xref: /dragonfly/contrib/gdb-7/bfd/elf64-x86-64.c (revision e7d467f4)
1 /* X86-64 specific support for ELF
2    Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3    2010, 2011, 2012
4    Free Software Foundation, Inc.
5    Contributed by Jan Hubicka <jh@suse.cz>.
6 
7    This file is part of BFD, the Binary File Descriptor library.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; if not, write to the Free Software
21    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22    MA 02110-1301, USA.  */
23 
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "bfdlink.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "bfd_stdint.h"
30 #include "objalloc.h"
31 #include "hashtab.h"
32 #include "dwarf2.h"
33 #include "libiberty.h"
34 
35 #include "elf/x86-64.h"
36 
37 #ifdef CORE_HEADER
38 #include <stdarg.h>
39 #include CORE_HEADER
40 #endif
41 
42 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value.  */
43 #define MINUS_ONE (~ (bfd_vma) 0)
44 
45 /* Since both 32-bit and 64-bit x86-64 encode relocation type in the
46    identical manner, we use ELF32_R_TYPE instead of ELF64_R_TYPE to get
47    relocation type.  We also use ELF_ST_TYPE instead of ELF64_ST_TYPE
48    since they are the same.  */
49 
50 #define ABI_64_P(abfd) \
51   (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
52 
53 /* The relocation "howto" table.  Order of fields:
54    type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
55    special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset.  */
56 static reloc_howto_type x86_64_elf_howto_table[] =
57 {
58   HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
59 	bfd_elf_generic_reloc, "R_X86_64_NONE",	FALSE, 0x00000000, 0x00000000,
60 	FALSE),
61   HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
62 	bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
63 	FALSE),
64   HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
65 	bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
66 	TRUE),
67   HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
68 	bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
69 	FALSE),
70   HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
71 	bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
72 	TRUE),
73   HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
74 	bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
75 	FALSE),
76   HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
77 	bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
78 	MINUS_ONE, FALSE),
79   HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
80 	bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
81 	MINUS_ONE, FALSE),
82   HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
83 	bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
84 	MINUS_ONE, FALSE),
85   HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
86 	bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
87 	0xffffffff, TRUE),
88   HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
89 	bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
90 	FALSE),
91   HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
92 	bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
93 	FALSE),
94   HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
95 	bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
96   HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
97 	bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
98   HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
99 	bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
100   HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
101 	bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
102   HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
103 	bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
104 	MINUS_ONE, FALSE),
105   HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
106 	bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
107 	MINUS_ONE, FALSE),
108   HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
109 	bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
110 	MINUS_ONE, FALSE),
111   HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
112 	bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
113 	0xffffffff, TRUE),
114   HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
115 	bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
116 	0xffffffff, TRUE),
117   HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
118 	bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
119 	0xffffffff, FALSE),
120   HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
121 	bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
122 	0xffffffff, TRUE),
123   HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
124 	bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
125 	0xffffffff, FALSE),
126   HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
127 	bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
128 	TRUE),
129   HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
130 	bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
131 	FALSE, MINUS_ONE, MINUS_ONE, FALSE),
132   HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
133 	bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
134 	FALSE, 0xffffffff, 0xffffffff, TRUE),
135   HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
136 	bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
137 	FALSE),
138   HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
139 	bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
140 	MINUS_ONE, TRUE),
141   HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
142 	bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
143 	FALSE, MINUS_ONE, MINUS_ONE, TRUE),
144   HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
145 	bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
146 	MINUS_ONE, FALSE),
147   HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
148 	bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
149 	MINUS_ONE, FALSE),
150   EMPTY_HOWTO (32),
151   EMPTY_HOWTO (33),
152   HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
153 	complain_overflow_bitfield, bfd_elf_generic_reloc,
154 	"R_X86_64_GOTPC32_TLSDESC",
155 	FALSE, 0xffffffff, 0xffffffff, TRUE),
156   HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
157 	complain_overflow_dont, bfd_elf_generic_reloc,
158 	"R_X86_64_TLSDESC_CALL",
159 	FALSE, 0, 0, FALSE),
160   HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
161 	complain_overflow_bitfield, bfd_elf_generic_reloc,
162 	"R_X86_64_TLSDESC",
163 	FALSE, MINUS_ONE, MINUS_ONE, FALSE),
164   HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
165 	bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
166 	MINUS_ONE, FALSE),
167   HOWTO(R_X86_64_RELATIVE64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
168 	bfd_elf_generic_reloc, "R_X86_64_RELATIVE64", FALSE, MINUS_ONE,
169 	MINUS_ONE, FALSE),
170 
171   /* We have a gap in the reloc numbers here.
172      R_X86_64_standard counts the number up to this point, and
173      R_X86_64_vt_offset is the value to subtract from a reloc type of
174      R_X86_64_GNU_VT* to form an index into this table.  */
175 #define R_X86_64_standard (R_X86_64_IRELATIVE + 1)
176 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
177 
178 /* GNU extension to record C++ vtable hierarchy.  */
179   HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
180 	 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
181 
182 /* GNU extension to record C++ vtable member usage.  */
183   HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
184 	 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
185 	 FALSE),
186 
187 /* Use complain_overflow_bitfield on R_X86_64_32 for x32.  */
188   HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
189 	bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
190 	FALSE)
191 };
192 
193 #define IS_X86_64_PCREL_TYPE(TYPE)	\
194   (   ((TYPE) == R_X86_64_PC8)		\
195    || ((TYPE) == R_X86_64_PC16)		\
196    || ((TYPE) == R_X86_64_PC32)		\
197    || ((TYPE) == R_X86_64_PC64))
198 
199 /* Map BFD relocs to the x86_64 elf relocs.  */
200 struct elf_reloc_map
201 {
202   bfd_reloc_code_real_type bfd_reloc_val;
203   unsigned char elf_reloc_val;
204 };
205 
206 static const struct elf_reloc_map x86_64_reloc_map[] =
207 {
208   { BFD_RELOC_NONE,		R_X86_64_NONE, },
209   { BFD_RELOC_64,		R_X86_64_64,   },
210   { BFD_RELOC_32_PCREL,		R_X86_64_PC32, },
211   { BFD_RELOC_X86_64_GOT32,	R_X86_64_GOT32,},
212   { BFD_RELOC_X86_64_PLT32,	R_X86_64_PLT32,},
213   { BFD_RELOC_X86_64_COPY,	R_X86_64_COPY, },
214   { BFD_RELOC_X86_64_GLOB_DAT,	R_X86_64_GLOB_DAT, },
215   { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
216   { BFD_RELOC_X86_64_RELATIVE,	R_X86_64_RELATIVE, },
217   { BFD_RELOC_X86_64_GOTPCREL,	R_X86_64_GOTPCREL, },
218   { BFD_RELOC_32,		R_X86_64_32, },
219   { BFD_RELOC_X86_64_32S,	R_X86_64_32S, },
220   { BFD_RELOC_16,		R_X86_64_16, },
221   { BFD_RELOC_16_PCREL,		R_X86_64_PC16, },
222   { BFD_RELOC_8,		R_X86_64_8, },
223   { BFD_RELOC_8_PCREL,		R_X86_64_PC8, },
224   { BFD_RELOC_X86_64_DTPMOD64,	R_X86_64_DTPMOD64, },
225   { BFD_RELOC_X86_64_DTPOFF64,	R_X86_64_DTPOFF64, },
226   { BFD_RELOC_X86_64_TPOFF64,	R_X86_64_TPOFF64, },
227   { BFD_RELOC_X86_64_TLSGD,	R_X86_64_TLSGD, },
228   { BFD_RELOC_X86_64_TLSLD,	R_X86_64_TLSLD, },
229   { BFD_RELOC_X86_64_DTPOFF32,	R_X86_64_DTPOFF32, },
230   { BFD_RELOC_X86_64_GOTTPOFF,	R_X86_64_GOTTPOFF, },
231   { BFD_RELOC_X86_64_TPOFF32,	R_X86_64_TPOFF32, },
232   { BFD_RELOC_64_PCREL,		R_X86_64_PC64, },
233   { BFD_RELOC_X86_64_GOTOFF64,	R_X86_64_GOTOFF64, },
234   { BFD_RELOC_X86_64_GOTPC32,	R_X86_64_GOTPC32, },
235   { BFD_RELOC_X86_64_GOT64,	R_X86_64_GOT64, },
236   { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
237   { BFD_RELOC_X86_64_GOTPC64,	R_X86_64_GOTPC64, },
238   { BFD_RELOC_X86_64_GOTPLT64,	R_X86_64_GOTPLT64, },
239   { BFD_RELOC_X86_64_PLTOFF64,	R_X86_64_PLTOFF64, },
240   { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
241   { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
242   { BFD_RELOC_X86_64_TLSDESC,	R_X86_64_TLSDESC, },
243   { BFD_RELOC_X86_64_IRELATIVE,	R_X86_64_IRELATIVE, },
244   { BFD_RELOC_VTABLE_INHERIT,	R_X86_64_GNU_VTINHERIT, },
245   { BFD_RELOC_VTABLE_ENTRY,	R_X86_64_GNU_VTENTRY, },
246 };
247 
248 static reloc_howto_type *
249 elf_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
250 {
251   unsigned i;
252 
253   if (r_type == (unsigned int) R_X86_64_32)
254     {
255       if (ABI_64_P (abfd))
256 	i = r_type;
257       else
258 	i = ARRAY_SIZE (x86_64_elf_howto_table) - 1;
259     }
260   else if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
261 	   || r_type >= (unsigned int) R_X86_64_max)
262     {
263       if (r_type >= (unsigned int) R_X86_64_standard)
264 	{
265 	  (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
266 				 abfd, (int) r_type);
267 	  r_type = R_X86_64_NONE;
268 	}
269       i = r_type;
270     }
271   else
272     i = r_type - (unsigned int) R_X86_64_vt_offset;
273   BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
274   return &x86_64_elf_howto_table[i];
275 }
276 
277 /* Given a BFD reloc type, return a HOWTO structure.  */
278 static reloc_howto_type *
279 elf_x86_64_reloc_type_lookup (bfd *abfd,
280 			      bfd_reloc_code_real_type code)
281 {
282   unsigned int i;
283 
284   for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
285        i++)
286     {
287       if (x86_64_reloc_map[i].bfd_reloc_val == code)
288 	return elf_x86_64_rtype_to_howto (abfd,
289 					  x86_64_reloc_map[i].elf_reloc_val);
290     }
291   return 0;
292 }
293 
294 static reloc_howto_type *
295 elf_x86_64_reloc_name_lookup (bfd *abfd,
296 			      const char *r_name)
297 {
298   unsigned int i;
299 
300   if (!ABI_64_P (abfd) && strcasecmp (r_name, "R_X86_64_32") == 0)
301     {
302       /* Get x32 R_X86_64_32.  */
303       reloc_howto_type *reloc
304 	= &x86_64_elf_howto_table[ARRAY_SIZE (x86_64_elf_howto_table) - 1];
305       BFD_ASSERT (reloc->type == (unsigned int) R_X86_64_32);
306       return reloc;
307     }
308 
309   for (i = 0; i < ARRAY_SIZE (x86_64_elf_howto_table); i++)
310     if (x86_64_elf_howto_table[i].name != NULL
311 	&& strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
312       return &x86_64_elf_howto_table[i];
313 
314   return NULL;
315 }
316 
317 /* Given an x86_64 ELF reloc type, fill in an arelent structure.  */
318 
319 static void
320 elf_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
321 			  Elf_Internal_Rela *dst)
322 {
323   unsigned r_type;
324 
325   r_type = ELF32_R_TYPE (dst->r_info);
326   cache_ptr->howto = elf_x86_64_rtype_to_howto (abfd, r_type);
327   BFD_ASSERT (r_type == cache_ptr->howto->type);
328 }
329 
330 /* Support for core dump NOTE sections.  */
331 static bfd_boolean
332 elf_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
333 {
334   int offset;
335   size_t size;
336 
337   switch (note->descsz)
338     {
339       default:
340 	return FALSE;
341 
342       case 296:		/* sizeof(istruct elf_prstatus) on Linux/x32 */
343 	/* pr_cursig */
344 	elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
345 
346 	/* pr_pid */
347 	elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
348 
349 	/* pr_reg */
350 	offset = 72;
351 	size = 216;
352 
353 	break;
354 
355       case 336:		/* sizeof(istruct elf_prstatus) on Linux/x86_64 */
356 	/* pr_cursig */
357 	elf_tdata (abfd)->core_signal
358 	  = bfd_get_16 (abfd, note->descdata + 12);
359 
360 	/* pr_pid */
361 	elf_tdata (abfd)->core_lwpid
362 	  = bfd_get_32 (abfd, note->descdata + 32);
363 
364 	/* pr_reg */
365 	offset = 112;
366 	size = 216;
367 
368 	break;
369     }
370 
371   /* Make a ".reg/999" section.  */
372   return _bfd_elfcore_make_pseudosection (abfd, ".reg",
373 					  size, note->descpos + offset);
374 }
375 
376 static bfd_boolean
377 elf_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
378 {
379   switch (note->descsz)
380     {
381       default:
382 	return FALSE;
383 
384       case 124:		/* sizeof(struct elf_prpsinfo) on Linux/x32 */
385 	elf_tdata (abfd)->core_pid
386 	  = bfd_get_32 (abfd, note->descdata + 12);
387 	elf_tdata (abfd)->core_program
388 	  = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
389 	elf_tdata (abfd)->core_command
390 	  = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
391 	break;
392 
393       case 136:		/* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
394 	elf_tdata (abfd)->core_pid
395 	  = bfd_get_32 (abfd, note->descdata + 24);
396 	elf_tdata (abfd)->core_program
397 	 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
398 	elf_tdata (abfd)->core_command
399 	 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
400     }
401 
402   /* Note that for some reason, a spurious space is tacked
403      onto the end of the args in some (at least one anyway)
404      implementations, so strip it off if it exists.  */
405 
406   {
407     char *command = elf_tdata (abfd)->core_command;
408     int n = strlen (command);
409 
410     if (0 < n && command[n - 1] == ' ')
411       command[n - 1] = '\0';
412   }
413 
414   return TRUE;
415 }
416 
417 #ifdef CORE_HEADER
418 static char *
419 elf_x86_64_write_core_note (bfd *abfd, char *buf, int *bufsiz,
420 			    int note_type, ...)
421 {
422   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
423   va_list ap;
424   const char *fname, *psargs;
425   long pid;
426   int cursig;
427   const void *gregs;
428 
429   switch (note_type)
430     {
431     default:
432       return NULL;
433 
434     case NT_PRPSINFO:
435       va_start (ap, note_type);
436       fname = va_arg (ap, const char *);
437       psargs = va_arg (ap, const char *);
438       va_end (ap);
439 
440       if (bed->s->elfclass == ELFCLASS32)
441 	{
442 	  prpsinfo32_t data;
443 	  memset (&data, 0, sizeof (data));
444 	  strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
445 	  strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
446 	  return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
447 				     &data, sizeof (data));
448 	}
449       else
450 	{
451 	  prpsinfo_t data;
452 	  memset (&data, 0, sizeof (data));
453 	  strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
454 	  strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
455 	  return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
456 				     &data, sizeof (data));
457 	}
458       /* NOTREACHED */
459 
460     case NT_PRSTATUS:
461       va_start (ap, note_type);
462       pid = va_arg (ap, long);
463       cursig = va_arg (ap, int);
464       gregs = va_arg (ap, const void *);
465       va_end (ap);
466 
467       if (bed->s->elfclass == ELFCLASS32)
468 	{
469 	  if (bed->elf_machine_code == EM_X86_64)
470 	    {
471 	      prstatusx32_t prstat;
472 	      memset (&prstat, 0, sizeof (prstat));
473 	      prstat.pr_pid = pid;
474 	      prstat.pr_cursig = cursig;
475 	      memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
476 	      return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
477 					 &prstat, sizeof (prstat));
478 	    }
479 	  else
480 	    {
481 	      prstatus32_t prstat;
482 	      memset (&prstat, 0, sizeof (prstat));
483 	      prstat.pr_pid = pid;
484 	      prstat.pr_cursig = cursig;
485 	      memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
486 	      return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
487 					 &prstat, sizeof (prstat));
488 	    }
489 	}
490       else
491 	{
492 	  prstatus_t prstat;
493 	  memset (&prstat, 0, sizeof (prstat));
494 	  prstat.pr_pid = pid;
495 	  prstat.pr_cursig = cursig;
496 	  memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
497 	  return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
498 				     &prstat, sizeof (prstat));
499 	}
500     }
501   /* NOTREACHED */
502 }
503 #endif
504 
505 /* Functions for the x86-64 ELF linker.	 */
506 
507 /* The name of the dynamic interpreter.	 This is put in the .interp
508    section.  */
509 
510 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
511 #define ELF32_DYNAMIC_INTERPRETER "/lib/ld32.so.1"
512 
513 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
514    copying dynamic variables from a shared lib into an app's dynbss
515    section, and instead use a dynamic relocation to point into the
516    shared lib.  */
517 #define ELIMINATE_COPY_RELOCS 1
518 
519 /* The size in bytes of an entry in the global offset table.  */
520 
521 #define GOT_ENTRY_SIZE 8
522 
523 /* The size in bytes of an entry in the procedure linkage table.  */
524 
525 #define PLT_ENTRY_SIZE 16
526 
527 /* The first entry in a procedure linkage table looks like this.  See the
528    SVR4 ABI i386 supplement and the x86-64 ABI to see how this works.  */
529 
530 static const bfd_byte elf_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
531 {
532   0xff, 0x35, 8, 0, 0, 0,	/* pushq GOT+8(%rip)  */
533   0xff, 0x25, 16, 0, 0, 0,	/* jmpq *GOT+16(%rip) */
534   0x0f, 0x1f, 0x40, 0x00	/* nopl 0(%rax)       */
535 };
536 
537 /* Subsequent entries in a procedure linkage table look like this.  */
538 
539 static const bfd_byte elf_x86_64_plt_entry[PLT_ENTRY_SIZE] =
540 {
541   0xff, 0x25,	/* jmpq *name@GOTPC(%rip) */
542   0, 0, 0, 0,	/* replaced with offset to this symbol in .got.	 */
543   0x68,		/* pushq immediate */
544   0, 0, 0, 0,	/* replaced with index into relocation table.  */
545   0xe9,		/* jmp relative */
546   0, 0, 0, 0	/* replaced with offset to start of .plt0.  */
547 };
548 
549 /* .eh_frame covering the .plt section.  */
550 
551 static const bfd_byte elf_x86_64_eh_frame_plt[] =
552 {
553 #define PLT_CIE_LENGTH		20
554 #define PLT_FDE_LENGTH		36
555 #define PLT_FDE_START_OFFSET	4 + PLT_CIE_LENGTH + 8
556 #define PLT_FDE_LEN_OFFSET	4 + PLT_CIE_LENGTH + 12
557   PLT_CIE_LENGTH, 0, 0, 0,	/* CIE length */
558   0, 0, 0, 0,			/* CIE ID */
559   1,				/* CIE version */
560   'z', 'R', 0,			/* Augmentation string */
561   1,				/* Code alignment factor */
562   0x78,				/* Data alignment factor */
563   16,				/* Return address column */
564   1,				/* Augmentation size */
565   DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
566   DW_CFA_def_cfa, 7, 8,		/* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
567   DW_CFA_offset + 16, 1,	/* DW_CFA_offset: r16 (rip) at cfa-8 */
568   DW_CFA_nop, DW_CFA_nop,
569 
570   PLT_FDE_LENGTH, 0, 0, 0,	/* FDE length */
571   PLT_CIE_LENGTH + 8, 0, 0, 0,	/* CIE pointer */
572   0, 0, 0, 0,			/* R_X86_64_PC32 .plt goes here */
573   0, 0, 0, 0,			/* .plt size goes here */
574   0,				/* Augmentation size */
575   DW_CFA_def_cfa_offset, 16,	/* DW_CFA_def_cfa_offset: 16 */
576   DW_CFA_advance_loc + 6,	/* DW_CFA_advance_loc: 6 to __PLT__+6 */
577   DW_CFA_def_cfa_offset, 24,	/* DW_CFA_def_cfa_offset: 24 */
578   DW_CFA_advance_loc + 10,	/* DW_CFA_advance_loc: 10 to __PLT__+16 */
579   DW_CFA_def_cfa_expression,	/* DW_CFA_def_cfa_expression */
580   11,				/* Block length */
581   DW_OP_breg7, 8,		/* DW_OP_breg7 (rsp): 8 */
582   DW_OP_breg16, 0,		/* DW_OP_breg16 (rip): 0 */
583   DW_OP_lit15, DW_OP_and, DW_OP_lit11, DW_OP_ge,
584   DW_OP_lit3, DW_OP_shl, DW_OP_plus,
585   DW_CFA_nop, DW_CFA_nop, DW_CFA_nop, DW_CFA_nop
586 };
587 
588 /* x86-64 ELF linker hash entry.  */
589 
590 struct elf_x86_64_link_hash_entry
591 {
592   struct elf_link_hash_entry elf;
593 
594   /* Track dynamic relocs copied for this symbol.  */
595   struct elf_dyn_relocs *dyn_relocs;
596 
597 #define GOT_UNKNOWN	0
598 #define GOT_NORMAL	1
599 #define GOT_TLS_GD	2
600 #define GOT_TLS_IE	3
601 #define GOT_TLS_GDESC	4
602 #define GOT_TLS_GD_BOTH_P(type) \
603   ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
604 #define GOT_TLS_GD_P(type) \
605   ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
606 #define GOT_TLS_GDESC_P(type) \
607   ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
608 #define GOT_TLS_GD_ANY_P(type) \
609   (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
610   unsigned char tls_type;
611 
612   /* Offset of the GOTPLT entry reserved for the TLS descriptor,
613      starting at the end of the jump table.  */
614   bfd_vma tlsdesc_got;
615 };
616 
617 #define elf_x86_64_hash_entry(ent) \
618   ((struct elf_x86_64_link_hash_entry *)(ent))
619 
620 struct elf_x86_64_obj_tdata
621 {
622   struct elf_obj_tdata root;
623 
624   /* tls_type for each local got entry.  */
625   char *local_got_tls_type;
626 
627   /* GOTPLT entries for TLS descriptors.  */
628   bfd_vma *local_tlsdesc_gotent;
629 };
630 
631 #define elf_x86_64_tdata(abfd) \
632   ((struct elf_x86_64_obj_tdata *) (abfd)->tdata.any)
633 
634 #define elf_x86_64_local_got_tls_type(abfd) \
635   (elf_x86_64_tdata (abfd)->local_got_tls_type)
636 
637 #define elf_x86_64_local_tlsdesc_gotent(abfd) \
638   (elf_x86_64_tdata (abfd)->local_tlsdesc_gotent)
639 
640 #define is_x86_64_elf(bfd)				\
641   (bfd_get_flavour (bfd) == bfd_target_elf_flavour	\
642    && elf_tdata (bfd) != NULL				\
643    && elf_object_id (bfd) == X86_64_ELF_DATA)
644 
645 static bfd_boolean
646 elf_x86_64_mkobject (bfd *abfd)
647 {
648   return bfd_elf_allocate_object (abfd, sizeof (struct elf_x86_64_obj_tdata),
649 				  X86_64_ELF_DATA);
650 }
651 
652 /* x86-64 ELF linker hash table.  */
653 
654 struct elf_x86_64_link_hash_table
655 {
656   struct elf_link_hash_table elf;
657 
658   /* Short-cuts to get to dynamic linker sections.  */
659   asection *sdynbss;
660   asection *srelbss;
661   asection *plt_eh_frame;
662 
663   union
664   {
665     bfd_signed_vma refcount;
666     bfd_vma offset;
667   } tls_ld_got;
668 
669   /* The amount of space used by the jump slots in the GOT.  */
670   bfd_vma sgotplt_jump_table_size;
671 
672   /* Small local sym cache.  */
673   struct sym_cache sym_cache;
674 
675   bfd_vma (*r_info) (bfd_vma, bfd_vma);
676   bfd_vma (*r_sym) (bfd_vma);
677   unsigned int pointer_r_type;
678   const char *dynamic_interpreter;
679   int dynamic_interpreter_size;
680 
681   /* _TLS_MODULE_BASE_ symbol.  */
682   struct bfd_link_hash_entry *tls_module_base;
683 
684   /* Used by local STT_GNU_IFUNC symbols.  */
685   htab_t loc_hash_table;
686   void * loc_hash_memory;
687 
688   /* The offset into splt of the PLT entry for the TLS descriptor
689      resolver.  Special values are 0, if not necessary (or not found
690      to be necessary yet), and -1 if needed but not determined
691      yet.  */
692   bfd_vma tlsdesc_plt;
693   /* The offset into sgot of the GOT entry used by the PLT entry
694      above.  */
695   bfd_vma tlsdesc_got;
696 
697   /* The index of the next R_X86_64_JUMP_SLOT entry in .rela.plt.  */
698   bfd_vma next_jump_slot_index;
699   /* The index of the next R_X86_64_IRELATIVE entry in .rela.plt.  */
700   bfd_vma next_irelative_index;
701 };
702 
703 /* Get the x86-64 ELF linker hash table from a link_info structure.  */
704 
705 #define elf_x86_64_hash_table(p) \
706   (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
707   == X86_64_ELF_DATA ? ((struct elf_x86_64_link_hash_table *) ((p)->hash)) : NULL)
708 
709 #define elf_x86_64_compute_jump_table_size(htab) \
710   ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
711 
712 /* Create an entry in an x86-64 ELF linker hash table.	*/
713 
714 static struct bfd_hash_entry *
715 elf_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
716 			      struct bfd_hash_table *table,
717 			      const char *string)
718 {
719   /* Allocate the structure if it has not already been allocated by a
720      subclass.  */
721   if (entry == NULL)
722     {
723       entry = (struct bfd_hash_entry *)
724           bfd_hash_allocate (table,
725                              sizeof (struct elf_x86_64_link_hash_entry));
726       if (entry == NULL)
727 	return entry;
728     }
729 
730   /* Call the allocation method of the superclass.  */
731   entry = _bfd_elf_link_hash_newfunc (entry, table, string);
732   if (entry != NULL)
733     {
734       struct elf_x86_64_link_hash_entry *eh;
735 
736       eh = (struct elf_x86_64_link_hash_entry *) entry;
737       eh->dyn_relocs = NULL;
738       eh->tls_type = GOT_UNKNOWN;
739       eh->tlsdesc_got = (bfd_vma) -1;
740     }
741 
742   return entry;
743 }
744 
745 /* Compute a hash of a local hash entry.  We use elf_link_hash_entry
746   for local symbol so that we can handle local STT_GNU_IFUNC symbols
747   as global symbol.  We reuse indx and dynstr_index for local symbol
748   hash since they aren't used by global symbols in this backend.  */
749 
750 static hashval_t
751 elf_x86_64_local_htab_hash (const void *ptr)
752 {
753   struct elf_link_hash_entry *h
754     = (struct elf_link_hash_entry *) ptr;
755   return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
756 }
757 
758 /* Compare local hash entries.  */
759 
760 static int
761 elf_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
762 {
763   struct elf_link_hash_entry *h1
764      = (struct elf_link_hash_entry *) ptr1;
765   struct elf_link_hash_entry *h2
766     = (struct elf_link_hash_entry *) ptr2;
767 
768   return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
769 }
770 
771 /* Find and/or create a hash entry for local symbol.  */
772 
773 static struct elf_link_hash_entry *
774 elf_x86_64_get_local_sym_hash (struct elf_x86_64_link_hash_table *htab,
775 			       bfd *abfd, const Elf_Internal_Rela *rel,
776 			       bfd_boolean create)
777 {
778   struct elf_x86_64_link_hash_entry e, *ret;
779   asection *sec = abfd->sections;
780   hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
781 				       htab->r_sym (rel->r_info));
782   void **slot;
783 
784   e.elf.indx = sec->id;
785   e.elf.dynstr_index = htab->r_sym (rel->r_info);
786   slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
787 				   create ? INSERT : NO_INSERT);
788 
789   if (!slot)
790     return NULL;
791 
792   if (*slot)
793     {
794       ret = (struct elf_x86_64_link_hash_entry *) *slot;
795       return &ret->elf;
796     }
797 
798   ret = (struct elf_x86_64_link_hash_entry *)
799 	objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
800 			sizeof (struct elf_x86_64_link_hash_entry));
801   if (ret)
802     {
803       memset (ret, 0, sizeof (*ret));
804       ret->elf.indx = sec->id;
805       ret->elf.dynstr_index = htab->r_sym (rel->r_info);
806       ret->elf.dynindx = -1;
807       *slot = ret;
808     }
809   return &ret->elf;
810 }
811 
812 /* Create an X86-64 ELF linker hash table.  */
813 
814 static struct bfd_link_hash_table *
815 elf_x86_64_link_hash_table_create (bfd *abfd)
816 {
817   struct elf_x86_64_link_hash_table *ret;
818   bfd_size_type amt = sizeof (struct elf_x86_64_link_hash_table);
819 
820   ret = (struct elf_x86_64_link_hash_table *) bfd_malloc (amt);
821   if (ret == NULL)
822     return NULL;
823 
824   if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
825 				      elf_x86_64_link_hash_newfunc,
826 				      sizeof (struct elf_x86_64_link_hash_entry),
827 				      X86_64_ELF_DATA))
828     {
829       free (ret);
830       return NULL;
831     }
832 
833   ret->sdynbss = NULL;
834   ret->srelbss = NULL;
835   ret->plt_eh_frame = NULL;
836   ret->sym_cache.abfd = NULL;
837   ret->tlsdesc_plt = 0;
838   ret->tlsdesc_got = 0;
839   ret->tls_ld_got.refcount = 0;
840   ret->sgotplt_jump_table_size = 0;
841   ret->tls_module_base = NULL;
842   ret->next_jump_slot_index = 0;
843   ret->next_irelative_index = 0;
844 
845   if (ABI_64_P (abfd))
846     {
847       ret->r_info = elf64_r_info;
848       ret->r_sym = elf64_r_sym;
849       ret->pointer_r_type = R_X86_64_64;
850       ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER;
851       ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER;
852     }
853   else
854     {
855       ret->r_info = elf32_r_info;
856       ret->r_sym = elf32_r_sym;
857       ret->pointer_r_type = R_X86_64_32;
858       ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER;
859       ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER;
860     }
861 
862   ret->loc_hash_table = htab_try_create (1024,
863 					 elf_x86_64_local_htab_hash,
864 					 elf_x86_64_local_htab_eq,
865 					 NULL);
866   ret->loc_hash_memory = objalloc_create ();
867   if (!ret->loc_hash_table || !ret->loc_hash_memory)
868     {
869       free (ret);
870       return NULL;
871     }
872 
873   return &ret->elf.root;
874 }
875 
876 /* Destroy an X86-64 ELF linker hash table.  */
877 
878 static void
879 elf_x86_64_link_hash_table_free (struct bfd_link_hash_table *hash)
880 {
881   struct elf_x86_64_link_hash_table *htab
882     = (struct elf_x86_64_link_hash_table *) hash;
883 
884   if (htab->loc_hash_table)
885     htab_delete (htab->loc_hash_table);
886   if (htab->loc_hash_memory)
887     objalloc_free ((struct objalloc *) htab->loc_hash_memory);
888   _bfd_generic_link_hash_table_free (hash);
889 }
890 
891 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
892    .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
893    hash table.  */
894 
895 static bfd_boolean
896 elf_x86_64_create_dynamic_sections (bfd *dynobj,
897 				    struct bfd_link_info *info)
898 {
899   struct elf_x86_64_link_hash_table *htab;
900 
901   if (!_bfd_elf_create_dynamic_sections (dynobj, info))
902     return FALSE;
903 
904   htab = elf_x86_64_hash_table (info);
905   if (htab == NULL)
906     return FALSE;
907 
908   htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
909   if (!info->shared)
910     htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
911 
912   if (!htab->sdynbss
913       || (!info->shared && !htab->srelbss))
914     abort ();
915 
916   if (!info->no_ld_generated_unwind_info
917       && bfd_get_section_by_name (dynobj, ".eh_frame") == NULL
918       && htab->elf.splt != NULL)
919     {
920       flagword flags = get_elf_backend_data (dynobj)->dynamic_sec_flags;
921       htab->plt_eh_frame
922 	= bfd_make_section_with_flags (dynobj, ".eh_frame",
923 				       flags | SEC_READONLY);
924       if (htab->plt_eh_frame == NULL
925 	  || !bfd_set_section_alignment (dynobj, htab->plt_eh_frame, 3))
926 	return FALSE;
927 
928       htab->plt_eh_frame->size = sizeof (elf_x86_64_eh_frame_plt);
929       htab->plt_eh_frame->contents
930 	= bfd_alloc (dynobj, htab->plt_eh_frame->size);
931       memcpy (htab->plt_eh_frame->contents, elf_x86_64_eh_frame_plt,
932 	      sizeof (elf_x86_64_eh_frame_plt));
933     }
934   return TRUE;
935 }
936 
937 /* Copy the extra info we tack onto an elf_link_hash_entry.  */
938 
939 static void
940 elf_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
941 				 struct elf_link_hash_entry *dir,
942 				 struct elf_link_hash_entry *ind)
943 {
944   struct elf_x86_64_link_hash_entry *edir, *eind;
945 
946   edir = (struct elf_x86_64_link_hash_entry *) dir;
947   eind = (struct elf_x86_64_link_hash_entry *) ind;
948 
949   if (eind->dyn_relocs != NULL)
950     {
951       if (edir->dyn_relocs != NULL)
952 	{
953 	  struct elf_dyn_relocs **pp;
954 	  struct elf_dyn_relocs *p;
955 
956 	  /* Add reloc counts against the indirect sym to the direct sym
957 	     list.  Merge any entries against the same section.  */
958 	  for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
959 	    {
960 	      struct elf_dyn_relocs *q;
961 
962 	      for (q = edir->dyn_relocs; q != NULL; q = q->next)
963 		if (q->sec == p->sec)
964 		  {
965 		    q->pc_count += p->pc_count;
966 		    q->count += p->count;
967 		    *pp = p->next;
968 		    break;
969 		  }
970 	      if (q == NULL)
971 		pp = &p->next;
972 	    }
973 	  *pp = edir->dyn_relocs;
974 	}
975 
976       edir->dyn_relocs = eind->dyn_relocs;
977       eind->dyn_relocs = NULL;
978     }
979 
980   if (ind->root.type == bfd_link_hash_indirect
981       && dir->got.refcount <= 0)
982     {
983       edir->tls_type = eind->tls_type;
984       eind->tls_type = GOT_UNKNOWN;
985     }
986 
987   if (ELIMINATE_COPY_RELOCS
988       && ind->root.type != bfd_link_hash_indirect
989       && dir->dynamic_adjusted)
990     {
991       /* If called to transfer flags for a weakdef during processing
992 	 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
993 	 We clear it ourselves for ELIMINATE_COPY_RELOCS.  */
994       dir->ref_dynamic |= ind->ref_dynamic;
995       dir->ref_regular |= ind->ref_regular;
996       dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
997       dir->needs_plt |= ind->needs_plt;
998       dir->pointer_equality_needed |= ind->pointer_equality_needed;
999     }
1000   else
1001     _bfd_elf_link_hash_copy_indirect (info, dir, ind);
1002 }
1003 
1004 static bfd_boolean
1005 elf64_x86_64_elf_object_p (bfd *abfd)
1006 {
1007   /* Set the right machine number for an x86-64 elf64 file.  */
1008   bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
1009   return TRUE;
1010 }
1011 
1012 /* Return TRUE if the TLS access code sequence support transition
1013    from R_TYPE.  */
1014 
1015 static bfd_boolean
1016 elf_x86_64_check_tls_transition (bfd *abfd,
1017 				 struct bfd_link_info *info,
1018 				 asection *sec,
1019 				 bfd_byte *contents,
1020 				 Elf_Internal_Shdr *symtab_hdr,
1021 				 struct elf_link_hash_entry **sym_hashes,
1022 				 unsigned int r_type,
1023 				 const Elf_Internal_Rela *rel,
1024 				 const Elf_Internal_Rela *relend)
1025 {
1026   unsigned int val;
1027   unsigned long r_symndx;
1028   struct elf_link_hash_entry *h;
1029   bfd_vma offset;
1030   struct elf_x86_64_link_hash_table *htab;
1031 
1032   /* Get the section contents.  */
1033   if (contents == NULL)
1034     {
1035       if (elf_section_data (sec)->this_hdr.contents != NULL)
1036 	contents = elf_section_data (sec)->this_hdr.contents;
1037       else
1038 	{
1039 	  /* FIXME: How to better handle error condition?  */
1040 	  if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1041 	    return FALSE;
1042 
1043 	  /* Cache the section contents for elf_link_input_bfd.  */
1044 	  elf_section_data (sec)->this_hdr.contents = contents;
1045 	}
1046     }
1047 
1048   htab = elf_x86_64_hash_table (info);
1049   offset = rel->r_offset;
1050   switch (r_type)
1051     {
1052     case R_X86_64_TLSGD:
1053     case R_X86_64_TLSLD:
1054       if ((rel + 1) >= relend)
1055 	return FALSE;
1056 
1057       if (r_type == R_X86_64_TLSGD)
1058 	{
1059 	  /* Check transition from GD access model.  For 64bit, only
1060 		.byte 0x66; leaq foo@tlsgd(%rip), %rdi
1061 		.word 0x6666; rex64; call __tls_get_addr
1062 	     can transit to different access model.  For 32bit, only
1063 		leaq foo@tlsgd(%rip), %rdi
1064 		.word 0x6666; rex64; call __tls_get_addr
1065 	     can transit to different access model.  */
1066 
1067 	  static const unsigned char call[] = { 0x66, 0x66, 0x48, 0xe8 };
1068 	  static const unsigned char leaq[] = { 0x66, 0x48, 0x8d, 0x3d };
1069 
1070 	  if ((offset + 12) > sec->size
1071 	      || memcmp (contents + offset + 4, call, 4) != 0)
1072 	    return FALSE;
1073 
1074 	  if (ABI_64_P (abfd))
1075 	    {
1076 	      if (offset < 4
1077 		  || memcmp (contents + offset - 4, leaq, 4) != 0)
1078 		return FALSE;
1079 	    }
1080 	  else
1081 	    {
1082 	      if (offset < 3
1083 		  || memcmp (contents + offset - 3, leaq + 1, 3) != 0)
1084 		return FALSE;
1085 	    }
1086 	}
1087       else
1088 	{
1089 	  /* Check transition from LD access model.  Only
1090 		leaq foo@tlsld(%rip), %rdi;
1091 		call __tls_get_addr
1092 	     can transit to different access model.  */
1093 
1094 	  static const unsigned char lea[] = { 0x48, 0x8d, 0x3d };
1095 
1096 	  if (offset < 3 || (offset + 9) > sec->size)
1097 	    return FALSE;
1098 
1099 	  if (memcmp (contents + offset - 3, lea, 3) != 0
1100 	      || 0xe8 != *(contents + offset + 4))
1101 	    return FALSE;
1102 	}
1103 
1104       r_symndx = htab->r_sym (rel[1].r_info);
1105       if (r_symndx < symtab_hdr->sh_info)
1106 	return FALSE;
1107 
1108       h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1109       /* Use strncmp to check __tls_get_addr since __tls_get_addr
1110 	 may be versioned.  */
1111       return (h != NULL
1112 	      && h->root.root.string != NULL
1113 	      && (ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PC32
1114 		  || ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLT32)
1115 	      && (strncmp (h->root.root.string,
1116 			   "__tls_get_addr", 14) == 0));
1117 
1118     case R_X86_64_GOTTPOFF:
1119       /* Check transition from IE access model:
1120 		mov foo@gottpoff(%rip), %reg
1121 		add foo@gottpoff(%rip), %reg
1122        */
1123 
1124       /* Check REX prefix first.  */
1125       if (offset >= 3 && (offset + 4) <= sec->size)
1126 	{
1127 	  val = bfd_get_8 (abfd, contents + offset - 3);
1128 	  if (val != 0x48 && val != 0x4c)
1129 	    {
1130 	      /* X32 may have 0x44 REX prefix or no REX prefix.  */
1131 	      if (ABI_64_P (abfd))
1132 		return FALSE;
1133 	    }
1134 	}
1135       else
1136 	{
1137 	  /* X32 may not have any REX prefix.  */
1138 	  if (ABI_64_P (abfd))
1139 	    return FALSE;
1140 	  if (offset < 2 || (offset + 3) > sec->size)
1141 	    return FALSE;
1142 	}
1143 
1144       val = bfd_get_8 (abfd, contents + offset - 2);
1145       if (val != 0x8b && val != 0x03)
1146 	return FALSE;
1147 
1148       val = bfd_get_8 (abfd, contents + offset - 1);
1149       return (val & 0xc7) == 5;
1150 
1151     case R_X86_64_GOTPC32_TLSDESC:
1152       /* Check transition from GDesc access model:
1153 		leaq x@tlsdesc(%rip), %rax
1154 
1155 	 Make sure it's a leaq adding rip to a 32-bit offset
1156 	 into any register, although it's probably almost always
1157 	 going to be rax.  */
1158 
1159       if (offset < 3 || (offset + 4) > sec->size)
1160 	return FALSE;
1161 
1162       val = bfd_get_8 (abfd, contents + offset - 3);
1163       if ((val & 0xfb) != 0x48)
1164 	return FALSE;
1165 
1166       if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
1167 	return FALSE;
1168 
1169       val = bfd_get_8 (abfd, contents + offset - 1);
1170       return (val & 0xc7) == 0x05;
1171 
1172     case R_X86_64_TLSDESC_CALL:
1173       /* Check transition from GDesc access model:
1174 		call *x@tlsdesc(%rax)
1175        */
1176       if (offset + 2 <= sec->size)
1177 	{
1178 	  /* Make sure that it's a call *x@tlsdesc(%rax).  */
1179 	  static const unsigned char call[] = { 0xff, 0x10 };
1180 	  return memcmp (contents + offset, call, 2) == 0;
1181 	}
1182 
1183       return FALSE;
1184 
1185     default:
1186       abort ();
1187     }
1188 }
1189 
1190 /* Return TRUE if the TLS access transition is OK or no transition
1191    will be performed.  Update R_TYPE if there is a transition.  */
1192 
1193 static bfd_boolean
1194 elf_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
1195 			   asection *sec, bfd_byte *contents,
1196 			   Elf_Internal_Shdr *symtab_hdr,
1197 			   struct elf_link_hash_entry **sym_hashes,
1198 			   unsigned int *r_type, int tls_type,
1199 			   const Elf_Internal_Rela *rel,
1200 			   const Elf_Internal_Rela *relend,
1201 			   struct elf_link_hash_entry *h,
1202 			   unsigned long r_symndx)
1203 {
1204   unsigned int from_type = *r_type;
1205   unsigned int to_type = from_type;
1206   bfd_boolean check = TRUE;
1207 
1208   /* Skip TLS transition for functions.  */
1209   if (h != NULL
1210       && (h->type == STT_FUNC
1211 	  || h->type == STT_GNU_IFUNC))
1212     return TRUE;
1213 
1214   switch (from_type)
1215     {
1216     case R_X86_64_TLSGD:
1217     case R_X86_64_GOTPC32_TLSDESC:
1218     case R_X86_64_TLSDESC_CALL:
1219     case R_X86_64_GOTTPOFF:
1220       if (info->executable)
1221 	{
1222 	  if (h == NULL)
1223 	    to_type = R_X86_64_TPOFF32;
1224 	  else
1225 	    to_type = R_X86_64_GOTTPOFF;
1226 	}
1227 
1228       /* When we are called from elf_x86_64_relocate_section,
1229 	 CONTENTS isn't NULL and there may be additional transitions
1230 	 based on TLS_TYPE.  */
1231       if (contents != NULL)
1232 	{
1233 	  unsigned int new_to_type = to_type;
1234 
1235 	  if (info->executable
1236 	      && h != NULL
1237 	      && h->dynindx == -1
1238 	      && tls_type == GOT_TLS_IE)
1239 	    new_to_type = R_X86_64_TPOFF32;
1240 
1241 	  if (to_type == R_X86_64_TLSGD
1242 	      || to_type == R_X86_64_GOTPC32_TLSDESC
1243 	      || to_type == R_X86_64_TLSDESC_CALL)
1244 	    {
1245 	      if (tls_type == GOT_TLS_IE)
1246 		new_to_type = R_X86_64_GOTTPOFF;
1247 	    }
1248 
1249 	  /* We checked the transition before when we were called from
1250 	     elf_x86_64_check_relocs.  We only want to check the new
1251 	     transition which hasn't been checked before.  */
1252 	  check = new_to_type != to_type && from_type == to_type;
1253 	  to_type = new_to_type;
1254 	}
1255 
1256       break;
1257 
1258     case R_X86_64_TLSLD:
1259       if (info->executable)
1260 	to_type = R_X86_64_TPOFF32;
1261       break;
1262 
1263     default:
1264       return TRUE;
1265     }
1266 
1267   /* Return TRUE if there is no transition.  */
1268   if (from_type == to_type)
1269     return TRUE;
1270 
1271   /* Check if the transition can be performed.  */
1272   if (check
1273       && ! elf_x86_64_check_tls_transition (abfd, info, sec, contents,
1274 					    symtab_hdr, sym_hashes,
1275 					    from_type, rel, relend))
1276     {
1277       reloc_howto_type *from, *to;
1278       const char *name;
1279 
1280       from = elf_x86_64_rtype_to_howto (abfd, from_type);
1281       to = elf_x86_64_rtype_to_howto (abfd, to_type);
1282 
1283       if (h)
1284 	name = h->root.root.string;
1285       else
1286 	{
1287 	  struct elf_x86_64_link_hash_table *htab;
1288 
1289 	  htab = elf_x86_64_hash_table (info);
1290 	  if (htab == NULL)
1291 	    name = "*unknown*";
1292 	  else
1293 	    {
1294 	      Elf_Internal_Sym *isym;
1295 
1296 	      isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1297 					    abfd, r_symndx);
1298 	      name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1299 	    }
1300 	}
1301 
1302       (*_bfd_error_handler)
1303 	(_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1304 	   "in section `%A' failed"),
1305 	 abfd, sec, from->name, to->name, name,
1306 	 (unsigned long) rel->r_offset);
1307       bfd_set_error (bfd_error_bad_value);
1308       return FALSE;
1309     }
1310 
1311   *r_type = to_type;
1312   return TRUE;
1313 }
1314 
1315 /* Look through the relocs for a section during the first phase, and
1316    calculate needed space in the global offset table, procedure
1317    linkage table, and dynamic reloc sections.  */
1318 
1319 static bfd_boolean
1320 elf_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1321 			 asection *sec,
1322 			 const Elf_Internal_Rela *relocs)
1323 {
1324   struct elf_x86_64_link_hash_table *htab;
1325   Elf_Internal_Shdr *symtab_hdr;
1326   struct elf_link_hash_entry **sym_hashes;
1327   const Elf_Internal_Rela *rel;
1328   const Elf_Internal_Rela *rel_end;
1329   asection *sreloc;
1330 
1331   if (info->relocatable)
1332     return TRUE;
1333 
1334   BFD_ASSERT (is_x86_64_elf (abfd));
1335 
1336   htab = elf_x86_64_hash_table (info);
1337   if (htab == NULL)
1338     return FALSE;
1339 
1340   symtab_hdr = &elf_symtab_hdr (abfd);
1341   sym_hashes = elf_sym_hashes (abfd);
1342 
1343   sreloc = NULL;
1344 
1345   rel_end = relocs + sec->reloc_count;
1346   for (rel = relocs; rel < rel_end; rel++)
1347     {
1348       unsigned int r_type;
1349       unsigned long r_symndx;
1350       struct elf_link_hash_entry *h;
1351       Elf_Internal_Sym *isym;
1352       const char *name;
1353 
1354       r_symndx = htab->r_sym (rel->r_info);
1355       r_type = ELF32_R_TYPE (rel->r_info);
1356 
1357       if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1358 	{
1359 	  (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1360 				 abfd, r_symndx);
1361 	  return FALSE;
1362 	}
1363 
1364       if (r_symndx < symtab_hdr->sh_info)
1365 	{
1366 	  /* A local symbol.  */
1367 	  isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1368 					abfd, r_symndx);
1369 	  if (isym == NULL)
1370 	    return FALSE;
1371 
1372 	  /* Check relocation against local STT_GNU_IFUNC symbol.  */
1373 	  if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1374 	    {
1375 	      h = elf_x86_64_get_local_sym_hash (htab, abfd, rel,
1376 						 TRUE);
1377 	      if (h == NULL)
1378 		return FALSE;
1379 
1380 	      /* Fake a STT_GNU_IFUNC symbol.  */
1381 	      h->type = STT_GNU_IFUNC;
1382 	      h->def_regular = 1;
1383 	      h->ref_regular = 1;
1384 	      h->forced_local = 1;
1385 	      h->root.type = bfd_link_hash_defined;
1386 	    }
1387 	  else
1388 	    h = NULL;
1389 	}
1390       else
1391 	{
1392 	  isym = NULL;
1393 	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1394 	  while (h->root.type == bfd_link_hash_indirect
1395 		 || h->root.type == bfd_link_hash_warning)
1396 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
1397 	}
1398 
1399       /* Check invalid x32 relocations.  */
1400       if (!ABI_64_P (abfd))
1401 	switch (r_type)
1402 	  {
1403 	  default:
1404 	    break;
1405 
1406 	  case R_X86_64_DTPOFF64:
1407 	  case R_X86_64_TPOFF64:
1408 	  case R_X86_64_PC64:
1409 	  case R_X86_64_GOTOFF64:
1410 	  case R_X86_64_GOT64:
1411 	  case R_X86_64_GOTPCREL64:
1412 	  case R_X86_64_GOTPC64:
1413 	  case R_X86_64_GOTPLT64:
1414 	  case R_X86_64_PLTOFF64:
1415 	      {
1416 		if (h)
1417 		  name = h->root.root.string;
1418 		else
1419 		  name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1420 					   NULL);
1421 		(*_bfd_error_handler)
1422 		  (_("%B: relocation %s against symbol `%s' isn't "
1423 		     "supported in x32 mode"), abfd,
1424 		   x86_64_elf_howto_table[r_type].name, name);
1425 		bfd_set_error (bfd_error_bad_value);
1426 		return FALSE;
1427 	      }
1428 	    break;
1429 	  }
1430 
1431       if (h != NULL)
1432 	{
1433 	  /* Create the ifunc sections for static executables.  If we
1434 	     never see an indirect function symbol nor we are building
1435 	     a static executable, those sections will be empty and
1436 	     won't appear in output.  */
1437 	  switch (r_type)
1438 	    {
1439 	    default:
1440 	      break;
1441 
1442 	    case R_X86_64_32S:
1443 	    case R_X86_64_32:
1444 	    case R_X86_64_64:
1445 	    case R_X86_64_PC32:
1446 	    case R_X86_64_PC64:
1447 	    case R_X86_64_PLT32:
1448 	    case R_X86_64_GOTPCREL:
1449 	    case R_X86_64_GOTPCREL64:
1450 	      if (htab->elf.dynobj == NULL)
1451 		htab->elf.dynobj = abfd;
1452 	      if (!_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info))
1453 		return FALSE;
1454 	      break;
1455 	    }
1456 
1457 	  /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
1458 	     it here if it is defined in a non-shared object.  */
1459 	  if (h->type == STT_GNU_IFUNC
1460 	      && h->def_regular)
1461 	    {
1462 	      /* It is referenced by a non-shared object. */
1463 	      h->ref_regular = 1;
1464 	      h->needs_plt = 1;
1465 
1466 	      /* STT_GNU_IFUNC symbol must go through PLT.  */
1467 	      h->plt.refcount += 1;
1468 
1469 	      /* STT_GNU_IFUNC needs dynamic sections.  */
1470 	      if (htab->elf.dynobj == NULL)
1471 		htab->elf.dynobj = abfd;
1472 
1473 	      switch (r_type)
1474 		{
1475 		default:
1476 		  if (h->root.root.string)
1477 		    name = h->root.root.string;
1478 		  else
1479 		    name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1480 					     NULL);
1481 		  (*_bfd_error_handler)
1482 		    (_("%B: relocation %s against STT_GNU_IFUNC "
1483 		       "symbol `%s' isn't handled by %s"), abfd,
1484 		     x86_64_elf_howto_table[r_type].name,
1485 		     name, __FUNCTION__);
1486 		  bfd_set_error (bfd_error_bad_value);
1487 		  return FALSE;
1488 
1489 		case R_X86_64_32:
1490 		  if (ABI_64_P (abfd))
1491 		    goto not_pointer;
1492 		case R_X86_64_64:
1493 		  h->non_got_ref = 1;
1494 		  h->pointer_equality_needed = 1;
1495 		  if (info->shared)
1496 		    {
1497 		      /* We must copy these reloc types into the output
1498 			 file.  Create a reloc section in dynobj and
1499 			 make room for this reloc.  */
1500 		      sreloc = _bfd_elf_create_ifunc_dyn_reloc
1501 			(abfd, info, sec, sreloc,
1502 			 &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs);
1503 		      if (sreloc == NULL)
1504 			return FALSE;
1505 		    }
1506 		  break;
1507 
1508 		case R_X86_64_32S:
1509 		case R_X86_64_PC32:
1510 		case R_X86_64_PC64:
1511 not_pointer:
1512 		  h->non_got_ref = 1;
1513 		  if (r_type != R_X86_64_PC32
1514 		      && r_type != R_X86_64_PC64)
1515 		    h->pointer_equality_needed = 1;
1516 		  break;
1517 
1518 		case R_X86_64_PLT32:
1519 		  break;
1520 
1521 		case R_X86_64_GOTPCREL:
1522 		case R_X86_64_GOTPCREL64:
1523 		  h->got.refcount += 1;
1524 		  if (htab->elf.sgot == NULL
1525 		      && !_bfd_elf_create_got_section (htab->elf.dynobj,
1526 						       info))
1527 		    return FALSE;
1528 		  break;
1529 		}
1530 
1531 	      continue;
1532 	    }
1533 	}
1534 
1535       if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1536 				       symtab_hdr, sym_hashes,
1537 				       &r_type, GOT_UNKNOWN,
1538 				       rel, rel_end, h, r_symndx))
1539 	return FALSE;
1540 
1541       switch (r_type)
1542 	{
1543 	case R_X86_64_TLSLD:
1544 	  htab->tls_ld_got.refcount += 1;
1545 	  goto create_got;
1546 
1547 	case R_X86_64_TPOFF32:
1548 	  if (!info->executable && ABI_64_P (abfd))
1549 	    {
1550 	      if (h)
1551 		name = h->root.root.string;
1552 	      else
1553 		name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1554 					 NULL);
1555 	      (*_bfd_error_handler)
1556 		(_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1557 		 abfd,
1558 		 x86_64_elf_howto_table[r_type].name, name);
1559 	      bfd_set_error (bfd_error_bad_value);
1560 	      return FALSE;
1561 	    }
1562 	  break;
1563 
1564 	case R_X86_64_GOTTPOFF:
1565 	  if (!info->executable)
1566 	    info->flags |= DF_STATIC_TLS;
1567 	  /* Fall through */
1568 
1569 	case R_X86_64_GOT32:
1570 	case R_X86_64_GOTPCREL:
1571 	case R_X86_64_TLSGD:
1572 	case R_X86_64_GOT64:
1573 	case R_X86_64_GOTPCREL64:
1574 	case R_X86_64_GOTPLT64:
1575 	case R_X86_64_GOTPC32_TLSDESC:
1576 	case R_X86_64_TLSDESC_CALL:
1577 	  /* This symbol requires a global offset table entry.	*/
1578 	  {
1579 	    int tls_type, old_tls_type;
1580 
1581 	    switch (r_type)
1582 	      {
1583 	      default: tls_type = GOT_NORMAL; break;
1584 	      case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1585 	      case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1586 	      case R_X86_64_GOTPC32_TLSDESC:
1587 	      case R_X86_64_TLSDESC_CALL:
1588 		tls_type = GOT_TLS_GDESC; break;
1589 	      }
1590 
1591 	    if (h != NULL)
1592 	      {
1593 		if (r_type == R_X86_64_GOTPLT64)
1594 		  {
1595 		    /* This relocation indicates that we also need
1596 		       a PLT entry, as this is a function.  We don't need
1597 		       a PLT entry for local symbols.  */
1598 		    h->needs_plt = 1;
1599 		    h->plt.refcount += 1;
1600 		  }
1601 		h->got.refcount += 1;
1602 		old_tls_type = elf_x86_64_hash_entry (h)->tls_type;
1603 	      }
1604 	    else
1605 	      {
1606 		bfd_signed_vma *local_got_refcounts;
1607 
1608 		/* This is a global offset table entry for a local symbol.  */
1609 		local_got_refcounts = elf_local_got_refcounts (abfd);
1610 		if (local_got_refcounts == NULL)
1611 		  {
1612 		    bfd_size_type size;
1613 
1614 		    size = symtab_hdr->sh_info;
1615 		    size *= sizeof (bfd_signed_vma)
1616 		      + sizeof (bfd_vma) + sizeof (char);
1617 		    local_got_refcounts = ((bfd_signed_vma *)
1618 					   bfd_zalloc (abfd, size));
1619 		    if (local_got_refcounts == NULL)
1620 		      return FALSE;
1621 		    elf_local_got_refcounts (abfd) = local_got_refcounts;
1622 		    elf_x86_64_local_tlsdesc_gotent (abfd)
1623 		      = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1624 		    elf_x86_64_local_got_tls_type (abfd)
1625 		      = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1626 		  }
1627 		local_got_refcounts[r_symndx] += 1;
1628 		old_tls_type
1629 		  = elf_x86_64_local_got_tls_type (abfd) [r_symndx];
1630 	      }
1631 
1632 	    /* If a TLS symbol is accessed using IE at least once,
1633 	       there is no point to use dynamic model for it.  */
1634 	    if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1635 		&& (! GOT_TLS_GD_ANY_P (old_tls_type)
1636 		    || tls_type != GOT_TLS_IE))
1637 	      {
1638 		if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1639 		  tls_type = old_tls_type;
1640 		else if (GOT_TLS_GD_ANY_P (old_tls_type)
1641 			 && GOT_TLS_GD_ANY_P (tls_type))
1642 		  tls_type |= old_tls_type;
1643 		else
1644 		  {
1645 		    if (h)
1646 		      name = h->root.root.string;
1647 		    else
1648 		      name = bfd_elf_sym_name (abfd, symtab_hdr,
1649 					       isym, NULL);
1650 		    (*_bfd_error_handler)
1651 		      (_("%B: '%s' accessed both as normal and thread local symbol"),
1652 		       abfd, name);
1653 		    return FALSE;
1654 		  }
1655 	      }
1656 
1657 	    if (old_tls_type != tls_type)
1658 	      {
1659 		if (h != NULL)
1660 		  elf_x86_64_hash_entry (h)->tls_type = tls_type;
1661 		else
1662 		  elf_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1663 	      }
1664 	  }
1665 	  /* Fall through */
1666 
1667 	case R_X86_64_GOTOFF64:
1668 	case R_X86_64_GOTPC32:
1669 	case R_X86_64_GOTPC64:
1670 	create_got:
1671 	  if (htab->elf.sgot == NULL)
1672 	    {
1673 	      if (htab->elf.dynobj == NULL)
1674 		htab->elf.dynobj = abfd;
1675 	      if (!_bfd_elf_create_got_section (htab->elf.dynobj,
1676 						info))
1677 		return FALSE;
1678 	    }
1679 	  break;
1680 
1681 	case R_X86_64_PLT32:
1682 	  /* This symbol requires a procedure linkage table entry.  We
1683 	     actually build the entry in adjust_dynamic_symbol,
1684 	     because this might be a case of linking PIC code which is
1685 	     never referenced by a dynamic object, in which case we
1686 	     don't need to generate a procedure linkage table entry
1687 	     after all.	 */
1688 
1689 	  /* If this is a local symbol, we resolve it directly without
1690 	     creating a procedure linkage table entry.	*/
1691 	  if (h == NULL)
1692 	    continue;
1693 
1694 	  h->needs_plt = 1;
1695 	  h->plt.refcount += 1;
1696 	  break;
1697 
1698 	case R_X86_64_PLTOFF64:
1699 	  /* This tries to form the 'address' of a function relative
1700 	     to GOT.  For global symbols we need a PLT entry.  */
1701 	  if (h != NULL)
1702 	    {
1703 	      h->needs_plt = 1;
1704 	      h->plt.refcount += 1;
1705 	    }
1706 	  goto create_got;
1707 
1708 	case R_X86_64_32:
1709 	  if (!ABI_64_P (abfd))
1710 	    goto pointer;
1711 	case R_X86_64_8:
1712 	case R_X86_64_16:
1713 	case R_X86_64_32S:
1714 	  /* Let's help debug shared library creation.  These relocs
1715 	     cannot be used in shared libs.  Don't error out for
1716 	     sections we don't care about, such as debug sections or
1717 	     non-constant sections.  */
1718 	  if (info->shared
1719 	      && (sec->flags & SEC_ALLOC) != 0
1720 	      && (sec->flags & SEC_READONLY) != 0)
1721 	    {
1722 	      if (h)
1723 		name = h->root.root.string;
1724 	      else
1725 		name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1726 	      (*_bfd_error_handler)
1727 		(_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1728 		 abfd, x86_64_elf_howto_table[r_type].name, name);
1729 	      bfd_set_error (bfd_error_bad_value);
1730 	      return FALSE;
1731 	    }
1732 	  /* Fall through.  */
1733 
1734 	case R_X86_64_PC8:
1735 	case R_X86_64_PC16:
1736 	case R_X86_64_PC32:
1737 	case R_X86_64_PC64:
1738 	case R_X86_64_64:
1739 pointer:
1740 	  if (h != NULL && info->executable)
1741 	    {
1742 	      /* If this reloc is in a read-only section, we might
1743 		 need a copy reloc.  We can't check reliably at this
1744 		 stage whether the section is read-only, as input
1745 		 sections have not yet been mapped to output sections.
1746 		 Tentatively set the flag for now, and correct in
1747 		 adjust_dynamic_symbol.  */
1748 	      h->non_got_ref = 1;
1749 
1750 	      /* We may need a .plt entry if the function this reloc
1751 		 refers to is in a shared lib.  */
1752 	      h->plt.refcount += 1;
1753 	      if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
1754 		h->pointer_equality_needed = 1;
1755 	    }
1756 
1757 	  /* If we are creating a shared library, and this is a reloc
1758 	     against a global symbol, or a non PC relative reloc
1759 	     against a local symbol, then we need to copy the reloc
1760 	     into the shared library.  However, if we are linking with
1761 	     -Bsymbolic, we do not need to copy a reloc against a
1762 	     global symbol which is defined in an object we are
1763 	     including in the link (i.e., DEF_REGULAR is set).	At
1764 	     this point we have not seen all the input files, so it is
1765 	     possible that DEF_REGULAR is not set now but will be set
1766 	     later (it is never cleared).  In case of a weak definition,
1767 	     DEF_REGULAR may be cleared later by a strong definition in
1768 	     a shared library.  We account for that possibility below by
1769 	     storing information in the relocs_copied field of the hash
1770 	     table entry.  A similar situation occurs when creating
1771 	     shared libraries and symbol visibility changes render the
1772 	     symbol local.
1773 
1774 	     If on the other hand, we are creating an executable, we
1775 	     may need to keep relocations for symbols satisfied by a
1776 	     dynamic library if we manage to avoid copy relocs for the
1777 	     symbol.  */
1778 	  if ((info->shared
1779 	       && (sec->flags & SEC_ALLOC) != 0
1780 	       && (! IS_X86_64_PCREL_TYPE (r_type)
1781 		   || (h != NULL
1782 		       && (! SYMBOLIC_BIND (info, h)
1783 			   || h->root.type == bfd_link_hash_defweak
1784 			   || !h->def_regular))))
1785 	      || (ELIMINATE_COPY_RELOCS
1786 		  && !info->shared
1787 		  && (sec->flags & SEC_ALLOC) != 0
1788 		  && h != NULL
1789 		  && (h->root.type == bfd_link_hash_defweak
1790 		      || !h->def_regular)))
1791 	    {
1792 	      struct elf_dyn_relocs *p;
1793 	      struct elf_dyn_relocs **head;
1794 
1795 	      /* We must copy these reloc types into the output file.
1796 		 Create a reloc section in dynobj and make room for
1797 		 this reloc.  */
1798 	      if (sreloc == NULL)
1799 		{
1800 		  if (htab->elf.dynobj == NULL)
1801 		    htab->elf.dynobj = abfd;
1802 
1803 		  sreloc = _bfd_elf_make_dynamic_reloc_section
1804 		    (sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2,
1805 		     abfd, /*rela?*/ TRUE);
1806 
1807 		  if (sreloc == NULL)
1808 		    return FALSE;
1809 		}
1810 
1811 	      /* If this is a global symbol, we count the number of
1812 		 relocations we need for this symbol.  */
1813 	      if (h != NULL)
1814 		{
1815 		  head = &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs;
1816 		}
1817 	      else
1818 		{
1819 		  /* Track dynamic relocs needed for local syms too.
1820 		     We really need local syms available to do this
1821 		     easily.  Oh well.  */
1822 		  asection *s;
1823 		  void **vpp;
1824 
1825 		  isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1826 						abfd, r_symndx);
1827 		  if (isym == NULL)
1828 		    return FALSE;
1829 
1830 		  s = bfd_section_from_elf_index (abfd, isym->st_shndx);
1831 		  if (s == NULL)
1832 		    s = sec;
1833 
1834 		  /* Beware of type punned pointers vs strict aliasing
1835 		     rules.  */
1836 		  vpp = &(elf_section_data (s)->local_dynrel);
1837 		  head = (struct elf_dyn_relocs **)vpp;
1838 		}
1839 
1840 	      p = *head;
1841 	      if (p == NULL || p->sec != sec)
1842 		{
1843 		  bfd_size_type amt = sizeof *p;
1844 
1845 		  p = ((struct elf_dyn_relocs *)
1846 		       bfd_alloc (htab->elf.dynobj, amt));
1847 		  if (p == NULL)
1848 		    return FALSE;
1849 		  p->next = *head;
1850 		  *head = p;
1851 		  p->sec = sec;
1852 		  p->count = 0;
1853 		  p->pc_count = 0;
1854 		}
1855 
1856 	      p->count += 1;
1857 	      if (IS_X86_64_PCREL_TYPE (r_type))
1858 		p->pc_count += 1;
1859 	    }
1860 	  break;
1861 
1862 	  /* This relocation describes the C++ object vtable hierarchy.
1863 	     Reconstruct it for later use during GC.  */
1864 	case R_X86_64_GNU_VTINHERIT:
1865 	  if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1866 	    return FALSE;
1867 	  break;
1868 
1869 	  /* This relocation describes which C++ vtable entries are actually
1870 	     used.  Record for later use during GC.  */
1871 	case R_X86_64_GNU_VTENTRY:
1872 	  BFD_ASSERT (h != NULL);
1873 	  if (h != NULL
1874 	      && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1875 	    return FALSE;
1876 	  break;
1877 
1878 	default:
1879 	  break;
1880 	}
1881     }
1882 
1883   return TRUE;
1884 }
1885 
1886 /* Return the section that should be marked against GC for a given
1887    relocation.	*/
1888 
1889 static asection *
1890 elf_x86_64_gc_mark_hook (asection *sec,
1891 			 struct bfd_link_info *info,
1892 			 Elf_Internal_Rela *rel,
1893 			 struct elf_link_hash_entry *h,
1894 			 Elf_Internal_Sym *sym)
1895 {
1896   if (h != NULL)
1897     switch (ELF32_R_TYPE (rel->r_info))
1898       {
1899       case R_X86_64_GNU_VTINHERIT:
1900       case R_X86_64_GNU_VTENTRY:
1901 	return NULL;
1902       }
1903 
1904   return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1905 }
1906 
1907 /* Update the got entry reference counts for the section being removed.	 */
1908 
1909 static bfd_boolean
1910 elf_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1911 			  asection *sec,
1912 			  const Elf_Internal_Rela *relocs)
1913 {
1914   struct elf_x86_64_link_hash_table *htab;
1915   Elf_Internal_Shdr *symtab_hdr;
1916   struct elf_link_hash_entry **sym_hashes;
1917   bfd_signed_vma *local_got_refcounts;
1918   const Elf_Internal_Rela *rel, *relend;
1919 
1920   if (info->relocatable)
1921     return TRUE;
1922 
1923   htab = elf_x86_64_hash_table (info);
1924   if (htab == NULL)
1925     return FALSE;
1926 
1927   elf_section_data (sec)->local_dynrel = NULL;
1928 
1929   symtab_hdr = &elf_symtab_hdr (abfd);
1930   sym_hashes = elf_sym_hashes (abfd);
1931   local_got_refcounts = elf_local_got_refcounts (abfd);
1932 
1933   htab = elf_x86_64_hash_table (info);
1934   relend = relocs + sec->reloc_count;
1935   for (rel = relocs; rel < relend; rel++)
1936     {
1937       unsigned long r_symndx;
1938       unsigned int r_type;
1939       struct elf_link_hash_entry *h = NULL;
1940 
1941       r_symndx = htab->r_sym (rel->r_info);
1942       if (r_symndx >= symtab_hdr->sh_info)
1943 	{
1944 	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1945 	  while (h->root.type == bfd_link_hash_indirect
1946 		 || h->root.type == bfd_link_hash_warning)
1947 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
1948 	}
1949       else
1950 	{
1951 	  /* A local symbol.  */
1952 	  Elf_Internal_Sym *isym;
1953 
1954 	  isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1955 					abfd, r_symndx);
1956 
1957 	  /* Check relocation against local STT_GNU_IFUNC symbol.  */
1958 	  if (isym != NULL
1959 	      && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1960 	    {
1961 	      h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, FALSE);
1962 	      if (h == NULL)
1963 		abort ();
1964 	    }
1965 	}
1966 
1967       if (h)
1968 	{
1969 	  struct elf_x86_64_link_hash_entry *eh;
1970 	  struct elf_dyn_relocs **pp;
1971 	  struct elf_dyn_relocs *p;
1972 
1973 	  eh = (struct elf_x86_64_link_hash_entry *) h;
1974 
1975 	  for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1976 	    if (p->sec == sec)
1977 	      {
1978 		/* Everything must go for SEC.  */
1979 		*pp = p->next;
1980 		break;
1981 	      }
1982 	}
1983 
1984       r_type = ELF32_R_TYPE (rel->r_info);
1985       if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1986 				       symtab_hdr, sym_hashes,
1987 				       &r_type, GOT_UNKNOWN,
1988 				       rel, relend, h, r_symndx))
1989 	return FALSE;
1990 
1991       switch (r_type)
1992 	{
1993 	case R_X86_64_TLSLD:
1994 	  if (htab->tls_ld_got.refcount > 0)
1995 	    htab->tls_ld_got.refcount -= 1;
1996 	  break;
1997 
1998 	case R_X86_64_TLSGD:
1999 	case R_X86_64_GOTPC32_TLSDESC:
2000 	case R_X86_64_TLSDESC_CALL:
2001 	case R_X86_64_GOTTPOFF:
2002 	case R_X86_64_GOT32:
2003 	case R_X86_64_GOTPCREL:
2004 	case R_X86_64_GOT64:
2005 	case R_X86_64_GOTPCREL64:
2006 	case R_X86_64_GOTPLT64:
2007 	  if (h != NULL)
2008 	    {
2009 	      if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
2010 	        h->plt.refcount -= 1;
2011 	      if (h->got.refcount > 0)
2012 		h->got.refcount -= 1;
2013 	      if (h->type == STT_GNU_IFUNC)
2014 		{
2015 		  if (h->plt.refcount > 0)
2016 		    h->plt.refcount -= 1;
2017 		}
2018 	    }
2019 	  else if (local_got_refcounts != NULL)
2020 	    {
2021 	      if (local_got_refcounts[r_symndx] > 0)
2022 		local_got_refcounts[r_symndx] -= 1;
2023 	    }
2024 	  break;
2025 
2026 	case R_X86_64_8:
2027 	case R_X86_64_16:
2028 	case R_X86_64_32:
2029 	case R_X86_64_64:
2030 	case R_X86_64_32S:
2031 	case R_X86_64_PC8:
2032 	case R_X86_64_PC16:
2033 	case R_X86_64_PC32:
2034 	case R_X86_64_PC64:
2035 	  if (info->shared
2036 	      && (h == NULL || h->type != STT_GNU_IFUNC))
2037 	    break;
2038 	  /* Fall thru */
2039 
2040 	case R_X86_64_PLT32:
2041 	case R_X86_64_PLTOFF64:
2042 	  if (h != NULL)
2043 	    {
2044 	      if (h->plt.refcount > 0)
2045 		h->plt.refcount -= 1;
2046 	    }
2047 	  break;
2048 
2049 	default:
2050 	  break;
2051 	}
2052     }
2053 
2054   return TRUE;
2055 }
2056 
2057 /* Adjust a symbol defined by a dynamic object and referenced by a
2058    regular object.  The current definition is in some section of the
2059    dynamic object, but we're not including those sections.  We have to
2060    change the definition to something the rest of the link can
2061    understand.	*/
2062 
2063 static bfd_boolean
2064 elf_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
2065 				  struct elf_link_hash_entry *h)
2066 {
2067   struct elf_x86_64_link_hash_table *htab;
2068   asection *s;
2069 
2070   /* STT_GNU_IFUNC symbol must go through PLT. */
2071   if (h->type == STT_GNU_IFUNC)
2072     {
2073       if (h->plt.refcount <= 0)
2074 	{
2075 	  h->plt.offset = (bfd_vma) -1;
2076 	  h->needs_plt = 0;
2077 	}
2078       return TRUE;
2079     }
2080 
2081   /* If this is a function, put it in the procedure linkage table.  We
2082      will fill in the contents of the procedure linkage table later,
2083      when we know the address of the .got section.  */
2084   if (h->type == STT_FUNC
2085       || h->needs_plt)
2086     {
2087       if (h->plt.refcount <= 0
2088 	  || SYMBOL_CALLS_LOCAL (info, h)
2089 	  || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2090 	      && h->root.type == bfd_link_hash_undefweak))
2091 	{
2092 	  /* This case can occur if we saw a PLT32 reloc in an input
2093 	     file, but the symbol was never referred to by a dynamic
2094 	     object, or if all references were garbage collected.  In
2095 	     such a case, we don't actually need to build a procedure
2096 	     linkage table, and we can just do a PC32 reloc instead.  */
2097 	  h->plt.offset = (bfd_vma) -1;
2098 	  h->needs_plt = 0;
2099 	}
2100 
2101       return TRUE;
2102     }
2103   else
2104     /* It's possible that we incorrectly decided a .plt reloc was
2105        needed for an R_X86_64_PC32 reloc to a non-function sym in
2106        check_relocs.  We can't decide accurately between function and
2107        non-function syms in check-relocs;  Objects loaded later in
2108        the link may change h->type.  So fix it now.  */
2109     h->plt.offset = (bfd_vma) -1;
2110 
2111   /* If this is a weak symbol, and there is a real definition, the
2112      processor independent code will have arranged for us to see the
2113      real definition first, and we can just use the same value.	 */
2114   if (h->u.weakdef != NULL)
2115     {
2116       BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2117 		  || h->u.weakdef->root.type == bfd_link_hash_defweak);
2118       h->root.u.def.section = h->u.weakdef->root.u.def.section;
2119       h->root.u.def.value = h->u.weakdef->root.u.def.value;
2120       if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
2121 	h->non_got_ref = h->u.weakdef->non_got_ref;
2122       return TRUE;
2123     }
2124 
2125   /* This is a reference to a symbol defined by a dynamic object which
2126      is not a function.	 */
2127 
2128   /* If we are creating a shared library, we must presume that the
2129      only references to the symbol are via the global offset table.
2130      For such cases we need not do anything here; the relocations will
2131      be handled correctly by relocate_section.	*/
2132   if (info->shared)
2133     return TRUE;
2134 
2135   /* If there are no references to this symbol that do not use the
2136      GOT, we don't need to generate a copy reloc.  */
2137   if (!h->non_got_ref)
2138     return TRUE;
2139 
2140   /* If -z nocopyreloc was given, we won't generate them either.  */
2141   if (info->nocopyreloc)
2142     {
2143       h->non_got_ref = 0;
2144       return TRUE;
2145     }
2146 
2147   if (ELIMINATE_COPY_RELOCS)
2148     {
2149       struct elf_x86_64_link_hash_entry * eh;
2150       struct elf_dyn_relocs *p;
2151 
2152       eh = (struct elf_x86_64_link_hash_entry *) h;
2153       for (p = eh->dyn_relocs; p != NULL; p = p->next)
2154 	{
2155 	  s = p->sec->output_section;
2156 	  if (s != NULL && (s->flags & SEC_READONLY) != 0)
2157 	    break;
2158 	}
2159 
2160       /* If we didn't find any dynamic relocs in read-only sections, then
2161 	 we'll be keeping the dynamic relocs and avoiding the copy reloc.  */
2162       if (p == NULL)
2163 	{
2164 	  h->non_got_ref = 0;
2165 	  return TRUE;
2166 	}
2167     }
2168 
2169   if (h->size == 0)
2170     {
2171       (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
2172 			     h->root.root.string);
2173       return TRUE;
2174     }
2175 
2176   /* We must allocate the symbol in our .dynbss section, which will
2177      become part of the .bss section of the executable.	 There will be
2178      an entry for this symbol in the .dynsym section.  The dynamic
2179      object will contain position independent code, so all references
2180      from the dynamic object to this symbol will go through the global
2181      offset table.  The dynamic linker will use the .dynsym entry to
2182      determine the address it must put in the global offset table, so
2183      both the dynamic object and the regular object will refer to the
2184      same memory location for the variable.  */
2185 
2186   htab = elf_x86_64_hash_table (info);
2187   if (htab == NULL)
2188     return FALSE;
2189 
2190   /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
2191      to copy the initial value out of the dynamic object and into the
2192      runtime process image.  */
2193   if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
2194     {
2195       const struct elf_backend_data *bed;
2196       bed = get_elf_backend_data (info->output_bfd);
2197       htab->srelbss->size += bed->s->sizeof_rela;
2198       h->needs_copy = 1;
2199     }
2200 
2201   s = htab->sdynbss;
2202 
2203   return _bfd_elf_adjust_dynamic_copy (h, s);
2204 }
2205 
2206 /* Allocate space in .plt, .got and associated reloc sections for
2207    dynamic relocs.  */
2208 
2209 static bfd_boolean
2210 elf_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
2211 {
2212   struct bfd_link_info *info;
2213   struct elf_x86_64_link_hash_table *htab;
2214   struct elf_x86_64_link_hash_entry *eh;
2215   struct elf_dyn_relocs *p;
2216   const struct elf_backend_data *bed;
2217 
2218   if (h->root.type == bfd_link_hash_indirect)
2219     return TRUE;
2220 
2221   eh = (struct elf_x86_64_link_hash_entry *) h;
2222 
2223   info = (struct bfd_link_info *) inf;
2224   htab = elf_x86_64_hash_table (info);
2225   if (htab == NULL)
2226     return FALSE;
2227   bed = get_elf_backend_data (info->output_bfd);
2228 
2229   /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
2230      here if it is defined and referenced in a non-shared object.  */
2231   if (h->type == STT_GNU_IFUNC
2232       && h->def_regular)
2233     return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
2234 					       &eh->dyn_relocs,
2235 					       PLT_ENTRY_SIZE,
2236 					       GOT_ENTRY_SIZE);
2237   else if (htab->elf.dynamic_sections_created
2238 	   && h->plt.refcount > 0)
2239     {
2240       /* Make sure this symbol is output as a dynamic symbol.
2241 	 Undefined weak syms won't yet be marked as dynamic.  */
2242       if (h->dynindx == -1
2243 	  && !h->forced_local)
2244 	{
2245 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
2246 	    return FALSE;
2247 	}
2248 
2249       if (info->shared
2250 	  || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
2251 	{
2252 	  asection *s = htab->elf.splt;
2253 
2254 	  /* If this is the first .plt entry, make room for the special
2255 	     first entry.  */
2256 	  if (s->size == 0)
2257 	    s->size += PLT_ENTRY_SIZE;
2258 
2259 	  h->plt.offset = s->size;
2260 
2261 	  /* If this symbol is not defined in a regular file, and we are
2262 	     not generating a shared library, then set the symbol to this
2263 	     location in the .plt.  This is required to make function
2264 	     pointers compare as equal between the normal executable and
2265 	     the shared library.  */
2266 	  if (! info->shared
2267 	      && !h->def_regular)
2268 	    {
2269 	      h->root.u.def.section = s;
2270 	      h->root.u.def.value = h->plt.offset;
2271 	    }
2272 
2273 	  /* Make room for this entry.  */
2274 	  s->size += PLT_ENTRY_SIZE;
2275 
2276 	  /* We also need to make an entry in the .got.plt section, which
2277 	     will be placed in the .got section by the linker script.  */
2278 	  htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
2279 
2280 	  /* We also need to make an entry in the .rela.plt section.  */
2281 	  htab->elf.srelplt->size += bed->s->sizeof_rela;
2282 	  htab->elf.srelplt->reloc_count++;
2283 	}
2284       else
2285 	{
2286 	  h->plt.offset = (bfd_vma) -1;
2287 	  h->needs_plt = 0;
2288 	}
2289     }
2290   else
2291     {
2292       h->plt.offset = (bfd_vma) -1;
2293       h->needs_plt = 0;
2294     }
2295 
2296   eh->tlsdesc_got = (bfd_vma) -1;
2297 
2298   /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
2299      make it a R_X86_64_TPOFF32 requiring no GOT entry.  */
2300   if (h->got.refcount > 0
2301       && info->executable
2302       && h->dynindx == -1
2303       && elf_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
2304     {
2305       h->got.offset = (bfd_vma) -1;
2306     }
2307   else if (h->got.refcount > 0)
2308     {
2309       asection *s;
2310       bfd_boolean dyn;
2311       int tls_type = elf_x86_64_hash_entry (h)->tls_type;
2312 
2313       /* Make sure this symbol is output as a dynamic symbol.
2314 	 Undefined weak syms won't yet be marked as dynamic.  */
2315       if (h->dynindx == -1
2316 	  && !h->forced_local)
2317 	{
2318 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
2319 	    return FALSE;
2320 	}
2321 
2322       if (GOT_TLS_GDESC_P (tls_type))
2323 	{
2324 	  eh->tlsdesc_got = htab->elf.sgotplt->size
2325 	    - elf_x86_64_compute_jump_table_size (htab);
2326 	  htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2327 	  h->got.offset = (bfd_vma) -2;
2328 	}
2329       if (! GOT_TLS_GDESC_P (tls_type)
2330 	  || GOT_TLS_GD_P (tls_type))
2331 	{
2332 	  s = htab->elf.sgot;
2333 	  h->got.offset = s->size;
2334 	  s->size += GOT_ENTRY_SIZE;
2335 	  if (GOT_TLS_GD_P (tls_type))
2336 	    s->size += GOT_ENTRY_SIZE;
2337 	}
2338       dyn = htab->elf.dynamic_sections_created;
2339       /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
2340 	 and two if global.
2341 	 R_X86_64_GOTTPOFF needs one dynamic relocation.  */
2342       if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
2343 	  || tls_type == GOT_TLS_IE)
2344 	htab->elf.srelgot->size += bed->s->sizeof_rela;
2345       else if (GOT_TLS_GD_P (tls_type))
2346 	htab->elf.srelgot->size += 2 * bed->s->sizeof_rela;
2347       else if (! GOT_TLS_GDESC_P (tls_type)
2348 	       && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2349 		   || h->root.type != bfd_link_hash_undefweak)
2350 	       && (info->shared
2351 		   || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2352 	htab->elf.srelgot->size += bed->s->sizeof_rela;
2353       if (GOT_TLS_GDESC_P (tls_type))
2354 	{
2355 	  htab->elf.srelplt->size += bed->s->sizeof_rela;
2356 	  htab->tlsdesc_plt = (bfd_vma) -1;
2357 	}
2358     }
2359   else
2360     h->got.offset = (bfd_vma) -1;
2361 
2362   if (eh->dyn_relocs == NULL)
2363     return TRUE;
2364 
2365   /* In the shared -Bsymbolic case, discard space allocated for
2366      dynamic pc-relative relocs against symbols which turn out to be
2367      defined in regular objects.  For the normal shared case, discard
2368      space for pc-relative relocs that have become local due to symbol
2369      visibility changes.  */
2370 
2371   if (info->shared)
2372     {
2373       /* Relocs that use pc_count are those that appear on a call
2374 	 insn, or certain REL relocs that can generated via assembly.
2375 	 We want calls to protected symbols to resolve directly to the
2376 	 function rather than going via the plt.  If people want
2377 	 function pointer comparisons to work as expected then they
2378 	 should avoid writing weird assembly.  */
2379       if (SYMBOL_CALLS_LOCAL (info, h))
2380 	{
2381 	  struct elf_dyn_relocs **pp;
2382 
2383 	  for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2384 	    {
2385 	      p->count -= p->pc_count;
2386 	      p->pc_count = 0;
2387 	      if (p->count == 0)
2388 		*pp = p->next;
2389 	      else
2390 		pp = &p->next;
2391 	    }
2392 	}
2393 
2394       /* Also discard relocs on undefined weak syms with non-default
2395 	 visibility.  */
2396       if (eh->dyn_relocs != NULL
2397 	  && h->root.type == bfd_link_hash_undefweak)
2398 	{
2399 	  if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2400 	    eh->dyn_relocs = NULL;
2401 
2402 	  /* Make sure undefined weak symbols are output as a dynamic
2403 	     symbol in PIEs.  */
2404 	  else if (h->dynindx == -1
2405 		   && ! h->forced_local
2406 		   && ! bfd_elf_link_record_dynamic_symbol (info, h))
2407 	    return FALSE;
2408 	}
2409 
2410     }
2411   else if (ELIMINATE_COPY_RELOCS)
2412     {
2413       /* For the non-shared case, discard space for relocs against
2414 	 symbols which turn out to need copy relocs or are not
2415 	 dynamic.  */
2416 
2417       if (!h->non_got_ref
2418 	  && ((h->def_dynamic
2419 	       && !h->def_regular)
2420 	      || (htab->elf.dynamic_sections_created
2421 		  && (h->root.type == bfd_link_hash_undefweak
2422 		      || h->root.type == bfd_link_hash_undefined))))
2423 	{
2424 	  /* Make sure this symbol is output as a dynamic symbol.
2425 	     Undefined weak syms won't yet be marked as dynamic.  */
2426 	  if (h->dynindx == -1
2427 	      && ! h->forced_local
2428 	      && ! bfd_elf_link_record_dynamic_symbol (info, h))
2429 	    return FALSE;
2430 
2431 	  /* If that succeeded, we know we'll be keeping all the
2432 	     relocs.  */
2433 	  if (h->dynindx != -1)
2434 	    goto keep;
2435 	}
2436 
2437       eh->dyn_relocs = NULL;
2438 
2439     keep: ;
2440     }
2441 
2442   /* Finally, allocate space.  */
2443   for (p = eh->dyn_relocs; p != NULL; p = p->next)
2444     {
2445       asection * sreloc;
2446 
2447       sreloc = elf_section_data (p->sec)->sreloc;
2448 
2449       BFD_ASSERT (sreloc != NULL);
2450 
2451       sreloc->size += p->count * bed->s->sizeof_rela;
2452     }
2453 
2454   return TRUE;
2455 }
2456 
2457 /* Allocate space in .plt, .got and associated reloc sections for
2458    local dynamic relocs.  */
2459 
2460 static bfd_boolean
2461 elf_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2462 {
2463   struct elf_link_hash_entry *h
2464     = (struct elf_link_hash_entry *) *slot;
2465 
2466   if (h->type != STT_GNU_IFUNC
2467       || !h->def_regular
2468       || !h->ref_regular
2469       || !h->forced_local
2470       || h->root.type != bfd_link_hash_defined)
2471     abort ();
2472 
2473   return elf_x86_64_allocate_dynrelocs (h, inf);
2474 }
2475 
2476 /* Find any dynamic relocs that apply to read-only sections.  */
2477 
2478 static bfd_boolean
2479 elf_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h,
2480 			       void * inf)
2481 {
2482   struct elf_x86_64_link_hash_entry *eh;
2483   struct elf_dyn_relocs *p;
2484 
2485   /* Skip local IFUNC symbols. */
2486   if (h->forced_local && h->type == STT_GNU_IFUNC)
2487     return TRUE;
2488 
2489   eh = (struct elf_x86_64_link_hash_entry *) h;
2490   for (p = eh->dyn_relocs; p != NULL; p = p->next)
2491     {
2492       asection *s = p->sec->output_section;
2493 
2494       if (s != NULL && (s->flags & SEC_READONLY) != 0)
2495 	{
2496 	  struct bfd_link_info *info = (struct bfd_link_info *) inf;
2497 
2498 	  info->flags |= DF_TEXTREL;
2499 
2500 	  if (info->warn_shared_textrel && info->shared)
2501 	    info->callbacks->einfo (_("%P: %B: warning: relocation against `%s' in readonly section `%A'.\n"),
2502 				    p->sec->owner, h->root.root.string,
2503 				    p->sec);
2504 
2505 	  /* Not an error, just cut short the traversal.  */
2506 	  return FALSE;
2507 	}
2508     }
2509   return TRUE;
2510 }
2511 
2512 /* Set the sizes of the dynamic sections.  */
2513 
2514 static bfd_boolean
2515 elf_x86_64_size_dynamic_sections (bfd *output_bfd,
2516 				  struct bfd_link_info *info)
2517 {
2518   struct elf_x86_64_link_hash_table *htab;
2519   bfd *dynobj;
2520   asection *s;
2521   bfd_boolean relocs;
2522   bfd *ibfd;
2523   const struct elf_backend_data *bed;
2524 
2525   htab = elf_x86_64_hash_table (info);
2526   if (htab == NULL)
2527     return FALSE;
2528   bed = get_elf_backend_data (output_bfd);
2529 
2530   dynobj = htab->elf.dynobj;
2531   if (dynobj == NULL)
2532     abort ();
2533 
2534   if (htab->elf.dynamic_sections_created)
2535     {
2536       /* Set the contents of the .interp section to the interpreter.  */
2537       if (info->executable)
2538 	{
2539 	  s = bfd_get_section_by_name (dynobj, ".interp");
2540 	  if (s == NULL)
2541 	    abort ();
2542 	  s->size = htab->dynamic_interpreter_size;
2543 	  s->contents = (unsigned char *) htab->dynamic_interpreter;
2544 	}
2545     }
2546 
2547   /* Set up .got offsets for local syms, and space for local dynamic
2548      relocs.  */
2549   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2550     {
2551       bfd_signed_vma *local_got;
2552       bfd_signed_vma *end_local_got;
2553       char *local_tls_type;
2554       bfd_vma *local_tlsdesc_gotent;
2555       bfd_size_type locsymcount;
2556       Elf_Internal_Shdr *symtab_hdr;
2557       asection *srel;
2558 
2559       if (! is_x86_64_elf (ibfd))
2560 	continue;
2561 
2562       for (s = ibfd->sections; s != NULL; s = s->next)
2563 	{
2564 	  struct elf_dyn_relocs *p;
2565 
2566 	  for (p = (struct elf_dyn_relocs *)
2567 		    (elf_section_data (s)->local_dynrel);
2568 	       p != NULL;
2569 	       p = p->next)
2570 	    {
2571 	      if (!bfd_is_abs_section (p->sec)
2572 		  && bfd_is_abs_section (p->sec->output_section))
2573 		{
2574 		  /* Input section has been discarded, either because
2575 		     it is a copy of a linkonce section or due to
2576 		     linker script /DISCARD/, so we'll be discarding
2577 		     the relocs too.  */
2578 		}
2579 	      else if (p->count != 0)
2580 		{
2581 		  srel = elf_section_data (p->sec)->sreloc;
2582 		  srel->size += p->count * bed->s->sizeof_rela;
2583 		  if ((p->sec->output_section->flags & SEC_READONLY) != 0
2584 		      && (info->flags & DF_TEXTREL) == 0)
2585 		    {
2586 		      info->flags |= DF_TEXTREL;
2587 		      if (info->warn_shared_textrel && info->shared)
2588 			info->callbacks->einfo (_("%P: %B: warning: relocation in readonly section `%A'.\n"),
2589 						p->sec->owner, p->sec);
2590 		    }
2591 		}
2592 	    }
2593 	}
2594 
2595       local_got = elf_local_got_refcounts (ibfd);
2596       if (!local_got)
2597 	continue;
2598 
2599       symtab_hdr = &elf_symtab_hdr (ibfd);
2600       locsymcount = symtab_hdr->sh_info;
2601       end_local_got = local_got + locsymcount;
2602       local_tls_type = elf_x86_64_local_got_tls_type (ibfd);
2603       local_tlsdesc_gotent = elf_x86_64_local_tlsdesc_gotent (ibfd);
2604       s = htab->elf.sgot;
2605       srel = htab->elf.srelgot;
2606       for (; local_got < end_local_got;
2607 	   ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
2608 	{
2609 	  *local_tlsdesc_gotent = (bfd_vma) -1;
2610 	  if (*local_got > 0)
2611 	    {
2612 	      if (GOT_TLS_GDESC_P (*local_tls_type))
2613 		{
2614 		  *local_tlsdesc_gotent = htab->elf.sgotplt->size
2615 		    - elf_x86_64_compute_jump_table_size (htab);
2616 		  htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2617 		  *local_got = (bfd_vma) -2;
2618 		}
2619 	      if (! GOT_TLS_GDESC_P (*local_tls_type)
2620 		  || GOT_TLS_GD_P (*local_tls_type))
2621 		{
2622 		  *local_got = s->size;
2623 		  s->size += GOT_ENTRY_SIZE;
2624 		  if (GOT_TLS_GD_P (*local_tls_type))
2625 		    s->size += GOT_ENTRY_SIZE;
2626 		}
2627 	      if (info->shared
2628 		  || GOT_TLS_GD_ANY_P (*local_tls_type)
2629 		  || *local_tls_type == GOT_TLS_IE)
2630 		{
2631 		  if (GOT_TLS_GDESC_P (*local_tls_type))
2632 		    {
2633 		      htab->elf.srelplt->size
2634 			+= bed->s->sizeof_rela;
2635 		      htab->tlsdesc_plt = (bfd_vma) -1;
2636 		    }
2637 		  if (! GOT_TLS_GDESC_P (*local_tls_type)
2638 		      || GOT_TLS_GD_P (*local_tls_type))
2639 		    srel->size += bed->s->sizeof_rela;
2640 		}
2641 	    }
2642 	  else
2643 	    *local_got = (bfd_vma) -1;
2644 	}
2645     }
2646 
2647   if (htab->tls_ld_got.refcount > 0)
2648     {
2649       /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2650 	 relocs.  */
2651       htab->tls_ld_got.offset = htab->elf.sgot->size;
2652       htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
2653       htab->elf.srelgot->size += bed->s->sizeof_rela;
2654     }
2655   else
2656     htab->tls_ld_got.offset = -1;
2657 
2658   /* Allocate global sym .plt and .got entries, and space for global
2659      sym dynamic relocs.  */
2660   elf_link_hash_traverse (&htab->elf, elf_x86_64_allocate_dynrelocs,
2661 			  info);
2662 
2663   /* Allocate .plt and .got entries, and space for local symbols.  */
2664   htab_traverse (htab->loc_hash_table,
2665 		 elf_x86_64_allocate_local_dynrelocs,
2666 		 info);
2667 
2668   /* For every jump slot reserved in the sgotplt, reloc_count is
2669      incremented.  However, when we reserve space for TLS descriptors,
2670      it's not incremented, so in order to compute the space reserved
2671      for them, it suffices to multiply the reloc count by the jump
2672      slot size.
2673 
2674      PR ld/13302: We start next_irelative_index at the end of .rela.plt
2675      so that R_X86_64_IRELATIVE entries come last.  */
2676   if (htab->elf.srelplt)
2677     {
2678       htab->sgotplt_jump_table_size
2679 	= elf_x86_64_compute_jump_table_size (htab);
2680       htab->next_irelative_index = htab->elf.srelplt->reloc_count - 1;
2681     }
2682   else if (htab->elf.irelplt)
2683     htab->next_irelative_index = htab->elf.irelplt->reloc_count - 1;
2684 
2685   if (htab->tlsdesc_plt)
2686     {
2687       /* If we're not using lazy TLS relocations, don't generate the
2688 	 PLT and GOT entries they require.  */
2689       if ((info->flags & DF_BIND_NOW))
2690 	htab->tlsdesc_plt = 0;
2691       else
2692 	{
2693 	  htab->tlsdesc_got = htab->elf.sgot->size;
2694 	  htab->elf.sgot->size += GOT_ENTRY_SIZE;
2695 	  /* Reserve room for the initial entry.
2696 	     FIXME: we could probably do away with it in this case.  */
2697 	  if (htab->elf.splt->size == 0)
2698 	    htab->elf.splt->size += PLT_ENTRY_SIZE;
2699 	  htab->tlsdesc_plt = htab->elf.splt->size;
2700 	  htab->elf.splt->size += PLT_ENTRY_SIZE;
2701 	}
2702     }
2703 
2704   if (htab->elf.sgotplt)
2705     {
2706       struct elf_link_hash_entry *got;
2707       got = elf_link_hash_lookup (elf_hash_table (info),
2708 				  "_GLOBAL_OFFSET_TABLE_",
2709 				  FALSE, FALSE, FALSE);
2710 
2711       /* Don't allocate .got.plt section if there are no GOT nor PLT
2712          entries and there is no refeence to _GLOBAL_OFFSET_TABLE_.  */
2713       if ((got == NULL
2714 	   || !got->ref_regular_nonweak)
2715 	  && (htab->elf.sgotplt->size
2716 	      == get_elf_backend_data (output_bfd)->got_header_size)
2717 	  && (htab->elf.splt == NULL
2718 	      || htab->elf.splt->size == 0)
2719 	  && (htab->elf.sgot == NULL
2720 	      || htab->elf.sgot->size == 0)
2721 	  && (htab->elf.iplt == NULL
2722 	      || htab->elf.iplt->size == 0)
2723 	  && (htab->elf.igotplt == NULL
2724 	      || htab->elf.igotplt->size == 0))
2725 	htab->elf.sgotplt->size = 0;
2726     }
2727 
2728   /* We now have determined the sizes of the various dynamic sections.
2729      Allocate memory for them.  */
2730   relocs = FALSE;
2731   for (s = dynobj->sections; s != NULL; s = s->next)
2732     {
2733       if ((s->flags & SEC_LINKER_CREATED) == 0)
2734 	continue;
2735 
2736       if (s == htab->elf.splt
2737 	  || s == htab->elf.sgot
2738 	  || s == htab->elf.sgotplt
2739 	  || s == htab->elf.iplt
2740 	  || s == htab->elf.igotplt
2741 	  || s == htab->sdynbss)
2742 	{
2743 	  /* Strip this section if we don't need it; see the
2744 	     comment below.  */
2745 	}
2746       else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
2747 	{
2748 	  if (s->size != 0 && s != htab->elf.srelplt)
2749 	    relocs = TRUE;
2750 
2751 	  /* We use the reloc_count field as a counter if we need
2752 	     to copy relocs into the output file.  */
2753 	  if (s != htab->elf.srelplt)
2754 	    s->reloc_count = 0;
2755 	}
2756       else
2757 	{
2758 	  /* It's not one of our sections, so don't allocate space.  */
2759 	  continue;
2760 	}
2761 
2762       if (s->size == 0)
2763 	{
2764 	  /* If we don't need this section, strip it from the
2765 	     output file.  This is mostly to handle .rela.bss and
2766 	     .rela.plt.  We must create both sections in
2767 	     create_dynamic_sections, because they must be created
2768 	     before the linker maps input sections to output
2769 	     sections.  The linker does that before
2770 	     adjust_dynamic_symbol is called, and it is that
2771 	     function which decides whether anything needs to go
2772 	     into these sections.  */
2773 
2774 	  s->flags |= SEC_EXCLUDE;
2775 	  continue;
2776 	}
2777 
2778       if ((s->flags & SEC_HAS_CONTENTS) == 0)
2779 	continue;
2780 
2781       /* Allocate memory for the section contents.  We use bfd_zalloc
2782 	 here in case unused entries are not reclaimed before the
2783 	 section's contents are written out.  This should not happen,
2784 	 but this way if it does, we get a R_X86_64_NONE reloc instead
2785 	 of garbage.  */
2786       s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
2787       if (s->contents == NULL)
2788 	return FALSE;
2789     }
2790 
2791   if (htab->plt_eh_frame != NULL
2792       && htab->elf.splt != NULL
2793       && htab->elf.splt->size != 0
2794       && (htab->elf.splt->flags & SEC_EXCLUDE) == 0)
2795     bfd_put_32 (dynobj, htab->elf.splt->size,
2796 		htab->plt_eh_frame->contents + PLT_FDE_LEN_OFFSET);
2797 
2798   if (htab->elf.dynamic_sections_created)
2799     {
2800       /* Add some entries to the .dynamic section.  We fill in the
2801 	 values later, in elf_x86_64_finish_dynamic_sections, but we
2802 	 must add the entries now so that we get the correct size for
2803 	 the .dynamic section.	The DT_DEBUG entry is filled in by the
2804 	 dynamic linker and used by the debugger.  */
2805 #define add_dynamic_entry(TAG, VAL) \
2806   _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2807 
2808       if (info->executable)
2809 	{
2810 	  if (!add_dynamic_entry (DT_DEBUG, 0))
2811 	    return FALSE;
2812 	}
2813 
2814       if (htab->elf.splt->size != 0)
2815 	{
2816 	  if (!add_dynamic_entry (DT_PLTGOT, 0)
2817 	      || !add_dynamic_entry (DT_PLTRELSZ, 0)
2818 	      || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2819 	      || !add_dynamic_entry (DT_JMPREL, 0))
2820 	    return FALSE;
2821 
2822 	  if (htab->tlsdesc_plt
2823 	      && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
2824 		  || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
2825 	    return FALSE;
2826 	}
2827 
2828       if (relocs)
2829 	{
2830 	  if (!add_dynamic_entry (DT_RELA, 0)
2831 	      || !add_dynamic_entry (DT_RELASZ, 0)
2832 	      || !add_dynamic_entry (DT_RELAENT, bed->s->sizeof_rela))
2833 	    return FALSE;
2834 
2835 	  /* If any dynamic relocs apply to a read-only section,
2836 	     then we need a DT_TEXTREL entry.  */
2837 	  if ((info->flags & DF_TEXTREL) == 0)
2838 	    elf_link_hash_traverse (&htab->elf,
2839 				    elf_x86_64_readonly_dynrelocs,
2840 				    info);
2841 
2842 	  if ((info->flags & DF_TEXTREL) != 0)
2843 	    {
2844 	      if (!add_dynamic_entry (DT_TEXTREL, 0))
2845 		return FALSE;
2846 	    }
2847 	}
2848     }
2849 #undef add_dynamic_entry
2850 
2851   return TRUE;
2852 }
2853 
2854 static bfd_boolean
2855 elf_x86_64_always_size_sections (bfd *output_bfd,
2856 				 struct bfd_link_info *info)
2857 {
2858   asection *tls_sec = elf_hash_table (info)->tls_sec;
2859 
2860   if (tls_sec)
2861     {
2862       struct elf_link_hash_entry *tlsbase;
2863 
2864       tlsbase = elf_link_hash_lookup (elf_hash_table (info),
2865 				      "_TLS_MODULE_BASE_",
2866 				      FALSE, FALSE, FALSE);
2867 
2868       if (tlsbase && tlsbase->type == STT_TLS)
2869 	{
2870 	  struct elf_x86_64_link_hash_table *htab;
2871 	  struct bfd_link_hash_entry *bh = NULL;
2872 	  const struct elf_backend_data *bed
2873 	    = get_elf_backend_data (output_bfd);
2874 
2875 	  htab = elf_x86_64_hash_table (info);
2876 	  if (htab == NULL)
2877 	    return FALSE;
2878 
2879 	  if (!(_bfd_generic_link_add_one_symbol
2880 		(info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
2881 		 tls_sec, 0, NULL, FALSE,
2882 		 bed->collect, &bh)))
2883 	    return FALSE;
2884 
2885 	  htab->tls_module_base = bh;
2886 
2887 	  tlsbase = (struct elf_link_hash_entry *)bh;
2888 	  tlsbase->def_regular = 1;
2889 	  tlsbase->other = STV_HIDDEN;
2890 	  (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
2891 	}
2892     }
2893 
2894   return TRUE;
2895 }
2896 
2897 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
2898    executables.  Rather than setting it to the beginning of the TLS
2899    section, we have to set it to the end.  This function may be called
2900    multiple times, it is idempotent.  */
2901 
2902 static void
2903 elf_x86_64_set_tls_module_base (struct bfd_link_info *info)
2904 {
2905   struct elf_x86_64_link_hash_table *htab;
2906   struct bfd_link_hash_entry *base;
2907 
2908   if (!info->executable)
2909     return;
2910 
2911   htab = elf_x86_64_hash_table (info);
2912   if (htab == NULL)
2913     return;
2914 
2915   base = htab->tls_module_base;
2916   if (base == NULL)
2917     return;
2918 
2919   base->u.def.value = htab->elf.tls_size;
2920 }
2921 
2922 /* Return the base VMA address which should be subtracted from real addresses
2923    when resolving @dtpoff relocation.
2924    This is PT_TLS segment p_vaddr.  */
2925 
2926 static bfd_vma
2927 elf_x86_64_dtpoff_base (struct bfd_link_info *info)
2928 {
2929   /* If tls_sec is NULL, we should have signalled an error already.  */
2930   if (elf_hash_table (info)->tls_sec == NULL)
2931     return 0;
2932   return elf_hash_table (info)->tls_sec->vma;
2933 }
2934 
2935 /* Return the relocation value for @tpoff relocation
2936    if STT_TLS virtual address is ADDRESS.  */
2937 
2938 static bfd_vma
2939 elf_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
2940 {
2941   struct elf_link_hash_table *htab = elf_hash_table (info);
2942   const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd);
2943   bfd_vma static_tls_size;
2944 
2945   /* If tls_segment is NULL, we should have signalled an error already.  */
2946   if (htab->tls_sec == NULL)
2947     return 0;
2948 
2949   /* Consider special static TLS alignment requirements.  */
2950   static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment);
2951   return address - static_tls_size - htab->tls_sec->vma;
2952 }
2953 
2954 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
2955    branch?  */
2956 
2957 static bfd_boolean
2958 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
2959 {
2960   /* Opcode		Instruction
2961      0xe8		call
2962      0xe9		jump
2963      0x0f 0x8x		conditional jump */
2964   return ((offset > 0
2965 	   && (contents [offset - 1] == 0xe8
2966 	       || contents [offset - 1] == 0xe9))
2967 	  || (offset > 1
2968 	      && contents [offset - 2] == 0x0f
2969 	      && (contents [offset - 1] & 0xf0) == 0x80));
2970 }
2971 
2972 /* Relocate an x86_64 ELF section.  */
2973 
2974 static bfd_boolean
2975 elf_x86_64_relocate_section (bfd *output_bfd,
2976 			     struct bfd_link_info *info,
2977 			     bfd *input_bfd,
2978 			     asection *input_section,
2979 			     bfd_byte *contents,
2980 			     Elf_Internal_Rela *relocs,
2981 			     Elf_Internal_Sym *local_syms,
2982 			     asection **local_sections)
2983 {
2984   struct elf_x86_64_link_hash_table *htab;
2985   Elf_Internal_Shdr *symtab_hdr;
2986   struct elf_link_hash_entry **sym_hashes;
2987   bfd_vma *local_got_offsets;
2988   bfd_vma *local_tlsdesc_gotents;
2989   Elf_Internal_Rela *rel;
2990   Elf_Internal_Rela *relend;
2991 
2992   BFD_ASSERT (is_x86_64_elf (input_bfd));
2993 
2994   htab = elf_x86_64_hash_table (info);
2995   if (htab == NULL)
2996     return FALSE;
2997   symtab_hdr = &elf_symtab_hdr (input_bfd);
2998   sym_hashes = elf_sym_hashes (input_bfd);
2999   local_got_offsets = elf_local_got_offsets (input_bfd);
3000   local_tlsdesc_gotents = elf_x86_64_local_tlsdesc_gotent (input_bfd);
3001 
3002   elf_x86_64_set_tls_module_base (info);
3003 
3004   rel = relocs;
3005   relend = relocs + input_section->reloc_count;
3006   for (; rel < relend; rel++)
3007     {
3008       unsigned int r_type;
3009       reloc_howto_type *howto;
3010       unsigned long r_symndx;
3011       struct elf_link_hash_entry *h;
3012       Elf_Internal_Sym *sym;
3013       asection *sec;
3014       bfd_vma off, offplt;
3015       bfd_vma relocation;
3016       bfd_boolean unresolved_reloc;
3017       bfd_reloc_status_type r;
3018       int tls_type;
3019       asection *base_got;
3020 
3021       r_type = ELF32_R_TYPE (rel->r_info);
3022       if (r_type == (int) R_X86_64_GNU_VTINHERIT
3023 	  || r_type == (int) R_X86_64_GNU_VTENTRY)
3024 	continue;
3025 
3026       if (r_type >= R_X86_64_max)
3027 	{
3028 	  bfd_set_error (bfd_error_bad_value);
3029 	  return FALSE;
3030 	}
3031 
3032       if (r_type != (int) R_X86_64_32
3033 	  || ABI_64_P (output_bfd))
3034 	howto = x86_64_elf_howto_table + r_type;
3035       else
3036 	howto = (x86_64_elf_howto_table
3037 		 + ARRAY_SIZE (x86_64_elf_howto_table) - 1);
3038       r_symndx = htab->r_sym (rel->r_info);
3039       h = NULL;
3040       sym = NULL;
3041       sec = NULL;
3042       unresolved_reloc = FALSE;
3043       if (r_symndx < symtab_hdr->sh_info)
3044 	{
3045 	  sym = local_syms + r_symndx;
3046 	  sec = local_sections[r_symndx];
3047 
3048 	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
3049 						&sec, rel);
3050 
3051 	  /* Relocate against local STT_GNU_IFUNC symbol.  */
3052 	  if (!info->relocatable
3053 	      && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
3054 	    {
3055 	      h = elf_x86_64_get_local_sym_hash (htab, input_bfd,
3056 						 rel, FALSE);
3057 	      if (h == NULL)
3058 		abort ();
3059 
3060 	      /* Set STT_GNU_IFUNC symbol value.  */
3061 	      h->root.u.def.value = sym->st_value;
3062 	      h->root.u.def.section = sec;
3063 	    }
3064 	}
3065       else
3066 	{
3067 	  bfd_boolean warned ATTRIBUTE_UNUSED;
3068 
3069 	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3070 				   r_symndx, symtab_hdr, sym_hashes,
3071 				   h, sec, relocation,
3072 				   unresolved_reloc, warned);
3073 	}
3074 
3075       if (sec != NULL && elf_discarded_section (sec))
3076 	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3077 					 rel, relend, howto, contents);
3078 
3079       if (info->relocatable)
3080 	continue;
3081 
3082       if (rel->r_addend == 0
3083 	  && r_type == R_X86_64_64
3084 	  && !ABI_64_P (output_bfd))
3085 	{
3086 	  /* For x32, treat R_X86_64_64 like R_X86_64_32 and zero-extend
3087 	     it to 64bit if addend is zero.  */
3088 	  r_type = R_X86_64_32;
3089 	  memset (contents + rel->r_offset + 4, 0, 4);
3090 	}
3091 
3092       /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3093 	 it here if it is defined in a non-shared object.  */
3094       if (h != NULL
3095 	  && h->type == STT_GNU_IFUNC
3096 	  && h->def_regular)
3097 	{
3098 	  asection *plt;
3099 	  bfd_vma plt_index;
3100 	  const char *name;
3101 
3102 	  if ((input_section->flags & SEC_ALLOC) == 0
3103 	      || h->plt.offset == (bfd_vma) -1)
3104 	    abort ();
3105 
3106 	  /* STT_GNU_IFUNC symbol must go through PLT.  */
3107 	  plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
3108 	  relocation = (plt->output_section->vma
3109 			+ plt->output_offset + h->plt.offset);
3110 
3111 	  switch (r_type)
3112 	    {
3113 	    default:
3114 	      if (h->root.root.string)
3115 		name = h->root.root.string;
3116 	      else
3117 		name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
3118 					 NULL);
3119 	      (*_bfd_error_handler)
3120 		(_("%B: relocation %s against STT_GNU_IFUNC "
3121 		   "symbol `%s' isn't handled by %s"), input_bfd,
3122 		 x86_64_elf_howto_table[r_type].name,
3123 		 name, __FUNCTION__);
3124 	      bfd_set_error (bfd_error_bad_value);
3125 	      return FALSE;
3126 
3127 	    case R_X86_64_32S:
3128 	      if (info->shared)
3129 		abort ();
3130 	      goto do_relocation;
3131 
3132 	    case R_X86_64_32:
3133 	      if (ABI_64_P (output_bfd))
3134 		goto do_relocation;
3135 	      /* FALLTHROUGH */
3136 	    case R_X86_64_64:
3137 	      if (rel->r_addend != 0)
3138 		{
3139 		  if (h->root.root.string)
3140 		    name = h->root.root.string;
3141 		  else
3142 		    name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3143 					     sym, NULL);
3144 		  (*_bfd_error_handler)
3145 		    (_("%B: relocation %s against STT_GNU_IFUNC "
3146 		       "symbol `%s' has non-zero addend: %d"),
3147 		     input_bfd, x86_64_elf_howto_table[r_type].name,
3148 		     name, rel->r_addend);
3149 		  bfd_set_error (bfd_error_bad_value);
3150 		  return FALSE;
3151 		}
3152 
3153 	      /* Generate dynamic relcoation only when there is a
3154 		 non-GOT reference in a shared object.  */
3155 	      if (info->shared && h->non_got_ref)
3156 		{
3157 		  Elf_Internal_Rela outrel;
3158 		  asection *sreloc;
3159 		  bfd_boolean relocate;
3160 
3161 		  /* Need a dynamic relocation to get the real function
3162 		     address.  */
3163 		  outrel.r_offset = _bfd_elf_section_offset (output_bfd,
3164 							     info,
3165 							     input_section,
3166 							     rel->r_offset);
3167 		  if (outrel.r_offset == (bfd_vma) -1
3168 		      || outrel.r_offset == (bfd_vma) -2)
3169 		    abort ();
3170 
3171 		  outrel.r_offset += (input_section->output_section->vma
3172 				      + input_section->output_offset);
3173 
3174 		  if (h->dynindx == -1
3175 		      || h->forced_local
3176 		      || info->executable)
3177 		    {
3178 		      /* This symbol is resolved locally.  */
3179 		      outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3180 		      outrel.r_addend = relocation;
3181 		      relocate = FALSE;
3182 		    }
3183 		  else
3184 		    {
3185 		      outrel.r_info = htab->r_info (h->dynindx, r_type);
3186 		      outrel.r_addend = 0;
3187 		      relocate = FALSE;
3188 		    }
3189 
3190 		  sreloc = htab->elf.irelifunc;
3191 		  elf_append_rela (output_bfd, sreloc, &outrel);
3192 
3193 		  /* If this reloc is against an external symbol, we
3194 		     do not want to fiddle with the addend.  Otherwise,
3195 		     we need to include the symbol value so that it
3196 		     becomes an addend for the dynamic reloc.  For an
3197 		     internal symbol, we have updated addend.  */
3198 		  if (! relocate)
3199 		    continue;
3200 		}
3201 	      /* FALLTHROUGH */
3202 	    case R_X86_64_PC32:
3203 	    case R_X86_64_PC64:
3204 	    case R_X86_64_PLT32:
3205 	      goto do_relocation;
3206 
3207 	    case R_X86_64_GOTPCREL:
3208 	    case R_X86_64_GOTPCREL64:
3209 	      base_got = htab->elf.sgot;
3210 	      off = h->got.offset;
3211 
3212 	      if (base_got == NULL)
3213 		abort ();
3214 
3215 	      if (off == (bfd_vma) -1)
3216 		{
3217 		  /* We can't use h->got.offset here to save state, or
3218 		     even just remember the offset, as finish_dynamic_symbol
3219 		     would use that as offset into .got.  */
3220 
3221 		  if (htab->elf.splt != NULL)
3222 		    {
3223 		      plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3224 		      off = (plt_index + 3) * GOT_ENTRY_SIZE;
3225 		      base_got = htab->elf.sgotplt;
3226 		    }
3227 		  else
3228 		    {
3229 		      plt_index = h->plt.offset / PLT_ENTRY_SIZE;
3230 		      off = plt_index * GOT_ENTRY_SIZE;
3231 		      base_got = htab->elf.igotplt;
3232 		    }
3233 
3234 		  if (h->dynindx == -1
3235 		      || h->forced_local
3236 		      || info->symbolic)
3237 		    {
3238 		      /* This references the local defitionion.  We must
3239 			 initialize this entry in the global offset table.
3240 			 Since the offset must always be a multiple of 8,
3241 			 we use the least significant bit to record
3242 			 whether we have initialized it already.
3243 
3244 			 When doing a dynamic link, we create a .rela.got
3245 			 relocation entry to initialize the value.  This
3246 			 is done in the finish_dynamic_symbol routine.	 */
3247 		      if ((off & 1) != 0)
3248 			off &= ~1;
3249 		      else
3250 			{
3251 			  bfd_put_64 (output_bfd, relocation,
3252 				      base_got->contents + off);
3253 			  /* Note that this is harmless for the GOTPLT64
3254 			     case, as -1 | 1 still is -1.  */
3255 			  h->got.offset |= 1;
3256 			}
3257 		    }
3258 		}
3259 
3260 	      relocation = (base_got->output_section->vma
3261 			    + base_got->output_offset + off);
3262 
3263 	      goto do_relocation;
3264 	    }
3265 	}
3266 
3267       /* When generating a shared object, the relocations handled here are
3268 	 copied into the output file to be resolved at run time.  */
3269       switch (r_type)
3270 	{
3271 	case R_X86_64_GOT32:
3272 	case R_X86_64_GOT64:
3273 	  /* Relocation is to the entry for this symbol in the global
3274 	     offset table.  */
3275 	case R_X86_64_GOTPCREL:
3276 	case R_X86_64_GOTPCREL64:
3277 	  /* Use global offset table entry as symbol value.  */
3278 	case R_X86_64_GOTPLT64:
3279 	  /* This is the same as GOT64 for relocation purposes, but
3280 	     indicates the existence of a PLT entry.  The difficulty is,
3281 	     that we must calculate the GOT slot offset from the PLT
3282 	     offset, if this symbol got a PLT entry (it was global).
3283 	     Additionally if it's computed from the PLT entry, then that
3284 	     GOT offset is relative to .got.plt, not to .got.  */
3285 	  base_got = htab->elf.sgot;
3286 
3287 	  if (htab->elf.sgot == NULL)
3288 	    abort ();
3289 
3290 	  if (h != NULL)
3291 	    {
3292 	      bfd_boolean dyn;
3293 
3294 	      off = h->got.offset;
3295 	      if (h->needs_plt
3296 	          && h->plt.offset != (bfd_vma)-1
3297 		  && off == (bfd_vma)-1)
3298 		{
3299 		  /* We can't use h->got.offset here to save
3300 		     state, or even just remember the offset, as
3301 		     finish_dynamic_symbol would use that as offset into
3302 		     .got.  */
3303 		  bfd_vma plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3304 		  off = (plt_index + 3) * GOT_ENTRY_SIZE;
3305 		  base_got = htab->elf.sgotplt;
3306 		}
3307 
3308 	      dyn = htab->elf.dynamic_sections_created;
3309 
3310 	      if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3311 		  || (info->shared
3312 		      && SYMBOL_REFERENCES_LOCAL (info, h))
3313 		  || (ELF_ST_VISIBILITY (h->other)
3314 		      && h->root.type == bfd_link_hash_undefweak))
3315 		{
3316 		  /* This is actually a static link, or it is a -Bsymbolic
3317 		     link and the symbol is defined locally, or the symbol
3318 		     was forced to be local because of a version file.	We
3319 		     must initialize this entry in the global offset table.
3320 		     Since the offset must always be a multiple of 8, we
3321 		     use the least significant bit to record whether we
3322 		     have initialized it already.
3323 
3324 		     When doing a dynamic link, we create a .rela.got
3325 		     relocation entry to initialize the value.	This is
3326 		     done in the finish_dynamic_symbol routine.	 */
3327 		  if ((off & 1) != 0)
3328 		    off &= ~1;
3329 		  else
3330 		    {
3331 		      bfd_put_64 (output_bfd, relocation,
3332 				  base_got->contents + off);
3333 		      /* Note that this is harmless for the GOTPLT64 case,
3334 		         as -1 | 1 still is -1.  */
3335 		      h->got.offset |= 1;
3336 		    }
3337 		}
3338 	      else
3339 		unresolved_reloc = FALSE;
3340 	    }
3341 	  else
3342 	    {
3343 	      if (local_got_offsets == NULL)
3344 		abort ();
3345 
3346 	      off = local_got_offsets[r_symndx];
3347 
3348 	      /* The offset must always be a multiple of 8.  We use
3349 		 the least significant bit to record whether we have
3350 		 already generated the necessary reloc.	 */
3351 	      if ((off & 1) != 0)
3352 		off &= ~1;
3353 	      else
3354 		{
3355 		  bfd_put_64 (output_bfd, relocation,
3356 			      base_got->contents + off);
3357 
3358 		  if (info->shared)
3359 		    {
3360 		      asection *s;
3361 		      Elf_Internal_Rela outrel;
3362 
3363 		      /* We need to generate a R_X86_64_RELATIVE reloc
3364 			 for the dynamic linker.  */
3365 		      s = htab->elf.srelgot;
3366 		      if (s == NULL)
3367 			abort ();
3368 
3369 		      outrel.r_offset = (base_got->output_section->vma
3370 					 + base_got->output_offset
3371 					 + off);
3372 		      outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3373 		      outrel.r_addend = relocation;
3374 		      elf_append_rela (output_bfd, s, &outrel);
3375 		    }
3376 
3377 		  local_got_offsets[r_symndx] |= 1;
3378 		}
3379 	    }
3380 
3381 	  if (off >= (bfd_vma) -2)
3382 	    abort ();
3383 
3384 	  relocation = base_got->output_section->vma
3385 		       + base_got->output_offset + off;
3386 	  if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
3387 	    relocation -= htab->elf.sgotplt->output_section->vma
3388 			  - htab->elf.sgotplt->output_offset;
3389 
3390 	  break;
3391 
3392 	case R_X86_64_GOTOFF64:
3393 	  /* Relocation is relative to the start of the global offset
3394 	     table.  */
3395 
3396 	  /* Check to make sure it isn't a protected function symbol
3397 	     for shared library since it may not be local when used
3398 	     as function address.  */
3399 	  if (info->shared
3400 	      && h
3401 	      && h->def_regular
3402 	      && h->type == STT_FUNC
3403 	      && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
3404 	    {
3405 	      (*_bfd_error_handler)
3406 		(_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
3407 		 input_bfd, h->root.root.string);
3408 	      bfd_set_error (bfd_error_bad_value);
3409 	      return FALSE;
3410 	    }
3411 
3412 	  /* Note that sgot is not involved in this
3413 	     calculation.  We always want the start of .got.plt.  If we
3414 	     defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
3415 	     permitted by the ABI, we might have to change this
3416 	     calculation.  */
3417 	  relocation -= htab->elf.sgotplt->output_section->vma
3418 			+ htab->elf.sgotplt->output_offset;
3419 	  break;
3420 
3421 	case R_X86_64_GOTPC32:
3422 	case R_X86_64_GOTPC64:
3423 	  /* Use global offset table as symbol value.  */
3424 	  relocation = htab->elf.sgotplt->output_section->vma
3425 		       + htab->elf.sgotplt->output_offset;
3426 	  unresolved_reloc = FALSE;
3427 	  break;
3428 
3429 	case R_X86_64_PLTOFF64:
3430 	  /* Relocation is PLT entry relative to GOT.  For local
3431 	     symbols it's the symbol itself relative to GOT.  */
3432           if (h != NULL
3433 	      /* See PLT32 handling.  */
3434 	      && h->plt.offset != (bfd_vma) -1
3435 	      && htab->elf.splt != NULL)
3436 	    {
3437 	      relocation = (htab->elf.splt->output_section->vma
3438 			    + htab->elf.splt->output_offset
3439 			    + h->plt.offset);
3440 	      unresolved_reloc = FALSE;
3441 	    }
3442 
3443 	  relocation -= htab->elf.sgotplt->output_section->vma
3444 			+ htab->elf.sgotplt->output_offset;
3445 	  break;
3446 
3447 	case R_X86_64_PLT32:
3448 	  /* Relocation is to the entry for this symbol in the
3449 	     procedure linkage table.  */
3450 
3451 	  /* Resolve a PLT32 reloc against a local symbol directly,
3452 	     without using the procedure linkage table.	 */
3453 	  if (h == NULL)
3454 	    break;
3455 
3456 	  if (h->plt.offset == (bfd_vma) -1
3457 	      || htab->elf.splt == NULL)
3458 	    {
3459 	      /* We didn't make a PLT entry for this symbol.  This
3460 		 happens when statically linking PIC code, or when
3461 		 using -Bsymbolic.  */
3462 	      break;
3463 	    }
3464 
3465 	  relocation = (htab->elf.splt->output_section->vma
3466 			+ htab->elf.splt->output_offset
3467 			+ h->plt.offset);
3468 	  unresolved_reloc = FALSE;
3469 	  break;
3470 
3471 	case R_X86_64_PC8:
3472 	case R_X86_64_PC16:
3473 	case R_X86_64_PC32:
3474 	  if (info->shared
3475 	      && ABI_64_P (output_bfd)
3476 	      && (input_section->flags & SEC_ALLOC) != 0
3477 	      && (input_section->flags & SEC_READONLY) != 0
3478 	      && h != NULL)
3479 	    {
3480 	      bfd_boolean fail = FALSE;
3481 	      bfd_boolean branch
3482 		= (r_type == R_X86_64_PC32
3483 		   && is_32bit_relative_branch (contents, rel->r_offset));
3484 
3485 	      if (SYMBOL_REFERENCES_LOCAL (info, h))
3486 		{
3487 		  /* Symbol is referenced locally.  Make sure it is
3488 		     defined locally or for a branch.  */
3489 		  fail = !h->def_regular && !branch;
3490 		}
3491 	      else
3492 		{
3493 		  /* Symbol isn't referenced locally.  We only allow
3494 		     branch to symbol with non-default visibility. */
3495 		  fail = (!branch
3496 			  || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
3497 		}
3498 
3499 	      if (fail)
3500 		{
3501 		  const char *fmt;
3502 		  const char *v;
3503 		  const char *pic = "";
3504 
3505 		  switch (ELF_ST_VISIBILITY (h->other))
3506 		    {
3507 		    case STV_HIDDEN:
3508 		      v = _("hidden symbol");
3509 		      break;
3510 		    case STV_INTERNAL:
3511 		      v = _("internal symbol");
3512 		      break;
3513 		    case STV_PROTECTED:
3514 		      v = _("protected symbol");
3515 		      break;
3516 		    default:
3517 		      v = _("symbol");
3518 		      pic = _("; recompile with -fPIC");
3519 		      break;
3520 		    }
3521 
3522 		  if (h->def_regular)
3523 		    fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
3524 		  else
3525 		    fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
3526 
3527 		  (*_bfd_error_handler) (fmt, input_bfd,
3528 					 x86_64_elf_howto_table[r_type].name,
3529 					 v,  h->root.root.string, pic);
3530 		  bfd_set_error (bfd_error_bad_value);
3531 		  return FALSE;
3532 		}
3533 	    }
3534 	  /* Fall through.  */
3535 
3536 	case R_X86_64_8:
3537 	case R_X86_64_16:
3538 	case R_X86_64_32:
3539 	case R_X86_64_PC64:
3540 	case R_X86_64_64:
3541 	  /* FIXME: The ABI says the linker should make sure the value is
3542 	     the same when it's zeroextended to 64 bit.	 */
3543 
3544 	  if ((input_section->flags & SEC_ALLOC) == 0)
3545 	    break;
3546 
3547 	  if ((info->shared
3548 	       && (h == NULL
3549 		   || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3550 		   || h->root.type != bfd_link_hash_undefweak)
3551 	       && (! IS_X86_64_PCREL_TYPE (r_type)
3552 		   || ! SYMBOL_CALLS_LOCAL (info, h)))
3553 	      || (ELIMINATE_COPY_RELOCS
3554 		  && !info->shared
3555 		  && h != NULL
3556 		  && h->dynindx != -1
3557 		  && !h->non_got_ref
3558 		  && ((h->def_dynamic
3559 		       && !h->def_regular)
3560 		      || h->root.type == bfd_link_hash_undefweak
3561 		      || h->root.type == bfd_link_hash_undefined)))
3562 	    {
3563 	      Elf_Internal_Rela outrel;
3564 	      bfd_boolean skip, relocate;
3565 	      asection *sreloc;
3566 
3567 	      /* When generating a shared object, these relocations
3568 		 are copied into the output file to be resolved at run
3569 		 time.	*/
3570 	      skip = FALSE;
3571 	      relocate = FALSE;
3572 
3573 	      outrel.r_offset =
3574 		_bfd_elf_section_offset (output_bfd, info, input_section,
3575 					 rel->r_offset);
3576 	      if (outrel.r_offset == (bfd_vma) -1)
3577 		skip = TRUE;
3578 	      else if (outrel.r_offset == (bfd_vma) -2)
3579 		skip = TRUE, relocate = TRUE;
3580 
3581 	      outrel.r_offset += (input_section->output_section->vma
3582 				  + input_section->output_offset);
3583 
3584 	      if (skip)
3585 		memset (&outrel, 0, sizeof outrel);
3586 
3587 	      /* h->dynindx may be -1 if this symbol was marked to
3588 		 become local.  */
3589 	      else if (h != NULL
3590 		       && h->dynindx != -1
3591 		       && (IS_X86_64_PCREL_TYPE (r_type)
3592 			   || ! info->shared
3593 			   || ! SYMBOLIC_BIND (info, h)
3594 			   || ! h->def_regular))
3595 		{
3596 		  outrel.r_info = htab->r_info (h->dynindx, r_type);
3597 		  outrel.r_addend = rel->r_addend;
3598 		}
3599 	      else
3600 		{
3601 		  /* This symbol is local, or marked to become local.  */
3602 		  if (r_type == htab->pointer_r_type)
3603 		    {
3604 		      relocate = TRUE;
3605 		      outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3606 		      outrel.r_addend = relocation + rel->r_addend;
3607 		    }
3608 		  else if (r_type == R_X86_64_64
3609 			   && !ABI_64_P (output_bfd))
3610 		    {
3611 		      relocate = TRUE;
3612 		      outrel.r_info = htab->r_info (0,
3613 						    R_X86_64_RELATIVE64);
3614 		      outrel.r_addend = relocation + rel->r_addend;
3615 		    }
3616 		  else
3617 		    {
3618 		      long sindx;
3619 
3620 		      if (bfd_is_abs_section (sec))
3621 			sindx = 0;
3622 		      else if (sec == NULL || sec->owner == NULL)
3623 			{
3624 			  bfd_set_error (bfd_error_bad_value);
3625 			  return FALSE;
3626 			}
3627 		      else
3628 			{
3629 			  asection *osec;
3630 
3631 			  /* We are turning this relocation into one
3632 			     against a section symbol.  It would be
3633 			     proper to subtract the symbol's value,
3634 			     osec->vma, from the emitted reloc addend,
3635 			     but ld.so expects buggy relocs.  */
3636 			  osec = sec->output_section;
3637 			  sindx = elf_section_data (osec)->dynindx;
3638 			  if (sindx == 0)
3639 			    {
3640 			      asection *oi = htab->elf.text_index_section;
3641 			      sindx = elf_section_data (oi)->dynindx;
3642 			    }
3643 			  BFD_ASSERT (sindx != 0);
3644 			}
3645 
3646 		      outrel.r_info = htab->r_info (sindx, r_type);
3647 		      outrel.r_addend = relocation + rel->r_addend;
3648 		    }
3649 		}
3650 
3651 	      sreloc = elf_section_data (input_section)->sreloc;
3652 
3653 	      if (sreloc == NULL || sreloc->contents == NULL)
3654 		{
3655 		  r = bfd_reloc_notsupported;
3656 		  goto check_relocation_error;
3657 		}
3658 
3659 	      elf_append_rela (output_bfd, sreloc, &outrel);
3660 
3661 	      /* If this reloc is against an external symbol, we do
3662 		 not want to fiddle with the addend.  Otherwise, we
3663 		 need to include the symbol value so that it becomes
3664 		 an addend for the dynamic reloc.  */
3665 	      if (! relocate)
3666 		continue;
3667 	    }
3668 
3669 	  break;
3670 
3671 	case R_X86_64_TLSGD:
3672 	case R_X86_64_GOTPC32_TLSDESC:
3673 	case R_X86_64_TLSDESC_CALL:
3674 	case R_X86_64_GOTTPOFF:
3675 	  tls_type = GOT_UNKNOWN;
3676 	  if (h == NULL && local_got_offsets)
3677 	    tls_type = elf_x86_64_local_got_tls_type (input_bfd) [r_symndx];
3678 	  else if (h != NULL)
3679 	    tls_type = elf_x86_64_hash_entry (h)->tls_type;
3680 
3681 	  if (! elf_x86_64_tls_transition (info, input_bfd,
3682 					   input_section, contents,
3683 					   symtab_hdr, sym_hashes,
3684 					   &r_type, tls_type, rel,
3685 					   relend, h, r_symndx))
3686 	    return FALSE;
3687 
3688 	  if (r_type == R_X86_64_TPOFF32)
3689 	    {
3690 	      bfd_vma roff = rel->r_offset;
3691 
3692 	      BFD_ASSERT (! unresolved_reloc);
3693 
3694 	      if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3695 		{
3696 		  /* GD->LE transition.  For 64bit, change
3697 		     .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3698 		     .word 0x6666; rex64; call __tls_get_addr
3699 		     into:
3700 		     movq %fs:0, %rax
3701 		     leaq foo@tpoff(%rax), %rax
3702 		     For 32bit, change
3703 		     leaq foo@tlsgd(%rip), %rdi
3704 		     .word 0x6666; rex64; call __tls_get_addr
3705 		     into:
3706 		     movl %fs:0, %eax
3707 		     leaq foo@tpoff(%rax), %rax */
3708 		  if (ABI_64_P (output_bfd))
3709 		    memcpy (contents + roff - 4,
3710 			    "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3711 			    16);
3712 		  else
3713 		    memcpy (contents + roff - 3,
3714 			    "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3715 			    15);
3716 		  bfd_put_32 (output_bfd,
3717 			      elf_x86_64_tpoff (info, relocation),
3718 			      contents + roff + 8);
3719 		  /* Skip R_X86_64_PC32/R_X86_64_PLT32.  */
3720 		  rel++;
3721 		  continue;
3722 		}
3723 	      else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3724 		{
3725 		  /* GDesc -> LE transition.
3726 		     It's originally something like:
3727 		     leaq x@tlsdesc(%rip), %rax
3728 
3729 		     Change it to:
3730 		     movl $x@tpoff, %rax.  */
3731 
3732 		  unsigned int val, type;
3733 
3734 		  type = bfd_get_8 (input_bfd, contents + roff - 3);
3735 		  val = bfd_get_8 (input_bfd, contents + roff - 1);
3736 		  bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
3737 			     contents + roff - 3);
3738 		  bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
3739 		  bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
3740 			     contents + roff - 1);
3741 		  bfd_put_32 (output_bfd,
3742 			      elf_x86_64_tpoff (info, relocation),
3743 			      contents + roff);
3744 		  continue;
3745 		}
3746 	      else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3747 		{
3748 		  /* GDesc -> LE transition.
3749 		     It's originally:
3750 		     call *(%rax)
3751 		     Turn it into:
3752 		     xchg %ax,%ax.  */
3753 		  bfd_put_8 (output_bfd, 0x66, contents + roff);
3754 		  bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3755 		  continue;
3756 		}
3757 	      else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
3758 		{
3759 		  /* IE->LE transition:
3760 		     Originally it can be one of:
3761 		     movq foo@gottpoff(%rip), %reg
3762 		     addq foo@gottpoff(%rip), %reg
3763 		     We change it into:
3764 		     movq $foo, %reg
3765 		     leaq foo(%reg), %reg
3766 		     addq $foo, %reg.  */
3767 
3768 		  unsigned int val, type, reg;
3769 
3770 		  val = bfd_get_8 (input_bfd, contents + roff - 3);
3771 		  type = bfd_get_8 (input_bfd, contents + roff - 2);
3772 		  reg = bfd_get_8 (input_bfd, contents + roff - 1);
3773 		  reg >>= 3;
3774 		  if (type == 0x8b)
3775 		    {
3776 		      /* movq */
3777 		      if (val == 0x4c)
3778 			bfd_put_8 (output_bfd, 0x49,
3779 				   contents + roff - 3);
3780 		      else if (!ABI_64_P (output_bfd) && val == 0x44)
3781 			bfd_put_8 (output_bfd, 0x41,
3782 				   contents + roff - 3);
3783 		      bfd_put_8 (output_bfd, 0xc7,
3784 				 contents + roff - 2);
3785 		      bfd_put_8 (output_bfd, 0xc0 | reg,
3786 				 contents + roff - 1);
3787 		    }
3788 		  else if (reg == 4)
3789 		    {
3790 		      /* addq -> addq - addressing with %rsp/%r12 is
3791 			 special  */
3792 		      if (val == 0x4c)
3793 			bfd_put_8 (output_bfd, 0x49,
3794 				   contents + roff - 3);
3795 		      else if (!ABI_64_P (output_bfd) && val == 0x44)
3796 			bfd_put_8 (output_bfd, 0x41,
3797 				   contents + roff - 3);
3798 		      bfd_put_8 (output_bfd, 0x81,
3799 				 contents + roff - 2);
3800 		      bfd_put_8 (output_bfd, 0xc0 | reg,
3801 				 contents + roff - 1);
3802 		    }
3803 		  else
3804 		    {
3805 		      /* addq -> leaq */
3806 		      if (val == 0x4c)
3807 			bfd_put_8 (output_bfd, 0x4d,
3808 				   contents + roff - 3);
3809 		      else if (!ABI_64_P (output_bfd) && val == 0x44)
3810 			bfd_put_8 (output_bfd, 0x45,
3811 				   contents + roff - 3);
3812 		      bfd_put_8 (output_bfd, 0x8d,
3813 				 contents + roff - 2);
3814 		      bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
3815 				 contents + roff - 1);
3816 		    }
3817 		  bfd_put_32 (output_bfd,
3818 			      elf_x86_64_tpoff (info, relocation),
3819 			      contents + roff);
3820 		  continue;
3821 		}
3822 	      else
3823 		BFD_ASSERT (FALSE);
3824 	    }
3825 
3826 	  if (htab->elf.sgot == NULL)
3827 	    abort ();
3828 
3829 	  if (h != NULL)
3830 	    {
3831 	      off = h->got.offset;
3832 	      offplt = elf_x86_64_hash_entry (h)->tlsdesc_got;
3833 	    }
3834 	  else
3835 	    {
3836 	      if (local_got_offsets == NULL)
3837 		abort ();
3838 
3839 	      off = local_got_offsets[r_symndx];
3840 	      offplt = local_tlsdesc_gotents[r_symndx];
3841 	    }
3842 
3843 	  if ((off & 1) != 0)
3844 	    off &= ~1;
3845 	  else
3846 	    {
3847 	      Elf_Internal_Rela outrel;
3848 	      int dr_type, indx;
3849 	      asection *sreloc;
3850 
3851 	      if (htab->elf.srelgot == NULL)
3852 		abort ();
3853 
3854 	      indx = h && h->dynindx != -1 ? h->dynindx : 0;
3855 
3856 	      if (GOT_TLS_GDESC_P (tls_type))
3857 		{
3858 		  outrel.r_info = htab->r_info (indx, R_X86_64_TLSDESC);
3859 		  BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
3860 			      + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
3861 		  outrel.r_offset = (htab->elf.sgotplt->output_section->vma
3862 				     + htab->elf.sgotplt->output_offset
3863 				     + offplt
3864 				     + htab->sgotplt_jump_table_size);
3865 		  sreloc = htab->elf.srelplt;
3866 		  if (indx == 0)
3867 		    outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
3868 		  else
3869 		    outrel.r_addend = 0;
3870 		  elf_append_rela (output_bfd, sreloc, &outrel);
3871 		}
3872 
3873 	      sreloc = htab->elf.srelgot;
3874 
3875 	      outrel.r_offset = (htab->elf.sgot->output_section->vma
3876 				 + htab->elf.sgot->output_offset + off);
3877 
3878 	      if (GOT_TLS_GD_P (tls_type))
3879 		dr_type = R_X86_64_DTPMOD64;
3880 	      else if (GOT_TLS_GDESC_P (tls_type))
3881 		goto dr_done;
3882 	      else
3883 		dr_type = R_X86_64_TPOFF64;
3884 
3885 	      bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
3886 	      outrel.r_addend = 0;
3887 	      if ((dr_type == R_X86_64_TPOFF64
3888 		   || dr_type == R_X86_64_TLSDESC) && indx == 0)
3889 		outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
3890 	      outrel.r_info = htab->r_info (indx, dr_type);
3891 
3892 	      elf_append_rela (output_bfd, sreloc, &outrel);
3893 
3894 	      if (GOT_TLS_GD_P (tls_type))
3895 		{
3896 		  if (indx == 0)
3897 		    {
3898 		      BFD_ASSERT (! unresolved_reloc);
3899 		      bfd_put_64 (output_bfd,
3900 				  relocation - elf_x86_64_dtpoff_base (info),
3901 				  htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3902 		    }
3903 		  else
3904 		    {
3905 		      bfd_put_64 (output_bfd, 0,
3906 				  htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3907 		      outrel.r_info = htab->r_info (indx,
3908 						    R_X86_64_DTPOFF64);
3909 		      outrel.r_offset += GOT_ENTRY_SIZE;
3910 		      elf_append_rela (output_bfd, sreloc,
3911 						&outrel);
3912 		    }
3913 		}
3914 
3915 	    dr_done:
3916 	      if (h != NULL)
3917 		h->got.offset |= 1;
3918 	      else
3919 		local_got_offsets[r_symndx] |= 1;
3920 	    }
3921 
3922 	  if (off >= (bfd_vma) -2
3923 	      && ! GOT_TLS_GDESC_P (tls_type))
3924 	    abort ();
3925 	  if (r_type == ELF32_R_TYPE (rel->r_info))
3926 	    {
3927 	      if (r_type == R_X86_64_GOTPC32_TLSDESC
3928 		  || r_type == R_X86_64_TLSDESC_CALL)
3929 		relocation = htab->elf.sgotplt->output_section->vma
3930 		  + htab->elf.sgotplt->output_offset
3931 		  + offplt + htab->sgotplt_jump_table_size;
3932 	      else
3933 		relocation = htab->elf.sgot->output_section->vma
3934 		  + htab->elf.sgot->output_offset + off;
3935 	      unresolved_reloc = FALSE;
3936 	    }
3937 	  else
3938 	    {
3939 	      bfd_vma roff = rel->r_offset;
3940 
3941 	      if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3942 		{
3943 		  /* GD->IE transition.  For 64bit, change
3944 		     .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3945 		     .word 0x6666; rex64; call __tls_get_addr@plt
3946 		     into:
3947 		     movq %fs:0, %rax
3948 		     addq foo@gottpoff(%rip), %rax
3949 		     For 32bit, change
3950 		     leaq foo@tlsgd(%rip), %rdi
3951 		     .word 0x6666; rex64; call __tls_get_addr@plt
3952 		     into:
3953 		     movl %fs:0, %eax
3954 		     addq foo@gottpoff(%rip), %rax */
3955 		  if (ABI_64_P (output_bfd))
3956 		    memcpy (contents + roff - 4,
3957 			    "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3958 			    16);
3959 		  else
3960 		    memcpy (contents + roff - 3,
3961 			    "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3962 			    15);
3963 
3964 		  relocation = (htab->elf.sgot->output_section->vma
3965 				+ htab->elf.sgot->output_offset + off
3966 				- roff
3967 				- input_section->output_section->vma
3968 				- input_section->output_offset
3969 				- 12);
3970 		  bfd_put_32 (output_bfd, relocation,
3971 			      contents + roff + 8);
3972 		  /* Skip R_X86_64_PLT32.  */
3973 		  rel++;
3974 		  continue;
3975 		}
3976 	      else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3977 		{
3978 		  /* GDesc -> IE transition.
3979 		     It's originally something like:
3980 		     leaq x@tlsdesc(%rip), %rax
3981 
3982 		     Change it to:
3983 		     movq x@gottpoff(%rip), %rax # before xchg %ax,%ax.  */
3984 
3985 		  /* Now modify the instruction as appropriate. To
3986 		     turn a leaq into a movq in the form we use it, it
3987 		     suffices to change the second byte from 0x8d to
3988 		     0x8b.  */
3989 		  bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
3990 
3991 		  bfd_put_32 (output_bfd,
3992 			      htab->elf.sgot->output_section->vma
3993 			      + htab->elf.sgot->output_offset + off
3994 			      - rel->r_offset
3995 			      - input_section->output_section->vma
3996 			      - input_section->output_offset
3997 			      - 4,
3998 			      contents + roff);
3999 		  continue;
4000 		}
4001 	      else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4002 		{
4003 		  /* GDesc -> IE transition.
4004 		     It's originally:
4005 		     call *(%rax)
4006 
4007 		     Change it to:
4008 		     xchg %ax, %ax.  */
4009 
4010 		  bfd_put_8 (output_bfd, 0x66, contents + roff);
4011 		  bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4012 		  continue;
4013 		}
4014 	      else
4015 		BFD_ASSERT (FALSE);
4016 	    }
4017 	  break;
4018 
4019 	case R_X86_64_TLSLD:
4020 	  if (! elf_x86_64_tls_transition (info, input_bfd,
4021 					   input_section, contents,
4022 					   symtab_hdr, sym_hashes,
4023 					   &r_type, GOT_UNKNOWN,
4024 					   rel, relend, h, r_symndx))
4025 	    return FALSE;
4026 
4027 	  if (r_type != R_X86_64_TLSLD)
4028 	    {
4029 	      /* LD->LE transition:
4030 		 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
4031 		 For 64bit, we change it into:
4032 		 .word 0x6666; .byte 0x66; movq %fs:0, %rax.
4033 		 For 32bit, we change it into:
4034 		 nopl 0x0(%rax); movl %fs:0, %eax.  */
4035 
4036 	      BFD_ASSERT (r_type == R_X86_64_TPOFF32);
4037 	      if (ABI_64_P (output_bfd))
4038 		memcpy (contents + rel->r_offset - 3,
4039 			"\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
4040 	      else
4041 		memcpy (contents + rel->r_offset - 3,
4042 			"\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0", 12);
4043 	      /* Skip R_X86_64_PC32/R_X86_64_PLT32.  */
4044 	      rel++;
4045 	      continue;
4046 	    }
4047 
4048 	  if (htab->elf.sgot == NULL)
4049 	    abort ();
4050 
4051 	  off = htab->tls_ld_got.offset;
4052 	  if (off & 1)
4053 	    off &= ~1;
4054 	  else
4055 	    {
4056 	      Elf_Internal_Rela outrel;
4057 
4058 	      if (htab->elf.srelgot == NULL)
4059 		abort ();
4060 
4061 	      outrel.r_offset = (htab->elf.sgot->output_section->vma
4062 				 + htab->elf.sgot->output_offset + off);
4063 
4064 	      bfd_put_64 (output_bfd, 0,
4065 			  htab->elf.sgot->contents + off);
4066 	      bfd_put_64 (output_bfd, 0,
4067 			  htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4068 	      outrel.r_info = htab->r_info (0, R_X86_64_DTPMOD64);
4069 	      outrel.r_addend = 0;
4070 	      elf_append_rela (output_bfd, htab->elf.srelgot,
4071 					&outrel);
4072 	      htab->tls_ld_got.offset |= 1;
4073 	    }
4074 	  relocation = htab->elf.sgot->output_section->vma
4075 		       + htab->elf.sgot->output_offset + off;
4076 	  unresolved_reloc = FALSE;
4077 	  break;
4078 
4079 	case R_X86_64_DTPOFF32:
4080 	  if (!info->executable|| (input_section->flags & SEC_CODE) == 0)
4081 	    relocation -= elf_x86_64_dtpoff_base (info);
4082 	  else
4083 	    relocation = elf_x86_64_tpoff (info, relocation);
4084 	  break;
4085 
4086 	case R_X86_64_TPOFF32:
4087 	case R_X86_64_TPOFF64:
4088 	  BFD_ASSERT (info->executable);
4089 	  relocation = elf_x86_64_tpoff (info, relocation);
4090 	  break;
4091 
4092 	default:
4093 	  break;
4094 	}
4095 
4096       /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4097 	 because such sections are not SEC_ALLOC and thus ld.so will
4098 	 not process them.  */
4099       if (unresolved_reloc
4100 	  && !((input_section->flags & SEC_DEBUGGING) != 0
4101 	       && h->def_dynamic)
4102 	  && _bfd_elf_section_offset (output_bfd, info, input_section,
4103 				      rel->r_offset) != (bfd_vma) -1)
4104 	(*_bfd_error_handler)
4105 	  (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4106 	   input_bfd,
4107 	   input_section,
4108 	   (long) rel->r_offset,
4109 	   howto->name,
4110 	   h->root.root.string);
4111 
4112 do_relocation:
4113       r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4114 				    contents, rel->r_offset,
4115 				    relocation, rel->r_addend);
4116 
4117 check_relocation_error:
4118       if (r != bfd_reloc_ok)
4119 	{
4120 	  const char *name;
4121 
4122 	  if (h != NULL)
4123 	    name = h->root.root.string;
4124 	  else
4125 	    {
4126 	      name = bfd_elf_string_from_elf_section (input_bfd,
4127 						      symtab_hdr->sh_link,
4128 						      sym->st_name);
4129 	      if (name == NULL)
4130 		return FALSE;
4131 	      if (*name == '\0')
4132 		name = bfd_section_name (input_bfd, sec);
4133 	    }
4134 
4135 	  if (r == bfd_reloc_overflow)
4136 	    {
4137 	      if (! ((*info->callbacks->reloc_overflow)
4138 		     (info, (h ? &h->root : NULL), name, howto->name,
4139 		      (bfd_vma) 0, input_bfd, input_section,
4140 		      rel->r_offset)))
4141 		return FALSE;
4142 	    }
4143 	  else
4144 	    {
4145 	      (*_bfd_error_handler)
4146 		(_("%B(%A+0x%lx): reloc against `%s': error %d"),
4147 		 input_bfd, input_section,
4148 		 (long) rel->r_offset, name, (int) r);
4149 	      return FALSE;
4150 	    }
4151 	}
4152     }
4153 
4154   return TRUE;
4155 }
4156 
4157 /* Finish up dynamic symbol handling.  We set the contents of various
4158    dynamic sections here.  */
4159 
4160 static bfd_boolean
4161 elf_x86_64_finish_dynamic_symbol (bfd *output_bfd,
4162 				  struct bfd_link_info *info,
4163 				  struct elf_link_hash_entry *h,
4164 				  Elf_Internal_Sym *sym)
4165 {
4166   struct elf_x86_64_link_hash_table *htab;
4167 
4168   htab = elf_x86_64_hash_table (info);
4169   if (htab == NULL)
4170     return FALSE;
4171 
4172   if (h->plt.offset != (bfd_vma) -1)
4173     {
4174       bfd_vma plt_index;
4175       bfd_vma got_offset;
4176       Elf_Internal_Rela rela;
4177       bfd_byte *loc;
4178       asection *plt, *gotplt, *relplt;
4179       const struct elf_backend_data *bed;
4180 
4181       /* When building a static executable, use .iplt, .igot.plt and
4182 	 .rela.iplt sections for STT_GNU_IFUNC symbols.  */
4183       if (htab->elf.splt != NULL)
4184 	{
4185 	  plt = htab->elf.splt;
4186 	  gotplt = htab->elf.sgotplt;
4187 	  relplt = htab->elf.srelplt;
4188 	}
4189       else
4190 	{
4191 	  plt = htab->elf.iplt;
4192 	  gotplt = htab->elf.igotplt;
4193 	  relplt = htab->elf.irelplt;
4194 	}
4195 
4196       /* This symbol has an entry in the procedure linkage table.  Set
4197 	 it up.	 */
4198       if ((h->dynindx == -1
4199 	   && !((h->forced_local || info->executable)
4200 		&& h->def_regular
4201 		&& h->type == STT_GNU_IFUNC))
4202 	  || plt == NULL
4203 	  || gotplt == NULL
4204 	  || relplt == NULL)
4205 	return FALSE;
4206 
4207       /* Get the index in the procedure linkage table which
4208 	 corresponds to this symbol.  This is the index of this symbol
4209 	 in all the symbols for which we are making plt entries.  The
4210 	 first entry in the procedure linkage table is reserved.
4211 
4212 	 Get the offset into the .got table of the entry that
4213 	 corresponds to this function.	Each .got entry is GOT_ENTRY_SIZE
4214 	 bytes. The first three are reserved for the dynamic linker.
4215 
4216 	 For static executables, we don't reserve anything.  */
4217 
4218       if (plt == htab->elf.splt)
4219 	{
4220 	  got_offset = h->plt.offset / PLT_ENTRY_SIZE - 1;
4221 	  got_offset = (got_offset + 3) * GOT_ENTRY_SIZE;
4222 	}
4223       else
4224 	{
4225 	  got_offset = h->plt.offset / PLT_ENTRY_SIZE;
4226 	  got_offset = got_offset * GOT_ENTRY_SIZE;
4227 	}
4228 
4229       /* Fill in the entry in the procedure linkage table.  */
4230       memcpy (plt->contents + h->plt.offset, elf_x86_64_plt_entry,
4231 	      PLT_ENTRY_SIZE);
4232 
4233       /* Insert the relocation positions of the plt section.  The magic
4234 	 numbers at the end of the statements are the positions of the
4235 	 relocations in the plt section.  */
4236       /* Put offset for jmp *name@GOTPCREL(%rip), since the
4237 	 instruction uses 6 bytes, subtract this value.  */
4238       bfd_put_32 (output_bfd,
4239 		      (gotplt->output_section->vma
4240 		       + gotplt->output_offset
4241 		       + got_offset
4242 		       - plt->output_section->vma
4243 		       - plt->output_offset
4244 		       - h->plt.offset
4245 		       - 6),
4246 		  plt->contents + h->plt.offset + 2);
4247 
4248       /* Fill in the entry in the global offset table, initially this
4249 	 points to the pushq instruction in the PLT which is at offset 6.  */
4250       bfd_put_64 (output_bfd, (plt->output_section->vma
4251 			       + plt->output_offset
4252 			       + h->plt.offset + 6),
4253 		  gotplt->contents + got_offset);
4254 
4255       /* Fill in the entry in the .rela.plt section.  */
4256       rela.r_offset = (gotplt->output_section->vma
4257 		       + gotplt->output_offset
4258 		       + got_offset);
4259       if (h->dynindx == -1
4260 	  || ((info->executable
4261 	       || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
4262 	      && h->def_regular
4263 	      && h->type == STT_GNU_IFUNC))
4264 	{
4265 	  /* If an STT_GNU_IFUNC symbol is locally defined, generate
4266 	     R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT.  */
4267 	  rela.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
4268 	  rela.r_addend = (h->root.u.def.value
4269 			   + h->root.u.def.section->output_section->vma
4270 			   + h->root.u.def.section->output_offset);
4271 	  /* R_X86_64_IRELATIVE comes last.  */
4272 	  plt_index = htab->next_irelative_index--;
4273 	}
4274       else
4275 	{
4276 	  rela.r_info = htab->r_info (h->dynindx, R_X86_64_JUMP_SLOT);
4277 	  rela.r_addend = 0;
4278 	  plt_index = htab->next_jump_slot_index++;
4279 	}
4280 
4281       /* Don't fill PLT entry for static executables.  */
4282       if (plt == htab->elf.splt)
4283 	{
4284 	  /* Put relocation index.  */
4285 	  bfd_put_32 (output_bfd, plt_index,
4286 		      plt->contents + h->plt.offset + 7);
4287 	  /* Put offset for jmp .PLT0.  */
4288 	  bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
4289 		      plt->contents + h->plt.offset + 12);
4290 	}
4291 
4292       bed = get_elf_backend_data (output_bfd);
4293       loc = relplt->contents + plt_index * bed->s->sizeof_rela;
4294       bed->s->swap_reloca_out (output_bfd, &rela, loc);
4295 
4296       if (!h->def_regular)
4297 	{
4298 	  /* Mark the symbol as undefined, rather than as defined in
4299 	     the .plt section.  Leave the value if there were any
4300 	     relocations where pointer equality matters (this is a clue
4301 	     for the dynamic linker, to make function pointer
4302 	     comparisons work between an application and shared
4303 	     library), otherwise set it to zero.  If a function is only
4304 	     called from a binary, there is no need to slow down
4305 	     shared libraries because of that.  */
4306 	  sym->st_shndx = SHN_UNDEF;
4307 	  if (!h->pointer_equality_needed)
4308 	    sym->st_value = 0;
4309 	}
4310     }
4311 
4312   if (h->got.offset != (bfd_vma) -1
4313       && ! GOT_TLS_GD_ANY_P (elf_x86_64_hash_entry (h)->tls_type)
4314       && elf_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
4315     {
4316       Elf_Internal_Rela rela;
4317 
4318       /* This symbol has an entry in the global offset table.  Set it
4319 	 up.  */
4320       if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
4321 	abort ();
4322 
4323       rela.r_offset = (htab->elf.sgot->output_section->vma
4324 		       + htab->elf.sgot->output_offset
4325 		       + (h->got.offset &~ (bfd_vma) 1));
4326 
4327       /* If this is a static link, or it is a -Bsymbolic link and the
4328 	 symbol is defined locally or was forced to be local because
4329 	 of a version file, we just want to emit a RELATIVE reloc.
4330 	 The entry in the global offset table will already have been
4331 	 initialized in the relocate_section function.  */
4332       if (h->def_regular
4333 	  && h->type == STT_GNU_IFUNC)
4334 	{
4335 	  if (info->shared)
4336 	    {
4337 	      /* Generate R_X86_64_GLOB_DAT.  */
4338 	      goto do_glob_dat;
4339 	    }
4340 	  else
4341 	    {
4342 	      asection *plt;
4343 
4344 	      if (!h->pointer_equality_needed)
4345 		abort ();
4346 
4347 	      /* For non-shared object, we can't use .got.plt, which
4348 		 contains the real function addres if we need pointer
4349 		 equality.  We load the GOT entry with the PLT entry.  */
4350 	      plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
4351 	      bfd_put_64 (output_bfd, (plt->output_section->vma
4352 				       + plt->output_offset
4353 				       + h->plt.offset),
4354 			  htab->elf.sgot->contents + h->got.offset);
4355 	      return TRUE;
4356 	    }
4357 	}
4358       else if (info->shared
4359 	       && SYMBOL_REFERENCES_LOCAL (info, h))
4360 	{
4361 	  if (!h->def_regular)
4362 	    return FALSE;
4363 	  BFD_ASSERT((h->got.offset & 1) != 0);
4364 	  rela.r_info = htab->r_info (0, R_X86_64_RELATIVE);
4365 	  rela.r_addend = (h->root.u.def.value
4366 			   + h->root.u.def.section->output_section->vma
4367 			   + h->root.u.def.section->output_offset);
4368 	}
4369       else
4370 	{
4371 	  BFD_ASSERT((h->got.offset & 1) == 0);
4372 do_glob_dat:
4373 	  bfd_put_64 (output_bfd, (bfd_vma) 0,
4374 		      htab->elf.sgot->contents + h->got.offset);
4375 	  rela.r_info = htab->r_info (h->dynindx, R_X86_64_GLOB_DAT);
4376 	  rela.r_addend = 0;
4377 	}
4378 
4379       elf_append_rela (output_bfd, htab->elf.srelgot, &rela);
4380     }
4381 
4382   if (h->needs_copy)
4383     {
4384       Elf_Internal_Rela rela;
4385 
4386       /* This symbol needs a copy reloc.  Set it up.  */
4387 
4388       if (h->dynindx == -1
4389 	  || (h->root.type != bfd_link_hash_defined
4390 	      && h->root.type != bfd_link_hash_defweak)
4391 	  || htab->srelbss == NULL)
4392 	abort ();
4393 
4394       rela.r_offset = (h->root.u.def.value
4395 		       + h->root.u.def.section->output_section->vma
4396 		       + h->root.u.def.section->output_offset);
4397       rela.r_info = htab->r_info (h->dynindx, R_X86_64_COPY);
4398       rela.r_addend = 0;
4399       elf_append_rela (output_bfd, htab->srelbss, &rela);
4400     }
4401 
4402   /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  SYM may
4403      be NULL for local symbols.  */
4404   if (sym != NULL
4405       && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4406 	  || h == htab->elf.hgot))
4407     sym->st_shndx = SHN_ABS;
4408 
4409   return TRUE;
4410 }
4411 
4412 /* Finish up local dynamic symbol handling.  We set the contents of
4413    various dynamic sections here.  */
4414 
4415 static bfd_boolean
4416 elf_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
4417 {
4418   struct elf_link_hash_entry *h
4419     = (struct elf_link_hash_entry *) *slot;
4420   struct bfd_link_info *info
4421     = (struct bfd_link_info *) inf;
4422 
4423   return elf_x86_64_finish_dynamic_symbol (info->output_bfd,
4424 					     info, h, NULL);
4425 }
4426 
4427 /* Used to decide how to sort relocs in an optimal manner for the
4428    dynamic linker, before writing them out.  */
4429 
4430 static enum elf_reloc_type_class
4431 elf_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
4432 {
4433   switch ((int) ELF32_R_TYPE (rela->r_info))
4434     {
4435     case R_X86_64_RELATIVE:
4436       return reloc_class_relative;
4437     case R_X86_64_JUMP_SLOT:
4438       return reloc_class_plt;
4439     case R_X86_64_COPY:
4440       return reloc_class_copy;
4441     default:
4442       return reloc_class_normal;
4443     }
4444 }
4445 
4446 /* Finish up the dynamic sections.  */
4447 
4448 static bfd_boolean
4449 elf_x86_64_finish_dynamic_sections (bfd *output_bfd,
4450 				    struct bfd_link_info *info)
4451 {
4452   struct elf_x86_64_link_hash_table *htab;
4453   bfd *dynobj;
4454   asection *sdyn;
4455 
4456   htab = elf_x86_64_hash_table (info);
4457   if (htab == NULL)
4458     return FALSE;
4459 
4460   dynobj = htab->elf.dynobj;
4461   sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4462 
4463   if (htab->elf.dynamic_sections_created)
4464     {
4465       bfd_byte *dyncon, *dynconend;
4466       const struct elf_backend_data *bed;
4467       bfd_size_type sizeof_dyn;
4468 
4469       if (sdyn == NULL || htab->elf.sgot == NULL)
4470 	abort ();
4471 
4472       bed = get_elf_backend_data (dynobj);
4473       sizeof_dyn = bed->s->sizeof_dyn;
4474       dyncon = sdyn->contents;
4475       dynconend = sdyn->contents + sdyn->size;
4476       for (; dyncon < dynconend; dyncon += sizeof_dyn)
4477 	{
4478 	  Elf_Internal_Dyn dyn;
4479 	  asection *s;
4480 
4481 	  (*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn);
4482 
4483 	  switch (dyn.d_tag)
4484 	    {
4485 	    default:
4486 	      continue;
4487 
4488 	    case DT_PLTGOT:
4489 	      s = htab->elf.sgotplt;
4490 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4491 	      break;
4492 
4493 	    case DT_JMPREL:
4494 	      dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
4495 	      break;
4496 
4497 	    case DT_PLTRELSZ:
4498 	      s = htab->elf.srelplt->output_section;
4499 	      dyn.d_un.d_val = s->size;
4500 	      break;
4501 
4502 	    case DT_RELASZ:
4503 	      /* The procedure linkage table relocs (DT_JMPREL) should
4504 		 not be included in the overall relocs (DT_RELA).
4505 		 Therefore, we override the DT_RELASZ entry here to
4506 		 make it not include the JMPREL relocs.  Since the
4507 		 linker script arranges for .rela.plt to follow all
4508 		 other relocation sections, we don't have to worry
4509 		 about changing the DT_RELA entry.  */
4510 	      if (htab->elf.srelplt != NULL)
4511 		{
4512 		  s = htab->elf.srelplt->output_section;
4513 		  dyn.d_un.d_val -= s->size;
4514 		}
4515 	      break;
4516 
4517 	    case DT_TLSDESC_PLT:
4518 	      s = htab->elf.splt;
4519 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4520 		+ htab->tlsdesc_plt;
4521 	      break;
4522 
4523 	    case DT_TLSDESC_GOT:
4524 	      s = htab->elf.sgot;
4525 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4526 		+ htab->tlsdesc_got;
4527 	      break;
4528 	    }
4529 
4530 	  (*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon);
4531 	}
4532 
4533       /* Fill in the special first entry in the procedure linkage table.  */
4534       if (htab->elf.splt && htab->elf.splt->size > 0)
4535 	{
4536 	  /* Fill in the first entry in the procedure linkage table.  */
4537 	  memcpy (htab->elf.splt->contents, elf_x86_64_plt0_entry,
4538 		  PLT_ENTRY_SIZE);
4539 	  /* Add offset for pushq GOT+8(%rip), since the instruction
4540 	     uses 6 bytes subtract this value.  */
4541 	  bfd_put_32 (output_bfd,
4542 		      (htab->elf.sgotplt->output_section->vma
4543 		       + htab->elf.sgotplt->output_offset
4544 		       + 8
4545 		       - htab->elf.splt->output_section->vma
4546 		       - htab->elf.splt->output_offset
4547 		       - 6),
4548 		      htab->elf.splt->contents + 2);
4549 	  /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
4550 	     the end of the instruction.  */
4551 	  bfd_put_32 (output_bfd,
4552 		      (htab->elf.sgotplt->output_section->vma
4553 		       + htab->elf.sgotplt->output_offset
4554 		       + 16
4555 		       - htab->elf.splt->output_section->vma
4556 		       - htab->elf.splt->output_offset
4557 		       - 12),
4558 		      htab->elf.splt->contents + 8);
4559 
4560 	  elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize =
4561 	    PLT_ENTRY_SIZE;
4562 
4563 	  if (htab->tlsdesc_plt)
4564 	    {
4565 	      bfd_put_64 (output_bfd, (bfd_vma) 0,
4566 			  htab->elf.sgot->contents + htab->tlsdesc_got);
4567 
4568 	      memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
4569 		      elf_x86_64_plt0_entry,
4570 		      PLT_ENTRY_SIZE);
4571 
4572 	      /* Add offset for pushq GOT+8(%rip), since the
4573 		 instruction uses 6 bytes subtract this value.  */
4574 	      bfd_put_32 (output_bfd,
4575 			  (htab->elf.sgotplt->output_section->vma
4576 			   + htab->elf.sgotplt->output_offset
4577 			   + 8
4578 			   - htab->elf.splt->output_section->vma
4579 			   - htab->elf.splt->output_offset
4580 			   - htab->tlsdesc_plt
4581 			   - 6),
4582 			  htab->elf.splt->contents + htab->tlsdesc_plt + 2);
4583 	      /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for
4584 		 htab->tlsdesc_got. The 12 is the offset to the end of
4585 		 the instruction.  */
4586 	      bfd_put_32 (output_bfd,
4587 			  (htab->elf.sgot->output_section->vma
4588 			   + htab->elf.sgot->output_offset
4589 			   + htab->tlsdesc_got
4590 			   - htab->elf.splt->output_section->vma
4591 			   - htab->elf.splt->output_offset
4592 			   - htab->tlsdesc_plt
4593 			   - 12),
4594 			  htab->elf.splt->contents + htab->tlsdesc_plt + 8);
4595 	    }
4596 	}
4597     }
4598 
4599   if (htab->elf.sgotplt)
4600     {
4601       if (bfd_is_abs_section (htab->elf.sgotplt->output_section))
4602 	{
4603 	  (*_bfd_error_handler)
4604 	    (_("discarded output section: `%A'"), htab->elf.sgotplt);
4605 	  return FALSE;
4606 	}
4607 
4608       /* Fill in the first three entries in the global offset table.  */
4609       if (htab->elf.sgotplt->size > 0)
4610 	{
4611 	  /* Set the first entry in the global offset table to the address of
4612 	     the dynamic section.  */
4613 	  if (sdyn == NULL)
4614 	    bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
4615 	  else
4616 	    bfd_put_64 (output_bfd,
4617 			sdyn->output_section->vma + sdyn->output_offset,
4618 			htab->elf.sgotplt->contents);
4619 	  /* Write GOT[1] and GOT[2], needed for the dynamic linker.  */
4620 	  bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
4621 	  bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
4622 	}
4623 
4624       elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize =
4625 	GOT_ENTRY_SIZE;
4626     }
4627 
4628   /* Adjust .eh_frame for .plt section.  */
4629   if (htab->plt_eh_frame != NULL)
4630     {
4631       if (htab->elf.splt != NULL
4632 	  && htab->elf.splt->size != 0
4633 	  && (htab->elf.splt->flags & SEC_EXCLUDE) == 0
4634 	  && htab->elf.splt->output_section != NULL
4635 	  && htab->plt_eh_frame->output_section != NULL)
4636 	{
4637 	  bfd_vma plt_start = htab->elf.splt->output_section->vma;
4638 	  bfd_vma eh_frame_start = htab->plt_eh_frame->output_section->vma
4639 				   + htab->plt_eh_frame->output_offset
4640 				   + PLT_FDE_START_OFFSET;
4641 	  bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
4642 			     htab->plt_eh_frame->contents
4643 			     + PLT_FDE_START_OFFSET);
4644 	}
4645       if (htab->plt_eh_frame->sec_info_type
4646 	  == ELF_INFO_TYPE_EH_FRAME)
4647 	{
4648 	  if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
4649 						 htab->plt_eh_frame,
4650 						 htab->plt_eh_frame->contents))
4651 	    return FALSE;
4652 	}
4653     }
4654 
4655   if (htab->elf.sgot && htab->elf.sgot->size > 0)
4656     elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
4657       = GOT_ENTRY_SIZE;
4658 
4659   /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols.  */
4660   htab_traverse (htab->loc_hash_table,
4661 		 elf_x86_64_finish_local_dynamic_symbol,
4662 		 info);
4663 
4664   return TRUE;
4665 }
4666 
4667 /* Return address for Ith PLT stub in section PLT, for relocation REL
4668    or (bfd_vma) -1 if it should not be included.  */
4669 
4670 static bfd_vma
4671 elf_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
4672 			const arelent *rel ATTRIBUTE_UNUSED)
4673 {
4674   return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
4675 }
4676 
4677 /* Handle an x86-64 specific section when reading an object file.  This
4678    is called when elfcode.h finds a section with an unknown type.  */
4679 
4680 static bfd_boolean
4681 elf_x86_64_section_from_shdr (bfd *abfd,
4682 				Elf_Internal_Shdr *hdr,
4683 				const char *name,
4684 				int shindex)
4685 {
4686   if (hdr->sh_type != SHT_X86_64_UNWIND)
4687     return FALSE;
4688 
4689   if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
4690     return FALSE;
4691 
4692   return TRUE;
4693 }
4694 
4695 /* Hook called by the linker routine which adds symbols from an object
4696    file.  We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
4697    of .bss.  */
4698 
4699 static bfd_boolean
4700 elf_x86_64_add_symbol_hook (bfd *abfd,
4701 			    struct bfd_link_info *info,
4702 			    Elf_Internal_Sym *sym,
4703 			    const char **namep ATTRIBUTE_UNUSED,
4704 			    flagword *flagsp ATTRIBUTE_UNUSED,
4705 			    asection **secp,
4706 			    bfd_vma *valp)
4707 {
4708   asection *lcomm;
4709 
4710   switch (sym->st_shndx)
4711     {
4712     case SHN_X86_64_LCOMMON:
4713       lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
4714       if (lcomm == NULL)
4715 	{
4716 	  lcomm = bfd_make_section_with_flags (abfd,
4717 					       "LARGE_COMMON",
4718 					       (SEC_ALLOC
4719 						| SEC_IS_COMMON
4720 						| SEC_LINKER_CREATED));
4721 	  if (lcomm == NULL)
4722 	    return FALSE;
4723 	  elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
4724 	}
4725       *secp = lcomm;
4726       *valp = sym->st_size;
4727       return TRUE;
4728     }
4729 
4730   if ((abfd->flags & DYNAMIC) == 0
4731       && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
4732 	  || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
4733     elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4734 
4735   return TRUE;
4736 }
4737 
4738 
4739 /* Given a BFD section, try to locate the corresponding ELF section
4740    index.  */
4741 
4742 static bfd_boolean
4743 elf_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4744 					 asection *sec, int *index_return)
4745 {
4746   if (sec == &_bfd_elf_large_com_section)
4747     {
4748       *index_return = SHN_X86_64_LCOMMON;
4749       return TRUE;
4750     }
4751   return FALSE;
4752 }
4753 
4754 /* Process a symbol.  */
4755 
4756 static void
4757 elf_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
4758 			      asymbol *asym)
4759 {
4760   elf_symbol_type *elfsym = (elf_symbol_type *) asym;
4761 
4762   switch (elfsym->internal_elf_sym.st_shndx)
4763     {
4764     case SHN_X86_64_LCOMMON:
4765       asym->section = &_bfd_elf_large_com_section;
4766       asym->value = elfsym->internal_elf_sym.st_size;
4767       /* Common symbol doesn't set BSF_GLOBAL.  */
4768       asym->flags &= ~BSF_GLOBAL;
4769       break;
4770     }
4771 }
4772 
4773 static bfd_boolean
4774 elf_x86_64_common_definition (Elf_Internal_Sym *sym)
4775 {
4776   return (sym->st_shndx == SHN_COMMON
4777 	  || sym->st_shndx == SHN_X86_64_LCOMMON);
4778 }
4779 
4780 static unsigned int
4781 elf_x86_64_common_section_index (asection *sec)
4782 {
4783   if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4784     return SHN_COMMON;
4785   else
4786     return SHN_X86_64_LCOMMON;
4787 }
4788 
4789 static asection *
4790 elf_x86_64_common_section (asection *sec)
4791 {
4792   if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4793     return bfd_com_section_ptr;
4794   else
4795     return &_bfd_elf_large_com_section;
4796 }
4797 
4798 static bfd_boolean
4799 elf_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4800 			 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
4801 			 struct elf_link_hash_entry *h,
4802 			 Elf_Internal_Sym *sym,
4803 			 asection **psec,
4804 			 bfd_vma *pvalue ATTRIBUTE_UNUSED,
4805 			 unsigned int *pold_alignment ATTRIBUTE_UNUSED,
4806 			 bfd_boolean *skip ATTRIBUTE_UNUSED,
4807 			 bfd_boolean *override ATTRIBUTE_UNUSED,
4808 			 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
4809 			 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
4810 			 bfd_boolean *newdyn ATTRIBUTE_UNUSED,
4811 			 bfd_boolean *newdef,
4812 			 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
4813 			 bfd_boolean *newweak ATTRIBUTE_UNUSED,
4814 			 bfd *abfd ATTRIBUTE_UNUSED,
4815 			 asection **sec,
4816 			 bfd_boolean *olddyn ATTRIBUTE_UNUSED,
4817 			 bfd_boolean *olddef,
4818 			 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
4819 			 bfd_boolean *oldweak ATTRIBUTE_UNUSED,
4820 			 bfd *oldbfd,
4821 			 asection **oldsec)
4822 {
4823   /* A normal common symbol and a large common symbol result in a
4824      normal common symbol.  We turn the large common symbol into a
4825      normal one.  */
4826   if (!*olddef
4827       && h->root.type == bfd_link_hash_common
4828       && !*newdef
4829       && bfd_is_com_section (*sec)
4830       && *oldsec != *sec)
4831     {
4832       if (sym->st_shndx == SHN_COMMON
4833 	  && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
4834 	{
4835 	  h->root.u.c.p->section
4836 	    = bfd_make_section_old_way (oldbfd, "COMMON");
4837 	  h->root.u.c.p->section->flags = SEC_ALLOC;
4838 	}
4839       else if (sym->st_shndx == SHN_X86_64_LCOMMON
4840 	       && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
4841 	*psec = *sec = bfd_com_section_ptr;
4842     }
4843 
4844   return TRUE;
4845 }
4846 
4847 static int
4848 elf_x86_64_additional_program_headers (bfd *abfd,
4849 				       struct bfd_link_info *info ATTRIBUTE_UNUSED)
4850 {
4851   asection *s;
4852   int count = 0;
4853 
4854   /* Check to see if we need a large readonly segment.  */
4855   s = bfd_get_section_by_name (abfd, ".lrodata");
4856   if (s && (s->flags & SEC_LOAD))
4857     count++;
4858 
4859   /* Check to see if we need a large data segment.  Since .lbss sections
4860      is placed right after the .bss section, there should be no need for
4861      a large data segment just because of .lbss.  */
4862   s = bfd_get_section_by_name (abfd, ".ldata");
4863   if (s && (s->flags & SEC_LOAD))
4864     count++;
4865 
4866   return count;
4867 }
4868 
4869 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section.  */
4870 
4871 static bfd_boolean
4872 elf_x86_64_hash_symbol (struct elf_link_hash_entry *h)
4873 {
4874   if (h->plt.offset != (bfd_vma) -1
4875       && !h->def_regular
4876       && !h->pointer_equality_needed)
4877     return FALSE;
4878 
4879   return _bfd_elf_hash_symbol (h);
4880 }
4881 
4882 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. */
4883 
4884 static bfd_boolean
4885 elf_x86_64_relocs_compatible (const bfd_target *input,
4886 			      const bfd_target *output)
4887 {
4888   return ((xvec_get_elf_backend_data (input)->s->elfclass
4889 	   == xvec_get_elf_backend_data (output)->s->elfclass)
4890 	  && _bfd_elf_relocs_compatible (input, output));
4891 }
4892 
4893 static const struct bfd_elf_special_section
4894   elf_x86_64_special_sections[]=
4895 {
4896   { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS,   SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4897   { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
4898   { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
4899   { STRING_COMMA_LEN (".lbss"),	           -2, SHT_NOBITS,   SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4900   { STRING_COMMA_LEN (".ldata"),	   -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4901   { STRING_COMMA_LEN (".lrodata"),	   -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
4902   { NULL,	                0,          0, 0,            0 }
4903 };
4904 
4905 #define TARGET_LITTLE_SYM		    bfd_elf64_x86_64_vec
4906 #define TARGET_LITTLE_NAME		    "elf64-x86-64"
4907 #define ELF_ARCH			    bfd_arch_i386
4908 #define ELF_TARGET_ID			    X86_64_ELF_DATA
4909 #define ELF_MACHINE_CODE		    EM_X86_64
4910 #define ELF_MAXPAGESIZE			    0x200000
4911 #define ELF_MINPAGESIZE			    0x1000
4912 #define ELF_COMMONPAGESIZE		    0x1000
4913 
4914 #define elf_backend_can_gc_sections	    1
4915 #define elf_backend_can_refcount	    1
4916 #define elf_backend_want_got_plt	    1
4917 #define elf_backend_plt_readonly	    1
4918 #define elf_backend_want_plt_sym	    0
4919 #define elf_backend_got_header_size	    (GOT_ENTRY_SIZE*3)
4920 #define elf_backend_rela_normal		    1
4921 #define elf_backend_plt_alignment           4
4922 
4923 #define elf_info_to_howto		    elf_x86_64_info_to_howto
4924 
4925 #define bfd_elf64_bfd_link_hash_table_create \
4926   elf_x86_64_link_hash_table_create
4927 #define bfd_elf64_bfd_link_hash_table_free \
4928   elf_x86_64_link_hash_table_free
4929 #define bfd_elf64_bfd_reloc_type_lookup	    elf_x86_64_reloc_type_lookup
4930 #define bfd_elf64_bfd_reloc_name_lookup \
4931   elf_x86_64_reloc_name_lookup
4932 
4933 #define elf_backend_adjust_dynamic_symbol   elf_x86_64_adjust_dynamic_symbol
4934 #define elf_backend_relocs_compatible	    elf_x86_64_relocs_compatible
4935 #define elf_backend_check_relocs	    elf_x86_64_check_relocs
4936 #define elf_backend_copy_indirect_symbol    elf_x86_64_copy_indirect_symbol
4937 #define elf_backend_create_dynamic_sections elf_x86_64_create_dynamic_sections
4938 #define elf_backend_finish_dynamic_sections elf_x86_64_finish_dynamic_sections
4939 #define elf_backend_finish_dynamic_symbol   elf_x86_64_finish_dynamic_symbol
4940 #define elf_backend_gc_mark_hook	    elf_x86_64_gc_mark_hook
4941 #define elf_backend_gc_sweep_hook	    elf_x86_64_gc_sweep_hook
4942 #define elf_backend_grok_prstatus	    elf_x86_64_grok_prstatus
4943 #define elf_backend_grok_psinfo		    elf_x86_64_grok_psinfo
4944 #ifdef CORE_HEADER
4945 #define elf_backend_write_core_note	    elf_x86_64_write_core_note
4946 #endif
4947 #define elf_backend_reloc_type_class	    elf_x86_64_reloc_type_class
4948 #define elf_backend_relocate_section	    elf_x86_64_relocate_section
4949 #define elf_backend_size_dynamic_sections   elf_x86_64_size_dynamic_sections
4950 #define elf_backend_always_size_sections    elf_x86_64_always_size_sections
4951 #define elf_backend_init_index_section	    _bfd_elf_init_1_index_section
4952 #define elf_backend_plt_sym_val		    elf_x86_64_plt_sym_val
4953 #define elf_backend_object_p		    elf64_x86_64_elf_object_p
4954 #define bfd_elf64_mkobject		    elf_x86_64_mkobject
4955 
4956 #define elf_backend_section_from_shdr \
4957 	elf_x86_64_section_from_shdr
4958 
4959 #define elf_backend_section_from_bfd_section \
4960   elf_x86_64_elf_section_from_bfd_section
4961 #define elf_backend_add_symbol_hook \
4962   elf_x86_64_add_symbol_hook
4963 #define elf_backend_symbol_processing \
4964   elf_x86_64_symbol_processing
4965 #define elf_backend_common_section_index \
4966   elf_x86_64_common_section_index
4967 #define elf_backend_common_section \
4968   elf_x86_64_common_section
4969 #define elf_backend_common_definition \
4970   elf_x86_64_common_definition
4971 #define elf_backend_merge_symbol \
4972   elf_x86_64_merge_symbol
4973 #define elf_backend_special_sections \
4974   elf_x86_64_special_sections
4975 #define elf_backend_additional_program_headers \
4976   elf_x86_64_additional_program_headers
4977 #define elf_backend_hash_symbol \
4978   elf_x86_64_hash_symbol
4979 
4980 #define elf_backend_post_process_headers  _bfd_elf_set_osabi
4981 
4982 #include "elf64-target.h"
4983 
4984 /* FreeBSD support.  */
4985 
4986 #undef  TARGET_LITTLE_SYM
4987 #define TARGET_LITTLE_SYM		    bfd_elf64_x86_64_freebsd_vec
4988 #undef  TARGET_LITTLE_NAME
4989 #define TARGET_LITTLE_NAME		    "elf64-x86-64-freebsd"
4990 
4991 #undef	ELF_OSABI
4992 #define	ELF_OSABI			    ELFOSABI_FREEBSD
4993 
4994 #undef  elf64_bed
4995 #define elf64_bed elf64_x86_64_fbsd_bed
4996 
4997 #include "elf64-target.h"
4998 
4999 /* Solaris 2 support.  */
5000 
5001 #undef  TARGET_LITTLE_SYM
5002 #define TARGET_LITTLE_SYM		    bfd_elf64_x86_64_sol2_vec
5003 #undef  TARGET_LITTLE_NAME
5004 #define TARGET_LITTLE_NAME		    "elf64-x86-64-sol2"
5005 
5006 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
5007    objects won't be recognized.  */
5008 #undef ELF_OSABI
5009 
5010 #undef  elf64_bed
5011 #define elf64_bed			    elf64_x86_64_sol2_bed
5012 
5013 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
5014    boundary.  */
5015 #undef elf_backend_static_tls_alignment
5016 #define elf_backend_static_tls_alignment    16
5017 
5018 /* The Solaris 2 ABI requires a plt symbol on all platforms.
5019 
5020    Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output
5021    File, p.63.  */
5022 #undef elf_backend_want_plt_sym
5023 #define elf_backend_want_plt_sym	    1
5024 
5025 #include "elf64-target.h"
5026 
5027 /* Intel L1OM support.  */
5028 
5029 static bfd_boolean
5030 elf64_l1om_elf_object_p (bfd *abfd)
5031 {
5032   /* Set the right machine number for an L1OM elf64 file.  */
5033   bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om);
5034   return TRUE;
5035 }
5036 
5037 #undef  TARGET_LITTLE_SYM
5038 #define TARGET_LITTLE_SYM		    bfd_elf64_l1om_vec
5039 #undef  TARGET_LITTLE_NAME
5040 #define TARGET_LITTLE_NAME		    "elf64-l1om"
5041 #undef ELF_ARCH
5042 #define ELF_ARCH			    bfd_arch_l1om
5043 
5044 #undef	ELF_MACHINE_CODE
5045 #define ELF_MACHINE_CODE		    EM_L1OM
5046 
5047 #undef	ELF_OSABI
5048 
5049 #undef  elf64_bed
5050 #define elf64_bed elf64_l1om_bed
5051 
5052 #undef elf_backend_object_p
5053 #define elf_backend_object_p		    elf64_l1om_elf_object_p
5054 
5055 #undef  elf_backend_static_tls_alignment
5056 
5057 #undef elf_backend_want_plt_sym
5058 #define elf_backend_want_plt_sym	    0
5059 
5060 #include "elf64-target.h"
5061 
5062 /* FreeBSD L1OM support.  */
5063 
5064 #undef  TARGET_LITTLE_SYM
5065 #define TARGET_LITTLE_SYM		    bfd_elf64_l1om_freebsd_vec
5066 #undef  TARGET_LITTLE_NAME
5067 #define TARGET_LITTLE_NAME		    "elf64-l1om-freebsd"
5068 
5069 #undef	ELF_OSABI
5070 #define	ELF_OSABI			    ELFOSABI_FREEBSD
5071 
5072 #undef  elf64_bed
5073 #define elf64_bed elf64_l1om_fbsd_bed
5074 
5075 #include "elf64-target.h"
5076 
5077 /* Intel K1OM support.  */
5078 
5079 static bfd_boolean
5080 elf64_k1om_elf_object_p (bfd *abfd)
5081 {
5082   /* Set the right machine number for an K1OM elf64 file.  */
5083   bfd_default_set_arch_mach (abfd, bfd_arch_k1om, bfd_mach_k1om);
5084   return TRUE;
5085 }
5086 
5087 #undef  TARGET_LITTLE_SYM
5088 #define TARGET_LITTLE_SYM		    bfd_elf64_k1om_vec
5089 #undef  TARGET_LITTLE_NAME
5090 #define TARGET_LITTLE_NAME		    "elf64-k1om"
5091 #undef ELF_ARCH
5092 #define ELF_ARCH			    bfd_arch_k1om
5093 
5094 #undef	ELF_MACHINE_CODE
5095 #define ELF_MACHINE_CODE		    EM_K1OM
5096 
5097 #undef	ELF_OSABI
5098 
5099 #undef  elf64_bed
5100 #define elf64_bed elf64_k1om_bed
5101 
5102 #undef elf_backend_object_p
5103 #define elf_backend_object_p		    elf64_k1om_elf_object_p
5104 
5105 #undef  elf_backend_static_tls_alignment
5106 
5107 #undef elf_backend_want_plt_sym
5108 #define elf_backend_want_plt_sym	    0
5109 
5110 #include "elf64-target.h"
5111 
5112 /* FreeBSD K1OM support.  */
5113 
5114 #undef  TARGET_LITTLE_SYM
5115 #define TARGET_LITTLE_SYM		    bfd_elf64_k1om_freebsd_vec
5116 #undef  TARGET_LITTLE_NAME
5117 #define TARGET_LITTLE_NAME		    "elf64-k1om-freebsd"
5118 
5119 #undef	ELF_OSABI
5120 #define	ELF_OSABI			    ELFOSABI_FREEBSD
5121 
5122 #undef  elf64_bed
5123 #define elf64_bed elf64_k1om_fbsd_bed
5124 
5125 #include "elf64-target.h"
5126 
5127 /* 32bit x86-64 support.  */
5128 
5129 static bfd_boolean
5130 elf32_x86_64_elf_object_p (bfd *abfd)
5131 {
5132   /* Set the right machine number for an x86-64 elf32 file.  */
5133   bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32);
5134   return TRUE;
5135 }
5136 
5137 #undef  TARGET_LITTLE_SYM
5138 #define TARGET_LITTLE_SYM		    bfd_elf32_x86_64_vec
5139 #undef  TARGET_LITTLE_NAME
5140 #define TARGET_LITTLE_NAME		    "elf32-x86-64"
5141 
5142 #undef ELF_ARCH
5143 #define ELF_ARCH			    bfd_arch_i386
5144 
5145 #undef	ELF_MACHINE_CODE
5146 #define ELF_MACHINE_CODE		    EM_X86_64
5147 
5148 #define bfd_elf32_bfd_link_hash_table_create \
5149   elf_x86_64_link_hash_table_create
5150 #define bfd_elf32_bfd_link_hash_table_free \
5151   elf_x86_64_link_hash_table_free
5152 #define bfd_elf32_bfd_reloc_type_lookup	\
5153   elf_x86_64_reloc_type_lookup
5154 #define bfd_elf32_bfd_reloc_name_lookup \
5155   elf_x86_64_reloc_name_lookup
5156 #define bfd_elf32_mkobject \
5157   elf_x86_64_mkobject
5158 
5159 #undef	ELF_OSABI
5160 
5161 #undef elf_backend_object_p
5162 #define elf_backend_object_p \
5163   elf32_x86_64_elf_object_p
5164 
5165 #undef elf_backend_bfd_from_remote_memory
5166 #define elf_backend_bfd_from_remote_memory \
5167   _bfd_elf32_bfd_from_remote_memory
5168 
5169 #undef elf_backend_size_info
5170 #define elf_backend_size_info \
5171   _bfd_elf32_size_info
5172 
5173 #include "elf32-target.h"
5174