1 // Bitmap Allocator. -*- C++ -*-
2 
3 // Copyright (C) 2004-2018 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file ext/bitmap_allocator.h
26  *  This file is a GNU extension to the Standard C++ Library.
27  */
28 
29 #ifndef _BITMAP_ALLOCATOR_H
30 #define _BITMAP_ALLOCATOR_H 1
31 
32 #include <utility> // For std::pair.
33 #include <bits/functexcept.h> // For __throw_bad_alloc().
34 #include <functional> // For greater_equal, and less_equal.
35 #include <new> // For operator new.
36 #include <debug/debug.h> // _GLIBCXX_DEBUG_ASSERT
37 #include <ext/concurrence.h>
38 #include <bits/move.h>
39 
40 /** @brief The constant in the expression below is the alignment
41  * required in bytes.
42  */
43 #define _BALLOC_ALIGN_BYTES 8
44 
45 namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)
46 {
47 _GLIBCXX_BEGIN_NAMESPACE_VERSION
48 
49   using std::size_t;
50   using std::ptrdiff_t;
51 
52   namespace __detail
53   {
54     /** @class  __mini_vector bitmap_allocator.h bitmap_allocator.h
55      *
56      *  @brief  __mini_vector<> is a stripped down version of the
57      *  full-fledged std::vector<>.
58      *
59      *  It is to be used only for built-in types or PODs. Notable
60      *  differences are:
61      *
62      *  1. Not all accessor functions are present.
63      *  2. Used ONLY for PODs.
64      *  3. No Allocator template argument. Uses ::operator new() to get
65      *  memory, and ::operator delete() to free it.
66      *  Caveat: The dtor does NOT free the memory allocated, so this a
67      *  memory-leaking vector!
68      */
69     template<typename _Tp>
70       class __mini_vector
71       {
72 	__mini_vector(const __mini_vector&);
73 	__mini_vector& operator=(const __mini_vector&);
74 
75       public:
76 	typedef _Tp value_type;
77 	typedef _Tp* pointer;
78 	typedef _Tp& reference;
79 	typedef const _Tp& const_reference;
80 	typedef size_t size_type;
81 	typedef ptrdiff_t difference_type;
82 	typedef pointer iterator;
83 
84       private:
85 	pointer _M_start;
86 	pointer _M_finish;
87 	pointer _M_end_of_storage;
88 
89 	size_type
90 	_M_space_left() const throw()
91 	{ return _M_end_of_storage - _M_finish; }
92 
93 	pointer
94 	allocate(size_type __n)
95 	{ return static_cast<pointer>(::operator new(__n * sizeof(_Tp))); }
96 
97 	void
98 	deallocate(pointer __p, size_type)
99 	{ ::operator delete(__p); }
100 
101       public:
102 	// Members used: size(), push_back(), pop_back(),
103 	// insert(iterator, const_reference), erase(iterator),
104 	// begin(), end(), back(), operator[].
105 
106 	__mini_vector()
107         : _M_start(0), _M_finish(0), _M_end_of_storage(0) { }
108 
109 	size_type
110 	size() const throw()
111 	{ return _M_finish - _M_start; }
112 
113 	iterator
114 	begin() const throw()
115 	{ return this->_M_start; }
116 
117 	iterator
118 	end() const throw()
119 	{ return this->_M_finish; }
120 
121 	reference
122 	back() const throw()
123 	{ return *(this->end() - 1); }
124 
125 	reference
126 	operator[](const size_type __pos) const throw()
127 	{ return this->_M_start[__pos]; }
128 
129 	void
130 	insert(iterator __pos, const_reference __x);
131 
132 	void
133 	push_back(const_reference __x)
134 	{
135 	  if (this->_M_space_left())
136 	    {
137 	      *this->end() = __x;
138 	      ++this->_M_finish;
139 	    }
140 	  else
141 	    this->insert(this->end(), __x);
142 	}
143 
144 	void
145 	pop_back() throw()
146 	{ --this->_M_finish; }
147 
148 	void
149 	erase(iterator __pos) throw();
150 
151 	void
152 	clear() throw()
153 	{ this->_M_finish = this->_M_start; }
154       };
155 
156     // Out of line function definitions.
157     template<typename _Tp>
158       void __mini_vector<_Tp>::
159       insert(iterator __pos, const_reference __x)
160       {
161 	if (this->_M_space_left())
162 	  {
163 	    size_type __to_move = this->_M_finish - __pos;
164 	    iterator __dest = this->end();
165 	    iterator __src = this->end() - 1;
166 
167 	    ++this->_M_finish;
168 	    while (__to_move)
169 	      {
170 		*__dest = *__src;
171 		--__dest; --__src; --__to_move;
172 	      }
173 	    *__pos = __x;
174 	  }
175 	else
176 	  {
177 	    size_type __new_size = this->size() ? this->size() * 2 : 1;
178 	    iterator __new_start = this->allocate(__new_size);
179 	    iterator __first = this->begin();
180 	    iterator __start = __new_start;
181 	    while (__first != __pos)
182 	      {
183 		*__start = *__first;
184 		++__start; ++__first;
185 	      }
186 	    *__start = __x;
187 	    ++__start;
188 	    while (__first != this->end())
189 	      {
190 		*__start = *__first;
191 		++__start; ++__first;
192 	      }
193 	    if (this->_M_start)
194 	      this->deallocate(this->_M_start, this->size());
195 
196 	    this->_M_start = __new_start;
197 	    this->_M_finish = __start;
198 	    this->_M_end_of_storage = this->_M_start + __new_size;
199 	  }
200       }
201 
202     template<typename _Tp>
203       void __mini_vector<_Tp>::
204       erase(iterator __pos) throw()
205       {
206 	while (__pos + 1 != this->end())
207 	  {
208 	    *__pos = __pos[1];
209 	    ++__pos;
210 	  }
211 	--this->_M_finish;
212       }
213 
214 
215     template<typename _Tp>
216       struct __mv_iter_traits
217       {
218 	typedef typename _Tp::value_type value_type;
219 	typedef typename _Tp::difference_type difference_type;
220       };
221 
222     template<typename _Tp>
223       struct __mv_iter_traits<_Tp*>
224       {
225 	typedef _Tp value_type;
226 	typedef ptrdiff_t difference_type;
227       };
228 
229     enum
230       {
231 	bits_per_byte = 8,
232 	bits_per_block = sizeof(size_t) * size_t(bits_per_byte)
233       };
234 
235     template<typename _ForwardIterator, typename _Tp, typename _Compare>
236       _ForwardIterator
237       __lower_bound(_ForwardIterator __first, _ForwardIterator __last,
238 		    const _Tp& __val, _Compare __comp)
239       {
240 	typedef typename __mv_iter_traits<_ForwardIterator>::difference_type
241 	  _DistanceType;
242 
243 	_DistanceType __len = __last - __first;
244 	_DistanceType __half;
245 	_ForwardIterator __middle;
246 
247 	while (__len > 0)
248 	  {
249 	    __half = __len >> 1;
250 	    __middle = __first;
251 	    __middle += __half;
252 	    if (__comp(*__middle, __val))
253 	      {
254 		__first = __middle;
255 		++__first;
256 		__len = __len - __half - 1;
257 	      }
258 	    else
259 	      __len = __half;
260 	  }
261 	return __first;
262       }
263 
264     /** @brief The number of Blocks pointed to by the address pair
265      *  passed to the function.
266      */
267     template<typename _AddrPair>
268       inline size_t
269       __num_blocks(_AddrPair __ap)
270       { return (__ap.second - __ap.first) + 1; }
271 
272     /** @brief The number of Bit-maps pointed to by the address pair
273      *  passed to the function.
274      */
275     template<typename _AddrPair>
276       inline size_t
277       __num_bitmaps(_AddrPair __ap)
278       { return __num_blocks(__ap) / size_t(bits_per_block); }
279 
280     // _Tp should be a pointer type.
281     template<typename _Tp>
282       class _Inclusive_between
283       : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
284       {
285 	typedef _Tp pointer;
286 	pointer _M_ptr_value;
287 	typedef typename std::pair<_Tp, _Tp> _Block_pair;
288 
289       public:
290 	_Inclusive_between(pointer __ptr) : _M_ptr_value(__ptr)
291 	{ }
292 
293 	bool
294 	operator()(_Block_pair __bp) const throw()
295 	{
296 	  if (std::less_equal<pointer>()(_M_ptr_value, __bp.second)
297 	      && std::greater_equal<pointer>()(_M_ptr_value, __bp.first))
298 	    return true;
299 	  else
300 	    return false;
301 	}
302       };
303 
304     // Used to pass a Functor to functions by reference.
305     template<typename _Functor>
306       class _Functor_Ref
307       : public std::unary_function<typename _Functor::argument_type,
308 				   typename _Functor::result_type>
309       {
310 	_Functor& _M_fref;
311 
312       public:
313 	typedef typename _Functor::argument_type argument_type;
314 	typedef typename _Functor::result_type result_type;
315 
316 	_Functor_Ref(_Functor& __fref) : _M_fref(__fref)
317 	{ }
318 
319 	result_type
320 	operator()(argument_type __arg)
321 	{ return _M_fref(__arg); }
322       };
323 
324     /** @class  _Ffit_finder bitmap_allocator.h bitmap_allocator.h
325      *
326      *  @brief  The class which acts as a predicate for applying the
327      *  first-fit memory allocation policy for the bitmap allocator.
328      */
329     // _Tp should be a pointer type, and _Alloc is the Allocator for
330     // the vector.
331     template<typename _Tp>
332       class _Ffit_finder
333       : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
334       {
335 	typedef typename std::pair<_Tp, _Tp> _Block_pair;
336 	typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
337 	typedef typename _BPVector::difference_type _Counter_type;
338 
339 	size_t* _M_pbitmap;
340 	_Counter_type _M_data_offset;
341 
342       public:
343 	_Ffit_finder() : _M_pbitmap(0), _M_data_offset(0)
344 	{ }
345 
346 	bool
347 	operator()(_Block_pair __bp) throw()
348 	{
349 	  // Set the _rover to the last physical location bitmap,
350 	  // which is the bitmap which belongs to the first free
351 	  // block. Thus, the bitmaps are in exact reverse order of
352 	  // the actual memory layout. So, we count down the bitmaps,
353 	  // which is the same as moving up the memory.
354 
355 	  // If the used count stored at the start of the Bit Map headers
356 	  // is equal to the number of Objects that the current Block can
357 	  // store, then there is definitely no space for another single
358 	  // object, so just return false.
359 	  _Counter_type __diff = __detail::__num_bitmaps(__bp);
360 
361 	  if (*(reinterpret_cast<size_t*>
362 		(__bp.first) - (__diff + 1)) == __detail::__num_blocks(__bp))
363 	    return false;
364 
365 	  size_t* __rover = reinterpret_cast<size_t*>(__bp.first) - 1;
366 
367 	  for (_Counter_type __i = 0; __i < __diff; ++__i)
368 	    {
369 	      _M_data_offset = __i;
370 	      if (*__rover)
371 		{
372 		  _M_pbitmap = __rover;
373 		  return true;
374 		}
375 	      --__rover;
376 	    }
377 	  return false;
378 	}
379 
380 	size_t*
381 	_M_get() const throw()
382 	{ return _M_pbitmap; }
383 
384 	_Counter_type
385 	_M_offset() const throw()
386 	{ return _M_data_offset * size_t(bits_per_block); }
387       };
388 
389     /** @class  _Bitmap_counter bitmap_allocator.h bitmap_allocator.h
390      *
391      *  @brief  The bitmap counter which acts as the bitmap
392      *  manipulator, and manages the bit-manipulation functions and
393      *  the searching and identification functions on the bit-map.
394      */
395     // _Tp should be a pointer type.
396     template<typename _Tp>
397       class _Bitmap_counter
398       {
399 	typedef typename
400 	__detail::__mini_vector<typename std::pair<_Tp, _Tp> > _BPVector;
401 	typedef typename _BPVector::size_type _Index_type;
402 	typedef _Tp pointer;
403 
404 	_BPVector& _M_vbp;
405 	size_t* _M_curr_bmap;
406 	size_t* _M_last_bmap_in_block;
407 	_Index_type _M_curr_index;
408 
409       public:
410 	// Use the 2nd parameter with care. Make sure that such an
411 	// entry exists in the vector before passing that particular
412 	// index to this ctor.
413 	_Bitmap_counter(_BPVector& Rvbp, long __index = -1) : _M_vbp(Rvbp)
414 	{ this->_M_reset(__index); }
415 
416 	void
417 	_M_reset(long __index = -1) throw()
418 	{
419 	  if (__index == -1)
420 	    {
421 	      _M_curr_bmap = 0;
422 	      _M_curr_index = static_cast<_Index_type>(-1);
423 	      return;
424 	    }
425 
426 	  _M_curr_index = __index;
427 	  _M_curr_bmap = reinterpret_cast<size_t*>
428 	    (_M_vbp[_M_curr_index].first) - 1;
429 
430 	  _GLIBCXX_DEBUG_ASSERT(__index <= (long)_M_vbp.size() - 1);
431 
432 	  _M_last_bmap_in_block = _M_curr_bmap
433 	    - ((_M_vbp[_M_curr_index].second
434 		- _M_vbp[_M_curr_index].first + 1)
435 	       / size_t(bits_per_block) - 1);
436 	}
437 
438 	// Dangerous Function! Use with extreme care. Pass to this
439 	// function ONLY those values that are known to be correct,
440 	// otherwise this will mess up big time.
441 	void
442 	_M_set_internal_bitmap(size_t* __new_internal_marker) throw()
443 	{ _M_curr_bmap = __new_internal_marker; }
444 
445 	bool
446 	_M_finished() const throw()
447 	{ return(_M_curr_bmap == 0); }
448 
449 	_Bitmap_counter&
450 	operator++() throw()
451 	{
452 	  if (_M_curr_bmap == _M_last_bmap_in_block)
453 	    {
454 	      if (++_M_curr_index == _M_vbp.size())
455 		_M_curr_bmap = 0;
456 	      else
457 		this->_M_reset(_M_curr_index);
458 	    }
459 	  else
460 	    --_M_curr_bmap;
461 	  return *this;
462 	}
463 
464 	size_t*
465 	_M_get() const throw()
466 	{ return _M_curr_bmap; }
467 
468 	pointer
469 	_M_base() const throw()
470 	{ return _M_vbp[_M_curr_index].first; }
471 
472 	_Index_type
473 	_M_offset() const throw()
474 	{
475 	  return size_t(bits_per_block)
476 	    * ((reinterpret_cast<size_t*>(this->_M_base())
477 		- _M_curr_bmap) - 1);
478 	}
479 
480 	_Index_type
481 	_M_where() const throw()
482 	{ return _M_curr_index; }
483       };
484 
485     /** @brief  Mark a memory address as allocated by re-setting the
486      *  corresponding bit in the bit-map.
487      */
488     inline void
489     __bit_allocate(size_t* __pbmap, size_t __pos) throw()
490     {
491       size_t __mask = 1 << __pos;
492       __mask = ~__mask;
493       *__pbmap &= __mask;
494     }
495 
496     /** @brief  Mark a memory address as free by setting the
497      *  corresponding bit in the bit-map.
498      */
499     inline void
500     __bit_free(size_t* __pbmap, size_t __pos) throw()
501     {
502       size_t __mask = 1 << __pos;
503       *__pbmap |= __mask;
504     }
505   } // namespace __detail
506 
507   /** @brief  Generic Version of the bsf instruction.
508    */
509   inline size_t
510   _Bit_scan_forward(size_t __num)
511   { return static_cast<size_t>(__builtin_ctzl(__num)); }
512 
513   /** @class  free_list bitmap_allocator.h bitmap_allocator.h
514    *
515    *  @brief  The free list class for managing chunks of memory to be
516    *  given to and returned by the bitmap_allocator.
517    */
518   class free_list
519   {
520   public:
521     typedef size_t* 				value_type;
522     typedef __detail::__mini_vector<value_type> vector_type;
523     typedef vector_type::iterator 		iterator;
524     typedef __mutex				__mutex_type;
525 
526   private:
527     struct _LT_pointer_compare
528     {
529       bool
530       operator()(const size_t* __pui,
531 		 const size_t __cui) const throw()
532       { return *__pui < __cui; }
533     };
534 
535 #if defined __GTHREADS
536     __mutex_type&
537     _M_get_mutex()
538     {
539       static __mutex_type _S_mutex;
540       return _S_mutex;
541     }
542 #endif
543 
544     vector_type&
545     _M_get_free_list()
546     {
547       static vector_type _S_free_list;
548       return _S_free_list;
549     }
550 
551     /** @brief  Performs validation of memory based on their size.
552      *
553      *  @param  __addr The pointer to the memory block to be
554      *  validated.
555      *
556      *  Validates the memory block passed to this function and
557      *  appropriately performs the action of managing the free list of
558      *  blocks by adding this block to the free list or deleting this
559      *  or larger blocks from the free list.
560      */
561     void
562     _M_validate(size_t* __addr) throw()
563     {
564       vector_type& __free_list = _M_get_free_list();
565       const vector_type::size_type __max_size = 64;
566       if (__free_list.size() >= __max_size)
567 	{
568 	  // Ok, the threshold value has been reached.  We determine
569 	  // which block to remove from the list of free blocks.
570 	  if (*__addr >= *__free_list.back())
571 	    {
572 	      // Ok, the new block is greater than or equal to the
573 	      // last block in the list of free blocks. We just free
574 	      // the new block.
575 	      ::operator delete(static_cast<void*>(__addr));
576 	      return;
577 	    }
578 	  else
579 	    {
580 	      // Deallocate the last block in the list of free lists,
581 	      // and insert the new one in its correct position.
582 	      ::operator delete(static_cast<void*>(__free_list.back()));
583 	      __free_list.pop_back();
584 	    }
585 	}
586 
587       // Just add the block to the list of free lists unconditionally.
588       iterator __temp = __detail::__lower_bound
589 	(__free_list.begin(), __free_list.end(),
590 	 *__addr, _LT_pointer_compare());
591 
592       // We may insert the new free list before _temp;
593       __free_list.insert(__temp, __addr);
594     }
595 
596     /** @brief  Decides whether the wastage of memory is acceptable for
597      *  the current memory request and returns accordingly.
598      *
599      *  @param __block_size The size of the block available in the free
600      *  list.
601      *
602      *  @param __required_size The required size of the memory block.
603      *
604      *  @return true if the wastage incurred is acceptable, else returns
605      *  false.
606      */
607     bool
608     _M_should_i_give(size_t __block_size,
609 		     size_t __required_size) throw()
610     {
611       const size_t __max_wastage_percentage = 36;
612       if (__block_size >= __required_size &&
613 	  (((__block_size - __required_size) * 100 / __block_size)
614 	   < __max_wastage_percentage))
615 	return true;
616       else
617 	return false;
618     }
619 
620   public:
621     /** @brief This function returns the block of memory to the
622      *  internal free list.
623      *
624      *  @param  __addr The pointer to the memory block that was given
625      *  by a call to the _M_get function.
626      */
627     inline void
628     _M_insert(size_t* __addr) throw()
629     {
630 #if defined __GTHREADS
631       __scoped_lock __bfl_lock(_M_get_mutex());
632 #endif
633       // Call _M_validate to decide what should be done with
634       // this particular free list.
635       this->_M_validate(reinterpret_cast<size_t*>(__addr) - 1);
636       // See discussion as to why this is 1!
637     }
638 
639     /** @brief  This function gets a block of memory of the specified
640      *  size from the free list.
641      *
642      *  @param  __sz The size in bytes of the memory required.
643      *
644      *  @return  A pointer to the new memory block of size at least
645      *  equal to that requested.
646      */
647     size_t*
648     _M_get(size_t __sz) _GLIBCXX_THROW(std::bad_alloc);
649 
650     /** @brief  This function just clears the internal Free List, and
651      *  gives back all the memory to the OS.
652      */
653     void
654     _M_clear();
655   };
656 
657 
658   // Forward declare the class.
659   template<typename _Tp>
660     class bitmap_allocator;
661 
662   // Specialize for void:
663   template<>
664     class bitmap_allocator<void>
665     {
666     public:
667       typedef void*       pointer;
668       typedef const void* const_pointer;
669 
670       // Reference-to-void members are impossible.
671       typedef void  value_type;
672       template<typename _Tp1>
673         struct rebind
674 	{
675 	  typedef bitmap_allocator<_Tp1> other;
676 	};
677     };
678 
679   /**
680    * @brief Bitmap Allocator, primary template.
681    * @ingroup allocators
682    */
683   template<typename _Tp>
684     class bitmap_allocator : private free_list
685     {
686     public:
687       typedef size_t    		size_type;
688       typedef ptrdiff_t 		difference_type;
689       typedef _Tp*        		pointer;
690       typedef const _Tp*  		const_pointer;
691       typedef _Tp&        		reference;
692       typedef const _Tp&  		const_reference;
693       typedef _Tp         		value_type;
694       typedef free_list::__mutex_type 	__mutex_type;
695 
696       template<typename _Tp1>
697         struct rebind
698 	{
699 	  typedef bitmap_allocator<_Tp1> other;
700 	};
701 
702 #if __cplusplus >= 201103L
703       // _GLIBCXX_RESOLVE_LIB_DEFECTS
704       // 2103. propagate_on_container_move_assignment
705       typedef std::true_type propagate_on_container_move_assignment;
706 #endif
707 
708     private:
709       template<size_t _BSize, size_t _AlignSize>
710         struct aligned_size
711 	{
712 	  enum
713 	    {
714 	      modulus = _BSize % _AlignSize,
715 	      value = _BSize + (modulus ? _AlignSize - (modulus) : 0)
716 	    };
717 	};
718 
719       struct _Alloc_block
720       {
721 	char __M_unused[aligned_size<sizeof(value_type),
722 			_BALLOC_ALIGN_BYTES>::value];
723       };
724 
725 
726       typedef typename std::pair<_Alloc_block*, _Alloc_block*> _Block_pair;
727 
728       typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
729       typedef typename _BPVector::iterator _BPiter;
730 
731       template<typename _Predicate>
732         static _BPiter
733         _S_find(_Predicate __p)
734         {
735 	  _BPiter __first = _S_mem_blocks.begin();
736 	  while (__first != _S_mem_blocks.end() && !__p(*__first))
737 	    ++__first;
738 	  return __first;
739 	}
740 
741 #if defined _GLIBCXX_DEBUG
742       // Complexity: O(lg(N)). Where, N is the number of block of size
743       // sizeof(value_type).
744       void
745       _S_check_for_free_blocks() throw()
746       {
747 	typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
748 	_BPiter __bpi = _S_find(_FFF());
749 
750 	_GLIBCXX_DEBUG_ASSERT(__bpi == _S_mem_blocks.end());
751       }
752 #endif
753 
754       /** @brief  Responsible for exponentially growing the internal
755        *  memory pool.
756        *
757        *  @throw  std::bad_alloc. If memory can not be allocated.
758        *
759        *  Complexity: O(1), but internally depends upon the
760        *  complexity of the function free_list::_M_get. The part where
761        *  the bitmap headers are written has complexity: O(X),where X
762        *  is the number of blocks of size sizeof(value_type) within
763        *  the newly acquired block. Having a tight bound.
764        */
765       void
766       _S_refill_pool() _GLIBCXX_THROW(std::bad_alloc)
767       {
768 #if defined _GLIBCXX_DEBUG
769 	_S_check_for_free_blocks();
770 #endif
771 
772 	const size_t __num_bitmaps = (_S_block_size
773 				      / size_t(__detail::bits_per_block));
774 	const size_t __size_to_allocate = sizeof(size_t)
775 	  + _S_block_size * sizeof(_Alloc_block)
776 	  + __num_bitmaps * sizeof(size_t);
777 
778 	size_t* __temp =
779 	  reinterpret_cast<size_t*>(this->_M_get(__size_to_allocate));
780 	*__temp = 0;
781 	++__temp;
782 
783 	// The Header information goes at the Beginning of the Block.
784 	_Block_pair __bp =
785 	  std::make_pair(reinterpret_cast<_Alloc_block*>
786 			 (__temp + __num_bitmaps),
787 			 reinterpret_cast<_Alloc_block*>
788 			 (__temp + __num_bitmaps)
789 			 + _S_block_size - 1);
790 
791 	// Fill the Vector with this information.
792 	_S_mem_blocks.push_back(__bp);
793 
794 	for (size_t __i = 0; __i < __num_bitmaps; ++__i)
795 	  __temp[__i] = ~static_cast<size_t>(0); // 1 Indicates all Free.
796 
797 	_S_block_size *= 2;
798       }
799 
800       static _BPVector _S_mem_blocks;
801       static size_t _S_block_size;
802       static __detail::_Bitmap_counter<_Alloc_block*> _S_last_request;
803       static typename _BPVector::size_type _S_last_dealloc_index;
804 #if defined __GTHREADS
805       static __mutex_type _S_mut;
806 #endif
807 
808     public:
809 
810       /** @brief  Allocates memory for a single object of size
811        *  sizeof(_Tp).
812        *
813        *  @throw  std::bad_alloc. If memory can not be allocated.
814        *
815        *  Complexity: Worst case complexity is O(N), but that
816        *  is hardly ever hit. If and when this particular case is
817        *  encountered, the next few cases are guaranteed to have a
818        *  worst case complexity of O(1)!  That's why this function
819        *  performs very well on average. You can consider this
820        *  function to have a complexity referred to commonly as:
821        *  Amortized Constant time.
822        */
823       pointer
824       _M_allocate_single_object() _GLIBCXX_THROW(std::bad_alloc)
825       {
826 #if defined __GTHREADS
827 	__scoped_lock __bit_lock(_S_mut);
828 #endif
829 
830 	// The algorithm is something like this: The last_request
831 	// variable points to the last accessed Bit Map. When such a
832 	// condition occurs, we try to find a free block in the
833 	// current bitmap, or succeeding bitmaps until the last bitmap
834 	// is reached. If no free block turns up, we resort to First
835 	// Fit method.
836 
837 	// WARNING: Do not re-order the condition in the while
838 	// statement below, because it relies on C++'s short-circuit
839 	// evaluation. The return from _S_last_request->_M_get() will
840 	// NOT be dereference able if _S_last_request->_M_finished()
841 	// returns true. This would inevitably lead to a NULL pointer
842 	// dereference if tinkered with.
843 	while (_S_last_request._M_finished() == false
844 	       && (*(_S_last_request._M_get()) == 0))
845 	  _S_last_request.operator++();
846 
847 	if (__builtin_expect(_S_last_request._M_finished() == true, false))
848 	  {
849 	    // Fall Back to First Fit algorithm.
850 	    typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
851 	    _FFF __fff;
852 	    _BPiter __bpi = _S_find(__detail::_Functor_Ref<_FFF>(__fff));
853 
854 	    if (__bpi != _S_mem_blocks.end())
855 	      {
856 		// Search was successful. Ok, now mark the first bit from
857 		// the right as 0, meaning Allocated. This bit is obtained
858 		// by calling _M_get() on __fff.
859 		size_t __nz_bit = _Bit_scan_forward(*__fff._M_get());
860 		__detail::__bit_allocate(__fff._M_get(), __nz_bit);
861 
862 		_S_last_request._M_reset(__bpi - _S_mem_blocks.begin());
863 
864 		// Now, get the address of the bit we marked as allocated.
865 		pointer __ret = reinterpret_cast<pointer>
866 		  (__bpi->first + __fff._M_offset() + __nz_bit);
867 		size_t* __puse_count =
868 		  reinterpret_cast<size_t*>
869 		  (__bpi->first) - (__detail::__num_bitmaps(*__bpi) + 1);
870 
871 		++(*__puse_count);
872 		return __ret;
873 	      }
874 	    else
875 	      {
876 		// Search was unsuccessful. We Add more memory to the
877 		// pool by calling _S_refill_pool().
878 		_S_refill_pool();
879 
880 		// _M_Reset the _S_last_request structure to the first
881 		// free block's bit map.
882 		_S_last_request._M_reset(_S_mem_blocks.size() - 1);
883 
884 		// Now, mark that bit as allocated.
885 	      }
886 	  }
887 
888 	// _S_last_request holds a pointer to a valid bit map, that
889 	// points to a free block in memory.
890 	size_t __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());
891 	__detail::__bit_allocate(_S_last_request._M_get(), __nz_bit);
892 
893 	pointer __ret = reinterpret_cast<pointer>
894 	  (_S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit);
895 
896 	size_t* __puse_count = reinterpret_cast<size_t*>
897 	  (_S_mem_blocks[_S_last_request._M_where()].first)
898 	  - (__detail::
899 	     __num_bitmaps(_S_mem_blocks[_S_last_request._M_where()]) + 1);
900 
901 	++(*__puse_count);
902 	return __ret;
903       }
904 
905       /** @brief  Deallocates memory that belongs to a single object of
906        *  size sizeof(_Tp).
907        *
908        *  Complexity: O(lg(N)), but the worst case is not hit
909        *  often!  This is because containers usually deallocate memory
910        *  close to each other and this case is handled in O(1) time by
911        *  the deallocate function.
912        */
913       void
914       _M_deallocate_single_object(pointer __p) throw()
915       {
916 #if defined __GTHREADS
917 	__scoped_lock __bit_lock(_S_mut);
918 #endif
919 	_Alloc_block* __real_p = reinterpret_cast<_Alloc_block*>(__p);
920 
921 	typedef typename _BPVector::iterator _Iterator;
922 	typedef typename _BPVector::difference_type _Difference_type;
923 
924 	_Difference_type __diff;
925 	long __displacement;
926 
927 	_GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
928 
929 	__detail::_Inclusive_between<_Alloc_block*> __ibt(__real_p);
930 	if (__ibt(_S_mem_blocks[_S_last_dealloc_index]))
931 	  {
932 	    _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index
933 				  <= _S_mem_blocks.size() - 1);
934 
935 	    // Initial Assumption was correct!
936 	    __diff = _S_last_dealloc_index;
937 	    __displacement = __real_p - _S_mem_blocks[__diff].first;
938 	  }
939 	else
940 	  {
941 	    _Iterator _iter = _S_find(__ibt);
942 
943 	    _GLIBCXX_DEBUG_ASSERT(_iter != _S_mem_blocks.end());
944 
945 	    __diff = _iter - _S_mem_blocks.begin();
946 	    __displacement = __real_p - _S_mem_blocks[__diff].first;
947 	    _S_last_dealloc_index = __diff;
948 	  }
949 
950 	// Get the position of the iterator that has been found.
951 	const size_t __rotate = (__displacement
952 				 % size_t(__detail::bits_per_block));
953 	size_t* __bitmapC =
954 	  reinterpret_cast<size_t*>
955 	  (_S_mem_blocks[__diff].first) - 1;
956 	__bitmapC -= (__displacement / size_t(__detail::bits_per_block));
957 
958 	__detail::__bit_free(__bitmapC, __rotate);
959 	size_t* __puse_count = reinterpret_cast<size_t*>
960 	  (_S_mem_blocks[__diff].first)
961 	  - (__detail::__num_bitmaps(_S_mem_blocks[__diff]) + 1);
962 
963 	_GLIBCXX_DEBUG_ASSERT(*__puse_count != 0);
964 
965 	--(*__puse_count);
966 
967 	if (__builtin_expect(*__puse_count == 0, false))
968 	  {
969 	    _S_block_size /= 2;
970 
971 	    // We can safely remove this block.
972 	    // _Block_pair __bp = _S_mem_blocks[__diff];
973 	    this->_M_insert(__puse_count);
974 	    _S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);
975 
976 	    // Reset the _S_last_request variable to reflect the
977 	    // erased block. We do this to protect future requests
978 	    // after the last block has been removed from a particular
979 	    // memory Chunk, which in turn has been returned to the
980 	    // free list, and hence had been erased from the vector,
981 	    // so the size of the vector gets reduced by 1.
982 	    if ((_Difference_type)_S_last_request._M_where() >= __diff--)
983 	      _S_last_request._M_reset(__diff);
984 
985 	    // If the Index into the vector of the region of memory
986 	    // that might hold the next address that will be passed to
987 	    // deallocated may have been invalidated due to the above
988 	    // erase procedure being called on the vector, hence we
989 	    // try to restore this invariant too.
990 	    if (_S_last_dealloc_index >= _S_mem_blocks.size())
991 	      {
992 		_S_last_dealloc_index =(__diff != -1 ? __diff : 0);
993 		_GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
994 	      }
995 	  }
996       }
997 
998     public:
999       bitmap_allocator() _GLIBCXX_USE_NOEXCEPT
1000       { }
1001 
1002       bitmap_allocator(const bitmap_allocator&) _GLIBCXX_USE_NOEXCEPT
1003       { }
1004 
1005       template<typename _Tp1>
1006         bitmap_allocator(const bitmap_allocator<_Tp1>&) _GLIBCXX_USE_NOEXCEPT
1007         { }
1008 
1009       ~bitmap_allocator() _GLIBCXX_USE_NOEXCEPT
1010       { }
1011 
1012       pointer
1013       allocate(size_type __n)
1014       {
1015 	if (__n > this->max_size())
1016 	  std::__throw_bad_alloc();
1017 
1018 #if __cpp_aligned_new
1019 	if (alignof(value_type) > __STDCPP_DEFAULT_NEW_ALIGNMENT__)
1020 	  {
1021 	    const size_type __b = __n * sizeof(value_type);
1022 	    std::align_val_t __al = std::align_val_t(alignof(value_type));
1023 	    return static_cast<pointer>(::operator new(__b, __al));
1024 	  }
1025 #endif
1026 
1027 	if (__builtin_expect(__n == 1, true))
1028 	  return this->_M_allocate_single_object();
1029 	else
1030 	  {
1031 	    const size_type __b = __n * sizeof(value_type);
1032 	    return reinterpret_cast<pointer>(::operator new(__b));
1033 	  }
1034       }
1035 
1036       pointer
1037       allocate(size_type __n, typename bitmap_allocator<void>::const_pointer)
1038       { return allocate(__n); }
1039 
1040       void
1041       deallocate(pointer __p, size_type __n) throw()
1042       {
1043 	if (__builtin_expect(__p != 0, true))
1044 	  {
1045 #if __cpp_aligned_new
1046 	    // Types with extended alignment are handled by operator delete.
1047 	    if (alignof(value_type) > __STDCPP_DEFAULT_NEW_ALIGNMENT__)
1048 	      {
1049 		::operator delete(__p, std::align_val_t(alignof(value_type)));
1050 		return;
1051 	      }
1052 #endif
1053 
1054 	    if (__builtin_expect(__n == 1, true))
1055 	      this->_M_deallocate_single_object(__p);
1056 	    else
1057 	      ::operator delete(__p);
1058 	  }
1059       }
1060 
1061       pointer
1062       address(reference __r) const _GLIBCXX_NOEXCEPT
1063       { return std::__addressof(__r); }
1064 
1065       const_pointer
1066       address(const_reference __r) const _GLIBCXX_NOEXCEPT
1067       { return std::__addressof(__r); }
1068 
1069       size_type
1070       max_size() const _GLIBCXX_USE_NOEXCEPT
1071       { return size_type(-1) / sizeof(value_type); }
1072 
1073 #if __cplusplus >= 201103L
1074       template<typename _Up, typename... _Args>
1075         void
1076         construct(_Up* __p, _Args&&... __args)
1077 	{ ::new((void *)__p) _Up(std::forward<_Args>(__args)...); }
1078 
1079       template<typename _Up>
1080         void
1081         destroy(_Up* __p)
1082         { __p->~_Up(); }
1083 #else
1084       void
1085       construct(pointer __p, const_reference __data)
1086       { ::new((void *)__p) value_type(__data); }
1087 
1088       void
1089       destroy(pointer __p)
1090       { __p->~value_type(); }
1091 #endif
1092     };
1093 
1094   template<typename _Tp1, typename _Tp2>
1095     bool
1096     operator==(const bitmap_allocator<_Tp1>&,
1097 	       const bitmap_allocator<_Tp2>&) throw()
1098     { return true; }
1099 
1100   template<typename _Tp1, typename _Tp2>
1101     bool
1102     operator!=(const bitmap_allocator<_Tp1>&,
1103 	       const bitmap_allocator<_Tp2>&) throw()
1104   { return false; }
1105 
1106   // Static member definitions.
1107   template<typename _Tp>
1108     typename bitmap_allocator<_Tp>::_BPVector
1109     bitmap_allocator<_Tp>::_S_mem_blocks;
1110 
1111   template<typename _Tp>
1112     size_t bitmap_allocator<_Tp>::_S_block_size =
1113     2 * size_t(__detail::bits_per_block);
1114 
1115   template<typename _Tp>
1116     typename bitmap_allocator<_Tp>::_BPVector::size_type
1117     bitmap_allocator<_Tp>::_S_last_dealloc_index = 0;
1118 
1119   template<typename _Tp>
1120     __detail::_Bitmap_counter
1121       <typename bitmap_allocator<_Tp>::_Alloc_block*>
1122     bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);
1123 
1124 #if defined __GTHREADS
1125   template<typename _Tp>
1126     typename bitmap_allocator<_Tp>::__mutex_type
1127     bitmap_allocator<_Tp>::_S_mut;
1128 #endif
1129 
1130 _GLIBCXX_END_NAMESPACE_VERSION
1131 } // namespace __gnu_cxx
1132 
1133 #endif
1134