1 // Multimap implementation -*- C++ -*-
2 
3 // Copyright (C) 2001-2018 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /*
26  *
27  * Copyright (c) 1994
28  * Hewlett-Packard Company
29  *
30  * Permission to use, copy, modify, distribute and sell this software
31  * and its documentation for any purpose is hereby granted without fee,
32  * provided that the above copyright notice appear in all copies and
33  * that both that copyright notice and this permission notice appear
34  * in supporting documentation.  Hewlett-Packard Company makes no
35  * representations about the suitability of this software for any
36  * purpose.  It is provided "as is" without express or implied warranty.
37  *
38  *
39  * Copyright (c) 1996,1997
40  * Silicon Graphics Computer Systems, Inc.
41  *
42  * Permission to use, copy, modify, distribute and sell this software
43  * and its documentation for any purpose is hereby granted without fee,
44  * provided that the above copyright notice appear in all copies and
45  * that both that copyright notice and this permission notice appear
46  * in supporting documentation.  Silicon Graphics makes no
47  * representations about the suitability of this software for any
48  * purpose.  It is provided "as is" without express or implied warranty.
49  */
50 
51 /** @file bits/stl_multimap.h
52  *  This is an internal header file, included by other library headers.
53  *  Do not attempt to use it directly. @headername{map}
54  */
55 
56 #ifndef _STL_MULTIMAP_H
57 #define _STL_MULTIMAP_H 1
58 
59 #include <bits/concept_check.h>
60 #if __cplusplus >= 201103L
61 #include <initializer_list>
62 #endif
63 
64 namespace std _GLIBCXX_VISIBILITY(default)
65 {
66 _GLIBCXX_BEGIN_NAMESPACE_VERSION
67 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
68 
69   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
70     class map;
71 
72   /**
73    *  @brief A standard container made up of (key,value) pairs, which can be
74    *  retrieved based on a key, in logarithmic time.
75    *
76    *  @ingroup associative_containers
77    *
78    *  @tparam _Key  Type of key objects.
79    *  @tparam  _Tp  Type of mapped objects.
80    *  @tparam _Compare  Comparison function object type, defaults to less<_Key>.
81    *  @tparam _Alloc  Allocator type, defaults to
82    *                  allocator<pair<const _Key, _Tp>.
83    *
84    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
85    *  <a href="tables.html#66">reversible container</a>, and an
86    *  <a href="tables.html#69">associative container</a> (using equivalent
87    *  keys).  For a @c multimap<Key,T> the key_type is Key, the mapped_type
88    *  is T, and the value_type is std::pair<const Key,T>.
89    *
90    *  Multimaps support bidirectional iterators.
91    *
92    *  The private tree data is declared exactly the same way for map and
93    *  multimap; the distinction is made entirely in how the tree functions are
94    *  called (*_unique versus *_equal, same as the standard).
95   */
96   template <typename _Key, typename _Tp,
97 	    typename _Compare = std::less<_Key>,
98 	    typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
99     class multimap
100     {
101     public:
102       typedef _Key					key_type;
103       typedef _Tp					mapped_type;
104       typedef std::pair<const _Key, _Tp>		value_type;
105       typedef _Compare					key_compare;
106       typedef _Alloc					allocator_type;
107 
108     private:
109 #ifdef _GLIBCXX_CONCEPT_CHECKS
110       // concept requirements
111       typedef typename _Alloc::value_type		_Alloc_value_type;
112 # if __cplusplus < 201103L
113       __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
114 # endif
115       __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
116 				_BinaryFunctionConcept)
117       __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
118 #endif
119 
120 #if __cplusplus >= 201103L && defined(__STRICT_ANSI__)
121       static_assert(is_same<typename _Alloc::value_type, value_type>::value,
122 	  "std::multimap must have the same value_type as its allocator");
123 #endif
124 
125     public:
126       class value_compare
127       : public std::binary_function<value_type, value_type, bool>
128       {
129 	friend class multimap<_Key, _Tp, _Compare, _Alloc>;
130       protected:
131 	_Compare comp;
132 
133 	value_compare(_Compare __c)
134 	: comp(__c) { }
135 
136       public:
137 	bool operator()(const value_type& __x, const value_type& __y) const
138 	{ return comp(__x.first, __y.first); }
139       };
140 
141     private:
142       /// This turns a red-black tree into a [multi]map.
143       typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
144 	rebind<value_type>::other _Pair_alloc_type;
145 
146       typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
147 		       key_compare, _Pair_alloc_type> _Rep_type;
148       /// The actual tree structure.
149       _Rep_type _M_t;
150 
151       typedef __gnu_cxx::__alloc_traits<_Pair_alloc_type> _Alloc_traits;
152 
153     public:
154       // many of these are specified differently in ISO, but the following are
155       // "functionally equivalent"
156       typedef typename _Alloc_traits::pointer		 pointer;
157       typedef typename _Alloc_traits::const_pointer	 const_pointer;
158       typedef typename _Alloc_traits::reference		 reference;
159       typedef typename _Alloc_traits::const_reference	 const_reference;
160       typedef typename _Rep_type::iterator		 iterator;
161       typedef typename _Rep_type::const_iterator	 const_iterator;
162       typedef typename _Rep_type::size_type		 size_type;
163       typedef typename _Rep_type::difference_type	 difference_type;
164       typedef typename _Rep_type::reverse_iterator	 reverse_iterator;
165       typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
166 
167 #if __cplusplus > 201402L
168       using node_type = typename _Rep_type::node_type;
169 #endif
170 
171       // [23.3.2] construct/copy/destroy
172       // (get_allocator() is also listed in this section)
173 
174       /**
175        *  @brief  Default constructor creates no elements.
176        */
177 #if __cplusplus < 201103L
178       multimap() : _M_t() { }
179 #else
180       multimap() = default;
181 #endif
182 
183       /**
184        *  @brief  Creates a %multimap with no elements.
185        *  @param  __comp  A comparison object.
186        *  @param  __a  An allocator object.
187        */
188       explicit
189       multimap(const _Compare& __comp,
190 	       const allocator_type& __a = allocator_type())
191       : _M_t(__comp, _Pair_alloc_type(__a)) { }
192 
193       /**
194        *  @brief  %Multimap copy constructor.
195        *
196        *  Whether the allocator is copied depends on the allocator traits.
197        */
198 #if __cplusplus < 201103L
199       multimap(const multimap& __x)
200       : _M_t(__x._M_t) { }
201 #else
202       multimap(const multimap&) = default;
203 
204       /**
205        *  @brief  %Multimap move constructor.
206        *
207        *  The newly-created %multimap contains the exact contents of the
208        *  moved instance. The moved instance is a valid, but unspecified
209        *  %multimap.
210        */
211       multimap(multimap&&) = default;
212 
213       /**
214        *  @brief  Builds a %multimap from an initializer_list.
215        *  @param  __l  An initializer_list.
216        *  @param  __comp  A comparison functor.
217        *  @param  __a  An allocator object.
218        *
219        *  Create a %multimap consisting of copies of the elements from
220        *  the initializer_list.  This is linear in N if the list is already
221        *  sorted, and NlogN otherwise (where N is @a __l.size()).
222        */
223       multimap(initializer_list<value_type> __l,
224 	       const _Compare& __comp = _Compare(),
225 	       const allocator_type& __a = allocator_type())
226       : _M_t(__comp, _Pair_alloc_type(__a))
227       { _M_t._M_insert_equal(__l.begin(), __l.end()); }
228 
229       /// Allocator-extended default constructor.
230       explicit
231       multimap(const allocator_type& __a)
232       : _M_t(_Compare(), _Pair_alloc_type(__a)) { }
233 
234       /// Allocator-extended copy constructor.
235       multimap(const multimap& __m, const allocator_type& __a)
236       : _M_t(__m._M_t, _Pair_alloc_type(__a)) { }
237 
238       /// Allocator-extended move constructor.
239       multimap(multimap&& __m, const allocator_type& __a)
240       noexcept(is_nothrow_copy_constructible<_Compare>::value
241 	       && _Alloc_traits::_S_always_equal())
242       : _M_t(std::move(__m._M_t), _Pair_alloc_type(__a)) { }
243 
244       /// Allocator-extended initialier-list constructor.
245       multimap(initializer_list<value_type> __l, const allocator_type& __a)
246       : _M_t(_Compare(), _Pair_alloc_type(__a))
247       { _M_t._M_insert_equal(__l.begin(), __l.end()); }
248 
249       /// Allocator-extended range constructor.
250       template<typename _InputIterator>
251 	multimap(_InputIterator __first, _InputIterator __last,
252 		 const allocator_type& __a)
253 	: _M_t(_Compare(), _Pair_alloc_type(__a))
254 	{ _M_t._M_insert_equal(__first, __last); }
255 #endif
256 
257       /**
258        *  @brief  Builds a %multimap from a range.
259        *  @param  __first  An input iterator.
260        *  @param  __last  An input iterator.
261        *
262        *  Create a %multimap consisting of copies of the elements from
263        *  [__first,__last).  This is linear in N if the range is already sorted,
264        *  and NlogN otherwise (where N is distance(__first,__last)).
265        */
266       template<typename _InputIterator>
267 	multimap(_InputIterator __first, _InputIterator __last)
268 	: _M_t()
269 	{ _M_t._M_insert_equal(__first, __last); }
270 
271       /**
272        *  @brief  Builds a %multimap from a range.
273        *  @param  __first  An input iterator.
274        *  @param  __last  An input iterator.
275        *  @param  __comp  A comparison functor.
276        *  @param  __a  An allocator object.
277        *
278        *  Create a %multimap consisting of copies of the elements from
279        *  [__first,__last).  This is linear in N if the range is already sorted,
280        *  and NlogN otherwise (where N is distance(__first,__last)).
281        */
282       template<typename _InputIterator>
283 	multimap(_InputIterator __first, _InputIterator __last,
284 		 const _Compare& __comp,
285 		 const allocator_type& __a = allocator_type())
286 	: _M_t(__comp, _Pair_alloc_type(__a))
287 	{ _M_t._M_insert_equal(__first, __last); }
288 
289 #if __cplusplus >= 201103L
290       /**
291        *  The dtor only erases the elements, and note that if the elements
292        *  themselves are pointers, the pointed-to memory is not touched in any
293        *  way. Managing the pointer is the user's responsibility.
294        */
295       ~multimap() = default;
296 #endif
297 
298       /**
299        *  @brief  %Multimap assignment operator.
300        *
301        *  Whether the allocator is copied depends on the allocator traits.
302        */
303 #if __cplusplus < 201103L
304       multimap&
305       operator=(const multimap& __x)
306       {
307 	_M_t = __x._M_t;
308 	return *this;
309       }
310 #else
311       multimap&
312       operator=(const multimap&) = default;
313 
314       /// Move assignment operator.
315       multimap&
316       operator=(multimap&&) = default;
317 
318       /**
319        *  @brief  %Multimap list assignment operator.
320        *  @param  __l  An initializer_list.
321        *
322        *  This function fills a %multimap with copies of the elements
323        *  in the initializer list @a __l.
324        *
325        *  Note that the assignment completely changes the %multimap and
326        *  that the resulting %multimap's size is the same as the number
327        *  of elements assigned.
328        */
329       multimap&
330       operator=(initializer_list<value_type> __l)
331       {
332 	_M_t._M_assign_equal(__l.begin(), __l.end());
333 	return *this;
334       }
335 #endif
336 
337       /// Get a copy of the memory allocation object.
338       allocator_type
339       get_allocator() const _GLIBCXX_NOEXCEPT
340       { return allocator_type(_M_t.get_allocator()); }
341 
342       // iterators
343       /**
344        *  Returns a read/write iterator that points to the first pair in the
345        *  %multimap.  Iteration is done in ascending order according to the
346        *  keys.
347        */
348       iterator
349       begin() _GLIBCXX_NOEXCEPT
350       { return _M_t.begin(); }
351 
352       /**
353        *  Returns a read-only (constant) iterator that points to the first pair
354        *  in the %multimap.  Iteration is done in ascending order according to
355        *  the keys.
356        */
357       const_iterator
358       begin() const _GLIBCXX_NOEXCEPT
359       { return _M_t.begin(); }
360 
361       /**
362        *  Returns a read/write iterator that points one past the last pair in
363        *  the %multimap.  Iteration is done in ascending order according to the
364        *  keys.
365        */
366       iterator
367       end() _GLIBCXX_NOEXCEPT
368       { return _M_t.end(); }
369 
370       /**
371        *  Returns a read-only (constant) iterator that points one past the last
372        *  pair in the %multimap.  Iteration is done in ascending order according
373        *  to the keys.
374        */
375       const_iterator
376       end() const _GLIBCXX_NOEXCEPT
377       { return _M_t.end(); }
378 
379       /**
380        *  Returns a read/write reverse iterator that points to the last pair in
381        *  the %multimap.  Iteration is done in descending order according to the
382        *  keys.
383        */
384       reverse_iterator
385       rbegin() _GLIBCXX_NOEXCEPT
386       { return _M_t.rbegin(); }
387 
388       /**
389        *  Returns a read-only (constant) reverse iterator that points to the
390        *  last pair in the %multimap.  Iteration is done in descending order
391        *  according to the keys.
392        */
393       const_reverse_iterator
394       rbegin() const _GLIBCXX_NOEXCEPT
395       { return _M_t.rbegin(); }
396 
397       /**
398        *  Returns a read/write reverse iterator that points to one before the
399        *  first pair in the %multimap.  Iteration is done in descending order
400        *  according to the keys.
401        */
402       reverse_iterator
403       rend() _GLIBCXX_NOEXCEPT
404       { return _M_t.rend(); }
405 
406       /**
407        *  Returns a read-only (constant) reverse iterator that points to one
408        *  before the first pair in the %multimap.  Iteration is done in
409        *  descending order according to the keys.
410        */
411       const_reverse_iterator
412       rend() const _GLIBCXX_NOEXCEPT
413       { return _M_t.rend(); }
414 
415 #if __cplusplus >= 201103L
416       /**
417        *  Returns a read-only (constant) iterator that points to the first pair
418        *  in the %multimap.  Iteration is done in ascending order according to
419        *  the keys.
420        */
421       const_iterator
422       cbegin() const noexcept
423       { return _M_t.begin(); }
424 
425       /**
426        *  Returns a read-only (constant) iterator that points one past the last
427        *  pair in the %multimap.  Iteration is done in ascending order according
428        *  to the keys.
429        */
430       const_iterator
431       cend() const noexcept
432       { return _M_t.end(); }
433 
434       /**
435        *  Returns a read-only (constant) reverse iterator that points to the
436        *  last pair in the %multimap.  Iteration is done in descending order
437        *  according to the keys.
438        */
439       const_reverse_iterator
440       crbegin() const noexcept
441       { return _M_t.rbegin(); }
442 
443       /**
444        *  Returns a read-only (constant) reverse iterator that points to one
445        *  before the first pair in the %multimap.  Iteration is done in
446        *  descending order according to the keys.
447        */
448       const_reverse_iterator
449       crend() const noexcept
450       { return _M_t.rend(); }
451 #endif
452 
453       // capacity
454       /** Returns true if the %multimap is empty.  */
455       bool
456       empty() const _GLIBCXX_NOEXCEPT
457       { return _M_t.empty(); }
458 
459       /** Returns the size of the %multimap.  */
460       size_type
461       size() const _GLIBCXX_NOEXCEPT
462       { return _M_t.size(); }
463 
464       /** Returns the maximum size of the %multimap.  */
465       size_type
466       max_size() const _GLIBCXX_NOEXCEPT
467       { return _M_t.max_size(); }
468 
469       // modifiers
470 #if __cplusplus >= 201103L
471       /**
472        *  @brief Build and insert a std::pair into the %multimap.
473        *
474        *  @param __args  Arguments used to generate a new pair instance (see
475        *	        std::piecewise_contruct for passing arguments to each
476        *	        part of the pair constructor).
477        *
478        *  @return An iterator that points to the inserted (key,value) pair.
479        *
480        *  This function builds and inserts a (key, value) %pair into the
481        *  %multimap.
482        *  Contrary to a std::map the %multimap does not rely on unique keys and
483        *  thus multiple pairs with the same key can be inserted.
484        *
485        *  Insertion requires logarithmic time.
486        */
487       template<typename... _Args>
488 	iterator
489 	emplace(_Args&&... __args)
490 	{ return _M_t._M_emplace_equal(std::forward<_Args>(__args)...); }
491 
492       /**
493        *  @brief Builds and inserts a std::pair into the %multimap.
494        *
495        *  @param  __pos  An iterator that serves as a hint as to where the pair
496        *                should be inserted.
497        *  @param  __args  Arguments used to generate a new pair instance (see
498        *	         std::piecewise_contruct for passing arguments to each
499        *	         part of the pair constructor).
500        *  @return An iterator that points to the inserted (key,value) pair.
501        *
502        *  This function inserts a (key, value) pair into the %multimap.
503        *  Contrary to a std::map the %multimap does not rely on unique keys and
504        *  thus multiple pairs with the same key can be inserted.
505        *  Note that the first parameter is only a hint and can potentially
506        *  improve the performance of the insertion process.  A bad hint would
507        *  cause no gains in efficiency.
508        *
509        *  For more on @a hinting, see:
510        *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
511        *
512        *  Insertion requires logarithmic time (if the hint is not taken).
513        */
514       template<typename... _Args>
515 	iterator
516 	emplace_hint(const_iterator __pos, _Args&&... __args)
517 	{
518 	  return _M_t._M_emplace_hint_equal(__pos,
519 					    std::forward<_Args>(__args)...);
520 	}
521 #endif
522 
523       /**
524        *  @brief Inserts a std::pair into the %multimap.
525        *  @param  __x  Pair to be inserted (see std::make_pair for easy creation
526        *             of pairs).
527        *  @return An iterator that points to the inserted (key,value) pair.
528        *
529        *  This function inserts a (key, value) pair into the %multimap.
530        *  Contrary to a std::map the %multimap does not rely on unique keys and
531        *  thus multiple pairs with the same key can be inserted.
532        *
533        *  Insertion requires logarithmic time.
534        *  @{
535        */
536       iterator
537       insert(const value_type& __x)
538       { return _M_t._M_insert_equal(__x); }
539 
540 #if __cplusplus >= 201103L
541       // _GLIBCXX_RESOLVE_LIB_DEFECTS
542       // 2354. Unnecessary copying when inserting into maps with braced-init
543       iterator
544       insert(value_type&& __x)
545       { return _M_t._M_insert_equal(std::move(__x)); }
546 
547       template<typename _Pair, typename = typename
548 	       std::enable_if<std::is_constructible<value_type,
549 						    _Pair&&>::value>::type>
550 	iterator
551 	insert(_Pair&& __x)
552 	{ return _M_t._M_insert_equal(std::forward<_Pair>(__x)); }
553 #endif
554       // @}
555 
556       /**
557        *  @brief Inserts a std::pair into the %multimap.
558        *  @param  __position  An iterator that serves as a hint as to where the
559        *                      pair should be inserted.
560        *  @param  __x  Pair to be inserted (see std::make_pair for easy creation
561        *               of pairs).
562        *  @return An iterator that points to the inserted (key,value) pair.
563        *
564        *  This function inserts a (key, value) pair into the %multimap.
565        *  Contrary to a std::map the %multimap does not rely on unique keys and
566        *  thus multiple pairs with the same key can be inserted.
567        *  Note that the first parameter is only a hint and can potentially
568        *  improve the performance of the insertion process.  A bad hint would
569        *  cause no gains in efficiency.
570        *
571        *  For more on @a hinting, see:
572        *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
573        *
574        *  Insertion requires logarithmic time (if the hint is not taken).
575        * @{
576        */
577       iterator
578 #if __cplusplus >= 201103L
579       insert(const_iterator __position, const value_type& __x)
580 #else
581       insert(iterator __position, const value_type& __x)
582 #endif
583       { return _M_t._M_insert_equal_(__position, __x); }
584 
585 #if __cplusplus >= 201103L
586       // _GLIBCXX_RESOLVE_LIB_DEFECTS
587       // 2354. Unnecessary copying when inserting into maps with braced-init
588       iterator
589       insert(const_iterator __position, value_type&& __x)
590       { return _M_t._M_insert_equal_(__position, std::move(__x)); }
591 
592       template<typename _Pair, typename = typename
593 	       std::enable_if<std::is_constructible<value_type,
594 						    _Pair&&>::value>::type>
595 	iterator
596 	insert(const_iterator __position, _Pair&& __x)
597 	{ return _M_t._M_insert_equal_(__position,
598 				       std::forward<_Pair>(__x)); }
599 #endif
600       // @}
601 
602       /**
603        *  @brief A template function that attempts to insert a range
604        *  of elements.
605        *  @param  __first  Iterator pointing to the start of the range to be
606        *                   inserted.
607        *  @param  __last  Iterator pointing to the end of the range.
608        *
609        *  Complexity similar to that of the range constructor.
610        */
611       template<typename _InputIterator>
612 	void
613 	insert(_InputIterator __first, _InputIterator __last)
614 	{ _M_t._M_insert_equal(__first, __last); }
615 
616 #if __cplusplus >= 201103L
617       /**
618        *  @brief Attempts to insert a list of std::pairs into the %multimap.
619        *  @param  __l  A std::initializer_list<value_type> of pairs to be
620        *               inserted.
621        *
622        *  Complexity similar to that of the range constructor.
623        */
624       void
625       insert(initializer_list<value_type> __l)
626       { this->insert(__l.begin(), __l.end()); }
627 #endif
628 
629 #if __cplusplus > 201402L
630       /// Extract a node.
631       node_type
632       extract(const_iterator __pos)
633       {
634 	__glibcxx_assert(__pos != end());
635 	return _M_t.extract(__pos);
636       }
637 
638       /// Extract a node.
639       node_type
640       extract(const key_type& __x)
641       { return _M_t.extract(__x); }
642 
643       /// Re-insert an extracted node.
644       iterator
645       insert(node_type&& __nh)
646       { return _M_t._M_reinsert_node_equal(std::move(__nh)); }
647 
648       /// Re-insert an extracted node.
649       iterator
650       insert(const_iterator __hint, node_type&& __nh)
651       { return _M_t._M_reinsert_node_hint_equal(__hint, std::move(__nh)); }
652 
653       template<typename, typename>
654 	friend class std::_Rb_tree_merge_helper;
655 
656       template<typename _C2>
657 	void
658 	merge(multimap<_Key, _Tp, _C2, _Alloc>& __source)
659 	{
660 	  using _Merge_helper = _Rb_tree_merge_helper<multimap, _C2>;
661 	  _M_t._M_merge_equal(_Merge_helper::_S_get_tree(__source));
662 	}
663 
664       template<typename _C2>
665 	void
666 	merge(multimap<_Key, _Tp, _C2, _Alloc>&& __source)
667 	{ merge(__source); }
668 
669       template<typename _C2>
670 	void
671 	merge(map<_Key, _Tp, _C2, _Alloc>& __source)
672 	{
673 	  using _Merge_helper = _Rb_tree_merge_helper<multimap, _C2>;
674 	  _M_t._M_merge_equal(_Merge_helper::_S_get_tree(__source));
675 	}
676 
677       template<typename _C2>
678 	void
679 	merge(map<_Key, _Tp, _C2, _Alloc>&& __source)
680 	{ merge(__source); }
681 #endif // C++17
682 
683 #if __cplusplus >= 201103L
684       // _GLIBCXX_RESOLVE_LIB_DEFECTS
685       // DR 130. Associative erase should return an iterator.
686       /**
687        *  @brief Erases an element from a %multimap.
688        *  @param  __position  An iterator pointing to the element to be erased.
689        *  @return An iterator pointing to the element immediately following
690        *          @a position prior to the element being erased. If no such
691        *          element exists, end() is returned.
692        *
693        *  This function erases an element, pointed to by the given iterator,
694        *  from a %multimap.  Note that this function only erases the element,
695        *  and that if the element is itself a pointer, the pointed-to memory is
696        *  not touched in any way.  Managing the pointer is the user's
697        *  responsibility.
698        *
699        * @{
700        */
701       iterator
702       erase(const_iterator __position)
703       { return _M_t.erase(__position); }
704 
705       // LWG 2059.
706       _GLIBCXX_ABI_TAG_CXX11
707       iterator
708       erase(iterator __position)
709       { return _M_t.erase(__position); }
710       // @}
711 #else
712       /**
713        *  @brief Erases an element from a %multimap.
714        *  @param  __position  An iterator pointing to the element to be erased.
715        *
716        *  This function erases an element, pointed to by the given iterator,
717        *  from a %multimap.  Note that this function only erases the element,
718        *  and that if the element is itself a pointer, the pointed-to memory is
719        *  not touched in any way.  Managing the pointer is the user's
720        *  responsibility.
721        */
722       void
723       erase(iterator __position)
724       { _M_t.erase(__position); }
725 #endif
726 
727       /**
728        *  @brief Erases elements according to the provided key.
729        *  @param  __x  Key of element to be erased.
730        *  @return  The number of elements erased.
731        *
732        *  This function erases all elements located by the given key from a
733        *  %multimap.
734        *  Note that this function only erases the element, and that if
735        *  the element is itself a pointer, the pointed-to memory is not touched
736        *  in any way.  Managing the pointer is the user's responsibility.
737        */
738       size_type
739       erase(const key_type& __x)
740       { return _M_t.erase(__x); }
741 
742 #if __cplusplus >= 201103L
743       // _GLIBCXX_RESOLVE_LIB_DEFECTS
744       // DR 130. Associative erase should return an iterator.
745       /**
746        *  @brief Erases a [first,last) range of elements from a %multimap.
747        *  @param  __first  Iterator pointing to the start of the range to be
748        *                   erased.
749        *  @param __last Iterator pointing to the end of the range to be
750        *                erased .
751        *  @return The iterator @a __last.
752        *
753        *  This function erases a sequence of elements from a %multimap.
754        *  Note that this function only erases the elements, and that if
755        *  the elements themselves are pointers, the pointed-to memory is not
756        *  touched in any way.  Managing the pointer is the user's
757        *  responsibility.
758        */
759       iterator
760       erase(const_iterator __first, const_iterator __last)
761       { return _M_t.erase(__first, __last); }
762 #else
763       // _GLIBCXX_RESOLVE_LIB_DEFECTS
764       // DR 130. Associative erase should return an iterator.
765       /**
766        *  @brief Erases a [first,last) range of elements from a %multimap.
767        *  @param  __first  Iterator pointing to the start of the range to be
768        *                 erased.
769        *  @param __last Iterator pointing to the end of the range to
770        *                be erased.
771        *
772        *  This function erases a sequence of elements from a %multimap.
773        *  Note that this function only erases the elements, and that if
774        *  the elements themselves are pointers, the pointed-to memory is not
775        *  touched in any way.  Managing the pointer is the user's
776        *  responsibility.
777        */
778       void
779       erase(iterator __first, iterator __last)
780       { _M_t.erase(__first, __last); }
781 #endif
782 
783       /**
784        *  @brief  Swaps data with another %multimap.
785        *  @param  __x  A %multimap of the same element and allocator types.
786        *
787        *  This exchanges the elements between two multimaps in constant time.
788        *  (It is only swapping a pointer, an integer, and an instance of
789        *  the @c Compare type (which itself is often stateless and empty), so it
790        *  should be quite fast.)
791        *  Note that the global std::swap() function is specialized such that
792        *  std::swap(m1,m2) will feed to this function.
793        *
794        *  Whether the allocators are swapped depends on the allocator traits.
795        */
796       void
797       swap(multimap& __x)
798       _GLIBCXX_NOEXCEPT_IF(__is_nothrow_swappable<_Compare>::value)
799       { _M_t.swap(__x._M_t); }
800 
801       /**
802        *  Erases all elements in a %multimap.  Note that this function only
803        *  erases the elements, and that if the elements themselves are pointers,
804        *  the pointed-to memory is not touched in any way.  Managing the pointer
805        *  is the user's responsibility.
806        */
807       void
808       clear() _GLIBCXX_NOEXCEPT
809       { _M_t.clear(); }
810 
811       // observers
812       /**
813        *  Returns the key comparison object out of which the %multimap
814        *  was constructed.
815        */
816       key_compare
817       key_comp() const
818       { return _M_t.key_comp(); }
819 
820       /**
821        *  Returns a value comparison object, built from the key comparison
822        *  object out of which the %multimap was constructed.
823        */
824       value_compare
825       value_comp() const
826       { return value_compare(_M_t.key_comp()); }
827 
828       // multimap operations
829 
830       //@{
831       /**
832        *  @brief Tries to locate an element in a %multimap.
833        *  @param  __x  Key of (key, value) pair to be located.
834        *  @return  Iterator pointing to sought-after element,
835        *           or end() if not found.
836        *
837        *  This function takes a key and tries to locate the element with which
838        *  the key matches.  If successful the function returns an iterator
839        *  pointing to the sought after %pair.  If unsuccessful it returns the
840        *  past-the-end ( @c end() ) iterator.
841        */
842       iterator
843       find(const key_type& __x)
844       { return _M_t.find(__x); }
845 
846 #if __cplusplus > 201103L
847       template<typename _Kt>
848 	auto
849 	find(const _Kt& __x) -> decltype(_M_t._M_find_tr(__x))
850 	{ return _M_t._M_find_tr(__x); }
851 #endif
852       //@}
853 
854       //@{
855       /**
856        *  @brief Tries to locate an element in a %multimap.
857        *  @param  __x  Key of (key, value) pair to be located.
858        *  @return  Read-only (constant) iterator pointing to sought-after
859        *           element, or end() if not found.
860        *
861        *  This function takes a key and tries to locate the element with which
862        *  the key matches.  If successful the function returns a constant
863        *  iterator pointing to the sought after %pair.  If unsuccessful it
864        *  returns the past-the-end ( @c end() ) iterator.
865        */
866       const_iterator
867       find(const key_type& __x) const
868       { return _M_t.find(__x); }
869 
870 #if __cplusplus > 201103L
871       template<typename _Kt>
872 	auto
873 	find(const _Kt& __x) const -> decltype(_M_t._M_find_tr(__x))
874 	{ return _M_t._M_find_tr(__x); }
875 #endif
876       //@}
877 
878       //@{
879       /**
880        *  @brief Finds the number of elements with given key.
881        *  @param  __x  Key of (key, value) pairs to be located.
882        *  @return Number of elements with specified key.
883        */
884       size_type
885       count(const key_type& __x) const
886       { return _M_t.count(__x); }
887 
888 #if __cplusplus > 201103L
889       template<typename _Kt>
890 	auto
891 	count(const _Kt& __x) const -> decltype(_M_t._M_count_tr(__x))
892 	{ return _M_t._M_count_tr(__x); }
893 #endif
894       //@}
895 
896       //@{
897       /**
898        *  @brief Finds the beginning of a subsequence matching given key.
899        *  @param  __x  Key of (key, value) pair to be located.
900        *  @return  Iterator pointing to first element equal to or greater
901        *           than key, or end().
902        *
903        *  This function returns the first element of a subsequence of elements
904        *  that matches the given key.  If unsuccessful it returns an iterator
905        *  pointing to the first element that has a greater value than given key
906        *  or end() if no such element exists.
907        */
908       iterator
909       lower_bound(const key_type& __x)
910       { return _M_t.lower_bound(__x); }
911 
912 #if __cplusplus > 201103L
913       template<typename _Kt>
914 	auto
915 	lower_bound(const _Kt& __x)
916 	-> decltype(iterator(_M_t._M_lower_bound_tr(__x)))
917 	{ return iterator(_M_t._M_lower_bound_tr(__x)); }
918 #endif
919       //@}
920 
921       //@{
922       /**
923        *  @brief Finds the beginning of a subsequence matching given key.
924        *  @param  __x  Key of (key, value) pair to be located.
925        *  @return  Read-only (constant) iterator pointing to first element
926        *           equal to or greater than key, or end().
927        *
928        *  This function returns the first element of a subsequence of
929        *  elements that matches the given key.  If unsuccessful the
930        *  iterator will point to the next greatest element or, if no
931        *  such greater element exists, to end().
932        */
933       const_iterator
934       lower_bound(const key_type& __x) const
935       { return _M_t.lower_bound(__x); }
936 
937 #if __cplusplus > 201103L
938       template<typename _Kt>
939 	auto
940 	lower_bound(const _Kt& __x) const
941 	-> decltype(const_iterator(_M_t._M_lower_bound_tr(__x)))
942 	{ return const_iterator(_M_t._M_lower_bound_tr(__x)); }
943 #endif
944       //@}
945 
946       //@{
947       /**
948        *  @brief Finds the end of a subsequence matching given key.
949        *  @param  __x  Key of (key, value) pair to be located.
950        *  @return Iterator pointing to the first element
951        *          greater than key, or end().
952        */
953       iterator
954       upper_bound(const key_type& __x)
955       { return _M_t.upper_bound(__x); }
956 
957 #if __cplusplus > 201103L
958       template<typename _Kt>
959 	auto
960 	upper_bound(const _Kt& __x)
961 	-> decltype(iterator(_M_t._M_upper_bound_tr(__x)))
962 	{ return iterator(_M_t._M_upper_bound_tr(__x)); }
963 #endif
964       //@}
965 
966       //@{
967       /**
968        *  @brief Finds the end of a subsequence matching given key.
969        *  @param  __x  Key of (key, value) pair to be located.
970        *  @return  Read-only (constant) iterator pointing to first iterator
971        *           greater than key, or end().
972        */
973       const_iterator
974       upper_bound(const key_type& __x) const
975       { return _M_t.upper_bound(__x); }
976 
977 #if __cplusplus > 201103L
978       template<typename _Kt>
979 	auto
980 	upper_bound(const _Kt& __x) const
981 	-> decltype(const_iterator(_M_t._M_upper_bound_tr(__x)))
982 	{ return const_iterator(_M_t._M_upper_bound_tr(__x)); }
983 #endif
984       //@}
985 
986       //@{
987       /**
988        *  @brief Finds a subsequence matching given key.
989        *  @param  __x  Key of (key, value) pairs to be located.
990        *  @return  Pair of iterators that possibly points to the subsequence
991        *           matching given key.
992        *
993        *  This function is equivalent to
994        *  @code
995        *    std::make_pair(c.lower_bound(val),
996        *                   c.upper_bound(val))
997        *  @endcode
998        *  (but is faster than making the calls separately).
999        */
1000       std::pair<iterator, iterator>
1001       equal_range(const key_type& __x)
1002       { return _M_t.equal_range(__x); }
1003 
1004 #if __cplusplus > 201103L
1005       template<typename _Kt>
1006 	auto
1007 	equal_range(const _Kt& __x)
1008 	-> decltype(pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)))
1009 	{ return pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)); }
1010 #endif
1011       //@}
1012 
1013       //@{
1014       /**
1015        *  @brief Finds a subsequence matching given key.
1016        *  @param  __x  Key of (key, value) pairs to be located.
1017        *  @return  Pair of read-only (constant) iterators that possibly points
1018        *           to the subsequence matching given key.
1019        *
1020        *  This function is equivalent to
1021        *  @code
1022        *    std::make_pair(c.lower_bound(val),
1023        *                   c.upper_bound(val))
1024        *  @endcode
1025        *  (but is faster than making the calls separately).
1026        */
1027       std::pair<const_iterator, const_iterator>
1028       equal_range(const key_type& __x) const
1029       { return _M_t.equal_range(__x); }
1030 
1031 #if __cplusplus > 201103L
1032       template<typename _Kt>
1033 	auto
1034 	equal_range(const _Kt& __x) const
1035 	-> decltype(pair<const_iterator, const_iterator>(
1036 	      _M_t._M_equal_range_tr(__x)))
1037 	{
1038 	  return pair<const_iterator, const_iterator>(
1039 	      _M_t._M_equal_range_tr(__x));
1040 	}
1041 #endif
1042       //@}
1043 
1044       template<typename _K1, typename _T1, typename _C1, typename _A1>
1045 	friend bool
1046 	operator==(const multimap<_K1, _T1, _C1, _A1>&,
1047 		   const multimap<_K1, _T1, _C1, _A1>&);
1048 
1049       template<typename _K1, typename _T1, typename _C1, typename _A1>
1050 	friend bool
1051 	operator<(const multimap<_K1, _T1, _C1, _A1>&,
1052 		  const multimap<_K1, _T1, _C1, _A1>&);
1053   };
1054 
1055 #if __cpp_deduction_guides >= 201606
1056 
1057   template<typename _InputIterator,
1058 	   typename _Compare = less<__iter_key_t<_InputIterator>>,
1059 	   typename _Allocator = allocator<__iter_to_alloc_t<_InputIterator>>,
1060 	   typename = _RequireInputIter<_InputIterator>,
1061 	   typename = _RequireAllocator<_Allocator>>
1062     multimap(_InputIterator, _InputIterator,
1063 	     _Compare = _Compare(), _Allocator = _Allocator())
1064     -> multimap<__iter_key_t<_InputIterator>, __iter_val_t<_InputIterator>,
1065 		_Compare, _Allocator>;
1066 
1067   template<typename _Key, typename _Tp, typename _Compare = less<_Key>,
1068 	   typename _Allocator = allocator<pair<const _Key, _Tp>>,
1069 	   typename = _RequireAllocator<_Allocator>>
1070     multimap(initializer_list<pair<_Key, _Tp>>,
1071 	     _Compare = _Compare(), _Allocator = _Allocator())
1072     -> multimap<_Key, _Tp, _Compare, _Allocator>;
1073 
1074   template<typename _InputIterator, typename _Allocator,
1075 	   typename = _RequireInputIter<_InputIterator>,
1076 	   typename = _RequireAllocator<_Allocator>>
1077     multimap(_InputIterator, _InputIterator, _Allocator)
1078     -> multimap<__iter_key_t<_InputIterator>, __iter_val_t<_InputIterator>,
1079 		less<__iter_key_t<_InputIterator>>, _Allocator>;
1080 
1081   template<typename _Key, typename _Tp, typename _Allocator,
1082 	   typename = _RequireAllocator<_Allocator>>
1083     multimap(initializer_list<pair<_Key, _Tp>>, _Allocator)
1084     -> multimap<_Key, _Tp, less<_Key>, _Allocator>;
1085 
1086 #endif
1087 
1088   /**
1089    *  @brief  Multimap equality comparison.
1090    *  @param  __x  A %multimap.
1091    *  @param  __y  A %multimap of the same type as @a __x.
1092    *  @return  True iff the size and elements of the maps are equal.
1093    *
1094    *  This is an equivalence relation.  It is linear in the size of the
1095    *  multimaps.  Multimaps are considered equivalent if their sizes are equal,
1096    *  and if corresponding elements compare equal.
1097   */
1098   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1099     inline bool
1100     operator==(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1101 	       const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1102     { return __x._M_t == __y._M_t; }
1103 
1104   /**
1105    *  @brief  Multimap ordering relation.
1106    *  @param  __x  A %multimap.
1107    *  @param  __y  A %multimap of the same type as @a __x.
1108    *  @return  True iff @a x is lexicographically less than @a y.
1109    *
1110    *  This is a total ordering relation.  It is linear in the size of the
1111    *  multimaps.  The elements must be comparable with @c <.
1112    *
1113    *  See std::lexicographical_compare() for how the determination is made.
1114   */
1115   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1116     inline bool
1117     operator<(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1118 	      const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1119     { return __x._M_t < __y._M_t; }
1120 
1121   /// Based on operator==
1122   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1123     inline bool
1124     operator!=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1125 	       const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1126     { return !(__x == __y); }
1127 
1128   /// Based on operator<
1129   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1130     inline bool
1131     operator>(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1132 	      const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1133     { return __y < __x; }
1134 
1135   /// Based on operator<
1136   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1137     inline bool
1138     operator<=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1139 	       const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1140     { return !(__y < __x); }
1141 
1142   /// Based on operator<
1143   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1144     inline bool
1145     operator>=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1146 	       const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1147     { return !(__x < __y); }
1148 
1149   /// See std::multimap::swap().
1150   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1151     inline void
1152     swap(multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1153 	 multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1154     _GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y)))
1155     { __x.swap(__y); }
1156 
1157 _GLIBCXX_END_NAMESPACE_CONTAINER
1158 
1159 #if __cplusplus > 201402L
1160   // Allow std::multimap access to internals of compatible maps.
1161   template<typename _Key, typename _Val, typename _Cmp1, typename _Alloc,
1162 	   typename _Cmp2>
1163     struct
1164     _Rb_tree_merge_helper<_GLIBCXX_STD_C::multimap<_Key, _Val, _Cmp1, _Alloc>,
1165 			  _Cmp2>
1166     {
1167     private:
1168       friend class _GLIBCXX_STD_C::multimap<_Key, _Val, _Cmp1, _Alloc>;
1169 
1170       static auto&
1171       _S_get_tree(_GLIBCXX_STD_C::map<_Key, _Val, _Cmp2, _Alloc>& __map)
1172       { return __map._M_t; }
1173 
1174       static auto&
1175       _S_get_tree(_GLIBCXX_STD_C::multimap<_Key, _Val, _Cmp2, _Alloc>& __map)
1176       { return __map._M_t; }
1177     };
1178 #endif // C++17
1179 
1180 _GLIBCXX_END_NAMESPACE_VERSION
1181 } // namespace std
1182 
1183 #endif /* _STL_MULTIMAP_H */
1184