xref: /dragonfly/contrib/gdb-7/bfd/elf-eh-frame.c (revision e7d467f4)
1 /* .eh_frame section optimization.
2    Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
3    Free Software Foundation, Inc.
4    Written by Jakub Jelinek <jakub@redhat.com>.
5 
6    This file is part of BFD, the Binary File Descriptor library.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, write to the Free Software
20    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21    MA 02110-1301, USA.  */
22 
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "dwarf2.h"
28 
29 #define EH_FRAME_HDR_SIZE 8
30 
31 struct cie
32 {
33   unsigned int length;
34   unsigned int hash;
35   unsigned char version;
36   unsigned char local_personality;
37   char augmentation[20];
38   bfd_vma code_align;
39   bfd_signed_vma data_align;
40   bfd_vma ra_column;
41   bfd_vma augmentation_size;
42   union {
43     struct elf_link_hash_entry *h;
44     bfd_vma val;
45     unsigned int reloc_index;
46   } personality;
47   asection *output_sec;
48   struct eh_cie_fde *cie_inf;
49   unsigned char per_encoding;
50   unsigned char lsda_encoding;
51   unsigned char fde_encoding;
52   unsigned char initial_insn_length;
53   unsigned char can_make_lsda_relative;
54   unsigned char initial_instructions[50];
55 };
56 
57 
58 
59 /* If *ITER hasn't reached END yet, read the next byte into *RESULT and
60    move onto the next byte.  Return true on success.  */
61 
62 static inline bfd_boolean
63 read_byte (bfd_byte **iter, bfd_byte *end, unsigned char *result)
64 {
65   if (*iter >= end)
66     return FALSE;
67   *result = *((*iter)++);
68   return TRUE;
69 }
70 
71 /* Move *ITER over LENGTH bytes, or up to END, whichever is closer.
72    Return true it was possible to move LENGTH bytes.  */
73 
74 static inline bfd_boolean
75 skip_bytes (bfd_byte **iter, bfd_byte *end, bfd_size_type length)
76 {
77   if ((bfd_size_type) (end - *iter) < length)
78     {
79       *iter = end;
80       return FALSE;
81     }
82   *iter += length;
83   return TRUE;
84 }
85 
86 /* Move *ITER over an leb128, stopping at END.  Return true if the end
87    of the leb128 was found.  */
88 
89 static bfd_boolean
90 skip_leb128 (bfd_byte **iter, bfd_byte *end)
91 {
92   unsigned char byte;
93   do
94     if (!read_byte (iter, end, &byte))
95       return FALSE;
96   while (byte & 0x80);
97   return TRUE;
98 }
99 
100 /* Like skip_leb128, but treat the leb128 as an unsigned value and
101    store it in *VALUE.  */
102 
103 static bfd_boolean
104 read_uleb128 (bfd_byte **iter, bfd_byte *end, bfd_vma *value)
105 {
106   bfd_byte *start, *p;
107 
108   start = *iter;
109   if (!skip_leb128 (iter, end))
110     return FALSE;
111 
112   p = *iter;
113   *value = *--p;
114   while (p > start)
115     *value = (*value << 7) | (*--p & 0x7f);
116 
117   return TRUE;
118 }
119 
120 /* Like read_uleb128, but for signed values.  */
121 
122 static bfd_boolean
123 read_sleb128 (bfd_byte **iter, bfd_byte *end, bfd_signed_vma *value)
124 {
125   bfd_byte *start, *p;
126 
127   start = *iter;
128   if (!skip_leb128 (iter, end))
129     return FALSE;
130 
131   p = *iter;
132   *value = ((*--p & 0x7f) ^ 0x40) - 0x40;
133   while (p > start)
134     *value = (*value << 7) | (*--p & 0x7f);
135 
136   return TRUE;
137 }
138 
139 /* Return 0 if either encoding is variable width, or not yet known to bfd.  */
140 
141 static
142 int get_DW_EH_PE_width (int encoding, int ptr_size)
143 {
144   /* DW_EH_PE_ values of 0x60 and 0x70 weren't defined at the time .eh_frame
145      was added to bfd.  */
146   if ((encoding & 0x60) == 0x60)
147     return 0;
148 
149   switch (encoding & 7)
150     {
151     case DW_EH_PE_udata2: return 2;
152     case DW_EH_PE_udata4: return 4;
153     case DW_EH_PE_udata8: return 8;
154     case DW_EH_PE_absptr: return ptr_size;
155     default:
156       break;
157     }
158 
159   return 0;
160 }
161 
162 #define get_DW_EH_PE_signed(encoding) (((encoding) & DW_EH_PE_signed) != 0)
163 
164 /* Read a width sized value from memory.  */
165 
166 static bfd_vma
167 read_value (bfd *abfd, bfd_byte *buf, int width, int is_signed)
168 {
169   bfd_vma value;
170 
171   switch (width)
172     {
173     case 2:
174       if (is_signed)
175 	value = bfd_get_signed_16 (abfd, buf);
176       else
177 	value = bfd_get_16 (abfd, buf);
178       break;
179     case 4:
180       if (is_signed)
181 	value = bfd_get_signed_32 (abfd, buf);
182       else
183 	value = bfd_get_32 (abfd, buf);
184       break;
185     case 8:
186       if (is_signed)
187 	value = bfd_get_signed_64 (abfd, buf);
188       else
189 	value = bfd_get_64 (abfd, buf);
190       break;
191     default:
192       BFD_FAIL ();
193       return 0;
194     }
195 
196   return value;
197 }
198 
199 /* Store a width sized value to memory.  */
200 
201 static void
202 write_value (bfd *abfd, bfd_byte *buf, bfd_vma value, int width)
203 {
204   switch (width)
205     {
206     case 2: bfd_put_16 (abfd, value, buf); break;
207     case 4: bfd_put_32 (abfd, value, buf); break;
208     case 8: bfd_put_64 (abfd, value, buf); break;
209     default: BFD_FAIL ();
210     }
211 }
212 
213 /* Return one if C1 and C2 CIEs can be merged.  */
214 
215 static int
216 cie_eq (const void *e1, const void *e2)
217 {
218   const struct cie *c1 = (const struct cie *) e1;
219   const struct cie *c2 = (const struct cie *) e2;
220 
221   if (c1->hash == c2->hash
222       && c1->length == c2->length
223       && c1->version == c2->version
224       && c1->local_personality == c2->local_personality
225       && strcmp (c1->augmentation, c2->augmentation) == 0
226       && strcmp (c1->augmentation, "eh") != 0
227       && c1->code_align == c2->code_align
228       && c1->data_align == c2->data_align
229       && c1->ra_column == c2->ra_column
230       && c1->augmentation_size == c2->augmentation_size
231       && memcmp (&c1->personality, &c2->personality,
232 		 sizeof (c1->personality)) == 0
233       && c1->output_sec == c2->output_sec
234       && c1->per_encoding == c2->per_encoding
235       && c1->lsda_encoding == c2->lsda_encoding
236       && c1->fde_encoding == c2->fde_encoding
237       && c1->initial_insn_length == c2->initial_insn_length
238       && memcmp (c1->initial_instructions,
239 		 c2->initial_instructions,
240 		 c1->initial_insn_length) == 0)
241     return 1;
242 
243   return 0;
244 }
245 
246 static hashval_t
247 cie_hash (const void *e)
248 {
249   const struct cie *c = (const struct cie *) e;
250   return c->hash;
251 }
252 
253 static hashval_t
254 cie_compute_hash (struct cie *c)
255 {
256   hashval_t h = 0;
257   h = iterative_hash_object (c->length, h);
258   h = iterative_hash_object (c->version, h);
259   h = iterative_hash (c->augmentation, strlen (c->augmentation) + 1, h);
260   h = iterative_hash_object (c->code_align, h);
261   h = iterative_hash_object (c->data_align, h);
262   h = iterative_hash_object (c->ra_column, h);
263   h = iterative_hash_object (c->augmentation_size, h);
264   h = iterative_hash_object (c->personality, h);
265   h = iterative_hash_object (c->output_sec, h);
266   h = iterative_hash_object (c->per_encoding, h);
267   h = iterative_hash_object (c->lsda_encoding, h);
268   h = iterative_hash_object (c->fde_encoding, h);
269   h = iterative_hash_object (c->initial_insn_length, h);
270   h = iterative_hash (c->initial_instructions, c->initial_insn_length, h);
271   c->hash = h;
272   return h;
273 }
274 
275 /* Return the number of extra bytes that we'll be inserting into
276    ENTRY's augmentation string.  */
277 
278 static INLINE unsigned int
279 extra_augmentation_string_bytes (struct eh_cie_fde *entry)
280 {
281   unsigned int size = 0;
282   if (entry->cie)
283     {
284       if (entry->add_augmentation_size)
285 	size++;
286       if (entry->u.cie.add_fde_encoding)
287 	size++;
288     }
289   return size;
290 }
291 
292 /* Likewise ENTRY's augmentation data.  */
293 
294 static INLINE unsigned int
295 extra_augmentation_data_bytes (struct eh_cie_fde *entry)
296 {
297   unsigned int size = 0;
298   if (entry->add_augmentation_size)
299     size++;
300   if (entry->cie && entry->u.cie.add_fde_encoding)
301     size++;
302   return size;
303 }
304 
305 /* Return the size that ENTRY will have in the output.  ALIGNMENT is the
306    required alignment of ENTRY in bytes.  */
307 
308 static unsigned int
309 size_of_output_cie_fde (struct eh_cie_fde *entry, unsigned int alignment)
310 {
311   if (entry->removed)
312     return 0;
313   if (entry->size == 4)
314     return 4;
315   return (entry->size
316 	  + extra_augmentation_string_bytes (entry)
317 	  + extra_augmentation_data_bytes (entry)
318 	  + alignment - 1) & -alignment;
319 }
320 
321 /* Assume that the bytes between *ITER and END are CFA instructions.
322    Try to move *ITER past the first instruction and return true on
323    success.  ENCODED_PTR_WIDTH gives the width of pointer entries.  */
324 
325 static bfd_boolean
326 skip_cfa_op (bfd_byte **iter, bfd_byte *end, unsigned int encoded_ptr_width)
327 {
328   bfd_byte op;
329   bfd_vma length;
330 
331   if (!read_byte (iter, end, &op))
332     return FALSE;
333 
334   switch (op & 0xc0 ? op & 0xc0 : op)
335     {
336     case DW_CFA_nop:
337     case DW_CFA_advance_loc:
338     case DW_CFA_restore:
339     case DW_CFA_remember_state:
340     case DW_CFA_restore_state:
341     case DW_CFA_GNU_window_save:
342       /* No arguments.  */
343       return TRUE;
344 
345     case DW_CFA_offset:
346     case DW_CFA_restore_extended:
347     case DW_CFA_undefined:
348     case DW_CFA_same_value:
349     case DW_CFA_def_cfa_register:
350     case DW_CFA_def_cfa_offset:
351     case DW_CFA_def_cfa_offset_sf:
352     case DW_CFA_GNU_args_size:
353       /* One leb128 argument.  */
354       return skip_leb128 (iter, end);
355 
356     case DW_CFA_val_offset:
357     case DW_CFA_val_offset_sf:
358     case DW_CFA_offset_extended:
359     case DW_CFA_register:
360     case DW_CFA_def_cfa:
361     case DW_CFA_offset_extended_sf:
362     case DW_CFA_GNU_negative_offset_extended:
363     case DW_CFA_def_cfa_sf:
364       /* Two leb128 arguments.  */
365       return (skip_leb128 (iter, end)
366 	      && skip_leb128 (iter, end));
367 
368     case DW_CFA_def_cfa_expression:
369       /* A variable-length argument.  */
370       return (read_uleb128 (iter, end, &length)
371 	      && skip_bytes (iter, end, length));
372 
373     case DW_CFA_expression:
374     case DW_CFA_val_expression:
375       /* A leb128 followed by a variable-length argument.  */
376       return (skip_leb128 (iter, end)
377 	      && read_uleb128 (iter, end, &length)
378 	      && skip_bytes (iter, end, length));
379 
380     case DW_CFA_set_loc:
381       return skip_bytes (iter, end, encoded_ptr_width);
382 
383     case DW_CFA_advance_loc1:
384       return skip_bytes (iter, end, 1);
385 
386     case DW_CFA_advance_loc2:
387       return skip_bytes (iter, end, 2);
388 
389     case DW_CFA_advance_loc4:
390       return skip_bytes (iter, end, 4);
391 
392     case DW_CFA_MIPS_advance_loc8:
393       return skip_bytes (iter, end, 8);
394 
395     default:
396       return FALSE;
397     }
398 }
399 
400 /* Try to interpret the bytes between BUF and END as CFA instructions.
401    If every byte makes sense, return a pointer to the first DW_CFA_nop
402    padding byte, or END if there is no padding.  Return null otherwise.
403    ENCODED_PTR_WIDTH is as for skip_cfa_op.  */
404 
405 static bfd_byte *
406 skip_non_nops (bfd_byte *buf, bfd_byte *end, unsigned int encoded_ptr_width,
407 	       unsigned int *set_loc_count)
408 {
409   bfd_byte *last;
410 
411   last = buf;
412   while (buf < end)
413     if (*buf == DW_CFA_nop)
414       buf++;
415     else
416       {
417 	if (*buf == DW_CFA_set_loc)
418 	  ++*set_loc_count;
419 	if (!skip_cfa_op (&buf, end, encoded_ptr_width))
420 	  return 0;
421 	last = buf;
422       }
423   return last;
424 }
425 
426 /* Convert absolute encoding ENCODING into PC-relative form.
427    SIZE is the size of a pointer.  */
428 
429 static unsigned char
430 make_pc_relative (unsigned char encoding, unsigned int ptr_size)
431 {
432   if ((encoding & 0x7f) == DW_EH_PE_absptr)
433     switch (ptr_size)
434       {
435       case 2:
436 	encoding |= DW_EH_PE_sdata2;
437 	break;
438       case 4:
439 	encoding |= DW_EH_PE_sdata4;
440 	break;
441       case 8:
442 	encoding |= DW_EH_PE_sdata8;
443 	break;
444       }
445   return encoding | DW_EH_PE_pcrel;
446 }
447 
448 /* Called before calling _bfd_elf_parse_eh_frame on every input bfd's
449    .eh_frame section.  */
450 
451 void
452 _bfd_elf_begin_eh_frame_parsing (struct bfd_link_info *info)
453 {
454   struct eh_frame_hdr_info *hdr_info;
455 
456   hdr_info = &elf_hash_table (info)->eh_info;
457   hdr_info->merge_cies = !info->relocatable;
458 }
459 
460 /* Try to parse .eh_frame section SEC, which belongs to ABFD.  Store the
461    information in the section's sec_info field on success.  COOKIE
462    describes the relocations in SEC.  */
463 
464 void
465 _bfd_elf_parse_eh_frame (bfd *abfd, struct bfd_link_info *info,
466 			 asection *sec, struct elf_reloc_cookie *cookie)
467 {
468 #define REQUIRE(COND)					\
469   do							\
470     if (!(COND))					\
471       goto free_no_table;				\
472   while (0)
473 
474   bfd_byte *ehbuf = NULL, *buf, *end;
475   bfd_byte *last_fde;
476   struct eh_cie_fde *this_inf;
477   unsigned int hdr_length, hdr_id;
478   unsigned int cie_count;
479   struct cie *cie, *local_cies = NULL;
480   struct elf_link_hash_table *htab;
481   struct eh_frame_hdr_info *hdr_info;
482   struct eh_frame_sec_info *sec_info = NULL;
483   unsigned int ptr_size;
484   unsigned int num_cies;
485   unsigned int num_entries;
486   elf_gc_mark_hook_fn gc_mark_hook;
487 
488   htab = elf_hash_table (info);
489   hdr_info = &htab->eh_info;
490   if (hdr_info->parsed_eh_frames)
491     return;
492 
493   if (sec->size == 0
494       || sec->sec_info_type != ELF_INFO_TYPE_NONE)
495     {
496       /* This file does not contain .eh_frame information.  */
497       return;
498     }
499 
500   if (bfd_is_abs_section (sec->output_section))
501     {
502       /* At least one of the sections is being discarded from the
503 	 link, so we should just ignore them.  */
504       return;
505     }
506 
507   /* Read the frame unwind information from abfd.  */
508 
509   REQUIRE (bfd_malloc_and_get_section (abfd, sec, &ehbuf));
510 
511   if (sec->size >= 4
512       && bfd_get_32 (abfd, ehbuf) == 0
513       && cookie->rel == cookie->relend)
514     {
515       /* Empty .eh_frame section.  */
516       free (ehbuf);
517       return;
518     }
519 
520   /* If .eh_frame section size doesn't fit into int, we cannot handle
521      it (it would need to use 64-bit .eh_frame format anyway).  */
522   REQUIRE (sec->size == (unsigned int) sec->size);
523 
524   ptr_size = (get_elf_backend_data (abfd)
525 	      ->elf_backend_eh_frame_address_size (abfd, sec));
526   REQUIRE (ptr_size != 0);
527 
528   /* Go through the section contents and work out how many FDEs and
529      CIEs there are.  */
530   buf = ehbuf;
531   end = ehbuf + sec->size;
532   num_cies = 0;
533   num_entries = 0;
534   while (buf != end)
535     {
536       num_entries++;
537 
538       /* Read the length of the entry.  */
539       REQUIRE (skip_bytes (&buf, end, 4));
540       hdr_length = bfd_get_32 (abfd, buf - 4);
541 
542       /* 64-bit .eh_frame is not supported.  */
543       REQUIRE (hdr_length != 0xffffffff);
544       if (hdr_length == 0)
545 	break;
546 
547       REQUIRE (skip_bytes (&buf, end, 4));
548       hdr_id = bfd_get_32 (abfd, buf - 4);
549       if (hdr_id == 0)
550 	num_cies++;
551 
552       REQUIRE (skip_bytes (&buf, end, hdr_length - 4));
553     }
554 
555   sec_info = (struct eh_frame_sec_info *)
556       bfd_zmalloc (sizeof (struct eh_frame_sec_info)
557                    + (num_entries - 1) * sizeof (struct eh_cie_fde));
558   REQUIRE (sec_info);
559 
560   /* We need to have a "struct cie" for each CIE in this section.  */
561   local_cies = (struct cie *) bfd_zmalloc (num_cies * sizeof (*local_cies));
562   REQUIRE (local_cies);
563 
564   /* FIXME: octets_per_byte.  */
565 #define ENSURE_NO_RELOCS(buf)				\
566   REQUIRE (!(cookie->rel < cookie->relend		\
567 	     && (cookie->rel->r_offset			\
568 		 < (bfd_size_type) ((buf) - ehbuf))	\
569 	     && cookie->rel->r_info != 0))
570 
571   /* FIXME: octets_per_byte.  */
572 #define SKIP_RELOCS(buf)				\
573   while (cookie->rel < cookie->relend			\
574 	 && (cookie->rel->r_offset			\
575 	     < (bfd_size_type) ((buf) - ehbuf)))	\
576     cookie->rel++
577 
578   /* FIXME: octets_per_byte.  */
579 #define GET_RELOC(buf)					\
580   ((cookie->rel < cookie->relend			\
581     && (cookie->rel->r_offset				\
582 	== (bfd_size_type) ((buf) - ehbuf)))		\
583    ? cookie->rel : NULL)
584 
585   buf = ehbuf;
586   cie_count = 0;
587   gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
588   while ((bfd_size_type) (buf - ehbuf) != sec->size)
589     {
590       char *aug;
591       bfd_byte *start, *insns, *insns_end;
592       bfd_size_type length;
593       unsigned int set_loc_count;
594 
595       this_inf = sec_info->entry + sec_info->count;
596       last_fde = buf;
597 
598       /* Read the length of the entry.  */
599       REQUIRE (skip_bytes (&buf, ehbuf + sec->size, 4));
600       hdr_length = bfd_get_32 (abfd, buf - 4);
601 
602       /* The CIE/FDE must be fully contained in this input section.  */
603       REQUIRE ((bfd_size_type) (buf - ehbuf) + hdr_length <= sec->size);
604       end = buf + hdr_length;
605 
606       this_inf->offset = last_fde - ehbuf;
607       this_inf->size = 4 + hdr_length;
608       this_inf->reloc_index = cookie->rel - cookie->rels;
609 
610       if (hdr_length == 0)
611 	{
612 	  /* A zero-length CIE should only be found at the end of
613 	     the section.  */
614 	  REQUIRE ((bfd_size_type) (buf - ehbuf) == sec->size);
615 	  ENSURE_NO_RELOCS (buf);
616 	  sec_info->count++;
617 	  break;
618 	}
619 
620       REQUIRE (skip_bytes (&buf, end, 4));
621       hdr_id = bfd_get_32 (abfd, buf - 4);
622 
623       if (hdr_id == 0)
624 	{
625 	  unsigned int initial_insn_length;
626 
627 	  /* CIE  */
628 	  this_inf->cie = 1;
629 
630 	  /* Point CIE to one of the section-local cie structures.  */
631 	  cie = local_cies + cie_count++;
632 
633 	  cie->cie_inf = this_inf;
634 	  cie->length = hdr_length;
635 	  cie->output_sec = sec->output_section;
636 	  start = buf;
637 	  REQUIRE (read_byte (&buf, end, &cie->version));
638 
639 	  /* Cannot handle unknown versions.  */
640 	  REQUIRE (cie->version == 1
641 		   || cie->version == 3
642 		   || cie->version == 4);
643 	  REQUIRE (strlen ((char *) buf) < sizeof (cie->augmentation));
644 
645 	  strcpy (cie->augmentation, (char *) buf);
646 	  buf = (bfd_byte *) strchr ((char *) buf, '\0') + 1;
647 	  ENSURE_NO_RELOCS (buf);
648 	  if (buf[0] == 'e' && buf[1] == 'h')
649 	    {
650 	      /* GCC < 3.0 .eh_frame CIE */
651 	      /* We cannot merge "eh" CIEs because __EXCEPTION_TABLE__
652 		 is private to each CIE, so we don't need it for anything.
653 		 Just skip it.  */
654 	      REQUIRE (skip_bytes (&buf, end, ptr_size));
655 	      SKIP_RELOCS (buf);
656 	    }
657 	  if (cie->version >= 4)
658 	    {
659 	      REQUIRE (buf + 1 < end);
660 	      REQUIRE (buf[0] == ptr_size);
661 	      REQUIRE (buf[1] == 0);
662 	      buf += 2;
663 	    }
664 	  REQUIRE (read_uleb128 (&buf, end, &cie->code_align));
665 	  REQUIRE (read_sleb128 (&buf, end, &cie->data_align));
666 	  if (cie->version == 1)
667 	    {
668 	      REQUIRE (buf < end);
669 	      cie->ra_column = *buf++;
670 	    }
671 	  else
672 	    REQUIRE (read_uleb128 (&buf, end, &cie->ra_column));
673 	  ENSURE_NO_RELOCS (buf);
674 	  cie->lsda_encoding = DW_EH_PE_omit;
675 	  cie->fde_encoding = DW_EH_PE_omit;
676 	  cie->per_encoding = DW_EH_PE_omit;
677 	  aug = cie->augmentation;
678 	  if (aug[0] != 'e' || aug[1] != 'h')
679 	    {
680 	      if (*aug == 'z')
681 		{
682 		  aug++;
683 		  REQUIRE (read_uleb128 (&buf, end, &cie->augmentation_size));
684 	  	  ENSURE_NO_RELOCS (buf);
685 		}
686 
687 	      while (*aug != '\0')
688 		switch (*aug++)
689 		  {
690 		  case 'L':
691 		    REQUIRE (read_byte (&buf, end, &cie->lsda_encoding));
692 		    ENSURE_NO_RELOCS (buf);
693 		    REQUIRE (get_DW_EH_PE_width (cie->lsda_encoding, ptr_size));
694 		    break;
695 		  case 'R':
696 		    REQUIRE (read_byte (&buf, end, &cie->fde_encoding));
697 		    ENSURE_NO_RELOCS (buf);
698 		    REQUIRE (get_DW_EH_PE_width (cie->fde_encoding, ptr_size));
699 		    break;
700 		  case 'S':
701 		    break;
702 		  case 'P':
703 		    {
704 		      int per_width;
705 
706 		      REQUIRE (read_byte (&buf, end, &cie->per_encoding));
707 		      per_width = get_DW_EH_PE_width (cie->per_encoding,
708 						      ptr_size);
709 		      REQUIRE (per_width);
710 		      if ((cie->per_encoding & 0x70) == DW_EH_PE_aligned)
711 			{
712 			  length = -(buf - ehbuf) & (per_width - 1);
713 			  REQUIRE (skip_bytes (&buf, end, length));
714 			}
715 		      this_inf->u.cie.personality_offset = buf - start;
716 		      ENSURE_NO_RELOCS (buf);
717 		      /* Ensure we have a reloc here.  */
718 		      REQUIRE (GET_RELOC (buf));
719 		      cie->personality.reloc_index
720 			= cookie->rel - cookie->rels;
721 		      /* Cope with MIPS-style composite relocations.  */
722 		      do
723 			cookie->rel++;
724 		      while (GET_RELOC (buf) != NULL);
725 		      REQUIRE (skip_bytes (&buf, end, per_width));
726 		    }
727 		    break;
728 		  default:
729 		    /* Unrecognized augmentation. Better bail out.  */
730 		    goto free_no_table;
731 		  }
732 	    }
733 
734 	  /* For shared libraries, try to get rid of as many RELATIVE relocs
735 	     as possible.  */
736 	  if (info->shared
737 	      && (get_elf_backend_data (abfd)
738 		  ->elf_backend_can_make_relative_eh_frame
739 		  (abfd, info, sec)))
740 	    {
741 	      if ((cie->fde_encoding & 0x70) == DW_EH_PE_absptr)
742 		this_inf->make_relative = 1;
743 	      /* If the CIE doesn't already have an 'R' entry, it's fairly
744 		 easy to add one, provided that there's no aligned data
745 		 after the augmentation string.  */
746 	      else if (cie->fde_encoding == DW_EH_PE_omit
747 		       && (cie->per_encoding & 0x70) != DW_EH_PE_aligned)
748 		{
749 		  if (*cie->augmentation == 0)
750 		    this_inf->add_augmentation_size = 1;
751 		  this_inf->u.cie.add_fde_encoding = 1;
752 		  this_inf->make_relative = 1;
753 		}
754 
755 	      if ((cie->lsda_encoding & 0x70) == DW_EH_PE_absptr)
756 		cie->can_make_lsda_relative = 1;
757 	    }
758 
759 	  /* If FDE encoding was not specified, it defaults to
760 	     DW_EH_absptr.  */
761 	  if (cie->fde_encoding == DW_EH_PE_omit)
762 	    cie->fde_encoding = DW_EH_PE_absptr;
763 
764 	  initial_insn_length = end - buf;
765 	  if (initial_insn_length <= sizeof (cie->initial_instructions))
766 	    {
767 	      cie->initial_insn_length = initial_insn_length;
768 	      memcpy (cie->initial_instructions, buf, initial_insn_length);
769 	    }
770 	  insns = buf;
771 	  buf += initial_insn_length;
772 	  ENSURE_NO_RELOCS (buf);
773 
774 	  if (hdr_info->merge_cies)
775 	    this_inf->u.cie.u.full_cie = cie;
776 	  this_inf->u.cie.per_encoding_relative
777 	    = (cie->per_encoding & 0x70) == DW_EH_PE_pcrel;
778 	}
779       else
780 	{
781 	  /* Find the corresponding CIE.  */
782 	  unsigned int cie_offset = this_inf->offset + 4 - hdr_id;
783 	  for (cie = local_cies; cie < local_cies + cie_count; cie++)
784 	    if (cie_offset == cie->cie_inf->offset)
785 	      break;
786 
787 	  /* Ensure this FDE references one of the CIEs in this input
788 	     section.  */
789 	  REQUIRE (cie != local_cies + cie_count);
790 	  this_inf->u.fde.cie_inf = cie->cie_inf;
791 	  this_inf->make_relative = cie->cie_inf->make_relative;
792 	  this_inf->add_augmentation_size
793 	    = cie->cie_inf->add_augmentation_size;
794 
795 	  ENSURE_NO_RELOCS (buf);
796 	  if ((sec->flags & SEC_LINKER_CREATED) == 0 || cookie->rels != NULL)
797 	    {
798 	      asection *rsec;
799 
800 	      REQUIRE (GET_RELOC (buf));
801 
802 	      /* Chain together the FDEs for each section.  */
803 	      rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
804 	      /* RSEC will be NULL if FDE was cleared out as it was belonging to
805 		 a discarded SHT_GROUP.  */
806 	      if (rsec)
807 		{
808 		  REQUIRE (rsec->owner == abfd);
809 		  this_inf->u.fde.next_for_section = elf_fde_list (rsec);
810 		  elf_fde_list (rsec) = this_inf;
811 		}
812 	    }
813 
814 	  /* Skip the initial location and address range.  */
815 	  start = buf;
816 	  length = get_DW_EH_PE_width (cie->fde_encoding, ptr_size);
817 	  REQUIRE (skip_bytes (&buf, end, 2 * length));
818 
819 	  /* Skip the augmentation size, if present.  */
820 	  if (cie->augmentation[0] == 'z')
821 	    REQUIRE (read_uleb128 (&buf, end, &length));
822 	  else
823 	    length = 0;
824 
825 	  /* Of the supported augmentation characters above, only 'L'
826 	     adds augmentation data to the FDE.  This code would need to
827 	     be adjusted if any future augmentations do the same thing.  */
828 	  if (cie->lsda_encoding != DW_EH_PE_omit)
829 	    {
830 	      SKIP_RELOCS (buf);
831 	      if (cie->can_make_lsda_relative && GET_RELOC (buf))
832 		cie->cie_inf->u.cie.make_lsda_relative = 1;
833 	      this_inf->lsda_offset = buf - start;
834 	      /* If there's no 'z' augmentation, we don't know where the
835 		 CFA insns begin.  Assume no padding.  */
836 	      if (cie->augmentation[0] != 'z')
837 		length = end - buf;
838 	    }
839 
840 	  /* Skip over the augmentation data.  */
841 	  REQUIRE (skip_bytes (&buf, end, length));
842 	  insns = buf;
843 
844 	  buf = last_fde + 4 + hdr_length;
845 
846 	  /* For NULL RSEC (cleared FDE belonging to a discarded section)
847 	     the relocations are commonly cleared.  We do not sanity check if
848 	     all these relocations are cleared as (1) relocations to
849 	     .gcc_except_table will remain uncleared (they will get dropped
850 	     with the drop of this unused FDE) and (2) BFD already safely drops
851 	     relocations of any type to .eh_frame by
852 	     elf_section_ignore_discarded_relocs.
853 	     TODO: The .gcc_except_table entries should be also filtered as
854 	     .eh_frame entries; or GCC could rather use COMDAT for them.  */
855 	  SKIP_RELOCS (buf);
856 	}
857 
858       /* Try to interpret the CFA instructions and find the first
859 	 padding nop.  Shrink this_inf's size so that it doesn't
860 	 include the padding.  */
861       length = get_DW_EH_PE_width (cie->fde_encoding, ptr_size);
862       set_loc_count = 0;
863       insns_end = skip_non_nops (insns, end, length, &set_loc_count);
864       /* If we don't understand the CFA instructions, we can't know
865 	 what needs to be adjusted there.  */
866       if (insns_end == NULL
867 	  /* For the time being we don't support DW_CFA_set_loc in
868 	     CIE instructions.  */
869 	  || (set_loc_count && this_inf->cie))
870 	goto free_no_table;
871       this_inf->size -= end - insns_end;
872       if (insns_end != end && this_inf->cie)
873 	{
874 	  cie->initial_insn_length -= end - insns_end;
875 	  cie->length -= end - insns_end;
876 	}
877       if (set_loc_count
878 	  && ((cie->fde_encoding & 0x70) == DW_EH_PE_pcrel
879 	      || this_inf->make_relative))
880 	{
881 	  unsigned int cnt;
882 	  bfd_byte *p;
883 
884 	  this_inf->set_loc = (unsigned int *)
885               bfd_malloc ((set_loc_count + 1) * sizeof (unsigned int));
886 	  REQUIRE (this_inf->set_loc);
887 	  this_inf->set_loc[0] = set_loc_count;
888 	  p = insns;
889 	  cnt = 0;
890 	  while (p < end)
891 	    {
892 	      if (*p == DW_CFA_set_loc)
893 		this_inf->set_loc[++cnt] = p + 1 - start;
894 	      REQUIRE (skip_cfa_op (&p, end, length));
895 	    }
896 	}
897 
898       this_inf->removed = 1;
899       this_inf->fde_encoding = cie->fde_encoding;
900       this_inf->lsda_encoding = cie->lsda_encoding;
901       sec_info->count++;
902     }
903   BFD_ASSERT (sec_info->count == num_entries);
904   BFD_ASSERT (cie_count == num_cies);
905 
906   elf_section_data (sec)->sec_info = sec_info;
907   sec->sec_info_type = ELF_INFO_TYPE_EH_FRAME;
908   if (hdr_info->merge_cies)
909     {
910       sec_info->cies = local_cies;
911       local_cies = NULL;
912     }
913   goto success;
914 
915  free_no_table:
916   (*info->callbacks->einfo)
917     (_("%P: error in %B(%A); no .eh_frame_hdr table will be created.\n"),
918      abfd, sec);
919   hdr_info->table = FALSE;
920   if (sec_info)
921     free (sec_info);
922  success:
923   if (ehbuf)
924     free (ehbuf);
925   if (local_cies)
926     free (local_cies);
927 #undef REQUIRE
928 }
929 
930 /* Finish a pass over all .eh_frame sections.  */
931 
932 void
933 _bfd_elf_end_eh_frame_parsing (struct bfd_link_info *info)
934 {
935   struct eh_frame_hdr_info *hdr_info;
936 
937   hdr_info = &elf_hash_table (info)->eh_info;
938   hdr_info->parsed_eh_frames = TRUE;
939 }
940 
941 /* Mark all relocations against CIE or FDE ENT, which occurs in
942    .eh_frame section SEC.  COOKIE describes the relocations in SEC;
943    its "rel" field can be changed freely.  */
944 
945 static bfd_boolean
946 mark_entry (struct bfd_link_info *info, asection *sec,
947 	    struct eh_cie_fde *ent, elf_gc_mark_hook_fn gc_mark_hook,
948 	    struct elf_reloc_cookie *cookie)
949 {
950   /* FIXME: octets_per_byte.  */
951   for (cookie->rel = cookie->rels + ent->reloc_index;
952        cookie->rel < cookie->relend
953 	 && cookie->rel->r_offset < ent->offset + ent->size;
954        cookie->rel++)
955     if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, cookie))
956       return FALSE;
957 
958   return TRUE;
959 }
960 
961 /* Mark all the relocations against FDEs that relate to code in input
962    section SEC.  The FDEs belong to .eh_frame section EH_FRAME, whose
963    relocations are described by COOKIE.  */
964 
965 bfd_boolean
966 _bfd_elf_gc_mark_fdes (struct bfd_link_info *info, asection *sec,
967 		       asection *eh_frame, elf_gc_mark_hook_fn gc_mark_hook,
968 		       struct elf_reloc_cookie *cookie)
969 {
970   struct eh_cie_fde *fde, *cie;
971 
972   for (fde = elf_fde_list (sec); fde; fde = fde->u.fde.next_for_section)
973     {
974       if (!mark_entry (info, eh_frame, fde, gc_mark_hook, cookie))
975 	return FALSE;
976 
977       /* At this stage, all cie_inf fields point to local CIEs, so we
978 	 can use the same cookie to refer to them.  */
979       cie = fde->u.fde.cie_inf;
980       if (!cie->u.cie.gc_mark)
981 	{
982 	  cie->u.cie.gc_mark = 1;
983 	  if (!mark_entry (info, eh_frame, cie, gc_mark_hook, cookie))
984 	    return FALSE;
985 	}
986     }
987   return TRUE;
988 }
989 
990 /* Input section SEC of ABFD is an .eh_frame section that contains the
991    CIE described by CIE_INF.  Return a version of CIE_INF that is going
992    to be kept in the output, adding CIE_INF to the output if necessary.
993 
994    HDR_INFO is the .eh_frame_hdr information and COOKIE describes the
995    relocations in REL.  */
996 
997 static struct eh_cie_fde *
998 find_merged_cie (bfd *abfd, struct bfd_link_info *info, asection *sec,
999 		 struct eh_frame_hdr_info *hdr_info,
1000 		 struct elf_reloc_cookie *cookie,
1001 		 struct eh_cie_fde *cie_inf)
1002 {
1003   unsigned long r_symndx;
1004   struct cie *cie, *new_cie;
1005   Elf_Internal_Rela *rel;
1006   void **loc;
1007 
1008   /* Use CIE_INF if we have already decided to keep it.  */
1009   if (!cie_inf->removed)
1010     return cie_inf;
1011 
1012   /* If we have merged CIE_INF with another CIE, use that CIE instead.  */
1013   if (cie_inf->u.cie.merged)
1014     return cie_inf->u.cie.u.merged_with;
1015 
1016   cie = cie_inf->u.cie.u.full_cie;
1017 
1018   /* Assume we will need to keep CIE_INF.  */
1019   cie_inf->removed = 0;
1020   cie_inf->u.cie.u.sec = sec;
1021 
1022   /* If we are not merging CIEs, use CIE_INF.  */
1023   if (cie == NULL)
1024     return cie_inf;
1025 
1026   if (cie->per_encoding != DW_EH_PE_omit)
1027     {
1028       bfd_boolean per_binds_local;
1029 
1030       /* Work out the address of personality routine, either as an absolute
1031 	 value or as a symbol.  */
1032       rel = cookie->rels + cie->personality.reloc_index;
1033       memset (&cie->personality, 0, sizeof (cie->personality));
1034 #ifdef BFD64
1035       if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
1036 	r_symndx = ELF64_R_SYM (rel->r_info);
1037       else
1038 #endif
1039 	r_symndx = ELF32_R_SYM (rel->r_info);
1040       if (r_symndx >= cookie->locsymcount
1041 	  || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
1042 	{
1043 	  struct elf_link_hash_entry *h;
1044 
1045 	  r_symndx -= cookie->extsymoff;
1046 	  h = cookie->sym_hashes[r_symndx];
1047 
1048 	  while (h->root.type == bfd_link_hash_indirect
1049 		 || h->root.type == bfd_link_hash_warning)
1050 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
1051 
1052 	  cie->personality.h = h;
1053 	  per_binds_local = SYMBOL_REFERENCES_LOCAL (info, h);
1054 	}
1055       else
1056 	{
1057 	  Elf_Internal_Sym *sym;
1058 	  asection *sym_sec;
1059 
1060 	  sym = &cookie->locsyms[r_symndx];
1061 	  sym_sec = bfd_section_from_elf_index (abfd, sym->st_shndx);
1062 	  if (sym_sec == NULL)
1063 	    return cie_inf;
1064 
1065 	  if (sym_sec->kept_section != NULL)
1066 	    sym_sec = sym_sec->kept_section;
1067 	  if (sym_sec->output_section == NULL)
1068 	    return cie_inf;
1069 
1070 	  cie->local_personality = 1;
1071 	  cie->personality.val = (sym->st_value
1072 				  + sym_sec->output_offset
1073 				  + sym_sec->output_section->vma);
1074 	  per_binds_local = TRUE;
1075 	}
1076 
1077       if (per_binds_local
1078 	  && info->shared
1079 	  && (cie->per_encoding & 0x70) == DW_EH_PE_absptr
1080 	  && (get_elf_backend_data (abfd)
1081 	      ->elf_backend_can_make_relative_eh_frame (abfd, info, sec)))
1082 	{
1083 	  cie_inf->u.cie.make_per_encoding_relative = 1;
1084 	  cie_inf->u.cie.per_encoding_relative = 1;
1085 	}
1086     }
1087 
1088   /* See if we can merge this CIE with an earlier one.  */
1089   cie->output_sec = sec->output_section;
1090   cie_compute_hash (cie);
1091   if (hdr_info->cies == NULL)
1092     {
1093       hdr_info->cies = htab_try_create (1, cie_hash, cie_eq, free);
1094       if (hdr_info->cies == NULL)
1095 	return cie_inf;
1096     }
1097   loc = htab_find_slot_with_hash (hdr_info->cies, cie, cie->hash, INSERT);
1098   if (loc == NULL)
1099     return cie_inf;
1100 
1101   new_cie = (struct cie *) *loc;
1102   if (new_cie == NULL)
1103     {
1104       /* Keep CIE_INF and record it in the hash table.  */
1105       new_cie = (struct cie *) malloc (sizeof (struct cie));
1106       if (new_cie == NULL)
1107 	return cie_inf;
1108 
1109       memcpy (new_cie, cie, sizeof (struct cie));
1110       *loc = new_cie;
1111     }
1112   else
1113     {
1114       /* Merge CIE_INF with NEW_CIE->CIE_INF.  */
1115       cie_inf->removed = 1;
1116       cie_inf->u.cie.merged = 1;
1117       cie_inf->u.cie.u.merged_with = new_cie->cie_inf;
1118       if (cie_inf->u.cie.make_lsda_relative)
1119 	new_cie->cie_inf->u.cie.make_lsda_relative = 1;
1120     }
1121   return new_cie->cie_inf;
1122 }
1123 
1124 /* This function is called for each input file before the .eh_frame
1125    section is relocated.  It discards duplicate CIEs and FDEs for discarded
1126    functions.  The function returns TRUE iff any entries have been
1127    deleted.  */
1128 
1129 bfd_boolean
1130 _bfd_elf_discard_section_eh_frame
1131    (bfd *abfd, struct bfd_link_info *info, asection *sec,
1132     bfd_boolean (*reloc_symbol_deleted_p) (bfd_vma, void *),
1133     struct elf_reloc_cookie *cookie)
1134 {
1135   struct eh_cie_fde *ent;
1136   struct eh_frame_sec_info *sec_info;
1137   struct eh_frame_hdr_info *hdr_info;
1138   unsigned int ptr_size, offset;
1139 
1140   if (sec->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
1141     return FALSE;
1142 
1143   sec_info = (struct eh_frame_sec_info *) elf_section_data (sec)->sec_info;
1144   if (sec_info == NULL)
1145     return FALSE;
1146 
1147   ptr_size = (get_elf_backend_data (sec->owner)
1148 	      ->elf_backend_eh_frame_address_size (sec->owner, sec));
1149 
1150   hdr_info = &elf_hash_table (info)->eh_info;
1151   for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1152     if (ent->size == 4)
1153       /* There should only be one zero terminator, on the last input
1154 	 file supplying .eh_frame (crtend.o).  Remove any others.  */
1155       ent->removed = sec->map_head.s != NULL;
1156     else if (!ent->cie)
1157       {
1158 	bfd_boolean keep;
1159 	if ((sec->flags & SEC_LINKER_CREATED) != 0 && cookie->rels == NULL)
1160 	  {
1161 	    unsigned int width
1162 	      = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
1163 	    bfd_vma value
1164 	      = read_value (abfd, sec->contents + ent->offset + 8 + width,
1165 			    width, get_DW_EH_PE_signed (ent->fde_encoding));
1166 	    keep = value != 0;
1167 	  }
1168 	else
1169 	  {
1170 	    cookie->rel = cookie->rels + ent->reloc_index;
1171 	    /* FIXME: octets_per_byte.  */
1172 	    BFD_ASSERT (cookie->rel < cookie->relend
1173 			&& cookie->rel->r_offset == ent->offset + 8);
1174 	    keep = !(*reloc_symbol_deleted_p) (ent->offset + 8, cookie);
1175 	  }
1176 	if (keep)
1177 	  {
1178 	    if (info->shared
1179 		&& (((ent->fde_encoding & 0x70) == DW_EH_PE_absptr
1180 		     && ent->make_relative == 0)
1181 		    || (ent->fde_encoding & 0x70) == DW_EH_PE_aligned))
1182 	      {
1183 		/* If a shared library uses absolute pointers
1184 		   which we cannot turn into PC relative,
1185 		   don't create the binary search table,
1186 		   since it is affected by runtime relocations.  */
1187 		hdr_info->table = FALSE;
1188 		(*info->callbacks->einfo)
1189 		  (_("%P: fde encoding in %B(%A) prevents .eh_frame_hdr"
1190 		     " table being created.\n"), abfd, sec);
1191 	      }
1192 	    ent->removed = 0;
1193 	    hdr_info->fde_count++;
1194 	    ent->u.fde.cie_inf = find_merged_cie (abfd, info, sec, hdr_info,
1195 						  cookie, ent->u.fde.cie_inf);
1196 	  }
1197       }
1198 
1199   if (sec_info->cies)
1200     {
1201       free (sec_info->cies);
1202       sec_info->cies = NULL;
1203     }
1204 
1205   offset = 0;
1206   for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1207     if (!ent->removed)
1208       {
1209 	ent->new_offset = offset;
1210 	offset += size_of_output_cie_fde (ent, ptr_size);
1211       }
1212 
1213   sec->rawsize = sec->size;
1214   sec->size = offset;
1215   return offset != sec->rawsize;
1216 }
1217 
1218 /* This function is called for .eh_frame_hdr section after
1219    _bfd_elf_discard_section_eh_frame has been called on all .eh_frame
1220    input sections.  It finalizes the size of .eh_frame_hdr section.  */
1221 
1222 bfd_boolean
1223 _bfd_elf_discard_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
1224 {
1225   struct elf_link_hash_table *htab;
1226   struct eh_frame_hdr_info *hdr_info;
1227   asection *sec;
1228 
1229   htab = elf_hash_table (info);
1230   hdr_info = &htab->eh_info;
1231 
1232   if (hdr_info->cies != NULL)
1233     {
1234       htab_delete (hdr_info->cies);
1235       hdr_info->cies = NULL;
1236     }
1237 
1238   sec = hdr_info->hdr_sec;
1239   if (sec == NULL)
1240     return FALSE;
1241 
1242   sec->size = EH_FRAME_HDR_SIZE;
1243   if (hdr_info->table)
1244     sec->size += 4 + hdr_info->fde_count * 8;
1245 
1246   elf_tdata (abfd)->eh_frame_hdr = sec;
1247   return TRUE;
1248 }
1249 
1250 /* This function is called from size_dynamic_sections.
1251    It needs to decide whether .eh_frame_hdr should be output or not,
1252    because when the dynamic symbol table has been sized it is too late
1253    to strip sections.  */
1254 
1255 bfd_boolean
1256 _bfd_elf_maybe_strip_eh_frame_hdr (struct bfd_link_info *info)
1257 {
1258   asection *o;
1259   bfd *abfd;
1260   struct elf_link_hash_table *htab;
1261   struct eh_frame_hdr_info *hdr_info;
1262 
1263   htab = elf_hash_table (info);
1264   hdr_info = &htab->eh_info;
1265   if (hdr_info->hdr_sec == NULL)
1266     return TRUE;
1267 
1268   if (bfd_is_abs_section (hdr_info->hdr_sec->output_section))
1269     {
1270       hdr_info->hdr_sec = NULL;
1271       return TRUE;
1272     }
1273 
1274   abfd = NULL;
1275   if (info->eh_frame_hdr)
1276     for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1277       {
1278 	/* Count only sections which have at least a single CIE or FDE.
1279 	   There cannot be any CIE or FDE <= 8 bytes.  */
1280 	o = bfd_get_section_by_name (abfd, ".eh_frame");
1281 	if (o && o->size > 8 && !bfd_is_abs_section (o->output_section))
1282 	  break;
1283       }
1284 
1285   if (abfd == NULL)
1286     {
1287       hdr_info->hdr_sec->flags |= SEC_EXCLUDE;
1288       hdr_info->hdr_sec = NULL;
1289       return TRUE;
1290     }
1291 
1292   hdr_info->table = TRUE;
1293   return TRUE;
1294 }
1295 
1296 /* Adjust an address in the .eh_frame section.  Given OFFSET within
1297    SEC, this returns the new offset in the adjusted .eh_frame section,
1298    or -1 if the address refers to a CIE/FDE which has been removed
1299    or to offset with dynamic relocation which is no longer needed.  */
1300 
1301 bfd_vma
1302 _bfd_elf_eh_frame_section_offset (bfd *output_bfd ATTRIBUTE_UNUSED,
1303 				  struct bfd_link_info *info ATTRIBUTE_UNUSED,
1304 				  asection *sec,
1305 				  bfd_vma offset)
1306 {
1307   struct eh_frame_sec_info *sec_info;
1308   unsigned int lo, hi, mid;
1309 
1310   if (sec->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
1311     return offset;
1312   sec_info = (struct eh_frame_sec_info *) elf_section_data (sec)->sec_info;
1313 
1314   if (offset >= sec->rawsize)
1315     return offset - sec->rawsize + sec->size;
1316 
1317   lo = 0;
1318   hi = sec_info->count;
1319   mid = 0;
1320   while (lo < hi)
1321     {
1322       mid = (lo + hi) / 2;
1323       if (offset < sec_info->entry[mid].offset)
1324 	hi = mid;
1325       else if (offset
1326 	       >= sec_info->entry[mid].offset + sec_info->entry[mid].size)
1327 	lo = mid + 1;
1328       else
1329 	break;
1330     }
1331 
1332   BFD_ASSERT (lo < hi);
1333 
1334   /* FDE or CIE was removed.  */
1335   if (sec_info->entry[mid].removed)
1336     return (bfd_vma) -1;
1337 
1338   /* If converting personality pointers to DW_EH_PE_pcrel, there will be
1339      no need for run-time relocation against the personality field.  */
1340   if (sec_info->entry[mid].cie
1341       && sec_info->entry[mid].u.cie.make_per_encoding_relative
1342       && offset == (sec_info->entry[mid].offset + 8
1343 		    + sec_info->entry[mid].u.cie.personality_offset))
1344     return (bfd_vma) -2;
1345 
1346   /* If converting to DW_EH_PE_pcrel, there will be no need for run-time
1347      relocation against FDE's initial_location field.  */
1348   if (!sec_info->entry[mid].cie
1349       && sec_info->entry[mid].make_relative
1350       && offset == sec_info->entry[mid].offset + 8)
1351     return (bfd_vma) -2;
1352 
1353   /* If converting LSDA pointers to DW_EH_PE_pcrel, there will be no need
1354      for run-time relocation against LSDA field.  */
1355   if (!sec_info->entry[mid].cie
1356       && sec_info->entry[mid].u.fde.cie_inf->u.cie.make_lsda_relative
1357       && offset == (sec_info->entry[mid].offset + 8
1358 		    + sec_info->entry[mid].lsda_offset))
1359     return (bfd_vma) -2;
1360 
1361   /* If converting to DW_EH_PE_pcrel, there will be no need for run-time
1362      relocation against DW_CFA_set_loc's arguments.  */
1363   if (sec_info->entry[mid].set_loc
1364       && sec_info->entry[mid].make_relative
1365       && (offset >= sec_info->entry[mid].offset + 8
1366 		    + sec_info->entry[mid].set_loc[1]))
1367     {
1368       unsigned int cnt;
1369 
1370       for (cnt = 1; cnt <= sec_info->entry[mid].set_loc[0]; cnt++)
1371 	if (offset == sec_info->entry[mid].offset + 8
1372 		      + sec_info->entry[mid].set_loc[cnt])
1373 	  return (bfd_vma) -2;
1374     }
1375 
1376   /* Any new augmentation bytes go before the first relocation.  */
1377   return (offset + sec_info->entry[mid].new_offset
1378 	  - sec_info->entry[mid].offset
1379 	  + extra_augmentation_string_bytes (sec_info->entry + mid)
1380 	  + extra_augmentation_data_bytes (sec_info->entry + mid));
1381 }
1382 
1383 /* Write out .eh_frame section.  This is called with the relocated
1384    contents.  */
1385 
1386 bfd_boolean
1387 _bfd_elf_write_section_eh_frame (bfd *abfd,
1388 				 struct bfd_link_info *info,
1389 				 asection *sec,
1390 				 bfd_byte *contents)
1391 {
1392   struct eh_frame_sec_info *sec_info;
1393   struct elf_link_hash_table *htab;
1394   struct eh_frame_hdr_info *hdr_info;
1395   unsigned int ptr_size;
1396   struct eh_cie_fde *ent;
1397 
1398   if (sec->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
1399     /* FIXME: octets_per_byte.  */
1400     return bfd_set_section_contents (abfd, sec->output_section, contents,
1401 				     sec->output_offset, sec->size);
1402 
1403   ptr_size = (get_elf_backend_data (abfd)
1404 	      ->elf_backend_eh_frame_address_size (abfd, sec));
1405   BFD_ASSERT (ptr_size != 0);
1406 
1407   sec_info = (struct eh_frame_sec_info *) elf_section_data (sec)->sec_info;
1408   htab = elf_hash_table (info);
1409   hdr_info = &htab->eh_info;
1410 
1411   if (hdr_info->table && hdr_info->array == NULL)
1412     hdr_info->array = (struct eh_frame_array_ent *)
1413         bfd_malloc (hdr_info->fde_count * sizeof(*hdr_info->array));
1414   if (hdr_info->array == NULL)
1415     hdr_info = NULL;
1416 
1417   /* The new offsets can be bigger or smaller than the original offsets.
1418      We therefore need to make two passes over the section: one backward
1419      pass to move entries up and one forward pass to move entries down.
1420      The two passes won't interfere with each other because entries are
1421      not reordered  */
1422   for (ent = sec_info->entry + sec_info->count; ent-- != sec_info->entry;)
1423     if (!ent->removed && ent->new_offset > ent->offset)
1424       memmove (contents + ent->new_offset, contents + ent->offset, ent->size);
1425 
1426   for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1427     if (!ent->removed && ent->new_offset < ent->offset)
1428       memmove (contents + ent->new_offset, contents + ent->offset, ent->size);
1429 
1430   for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1431     {
1432       unsigned char *buf, *end;
1433       unsigned int new_size;
1434 
1435       if (ent->removed)
1436 	continue;
1437 
1438       if (ent->size == 4)
1439 	{
1440 	  /* Any terminating FDE must be at the end of the section.  */
1441 	  BFD_ASSERT (ent == sec_info->entry + sec_info->count - 1);
1442 	  continue;
1443 	}
1444 
1445       buf = contents + ent->new_offset;
1446       end = buf + ent->size;
1447       new_size = size_of_output_cie_fde (ent, ptr_size);
1448 
1449       /* Update the size.  It may be shrinked.  */
1450       bfd_put_32 (abfd, new_size - 4, buf);
1451 
1452       /* Filling the extra bytes with DW_CFA_nops.  */
1453       if (new_size != ent->size)
1454 	memset (end, 0, new_size - ent->size);
1455 
1456       if (ent->cie)
1457 	{
1458 	  /* CIE */
1459 	  if (ent->make_relative
1460 	      || ent->u.cie.make_lsda_relative
1461 	      || ent->u.cie.per_encoding_relative)
1462 	    {
1463 	      char *aug;
1464 	      unsigned int action, extra_string, extra_data;
1465 	      unsigned int per_width, per_encoding;
1466 
1467 	      /* Need to find 'R' or 'L' augmentation's argument and modify
1468 		 DW_EH_PE_* value.  */
1469 	      action = ((ent->make_relative ? 1 : 0)
1470 			| (ent->u.cie.make_lsda_relative ? 2 : 0)
1471 			| (ent->u.cie.per_encoding_relative ? 4 : 0));
1472 	      extra_string = extra_augmentation_string_bytes (ent);
1473 	      extra_data = extra_augmentation_data_bytes (ent);
1474 
1475 	      /* Skip length, id and version.  */
1476 	      buf += 9;
1477 	      aug = (char *) buf;
1478 	      buf += strlen (aug) + 1;
1479 	      skip_leb128 (&buf, end);
1480 	      skip_leb128 (&buf, end);
1481 	      skip_leb128 (&buf, end);
1482 	      if (*aug == 'z')
1483 		{
1484 		  /* The uleb128 will always be a single byte for the kind
1485 		     of augmentation strings that we're prepared to handle.  */
1486 		  *buf++ += extra_data;
1487 		  aug++;
1488 		}
1489 
1490 	      /* Make room for the new augmentation string and data bytes.  */
1491 	      memmove (buf + extra_string + extra_data, buf, end - buf);
1492 	      memmove (aug + extra_string, aug, buf - (bfd_byte *) aug);
1493 	      buf += extra_string;
1494 	      end += extra_string + extra_data;
1495 
1496 	      if (ent->add_augmentation_size)
1497 		{
1498 		  *aug++ = 'z';
1499 		  *buf++ = extra_data - 1;
1500 		}
1501 	      if (ent->u.cie.add_fde_encoding)
1502 		{
1503 		  BFD_ASSERT (action & 1);
1504 		  *aug++ = 'R';
1505 		  *buf++ = make_pc_relative (DW_EH_PE_absptr, ptr_size);
1506 		  action &= ~1;
1507 		}
1508 
1509 	      while (action)
1510 		switch (*aug++)
1511 		  {
1512 		  case 'L':
1513 		    if (action & 2)
1514 		      {
1515 			BFD_ASSERT (*buf == ent->lsda_encoding);
1516 			*buf = make_pc_relative (*buf, ptr_size);
1517 			action &= ~2;
1518 		      }
1519 		    buf++;
1520 		    break;
1521 		  case 'P':
1522 		    if (ent->u.cie.make_per_encoding_relative)
1523 		      *buf = make_pc_relative (*buf, ptr_size);
1524 		    per_encoding = *buf++;
1525 		    per_width = get_DW_EH_PE_width (per_encoding, ptr_size);
1526 		    BFD_ASSERT (per_width != 0);
1527 		    BFD_ASSERT (((per_encoding & 0x70) == DW_EH_PE_pcrel)
1528 				== ent->u.cie.per_encoding_relative);
1529 		    if ((per_encoding & 0x70) == DW_EH_PE_aligned)
1530 		      buf = (contents
1531 			     + ((buf - contents + per_width - 1)
1532 				& ~((bfd_size_type) per_width - 1)));
1533 		    if (action & 4)
1534 		      {
1535 			bfd_vma val;
1536 
1537 			val = read_value (abfd, buf, per_width,
1538 					  get_DW_EH_PE_signed (per_encoding));
1539 			if (ent->u.cie.make_per_encoding_relative)
1540 			  val -= (sec->output_section->vma
1541 				  + sec->output_offset
1542 				  + (buf - contents));
1543 			else
1544 			  {
1545 			    val += (bfd_vma) ent->offset - ent->new_offset;
1546 			    val -= extra_string + extra_data;
1547 			  }
1548 			write_value (abfd, buf, val, per_width);
1549 			action &= ~4;
1550 		      }
1551 		    buf += per_width;
1552 		    break;
1553 		  case 'R':
1554 		    if (action & 1)
1555 		      {
1556 			BFD_ASSERT (*buf == ent->fde_encoding);
1557 			*buf = make_pc_relative (*buf, ptr_size);
1558 			action &= ~1;
1559 		      }
1560 		    buf++;
1561 		    break;
1562 		  case 'S':
1563 		    break;
1564 		  default:
1565 		    BFD_FAIL ();
1566 		  }
1567 	    }
1568 	}
1569       else
1570 	{
1571 	  /* FDE */
1572 	  bfd_vma value, address;
1573 	  unsigned int width;
1574 	  bfd_byte *start;
1575 	  struct eh_cie_fde *cie;
1576 
1577 	  /* Skip length.  */
1578 	  cie = ent->u.fde.cie_inf;
1579 	  buf += 4;
1580 	  value = ((ent->new_offset + sec->output_offset + 4)
1581 		   - (cie->new_offset + cie->u.cie.u.sec->output_offset));
1582 	  bfd_put_32 (abfd, value, buf);
1583 	  buf += 4;
1584 	  width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
1585 	  value = read_value (abfd, buf, width,
1586 			      get_DW_EH_PE_signed (ent->fde_encoding));
1587 	  address = value;
1588 	  if (value)
1589 	    {
1590 	      switch (ent->fde_encoding & 0x70)
1591 		{
1592 		case DW_EH_PE_textrel:
1593 		  BFD_ASSERT (hdr_info == NULL);
1594 		  break;
1595 		case DW_EH_PE_datarel:
1596 		  {
1597 		    switch (abfd->arch_info->arch)
1598 		      {
1599 		      case bfd_arch_ia64:
1600 			BFD_ASSERT (elf_gp (abfd) != 0);
1601 			address += elf_gp (abfd);
1602 			break;
1603 		      default:
1604 			(*info->callbacks->einfo)
1605 			  (_("%P: DW_EH_PE_datarel unspecified"
1606 			     " for this architecture.\n"));
1607 			/* Fall thru */
1608 		      case bfd_arch_frv:
1609 		      case bfd_arch_i386:
1610 			BFD_ASSERT (htab->hgot != NULL
1611 				    && ((htab->hgot->root.type
1612 					 == bfd_link_hash_defined)
1613 					|| (htab->hgot->root.type
1614 					    == bfd_link_hash_defweak)));
1615 			address
1616 			  += (htab->hgot->root.u.def.value
1617 			      + htab->hgot->root.u.def.section->output_offset
1618 			      + (htab->hgot->root.u.def.section->output_section
1619 				 ->vma));
1620 			break;
1621 		      }
1622 		  }
1623 		  break;
1624 		case DW_EH_PE_pcrel:
1625 		  value += (bfd_vma) ent->offset - ent->new_offset;
1626 		  address += (sec->output_section->vma
1627 			      + sec->output_offset
1628 			      + ent->offset + 8);
1629 		  break;
1630 		}
1631 	      if (ent->make_relative)
1632 		value -= (sec->output_section->vma
1633 			  + sec->output_offset
1634 			  + ent->new_offset + 8);
1635 	      write_value (abfd, buf, value, width);
1636 	    }
1637 
1638 	  start = buf;
1639 
1640 	  if (hdr_info)
1641 	    {
1642 	      /* The address calculation may overflow, giving us a
1643 		 value greater than 4G on a 32-bit target when
1644 		 dwarf_vma is 64-bit.  */
1645 	      if (sizeof (address) > 4 && ptr_size == 4)
1646 		address &= 0xffffffff;
1647 	      hdr_info->array[hdr_info->array_count].initial_loc = address;
1648 	      hdr_info->array[hdr_info->array_count++].fde
1649 		= (sec->output_section->vma
1650 		   + sec->output_offset
1651 		   + ent->new_offset);
1652 	    }
1653 
1654 	  if ((ent->lsda_encoding & 0x70) == DW_EH_PE_pcrel
1655 	      || cie->u.cie.make_lsda_relative)
1656 	    {
1657 	      buf += ent->lsda_offset;
1658 	      width = get_DW_EH_PE_width (ent->lsda_encoding, ptr_size);
1659 	      value = read_value (abfd, buf, width,
1660 				  get_DW_EH_PE_signed (ent->lsda_encoding));
1661 	      if (value)
1662 		{
1663 		  if ((ent->lsda_encoding & 0x70) == DW_EH_PE_pcrel)
1664 		    value += (bfd_vma) ent->offset - ent->new_offset;
1665 		  else if (cie->u.cie.make_lsda_relative)
1666 		    value -= (sec->output_section->vma
1667 			      + sec->output_offset
1668 			      + ent->new_offset + 8 + ent->lsda_offset);
1669 		  write_value (abfd, buf, value, width);
1670 		}
1671 	    }
1672 	  else if (ent->add_augmentation_size)
1673 	    {
1674 	      /* Skip the PC and length and insert a zero byte for the
1675 		 augmentation size.  */
1676 	      buf += width * 2;
1677 	      memmove (buf + 1, buf, end - buf);
1678 	      *buf = 0;
1679 	    }
1680 
1681 	  if (ent->set_loc)
1682 	    {
1683 	      /* Adjust DW_CFA_set_loc.  */
1684 	      unsigned int cnt;
1685 	      bfd_vma new_offset;
1686 
1687 	      width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
1688 	      new_offset = ent->new_offset + 8
1689 			   + extra_augmentation_string_bytes (ent)
1690 			   + extra_augmentation_data_bytes (ent);
1691 
1692 	      for (cnt = 1; cnt <= ent->set_loc[0]; cnt++)
1693 		{
1694 		  buf = start + ent->set_loc[cnt];
1695 
1696 		  value = read_value (abfd, buf, width,
1697 				      get_DW_EH_PE_signed (ent->fde_encoding));
1698 		  if (!value)
1699 		    continue;
1700 
1701 		  if ((ent->fde_encoding & 0x70) == DW_EH_PE_pcrel)
1702 		    value += (bfd_vma) ent->offset + 8 - new_offset;
1703 		  if (ent->make_relative)
1704 		    value -= (sec->output_section->vma
1705 			      + sec->output_offset
1706 			      + new_offset + ent->set_loc[cnt]);
1707 		  write_value (abfd, buf, value, width);
1708 		}
1709 	    }
1710 	}
1711     }
1712 
1713   /* We don't align the section to its section alignment since the
1714      runtime library only expects all CIE/FDE records aligned at
1715      the pointer size. _bfd_elf_discard_section_eh_frame should
1716      have padded CIE/FDE records to multiple of pointer size with
1717      size_of_output_cie_fde.  */
1718   if ((sec->size % ptr_size) != 0)
1719     abort ();
1720 
1721   /* FIXME: octets_per_byte.  */
1722   return bfd_set_section_contents (abfd, sec->output_section,
1723 				   contents, (file_ptr) sec->output_offset,
1724 				   sec->size);
1725 }
1726 
1727 /* Helper function used to sort .eh_frame_hdr search table by increasing
1728    VMA of FDE initial location.  */
1729 
1730 static int
1731 vma_compare (const void *a, const void *b)
1732 {
1733   const struct eh_frame_array_ent *p = (const struct eh_frame_array_ent *) a;
1734   const struct eh_frame_array_ent *q = (const struct eh_frame_array_ent *) b;
1735   if (p->initial_loc > q->initial_loc)
1736     return 1;
1737   if (p->initial_loc < q->initial_loc)
1738     return -1;
1739   return 0;
1740 }
1741 
1742 /* Write out .eh_frame_hdr section.  This must be called after
1743    _bfd_elf_write_section_eh_frame has been called on all input
1744    .eh_frame sections.
1745    .eh_frame_hdr format:
1746    ubyte version		(currently 1)
1747    ubyte eh_frame_ptr_enc  	(DW_EH_PE_* encoding of pointer to start of
1748 				 .eh_frame section)
1749    ubyte fde_count_enc		(DW_EH_PE_* encoding of total FDE count
1750 				 number (or DW_EH_PE_omit if there is no
1751 				 binary search table computed))
1752    ubyte table_enc		(DW_EH_PE_* encoding of binary search table,
1753 				 or DW_EH_PE_omit if not present.
1754 				 DW_EH_PE_datarel is using address of
1755 				 .eh_frame_hdr section start as base)
1756    [encoded] eh_frame_ptr	(pointer to start of .eh_frame section)
1757    optionally followed by:
1758    [encoded] fde_count		(total number of FDEs in .eh_frame section)
1759    fde_count x [encoded] initial_loc, fde
1760 				(array of encoded pairs containing
1761 				 FDE initial_location field and FDE address,
1762 				 sorted by increasing initial_loc).  */
1763 
1764 bfd_boolean
1765 _bfd_elf_write_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
1766 {
1767   struct elf_link_hash_table *htab;
1768   struct eh_frame_hdr_info *hdr_info;
1769   asection *sec;
1770   bfd_byte *contents;
1771   asection *eh_frame_sec;
1772   bfd_size_type size;
1773   bfd_boolean retval;
1774   bfd_vma encoded_eh_frame;
1775 
1776   htab = elf_hash_table (info);
1777   hdr_info = &htab->eh_info;
1778   sec = hdr_info->hdr_sec;
1779   if (sec == NULL)
1780     return TRUE;
1781 
1782   size = EH_FRAME_HDR_SIZE;
1783   if (hdr_info->array && hdr_info->array_count == hdr_info->fde_count)
1784     size += 4 + hdr_info->fde_count * 8;
1785   contents = (bfd_byte *) bfd_malloc (size);
1786   if (contents == NULL)
1787     return FALSE;
1788 
1789   eh_frame_sec = bfd_get_section_by_name (abfd, ".eh_frame");
1790   if (eh_frame_sec == NULL)
1791     {
1792       free (contents);
1793       return FALSE;
1794     }
1795 
1796   memset (contents, 0, EH_FRAME_HDR_SIZE);
1797   contents[0] = 1;				/* Version.  */
1798   contents[1] = get_elf_backend_data (abfd)->elf_backend_encode_eh_address
1799     (abfd, info, eh_frame_sec, 0, sec, 4,
1800      &encoded_eh_frame);			/* .eh_frame offset.  */
1801 
1802   if (hdr_info->array && hdr_info->array_count == hdr_info->fde_count)
1803     {
1804       contents[2] = DW_EH_PE_udata4;		/* FDE count encoding.  */
1805       contents[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; /* Search table enc.  */
1806     }
1807   else
1808     {
1809       contents[2] = DW_EH_PE_omit;
1810       contents[3] = DW_EH_PE_omit;
1811     }
1812   bfd_put_32 (abfd, encoded_eh_frame, contents + 4);
1813 
1814   if (contents[2] != DW_EH_PE_omit)
1815     {
1816       unsigned int i;
1817 
1818       bfd_put_32 (abfd, hdr_info->fde_count, contents + EH_FRAME_HDR_SIZE);
1819       qsort (hdr_info->array, hdr_info->fde_count, sizeof (*hdr_info->array),
1820 	     vma_compare);
1821       for (i = 0; i < hdr_info->fde_count; i++)
1822 	{
1823 	  bfd_put_32 (abfd,
1824 		      hdr_info->array[i].initial_loc
1825 		      - sec->output_section->vma,
1826 		      contents + EH_FRAME_HDR_SIZE + i * 8 + 4);
1827 	  bfd_put_32 (abfd,
1828 		      hdr_info->array[i].fde - sec->output_section->vma,
1829 		      contents + EH_FRAME_HDR_SIZE + i * 8 + 8);
1830 	}
1831     }
1832 
1833   /* FIXME: octets_per_byte.  */
1834   retval = bfd_set_section_contents (abfd, sec->output_section,
1835 				     contents, (file_ptr) sec->output_offset,
1836 				     sec->size);
1837   free (contents);
1838   return retval;
1839 }
1840 
1841 /* Return the width of FDE addresses.  This is the default implementation.  */
1842 
1843 unsigned int
1844 _bfd_elf_eh_frame_address_size (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
1845 {
1846   return elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64 ? 8 : 4;
1847 }
1848 
1849 /* Decide whether we can use a PC-relative encoding within the given
1850    EH frame section.  This is the default implementation.  */
1851 
1852 bfd_boolean
1853 _bfd_elf_can_make_relative (bfd *input_bfd ATTRIBUTE_UNUSED,
1854 			    struct bfd_link_info *info ATTRIBUTE_UNUSED,
1855 			    asection *eh_frame_section ATTRIBUTE_UNUSED)
1856 {
1857   return TRUE;
1858 }
1859 
1860 /* Select an encoding for the given address.  Preference is given to
1861    PC-relative addressing modes.  */
1862 
1863 bfd_byte
1864 _bfd_elf_encode_eh_address (bfd *abfd ATTRIBUTE_UNUSED,
1865 			    struct bfd_link_info *info ATTRIBUTE_UNUSED,
1866 			    asection *osec, bfd_vma offset,
1867 			    asection *loc_sec, bfd_vma loc_offset,
1868 			    bfd_vma *encoded)
1869 {
1870   *encoded = osec->vma + offset -
1871     (loc_sec->output_section->vma + loc_sec->output_offset + loc_offset);
1872   return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
1873 }
1874