xref: /dragonfly/contrib/gdb-7/bfd/elf-eh-frame.c (revision 650094e1)
1 /* .eh_frame section optimization.
2    Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3    Free Software Foundation, Inc.
4    Written by Jakub Jelinek <jakub@redhat.com>.
5 
6    This file is part of BFD, the Binary File Descriptor library.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, write to the Free Software
20    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21    MA 02110-1301, USA.  */
22 
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "dwarf2.h"
28 
29 #define EH_FRAME_HDR_SIZE 8
30 
31 struct cie
32 {
33   unsigned int length;
34   unsigned int hash;
35   unsigned char version;
36   unsigned char local_personality;
37   char augmentation[20];
38   bfd_vma code_align;
39   bfd_signed_vma data_align;
40   bfd_vma ra_column;
41   bfd_vma augmentation_size;
42   union {
43     struct elf_link_hash_entry *h;
44     bfd_vma val;
45     unsigned int reloc_index;
46   } personality;
47   asection *output_sec;
48   struct eh_cie_fde *cie_inf;
49   unsigned char per_encoding;
50   unsigned char lsda_encoding;
51   unsigned char fde_encoding;
52   unsigned char initial_insn_length;
53   unsigned char can_make_lsda_relative;
54   unsigned char initial_instructions[50];
55 };
56 
57 
58 
59 /* If *ITER hasn't reached END yet, read the next byte into *RESULT and
60    move onto the next byte.  Return true on success.  */
61 
62 static inline bfd_boolean
63 read_byte (bfd_byte **iter, bfd_byte *end, unsigned char *result)
64 {
65   if (*iter >= end)
66     return FALSE;
67   *result = *((*iter)++);
68   return TRUE;
69 }
70 
71 /* Move *ITER over LENGTH bytes, or up to END, whichever is closer.
72    Return true it was possible to move LENGTH bytes.  */
73 
74 static inline bfd_boolean
75 skip_bytes (bfd_byte **iter, bfd_byte *end, bfd_size_type length)
76 {
77   if ((bfd_size_type) (end - *iter) < length)
78     {
79       *iter = end;
80       return FALSE;
81     }
82   *iter += length;
83   return TRUE;
84 }
85 
86 /* Move *ITER over an leb128, stopping at END.  Return true if the end
87    of the leb128 was found.  */
88 
89 static bfd_boolean
90 skip_leb128 (bfd_byte **iter, bfd_byte *end)
91 {
92   unsigned char byte;
93   do
94     if (!read_byte (iter, end, &byte))
95       return FALSE;
96   while (byte & 0x80);
97   return TRUE;
98 }
99 
100 /* Like skip_leb128, but treat the leb128 as an unsigned value and
101    store it in *VALUE.  */
102 
103 static bfd_boolean
104 read_uleb128 (bfd_byte **iter, bfd_byte *end, bfd_vma *value)
105 {
106   bfd_byte *start, *p;
107 
108   start = *iter;
109   if (!skip_leb128 (iter, end))
110     return FALSE;
111 
112   p = *iter;
113   *value = *--p;
114   while (p > start)
115     *value = (*value << 7) | (*--p & 0x7f);
116 
117   return TRUE;
118 }
119 
120 /* Like read_uleb128, but for signed values.  */
121 
122 static bfd_boolean
123 read_sleb128 (bfd_byte **iter, bfd_byte *end, bfd_signed_vma *value)
124 {
125   bfd_byte *start, *p;
126 
127   start = *iter;
128   if (!skip_leb128 (iter, end))
129     return FALSE;
130 
131   p = *iter;
132   *value = ((*--p & 0x7f) ^ 0x40) - 0x40;
133   while (p > start)
134     *value = (*value << 7) | (*--p & 0x7f);
135 
136   return TRUE;
137 }
138 
139 /* Return 0 if either encoding is variable width, or not yet known to bfd.  */
140 
141 static
142 int get_DW_EH_PE_width (int encoding, int ptr_size)
143 {
144   /* DW_EH_PE_ values of 0x60 and 0x70 weren't defined at the time .eh_frame
145      was added to bfd.  */
146   if ((encoding & 0x60) == 0x60)
147     return 0;
148 
149   switch (encoding & 7)
150     {
151     case DW_EH_PE_udata2: return 2;
152     case DW_EH_PE_udata4: return 4;
153     case DW_EH_PE_udata8: return 8;
154     case DW_EH_PE_absptr: return ptr_size;
155     default:
156       break;
157     }
158 
159   return 0;
160 }
161 
162 #define get_DW_EH_PE_signed(encoding) (((encoding) & DW_EH_PE_signed) != 0)
163 
164 /* Read a width sized value from memory.  */
165 
166 static bfd_vma
167 read_value (bfd *abfd, bfd_byte *buf, int width, int is_signed)
168 {
169   bfd_vma value;
170 
171   switch (width)
172     {
173     case 2:
174       if (is_signed)
175 	value = bfd_get_signed_16 (abfd, buf);
176       else
177 	value = bfd_get_16 (abfd, buf);
178       break;
179     case 4:
180       if (is_signed)
181 	value = bfd_get_signed_32 (abfd, buf);
182       else
183 	value = bfd_get_32 (abfd, buf);
184       break;
185     case 8:
186       if (is_signed)
187 	value = bfd_get_signed_64 (abfd, buf);
188       else
189 	value = bfd_get_64 (abfd, buf);
190       break;
191     default:
192       BFD_FAIL ();
193       return 0;
194     }
195 
196   return value;
197 }
198 
199 /* Store a width sized value to memory.  */
200 
201 static void
202 write_value (bfd *abfd, bfd_byte *buf, bfd_vma value, int width)
203 {
204   switch (width)
205     {
206     case 2: bfd_put_16 (abfd, value, buf); break;
207     case 4: bfd_put_32 (abfd, value, buf); break;
208     case 8: bfd_put_64 (abfd, value, buf); break;
209     default: BFD_FAIL ();
210     }
211 }
212 
213 /* Return one if C1 and C2 CIEs can be merged.  */
214 
215 static int
216 cie_eq (const void *e1, const void *e2)
217 {
218   const struct cie *c1 = (const struct cie *) e1;
219   const struct cie *c2 = (const struct cie *) e2;
220 
221   if (c1->hash == c2->hash
222       && c1->length == c2->length
223       && c1->version == c2->version
224       && c1->local_personality == c2->local_personality
225       && strcmp (c1->augmentation, c2->augmentation) == 0
226       && strcmp (c1->augmentation, "eh") != 0
227       && c1->code_align == c2->code_align
228       && c1->data_align == c2->data_align
229       && c1->ra_column == c2->ra_column
230       && c1->augmentation_size == c2->augmentation_size
231       && memcmp (&c1->personality, &c2->personality,
232 		 sizeof (c1->personality)) == 0
233       && c1->output_sec == c2->output_sec
234       && c1->per_encoding == c2->per_encoding
235       && c1->lsda_encoding == c2->lsda_encoding
236       && c1->fde_encoding == c2->fde_encoding
237       && c1->initial_insn_length == c2->initial_insn_length
238       && memcmp (c1->initial_instructions,
239 		 c2->initial_instructions,
240 		 c1->initial_insn_length) == 0)
241     return 1;
242 
243   return 0;
244 }
245 
246 static hashval_t
247 cie_hash (const void *e)
248 {
249   const struct cie *c = (const struct cie *) e;
250   return c->hash;
251 }
252 
253 static hashval_t
254 cie_compute_hash (struct cie *c)
255 {
256   hashval_t h = 0;
257   h = iterative_hash_object (c->length, h);
258   h = iterative_hash_object (c->version, h);
259   h = iterative_hash (c->augmentation, strlen (c->augmentation) + 1, h);
260   h = iterative_hash_object (c->code_align, h);
261   h = iterative_hash_object (c->data_align, h);
262   h = iterative_hash_object (c->ra_column, h);
263   h = iterative_hash_object (c->augmentation_size, h);
264   h = iterative_hash_object (c->personality, h);
265   h = iterative_hash_object (c->output_sec, h);
266   h = iterative_hash_object (c->per_encoding, h);
267   h = iterative_hash_object (c->lsda_encoding, h);
268   h = iterative_hash_object (c->fde_encoding, h);
269   h = iterative_hash_object (c->initial_insn_length, h);
270   h = iterative_hash (c->initial_instructions, c->initial_insn_length, h);
271   c->hash = h;
272   return h;
273 }
274 
275 /* Return the number of extra bytes that we'll be inserting into
276    ENTRY's augmentation string.  */
277 
278 static INLINE unsigned int
279 extra_augmentation_string_bytes (struct eh_cie_fde *entry)
280 {
281   unsigned int size = 0;
282   if (entry->cie)
283     {
284       if (entry->add_augmentation_size)
285 	size++;
286       if (entry->u.cie.add_fde_encoding)
287 	size++;
288     }
289   return size;
290 }
291 
292 /* Likewise ENTRY's augmentation data.  */
293 
294 static INLINE unsigned int
295 extra_augmentation_data_bytes (struct eh_cie_fde *entry)
296 {
297   unsigned int size = 0;
298   if (entry->add_augmentation_size)
299     size++;
300   if (entry->cie && entry->u.cie.add_fde_encoding)
301     size++;
302   return size;
303 }
304 
305 /* Return the size that ENTRY will have in the output.  ALIGNMENT is the
306    required alignment of ENTRY in bytes.  */
307 
308 static unsigned int
309 size_of_output_cie_fde (struct eh_cie_fde *entry, unsigned int alignment)
310 {
311   if (entry->removed)
312     return 0;
313   if (entry->size == 4)
314     return 4;
315   return (entry->size
316 	  + extra_augmentation_string_bytes (entry)
317 	  + extra_augmentation_data_bytes (entry)
318 	  + alignment - 1) & -alignment;
319 }
320 
321 /* Assume that the bytes between *ITER and END are CFA instructions.
322    Try to move *ITER past the first instruction and return true on
323    success.  ENCODED_PTR_WIDTH gives the width of pointer entries.  */
324 
325 static bfd_boolean
326 skip_cfa_op (bfd_byte **iter, bfd_byte *end, unsigned int encoded_ptr_width)
327 {
328   bfd_byte op;
329   bfd_vma length;
330 
331   if (!read_byte (iter, end, &op))
332     return FALSE;
333 
334   switch (op & 0xc0 ? op & 0xc0 : op)
335     {
336     case DW_CFA_nop:
337     case DW_CFA_advance_loc:
338     case DW_CFA_restore:
339     case DW_CFA_remember_state:
340     case DW_CFA_restore_state:
341     case DW_CFA_GNU_window_save:
342       /* No arguments.  */
343       return TRUE;
344 
345     case DW_CFA_offset:
346     case DW_CFA_restore_extended:
347     case DW_CFA_undefined:
348     case DW_CFA_same_value:
349     case DW_CFA_def_cfa_register:
350     case DW_CFA_def_cfa_offset:
351     case DW_CFA_def_cfa_offset_sf:
352     case DW_CFA_GNU_args_size:
353       /* One leb128 argument.  */
354       return skip_leb128 (iter, end);
355 
356     case DW_CFA_val_offset:
357     case DW_CFA_val_offset_sf:
358     case DW_CFA_offset_extended:
359     case DW_CFA_register:
360     case DW_CFA_def_cfa:
361     case DW_CFA_offset_extended_sf:
362     case DW_CFA_GNU_negative_offset_extended:
363     case DW_CFA_def_cfa_sf:
364       /* Two leb128 arguments.  */
365       return (skip_leb128 (iter, end)
366 	      && skip_leb128 (iter, end));
367 
368     case DW_CFA_def_cfa_expression:
369       /* A variable-length argument.  */
370       return (read_uleb128 (iter, end, &length)
371 	      && skip_bytes (iter, end, length));
372 
373     case DW_CFA_expression:
374     case DW_CFA_val_expression:
375       /* A leb128 followed by a variable-length argument.  */
376       return (skip_leb128 (iter, end)
377 	      && read_uleb128 (iter, end, &length)
378 	      && skip_bytes (iter, end, length));
379 
380     case DW_CFA_set_loc:
381       return skip_bytes (iter, end, encoded_ptr_width);
382 
383     case DW_CFA_advance_loc1:
384       return skip_bytes (iter, end, 1);
385 
386     case DW_CFA_advance_loc2:
387       return skip_bytes (iter, end, 2);
388 
389     case DW_CFA_advance_loc4:
390       return skip_bytes (iter, end, 4);
391 
392     case DW_CFA_MIPS_advance_loc8:
393       return skip_bytes (iter, end, 8);
394 
395     default:
396       return FALSE;
397     }
398 }
399 
400 /* Try to interpret the bytes between BUF and END as CFA instructions.
401    If every byte makes sense, return a pointer to the first DW_CFA_nop
402    padding byte, or END if there is no padding.  Return null otherwise.
403    ENCODED_PTR_WIDTH is as for skip_cfa_op.  */
404 
405 static bfd_byte *
406 skip_non_nops (bfd_byte *buf, bfd_byte *end, unsigned int encoded_ptr_width,
407 	       unsigned int *set_loc_count)
408 {
409   bfd_byte *last;
410 
411   last = buf;
412   while (buf < end)
413     if (*buf == DW_CFA_nop)
414       buf++;
415     else
416       {
417 	if (*buf == DW_CFA_set_loc)
418 	  ++*set_loc_count;
419 	if (!skip_cfa_op (&buf, end, encoded_ptr_width))
420 	  return 0;
421 	last = buf;
422       }
423   return last;
424 }
425 
426 /* Convert absolute encoding ENCODING into PC-relative form.
427    SIZE is the size of a pointer.  */
428 
429 static unsigned char
430 make_pc_relative (unsigned char encoding, unsigned int ptr_size)
431 {
432   if ((encoding & 0x7f) == DW_EH_PE_absptr)
433     switch (ptr_size)
434       {
435       case 2:
436 	encoding |= DW_EH_PE_sdata2;
437 	break;
438       case 4:
439 	encoding |= DW_EH_PE_sdata4;
440 	break;
441       case 8:
442 	encoding |= DW_EH_PE_sdata8;
443 	break;
444       }
445   return encoding | DW_EH_PE_pcrel;
446 }
447 
448 /* Called before calling _bfd_elf_parse_eh_frame on every input bfd's
449    .eh_frame section.  */
450 
451 void
452 _bfd_elf_begin_eh_frame_parsing (struct bfd_link_info *info)
453 {
454   struct eh_frame_hdr_info *hdr_info;
455 
456   hdr_info = &elf_hash_table (info)->eh_info;
457   hdr_info->merge_cies = !info->relocatable;
458 }
459 
460 /* Try to parse .eh_frame section SEC, which belongs to ABFD.  Store the
461    information in the section's sec_info field on success.  COOKIE
462    describes the relocations in SEC.  */
463 
464 void
465 _bfd_elf_parse_eh_frame (bfd *abfd, struct bfd_link_info *info,
466 			 asection *sec, struct elf_reloc_cookie *cookie)
467 {
468 #define REQUIRE(COND)					\
469   do							\
470     if (!(COND))					\
471       goto free_no_table;				\
472   while (0)
473 
474   bfd_byte *ehbuf = NULL, *buf, *end;
475   bfd_byte *last_fde;
476   struct eh_cie_fde *this_inf;
477   unsigned int hdr_length, hdr_id;
478   unsigned int cie_count;
479   struct cie *cie, *local_cies = NULL;
480   struct elf_link_hash_table *htab;
481   struct eh_frame_hdr_info *hdr_info;
482   struct eh_frame_sec_info *sec_info = NULL;
483   unsigned int ptr_size;
484   unsigned int num_cies;
485   unsigned int num_entries;
486   elf_gc_mark_hook_fn gc_mark_hook;
487 
488   htab = elf_hash_table (info);
489   hdr_info = &htab->eh_info;
490   if (hdr_info->parsed_eh_frames)
491     return;
492 
493   if (sec->size == 0)
494     {
495       /* This file does not contain .eh_frame information.  */
496       return;
497     }
498 
499   if (bfd_is_abs_section (sec->output_section))
500     {
501       /* At least one of the sections is being discarded from the
502 	 link, so we should just ignore them.  */
503       return;
504     }
505 
506   /* Read the frame unwind information from abfd.  */
507 
508   REQUIRE (bfd_malloc_and_get_section (abfd, sec, &ehbuf));
509 
510   if (sec->size >= 4
511       && bfd_get_32 (abfd, ehbuf) == 0
512       && cookie->rel == cookie->relend)
513     {
514       /* Empty .eh_frame section.  */
515       free (ehbuf);
516       return;
517     }
518 
519   /* If .eh_frame section size doesn't fit into int, we cannot handle
520      it (it would need to use 64-bit .eh_frame format anyway).  */
521   REQUIRE (sec->size == (unsigned int) sec->size);
522 
523   ptr_size = (get_elf_backend_data (abfd)
524 	      ->elf_backend_eh_frame_address_size (abfd, sec));
525   REQUIRE (ptr_size != 0);
526 
527   /* Go through the section contents and work out how many FDEs and
528      CIEs there are.  */
529   buf = ehbuf;
530   end = ehbuf + sec->size;
531   num_cies = 0;
532   num_entries = 0;
533   while (buf != end)
534     {
535       num_entries++;
536 
537       /* Read the length of the entry.  */
538       REQUIRE (skip_bytes (&buf, end, 4));
539       hdr_length = bfd_get_32 (abfd, buf - 4);
540 
541       /* 64-bit .eh_frame is not supported.  */
542       REQUIRE (hdr_length != 0xffffffff);
543       if (hdr_length == 0)
544 	break;
545 
546       REQUIRE (skip_bytes (&buf, end, 4));
547       hdr_id = bfd_get_32 (abfd, buf - 4);
548       if (hdr_id == 0)
549 	num_cies++;
550 
551       REQUIRE (skip_bytes (&buf, end, hdr_length - 4));
552     }
553 
554   sec_info = (struct eh_frame_sec_info *)
555       bfd_zmalloc (sizeof (struct eh_frame_sec_info)
556                    + (num_entries - 1) * sizeof (struct eh_cie_fde));
557   REQUIRE (sec_info);
558 
559   /* We need to have a "struct cie" for each CIE in this section.  */
560   local_cies = (struct cie *) bfd_zmalloc (num_cies * sizeof (*local_cies));
561   REQUIRE (local_cies);
562 
563   /* FIXME: octets_per_byte.  */
564 #define ENSURE_NO_RELOCS(buf)				\
565   REQUIRE (!(cookie->rel < cookie->relend		\
566 	     && (cookie->rel->r_offset			\
567 		 < (bfd_size_type) ((buf) - ehbuf))	\
568 	     && cookie->rel->r_info != 0))
569 
570   /* FIXME: octets_per_byte.  */
571 #define SKIP_RELOCS(buf)				\
572   while (cookie->rel < cookie->relend			\
573 	 && (cookie->rel->r_offset			\
574 	     < (bfd_size_type) ((buf) - ehbuf)))	\
575     cookie->rel++
576 
577   /* FIXME: octets_per_byte.  */
578 #define GET_RELOC(buf)					\
579   ((cookie->rel < cookie->relend			\
580     && (cookie->rel->r_offset				\
581 	== (bfd_size_type) ((buf) - ehbuf)))		\
582    ? cookie->rel : NULL)
583 
584   buf = ehbuf;
585   cie_count = 0;
586   gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
587   while ((bfd_size_type) (buf - ehbuf) != sec->size)
588     {
589       char *aug;
590       bfd_byte *start, *insns, *insns_end;
591       bfd_size_type length;
592       unsigned int set_loc_count;
593 
594       this_inf = sec_info->entry + sec_info->count;
595       last_fde = buf;
596 
597       /* Read the length of the entry.  */
598       REQUIRE (skip_bytes (&buf, ehbuf + sec->size, 4));
599       hdr_length = bfd_get_32 (abfd, buf - 4);
600 
601       /* The CIE/FDE must be fully contained in this input section.  */
602       REQUIRE ((bfd_size_type) (buf - ehbuf) + hdr_length <= sec->size);
603       end = buf + hdr_length;
604 
605       this_inf->offset = last_fde - ehbuf;
606       this_inf->size = 4 + hdr_length;
607       this_inf->reloc_index = cookie->rel - cookie->rels;
608 
609       if (hdr_length == 0)
610 	{
611 	  /* A zero-length CIE should only be found at the end of
612 	     the section.  */
613 	  REQUIRE ((bfd_size_type) (buf - ehbuf) == sec->size);
614 	  ENSURE_NO_RELOCS (buf);
615 	  sec_info->count++;
616 	  break;
617 	}
618 
619       REQUIRE (skip_bytes (&buf, end, 4));
620       hdr_id = bfd_get_32 (abfd, buf - 4);
621 
622       if (hdr_id == 0)
623 	{
624 	  unsigned int initial_insn_length;
625 
626 	  /* CIE  */
627 	  this_inf->cie = 1;
628 
629 	  /* Point CIE to one of the section-local cie structures.  */
630 	  cie = local_cies + cie_count++;
631 
632 	  cie->cie_inf = this_inf;
633 	  cie->length = hdr_length;
634 	  cie->output_sec = sec->output_section;
635 	  start = buf;
636 	  REQUIRE (read_byte (&buf, end, &cie->version));
637 
638 	  /* Cannot handle unknown versions.  */
639 	  REQUIRE (cie->version == 1
640 		   || cie->version == 3
641 		   || cie->version == 4);
642 	  REQUIRE (strlen ((char *) buf) < sizeof (cie->augmentation));
643 
644 	  strcpy (cie->augmentation, (char *) buf);
645 	  buf = (bfd_byte *) strchr ((char *) buf, '\0') + 1;
646 	  ENSURE_NO_RELOCS (buf);
647 	  if (buf[0] == 'e' && buf[1] == 'h')
648 	    {
649 	      /* GCC < 3.0 .eh_frame CIE */
650 	      /* We cannot merge "eh" CIEs because __EXCEPTION_TABLE__
651 		 is private to each CIE, so we don't need it for anything.
652 		 Just skip it.  */
653 	      REQUIRE (skip_bytes (&buf, end, ptr_size));
654 	      SKIP_RELOCS (buf);
655 	    }
656 	  if (cie->version >= 4)
657 	    {
658 	      REQUIRE (buf + 1 < end);
659 	      REQUIRE (buf[0] == ptr_size);
660 	      REQUIRE (buf[1] == 0);
661 	      buf += 2;
662 	    }
663 	  REQUIRE (read_uleb128 (&buf, end, &cie->code_align));
664 	  REQUIRE (read_sleb128 (&buf, end, &cie->data_align));
665 	  if (cie->version == 1)
666 	    {
667 	      REQUIRE (buf < end);
668 	      cie->ra_column = *buf++;
669 	    }
670 	  else
671 	    REQUIRE (read_uleb128 (&buf, end, &cie->ra_column));
672 	  ENSURE_NO_RELOCS (buf);
673 	  cie->lsda_encoding = DW_EH_PE_omit;
674 	  cie->fde_encoding = DW_EH_PE_omit;
675 	  cie->per_encoding = DW_EH_PE_omit;
676 	  aug = cie->augmentation;
677 	  if (aug[0] != 'e' || aug[1] != 'h')
678 	    {
679 	      if (*aug == 'z')
680 		{
681 		  aug++;
682 		  REQUIRE (read_uleb128 (&buf, end, &cie->augmentation_size));
683 	  	  ENSURE_NO_RELOCS (buf);
684 		}
685 
686 	      while (*aug != '\0')
687 		switch (*aug++)
688 		  {
689 		  case 'L':
690 		    REQUIRE (read_byte (&buf, end, &cie->lsda_encoding));
691 		    ENSURE_NO_RELOCS (buf);
692 		    REQUIRE (get_DW_EH_PE_width (cie->lsda_encoding, ptr_size));
693 		    break;
694 		  case 'R':
695 		    REQUIRE (read_byte (&buf, end, &cie->fde_encoding));
696 		    ENSURE_NO_RELOCS (buf);
697 		    REQUIRE (get_DW_EH_PE_width (cie->fde_encoding, ptr_size));
698 		    break;
699 		  case 'S':
700 		    break;
701 		  case 'P':
702 		    {
703 		      int per_width;
704 
705 		      REQUIRE (read_byte (&buf, end, &cie->per_encoding));
706 		      per_width = get_DW_EH_PE_width (cie->per_encoding,
707 						      ptr_size);
708 		      REQUIRE (per_width);
709 		      if ((cie->per_encoding & 0x70) == DW_EH_PE_aligned)
710 			{
711 			  length = -(buf - ehbuf) & (per_width - 1);
712 			  REQUIRE (skip_bytes (&buf, end, length));
713 			}
714 		      this_inf->u.cie.personality_offset = buf - start;
715 		      ENSURE_NO_RELOCS (buf);
716 		      /* Ensure we have a reloc here.  */
717 		      REQUIRE (GET_RELOC (buf));
718 		      cie->personality.reloc_index
719 			= cookie->rel - cookie->rels;
720 		      /* Cope with MIPS-style composite relocations.  */
721 		      do
722 			cookie->rel++;
723 		      while (GET_RELOC (buf) != NULL);
724 		      REQUIRE (skip_bytes (&buf, end, per_width));
725 		    }
726 		    break;
727 		  default:
728 		    /* Unrecognized augmentation. Better bail out.  */
729 		    goto free_no_table;
730 		  }
731 	    }
732 
733 	  /* For shared libraries, try to get rid of as many RELATIVE relocs
734 	     as possible.  */
735 	  if (info->shared
736 	      && (get_elf_backend_data (abfd)
737 		  ->elf_backend_can_make_relative_eh_frame
738 		  (abfd, info, sec)))
739 	    {
740 	      if ((cie->fde_encoding & 0x70) == DW_EH_PE_absptr)
741 		this_inf->make_relative = 1;
742 	      /* If the CIE doesn't already have an 'R' entry, it's fairly
743 		 easy to add one, provided that there's no aligned data
744 		 after the augmentation string.  */
745 	      else if (cie->fde_encoding == DW_EH_PE_omit
746 		       && (cie->per_encoding & 0x70) != DW_EH_PE_aligned)
747 		{
748 		  if (*cie->augmentation == 0)
749 		    this_inf->add_augmentation_size = 1;
750 		  this_inf->u.cie.add_fde_encoding = 1;
751 		  this_inf->make_relative = 1;
752 		}
753 
754 	      if ((cie->lsda_encoding & 0x70) == DW_EH_PE_absptr)
755 		cie->can_make_lsda_relative = 1;
756 	    }
757 
758 	  /* If FDE encoding was not specified, it defaults to
759 	     DW_EH_absptr.  */
760 	  if (cie->fde_encoding == DW_EH_PE_omit)
761 	    cie->fde_encoding = DW_EH_PE_absptr;
762 
763 	  initial_insn_length = end - buf;
764 	  if (initial_insn_length <= sizeof (cie->initial_instructions))
765 	    {
766 	      cie->initial_insn_length = initial_insn_length;
767 	      memcpy (cie->initial_instructions, buf, initial_insn_length);
768 	    }
769 	  insns = buf;
770 	  buf += initial_insn_length;
771 	  ENSURE_NO_RELOCS (buf);
772 
773 	  if (hdr_info->merge_cies)
774 	    this_inf->u.cie.u.full_cie = cie;
775 	  this_inf->u.cie.per_encoding_relative
776 	    = (cie->per_encoding & 0x70) == DW_EH_PE_pcrel;
777 	}
778       else
779 	{
780 	  asection *rsec;
781 
782 	  /* Find the corresponding CIE.  */
783 	  unsigned int cie_offset = this_inf->offset + 4 - hdr_id;
784 	  for (cie = local_cies; cie < local_cies + cie_count; cie++)
785 	    if (cie_offset == cie->cie_inf->offset)
786 	      break;
787 
788 	  /* Ensure this FDE references one of the CIEs in this input
789 	     section.  */
790 	  REQUIRE (cie != local_cies + cie_count);
791 	  this_inf->u.fde.cie_inf = cie->cie_inf;
792 	  this_inf->make_relative = cie->cie_inf->make_relative;
793 	  this_inf->add_augmentation_size
794 	    = cie->cie_inf->add_augmentation_size;
795 
796 	  ENSURE_NO_RELOCS (buf);
797 	  REQUIRE (GET_RELOC (buf));
798 
799 	  /* Chain together the FDEs for each section.  */
800 	  rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
801 	  /* RSEC will be NULL if FDE was cleared out as it was belonging to
802 	     a discarded SHT_GROUP.  */
803 	  if (rsec)
804 	    {
805 	      REQUIRE (rsec->owner == abfd);
806 	      this_inf->u.fde.next_for_section = elf_fde_list (rsec);
807 	      elf_fde_list (rsec) = this_inf;
808 	    }
809 
810 	  /* Skip the initial location and address range.  */
811 	  start = buf;
812 	  length = get_DW_EH_PE_width (cie->fde_encoding, ptr_size);
813 	  REQUIRE (skip_bytes (&buf, end, 2 * length));
814 
815 	  /* Skip the augmentation size, if present.  */
816 	  if (cie->augmentation[0] == 'z')
817 	    REQUIRE (read_uleb128 (&buf, end, &length));
818 	  else
819 	    length = 0;
820 
821 	  /* Of the supported augmentation characters above, only 'L'
822 	     adds augmentation data to the FDE.  This code would need to
823 	     be adjusted if any future augmentations do the same thing.  */
824 	  if (cie->lsda_encoding != DW_EH_PE_omit)
825 	    {
826 	      SKIP_RELOCS (buf);
827 	      if (cie->can_make_lsda_relative && GET_RELOC (buf))
828 		cie->cie_inf->u.cie.make_lsda_relative = 1;
829 	      this_inf->lsda_offset = buf - start;
830 	      /* If there's no 'z' augmentation, we don't know where the
831 		 CFA insns begin.  Assume no padding.  */
832 	      if (cie->augmentation[0] != 'z')
833 		length = end - buf;
834 	    }
835 
836 	  /* Skip over the augmentation data.  */
837 	  REQUIRE (skip_bytes (&buf, end, length));
838 	  insns = buf;
839 
840 	  buf = last_fde + 4 + hdr_length;
841 
842 	  /* For NULL RSEC (cleared FDE belonging to a discarded section)
843 	     the relocations are commonly cleared.  We do not sanity check if
844 	     all these relocations are cleared as (1) relocations to
845 	     .gcc_except_table will remain uncleared (they will get dropped
846 	     with the drop of this unused FDE) and (2) BFD already safely drops
847 	     relocations of any type to .eh_frame by
848 	     elf_section_ignore_discarded_relocs.
849 	     TODO: The .gcc_except_table entries should be also filtered as
850 	     .eh_frame entries; or GCC could rather use COMDAT for them.  */
851 	  SKIP_RELOCS (buf);
852 	}
853 
854       /* Try to interpret the CFA instructions and find the first
855 	 padding nop.  Shrink this_inf's size so that it doesn't
856 	 include the padding.  */
857       length = get_DW_EH_PE_width (cie->fde_encoding, ptr_size);
858       set_loc_count = 0;
859       insns_end = skip_non_nops (insns, end, length, &set_loc_count);
860       /* If we don't understand the CFA instructions, we can't know
861 	 what needs to be adjusted there.  */
862       if (insns_end == NULL
863 	  /* For the time being we don't support DW_CFA_set_loc in
864 	     CIE instructions.  */
865 	  || (set_loc_count && this_inf->cie))
866 	goto free_no_table;
867       this_inf->size -= end - insns_end;
868       if (insns_end != end && this_inf->cie)
869 	{
870 	  cie->initial_insn_length -= end - insns_end;
871 	  cie->length -= end - insns_end;
872 	}
873       if (set_loc_count
874 	  && ((cie->fde_encoding & 0x70) == DW_EH_PE_pcrel
875 	      || this_inf->make_relative))
876 	{
877 	  unsigned int cnt;
878 	  bfd_byte *p;
879 
880 	  this_inf->set_loc = (unsigned int *)
881               bfd_malloc ((set_loc_count + 1) * sizeof (unsigned int));
882 	  REQUIRE (this_inf->set_loc);
883 	  this_inf->set_loc[0] = set_loc_count;
884 	  p = insns;
885 	  cnt = 0;
886 	  while (p < end)
887 	    {
888 	      if (*p == DW_CFA_set_loc)
889 		this_inf->set_loc[++cnt] = p + 1 - start;
890 	      REQUIRE (skip_cfa_op (&p, end, length));
891 	    }
892 	}
893 
894       this_inf->removed = 1;
895       this_inf->fde_encoding = cie->fde_encoding;
896       this_inf->lsda_encoding = cie->lsda_encoding;
897       sec_info->count++;
898     }
899   BFD_ASSERT (sec_info->count == num_entries);
900   BFD_ASSERT (cie_count == num_cies);
901 
902   elf_section_data (sec)->sec_info = sec_info;
903   sec->sec_info_type = ELF_INFO_TYPE_EH_FRAME;
904   if (hdr_info->merge_cies)
905     {
906       sec_info->cies = local_cies;
907       local_cies = NULL;
908     }
909   goto success;
910 
911  free_no_table:
912   (*info->callbacks->einfo)
913     (_("%P: error in %B(%A); no .eh_frame_hdr table will be created.\n"),
914      abfd, sec);
915   hdr_info->table = FALSE;
916   if (sec_info)
917     free (sec_info);
918  success:
919   if (ehbuf)
920     free (ehbuf);
921   if (local_cies)
922     free (local_cies);
923 #undef REQUIRE
924 }
925 
926 /* Finish a pass over all .eh_frame sections.  */
927 
928 void
929 _bfd_elf_end_eh_frame_parsing (struct bfd_link_info *info)
930 {
931   struct eh_frame_hdr_info *hdr_info;
932 
933   hdr_info = &elf_hash_table (info)->eh_info;
934   hdr_info->parsed_eh_frames = TRUE;
935 }
936 
937 /* Mark all relocations against CIE or FDE ENT, which occurs in
938    .eh_frame section SEC.  COOKIE describes the relocations in SEC;
939    its "rel" field can be changed freely.  */
940 
941 static bfd_boolean
942 mark_entry (struct bfd_link_info *info, asection *sec,
943 	    struct eh_cie_fde *ent, elf_gc_mark_hook_fn gc_mark_hook,
944 	    struct elf_reloc_cookie *cookie)
945 {
946   /* FIXME: octets_per_byte.  */
947   for (cookie->rel = cookie->rels + ent->reloc_index;
948        cookie->rel < cookie->relend
949 	 && cookie->rel->r_offset < ent->offset + ent->size;
950        cookie->rel++)
951     if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, cookie))
952       return FALSE;
953 
954   return TRUE;
955 }
956 
957 /* Mark all the relocations against FDEs that relate to code in input
958    section SEC.  The FDEs belong to .eh_frame section EH_FRAME, whose
959    relocations are described by COOKIE.  */
960 
961 bfd_boolean
962 _bfd_elf_gc_mark_fdes (struct bfd_link_info *info, asection *sec,
963 		       asection *eh_frame, elf_gc_mark_hook_fn gc_mark_hook,
964 		       struct elf_reloc_cookie *cookie)
965 {
966   struct eh_cie_fde *fde, *cie;
967 
968   for (fde = elf_fde_list (sec); fde; fde = fde->u.fde.next_for_section)
969     {
970       if (!mark_entry (info, eh_frame, fde, gc_mark_hook, cookie))
971 	return FALSE;
972 
973       /* At this stage, all cie_inf fields point to local CIEs, so we
974 	 can use the same cookie to refer to them.  */
975       cie = fde->u.fde.cie_inf;
976       if (!cie->u.cie.gc_mark)
977 	{
978 	  cie->u.cie.gc_mark = 1;
979 	  if (!mark_entry (info, eh_frame, cie, gc_mark_hook, cookie))
980 	    return FALSE;
981 	}
982     }
983   return TRUE;
984 }
985 
986 /* Input section SEC of ABFD is an .eh_frame section that contains the
987    CIE described by CIE_INF.  Return a version of CIE_INF that is going
988    to be kept in the output, adding CIE_INF to the output if necessary.
989 
990    HDR_INFO is the .eh_frame_hdr information and COOKIE describes the
991    relocations in REL.  */
992 
993 static struct eh_cie_fde *
994 find_merged_cie (bfd *abfd, struct bfd_link_info *info, asection *sec,
995 		 struct eh_frame_hdr_info *hdr_info,
996 		 struct elf_reloc_cookie *cookie,
997 		 struct eh_cie_fde *cie_inf)
998 {
999   unsigned long r_symndx;
1000   struct cie *cie, *new_cie;
1001   Elf_Internal_Rela *rel;
1002   void **loc;
1003 
1004   /* Use CIE_INF if we have already decided to keep it.  */
1005   if (!cie_inf->removed)
1006     return cie_inf;
1007 
1008   /* If we have merged CIE_INF with another CIE, use that CIE instead.  */
1009   if (cie_inf->u.cie.merged)
1010     return cie_inf->u.cie.u.merged_with;
1011 
1012   cie = cie_inf->u.cie.u.full_cie;
1013 
1014   /* Assume we will need to keep CIE_INF.  */
1015   cie_inf->removed = 0;
1016   cie_inf->u.cie.u.sec = sec;
1017 
1018   /* If we are not merging CIEs, use CIE_INF.  */
1019   if (cie == NULL)
1020     return cie_inf;
1021 
1022   if (cie->per_encoding != DW_EH_PE_omit)
1023     {
1024       bfd_boolean per_binds_local;
1025 
1026       /* Work out the address of personality routine, either as an absolute
1027 	 value or as a symbol.  */
1028       rel = cookie->rels + cie->personality.reloc_index;
1029       memset (&cie->personality, 0, sizeof (cie->personality));
1030 #ifdef BFD64
1031       if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
1032 	r_symndx = ELF64_R_SYM (rel->r_info);
1033       else
1034 #endif
1035 	r_symndx = ELF32_R_SYM (rel->r_info);
1036       if (r_symndx >= cookie->locsymcount
1037 	  || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
1038 	{
1039 	  struct elf_link_hash_entry *h;
1040 
1041 	  r_symndx -= cookie->extsymoff;
1042 	  h = cookie->sym_hashes[r_symndx];
1043 
1044 	  while (h->root.type == bfd_link_hash_indirect
1045 		 || h->root.type == bfd_link_hash_warning)
1046 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
1047 
1048 	  cie->personality.h = h;
1049 	  per_binds_local = SYMBOL_REFERENCES_LOCAL (info, h);
1050 	}
1051       else
1052 	{
1053 	  Elf_Internal_Sym *sym;
1054 	  asection *sym_sec;
1055 
1056 	  sym = &cookie->locsyms[r_symndx];
1057 	  sym_sec = bfd_section_from_elf_index (abfd, sym->st_shndx);
1058 	  if (sym_sec == NULL)
1059 	    return cie_inf;
1060 
1061 	  if (sym_sec->kept_section != NULL)
1062 	    sym_sec = sym_sec->kept_section;
1063 	  if (sym_sec->output_section == NULL)
1064 	    return cie_inf;
1065 
1066 	  cie->local_personality = 1;
1067 	  cie->personality.val = (sym->st_value
1068 				  + sym_sec->output_offset
1069 				  + sym_sec->output_section->vma);
1070 	  per_binds_local = TRUE;
1071 	}
1072 
1073       if (per_binds_local
1074 	  && info->shared
1075 	  && (cie->per_encoding & 0x70) == DW_EH_PE_absptr
1076 	  && (get_elf_backend_data (abfd)
1077 	      ->elf_backend_can_make_relative_eh_frame (abfd, info, sec)))
1078 	{
1079 	  cie_inf->u.cie.make_per_encoding_relative = 1;
1080 	  cie_inf->u.cie.per_encoding_relative = 1;
1081 	}
1082     }
1083 
1084   /* See if we can merge this CIE with an earlier one.  */
1085   cie->output_sec = sec->output_section;
1086   cie_compute_hash (cie);
1087   if (hdr_info->cies == NULL)
1088     {
1089       hdr_info->cies = htab_try_create (1, cie_hash, cie_eq, free);
1090       if (hdr_info->cies == NULL)
1091 	return cie_inf;
1092     }
1093   loc = htab_find_slot_with_hash (hdr_info->cies, cie, cie->hash, INSERT);
1094   if (loc == NULL)
1095     return cie_inf;
1096 
1097   new_cie = (struct cie *) *loc;
1098   if (new_cie == NULL)
1099     {
1100       /* Keep CIE_INF and record it in the hash table.  */
1101       new_cie = (struct cie *) malloc (sizeof (struct cie));
1102       if (new_cie == NULL)
1103 	return cie_inf;
1104 
1105       memcpy (new_cie, cie, sizeof (struct cie));
1106       *loc = new_cie;
1107     }
1108   else
1109     {
1110       /* Merge CIE_INF with NEW_CIE->CIE_INF.  */
1111       cie_inf->removed = 1;
1112       cie_inf->u.cie.merged = 1;
1113       cie_inf->u.cie.u.merged_with = new_cie->cie_inf;
1114       if (cie_inf->u.cie.make_lsda_relative)
1115 	new_cie->cie_inf->u.cie.make_lsda_relative = 1;
1116     }
1117   return new_cie->cie_inf;
1118 }
1119 
1120 /* This function is called for each input file before the .eh_frame
1121    section is relocated.  It discards duplicate CIEs and FDEs for discarded
1122    functions.  The function returns TRUE iff any entries have been
1123    deleted.  */
1124 
1125 bfd_boolean
1126 _bfd_elf_discard_section_eh_frame
1127    (bfd *abfd, struct bfd_link_info *info, asection *sec,
1128     bfd_boolean (*reloc_symbol_deleted_p) (bfd_vma, void *),
1129     struct elf_reloc_cookie *cookie)
1130 {
1131   struct eh_cie_fde *ent;
1132   struct eh_frame_sec_info *sec_info;
1133   struct eh_frame_hdr_info *hdr_info;
1134   unsigned int ptr_size, offset;
1135 
1136   sec_info = (struct eh_frame_sec_info *) elf_section_data (sec)->sec_info;
1137   if (sec_info == NULL)
1138     return FALSE;
1139 
1140   hdr_info = &elf_hash_table (info)->eh_info;
1141   for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1142     if (ent->size == 4)
1143       /* There should only be one zero terminator, on the last input
1144 	 file supplying .eh_frame (crtend.o).  Remove any others.  */
1145       ent->removed = sec->map_head.s != NULL;
1146     else if (!ent->cie)
1147       {
1148 	cookie->rel = cookie->rels + ent->reloc_index;
1149 	/* FIXME: octets_per_byte.  */
1150 	BFD_ASSERT (cookie->rel < cookie->relend
1151 		    && cookie->rel->r_offset == ent->offset + 8);
1152 	if (!(*reloc_symbol_deleted_p) (ent->offset + 8, cookie))
1153 	  {
1154 	    if (info->shared
1155 		&& (((ent->fde_encoding & 0x70) == DW_EH_PE_absptr
1156 		     && ent->make_relative == 0)
1157 		    || (ent->fde_encoding & 0x70) == DW_EH_PE_aligned))
1158 	      {
1159 		/* If a shared library uses absolute pointers
1160 		   which we cannot turn into PC relative,
1161 		   don't create the binary search table,
1162 		   since it is affected by runtime relocations.  */
1163 		hdr_info->table = FALSE;
1164 		(*info->callbacks->einfo)
1165 		  (_("%P: fde encoding in %B(%A) prevents .eh_frame_hdr"
1166 		     " table being created.\n"), abfd, sec);
1167 	      }
1168 	    ent->removed = 0;
1169 	    hdr_info->fde_count++;
1170 	    ent->u.fde.cie_inf = find_merged_cie (abfd, info, sec, hdr_info,
1171 						  cookie, ent->u.fde.cie_inf);
1172 	  }
1173       }
1174 
1175   if (sec_info->cies)
1176     {
1177       free (sec_info->cies);
1178       sec_info->cies = NULL;
1179     }
1180 
1181   ptr_size = (get_elf_backend_data (sec->owner)
1182 	      ->elf_backend_eh_frame_address_size (sec->owner, sec));
1183   offset = 0;
1184   for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1185     if (!ent->removed)
1186       {
1187 	ent->new_offset = offset;
1188 	offset += size_of_output_cie_fde (ent, ptr_size);
1189       }
1190 
1191   sec->rawsize = sec->size;
1192   sec->size = offset;
1193   return offset != sec->rawsize;
1194 }
1195 
1196 /* This function is called for .eh_frame_hdr section after
1197    _bfd_elf_discard_section_eh_frame has been called on all .eh_frame
1198    input sections.  It finalizes the size of .eh_frame_hdr section.  */
1199 
1200 bfd_boolean
1201 _bfd_elf_discard_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
1202 {
1203   struct elf_link_hash_table *htab;
1204   struct eh_frame_hdr_info *hdr_info;
1205   asection *sec;
1206 
1207   htab = elf_hash_table (info);
1208   hdr_info = &htab->eh_info;
1209 
1210   if (hdr_info->cies != NULL)
1211     {
1212       htab_delete (hdr_info->cies);
1213       hdr_info->cies = NULL;
1214     }
1215 
1216   sec = hdr_info->hdr_sec;
1217   if (sec == NULL)
1218     return FALSE;
1219 
1220   sec->size = EH_FRAME_HDR_SIZE;
1221   if (hdr_info->table)
1222     sec->size += 4 + hdr_info->fde_count * 8;
1223 
1224   elf_tdata (abfd)->eh_frame_hdr = sec;
1225   return TRUE;
1226 }
1227 
1228 /* This function is called from size_dynamic_sections.
1229    It needs to decide whether .eh_frame_hdr should be output or not,
1230    because when the dynamic symbol table has been sized it is too late
1231    to strip sections.  */
1232 
1233 bfd_boolean
1234 _bfd_elf_maybe_strip_eh_frame_hdr (struct bfd_link_info *info)
1235 {
1236   asection *o;
1237   bfd *abfd;
1238   struct elf_link_hash_table *htab;
1239   struct eh_frame_hdr_info *hdr_info;
1240 
1241   htab = elf_hash_table (info);
1242   hdr_info = &htab->eh_info;
1243   if (hdr_info->hdr_sec == NULL)
1244     return TRUE;
1245 
1246   if (bfd_is_abs_section (hdr_info->hdr_sec->output_section))
1247     {
1248       hdr_info->hdr_sec = NULL;
1249       return TRUE;
1250     }
1251 
1252   abfd = NULL;
1253   if (info->eh_frame_hdr)
1254     for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1255       {
1256 	/* Count only sections which have at least a single CIE or FDE.
1257 	   There cannot be any CIE or FDE <= 8 bytes.  */
1258 	o = bfd_get_section_by_name (abfd, ".eh_frame");
1259 	if (o && o->size > 8 && !bfd_is_abs_section (o->output_section))
1260 	  break;
1261       }
1262 
1263   if (abfd == NULL)
1264     {
1265       hdr_info->hdr_sec->flags |= SEC_EXCLUDE;
1266       hdr_info->hdr_sec = NULL;
1267       return TRUE;
1268     }
1269 
1270   hdr_info->table = TRUE;
1271   return TRUE;
1272 }
1273 
1274 /* Adjust an address in the .eh_frame section.  Given OFFSET within
1275    SEC, this returns the new offset in the adjusted .eh_frame section,
1276    or -1 if the address refers to a CIE/FDE which has been removed
1277    or to offset with dynamic relocation which is no longer needed.  */
1278 
1279 bfd_vma
1280 _bfd_elf_eh_frame_section_offset (bfd *output_bfd ATTRIBUTE_UNUSED,
1281 				  struct bfd_link_info *info ATTRIBUTE_UNUSED,
1282 				  asection *sec,
1283 				  bfd_vma offset)
1284 {
1285   struct eh_frame_sec_info *sec_info;
1286   unsigned int lo, hi, mid;
1287 
1288   if (sec->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
1289     return offset;
1290   sec_info = (struct eh_frame_sec_info *) elf_section_data (sec)->sec_info;
1291 
1292   if (offset >= sec->rawsize)
1293     return offset - sec->rawsize + sec->size;
1294 
1295   lo = 0;
1296   hi = sec_info->count;
1297   mid = 0;
1298   while (lo < hi)
1299     {
1300       mid = (lo + hi) / 2;
1301       if (offset < sec_info->entry[mid].offset)
1302 	hi = mid;
1303       else if (offset
1304 	       >= sec_info->entry[mid].offset + sec_info->entry[mid].size)
1305 	lo = mid + 1;
1306       else
1307 	break;
1308     }
1309 
1310   BFD_ASSERT (lo < hi);
1311 
1312   /* FDE or CIE was removed.  */
1313   if (sec_info->entry[mid].removed)
1314     return (bfd_vma) -1;
1315 
1316   /* If converting personality pointers to DW_EH_PE_pcrel, there will be
1317      no need for run-time relocation against the personality field.  */
1318   if (sec_info->entry[mid].cie
1319       && sec_info->entry[mid].u.cie.make_per_encoding_relative
1320       && offset == (sec_info->entry[mid].offset + 8
1321 		    + sec_info->entry[mid].u.cie.personality_offset))
1322     return (bfd_vma) -2;
1323 
1324   /* If converting to DW_EH_PE_pcrel, there will be no need for run-time
1325      relocation against FDE's initial_location field.  */
1326   if (!sec_info->entry[mid].cie
1327       && sec_info->entry[mid].make_relative
1328       && offset == sec_info->entry[mid].offset + 8)
1329     return (bfd_vma) -2;
1330 
1331   /* If converting LSDA pointers to DW_EH_PE_pcrel, there will be no need
1332      for run-time relocation against LSDA field.  */
1333   if (!sec_info->entry[mid].cie
1334       && sec_info->entry[mid].u.fde.cie_inf->u.cie.make_lsda_relative
1335       && offset == (sec_info->entry[mid].offset + 8
1336 		    + sec_info->entry[mid].lsda_offset))
1337     return (bfd_vma) -2;
1338 
1339   /* If converting to DW_EH_PE_pcrel, there will be no need for run-time
1340      relocation against DW_CFA_set_loc's arguments.  */
1341   if (sec_info->entry[mid].set_loc
1342       && sec_info->entry[mid].make_relative
1343       && (offset >= sec_info->entry[mid].offset + 8
1344 		    + sec_info->entry[mid].set_loc[1]))
1345     {
1346       unsigned int cnt;
1347 
1348       for (cnt = 1; cnt <= sec_info->entry[mid].set_loc[0]; cnt++)
1349 	if (offset == sec_info->entry[mid].offset + 8
1350 		      + sec_info->entry[mid].set_loc[cnt])
1351 	  return (bfd_vma) -2;
1352     }
1353 
1354   /* Any new augmentation bytes go before the first relocation.  */
1355   return (offset + sec_info->entry[mid].new_offset
1356 	  - sec_info->entry[mid].offset
1357 	  + extra_augmentation_string_bytes (sec_info->entry + mid)
1358 	  + extra_augmentation_data_bytes (sec_info->entry + mid));
1359 }
1360 
1361 /* Write out .eh_frame section.  This is called with the relocated
1362    contents.  */
1363 
1364 bfd_boolean
1365 _bfd_elf_write_section_eh_frame (bfd *abfd,
1366 				 struct bfd_link_info *info,
1367 				 asection *sec,
1368 				 bfd_byte *contents)
1369 {
1370   struct eh_frame_sec_info *sec_info;
1371   struct elf_link_hash_table *htab;
1372   struct eh_frame_hdr_info *hdr_info;
1373   unsigned int ptr_size;
1374   struct eh_cie_fde *ent;
1375 
1376   if (sec->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
1377     /* FIXME: octets_per_byte.  */
1378     return bfd_set_section_contents (abfd, sec->output_section, contents,
1379 				     sec->output_offset, sec->size);
1380 
1381   ptr_size = (get_elf_backend_data (abfd)
1382 	      ->elf_backend_eh_frame_address_size (abfd, sec));
1383   BFD_ASSERT (ptr_size != 0);
1384 
1385   sec_info = (struct eh_frame_sec_info *) elf_section_data (sec)->sec_info;
1386   htab = elf_hash_table (info);
1387   hdr_info = &htab->eh_info;
1388 
1389   if (hdr_info->table && hdr_info->array == NULL)
1390     hdr_info->array = (struct eh_frame_array_ent *)
1391         bfd_malloc (hdr_info->fde_count * sizeof(*hdr_info->array));
1392   if (hdr_info->array == NULL)
1393     hdr_info = NULL;
1394 
1395   /* The new offsets can be bigger or smaller than the original offsets.
1396      We therefore need to make two passes over the section: one backward
1397      pass to move entries up and one forward pass to move entries down.
1398      The two passes won't interfere with each other because entries are
1399      not reordered  */
1400   for (ent = sec_info->entry + sec_info->count; ent-- != sec_info->entry;)
1401     if (!ent->removed && ent->new_offset > ent->offset)
1402       memmove (contents + ent->new_offset, contents + ent->offset, ent->size);
1403 
1404   for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1405     if (!ent->removed && ent->new_offset < ent->offset)
1406       memmove (contents + ent->new_offset, contents + ent->offset, ent->size);
1407 
1408   for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1409     {
1410       unsigned char *buf, *end;
1411       unsigned int new_size;
1412 
1413       if (ent->removed)
1414 	continue;
1415 
1416       if (ent->size == 4)
1417 	{
1418 	  /* Any terminating FDE must be at the end of the section.  */
1419 	  BFD_ASSERT (ent == sec_info->entry + sec_info->count - 1);
1420 	  continue;
1421 	}
1422 
1423       buf = contents + ent->new_offset;
1424       end = buf + ent->size;
1425       new_size = size_of_output_cie_fde (ent, ptr_size);
1426 
1427       /* Update the size.  It may be shrinked.  */
1428       bfd_put_32 (abfd, new_size - 4, buf);
1429 
1430       /* Filling the extra bytes with DW_CFA_nops.  */
1431       if (new_size != ent->size)
1432 	memset (end, 0, new_size - ent->size);
1433 
1434       if (ent->cie)
1435 	{
1436 	  /* CIE */
1437 	  if (ent->make_relative
1438 	      || ent->u.cie.make_lsda_relative
1439 	      || ent->u.cie.per_encoding_relative)
1440 	    {
1441 	      char *aug;
1442 	      unsigned int action, extra_string, extra_data;
1443 	      unsigned int per_width, per_encoding;
1444 
1445 	      /* Need to find 'R' or 'L' augmentation's argument and modify
1446 		 DW_EH_PE_* value.  */
1447 	      action = ((ent->make_relative ? 1 : 0)
1448 			| (ent->u.cie.make_lsda_relative ? 2 : 0)
1449 			| (ent->u.cie.per_encoding_relative ? 4 : 0));
1450 	      extra_string = extra_augmentation_string_bytes (ent);
1451 	      extra_data = extra_augmentation_data_bytes (ent);
1452 
1453 	      /* Skip length, id and version.  */
1454 	      buf += 9;
1455 	      aug = (char *) buf;
1456 	      buf += strlen (aug) + 1;
1457 	      skip_leb128 (&buf, end);
1458 	      skip_leb128 (&buf, end);
1459 	      skip_leb128 (&buf, end);
1460 	      if (*aug == 'z')
1461 		{
1462 		  /* The uleb128 will always be a single byte for the kind
1463 		     of augmentation strings that we're prepared to handle.  */
1464 		  *buf++ += extra_data;
1465 		  aug++;
1466 		}
1467 
1468 	      /* Make room for the new augmentation string and data bytes.  */
1469 	      memmove (buf + extra_string + extra_data, buf, end - buf);
1470 	      memmove (aug + extra_string, aug, buf - (bfd_byte *) aug);
1471 	      buf += extra_string;
1472 	      end += extra_string + extra_data;
1473 
1474 	      if (ent->add_augmentation_size)
1475 		{
1476 		  *aug++ = 'z';
1477 		  *buf++ = extra_data - 1;
1478 		}
1479 	      if (ent->u.cie.add_fde_encoding)
1480 		{
1481 		  BFD_ASSERT (action & 1);
1482 		  *aug++ = 'R';
1483 		  *buf++ = make_pc_relative (DW_EH_PE_absptr, ptr_size);
1484 		  action &= ~1;
1485 		}
1486 
1487 	      while (action)
1488 		switch (*aug++)
1489 		  {
1490 		  case 'L':
1491 		    if (action & 2)
1492 		      {
1493 			BFD_ASSERT (*buf == ent->lsda_encoding);
1494 			*buf = make_pc_relative (*buf, ptr_size);
1495 			action &= ~2;
1496 		      }
1497 		    buf++;
1498 		    break;
1499 		  case 'P':
1500 		    if (ent->u.cie.make_per_encoding_relative)
1501 		      *buf = make_pc_relative (*buf, ptr_size);
1502 		    per_encoding = *buf++;
1503 		    per_width = get_DW_EH_PE_width (per_encoding, ptr_size);
1504 		    BFD_ASSERT (per_width != 0);
1505 		    BFD_ASSERT (((per_encoding & 0x70) == DW_EH_PE_pcrel)
1506 				== ent->u.cie.per_encoding_relative);
1507 		    if ((per_encoding & 0x70) == DW_EH_PE_aligned)
1508 		      buf = (contents
1509 			     + ((buf - contents + per_width - 1)
1510 				& ~((bfd_size_type) per_width - 1)));
1511 		    if (action & 4)
1512 		      {
1513 			bfd_vma val;
1514 
1515 			val = read_value (abfd, buf, per_width,
1516 					  get_DW_EH_PE_signed (per_encoding));
1517 			if (ent->u.cie.make_per_encoding_relative)
1518 			  val -= (sec->output_section->vma
1519 				  + sec->output_offset
1520 				  + (buf - contents));
1521 			else
1522 			  {
1523 			    val += (bfd_vma) ent->offset - ent->new_offset;
1524 			    val -= extra_string + extra_data;
1525 			  }
1526 			write_value (abfd, buf, val, per_width);
1527 			action &= ~4;
1528 		      }
1529 		    buf += per_width;
1530 		    break;
1531 		  case 'R':
1532 		    if (action & 1)
1533 		      {
1534 			BFD_ASSERT (*buf == ent->fde_encoding);
1535 			*buf = make_pc_relative (*buf, ptr_size);
1536 			action &= ~1;
1537 		      }
1538 		    buf++;
1539 		    break;
1540 		  case 'S':
1541 		    break;
1542 		  default:
1543 		    BFD_FAIL ();
1544 		  }
1545 	    }
1546 	}
1547       else
1548 	{
1549 	  /* FDE */
1550 	  bfd_vma value, address;
1551 	  unsigned int width;
1552 	  bfd_byte *start;
1553 	  struct eh_cie_fde *cie;
1554 
1555 	  /* Skip length.  */
1556 	  cie = ent->u.fde.cie_inf;
1557 	  buf += 4;
1558 	  value = ((ent->new_offset + sec->output_offset + 4)
1559 		   - (cie->new_offset + cie->u.cie.u.sec->output_offset));
1560 	  bfd_put_32 (abfd, value, buf);
1561 	  buf += 4;
1562 	  width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
1563 	  value = read_value (abfd, buf, width,
1564 			      get_DW_EH_PE_signed (ent->fde_encoding));
1565 	  address = value;
1566 	  if (value)
1567 	    {
1568 	      switch (ent->fde_encoding & 0x70)
1569 		{
1570 		case DW_EH_PE_textrel:
1571 		  BFD_ASSERT (hdr_info == NULL);
1572 		  break;
1573 		case DW_EH_PE_datarel:
1574 		  {
1575 		    switch (abfd->arch_info->arch)
1576 		      {
1577 		      case bfd_arch_ia64:
1578 			BFD_ASSERT (elf_gp (abfd) != 0);
1579 			address += elf_gp (abfd);
1580 			break;
1581 		      default:
1582 			(*info->callbacks->einfo)
1583 			  (_("%P: DW_EH_PE_datarel unspecified"
1584 			     " for this architecture.\n"));
1585 			/* Fall thru */
1586 		      case bfd_arch_frv:
1587 		      case bfd_arch_i386:
1588 			BFD_ASSERT (htab->hgot != NULL
1589 				    && ((htab->hgot->root.type
1590 					 == bfd_link_hash_defined)
1591 					|| (htab->hgot->root.type
1592 					    == bfd_link_hash_defweak)));
1593 			address
1594 			  += (htab->hgot->root.u.def.value
1595 			      + htab->hgot->root.u.def.section->output_offset
1596 			      + (htab->hgot->root.u.def.section->output_section
1597 				 ->vma));
1598 			break;
1599 		      }
1600 		  }
1601 		  break;
1602 		case DW_EH_PE_pcrel:
1603 		  value += (bfd_vma) ent->offset - ent->new_offset;
1604 		  address += (sec->output_section->vma
1605 			      + sec->output_offset
1606 			      + ent->offset + 8);
1607 		  break;
1608 		}
1609 	      if (ent->make_relative)
1610 		value -= (sec->output_section->vma
1611 			  + sec->output_offset
1612 			  + ent->new_offset + 8);
1613 	      write_value (abfd, buf, value, width);
1614 	    }
1615 
1616 	  start = buf;
1617 
1618 	  if (hdr_info)
1619 	    {
1620 	      /* The address calculation may overflow, giving us a
1621 		 value greater than 4G on a 32-bit target when
1622 		 dwarf_vma is 64-bit.  */
1623 	      if (sizeof (address) > 4 && ptr_size == 4)
1624 		address &= 0xffffffff;
1625 	      hdr_info->array[hdr_info->array_count].initial_loc = address;
1626 	      hdr_info->array[hdr_info->array_count++].fde
1627 		= (sec->output_section->vma
1628 		   + sec->output_offset
1629 		   + ent->new_offset);
1630 	    }
1631 
1632 	  if ((ent->lsda_encoding & 0x70) == DW_EH_PE_pcrel
1633 	      || cie->u.cie.make_lsda_relative)
1634 	    {
1635 	      buf += ent->lsda_offset;
1636 	      width = get_DW_EH_PE_width (ent->lsda_encoding, ptr_size);
1637 	      value = read_value (abfd, buf, width,
1638 				  get_DW_EH_PE_signed (ent->lsda_encoding));
1639 	      if (value)
1640 		{
1641 		  if ((ent->lsda_encoding & 0x70) == DW_EH_PE_pcrel)
1642 		    value += (bfd_vma) ent->offset - ent->new_offset;
1643 		  else if (cie->u.cie.make_lsda_relative)
1644 		    value -= (sec->output_section->vma
1645 			      + sec->output_offset
1646 			      + ent->new_offset + 8 + ent->lsda_offset);
1647 		  write_value (abfd, buf, value, width);
1648 		}
1649 	    }
1650 	  else if (ent->add_augmentation_size)
1651 	    {
1652 	      /* Skip the PC and length and insert a zero byte for the
1653 		 augmentation size.  */
1654 	      buf += width * 2;
1655 	      memmove (buf + 1, buf, end - buf);
1656 	      *buf = 0;
1657 	    }
1658 
1659 	  if (ent->set_loc)
1660 	    {
1661 	      /* Adjust DW_CFA_set_loc.  */
1662 	      unsigned int cnt;
1663 	      bfd_vma new_offset;
1664 
1665 	      width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
1666 	      new_offset = ent->new_offset + 8
1667 			   + extra_augmentation_string_bytes (ent)
1668 			   + extra_augmentation_data_bytes (ent);
1669 
1670 	      for (cnt = 1; cnt <= ent->set_loc[0]; cnt++)
1671 		{
1672 		  buf = start + ent->set_loc[cnt];
1673 
1674 		  value = read_value (abfd, buf, width,
1675 				      get_DW_EH_PE_signed (ent->fde_encoding));
1676 		  if (!value)
1677 		    continue;
1678 
1679 		  if ((ent->fde_encoding & 0x70) == DW_EH_PE_pcrel)
1680 		    value += (bfd_vma) ent->offset + 8 - new_offset;
1681 		  if (ent->make_relative)
1682 		    value -= (sec->output_section->vma
1683 			      + sec->output_offset
1684 			      + new_offset + ent->set_loc[cnt]);
1685 		  write_value (abfd, buf, value, width);
1686 		}
1687 	    }
1688 	}
1689     }
1690 
1691   /* We don't align the section to its section alignment since the
1692      runtime library only expects all CIE/FDE records aligned at
1693      the pointer size. _bfd_elf_discard_section_eh_frame should
1694      have padded CIE/FDE records to multiple of pointer size with
1695      size_of_output_cie_fde.  */
1696   if ((sec->size % ptr_size) != 0)
1697     abort ();
1698 
1699   /* FIXME: octets_per_byte.  */
1700   return bfd_set_section_contents (abfd, sec->output_section,
1701 				   contents, (file_ptr) sec->output_offset,
1702 				   sec->size);
1703 }
1704 
1705 /* Helper function used to sort .eh_frame_hdr search table by increasing
1706    VMA of FDE initial location.  */
1707 
1708 static int
1709 vma_compare (const void *a, const void *b)
1710 {
1711   const struct eh_frame_array_ent *p = (const struct eh_frame_array_ent *) a;
1712   const struct eh_frame_array_ent *q = (const struct eh_frame_array_ent *) b;
1713   if (p->initial_loc > q->initial_loc)
1714     return 1;
1715   if (p->initial_loc < q->initial_loc)
1716     return -1;
1717   return 0;
1718 }
1719 
1720 /* Write out .eh_frame_hdr section.  This must be called after
1721    _bfd_elf_write_section_eh_frame has been called on all input
1722    .eh_frame sections.
1723    .eh_frame_hdr format:
1724    ubyte version		(currently 1)
1725    ubyte eh_frame_ptr_enc  	(DW_EH_PE_* encoding of pointer to start of
1726 				 .eh_frame section)
1727    ubyte fde_count_enc		(DW_EH_PE_* encoding of total FDE count
1728 				 number (or DW_EH_PE_omit if there is no
1729 				 binary search table computed))
1730    ubyte table_enc		(DW_EH_PE_* encoding of binary search table,
1731 				 or DW_EH_PE_omit if not present.
1732 				 DW_EH_PE_datarel is using address of
1733 				 .eh_frame_hdr section start as base)
1734    [encoded] eh_frame_ptr	(pointer to start of .eh_frame section)
1735    optionally followed by:
1736    [encoded] fde_count		(total number of FDEs in .eh_frame section)
1737    fde_count x [encoded] initial_loc, fde
1738 				(array of encoded pairs containing
1739 				 FDE initial_location field and FDE address,
1740 				 sorted by increasing initial_loc).  */
1741 
1742 bfd_boolean
1743 _bfd_elf_write_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
1744 {
1745   struct elf_link_hash_table *htab;
1746   struct eh_frame_hdr_info *hdr_info;
1747   asection *sec;
1748   bfd_byte *contents;
1749   asection *eh_frame_sec;
1750   bfd_size_type size;
1751   bfd_boolean retval;
1752   bfd_vma encoded_eh_frame;
1753 
1754   htab = elf_hash_table (info);
1755   hdr_info = &htab->eh_info;
1756   sec = hdr_info->hdr_sec;
1757   if (sec == NULL)
1758     return TRUE;
1759 
1760   size = EH_FRAME_HDR_SIZE;
1761   if (hdr_info->array && hdr_info->array_count == hdr_info->fde_count)
1762     size += 4 + hdr_info->fde_count * 8;
1763   contents = (bfd_byte *) bfd_malloc (size);
1764   if (contents == NULL)
1765     return FALSE;
1766 
1767   eh_frame_sec = bfd_get_section_by_name (abfd, ".eh_frame");
1768   if (eh_frame_sec == NULL)
1769     {
1770       free (contents);
1771       return FALSE;
1772     }
1773 
1774   memset (contents, 0, EH_FRAME_HDR_SIZE);
1775   contents[0] = 1;				/* Version.  */
1776   contents[1] = get_elf_backend_data (abfd)->elf_backend_encode_eh_address
1777     (abfd, info, eh_frame_sec, 0, sec, 4,
1778      &encoded_eh_frame);			/* .eh_frame offset.  */
1779 
1780   if (hdr_info->array && hdr_info->array_count == hdr_info->fde_count)
1781     {
1782       contents[2] = DW_EH_PE_udata4;		/* FDE count encoding.  */
1783       contents[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; /* Search table enc.  */
1784     }
1785   else
1786     {
1787       contents[2] = DW_EH_PE_omit;
1788       contents[3] = DW_EH_PE_omit;
1789     }
1790   bfd_put_32 (abfd, encoded_eh_frame, contents + 4);
1791 
1792   if (contents[2] != DW_EH_PE_omit)
1793     {
1794       unsigned int i;
1795 
1796       bfd_put_32 (abfd, hdr_info->fde_count, contents + EH_FRAME_HDR_SIZE);
1797       qsort (hdr_info->array, hdr_info->fde_count, sizeof (*hdr_info->array),
1798 	     vma_compare);
1799       for (i = 0; i < hdr_info->fde_count; i++)
1800 	{
1801 	  bfd_put_32 (abfd,
1802 		      hdr_info->array[i].initial_loc
1803 		      - sec->output_section->vma,
1804 		      contents + EH_FRAME_HDR_SIZE + i * 8 + 4);
1805 	  bfd_put_32 (abfd,
1806 		      hdr_info->array[i].fde - sec->output_section->vma,
1807 		      contents + EH_FRAME_HDR_SIZE + i * 8 + 8);
1808 	}
1809     }
1810 
1811   /* FIXME: octets_per_byte.  */
1812   retval = bfd_set_section_contents (abfd, sec->output_section,
1813 				     contents, (file_ptr) sec->output_offset,
1814 				     sec->size);
1815   free (contents);
1816   return retval;
1817 }
1818 
1819 /* Return the width of FDE addresses.  This is the default implementation.  */
1820 
1821 unsigned int
1822 _bfd_elf_eh_frame_address_size (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
1823 {
1824   return elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64 ? 8 : 4;
1825 }
1826 
1827 /* Decide whether we can use a PC-relative encoding within the given
1828    EH frame section.  This is the default implementation.  */
1829 
1830 bfd_boolean
1831 _bfd_elf_can_make_relative (bfd *input_bfd ATTRIBUTE_UNUSED,
1832 			    struct bfd_link_info *info ATTRIBUTE_UNUSED,
1833 			    asection *eh_frame_section ATTRIBUTE_UNUSED)
1834 {
1835   return TRUE;
1836 }
1837 
1838 /* Select an encoding for the given address.  Preference is given to
1839    PC-relative addressing modes.  */
1840 
1841 bfd_byte
1842 _bfd_elf_encode_eh_address (bfd *abfd ATTRIBUTE_UNUSED,
1843 			    struct bfd_link_info *info ATTRIBUTE_UNUSED,
1844 			    asection *osec, bfd_vma offset,
1845 			    asection *loc_sec, bfd_vma loc_offset,
1846 			    bfd_vma *encoded)
1847 {
1848   *encoded = osec->vma + offset -
1849     (loc_sec->output_section->vma + loc_sec->output_offset + loc_offset);
1850   return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
1851 }
1852