1 // Internal policy header for TR1 unordered_set and unordered_map -*- C++ -*-
2 
3 // Copyright (C) 2010-2018 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file tr1/hashtable_policy.h
26  *  This is an internal header file, included by other library headers.
27  *  Do not attempt to use it directly.
28  *  @headername{tr1/unordered_map, tr1/unordered_set}
29  */
30 
31 namespace std _GLIBCXX_VISIBILITY(default)
32 {
33 _GLIBCXX_BEGIN_NAMESPACE_VERSION
34 
35 namespace tr1
36 {
37 namespace __detail
38 {
39   // Helper function: return distance(first, last) for forward
40   // iterators, or 0 for input iterators.
41   template<class _Iterator>
42     inline typename std::iterator_traits<_Iterator>::difference_type
43     __distance_fw(_Iterator __first, _Iterator __last,
44 		  std::input_iterator_tag)
45     { return 0; }
46 
47   template<class _Iterator>
48     inline typename std::iterator_traits<_Iterator>::difference_type
49     __distance_fw(_Iterator __first, _Iterator __last,
50 		  std::forward_iterator_tag)
51     { return std::distance(__first, __last); }
52 
53   template<class _Iterator>
54     inline typename std::iterator_traits<_Iterator>::difference_type
55     __distance_fw(_Iterator __first, _Iterator __last)
56     {
57       typedef typename std::iterator_traits<_Iterator>::iterator_category _Tag;
58       return __distance_fw(__first, __last, _Tag());
59     }
60 
61   // Auxiliary types used for all instantiations of _Hashtable: nodes
62   // and iterators.
63 
64   // Nodes, used to wrap elements stored in the hash table.  A policy
65   // template parameter of class template _Hashtable controls whether
66   // nodes also store a hash code. In some cases (e.g. strings) this
67   // may be a performance win.
68   template<typename _Value, bool __cache_hash_code>
69     struct _Hash_node;
70 
71   template<typename _Value>
72     struct _Hash_node<_Value, true>
73     {
74       _Value       _M_v;
75       std::size_t  _M_hash_code;
76       _Hash_node*  _M_next;
77     };
78 
79   template<typename _Value>
80     struct _Hash_node<_Value, false>
81     {
82       _Value       _M_v;
83       _Hash_node*  _M_next;
84     };
85 
86   // Local iterators, used to iterate within a bucket but not between
87   // buckets.
88   template<typename _Value, bool __cache>
89     struct _Node_iterator_base
90     {
91       _Node_iterator_base(_Hash_node<_Value, __cache>* __p)
92       : _M_cur(__p) { }
93 
94       void
95       _M_incr()
96       { _M_cur = _M_cur->_M_next; }
97 
98       _Hash_node<_Value, __cache>*  _M_cur;
99     };
100 
101   template<typename _Value, bool __cache>
102     inline bool
103     operator==(const _Node_iterator_base<_Value, __cache>& __x,
104 	       const _Node_iterator_base<_Value, __cache>& __y)
105     { return __x._M_cur == __y._M_cur; }
106 
107   template<typename _Value, bool __cache>
108     inline bool
109     operator!=(const _Node_iterator_base<_Value, __cache>& __x,
110 	       const _Node_iterator_base<_Value, __cache>& __y)
111     { return __x._M_cur != __y._M_cur; }
112 
113   template<typename _Value, bool __constant_iterators, bool __cache>
114     struct _Node_iterator
115     : public _Node_iterator_base<_Value, __cache>
116     {
117       typedef _Value                                   value_type;
118       typedef typename
119       __gnu_cxx::__conditional_type<__constant_iterators,
120 				    const _Value*, _Value*>::__type
121                                                        pointer;
122       typedef typename
123       __gnu_cxx::__conditional_type<__constant_iterators,
124 				    const _Value&, _Value&>::__type
125                                                        reference;
126       typedef std::ptrdiff_t                           difference_type;
127       typedef std::forward_iterator_tag                iterator_category;
128 
129       _Node_iterator()
130       : _Node_iterator_base<_Value, __cache>(0) { }
131 
132       explicit
133       _Node_iterator(_Hash_node<_Value, __cache>* __p)
134       : _Node_iterator_base<_Value, __cache>(__p) { }
135 
136       reference
137       operator*() const
138       { return this->_M_cur->_M_v; }
139 
140       pointer
141       operator->() const
142       { return std::__addressof(this->_M_cur->_M_v); }
143 
144       _Node_iterator&
145       operator++()
146       {
147 	this->_M_incr();
148 	return *this;
149       }
150 
151       _Node_iterator
152       operator++(int)
153       {
154 	_Node_iterator __tmp(*this);
155 	this->_M_incr();
156 	return __tmp;
157       }
158     };
159 
160   template<typename _Value, bool __constant_iterators, bool __cache>
161     struct _Node_const_iterator
162     : public _Node_iterator_base<_Value, __cache>
163     {
164       typedef _Value                                   value_type;
165       typedef const _Value*                            pointer;
166       typedef const _Value&                            reference;
167       typedef std::ptrdiff_t                           difference_type;
168       typedef std::forward_iterator_tag                iterator_category;
169 
170       _Node_const_iterator()
171       : _Node_iterator_base<_Value, __cache>(0) { }
172 
173       explicit
174       _Node_const_iterator(_Hash_node<_Value, __cache>* __p)
175       : _Node_iterator_base<_Value, __cache>(__p) { }
176 
177       _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
178 			   __cache>& __x)
179       : _Node_iterator_base<_Value, __cache>(__x._M_cur) { }
180 
181       reference
182       operator*() const
183       { return this->_M_cur->_M_v; }
184 
185       pointer
186       operator->() const
187       { return std::__addressof(this->_M_cur->_M_v); }
188 
189       _Node_const_iterator&
190       operator++()
191       {
192 	this->_M_incr();
193 	return *this;
194       }
195 
196       _Node_const_iterator
197       operator++(int)
198       {
199 	_Node_const_iterator __tmp(*this);
200 	this->_M_incr();
201 	return __tmp;
202       }
203     };
204 
205   template<typename _Value, bool __cache>
206     struct _Hashtable_iterator_base
207     {
208       _Hashtable_iterator_base(_Hash_node<_Value, __cache>* __node,
209 			       _Hash_node<_Value, __cache>** __bucket)
210       : _M_cur_node(__node), _M_cur_bucket(__bucket) { }
211 
212       void
213       _M_incr()
214       {
215 	_M_cur_node = _M_cur_node->_M_next;
216 	if (!_M_cur_node)
217 	  _M_incr_bucket();
218       }
219 
220       void
221       _M_incr_bucket();
222 
223       _Hash_node<_Value, __cache>*   _M_cur_node;
224       _Hash_node<_Value, __cache>**  _M_cur_bucket;
225     };
226 
227   // Global iterators, used for arbitrary iteration within a hash
228   // table.  Larger and more expensive than local iterators.
229   template<typename _Value, bool __cache>
230     void
231     _Hashtable_iterator_base<_Value, __cache>::
232     _M_incr_bucket()
233     {
234       ++_M_cur_bucket;
235 
236       // This loop requires the bucket array to have a non-null sentinel.
237       while (!*_M_cur_bucket)
238 	++_M_cur_bucket;
239       _M_cur_node = *_M_cur_bucket;
240     }
241 
242   template<typename _Value, bool __cache>
243     inline bool
244     operator==(const _Hashtable_iterator_base<_Value, __cache>& __x,
245 	       const _Hashtable_iterator_base<_Value, __cache>& __y)
246     { return __x._M_cur_node == __y._M_cur_node; }
247 
248   template<typename _Value, bool __cache>
249     inline bool
250     operator!=(const _Hashtable_iterator_base<_Value, __cache>& __x,
251 	       const _Hashtable_iterator_base<_Value, __cache>& __y)
252     { return __x._M_cur_node != __y._M_cur_node; }
253 
254   template<typename _Value, bool __constant_iterators, bool __cache>
255     struct _Hashtable_iterator
256     : public _Hashtable_iterator_base<_Value, __cache>
257     {
258       typedef _Value                                   value_type;
259       typedef typename
260       __gnu_cxx::__conditional_type<__constant_iterators,
261 				    const _Value*, _Value*>::__type
262                                                        pointer;
263       typedef typename
264       __gnu_cxx::__conditional_type<__constant_iterators,
265 				    const _Value&, _Value&>::__type
266                                                        reference;
267       typedef std::ptrdiff_t                           difference_type;
268       typedef std::forward_iterator_tag                iterator_category;
269 
270       _Hashtable_iterator()
271       : _Hashtable_iterator_base<_Value, __cache>(0, 0) { }
272 
273       _Hashtable_iterator(_Hash_node<_Value, __cache>* __p,
274 			  _Hash_node<_Value, __cache>** __b)
275       : _Hashtable_iterator_base<_Value, __cache>(__p, __b) { }
276 
277       explicit
278       _Hashtable_iterator(_Hash_node<_Value, __cache>** __b)
279       : _Hashtable_iterator_base<_Value, __cache>(*__b, __b) { }
280 
281       reference
282       operator*() const
283       { return this->_M_cur_node->_M_v; }
284 
285       pointer
286       operator->() const
287       { return std::__addressof(this->_M_cur_node->_M_v); }
288 
289       _Hashtable_iterator&
290       operator++()
291       {
292 	this->_M_incr();
293 	return *this;
294       }
295 
296       _Hashtable_iterator
297       operator++(int)
298       {
299 	_Hashtable_iterator __tmp(*this);
300 	this->_M_incr();
301 	return __tmp;
302       }
303     };
304 
305   template<typename _Value, bool __constant_iterators, bool __cache>
306     struct _Hashtable_const_iterator
307     : public _Hashtable_iterator_base<_Value, __cache>
308     {
309       typedef _Value                                   value_type;
310       typedef const _Value*                            pointer;
311       typedef const _Value&                            reference;
312       typedef std::ptrdiff_t                           difference_type;
313       typedef std::forward_iterator_tag                iterator_category;
314 
315       _Hashtable_const_iterator()
316       : _Hashtable_iterator_base<_Value, __cache>(0, 0) { }
317 
318       _Hashtable_const_iterator(_Hash_node<_Value, __cache>* __p,
319 				_Hash_node<_Value, __cache>** __b)
320       : _Hashtable_iterator_base<_Value, __cache>(__p, __b) { }
321 
322       explicit
323       _Hashtable_const_iterator(_Hash_node<_Value, __cache>** __b)
324       : _Hashtable_iterator_base<_Value, __cache>(*__b, __b) { }
325 
326       _Hashtable_const_iterator(const _Hashtable_iterator<_Value,
327 				__constant_iterators, __cache>& __x)
328       : _Hashtable_iterator_base<_Value, __cache>(__x._M_cur_node,
329 						  __x._M_cur_bucket) { }
330 
331       reference
332       operator*() const
333       { return this->_M_cur_node->_M_v; }
334 
335       pointer
336       operator->() const
337       { return std::__addressof(this->_M_cur_node->_M_v); }
338 
339       _Hashtable_const_iterator&
340       operator++()
341       {
342 	this->_M_incr();
343 	return *this;
344       }
345 
346       _Hashtable_const_iterator
347       operator++(int)
348       {
349 	_Hashtable_const_iterator __tmp(*this);
350 	this->_M_incr();
351 	return __tmp;
352       }
353     };
354 
355 
356   // Many of class template _Hashtable's template parameters are policy
357   // classes.  These are defaults for the policies.
358 
359   // Default range hashing function: use division to fold a large number
360   // into the range [0, N).
361   struct _Mod_range_hashing
362   {
363     typedef std::size_t first_argument_type;
364     typedef std::size_t second_argument_type;
365     typedef std::size_t result_type;
366 
367     result_type
368     operator()(first_argument_type __num, second_argument_type __den) const
369     { return __num % __den; }
370   };
371 
372   // Default ranged hash function H.  In principle it should be a
373   // function object composed from objects of type H1 and H2 such that
374   // h(k, N) = h2(h1(k), N), but that would mean making extra copies of
375   // h1 and h2.  So instead we'll just use a tag to tell class template
376   // hashtable to do that composition.
377   struct _Default_ranged_hash { };
378 
379   // Default value for rehash policy.  Bucket size is (usually) the
380   // smallest prime that keeps the load factor small enough.
381   struct _Prime_rehash_policy
382   {
383     _Prime_rehash_policy(float __z = 1.0)
384     : _M_max_load_factor(__z), _M_growth_factor(2.f), _M_next_resize(0) { }
385 
386     float
387     max_load_factor() const
388     { return _M_max_load_factor; }
389 
390     // Return a bucket size no smaller than n.
391     std::size_t
392     _M_next_bkt(std::size_t __n) const;
393 
394     // Return a bucket count appropriate for n elements
395     std::size_t
396     _M_bkt_for_elements(std::size_t __n) const;
397 
398     // __n_bkt is current bucket count, __n_elt is current element count,
399     // and __n_ins is number of elements to be inserted.  Do we need to
400     // increase bucket count?  If so, return make_pair(true, n), where n
401     // is the new bucket count.  If not, return make_pair(false, 0).
402     std::pair<bool, std::size_t>
403     _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
404 		   std::size_t __n_ins) const;
405 
406     enum { _S_n_primes = sizeof(unsigned long) != 8 ? 256 : 256 + 48 };
407 
408     float                _M_max_load_factor;
409     float                _M_growth_factor;
410     mutable std::size_t  _M_next_resize;
411   };
412 
413   extern const unsigned long __prime_list[];
414 
415   // XXX This is a hack.  There's no good reason for any of
416   // _Prime_rehash_policy's member functions to be inline.
417 
418   // Return a prime no smaller than n.
419   inline std::size_t
420   _Prime_rehash_policy::
421   _M_next_bkt(std::size_t __n) const
422   {
423     // Don't include the last prime in the search, so that anything
424     // higher than the second-to-last prime returns a past-the-end
425     // iterator that can be dereferenced to get the last prime.
426     const unsigned long* __p
427       = std::lower_bound(__prime_list, __prime_list + _S_n_primes - 1, __n);
428     _M_next_resize =
429       static_cast<std::size_t>(__builtin_ceil(*__p * _M_max_load_factor));
430     return *__p;
431   }
432 
433   // Return the smallest prime p such that alpha p >= n, where alpha
434   // is the load factor.
435   inline std::size_t
436   _Prime_rehash_policy::
437   _M_bkt_for_elements(std::size_t __n) const
438   {
439     const float __min_bkts = __n / _M_max_load_factor;
440     return _M_next_bkt(__builtin_ceil(__min_bkts));
441   }
442 
443   // Finds the smallest prime p such that alpha p > __n_elt + __n_ins.
444   // If p > __n_bkt, return make_pair(true, p); otherwise return
445   // make_pair(false, 0).  In principle this isn't very different from
446   // _M_bkt_for_elements.
447 
448   // The only tricky part is that we're caching the element count at
449   // which we need to rehash, so we don't have to do a floating-point
450   // multiply for every insertion.
451 
452   inline std::pair<bool, std::size_t>
453   _Prime_rehash_policy::
454   _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
455 		 std::size_t __n_ins) const
456   {
457     if (__n_elt + __n_ins > _M_next_resize)
458       {
459 	float __min_bkts = ((float(__n_ins) + float(__n_elt))
460 			    / _M_max_load_factor);
461 	if (__min_bkts > __n_bkt)
462 	  {
463 	    __min_bkts = std::max(__min_bkts, _M_growth_factor * __n_bkt);
464 	    return std::make_pair(true,
465 				  _M_next_bkt(__builtin_ceil(__min_bkts)));
466 	  }
467 	else
468 	  {
469 	    _M_next_resize = static_cast<std::size_t>
470 	      (__builtin_ceil(__n_bkt * _M_max_load_factor));
471 	    return std::make_pair(false, 0);
472 	  }
473       }
474     else
475       return std::make_pair(false, 0);
476   }
477 
478   // Base classes for std::tr1::_Hashtable.  We define these base
479   // classes because in some cases we want to do different things
480   // depending on the value of a policy class.  In some cases the
481   // policy class affects which member functions and nested typedefs
482   // are defined; we handle that by specializing base class templates.
483   // Several of the base class templates need to access other members
484   // of class template _Hashtable, so we use the "curiously recurring
485   // template pattern" for them.
486 
487   // class template _Map_base.  If the hashtable has a value type of the
488   // form pair<T1, T2> and a key extraction policy that returns the
489   // first part of the pair, the hashtable gets a mapped_type typedef.
490   // If it satisfies those criteria and also has unique keys, then it
491   // also gets an operator[].
492   template<typename _Key, typename _Value, typename _Ex, bool __unique,
493 	   typename _Hashtable>
494     struct _Map_base { };
495 
496   template<typename _Key, typename _Pair, typename _Hashtable>
497     struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, false, _Hashtable>
498     {
499       typedef typename _Pair::second_type mapped_type;
500     };
501 
502   template<typename _Key, typename _Pair, typename _Hashtable>
503     struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>
504     {
505       typedef typename _Pair::second_type mapped_type;
506 
507       mapped_type&
508       operator[](const _Key& __k);
509     };
510 
511   template<typename _Key, typename _Pair, typename _Hashtable>
512     typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
513 		       true, _Hashtable>::mapped_type&
514     _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
515     operator[](const _Key& __k)
516     {
517       _Hashtable* __h = static_cast<_Hashtable*>(this);
518       typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
519       std::size_t __n = __h->_M_bucket_index(__k, __code,
520 					     __h->_M_bucket_count);
521 
522       typename _Hashtable::_Node* __p =
523 	__h->_M_find_node(__h->_M_buckets[__n], __k, __code);
524       if (!__p)
525 	return __h->_M_insert_bucket(std::make_pair(__k, mapped_type()),
526 				     __n, __code)->second;
527       return (__p->_M_v).second;
528     }
529 
530   // class template _Rehash_base.  Give hashtable the max_load_factor
531   // functions iff the rehash policy is _Prime_rehash_policy.
532   template<typename _RehashPolicy, typename _Hashtable>
533     struct _Rehash_base { };
534 
535   template<typename _Hashtable>
536     struct _Rehash_base<_Prime_rehash_policy, _Hashtable>
537     {
538       float
539       max_load_factor() const
540       {
541 	const _Hashtable* __this = static_cast<const _Hashtable*>(this);
542 	return __this->__rehash_policy().max_load_factor();
543       }
544 
545       void
546       max_load_factor(float __z)
547       {
548 	_Hashtable* __this = static_cast<_Hashtable*>(this);
549 	__this->__rehash_policy(_Prime_rehash_policy(__z));
550       }
551     };
552 
553   // Class template _Hash_code_base.  Encapsulates two policy issues that
554   // aren't quite orthogonal.
555   //   (1) the difference between using a ranged hash function and using
556   //       the combination of a hash function and a range-hashing function.
557   //       In the former case we don't have such things as hash codes, so
558   //       we have a dummy type as placeholder.
559   //   (2) Whether or not we cache hash codes.  Caching hash codes is
560   //       meaningless if we have a ranged hash function.
561   // We also put the key extraction and equality comparison function
562   // objects here, for convenience.
563 
564   // Primary template: unused except as a hook for specializations.
565   template<typename _Key, typename _Value,
566 	   typename _ExtractKey, typename _Equal,
567 	   typename _H1, typename _H2, typename _Hash,
568 	   bool __cache_hash_code>
569     struct _Hash_code_base;
570 
571   // Specialization: ranged hash function, no caching hash codes.  H1
572   // and H2 are provided but ignored.  We define a dummy hash code type.
573   template<typename _Key, typename _Value,
574 	   typename _ExtractKey, typename _Equal,
575 	   typename _H1, typename _H2, typename _Hash>
576     struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
577 			   _Hash, false>
578     {
579     protected:
580       _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
581 		      const _H1&, const _H2&, const _Hash& __h)
582       : _M_extract(__ex), _M_eq(__eq), _M_ranged_hash(__h) { }
583 
584       typedef void* _Hash_code_type;
585 
586       _Hash_code_type
587       _M_hash_code(const _Key& __key) const
588       { return 0; }
589 
590       std::size_t
591       _M_bucket_index(const _Key& __k, _Hash_code_type,
592 		      std::size_t __n) const
593       { return _M_ranged_hash(__k, __n); }
594 
595       std::size_t
596       _M_bucket_index(const _Hash_node<_Value, false>* __p,
597 		      std::size_t __n) const
598       { return _M_ranged_hash(_M_extract(__p->_M_v), __n); }
599 
600       bool
601       _M_compare(const _Key& __k, _Hash_code_type,
602 		 _Hash_node<_Value, false>* __n) const
603       { return _M_eq(__k, _M_extract(__n->_M_v)); }
604 
605       void
606       _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
607       { }
608 
609       void
610       _M_copy_code(_Hash_node<_Value, false>*,
611 		   const _Hash_node<_Value, false>*) const
612       { }
613 
614       void
615       _M_swap(_Hash_code_base& __x)
616       {
617 	std::swap(_M_extract, __x._M_extract);
618 	std::swap(_M_eq, __x._M_eq);
619 	std::swap(_M_ranged_hash, __x._M_ranged_hash);
620       }
621 
622     protected:
623       _ExtractKey  _M_extract;
624       _Equal       _M_eq;
625       _Hash        _M_ranged_hash;
626     };
627 
628 
629   // No specialization for ranged hash function while caching hash codes.
630   // That combination is meaningless, and trying to do it is an error.
631 
632 
633   // Specialization: ranged hash function, cache hash codes.  This
634   // combination is meaningless, so we provide only a declaration
635   // and no definition.
636   template<typename _Key, typename _Value,
637 	   typename _ExtractKey, typename _Equal,
638 	   typename _H1, typename _H2, typename _Hash>
639     struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
640 			   _Hash, true>;
641 
642   // Specialization: hash function and range-hashing function, no
643   // caching of hash codes.  H is provided but ignored.  Provides
644   // typedef and accessor required by TR1.
645   template<typename _Key, typename _Value,
646 	   typename _ExtractKey, typename _Equal,
647 	   typename _H1, typename _H2>
648     struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
649 			   _Default_ranged_hash, false>
650     {
651       typedef _H1 hasher;
652 
653       hasher
654       hash_function() const
655       { return _M_h1; }
656 
657     protected:
658       _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
659 		      const _H1& __h1, const _H2& __h2,
660 		      const _Default_ranged_hash&)
661       : _M_extract(__ex), _M_eq(__eq), _M_h1(__h1), _M_h2(__h2) { }
662 
663       typedef std::size_t _Hash_code_type;
664 
665       _Hash_code_type
666       _M_hash_code(const _Key& __k) const
667       { return _M_h1(__k); }
668 
669       std::size_t
670       _M_bucket_index(const _Key&, _Hash_code_type __c,
671 		      std::size_t __n) const
672       { return _M_h2(__c, __n); }
673 
674       std::size_t
675       _M_bucket_index(const _Hash_node<_Value, false>* __p,
676 		      std::size_t __n) const
677       { return _M_h2(_M_h1(_M_extract(__p->_M_v)), __n); }
678 
679       bool
680       _M_compare(const _Key& __k, _Hash_code_type,
681 		 _Hash_node<_Value, false>* __n) const
682       { return _M_eq(__k, _M_extract(__n->_M_v)); }
683 
684       void
685       _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
686       { }
687 
688       void
689       _M_copy_code(_Hash_node<_Value, false>*,
690 		   const _Hash_node<_Value, false>*) const
691       { }
692 
693       void
694       _M_swap(_Hash_code_base& __x)
695       {
696 	std::swap(_M_extract, __x._M_extract);
697 	std::swap(_M_eq, __x._M_eq);
698 	std::swap(_M_h1, __x._M_h1);
699 	std::swap(_M_h2, __x._M_h2);
700       }
701 
702     protected:
703       _ExtractKey  _M_extract;
704       _Equal       _M_eq;
705       _H1          _M_h1;
706       _H2          _M_h2;
707     };
708 
709   // Specialization: hash function and range-hashing function,
710   // caching hash codes.  H is provided but ignored.  Provides
711   // typedef and accessor required by TR1.
712   template<typename _Key, typename _Value,
713 	   typename _ExtractKey, typename _Equal,
714 	   typename _H1, typename _H2>
715     struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
716 			   _Default_ranged_hash, true>
717     {
718       typedef _H1 hasher;
719 
720       hasher
721       hash_function() const
722       { return _M_h1; }
723 
724     protected:
725       _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
726 		      const _H1& __h1, const _H2& __h2,
727 		      const _Default_ranged_hash&)
728       : _M_extract(__ex), _M_eq(__eq), _M_h1(__h1), _M_h2(__h2) { }
729 
730       typedef std::size_t _Hash_code_type;
731 
732       _Hash_code_type
733       _M_hash_code(const _Key& __k) const
734       { return _M_h1(__k); }
735 
736       std::size_t
737       _M_bucket_index(const _Key&, _Hash_code_type __c,
738 		      std::size_t __n) const
739       { return _M_h2(__c, __n); }
740 
741       std::size_t
742       _M_bucket_index(const _Hash_node<_Value, true>* __p,
743 		      std::size_t __n) const
744       { return _M_h2(__p->_M_hash_code, __n); }
745 
746       bool
747       _M_compare(const _Key& __k, _Hash_code_type __c,
748 		 _Hash_node<_Value, true>* __n) const
749       { return __c == __n->_M_hash_code && _M_eq(__k, _M_extract(__n->_M_v)); }
750 
751       void
752       _M_store_code(_Hash_node<_Value, true>* __n, _Hash_code_type __c) const
753       { __n->_M_hash_code = __c; }
754 
755       void
756       _M_copy_code(_Hash_node<_Value, true>* __to,
757 		   const _Hash_node<_Value, true>* __from) const
758       { __to->_M_hash_code = __from->_M_hash_code; }
759 
760       void
761       _M_swap(_Hash_code_base& __x)
762       {
763 	std::swap(_M_extract, __x._M_extract);
764 	std::swap(_M_eq, __x._M_eq);
765 	std::swap(_M_h1, __x._M_h1);
766 	std::swap(_M_h2, __x._M_h2);
767       }
768 
769     protected:
770       _ExtractKey  _M_extract;
771       _Equal       _M_eq;
772       _H1          _M_h1;
773       _H2          _M_h2;
774     };
775 } // namespace __detail
776 }
777 
778 _GLIBCXX_END_NAMESPACE_VERSION
779 }
780