to violate the C++ standard (it can be detected using template
764    *  template parameters), and it was removed.
765    *
766    *  Here's how a deque<Tp> manages memory.  Each deque has 4 members:
767    *
768    *  - Tp**        _M_map
769    *  - size_t      _M_map_size
770    *  - iterator    _M_start, _M_finish
771    *
772    *  map_size is at least 8.  %map is an array of map_size
773    *  pointers-to-@a nodes.  (The name %map has nothing to do with the
774    *  std::map class, and @b nodes should not be confused with
775    *  std::list's usage of @a node.)
776    *
777    *  A @a node has no specific type name as such, but it is referred
778    *  to as @a node in this file.  It is a simple array-of-Tp.  If Tp
779    *  is very large, there will be one Tp element per node (i.e., an
780    *  @a array of one).  For non-huge Tp's, node size is inversely
781    *  related to Tp size: the larger the Tp, the fewer Tp's will fit
782    *  in a node.  The goal here is to keep the total size of a node
783    *  relatively small and constant over different Tp's, to improve
784    *  allocator efficiency.
785    *
786    *  Not every pointer in the %map array will point to a node.  If
787    *  the initial number of elements in the deque is small, the
788    *  /middle/ %map pointers will be valid, and the ones at the edges
789    *  will be unused.  This same situation will arise as the %map
790    *  grows: available %map pointers, if any, will be on the ends.  As
791    *  new nodes are created, only a subset of the %map's pointers need
792    *  to be copied @a outward.
793    *
794    *  Class invariants:
795    * - For any nonsingular iterator i:
796    *    - i.node points to a member of the %map array.  (Yes, you read that
797    *      correctly:  i.node does not actually point to a node.)  The member of
798    *      the %map array is what actually points to the node.
799    *    - i.first == *(i.node)    (This points to the node (first Tp element).)
800    *    - i.last  == i.first + node_size
801    *    - i.cur is a pointer in the range [i.first, i.last).  NOTE:
802    *      the implication of this is that i.cur is always a dereferenceable
803    *      pointer, even if i is a past-the-end iterator.
804    * - Start and Finish are always nonsingular iterators.  NOTE: this
805    * means that an empty deque must have one node, a deque with <N
806    * elements (where N is the node buffer size) must have one node, a
807    * deque with N through (2N-1) elements must have two nodes, etc.
808    * - For every node other than start.node and finish.node, every
809    * element in the node is an initialized object.  If start.node ==
810    * finish.node, then [start.cur, finish.cur) are initialized
811    * objects, and the elements outside that range are uninitialized
812    * storage.  Otherwise, [start.cur, start.last) and [finish.first,
813    * finish.cur) are initialized objects, and [start.first, start.cur)
814    * and [finish.cur, finish.last) are uninitialized storage.
815    * - [%map, %map + map_size) is a valid, non-empty range.
816    * - [start.node, finish.node] is a valid range contained within
817    *   [%map, %map + map_size).
818    * - A pointer in the range [%map, %map + map_size) points to an allocated
819    *   node if and only if the pointer is in the range
820    *   [start.node, finish.node].
821    *
822    *  Here's the magic:  nothing in deque is @b aware of the discontiguous
823    *  storage!
824    *
825    *  The memory setup and layout occurs in the parent, _Base, and the iterator
826    *  class is entirely responsible for @a leaping from one node to the next.
827    *  All the implementation routines for deque itself work only through the
828    *  start and finish iterators.  This keeps the routines simple and sane,
829    *  and we can use other standard algorithms as well.
830   */
831   template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
832     class deque : protected _Deque_base<_Tp, _Alloc>
833     {
834 #ifdef _GLIBCXX_CONCEPT_CHECKS
835       // concept requirements
836       typedef typename _Alloc::value_type	_Alloc_value_type;
837 # if __cplusplus < 201103L
838       __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
839 # endif
840       __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
841 #endif
842 
843 #if __cplusplus >= 201103L
844       static_assert(is_same<typename remove_cv<_Tp>::type, _Tp>::value,
845 	  "std::deque must have a non-const, non-volatile value_type");
846 # ifdef __STRICT_ANSI__
847       static_assert(is_same<typename _Alloc::value_type, _Tp>::value,
848 	  "std::deque must have the same value_type as its allocator");
849 # endif
850 #endif
851 
852       typedef _Deque_base<_Tp, _Alloc>			_Base;
853       typedef typename _Base::_Tp_alloc_type		_Tp_alloc_type;
854       typedef typename _Base::_Alloc_traits		_Alloc_traits;
855       typedef typename _Base::_Map_pointer		_Map_pointer;
856 
857     public:
858       typedef _Tp					value_type;
859       typedef typename _Alloc_traits::pointer		pointer;
860       typedef typename _Alloc_traits::const_pointer	const_pointer;
861       typedef typename _Alloc_traits::reference		reference;
862       typedef typename _Alloc_traits::const_reference	const_reference;
863       typedef typename _Base::iterator			iterator;
864       typedef typename _Base::const_iterator		const_iterator;
865       typedef std::reverse_iterator<const_iterator>	const_reverse_iterator;
866       typedef std::reverse_iterator<iterator>		reverse_iterator;
867       typedef size_t					size_type;
868       typedef ptrdiff_t					difference_type;
869       typedef _Alloc					allocator_type;
870 
871     protected:
872       static size_t _S_buffer_size() _GLIBCXX_NOEXCEPT
873       { return __deque_buf_size(sizeof(_Tp)); }
874 
875       // Functions controlling memory layout, and nothing else.
876       using _Base::_M_initialize_map;
877       using _Base::_M_create_nodes;
878       using _Base::_M_destroy_nodes;
879       using _Base::_M_allocate_node;
880       using _Base::_M_deallocate_node;
881       using _Base::_M_allocate_map;
882       using _Base::_M_deallocate_map;
883       using _Base::_M_get_Tp_allocator;
884 
885       /**
886        *  A total of four data members accumulated down the hierarchy.
887        *  May be accessed via _M_impl.*
888        */
889       using _Base::_M_impl;
890 
891     public:
892       // [23.2.1.1] construct/copy/destroy
893       // (assign() and get_allocator() are also listed in this section)
894 
895       /**
896        *  @brief  Creates a %deque with no elements.
897        */
898       deque() : _Base() { }
899 
900       /**
901        *  @brief  Creates a %deque with no elements.
902        *  @param  __a  An allocator object.
903        */
904       explicit
905       deque(const allocator_type& __a)
906       : _Base(__a, 0) { }
907 
908 #if __cplusplus >= 201103L
909       /**
910        *  @brief  Creates a %deque with default constructed elements.
911        *  @param  __n  The number of elements to initially create.
912        *  @param  __a  An allocator.
913        *
914        *  This constructor fills the %deque with @a n default
915        *  constructed elements.
916        */
917       explicit
918       deque(size_type __n, const allocator_type& __a = allocator_type())
919       : _Base(__a, __n)
920       { _M_default_initialize(); }
921 
922       /**
923        *  @brief  Creates a %deque with copies of an exemplar element.
924        *  @param  __n  The number of elements to initially create.
925        *  @param  __value  An element to copy.
926        *  @param  __a  An allocator.
927        *
928        *  This constructor fills the %deque with @a __n copies of @a __value.
929        */
930       deque(size_type __n, const value_type& __value,
931 	    const allocator_type& __a = allocator_type())
932       : _Base(__a, __n)
933       { _M_fill_initialize(__value); }
934 #else
935       /**
936        *  @brief  Creates a %deque with copies of an exemplar element.
937        *  @param  __n  The number of elements to initially create.
938        *  @param  __value  An element to copy.
939        *  @param  __a  An allocator.
940        *
941        *  This constructor fills the %deque with @a __n copies of @a __value.
942        */
943       explicit
944       deque(size_type __n, const value_type& __value = value_type(),
945 	    const allocator_type& __a = allocator_type())
946       : _Base(__a, __n)
947       { _M_fill_initialize(__value); }
948 #endif
949 
950       /**
951        *  @brief  %Deque copy constructor.
952        *  @param  __x  A %deque of identical element and allocator types.
953        *
954        *  The newly-created %deque uses a copy of the allocator object used
955        *  by @a __x (unless the allocator traits dictate a different object).
956        */
957       deque(const deque& __x)
958       : _Base(_Alloc_traits::_S_select_on_copy(__x._M_get_Tp_allocator()),
959 	      __x.size())
960       { std::__uninitialized_copy_a(__x.begin(), __x.end(),
961 				    this->_M_impl._M_start,
962 				    _M_get_Tp_allocator()); }
963 
964 #if __cplusplus >= 201103L
965       /**
966        *  @brief  %Deque move constructor.
967        *  @param  __x  A %deque of identical element and allocator types.
968        *
969        *  The newly-created %deque contains the exact contents of @a __x.
970        *  The contents of @a __x are a valid, but unspecified %deque.
971        */
972       deque(deque&& __x)
973       : _Base(std::move(__x)) { }
974 
975       /// Copy constructor with alternative allocator
976       deque(const deque& __x, const allocator_type& __a)
977       : _Base(__a, __x.size())
978       { std::__uninitialized_copy_a(__x.begin(), __x.end(),
979 				    this->_M_impl._M_start,
980 				    _M_get_Tp_allocator()); }
981 
982       /// Move constructor with alternative allocator
983       deque(deque&& __x, const allocator_type& __a)
984       : _Base(std::move(__x), __a, __x.size())
985       {
986 	if (__x.get_allocator() != __a)
987 	  {
988 	    std::__uninitialized_move_a(__x.begin(), __x.end(),
989 					this->_M_impl._M_start,
990 					_M_get_Tp_allocator());
991 	    __x.clear();
992 	  }
993       }
994 
995       /**
996        *  @brief  Builds a %deque from an initializer list.
997        *  @param  __l  An initializer_list.
998        *  @param  __a  An allocator object.
999        *
1000        *  Create a %deque consisting of copies of the elements in the
1001        *  initializer_list @a __l.
1002        *
1003        *  This will call the element type's copy constructor N times
1004        *  (where N is __l.size()) and do no memory reallocation.
1005        */
1006       deque(initializer_list<value_type> __l,
1007 	    const allocator_type& __a = allocator_type())
1008       : _Base(__a)
1009       {
1010 	_M_range_initialize(__l.begin(), __l.end(),
1011 			    random_access_iterator_tag());
1012       }
1013 #endif
1014 
1015       /**
1016        *  @brief  Builds a %deque from a range.
1017        *  @param  __first  An input iterator.
1018        *  @param  __last  An input iterator.
1019        *  @param  __a  An allocator object.
1020        *
1021        *  Create a %deque consisting of copies of the elements from [__first,
1022        *  __last).
1023        *
1024        *  If the iterators are forward, bidirectional, or random-access, then
1025        *  this will call the elements' copy constructor N times (where N is
1026        *  distance(__first,__last)) and do no memory reallocation.  But if only
1027        *  input iterators are used, then this will do at most 2N calls to the
1028        *  copy constructor, and logN memory reallocations.
1029        */
1030 #if __cplusplus >= 201103L
1031       template<typename _InputIterator,
1032 	       typename = std::_RequireInputIter<_InputIterator>>
1033 	deque(_InputIterator __first, _InputIterator __last,
1034 	      const allocator_type& __a = allocator_type())
1035 	: _Base(__a)
1036 	{ _M_initialize_dispatch(__first, __last, __false_type()); }
1037 #else
1038       template<typename _InputIterator>
1039 	deque(_InputIterator __first, _InputIterator __last,
1040 	      const allocator_type& __a = allocator_type())
1041 	: _Base(__a)
1042 	{
1043 	  // Check whether it's an integral type.  If so, it's not an iterator.
1044 	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
1045 	  _M_initialize_dispatch(__first, __last, _Integral());
1046 	}
1047 #endif
1048 
1049       /**
1050        *  The dtor only erases the elements, and note that if the elements
1051        *  themselves are pointers, the pointed-to memory is not touched in any
1052        *  way.  Managing the pointer is the user's responsibility.
1053        */
1054       ~deque()
1055       { _M_destroy_data(begin(), end(), _M_get_Tp_allocator()); }
1056 
1057       /**
1058        *  @brief  %Deque assignment operator.
1059        *  @param  __x  A %deque of identical element and allocator types.
1060        *
1061        *  All the elements of @a x are copied.
1062        *
1063        *  The newly-created %deque uses a copy of the allocator object used
1064        *  by @a __x (unless the allocator traits dictate a different object).
1065        */
1066       deque&
1067       operator=(const deque& __x);
1068 
1069 #if __cplusplus >= 201103L
1070       /**
1071        *  @brief  %Deque move assignment operator.
1072        *  @param  __x  A %deque of identical element and allocator types.
1073        *
1074        *  The contents of @a __x are moved into this deque (without copying,
1075        *  if the allocators permit it).
1076        *  @a __x is a valid, but unspecified %deque.
1077        */
1078       deque&
1079       operator=(deque&& __x) noexcept(_Alloc_traits::_S_always_equal())
1080       {
1081 	using __always_equal = typename _Alloc_traits::is_always_equal;
1082 	_M_move_assign1(std::move(__x), __always_equal{});
1083 	return *this;
1084       }
1085 
1086       /**
1087        *  @brief  Assigns an initializer list to a %deque.
1088        *  @param  __l  An initializer_list.
1089        *
1090        *  This function fills a %deque with copies of the elements in the
1091        *  initializer_list @a __l.
1092        *
1093        *  Note that the assignment completely changes the %deque and that the
1094        *  resulting %deque's size is the same as the number of elements
1095        *  assigned.
1096        */
1097       deque&
1098       operator=(initializer_list<value_type> __l)
1099       {
1100 	_M_assign_aux(__l.begin(), __l.end(),
1101 		      random_access_iterator_tag());
1102 	return *this;
1103       }
1104 #endif
1105 
1106       /**
1107        *  @brief  Assigns a given value to a %deque.
1108        *  @param  __n  Number of elements to be assigned.
1109        *  @param  __val  Value to be assigned.
1110        *
1111        *  This function fills a %deque with @a n copies of the given
1112        *  value.  Note that the assignment completely changes the
1113        *  %deque and that the resulting %deque's size is the same as
1114        *  the number of elements assigned.
1115        */
1116       void
1117       assign(size_type __n, const value_type& __val)
1118       { _M_fill_assign(__n, __val); }
1119 
1120       /**
1121        *  @brief  Assigns a range to a %deque.
1122        *  @param  __first  An input iterator.
1123        *  @param  __last   An input iterator.
1124        *
1125        *  This function fills a %deque with copies of the elements in the
1126        *  range [__first,__last).
1127        *
1128        *  Note that the assignment completely changes the %deque and that the
1129        *  resulting %deque's size is the same as the number of elements
1130        *  assigned.
1131        */
1132 #if __cplusplus >= 201103L
1133       template<typename _InputIterator,
1134 	       typename = std::_RequireInputIter<_InputIterator>>
1135 	void
1136 	assign(_InputIterator __first, _InputIterator __last)
1137 	{ _M_assign_dispatch(__first, __last, __false_type()); }
1138 #else
1139       template<typename _InputIterator>
1140 	void
1141 	assign(_InputIterator __first, _InputIterator __last)
1142 	{
1143 	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
1144 	  _M_assign_dispatch(__first, __last, _Integral());
1145 	}
1146 #endif
1147 
1148 #if __cplusplus >= 201103L
1149       /**
1150        *  @brief  Assigns an initializer list to a %deque.
1151        *  @param  __l  An initializer_list.
1152        *
1153        *  This function fills a %deque with copies of the elements in the
1154        *  initializer_list @a __l.
1155        *
1156        *  Note that the assignment completely changes the %deque and that the
1157        *  resulting %deque's size is the same as the number of elements
1158        *  assigned.
1159        */
1160       void
1161       assign(initializer_list<value_type> __l)
1162       { _M_assign_aux(__l.begin(), __l.end(), random_access_iterator_tag()); }
1163 #endif
1164 
1165       /// Get a copy of the memory allocation object.
1166       allocator_type
1167       get_allocator() const _GLIBCXX_NOEXCEPT
1168       { return _Base::get_allocator(); }
1169 
1170       // iterators
1171       /**
1172        *  Returns a read/write iterator that points to the first element in the
1173        *  %deque.  Iteration is done in ordinary element order.
1174        */
1175       iterator
1176       begin() _GLIBCXX_NOEXCEPT
1177       { return this->_M_impl._M_start; }
1178 
1179       /**
1180        *  Returns a read-only (constant) iterator that points to the first
1181        *  element in the %deque.  Iteration is done in ordinary element order.
1182        */
1183       const_iterator
1184       begin() const _GLIBCXX_NOEXCEPT
1185       { return this->_M_impl._M_start; }
1186 
1187       /**
1188        *  Returns a read/write iterator that points one past the last
1189        *  element in the %deque.  Iteration is done in ordinary
1190        *  element order.
1191        */
1192       iterator
1193       end() _GLIBCXX_NOEXCEPT
1194       { return this->_M_impl._M_finish; }
1195 
1196       /**
1197        *  Returns a read-only (constant) iterator that points one past
1198        *  the last element in the %deque.  Iteration is done in
1199        *  ordinary element order.
1200        */
1201       const_iterator
1202       end() const _GLIBCXX_NOEXCEPT
1203       { return this->_M_impl._M_finish; }
1204 
1205       /**
1206        *  Returns a read/write reverse iterator that points to the
1207        *  last element in the %deque.  Iteration is done in reverse
1208        *  element order.
1209        */
1210       reverse_iterator
1211       rbegin() _GLIBCXX_NOEXCEPT
1212       { return reverse_iterator(this->_M_impl._M_finish); }
1213 
1214       /**
1215        *  Returns a read-only (constant) reverse iterator that points
1216        *  to the last element in the %deque.  Iteration is done in
1217        *  reverse element order.
1218        */
1219       const_reverse_iterator
1220       rbegin() const _GLIBCXX_NOEXCEPT
1221       { return const_reverse_iterator(this->_M_impl._M_finish); }
1222 
1223       /**
1224        *  Returns a read/write reverse iterator that points to one
1225        *  before the first element in the %deque.  Iteration is done
1226        *  in reverse element order.
1227        */
1228       reverse_iterator
1229       rend() _GLIBCXX_NOEXCEPT
1230       { return reverse_iterator(this->_M_impl._M_start); }
1231 
1232       /**
1233        *  Returns a read-only (constant) reverse iterator that points
1234        *  to one before the first element in the %deque.  Iteration is
1235        *  done in reverse element order.
1236        */
1237       const_reverse_iterator
1238       rend() const _GLIBCXX_NOEXCEPT
1239       { return const_reverse_iterator(this->_M_impl._M_start); }
1240 
1241 #if __cplusplus >= 201103L
1242       /**
1243        *  Returns a read-only (constant) iterator that points to the first
1244        *  element in the %deque.  Iteration is done in ordinary element order.
1245        */
1246       const_iterator
1247       cbegin() const noexcept
1248       { return this->_M_impl._M_start; }
1249 
1250       /**
1251        *  Returns a read-only (constant) iterator that points one past
1252        *  the last element in the %deque.  Iteration is done in
1253        *  ordinary element order.
1254        */
1255       const_iterator
1256       cend() const noexcept
1257       { return this->_M_impl._M_finish; }
1258 
1259       /**
1260        *  Returns a read-only (constant) reverse iterator that points
1261        *  to the last element in the %deque.  Iteration is done in
1262        *  reverse element order.
1263        */
1264       const_reverse_iterator
1265       crbegin() const noexcept
1266       { return const_reverse_iterator(this->_M_impl._M_finish); }
1267 
1268       /**
1269        *  Returns a read-only (constant) reverse iterator that points
1270        *  to one before the first element in the %deque.  Iteration is
1271        *  done in reverse element order.
1272        */
1273       const_reverse_iterator
1274       crend() const noexcept
1275       { return const_reverse_iterator(this->_M_impl._M_start); }
1276 #endif
1277 
1278       // [23.2.1.2] capacity
1279       /**  Returns the number of elements in the %deque.  */
1280       size_type
1281       size() const _GLIBCXX_NOEXCEPT
1282       { return this->_M_impl._M_finish - this->_M_impl._M_start; }
1283 
1284       /**  Returns the size() of the largest possible %deque.  */
1285       size_type
1286       max_size() const _GLIBCXX_NOEXCEPT
1287       { return _Alloc_traits::max_size(_M_get_Tp_allocator()); }
1288 
1289 #if __cplusplus >= 201103L
1290       /**
1291        *  @brief  Resizes the %deque to the specified number of elements.
1292        *  @param  __new_size  Number of elements the %deque should contain.
1293        *
1294        *  This function will %resize the %deque to the specified
1295        *  number of elements.  If the number is smaller than the
1296        *  %deque's current size the %deque is truncated, otherwise
1297        *  default constructed elements are appended.
1298        */
1299       void
1300       resize(size_type __new_size)
1301       {
1302 	const size_type __len = size();
1303 	if (__new_size > __len)
1304 	  _M_default_append(__new_size - __len);
1305 	else if (__new_size < __len)
1306 	  _M_erase_at_end(this->_M_impl._M_start
1307 			  + difference_type(__new_size));
1308       }
1309 
1310       /**
1311        *  @brief  Resizes the %deque to the specified number of elements.
1312        *  @param  __new_size  Number of elements the %deque should contain.
1313        *  @param  __x  Data with which new elements should be populated.
1314        *
1315        *  This function will %resize the %deque to the specified
1316        *  number of elements.  If the number is smaller than the
1317        *  %deque's current size the %deque is truncated, otherwise the
1318        *  %deque is extended and new elements are populated with given
1319        *  data.
1320        */
1321       void
1322       resize(size_type __new_size, const value_type& __x)
1323       {
1324 	const size_type __len = size();
1325 	if (__new_size > __len)
1326 	  _M_fill_insert(this->_M_impl._M_finish, __new_size - __len, __x);
1327 	else if (__new_size < __len)
1328 	  _M_erase_at_end(this->_M_impl._M_start
1329 			  + difference_type(__new_size));
1330       }
1331 #else
1332       /**
1333        *  @brief  Resizes the %deque to the specified number of elements.
1334        *  @param  __new_size  Number of elements the %deque should contain.
1335        *  @param  __x  Data with which new elements should be populated.
1336        *
1337        *  This function will %resize the %deque to the specified
1338        *  number of elements.  If the number is smaller than the
1339        *  %deque's current size the %deque is truncated, otherwise the
1340        *  %deque is extended and new elements are populated with given
1341        *  data.
1342        */
1343       void
1344       resize(size_type __new_size, value_type __x = value_type())
1345       {
1346 	const size_type __len = size();
1347 	if (__new_size > __len)
1348 	  _M_fill_insert(this->_M_impl._M_finish, __new_size - __len, __x);
1349 	else if (__new_size < __len)
1350 	  _M_erase_at_end(this->_M_impl._M_start
1351 			  + difference_type(__new_size));
1352       }
1353 #endif
1354 
1355 #if __cplusplus >= 201103L
1356       /**  A non-binding request to reduce memory use.  */
1357       void
1358       shrink_to_fit() noexcept
1359       { _M_shrink_to_fit(); }
1360 #endif
1361 
1362       /**
1363        *  Returns true if the %deque is empty.  (Thus begin() would
1364        *  equal end().)
1365        */
1366       bool
1367       empty() const _GLIBCXX_NOEXCEPT
1368       { return this->_M_impl._M_finish == this->_M_impl._M_start; }
1369 
1370       // element access
1371       /**
1372        *  @brief Subscript access to the data contained in the %deque.
1373        *  @param __n The index of the element for which data should be
1374        *  accessed.
1375        *  @return  Read/write reference to data.
1376        *
1377        *  This operator allows for easy, array-style, data access.
1378        *  Note that data access with this operator is unchecked and
1379        *  out_of_range lookups are not defined. (For checked lookups
1380        *  see at().)
1381        */
1382       reference
1383       operator[](size_type __n) _GLIBCXX_NOEXCEPT
1384       {
1385 	__glibcxx_requires_subscript(__n);
1386 	return this->_M_impl._M_start[difference_type(__n)];
1387       }
1388 
1389       /**
1390        *  @brief Subscript access to the data contained in the %deque.
1391        *  @param __n The index of the element for which data should be
1392        *  accessed.
1393        *  @return  Read-only (constant) reference to data.
1394        *
1395        *  This operator allows for easy, array-style, data access.
1396        *  Note that data access with this operator is unchecked and
1397        *  out_of_range lookups are not defined. (For checked lookups
1398        *  see at().)
1399        */
1400       const_reference
1401       operator[](size_type __n) const _GLIBCXX_NOEXCEPT
1402       {
1403 	__glibcxx_requires_subscript(__n);
1404 	return this->_M_impl._M_start[difference_type(__n)];
1405       }
1406 
1407     protected:
1408       /// Safety check used only from at().
1409       void
1410       _M_range_check(size_type __n) const
1411       {
1412 	if (__n >= this->size())
1413 	  __throw_out_of_range_fmt(__N("deque::_M_range_check: __n "
1414 				       "(which is %zu)>= this->size() "
1415 				       "(which is %zu)"),
1416 				   __n, this->size());
1417       }
1418 
1419     public:
1420       /**
1421        *  @brief  Provides access to the data contained in the %deque.
1422        *  @param __n The index of the element for which data should be
1423        *  accessed.
1424        *  @return  Read/write reference to data.
1425        *  @throw  std::out_of_range  If @a __n is an invalid index.
1426        *
1427        *  This function provides for safer data access.  The parameter
1428        *  is first checked that it is in the range of the deque.  The
1429        *  function throws out_of_range if the check fails.
1430        */
1431       reference
1432       at(size_type __n)
1433       {
1434 	_M_range_check(__n);
1435 	return (*this)[__n];
1436       }
1437 
1438       /**
1439        *  @brief  Provides access to the data contained in the %deque.
1440        *  @param __n The index of the element for which data should be
1441        *  accessed.
1442        *  @return  Read-only (constant) reference to data.
1443        *  @throw  std::out_of_range  If @a __n is an invalid index.
1444        *
1445        *  This function provides for safer data access.  The parameter is first
1446        *  checked that it is in the range of the deque.  The function throws
1447        *  out_of_range if the check fails.
1448        */
1449       const_reference
1450       at(size_type __n) const
1451       {
1452 	_M_range_check(__n);
1453 	return (*this)[__n];
1454       }
1455 
1456       /**
1457        *  Returns a read/write reference to the data at the first
1458        *  element of the %deque.
1459        */
1460       reference
1461       front() _GLIBCXX_NOEXCEPT
1462       {
1463 	__glibcxx_requires_nonempty();
1464 	return *begin();
1465       }
1466 
1467       /**
1468        *  Returns a read-only (constant) reference to the data at the first
1469        *  element of the %deque.
1470        */
1471       const_reference
1472       front() const _GLIBCXX_NOEXCEPT
1473       {
1474 	__glibcxx_requires_nonempty();
1475 	return *begin();
1476       }
1477 
1478       /**
1479        *  Returns a read/write reference to the data at the last element of the
1480        *  %deque.
1481        */
1482       reference
1483       back() _GLIBCXX_NOEXCEPT
1484       {
1485 	__glibcxx_requires_nonempty();
1486 	iterator __tmp = end();
1487 	--__tmp;
1488 	return *__tmp;
1489       }
1490 
1491       /**
1492        *  Returns a read-only (constant) reference to the data at the last
1493        *  element of the %deque.
1494        */
1495       const_reference
1496       back() const _GLIBCXX_NOEXCEPT
1497       {
1498 	__glibcxx_requires_nonempty();
1499 	const_iterator __tmp = end();
1500 	--__tmp;
1501 	return *__tmp;
1502       }
1503 
1504       // [23.2.1.2] modifiers
1505       /**
1506        *  @brief  Add data to the front of the %deque.
1507        *  @param  __x  Data to be added.
1508        *
1509        *  This is a typical stack operation.  The function creates an
1510        *  element at the front of the %deque and assigns the given
1511        *  data to it.  Due to the nature of a %deque this operation
1512        *  can be done in constant time.
1513        */
1514       void
1515       push_front(const value_type& __x)
1516       {
1517 	if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_first)
1518 	  {
1519 	    _Alloc_traits::construct(this->_M_impl,
1520 				     this->_M_impl._M_start._M_cur - 1,
1521 				     __x);
1522 	    --this->_M_impl._M_start._M_cur;
1523 	  }
1524 	else
1525 	  _M_push_front_aux(__x);
1526       }
1527 
1528 #if __cplusplus >= 201103L
1529       void
1530       push_front(value_type&& __x)
1531       { emplace_front(std::move(__x)); }
1532 
1533       template<typename... _Args>
1534 #if __cplusplus > 201402L
1535 	reference
1536 #else
1537 	void
1538 #endif
1539 	emplace_front(_Args&&... __args);
1540 #endif
1541 
1542       /**
1543        *  @brief  Add data to the end of the %deque.
1544        *  @param  __x  Data to be added.
1545        *
1546        *  This is a typical stack operation.  The function creates an
1547        *  element at the end of the %deque and assigns the given data
1548        *  to it.  Due to the nature of a %deque this operation can be
1549        *  done in constant time.
1550        */
1551       void
1552       push_back(const value_type& __x)
1553       {
1554 	if (this->_M_impl._M_finish._M_cur
1555 	    != this->_M_impl._M_finish._M_last - 1)
1556 	  {
1557 	    _Alloc_traits::construct(this->_M_impl,
1558 				     this->_M_impl._M_finish._M_cur, __x);
1559 	    ++this->_M_impl._M_finish._M_cur;
1560 	  }
1561 	else
1562 	  _M_push_back_aux(__x);
1563       }
1564 
1565 #if __cplusplus >= 201103L
1566       void
1567       push_back(value_type&& __x)
1568       { emplace_back(std::move(__x)); }
1569 
1570       template<typename... _Args>
1571 #if __cplusplus > 201402L
1572 	reference
1573 #else
1574 	void
1575 #endif
1576 	emplace_back(_Args&&... __args);
1577 #endif
1578 
1579       /**
1580        *  @brief  Removes first element.
1581        *
1582        *  This is a typical stack operation.  It shrinks the %deque by one.
1583        *
1584        *  Note that no data is returned, and if the first element's data is
1585        *  needed, it should be retrieved before pop_front() is called.
1586        */
1587       void
1588       pop_front() _GLIBCXX_NOEXCEPT
1589       {
1590 	__glibcxx_requires_nonempty();
1591 	if (this->_M_impl._M_start._M_cur
1592 	    != this->_M_impl._M_start._M_last - 1)
1593 	  {
1594 	    _Alloc_traits::destroy(this->_M_impl,
1595 				   this->_M_impl._M_start._M_cur);
1596 	    ++this->_M_impl._M_start._M_cur;
1597 	  }
1598 	else
1599 	  _M_pop_front_aux();
1600       }
1601 
1602       /**
1603        *  @brief  Removes last element.
1604        *
1605        *  This is a typical stack operation.  It shrinks the %deque by one.
1606        *
1607        *  Note that no data is returned, and if the last element's data is
1608        *  needed, it should be retrieved before pop_back() is called.
1609        */
1610       void
1611       pop_back() _GLIBCXX_NOEXCEPT
1612       {
1613 	__glibcxx_requires_nonempty();
1614 	if (this->_M_impl._M_finish._M_cur
1615 	    != this->_M_impl._M_finish._M_first)
1616 	  {
1617 	    --this->_M_impl._M_finish._M_cur;
1618 	    _Alloc_traits::destroy(this->_M_impl,
1619 				   this->_M_impl._M_finish._M_cur);
1620 	  }
1621 	else
1622 	  _M_pop_back_aux();
1623       }
1624 
1625 #if __cplusplus >= 201103L
1626       /**
1627        *  @brief  Inserts an object in %deque before specified iterator.
1628        *  @param  __position  A const_iterator into the %deque.
1629        *  @param  __args  Arguments.
1630        *  @return  An iterator that points to the inserted data.
1631        *
1632        *  This function will insert an object of type T constructed
1633        *  with T(std::forward<Args>(args)...) before the specified location.
1634        */
1635       template<typename... _Args>
1636 	iterator
1637 	emplace(const_iterator __position, _Args&&... __args);
1638 
1639       /**
1640        *  @brief  Inserts given value into %deque before specified iterator.
1641        *  @param  __position  A const_iterator into the %deque.
1642        *  @param  __x  Data to be inserted.
1643        *  @return  An iterator that points to the inserted data.
1644        *
1645        *  This function will insert a copy of the given value before the
1646        *  specified location.
1647        */
1648       iterator
1649       insert(const_iterator __position, const value_type& __x);
1650 #else
1651       /**
1652        *  @brief  Inserts given value into %deque before specified iterator.
1653        *  @param  __position  An iterator into the %deque.
1654        *  @param  __x  Data to be inserted.
1655        *  @return  An iterator that points to the inserted data.
1656        *
1657        *  This function will insert a copy of the given value before the
1658        *  specified location.
1659        */
1660       iterator
1661       insert(iterator __position, const value_type& __x);
1662 #endif
1663 
1664 #if __cplusplus >= 201103L
1665       /**
1666        *  @brief  Inserts given rvalue into %deque before specified iterator.
1667        *  @param  __position  A const_iterator into the %deque.
1668        *  @param  __x  Data to be inserted.
1669        *  @return  An iterator that points to the inserted data.
1670        *
1671        *  This function will insert a copy of the given rvalue before the
1672        *  specified location.
1673        */
1674       iterator
1675       insert(const_iterator __position, value_type&& __x)
1676       { return emplace(__position, std::move(__x)); }
1677 
1678       /**
1679        *  @brief  Inserts an initializer list into the %deque.
1680        *  @param  __p  An iterator into the %deque.
1681        *  @param  __l  An initializer_list.
1682        *
1683        *  This function will insert copies of the data in the
1684        *  initializer_list @a __l into the %deque before the location
1685        *  specified by @a __p.  This is known as <em>list insert</em>.
1686        */
1687       iterator
1688       insert(const_iterator __p, initializer_list<value_type> __l)
1689       {
1690 	auto __offset = __p - cbegin();
1691 	_M_range_insert_aux(__p._M_const_cast(), __l.begin(), __l.end(),
1692 			    std::random_access_iterator_tag());
1693 	return begin() + __offset;
1694       }
1695 #endif
1696 
1697 #if __cplusplus >= 201103L
1698       /**
1699        *  @brief  Inserts a number of copies of given data into the %deque.
1700        *  @param  __position  A const_iterator into the %deque.
1701        *  @param  __n  Number of elements to be inserted.
1702        *  @param  __x  Data to be inserted.
1703        *  @return  An iterator that points to the inserted data.
1704        *
1705        *  This function will insert a specified number of copies of the given
1706        *  data before the location specified by @a __position.
1707        */
1708       iterator
1709       insert(const_iterator __position, size_type __n, const value_type& __x)
1710       {
1711 	difference_type __offset = __position - cbegin();
1712 	_M_fill_insert(__position._M_const_cast(), __n, __x);
1713 	return begin() + __offset;
1714       }
1715 #else
1716       /**
1717        *  @brief  Inserts a number of copies of given data into the %deque.
1718        *  @param  __position  An iterator into the %deque.
1719        *  @param  __n  Number of elements to be inserted.
1720        *  @param  __x  Data to be inserted.
1721        *
1722        *  This function will insert a specified number of copies of the given
1723        *  data before the location specified by @a __position.
1724        */
1725       void
1726       insert(iterator __position, size_type __n, const value_type& __x)
1727       { _M_fill_insert(__position, __n, __x); }
1728 #endif
1729 
1730 #if __cplusplus >= 201103L
1731       /**
1732        *  @brief  Inserts a range into the %deque.
1733        *  @param  __position  A const_iterator into the %deque.
1734        *  @param  __first  An input iterator.
1735        *  @param  __last   An input iterator.
1736        *  @return  An iterator that points to the inserted data.
1737        *
1738        *  This function will insert copies of the data in the range
1739        *  [__first,__last) into the %deque before the location specified
1740        *  by @a __position.  This is known as <em>range insert</em>.
1741        */
1742       template<typename _InputIterator,
1743 	       typename = std::_RequireInputIter<_InputIterator>>
1744 	iterator
1745 	insert(const_iterator __position, _InputIterator __first,
1746 	       _InputIterator __last)
1747 	{
1748 	  difference_type __offset = __position - cbegin();
1749 	  _M_insert_dispatch(__position._M_const_cast(),
1750 			     __first, __last, __false_type());
1751 	  return begin() + __offset;
1752 	}
1753 #else
1754       /**
1755        *  @brief  Inserts a range into the %deque.
1756        *  @param  __position  An iterator into the %deque.
1757        *  @param  __first  An input iterator.
1758        *  @param  __last   An input iterator.
1759        *
1760        *  This function will insert copies of the data in the range
1761        *  [__first,__last) into the %deque before the location specified
1762        *  by @a __position.  This is known as <em>range insert</em>.
1763        */
1764       template<typename _InputIterator>
1765 	void
1766 	insert(iterator __position, _InputIterator __first,
1767 	       _InputIterator __last)
1768 	{
1769 	  // Check whether it's an integral type.  If so, it's not an iterator.
1770 	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
1771 	  _M_insert_dispatch(__position, __first, __last, _Integral());
1772 	}
1773 #endif
1774 
1775       /**
1776        *  @brief  Remove element at given position.
1777        *  @param  __position  Iterator pointing to element to be erased.
1778        *  @return  An iterator pointing to the next element (or end()).
1779        *
1780        *  This function will erase the element at the given position and thus
1781        *  shorten the %deque by one.
1782        *
1783        *  The user is cautioned that
1784        *  this function only erases the element, and that if the element is
1785        *  itself a pointer, the pointed-to memory is not touched in any way.
1786        *  Managing the pointer is the user's responsibility.
1787        */
1788       iterator
1789 #if __cplusplus >= 201103L
1790       erase(const_iterator __position)
1791 #else
1792       erase(iterator __position)
1793 #endif
1794       { return _M_erase(__position._M_const_cast()); }
1795 
1796       /**
1797        *  @brief  Remove a range of elements.
1798        *  @param  __first  Iterator pointing to the first element to be erased.
1799        *  @param  __last  Iterator pointing to one past the last element to be
1800        *                erased.
1801        *  @return  An iterator pointing to the element pointed to by @a last
1802        *           prior to erasing (or end()).
1803        *
1804        *  This function will erase the elements in the range
1805        *  [__first,__last) and shorten the %deque accordingly.
1806        *
1807        *  The user is cautioned that
1808        *  this function only erases the elements, and that if the elements
1809        *  themselves are pointers, the pointed-to memory is not touched in any
1810        *  way.  Managing the pointer is the user's responsibility.
1811        */
1812       iterator
1813 #if __cplusplus >= 201103L
1814       erase(const_iterator __first, const_iterator __last)
1815 #else
1816       erase(iterator __first, iterator __last)
1817 #endif
1818       { return _M_erase(__first._M_const_cast(), __last._M_const_cast()); }
1819 
1820       /**
1821        *  @brief  Swaps data with another %deque.
1822        *  @param  __x  A %deque of the same element and allocator types.
1823        *
1824        *  This exchanges the elements between two deques in constant time.
1825        *  (Four pointers, so it should be quite fast.)
1826        *  Note that the global std::swap() function is specialized such that
1827        *  std::swap(d1,d2) will feed to this function.
1828        *
1829        *  Whether the allocators are swapped depends on the allocator traits.
1830        */
1831       void
1832       swap(deque& __x) _GLIBCXX_NOEXCEPT
1833       {
1834 #if __cplusplus >= 201103L
1835 	__glibcxx_assert(_Alloc_traits::propagate_on_container_swap::value
1836 			 || _M_get_Tp_allocator() == __x._M_get_Tp_allocator());
1837 #endif
1838 	_M_impl._M_swap_data(__x._M_impl);
1839 	_Alloc_traits::_S_on_swap(_M_get_Tp_allocator(),
1840 				  __x._M_get_Tp_allocator());
1841       }
1842 
1843       /**
1844        *  Erases all the elements.  Note that this function only erases the
1845        *  elements, and that if the elements themselves are pointers, the
1846        *  pointed-to memory is not touched in any way.  Managing the pointer is
1847        *  the user's responsibility.
1848        */
1849       void
1850       clear() _GLIBCXX_NOEXCEPT
1851       { _M_erase_at_end(begin()); }
1852 
1853     protected:
1854       // Internal constructor functions follow.
1855 
1856       // called by the range constructor to implement [23.1.1]/9
1857 
1858       // _GLIBCXX_RESOLVE_LIB_DEFECTS
1859       // 438. Ambiguity in the "do the right thing" clause
1860       template<typename _Integer>
1861 	void
1862 	_M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
1863 	{
1864 	  _M_initialize_map(static_cast<size_type>(__n));
1865 	  _M_fill_initialize(__x);
1866 	}
1867 
1868       // called by the range constructor to implement [23.1.1]/9
1869       template<typename _InputIterator>
1870 	void
1871 	_M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1872 			       __false_type)
1873 	{
1874 	  _M_range_initialize(__first, __last,
1875 			      std::__iterator_category(__first));
1876 	}
1877 
1878       // called by the second initialize_dispatch above
1879       //@{
1880       /**
1881        *  @brief Fills the deque with whatever is in [first,last).
1882        *  @param  __first  An input iterator.
1883        *  @param  __last  An input iterator.
1884        *  @return   Nothing.
1885        *
1886        *  If the iterators are actually forward iterators (or better), then the
1887        *  memory layout can be done all at once.  Else we move forward using
1888        *  push_back on each value from the iterator.
1889        */
1890       template<typename _InputIterator>
1891 	void
1892 	_M_range_initialize(_InputIterator __first, _InputIterator __last,
1893 			    std::input_iterator_tag);
1894 
1895       // called by the second initialize_dispatch above
1896       template<typename _ForwardIterator>
1897 	void
1898 	_M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
1899 			    std::forward_iterator_tag);
1900       //@}
1901 
1902       /**
1903        *  @brief Fills the %deque with copies of value.
1904        *  @param  __value  Initial value.
1905        *  @return   Nothing.
1906        *  @pre _M_start and _M_finish have already been initialized,
1907        *  but none of the %deque's elements have yet been constructed.
1908        *
1909        *  This function is called only when the user provides an explicit size
1910        *  (with or without an explicit exemplar value).
1911        */
1912       void
1913       _M_fill_initialize(const value_type& __value);
1914 
1915 #if __cplusplus >= 201103L
1916       // called by deque(n).
1917       void
1918       _M_default_initialize();
1919 #endif
1920 
1921       // Internal assign functions follow.  The *_aux functions do the actual
1922       // assignment work for the range versions.
1923 
1924       // called by the range assign to implement [23.1.1]/9
1925 
1926       // _GLIBCXX_RESOLVE_LIB_DEFECTS
1927       // 438. Ambiguity in the "do the right thing" clause
1928       template<typename _Integer>
1929 	void
1930 	_M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1931 	{ _M_fill_assign(__n, __val); }
1932 
1933       // called by the range assign to implement [23.1.1]/9
1934       template<typename _InputIterator>
1935 	void
1936 	_M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1937 			   __false_type)
1938 	{ _M_assign_aux(__first, __last, std::__iterator_category(__first)); }
1939 
1940       // called by the second assign_dispatch above
1941       template<typename _InputIterator>
1942 	void
1943 	_M_assign_aux(_InputIterator __first, _InputIterator __last,
1944 		      std::input_iterator_tag);
1945 
1946       // called by the second assign_dispatch above
1947       template<typename _ForwardIterator>
1948 	void
1949 	_M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
1950 		      std::forward_iterator_tag)
1951 	{
1952 	  const size_type __len = std::distance(__first, __last);
1953 	  if (__len > size())
1954 	    {
1955 	      _ForwardIterator __mid = __first;
1956 	      std::advance(__mid, size());
1957 	      std::copy(__first, __mid, begin());
1958 	      _M_range_insert_aux(end(), __mid, __last,
1959 				  std::__iterator_category(__first));
1960 	    }
1961 	  else
1962 	    _M_erase_at_end(std::copy(__first, __last, begin()));
1963 	}
1964 
1965       // Called by assign(n,t), and the range assign when it turns out
1966       // to be the same thing.
1967       void
1968       _M_fill_assign(size_type __n, const value_type& __val)
1969       {
1970 	if (__n > size())
1971 	  {
1972 	    std::fill(begin(), end(), __val);
1973 	    _M_fill_insert(end(), __n - size(), __val);
1974 	  }
1975 	else
1976 	  {
1977 	    _M_erase_at_end(begin() + difference_type(__n));
1978 	    std::fill(begin(), end(), __val);
1979 	  }
1980       }
1981 
1982       //@{
1983       /// Helper functions for push_* and pop_*.
1984 #if __cplusplus < 201103L
1985       void _M_push_back_aux(const value_type&);
1986 
1987       void _M_push_front_aux(const value_type&);
1988 #else
1989       template<typename... _Args>
1990 	void _M_push_back_aux(_Args&&... __args);
1991 
1992       template<typename... _Args>
1993 	void _M_push_front_aux(_Args&&... __args);
1994 #endif
1995 
1996       void _M_pop_back_aux();
1997 
1998       void _M_pop_front_aux();
1999       //@}
2000 
2001       // Internal insert functions follow.  The *_aux functions do the actual
2002       // insertion work when all shortcuts fail.
2003 
2004       // called by the range insert to implement [23.1.1]/9
2005 
2006       // _GLIBCXX_RESOLVE_LIB_DEFECTS
2007       // 438. Ambiguity in the "do the right thing" clause
2008       template<typename _Integer>
2009 	void
2010 	_M_insert_dispatch(iterator __pos,
2011 			   _Integer __n, _Integer __x, __true_type)
2012 	{ _M_fill_insert(__pos, __n, __x); }
2013 
2014       // called by the range insert to implement [23.1.1]/9
2015       template<typename _InputIterator>
2016 	void
2017 	_M_insert_dispatch(iterator __pos,
2018 			   _InputIterator __first, _InputIterator __last,
2019 			   __false_type)
2020 	{
2021 	  _M_range_insert_aux(__pos, __first, __last,
2022 			      std::__iterator_category(__first));
2023 	}
2024 
2025       // called by the second insert_dispatch above
2026       template<typename _InputIterator>
2027 	void
2028 	_M_range_insert_aux(iterator __pos, _InputIterator __first,
2029 			    _InputIterator __last, std::input_iterator_tag);
2030 
2031       // called by the second insert_dispatch above
2032       template<typename _ForwardIterator>
2033 	void
2034 	_M_range_insert_aux(iterator __pos, _ForwardIterator __first,
2035 			    _ForwardIterator __last, std::forward_iterator_tag);
2036 
2037       // Called by insert(p,n,x), and the range insert when it turns out to be
2038       // the same thing.  Can use fill functions in optimal situations,
2039       // otherwise passes off to insert_aux(p,n,x).
2040       void
2041       _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
2042 
2043       // called by insert(p,x)
2044 #if __cplusplus < 201103L
2045       iterator
2046       _M_insert_aux(iterator __pos, const value_type& __x);
2047 #else
2048       template<typename... _Args>
2049 	iterator
2050 	_M_insert_aux(iterator __pos, _Args&&... __args);
2051 #endif
2052 
2053       // called by insert(p,n,x) via fill_insert
2054       void
2055       _M_insert_aux(iterator __pos, size_type __n, const value_type& __x);
2056 
2057       // called by range_insert_aux for forward iterators
2058       template<typename _ForwardIterator>
2059 	void
2060 	_M_insert_aux(iterator __pos,
2061 		      _ForwardIterator __first, _ForwardIterator __last,
2062 		      size_type __n);
2063 
2064 
2065       // Internal erase functions follow.
2066 
2067       void
2068       _M_destroy_data_aux(iterator __first, iterator __last);
2069 
2070       // Called by ~deque().
2071       // NB: Doesn't deallocate the nodes.
2072       template<typename _Alloc1>
2073 	void
2074 	_M_destroy_data(iterator __first, iterator __last, const _Alloc1&)
2075 	{ _M_destroy_data_aux(__first, __last); }
2076 
2077       void
2078       _M_destroy_data(iterator __first, iterator __last,
2079 		      const std::allocator<_Tp>&)
2080       {
2081 	if (!__has_trivial_destructor(value_type))
2082 	  _M_destroy_data_aux(__first, __last);
2083       }
2084 
2085       // Called by erase(q1, q2).
2086       void
2087       _M_erase_at_begin(iterator __pos)
2088       {
2089 	_M_destroy_data(begin(), __pos, _M_get_Tp_allocator());
2090 	_M_destroy_nodes(this->_M_impl._M_start._M_node, __pos._M_node);
2091 	this->_M_impl._M_start = __pos;
2092       }
2093 
2094       // Called by erase(q1, q2), resize(), clear(), _M_assign_aux,
2095       // _M_fill_assign, operator=.
2096       void
2097       _M_erase_at_end(iterator __pos)
2098       {
2099 	_M_destroy_data(__pos, end(), _M_get_Tp_allocator());
2100 	_M_destroy_nodes(__pos._M_node + 1,
2101 			 this->_M_impl._M_finish._M_node + 1);
2102 	this->_M_impl._M_finish = __pos;
2103       }
2104 
2105       iterator
2106       _M_erase(iterator __pos);
2107 
2108       iterator
2109       _M_erase(iterator __first, iterator __last);
2110 
2111 #if __cplusplus >= 201103L
2112       // Called by resize(sz).
2113       void
2114       _M_default_append(size_type __n);
2115 
2116       bool
2117       _M_shrink_to_fit();
2118 #endif
2119 
2120       //@{
2121       /// Memory-handling helpers for the previous internal insert functions.
2122       iterator
2123       _M_reserve_elements_at_front(size_type __n)
2124       {
2125 	const size_type __vacancies = this->_M_impl._M_start._M_cur
2126 				      - this->_M_impl._M_start._M_first;
2127 	if (__n > __vacancies)
2128 	  _M_new_elements_at_front(__n - __vacancies);
2129 	return this->_M_impl._M_start - difference_type(__n);
2130       }
2131 
2132       iterator
2133       _M_reserve_elements_at_back(size_type __n)
2134       {
2135 	const size_type __vacancies = (this->_M_impl._M_finish._M_last
2136 				       - this->_M_impl._M_finish._M_cur) - 1;
2137 	if (__n > __vacancies)
2138 	  _M_new_elements_at_back(__n - __vacancies);
2139 	return this->_M_impl._M_finish + difference_type(__n);
2140       }
2141 
2142       void
2143       _M_new_elements_at_front(size_type __new_elements);
2144 
2145       void
2146       _M_new_elements_at_back(size_type __new_elements);
2147       //@}
2148 
2149 
2150       //@{
2151       /**
2152        *  @brief Memory-handling helpers for the major %map.
2153        *
2154        *  Makes sure the _M_map has space for new nodes.  Does not
2155        *  actually add the nodes.  Can invalidate _M_map pointers.
2156        *  (And consequently, %deque iterators.)
2157        */
2158       void
2159       _M_reserve_map_at_back(size_type __nodes_to_add = 1)
2160       {
2161 	if (__nodes_to_add + 1 > this->_M_impl._M_map_size
2162 	    - (this->_M_impl._M_finish._M_node - this->_M_impl._M_map))
2163 	  _M_reallocate_map(__nodes_to_add, false);
2164       }
2165 
2166       void
2167       _M_reserve_map_at_front(size_type __nodes_to_add = 1)
2168       {
2169 	if (__nodes_to_add > size_type(this->_M_impl._M_start._M_node
2170 				       - this->_M_impl._M_map))
2171 	  _M_reallocate_map(__nodes_to_add, true);
2172       }
2173 
2174       void
2175       _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front);
2176       //@}
2177 
2178 #if __cplusplus >= 201103L
2179       // Constant-time, nothrow move assignment when source object's memory
2180       // can be moved because the allocators are equal.
2181       void
2182       _M_move_assign1(deque&& __x, /* always equal: */ true_type) noexcept
2183       {
2184 	this->_M_impl._M_swap_data(__x._M_impl);
2185 	__x.clear();
2186 	std::__alloc_on_move(_M_get_Tp_allocator(), __x._M_get_Tp_allocator());
2187       }
2188 
2189       // When the allocators are not equal the operation could throw, because
2190       // we might need to allocate a new map for __x after moving from it
2191       // or we might need to allocate new elements for *this.
2192       void
2193       _M_move_assign1(deque&& __x, /* always equal: */ false_type)
2194       {
2195 	constexpr bool __move_storage =
2196 	  _Alloc_traits::_S_propagate_on_move_assign();
2197 	_M_move_assign2(std::move(__x), __bool_constant<__move_storage>());
2198       }
2199 
2200       // Destroy all elements and deallocate all memory, then replace
2201       // with elements created from __args.
2202       template<typename... _Args>
2203       void
2204       _M_replace_map(_Args&&... __args)
2205       {
2206 	// Create new data first, so if allocation fails there are no effects.
2207 	deque __newobj(std::forward<_Args>(__args)...);
2208 	// Free existing storage using existing allocator.
2209 	clear();
2210 	_M_deallocate_node(*begin()._M_node); // one node left after clear()
2211 	_M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
2212 	this->_M_impl._M_map = nullptr;
2213 	this->_M_impl._M_map_size = 0;
2214 	// Take ownership of replacement memory.
2215 	this->_M_impl._M_swap_data(__newobj._M_impl);
2216       }
2217 
2218       // Do move assignment when the allocator propagates.
2219       void
2220       _M_move_assign2(deque&& __x, /* propagate: */ true_type)
2221       {
2222 	// Make a copy of the original allocator state.
2223 	auto __alloc = __x._M_get_Tp_allocator();
2224 	// The allocator propagates so storage can be moved from __x,
2225 	// leaving __x in a valid empty state with a moved-from allocator.
2226 	_M_replace_map(std::move(__x));
2227 	// Move the corresponding allocator state too.
2228 	_M_get_Tp_allocator() = std::move(__alloc);
2229       }
2230 
2231       // Do move assignment when it may not be possible to move source
2232       // object's memory, resulting in a linear-time operation.
2233       void
2234       _M_move_assign2(deque&& __x, /* propagate: */ false_type)
2235       {
2236 	if (__x._M_get_Tp_allocator() == this->_M_get_Tp_allocator())
2237 	  {
2238 	    // The allocators are equal so storage can be moved from __x,
2239 	    // leaving __x in a valid empty state with its current allocator.
2240 	    _M_replace_map(std::move(__x), __x.get_allocator());
2241 	  }
2242 	else
2243 	  {
2244 	    // The rvalue's allocator cannot be moved and is not equal,
2245 	    // so we need to individually move each element.
2246 	    _M_assign_aux(std::__make_move_if_noexcept_iterator(__x.begin()),
2247 			  std::__make_move_if_noexcept_iterator(__x.end()),
2248 			  std::random_access_iterator_tag());
2249 	    __x.clear();
2250 	  }
2251       }
2252 #endif
2253     };
2254 
2255 #if __cpp_deduction_guides >= 201606
2256   template<typename _InputIterator, typename _ValT
2257 	     = typename iterator_traits<_InputIterator>::value_type,
2258 	   typename _Allocator = allocator<_ValT>,
2259 	   typename = _RequireInputIter<_InputIterator>,
2260 	   typename = _RequireAllocator<_Allocator>>
2261     deque(_InputIterator, _InputIterator, _Allocator = _Allocator())
2262       -> deque<_ValT, _Allocator>;
2263 #endif
2264 
2265   /**
2266    *  @brief  Deque equality comparison.
2267    *  @param  __x  A %deque.
2268    *  @param  __y  A %deque of the same type as @a __x.
2269    *  @return  True iff the size and elements of the deques are equal.
2270    *
2271    *  This is an equivalence relation.  It is linear in the size of the
2272    *  deques.  Deques are considered equivalent if their sizes are equal,
2273    *  and if corresponding elements compare equal.
2274   */
2275   template<typename _Tp, typename _Alloc>
2276     inline bool
2277     operator==(const deque<_Tp, _Alloc>& __x,
2278                          const deque<_Tp, _Alloc>& __y)
2279     { return __x.size() == __y.size()
2280 	     && std::equal(__x.begin(), __x.end(), __y.begin()); }
2281 
2282   /**
2283    *  @brief  Deque ordering relation.
2284    *  @param  __x  A %deque.
2285    *  @param  __y  A %deque of the same type as @a __x.
2286    *  @return  True iff @a x is lexicographically less than @a __y.
2287    *
2288    *  This is a total ordering relation.  It is linear in the size of the
2289    *  deques.  The elements must be comparable with @c <.
2290    *
2291    *  See std::lexicographical_compare() for how the determination is made.
2292   */
2293   template<typename _Tp, typename _Alloc>
2294     inline bool
2295     operator<(const deque<_Tp, _Alloc>& __x,
2296 	      const deque<_Tp, _Alloc>& __y)
2297     { return std::lexicographical_compare(__x.begin(), __x.end(),
2298 					  __y.begin(), __y.end()); }
2299 
2300   /// Based on operator==
2301   template<typename _Tp, typename _Alloc>
2302     inline bool
2303     operator!=(const deque<_Tp, _Alloc>& __x,
2304 	       const deque<_Tp, _Alloc>& __y)
2305     { return !(__x == __y); }
2306 
2307   /// Based on operator<
2308   template<typename _Tp, typename _Alloc>
2309     inline bool
2310     operator>(const deque<_Tp, _Alloc>& __x,
2311 	      const deque<_Tp, _Alloc>& __y)
2312     { return __y < __x; }
2313 
2314   /// Based on operator<
2315   template<typename _Tp, typename _Alloc>
2316     inline bool
2317     operator<=(const deque<_Tp, _Alloc>& __x,
2318 	       const deque<_Tp, _Alloc>& __y)
2319     { return !(__y < __x); }
2320 
2321   /// Based on operator<
2322   template<typename _Tp, typename _Alloc>
2323     inline bool
2324     operator>=(const deque<_Tp, _Alloc>& __x,
2325 	       const deque<_Tp, _Alloc>& __y)
2326     { return !(__x < __y); }
2327 
2328   /// See std::deque::swap().
2329   template<typename _Tp, typename _Alloc>
2330     inline void
2331     swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y)
2332     _GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y)))
2333     { __x.swap(__y); }
2334 
2335 #undef _GLIBCXX_DEQUE_BUF_SIZE
2336 
2337 _GLIBCXX_END_NAMESPACE_CONTAINER
2338 _GLIBCXX_END_NAMESPACE_VERSION
2339 } // namespace std
2340 
2341 #endif /* _STL_DEQUE_H */
2342