1 // Copyright (C) 2002-2018 Free Software Foundation, Inc.
2 //
3 // This file is part of GCC.
4 //
5 // GCC is free software; you can redistribute it and/or modify
6 // it under the terms of the GNU General Public License as published by
7 // the Free Software Foundation; either version 3, or (at your option)
8 // any later version.
9 
10 // GCC is distributed in the hope that it will be useful,
11 // but WITHOUT ANY WARRANTY; without even the implied warranty of
12 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 // GNU General Public License for more details.
14 
15 // Under Section 7 of GPL version 3, you are granted additional
16 // permissions described in the GCC Runtime Library Exception, version
17 // 3.1, as published by the Free Software Foundation.
18 
19 // You should have received a copy of the GNU General Public License and
20 // a copy of the GCC Runtime Library Exception along with this program;
21 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
22 // <http://www.gnu.org/licenses/>.
23 
24 // Written by Mark Mitchell, CodeSourcery LLC, <mark@codesourcery.com>
25 // Thread support written by Jason Merrill, Red Hat Inc. <jason@redhat.com>
26 
27 #include <bits/c++config.h>
28 #include <cxxabi.h>
29 #include <exception>
30 #include <new>
31 #include <ext/atomicity.h>
32 #include <ext/concurrence.h>
33 #include <bits/atomic_lockfree_defines.h>
34 #if defined(__GTHREADS) && defined(__GTHREAD_HAS_COND) \
35   && (ATOMIC_INT_LOCK_FREE > 1) && defined(_GLIBCXX_HAVE_LINUX_FUTEX)
36 # include <climits>
37 # include <syscall.h>
38 # include <unistd.h>
39 # define _GLIBCXX_USE_FUTEX
40 # define _GLIBCXX_FUTEX_WAIT 0
41 # define _GLIBCXX_FUTEX_WAKE 1
42 #endif
43 
44 // The IA64/generic ABI uses the first byte of the guard variable.
45 // The ARM EABI uses the least significant bit.
46 
47 // Thread-safe static local initialization support.
48 #ifdef __GTHREADS
49 # ifndef _GLIBCXX_USE_FUTEX
50 namespace
51 {
52   // A single mutex controlling all static initializations.
53   static __gnu_cxx::__recursive_mutex* static_mutex;
54 
55   typedef char fake_recursive_mutex[sizeof(__gnu_cxx::__recursive_mutex)]
56   __attribute__ ((aligned(__alignof__(__gnu_cxx::__recursive_mutex))));
57   fake_recursive_mutex fake_mutex;
58 
59   static void init()
60   { static_mutex =  new (&fake_mutex) __gnu_cxx::__recursive_mutex(); }
61 
62   __gnu_cxx::__recursive_mutex&
63   get_static_mutex()
64   {
65     static __gthread_once_t once = __GTHREAD_ONCE_INIT;
66     __gthread_once(&once, init);
67     return *static_mutex;
68   }
69 
70   // Simple wrapper for exception safety.
71   struct mutex_wrapper
72   {
73     bool unlock;
74     mutex_wrapper() : unlock(true)
75     { get_static_mutex().lock(); }
76 
77     ~mutex_wrapper()
78     {
79       if (unlock)
80 	static_mutex->unlock();
81     }
82   };
83 }
84 # endif
85 
86 # if defined(__GTHREAD_HAS_COND) && !defined(_GLIBCXX_USE_FUTEX)
87 namespace
88 {
89   // A single condition variable controlling all static initializations.
90   static __gnu_cxx::__cond* static_cond;
91 
92   // using a fake type to avoid initializing a static class.
93   typedef char fake_cond_t[sizeof(__gnu_cxx::__cond)]
94   __attribute__ ((aligned(__alignof__(__gnu_cxx::__cond))));
95   fake_cond_t fake_cond;
96 
97   static void init_static_cond()
98   { static_cond =  new (&fake_cond) __gnu_cxx::__cond(); }
99 
100   __gnu_cxx::__cond&
101   get_static_cond()
102   {
103     static __gthread_once_t once = __GTHREAD_ONCE_INIT;
104     __gthread_once(&once, init_static_cond);
105     return *static_cond;
106   }
107 }
108 # endif
109 
110 # ifndef _GLIBCXX_GUARD_TEST_AND_ACQUIRE
111 
112 // Test the guard variable with a memory load with
113 // acquire semantics.
114 
115 inline bool
116 __test_and_acquire (__cxxabiv1::__guard *g)
117 {
118   unsigned char __c;
119   unsigned char *__p = reinterpret_cast<unsigned char *>(g);
120   __atomic_load (__p, &__c,  __ATOMIC_ACQUIRE);
121   (void) __p;
122   return _GLIBCXX_GUARD_TEST(&__c);
123 }
124 #  define _GLIBCXX_GUARD_TEST_AND_ACQUIRE(G) __test_and_acquire (G)
125 # endif
126 
127 # ifndef _GLIBCXX_GUARD_SET_AND_RELEASE
128 
129 // Set the guard variable to 1 with memory order release semantics.
130 
131 inline void
132 __set_and_release (__cxxabiv1::__guard *g)
133 {
134   unsigned char *__p = reinterpret_cast<unsigned char *>(g);
135   unsigned char val = 1;
136   __atomic_store (__p, &val, __ATOMIC_RELEASE);
137   (void) __p;
138 }
139 #  define _GLIBCXX_GUARD_SET_AND_RELEASE(G) __set_and_release (G)
140 # endif
141 
142 #else /* !__GTHREADS */
143 
144 # undef _GLIBCXX_GUARD_TEST_AND_ACQUIRE
145 # undef _GLIBCXX_GUARD_SET_AND_RELEASE
146 # define _GLIBCXX_GUARD_SET_AND_RELEASE(G) _GLIBCXX_GUARD_SET (G)
147 
148 #endif /* __GTHREADS */
149 
150 //
151 // Here are C++ run-time routines for guarded initialization of static
152 // variables. There are 4 scenarios under which these routines are called:
153 //
154 //   1. Threads not supported (__GTHREADS not defined)
155 //   2. Threads are supported but not enabled at run-time.
156 //   3. Threads enabled at run-time but __gthreads_* are not fully POSIX.
157 //   4. Threads enabled at run-time and __gthreads_* support all POSIX threads
158 //      primitives we need here.
159 //
160 // The old code supported scenarios 1-3 but was broken since it used a global
161 // mutex for all threads and had the mutex locked during the whole duration of
162 // initialization of a guarded static variable. The following created a
163 // dead-lock with the old code.
164 //
165 //	Thread 1 acquires the global mutex.
166 //	Thread 1 starts initializing static variable.
167 //	Thread 1 creates thread 2 during initialization.
168 //	Thread 2 attempts to acquire mutex to initialize another variable.
169 //	Thread 2 blocks since thread 1 is locking the mutex.
170 //	Thread 1 waits for result from thread 2 and also blocks. A deadlock.
171 //
172 // The new code here can handle this situation and thus is more robust. However,
173 // we need to use the POSIX thread condition variable, which is not supported
174 // in all platforms, notably older versions of Microsoft Windows. The gthr*.h
175 // headers define a symbol __GTHREAD_HAS_COND for platforms that support POSIX
176 // like condition variables. For platforms that do not support condition
177 // variables, we need to fall back to the old code.
178 
179 // If _GLIBCXX_USE_FUTEX, no global mutex or condition variable is used,
180 // only atomic operations are used together with futex syscall.
181 // Valid values of the first integer in guard are:
182 // 0				  No thread encountered the guarded init
183 //				  yet or it has been aborted.
184 // _GLIBCXX_GUARD_BIT		  The guarded static var has been successfully
185 //				  initialized.
186 // _GLIBCXX_GUARD_PENDING_BIT	  The guarded static var is being initialized
187 //				  and no other thread is waiting for its
188 //				  initialization.
189 // (_GLIBCXX_GUARD_PENDING_BIT    The guarded static var is being initialized
190 //  | _GLIBCXX_GUARD_WAITING_BIT) and some other threads are waiting until
191 //				  it is initialized.
192 
193 namespace __cxxabiv1
194 {
195 #ifdef _GLIBCXX_USE_FUTEX
196   namespace
197   {
198     static inline int __guard_test_bit (const int __byte, const int __val)
199     {
200       union { int __i; char __c[sizeof (int)]; } __u = { 0 };
201       __u.__c[__byte] = __val;
202       return __u.__i;
203     }
204   }
205 #endif
206 
207   static inline int
208   init_in_progress_flag(__guard* g)
209   { return ((char *)g)[1]; }
210 
211   static inline void
212   set_init_in_progress_flag(__guard* g, int v)
213   { ((char *)g)[1] = v; }
214 
215   static inline void
216   throw_recursive_init_exception()
217   {
218 #if __cpp_exceptions
219 	throw __gnu_cxx::recursive_init_error();
220 #else
221 	// Use __builtin_trap so we don't require abort().
222 	__builtin_trap();
223 #endif
224   }
225 
226   // acquire() is a helper function used to acquire guard if thread support is
227   // not compiled in or is compiled in but not enabled at run-time.
228   static int
229   acquire(__guard *g)
230   {
231     // Quit if the object is already initialized.
232     if (_GLIBCXX_GUARD_TEST(g))
233       return 0;
234 
235     if (init_in_progress_flag(g))
236       throw_recursive_init_exception();
237 
238     set_init_in_progress_flag(g, 1);
239     return 1;
240   }
241 
242   extern "C"
243   int __cxa_guard_acquire (__guard *g)
244   {
245 #ifdef __GTHREADS
246     // If the target can reorder loads, we need to insert a read memory
247     // barrier so that accesses to the guarded variable happen after the
248     // guard test.
249     if (_GLIBCXX_GUARD_TEST_AND_ACQUIRE (g))
250       return 0;
251 
252 # ifdef _GLIBCXX_USE_FUTEX
253     // If __atomic_* and futex syscall are supported, don't use any global
254     // mutex.
255     if (__gthread_active_p ())
256       {
257 	int *gi = (int *) (void *) g;
258 	const int guard_bit = _GLIBCXX_GUARD_BIT;
259 	const int pending_bit = _GLIBCXX_GUARD_PENDING_BIT;
260 	const int waiting_bit = _GLIBCXX_GUARD_WAITING_BIT;
261 
262 	while (1)
263 	  {
264 	    int expected(0);
265 	    if (__atomic_compare_exchange_n(gi, &expected, pending_bit, false,
266 					    __ATOMIC_ACQ_REL,
267 					    __ATOMIC_ACQUIRE))
268 	      {
269 		// This thread should do the initialization.
270 		return 1;
271 	      }
272 
273 	    if (expected == guard_bit)
274 	      {
275 		// Already initialized.
276 		return 0;
277 	      }
278 
279 	     if (expected == pending_bit)
280 	       {
281 		 // Use acquire here.
282 		 int newv = expected | waiting_bit;
283 		 if (!__atomic_compare_exchange_n(gi, &expected, newv, false,
284 						  __ATOMIC_ACQ_REL,
285 						  __ATOMIC_ACQUIRE))
286 		   {
287 		     if (expected == guard_bit)
288 		       {
289 			 // Make a thread that failed to set the
290 			 // waiting bit exit the function earlier,
291 			 // if it detects that another thread has
292 			 // successfully finished initialising.
293 			 return 0;
294 		       }
295 		     if (expected == 0)
296 		       continue;
297 		   }
298 
299 		 expected = newv;
300 	       }
301 
302 	    syscall (SYS_futex, gi, _GLIBCXX_FUTEX_WAIT, expected, 0);
303 	  }
304       }
305 # else
306     if (__gthread_active_p ())
307       {
308 	mutex_wrapper mw;
309 
310 	while (1)	// When this loop is executing, mutex is locked.
311 	  {
312 #  ifdef __GTHREAD_HAS_COND
313 	    // The static is already initialized.
314 	    if (_GLIBCXX_GUARD_TEST(g))
315 	      return 0;	// The mutex will be unlocked via wrapper
316 
317 	    if (init_in_progress_flag(g))
318 	      {
319 		// The guarded static is currently being initialized by
320 		// another thread, so we release mutex and wait for the
321 		// condition variable. We will lock the mutex again after
322 		// this.
323 		get_static_cond().wait_recursive(&get_static_mutex());
324 	      }
325 	    else
326 	      {
327 		set_init_in_progress_flag(g, 1);
328 		return 1; // The mutex will be unlocked via wrapper.
329 	      }
330 #  else
331 	    // This provides compatibility with older systems not supporting
332 	    // POSIX like condition variables.
333 	    if (acquire(g))
334 	      {
335 		mw.unlock = false;
336 		return 1; // The mutex still locked.
337 	      }
338 	    return 0; // The mutex will be unlocked via wrapper.
339 #  endif
340 	  }
341       }
342 # endif
343 #endif
344 
345     return acquire (g);
346   }
347 
348   extern "C"
349   void __cxa_guard_abort (__guard *g) throw ()
350   {
351 #ifdef _GLIBCXX_USE_FUTEX
352     // If __atomic_* and futex syscall are supported, don't use any global
353     // mutex.
354     if (__gthread_active_p ())
355       {
356 	int *gi = (int *) (void *) g;
357 	const int waiting_bit = _GLIBCXX_GUARD_WAITING_BIT;
358 	int old = __atomic_exchange_n (gi, 0, __ATOMIC_ACQ_REL);
359 
360 	if ((old & waiting_bit) != 0)
361 	  syscall (SYS_futex, gi, _GLIBCXX_FUTEX_WAKE, INT_MAX);
362 	return;
363       }
364 #elif defined(__GTHREAD_HAS_COND)
365     if (__gthread_active_p())
366       {
367 	mutex_wrapper mw;
368 
369 	set_init_in_progress_flag(g, 0);
370 
371 	// If we abort, we still need to wake up all other threads waiting for
372 	// the condition variable.
373         get_static_cond().broadcast();
374 	return;
375       }
376 #endif
377 
378     set_init_in_progress_flag(g, 0);
379 #if defined(__GTHREADS) && !defined(__GTHREAD_HAS_COND)
380     // This provides compatibility with older systems not supporting POSIX like
381     // condition variables.
382     if (__gthread_active_p ())
383       static_mutex->unlock();
384 #endif
385   }
386 
387   extern "C"
388   void __cxa_guard_release (__guard *g) throw ()
389   {
390 #ifdef _GLIBCXX_USE_FUTEX
391     // If __atomic_* and futex syscall are supported, don't use any global
392     // mutex.
393     if (__gthread_active_p ())
394       {
395 	int *gi = (int *) (void *) g;
396 	const int guard_bit = _GLIBCXX_GUARD_BIT;
397 	const int waiting_bit = _GLIBCXX_GUARD_WAITING_BIT;
398 	int old = __atomic_exchange_n (gi, guard_bit, __ATOMIC_ACQ_REL);
399 
400 	if ((old & waiting_bit) != 0)
401 	  syscall (SYS_futex, gi, _GLIBCXX_FUTEX_WAKE, INT_MAX);
402 	return;
403       }
404 #elif defined(__GTHREAD_HAS_COND)
405     if (__gthread_active_p())
406       {
407 	mutex_wrapper mw;
408 
409 	set_init_in_progress_flag(g, 0);
410 	_GLIBCXX_GUARD_SET_AND_RELEASE(g);
411 
412         get_static_cond().broadcast();
413 	return;
414       }
415 #endif
416 
417     set_init_in_progress_flag(g, 0);
418     _GLIBCXX_GUARD_SET_AND_RELEASE (g);
419 
420 #if defined(__GTHREADS) && !defined(__GTHREAD_HAS_COND)
421     // This provides compatibility with older systems not supporting POSIX like
422     // condition variables.
423     if (__gthread_active_p())
424       static_mutex->unlock();
425 #endif
426   }
427 }
428