xref: /dragonfly/contrib/gdb-7/bfd/elflink.c (revision 31524921)
1 /* ELF linking support for BFD.
2    Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3    2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4    Free Software Foundation, Inc.
5 
6    This file is part of BFD, the Binary File Descriptor library.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, write to the Free Software
20    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21    MA 02110-1301, USA.  */
22 
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32 
33 /* This struct is used to pass information to routines called via
34    elf_link_hash_traverse which must return failure.  */
35 
36 struct elf_info_failed
37 {
38   struct bfd_link_info *info;
39   bfd_boolean failed;
40 };
41 
42 /* This structure is used to pass information to
43    _bfd_elf_link_find_version_dependencies.  */
44 
45 struct elf_find_verdep_info
46 {
47   /* General link information.  */
48   struct bfd_link_info *info;
49   /* The number of dependencies.  */
50   unsigned int vers;
51   /* Whether we had a failure.  */
52   bfd_boolean failed;
53 };
54 
55 static bfd_boolean _bfd_elf_fix_symbol_flags
56   (struct elf_link_hash_entry *, struct elf_info_failed *);
57 
58 /* Define a symbol in a dynamic linkage section.  */
59 
60 struct elf_link_hash_entry *
61 _bfd_elf_define_linkage_sym (bfd *abfd,
62 			     struct bfd_link_info *info,
63 			     asection *sec,
64 			     const char *name)
65 {
66   struct elf_link_hash_entry *h;
67   struct bfd_link_hash_entry *bh;
68   const struct elf_backend_data *bed;
69 
70   h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
71   if (h != NULL)
72     {
73       /* Zap symbol defined in an as-needed lib that wasn't linked.
74 	 This is a symptom of a larger problem:  Absolute symbols
75 	 defined in shared libraries can't be overridden, because we
76 	 lose the link to the bfd which is via the symbol section.  */
77       h->root.type = bfd_link_hash_new;
78     }
79 
80   bh = &h->root;
81   if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
82 					 sec, 0, NULL, FALSE,
83 					 get_elf_backend_data (abfd)->collect,
84 					 &bh))
85     return NULL;
86   h = (struct elf_link_hash_entry *) bh;
87   h->def_regular = 1;
88   h->non_elf = 0;
89   h->type = STT_OBJECT;
90   h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91 
92   bed = get_elf_backend_data (abfd);
93   (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94   return h;
95 }
96 
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100   flagword flags;
101   asection *s;
102   struct elf_link_hash_entry *h;
103   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104   struct elf_link_hash_table *htab = elf_hash_table (info);
105 
106   /* This function may be called more than once.  */
107   s = bfd_get_linker_section (abfd, ".got");
108   if (s != NULL)
109     return TRUE;
110 
111   flags = bed->dynamic_sec_flags;
112 
113   s = bfd_make_section_anyway_with_flags (abfd,
114 					  (bed->rela_plts_and_copies_p
115 					   ? ".rela.got" : ".rel.got"),
116 					  (bed->dynamic_sec_flags
117 					   | SEC_READONLY));
118   if (s == NULL
119       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120     return FALSE;
121   htab->srelgot = s;
122 
123   s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
124   if (s == NULL
125       || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126     return FALSE;
127   htab->sgot = s;
128 
129   if (bed->want_got_plt)
130     {
131       s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
132       if (s == NULL
133 	  || !bfd_set_section_alignment (abfd, s,
134 					 bed->s->log_file_align))
135 	return FALSE;
136       htab->sgotplt = s;
137     }
138 
139   /* The first bit of the global offset table is the header.  */
140   s->size += bed->got_header_size;
141 
142   if (bed->want_got_sym)
143     {
144       /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 	 (or .got.plt) section.  We don't do this in the linker script
146 	 because we don't want to define the symbol if we are not creating
147 	 a global offset table.  */
148       h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 				       "_GLOBAL_OFFSET_TABLE_");
150       elf_hash_table (info)->hgot = h;
151       if (h == NULL)
152 	return FALSE;
153     }
154 
155   return TRUE;
156 }
157 
158 /* Create a strtab to hold the dynamic symbol names.  */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162   struct elf_link_hash_table *hash_table;
163 
164   hash_table = elf_hash_table (info);
165   if (hash_table->dynobj == NULL)
166     hash_table->dynobj = abfd;
167 
168   if (hash_table->dynstr == NULL)
169     {
170       hash_table->dynstr = _bfd_elf_strtab_init ();
171       if (hash_table->dynstr == NULL)
172 	return FALSE;
173     }
174   return TRUE;
175 }
176 
177 /* Create some sections which will be filled in with dynamic linking
178    information.  ABFD is an input file which requires dynamic sections
179    to be created.  The dynamic sections take up virtual memory space
180    when the final executable is run, so we need to create them before
181    addresses are assigned to the output sections.  We work out the
182    actual contents and size of these sections later.  */
183 
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187   flagword flags;
188   asection *s;
189   const struct elf_backend_data *bed;
190   struct elf_link_hash_entry *h;
191 
192   if (! is_elf_hash_table (info->hash))
193     return FALSE;
194 
195   if (elf_hash_table (info)->dynamic_sections_created)
196     return TRUE;
197 
198   if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199     return FALSE;
200 
201   abfd = elf_hash_table (info)->dynobj;
202   bed = get_elf_backend_data (abfd);
203 
204   flags = bed->dynamic_sec_flags;
205 
206   /* A dynamically linked executable has a .interp section, but a
207      shared library does not.  */
208   if (info->executable)
209     {
210       s = bfd_make_section_anyway_with_flags (abfd, ".interp",
211 					      flags | SEC_READONLY);
212       if (s == NULL)
213 	return FALSE;
214     }
215 
216   /* Create sections to hold version informations.  These are removed
217      if they are not needed.  */
218   s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
219 					  flags | SEC_READONLY);
220   if (s == NULL
221       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222     return FALSE;
223 
224   s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
225 					  flags | SEC_READONLY);
226   if (s == NULL
227       || ! bfd_set_section_alignment (abfd, s, 1))
228     return FALSE;
229 
230   s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
231 					  flags | SEC_READONLY);
232   if (s == NULL
233       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234     return FALSE;
235 
236   s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
237 					  flags | SEC_READONLY);
238   if (s == NULL
239       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240     return FALSE;
241 
242   s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
243 					  flags | SEC_READONLY);
244   if (s == NULL)
245     return FALSE;
246 
247   s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
248   if (s == NULL
249       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250     return FALSE;
251 
252   /* The special symbol _DYNAMIC is always set to the start of the
253      .dynamic section.  We could set _DYNAMIC in a linker script, but we
254      only want to define it if we are, in fact, creating a .dynamic
255      section.  We don't want to define it if there is no .dynamic
256      section, since on some ELF platforms the start up code examines it
257      to decide how to initialize the process.  */
258   h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
259   elf_hash_table (info)->hdynamic = h;
260   if (h == NULL)
261     return FALSE;
262 
263   if (info->emit_hash)
264     {
265       s = bfd_make_section_anyway_with_flags (abfd, ".hash",
266 					      flags | SEC_READONLY);
267       if (s == NULL
268 	  || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
269 	return FALSE;
270       elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
271     }
272 
273   if (info->emit_gnu_hash)
274     {
275       s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
276 					      flags | SEC_READONLY);
277       if (s == NULL
278 	  || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
279 	return FALSE;
280       /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
281 	 4 32-bit words followed by variable count of 64-bit words, then
282 	 variable count of 32-bit words.  */
283       if (bed->s->arch_size == 64)
284 	elf_section_data (s)->this_hdr.sh_entsize = 0;
285       else
286 	elf_section_data (s)->this_hdr.sh_entsize = 4;
287     }
288 
289   /* Let the backend create the rest of the sections.  This lets the
290      backend set the right flags.  The backend will normally create
291      the .got and .plt sections.  */
292   if (bed->elf_backend_create_dynamic_sections == NULL
293       || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
294     return FALSE;
295 
296   elf_hash_table (info)->dynamic_sections_created = TRUE;
297 
298   return TRUE;
299 }
300 
301 /* Create dynamic sections when linking against a dynamic object.  */
302 
303 bfd_boolean
304 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
305 {
306   flagword flags, pltflags;
307   struct elf_link_hash_entry *h;
308   asection *s;
309   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
310   struct elf_link_hash_table *htab = elf_hash_table (info);
311 
312   /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
313      .rel[a].bss sections.  */
314   flags = bed->dynamic_sec_flags;
315 
316   pltflags = flags;
317   if (bed->plt_not_loaded)
318     /* We do not clear SEC_ALLOC here because we still want the OS to
319        allocate space for the section; it's just that there's nothing
320        to read in from the object file.  */
321     pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
322   else
323     pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
324   if (bed->plt_readonly)
325     pltflags |= SEC_READONLY;
326 
327   s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
328   if (s == NULL
329       || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
330     return FALSE;
331   htab->splt = s;
332 
333   /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
334      .plt section.  */
335   if (bed->want_plt_sym)
336     {
337       h = _bfd_elf_define_linkage_sym (abfd, info, s,
338 				       "_PROCEDURE_LINKAGE_TABLE_");
339       elf_hash_table (info)->hplt = h;
340       if (h == NULL)
341 	return FALSE;
342     }
343 
344   s = bfd_make_section_anyway_with_flags (abfd,
345 					  (bed->rela_plts_and_copies_p
346 					   ? ".rela.plt" : ".rel.plt"),
347 					  flags | SEC_READONLY);
348   if (s == NULL
349       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
350     return FALSE;
351   htab->srelplt = s;
352 
353   if (! _bfd_elf_create_got_section (abfd, info))
354     return FALSE;
355 
356   if (bed->want_dynbss)
357     {
358       /* The .dynbss section is a place to put symbols which are defined
359 	 by dynamic objects, are referenced by regular objects, and are
360 	 not functions.  We must allocate space for them in the process
361 	 image and use a R_*_COPY reloc to tell the dynamic linker to
362 	 initialize them at run time.  The linker script puts the .dynbss
363 	 section into the .bss section of the final image.  */
364       s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
365 					      (SEC_ALLOC | SEC_LINKER_CREATED));
366       if (s == NULL)
367 	return FALSE;
368 
369       /* The .rel[a].bss section holds copy relocs.  This section is not
370 	 normally needed.  We need to create it here, though, so that the
371 	 linker will map it to an output section.  We can't just create it
372 	 only if we need it, because we will not know whether we need it
373 	 until we have seen all the input files, and the first time the
374 	 main linker code calls BFD after examining all the input files
375 	 (size_dynamic_sections) the input sections have already been
376 	 mapped to the output sections.  If the section turns out not to
377 	 be needed, we can discard it later.  We will never need this
378 	 section when generating a shared object, since they do not use
379 	 copy relocs.  */
380       if (! info->shared)
381 	{
382 	  s = bfd_make_section_anyway_with_flags (abfd,
383 						  (bed->rela_plts_and_copies_p
384 						   ? ".rela.bss" : ".rel.bss"),
385 						  flags | SEC_READONLY);
386 	  if (s == NULL
387 	      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
388 	    return FALSE;
389 	}
390     }
391 
392   return TRUE;
393 }
394 
395 /* Record a new dynamic symbol.  We record the dynamic symbols as we
396    read the input files, since we need to have a list of all of them
397    before we can determine the final sizes of the output sections.
398    Note that we may actually call this function even though we are not
399    going to output any dynamic symbols; in some cases we know that a
400    symbol should be in the dynamic symbol table, but only if there is
401    one.  */
402 
403 bfd_boolean
404 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
405 				    struct elf_link_hash_entry *h)
406 {
407   if (h->dynindx == -1)
408     {
409       struct elf_strtab_hash *dynstr;
410       char *p;
411       const char *name;
412       bfd_size_type indx;
413 
414       /* XXX: The ABI draft says the linker must turn hidden and
415 	 internal symbols into STB_LOCAL symbols when producing the
416 	 DSO. However, if ld.so honors st_other in the dynamic table,
417 	 this would not be necessary.  */
418       switch (ELF_ST_VISIBILITY (h->other))
419 	{
420 	case STV_INTERNAL:
421 	case STV_HIDDEN:
422 	  if (h->root.type != bfd_link_hash_undefined
423 	      && h->root.type != bfd_link_hash_undefweak)
424 	    {
425 	      h->forced_local = 1;
426 	      if (!elf_hash_table (info)->is_relocatable_executable)
427 		return TRUE;
428 	    }
429 
430 	default:
431 	  break;
432 	}
433 
434       h->dynindx = elf_hash_table (info)->dynsymcount;
435       ++elf_hash_table (info)->dynsymcount;
436 
437       dynstr = elf_hash_table (info)->dynstr;
438       if (dynstr == NULL)
439 	{
440 	  /* Create a strtab to hold the dynamic symbol names.  */
441 	  elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
442 	  if (dynstr == NULL)
443 	    return FALSE;
444 	}
445 
446       /* We don't put any version information in the dynamic string
447 	 table.  */
448       name = h->root.root.string;
449       p = strchr (name, ELF_VER_CHR);
450       if (p != NULL)
451 	/* We know that the p points into writable memory.  In fact,
452 	   there are only a few symbols that have read-only names, being
453 	   those like _GLOBAL_OFFSET_TABLE_ that are created specially
454 	   by the backends.  Most symbols will have names pointing into
455 	   an ELF string table read from a file, or to objalloc memory.  */
456 	*p = 0;
457 
458       indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
459 
460       if (p != NULL)
461 	*p = ELF_VER_CHR;
462 
463       if (indx == (bfd_size_type) -1)
464 	return FALSE;
465       h->dynstr_index = indx;
466     }
467 
468   return TRUE;
469 }
470 
471 /* Mark a symbol dynamic.  */
472 
473 static void
474 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
475 				  struct elf_link_hash_entry *h,
476 				  Elf_Internal_Sym *sym)
477 {
478   struct bfd_elf_dynamic_list *d = info->dynamic_list;
479 
480   /* It may be called more than once on the same H.  */
481   if(h->dynamic || info->relocatable)
482     return;
483 
484   if ((info->dynamic_data
485        && (h->type == STT_OBJECT
486 	   || (sym != NULL
487 	       && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
488       || (d != NULL
489 	  && h->root.type == bfd_link_hash_new
490 	  && (*d->match) (&d->head, NULL, h->root.root.string)))
491     h->dynamic = 1;
492 }
493 
494 /* Record an assignment to a symbol made by a linker script.  We need
495    this in case some dynamic object refers to this symbol.  */
496 
497 bfd_boolean
498 bfd_elf_record_link_assignment (bfd *output_bfd,
499 				struct bfd_link_info *info,
500 				const char *name,
501 				bfd_boolean provide,
502 				bfd_boolean hidden)
503 {
504   struct elf_link_hash_entry *h, *hv;
505   struct elf_link_hash_table *htab;
506   const struct elf_backend_data *bed;
507 
508   if (!is_elf_hash_table (info->hash))
509     return TRUE;
510 
511   htab = elf_hash_table (info);
512   h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
513   if (h == NULL)
514     return provide;
515 
516   switch (h->root.type)
517     {
518     case bfd_link_hash_defined:
519     case bfd_link_hash_defweak:
520     case bfd_link_hash_common:
521       break;
522     case bfd_link_hash_undefweak:
523     case bfd_link_hash_undefined:
524       /* Since we're defining the symbol, don't let it seem to have not
525 	 been defined.  record_dynamic_symbol and size_dynamic_sections
526 	 may depend on this.  */
527       h->root.type = bfd_link_hash_new;
528       if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
529 	bfd_link_repair_undef_list (&htab->root);
530       break;
531     case bfd_link_hash_new:
532       bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
533       h->non_elf = 0;
534       break;
535     case bfd_link_hash_indirect:
536       /* We had a versioned symbol in a dynamic library.  We make the
537 	 the versioned symbol point to this one.  */
538       bed = get_elf_backend_data (output_bfd);
539       hv = h;
540       while (hv->root.type == bfd_link_hash_indirect
541 	     || hv->root.type == bfd_link_hash_warning)
542 	hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
543       /* We don't need to update h->root.u since linker will set them
544 	 later.  */
545       h->root.type = bfd_link_hash_undefined;
546       hv->root.type = bfd_link_hash_indirect;
547       hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
548       (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
549       break;
550     case bfd_link_hash_warning:
551       abort ();
552       break;
553     }
554 
555   /* If this symbol is being provided by the linker script, and it is
556      currently defined by a dynamic object, but not by a regular
557      object, then mark it as undefined so that the generic linker will
558      force the correct value.  */
559   if (provide
560       && h->def_dynamic
561       && !h->def_regular)
562     h->root.type = bfd_link_hash_undefined;
563 
564   /* If this symbol is not being provided by the linker script, and it is
565      currently defined by a dynamic object, but not by a regular object,
566      then clear out any version information because the symbol will not be
567      associated with the dynamic object any more.  */
568   if (!provide
569       && h->def_dynamic
570       && !h->def_regular)
571     h->verinfo.verdef = NULL;
572 
573   h->def_regular = 1;
574 
575   if (hidden)
576     {
577       bed = get_elf_backend_data (output_bfd);
578       h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
579       (*bed->elf_backend_hide_symbol) (info, h, TRUE);
580     }
581 
582   /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
583      and executables.  */
584   if (!info->relocatable
585       && h->dynindx != -1
586       && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
587 	  || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
588     h->forced_local = 1;
589 
590   if ((h->def_dynamic
591        || h->ref_dynamic
592        || info->shared
593        || (info->executable && elf_hash_table (info)->is_relocatable_executable))
594       && h->dynindx == -1)
595     {
596       if (! bfd_elf_link_record_dynamic_symbol (info, h))
597 	return FALSE;
598 
599       /* If this is a weak defined symbol, and we know a corresponding
600 	 real symbol from the same dynamic object, make sure the real
601 	 symbol is also made into a dynamic symbol.  */
602       if (h->u.weakdef != NULL
603 	  && h->u.weakdef->dynindx == -1)
604 	{
605 	  if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
606 	    return FALSE;
607 	}
608     }
609 
610   return TRUE;
611 }
612 
613 /* Record a new local dynamic symbol.  Returns 0 on failure, 1 on
614    success, and 2 on a failure caused by attempting to record a symbol
615    in a discarded section, eg. a discarded link-once section symbol.  */
616 
617 int
618 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
619 					  bfd *input_bfd,
620 					  long input_indx)
621 {
622   bfd_size_type amt;
623   struct elf_link_local_dynamic_entry *entry;
624   struct elf_link_hash_table *eht;
625   struct elf_strtab_hash *dynstr;
626   unsigned long dynstr_index;
627   char *name;
628   Elf_External_Sym_Shndx eshndx;
629   char esym[sizeof (Elf64_External_Sym)];
630 
631   if (! is_elf_hash_table (info->hash))
632     return 0;
633 
634   /* See if the entry exists already.  */
635   for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
636     if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
637       return 1;
638 
639   amt = sizeof (*entry);
640   entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
641   if (entry == NULL)
642     return 0;
643 
644   /* Go find the symbol, so that we can find it's name.  */
645   if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
646 			     1, input_indx, &entry->isym, esym, &eshndx))
647     {
648       bfd_release (input_bfd, entry);
649       return 0;
650     }
651 
652   if (entry->isym.st_shndx != SHN_UNDEF
653       && entry->isym.st_shndx < SHN_LORESERVE)
654     {
655       asection *s;
656 
657       s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
658       if (s == NULL || bfd_is_abs_section (s->output_section))
659 	{
660 	  /* We can still bfd_release here as nothing has done another
661 	     bfd_alloc.  We can't do this later in this function.  */
662 	  bfd_release (input_bfd, entry);
663 	  return 2;
664 	}
665     }
666 
667   name = (bfd_elf_string_from_elf_section
668 	  (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
669 	   entry->isym.st_name));
670 
671   dynstr = elf_hash_table (info)->dynstr;
672   if (dynstr == NULL)
673     {
674       /* Create a strtab to hold the dynamic symbol names.  */
675       elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
676       if (dynstr == NULL)
677 	return 0;
678     }
679 
680   dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
681   if (dynstr_index == (unsigned long) -1)
682     return 0;
683   entry->isym.st_name = dynstr_index;
684 
685   eht = elf_hash_table (info);
686 
687   entry->next = eht->dynlocal;
688   eht->dynlocal = entry;
689   entry->input_bfd = input_bfd;
690   entry->input_indx = input_indx;
691   eht->dynsymcount++;
692 
693   /* Whatever binding the symbol had before, it's now local.  */
694   entry->isym.st_info
695     = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
696 
697   /* The dynindx will be set at the end of size_dynamic_sections.  */
698 
699   return 1;
700 }
701 
702 /* Return the dynindex of a local dynamic symbol.  */
703 
704 long
705 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
706 				    bfd *input_bfd,
707 				    long input_indx)
708 {
709   struct elf_link_local_dynamic_entry *e;
710 
711   for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
712     if (e->input_bfd == input_bfd && e->input_indx == input_indx)
713       return e->dynindx;
714   return -1;
715 }
716 
717 /* This function is used to renumber the dynamic symbols, if some of
718    them are removed because they are marked as local.  This is called
719    via elf_link_hash_traverse.  */
720 
721 static bfd_boolean
722 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
723 				      void *data)
724 {
725   size_t *count = (size_t *) data;
726 
727   if (h->forced_local)
728     return TRUE;
729 
730   if (h->dynindx != -1)
731     h->dynindx = ++(*count);
732 
733   return TRUE;
734 }
735 
736 
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738    STB_LOCAL binding.  */
739 
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 					    void *data)
743 {
744   size_t *count = (size_t *) data;
745 
746   if (!h->forced_local)
747     return TRUE;
748 
749   if (h->dynindx != -1)
750     h->dynindx = ++(*count);
751 
752   return TRUE;
753 }
754 
755 /* Return true if the dynamic symbol for a given section should be
756    omitted when creating a shared library.  */
757 bfd_boolean
758 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
759 				   struct bfd_link_info *info,
760 				   asection *p)
761 {
762   struct elf_link_hash_table *htab;
763 
764   switch (elf_section_data (p)->this_hdr.sh_type)
765     {
766     case SHT_PROGBITS:
767     case SHT_NOBITS:
768       /* If sh_type is yet undecided, assume it could be
769 	 SHT_PROGBITS/SHT_NOBITS.  */
770     case SHT_NULL:
771       htab = elf_hash_table (info);
772       if (p == htab->tls_sec)
773 	return FALSE;
774 
775       if (htab->text_index_section != NULL)
776 	return p != htab->text_index_section && p != htab->data_index_section;
777 
778       if (strcmp (p->name, ".got") == 0
779 	  || strcmp (p->name, ".got.plt") == 0
780 	  || strcmp (p->name, ".plt") == 0)
781 	{
782 	  asection *ip;
783 
784 	  if (htab->dynobj != NULL
785 	      && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
786 	      && ip->output_section == p)
787 	    return TRUE;
788 	}
789       return FALSE;
790 
791       /* There shouldn't be section relative relocations
792 	 against any other section.  */
793     default:
794       return TRUE;
795     }
796 }
797 
798 /* Assign dynsym indices.  In a shared library we generate a section
799    symbol for each output section, which come first.  Next come symbols
800    which have been forced to local binding.  Then all of the back-end
801    allocated local dynamic syms, followed by the rest of the global
802    symbols.  */
803 
804 static unsigned long
805 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
806 				struct bfd_link_info *info,
807 				unsigned long *section_sym_count)
808 {
809   unsigned long dynsymcount = 0;
810 
811   if (info->shared || elf_hash_table (info)->is_relocatable_executable)
812     {
813       const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
814       asection *p;
815       for (p = output_bfd->sections; p ; p = p->next)
816 	if ((p->flags & SEC_EXCLUDE) == 0
817 	    && (p->flags & SEC_ALLOC) != 0
818 	    && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
819 	  elf_section_data (p)->dynindx = ++dynsymcount;
820 	else
821 	  elf_section_data (p)->dynindx = 0;
822     }
823   *section_sym_count = dynsymcount;
824 
825   elf_link_hash_traverse (elf_hash_table (info),
826 			  elf_link_renumber_local_hash_table_dynsyms,
827 			  &dynsymcount);
828 
829   if (elf_hash_table (info)->dynlocal)
830     {
831       struct elf_link_local_dynamic_entry *p;
832       for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
833 	p->dynindx = ++dynsymcount;
834     }
835 
836   elf_link_hash_traverse (elf_hash_table (info),
837 			  elf_link_renumber_hash_table_dynsyms,
838 			  &dynsymcount);
839 
840   /* There is an unused NULL entry at the head of the table which
841      we must account for in our count.  Unless there weren't any
842      symbols, which means we'll have no table at all.  */
843   if (dynsymcount != 0)
844     ++dynsymcount;
845 
846   elf_hash_table (info)->dynsymcount = dynsymcount;
847   return dynsymcount;
848 }
849 
850 /* Merge st_other field.  */
851 
852 static void
853 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
854 		    Elf_Internal_Sym *isym, bfd_boolean definition,
855 		    bfd_boolean dynamic)
856 {
857   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
858 
859   /* If st_other has a processor-specific meaning, specific
860      code might be needed here. We never merge the visibility
861      attribute with the one from a dynamic object.  */
862   if (bed->elf_backend_merge_symbol_attribute)
863     (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
864 						dynamic);
865 
866   /* If this symbol has default visibility and the user has requested
867      we not re-export it, then mark it as hidden.  */
868   if (definition
869       && !dynamic
870       && (abfd->no_export
871 	  || (abfd->my_archive && abfd->my_archive->no_export))
872       && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
873     isym->st_other = (STV_HIDDEN
874 		      | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
875 
876   if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
877     {
878       unsigned char hvis, symvis, other, nvis;
879 
880       /* Only merge the visibility. Leave the remainder of the
881 	 st_other field to elf_backend_merge_symbol_attribute.  */
882       other = h->other & ~ELF_ST_VISIBILITY (-1);
883 
884       /* Combine visibilities, using the most constraining one.  */
885       hvis = ELF_ST_VISIBILITY (h->other);
886       symvis = ELF_ST_VISIBILITY (isym->st_other);
887       if (! hvis)
888 	nvis = symvis;
889       else if (! symvis)
890 	nvis = hvis;
891       else
892 	nvis = hvis < symvis ? hvis : symvis;
893 
894       h->other = other | nvis;
895     }
896 }
897 
898 /* This function is called when we want to define a new symbol.  It
899    handles the various cases which arise when we find a definition in
900    a dynamic object, or when there is already a definition in a
901    dynamic object.  The new symbol is described by NAME, SYM, PSEC,
902    and PVALUE.  We set SYM_HASH to the hash table entry.  We set
903    OVERRIDE if the old symbol is overriding a new definition.  We set
904    TYPE_CHANGE_OK if it is OK for the type to change.  We set
905    SIZE_CHANGE_OK if it is OK for the size to change.  By OK to
906    change, we mean that we shouldn't warn if the type or size does
907    change.  We set POLD_ALIGNMENT if an old common symbol in a dynamic
908    object is overridden by a regular object.  */
909 
910 bfd_boolean
911 _bfd_elf_merge_symbol (bfd *abfd,
912 		       struct bfd_link_info *info,
913 		       const char *name,
914 		       Elf_Internal_Sym *sym,
915 		       asection **psec,
916 		       bfd_vma *pvalue,
917 		       bfd_boolean *pold_weak,
918 		       unsigned int *pold_alignment,
919 		       struct elf_link_hash_entry **sym_hash,
920 		       bfd_boolean *skip,
921 		       bfd_boolean *override,
922 		       bfd_boolean *type_change_ok,
923 		       bfd_boolean *size_change_ok)
924 {
925   asection *sec, *oldsec;
926   struct elf_link_hash_entry *h;
927   struct elf_link_hash_entry *hi;
928   struct elf_link_hash_entry *flip;
929   int bind;
930   bfd *oldbfd;
931   bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
932   bfd_boolean newweak, oldweak, newfunc, oldfunc;
933   const struct elf_backend_data *bed;
934 
935   *skip = FALSE;
936   *override = FALSE;
937 
938   sec = *psec;
939   bind = ELF_ST_BIND (sym->st_info);
940 
941   /* Silently discard TLS symbols from --just-syms.  There's no way to
942      combine a static TLS block with a new TLS block for this executable.  */
943   if (ELF_ST_TYPE (sym->st_info) == STT_TLS
944       && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
945     {
946       *skip = TRUE;
947       return TRUE;
948     }
949 
950   if (! bfd_is_und_section (sec))
951     h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
952   else
953     h = ((struct elf_link_hash_entry *)
954 	 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
955   if (h == NULL)
956     return FALSE;
957   *sym_hash = h;
958 
959   bed = get_elf_backend_data (abfd);
960 
961   /* This code is for coping with dynamic objects, and is only useful
962      if we are doing an ELF link.  */
963   if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
964     return TRUE;
965 
966   /* For merging, we only care about real symbols.  But we need to make
967      sure that indirect symbol dynamic flags are updated.  */
968   hi = h;
969   while (h->root.type == bfd_link_hash_indirect
970 	 || h->root.type == bfd_link_hash_warning)
971     h = (struct elf_link_hash_entry *) h->root.u.i.link;
972 
973   /* We have to check it for every instance since the first few may be
974      references and not all compilers emit symbol type for undefined
975      symbols.  */
976   bfd_elf_link_mark_dynamic_symbol (info, h, sym);
977 
978   /* NEWDYN and OLDDYN indicate whether the new or old symbol,
979      respectively, is from a dynamic object.  */
980 
981   newdyn = (abfd->flags & DYNAMIC) != 0;
982 
983   /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
984      syms and defined syms in dynamic libraries respectively.
985      ref_dynamic on the other hand can be set for a symbol defined in
986      a dynamic library, and def_dynamic may not be set;  When the
987      definition in a dynamic lib is overridden by a definition in the
988      executable use of the symbol in the dynamic lib becomes a
989      reference to the executable symbol.  */
990   if (newdyn)
991     {
992       if (bfd_is_und_section (sec))
993 	{
994 	  if (bind != STB_WEAK)
995 	    {
996 	      h->ref_dynamic_nonweak = 1;
997 	      hi->ref_dynamic_nonweak = 1;
998 	    }
999 	}
1000       else
1001 	{
1002 	  h->dynamic_def = 1;
1003 	  hi->dynamic_def = 1;
1004 	}
1005     }
1006 
1007   /* If we just created the symbol, mark it as being an ELF symbol.
1008      Other than that, there is nothing to do--there is no merge issue
1009      with a newly defined symbol--so we just return.  */
1010 
1011   if (h->root.type == bfd_link_hash_new)
1012     {
1013       h->non_elf = 0;
1014       return TRUE;
1015     }
1016 
1017   /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1018      existing symbol.  */
1019 
1020   switch (h->root.type)
1021     {
1022     default:
1023       oldbfd = NULL;
1024       oldsec = NULL;
1025       break;
1026 
1027     case bfd_link_hash_undefined:
1028     case bfd_link_hash_undefweak:
1029       oldbfd = h->root.u.undef.abfd;
1030       oldsec = NULL;
1031       break;
1032 
1033     case bfd_link_hash_defined:
1034     case bfd_link_hash_defweak:
1035       oldbfd = h->root.u.def.section->owner;
1036       oldsec = h->root.u.def.section;
1037       break;
1038 
1039     case bfd_link_hash_common:
1040       oldbfd = h->root.u.c.p->section->owner;
1041       oldsec = h->root.u.c.p->section;
1042       break;
1043     }
1044 
1045   /* Differentiate strong and weak symbols.  */
1046   newweak = bind == STB_WEAK;
1047   oldweak = (h->root.type == bfd_link_hash_defweak
1048 	     || h->root.type == bfd_link_hash_undefweak);
1049   if (pold_weak)
1050     *pold_weak = oldweak;
1051 
1052   /* In cases involving weak versioned symbols, we may wind up trying
1053      to merge a symbol with itself.  Catch that here, to avoid the
1054      confusion that results if we try to override a symbol with
1055      itself.  The additional tests catch cases like
1056      _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1057      dynamic object, which we do want to handle here.  */
1058   if (abfd == oldbfd
1059       && (newweak || oldweak)
1060       && ((abfd->flags & DYNAMIC) == 0
1061 	  || !h->def_regular))
1062     return TRUE;
1063 
1064   olddyn = FALSE;
1065   if (oldbfd != NULL)
1066     olddyn = (oldbfd->flags & DYNAMIC) != 0;
1067   else if (oldsec != NULL)
1068     {
1069       /* This handles the special SHN_MIPS_{TEXT,DATA} section
1070 	 indices used by MIPS ELF.  */
1071       olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1072     }
1073 
1074   /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1075      respectively, appear to be a definition rather than reference.  */
1076 
1077   newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1078 
1079   olddef = (h->root.type != bfd_link_hash_undefined
1080 	    && h->root.type != bfd_link_hash_undefweak
1081 	    && h->root.type != bfd_link_hash_common);
1082 
1083   /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1084      respectively, appear to be a function.  */
1085 
1086   newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1087 	     && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1088 
1089   oldfunc = (h->type != STT_NOTYPE
1090 	     && bed->is_function_type (h->type));
1091 
1092   /* When we try to create a default indirect symbol from the dynamic
1093      definition with the default version, we skip it if its type and
1094      the type of existing regular definition mismatch.  We only do it
1095      if the existing regular definition won't be dynamic.  */
1096   if (pold_alignment == NULL
1097       && !info->shared
1098       && !info->export_dynamic
1099       && !h->ref_dynamic
1100       && newdyn
1101       && newdef
1102       && !olddyn
1103       && (olddef || h->root.type == bfd_link_hash_common)
1104       && ELF_ST_TYPE (sym->st_info) != h->type
1105       && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1106       && h->type != STT_NOTYPE
1107       && !(newfunc && oldfunc))
1108     {
1109       *skip = TRUE;
1110       return TRUE;
1111     }
1112 
1113   /* Plugin symbol type isn't currently set.  Stop bogus errors.  */
1114   if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1115     *type_change_ok = TRUE;
1116 
1117   /* Check TLS symbol.  We don't check undefined symbol introduced by
1118      "ld -u".  */
1119   else if (oldbfd != NULL
1120 	   && ELF_ST_TYPE (sym->st_info) != h->type
1121 	   && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1122     {
1123       bfd *ntbfd, *tbfd;
1124       bfd_boolean ntdef, tdef;
1125       asection *ntsec, *tsec;
1126 
1127       if (h->type == STT_TLS)
1128 	{
1129 	  ntbfd = abfd;
1130 	  ntsec = sec;
1131 	  ntdef = newdef;
1132 	  tbfd = oldbfd;
1133 	  tsec = oldsec;
1134 	  tdef = olddef;
1135 	}
1136       else
1137 	{
1138 	  ntbfd = oldbfd;
1139 	  ntsec = oldsec;
1140 	  ntdef = olddef;
1141 	  tbfd = abfd;
1142 	  tsec = sec;
1143 	  tdef = newdef;
1144 	}
1145 
1146       if (tdef && ntdef)
1147 	(*_bfd_error_handler)
1148 	  (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1149 	   tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1150       else if (!tdef && !ntdef)
1151 	(*_bfd_error_handler)
1152 	  (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1153 	   tbfd, ntbfd, h->root.root.string);
1154       else if (tdef)
1155 	(*_bfd_error_handler)
1156 	  (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1157 	   tbfd, tsec, ntbfd, h->root.root.string);
1158       else
1159 	(*_bfd_error_handler)
1160 	  (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1161 	   tbfd, ntbfd, ntsec, h->root.root.string);
1162 
1163       bfd_set_error (bfd_error_bad_value);
1164       return FALSE;
1165     }
1166 
1167   /* If the old symbol has non-default visibility, we ignore the new
1168      definition from a dynamic object.  */
1169   if (newdyn
1170       && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1171       && !bfd_is_und_section (sec))
1172     {
1173       *skip = TRUE;
1174       /* Make sure this symbol is dynamic.  */
1175       h->ref_dynamic = 1;
1176       hi->ref_dynamic = 1;
1177       /* A protected symbol has external availability. Make sure it is
1178 	 recorded as dynamic.
1179 
1180 	 FIXME: Should we check type and size for protected symbol?  */
1181       if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1182 	return bfd_elf_link_record_dynamic_symbol (info, h);
1183       else
1184 	return TRUE;
1185     }
1186   else if (!newdyn
1187 	   && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1188 	   && h->def_dynamic)
1189     {
1190       /* If the new symbol with non-default visibility comes from a
1191 	 relocatable file and the old definition comes from a dynamic
1192 	 object, we remove the old definition.  */
1193       if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1194 	{
1195 	  /* Handle the case where the old dynamic definition is
1196 	     default versioned.  We need to copy the symbol info from
1197 	     the symbol with default version to the normal one if it
1198 	     was referenced before.  */
1199 	  if (h->ref_regular)
1200 	    {
1201 	      struct elf_link_hash_entry *vh = *sym_hash;
1202 
1203 	      vh->root.type = h->root.type;
1204 	      h->root.type = bfd_link_hash_indirect;
1205 	      (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1206 
1207 	      h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1208 	      if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1209 		{
1210 		  /* If the new symbol is hidden or internal, completely undo
1211 		     any dynamic link state.  */
1212 		  (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1213 		  h->forced_local = 0;
1214 		  h->ref_dynamic = 0;
1215 		}
1216 	      else
1217 		h->ref_dynamic = 1;
1218 
1219 	      h->def_dynamic = 0;
1220 	      /* FIXME: Should we check type and size for protected symbol?  */
1221 	      h->size = 0;
1222 	      h->type = 0;
1223 
1224 	      h = vh;
1225 	    }
1226 	  else
1227 	    h = *sym_hash;
1228 	}
1229 
1230       /* If the old symbol was undefined before, then it will still be
1231 	 on the undefs list.  If the new symbol is undefined or
1232 	 common, we can't make it bfd_link_hash_new here, because new
1233 	 undefined or common symbols will be added to the undefs list
1234 	 by _bfd_generic_link_add_one_symbol.  Symbols may not be
1235 	 added twice to the undefs list.  Also, if the new symbol is
1236 	 undefweak then we don't want to lose the strong undef.  */
1237       if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1238 	{
1239 	  h->root.type = bfd_link_hash_undefined;
1240 	  h->root.u.undef.abfd = abfd;
1241 	}
1242       else
1243 	{
1244 	  h->root.type = bfd_link_hash_new;
1245 	  h->root.u.undef.abfd = NULL;
1246 	}
1247 
1248       if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1249 	{
1250 	  /* If the new symbol is hidden or internal, completely undo
1251 	     any dynamic link state.  */
1252 	  (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1253 	  h->forced_local = 0;
1254 	  h->ref_dynamic = 0;
1255 	}
1256       else
1257 	h->ref_dynamic = 1;
1258       h->def_dynamic = 0;
1259       /* FIXME: Should we check type and size for protected symbol?  */
1260       h->size = 0;
1261       h->type = 0;
1262       return TRUE;
1263     }
1264 
1265   /* If a new weak symbol definition comes from a regular file and the
1266      old symbol comes from a dynamic library, we treat the new one as
1267      strong.  Similarly, an old weak symbol definition from a regular
1268      file is treated as strong when the new symbol comes from a dynamic
1269      library.  Further, an old weak symbol from a dynamic library is
1270      treated as strong if the new symbol is from a dynamic library.
1271      This reflects the way glibc's ld.so works.
1272 
1273      Do this before setting *type_change_ok or *size_change_ok so that
1274      we warn properly when dynamic library symbols are overridden.  */
1275 
1276   if (newdef && !newdyn && olddyn)
1277     newweak = FALSE;
1278   if (olddef && newdyn)
1279     oldweak = FALSE;
1280 
1281   /* Allow changes between different types of function symbol.  */
1282   if (newfunc && oldfunc)
1283     *type_change_ok = TRUE;
1284 
1285   /* It's OK to change the type if either the existing symbol or the
1286      new symbol is weak.  A type change is also OK if the old symbol
1287      is undefined and the new symbol is defined.  */
1288 
1289   if (oldweak
1290       || newweak
1291       || (newdef
1292 	  && h->root.type == bfd_link_hash_undefined))
1293     *type_change_ok = TRUE;
1294 
1295   /* It's OK to change the size if either the existing symbol or the
1296      new symbol is weak, or if the old symbol is undefined.  */
1297 
1298   if (*type_change_ok
1299       || h->root.type == bfd_link_hash_undefined)
1300     *size_change_ok = TRUE;
1301 
1302   /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1303      symbol, respectively, appears to be a common symbol in a dynamic
1304      object.  If a symbol appears in an uninitialized section, and is
1305      not weak, and is not a function, then it may be a common symbol
1306      which was resolved when the dynamic object was created.  We want
1307      to treat such symbols specially, because they raise special
1308      considerations when setting the symbol size: if the symbol
1309      appears as a common symbol in a regular object, and the size in
1310      the regular object is larger, we must make sure that we use the
1311      larger size.  This problematic case can always be avoided in C,
1312      but it must be handled correctly when using Fortran shared
1313      libraries.
1314 
1315      Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1316      likewise for OLDDYNCOMMON and OLDDEF.
1317 
1318      Note that this test is just a heuristic, and that it is quite
1319      possible to have an uninitialized symbol in a shared object which
1320      is really a definition, rather than a common symbol.  This could
1321      lead to some minor confusion when the symbol really is a common
1322      symbol in some regular object.  However, I think it will be
1323      harmless.  */
1324 
1325   if (newdyn
1326       && newdef
1327       && !newweak
1328       && (sec->flags & SEC_ALLOC) != 0
1329       && (sec->flags & SEC_LOAD) == 0
1330       && sym->st_size > 0
1331       && !newfunc)
1332     newdyncommon = TRUE;
1333   else
1334     newdyncommon = FALSE;
1335 
1336   if (olddyn
1337       && olddef
1338       && h->root.type == bfd_link_hash_defined
1339       && h->def_dynamic
1340       && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1341       && (h->root.u.def.section->flags & SEC_LOAD) == 0
1342       && h->size > 0
1343       && !oldfunc)
1344     olddyncommon = TRUE;
1345   else
1346     olddyncommon = FALSE;
1347 
1348   /* We now know everything about the old and new symbols.  We ask the
1349      backend to check if we can merge them.  */
1350   if (bed->merge_symbol
1351       && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1352 			     pold_alignment, skip, override,
1353 			     type_change_ok, size_change_ok,
1354 			     &newdyn, &newdef, &newdyncommon, &newweak,
1355 			     abfd, &sec,
1356 			     &olddyn, &olddef, &olddyncommon, &oldweak,
1357 			     oldbfd, &oldsec))
1358     return FALSE;
1359 
1360   /* If both the old and the new symbols look like common symbols in a
1361      dynamic object, set the size of the symbol to the larger of the
1362      two.  */
1363 
1364   if (olddyncommon
1365       && newdyncommon
1366       && sym->st_size != h->size)
1367     {
1368       /* Since we think we have two common symbols, issue a multiple
1369 	 common warning if desired.  Note that we only warn if the
1370 	 size is different.  If the size is the same, we simply let
1371 	 the old symbol override the new one as normally happens with
1372 	 symbols defined in dynamic objects.  */
1373 
1374       if (! ((*info->callbacks->multiple_common)
1375 	     (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1376 	return FALSE;
1377 
1378       if (sym->st_size > h->size)
1379 	h->size = sym->st_size;
1380 
1381       *size_change_ok = TRUE;
1382     }
1383 
1384   /* If we are looking at a dynamic object, and we have found a
1385      definition, we need to see if the symbol was already defined by
1386      some other object.  If so, we want to use the existing
1387      definition, and we do not want to report a multiple symbol
1388      definition error; we do this by clobbering *PSEC to be
1389      bfd_und_section_ptr.
1390 
1391      We treat a common symbol as a definition if the symbol in the
1392      shared library is a function, since common symbols always
1393      represent variables; this can cause confusion in principle, but
1394      any such confusion would seem to indicate an erroneous program or
1395      shared library.  We also permit a common symbol in a regular
1396      object to override a weak symbol in a shared object.  */
1397 
1398   if (newdyn
1399       && newdef
1400       && (olddef
1401 	  || (h->root.type == bfd_link_hash_common
1402 	      && (newweak || newfunc))))
1403     {
1404       *override = TRUE;
1405       newdef = FALSE;
1406       newdyncommon = FALSE;
1407 
1408       *psec = sec = bfd_und_section_ptr;
1409       *size_change_ok = TRUE;
1410 
1411       /* If we get here when the old symbol is a common symbol, then
1412 	 we are explicitly letting it override a weak symbol or
1413 	 function in a dynamic object, and we don't want to warn about
1414 	 a type change.  If the old symbol is a defined symbol, a type
1415 	 change warning may still be appropriate.  */
1416 
1417       if (h->root.type == bfd_link_hash_common)
1418 	*type_change_ok = TRUE;
1419     }
1420 
1421   /* Handle the special case of an old common symbol merging with a
1422      new symbol which looks like a common symbol in a shared object.
1423      We change *PSEC and *PVALUE to make the new symbol look like a
1424      common symbol, and let _bfd_generic_link_add_one_symbol do the
1425      right thing.  */
1426 
1427   if (newdyncommon
1428       && h->root.type == bfd_link_hash_common)
1429     {
1430       *override = TRUE;
1431       newdef = FALSE;
1432       newdyncommon = FALSE;
1433       *pvalue = sym->st_size;
1434       *psec = sec = bed->common_section (oldsec);
1435       *size_change_ok = TRUE;
1436     }
1437 
1438   /* Skip weak definitions of symbols that are already defined.  */
1439   if (newdef && olddef && newweak)
1440     {
1441       /* Don't skip new non-IR weak syms.  */
1442       if (!(oldbfd != NULL
1443 	    && (oldbfd->flags & BFD_PLUGIN) != 0
1444 	    && (abfd->flags & BFD_PLUGIN) == 0))
1445 	*skip = TRUE;
1446 
1447       /* Merge st_other.  If the symbol already has a dynamic index,
1448 	 but visibility says it should not be visible, turn it into a
1449 	 local symbol.  */
1450       elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1451       if (h->dynindx != -1)
1452 	switch (ELF_ST_VISIBILITY (h->other))
1453 	  {
1454 	  case STV_INTERNAL:
1455 	  case STV_HIDDEN:
1456 	    (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1457 	    break;
1458 	  }
1459     }
1460 
1461   /* If the old symbol is from a dynamic object, and the new symbol is
1462      a definition which is not from a dynamic object, then the new
1463      symbol overrides the old symbol.  Symbols from regular files
1464      always take precedence over symbols from dynamic objects, even if
1465      they are defined after the dynamic object in the link.
1466 
1467      As above, we again permit a common symbol in a regular object to
1468      override a definition in a shared object if the shared object
1469      symbol is a function or is weak.  */
1470 
1471   flip = NULL;
1472   if (!newdyn
1473       && (newdef
1474 	  || (bfd_is_com_section (sec)
1475 	      && (oldweak || oldfunc)))
1476       && olddyn
1477       && olddef
1478       && h->def_dynamic)
1479     {
1480       /* Change the hash table entry to undefined, and let
1481 	 _bfd_generic_link_add_one_symbol do the right thing with the
1482 	 new definition.  */
1483 
1484       h->root.type = bfd_link_hash_undefined;
1485       h->root.u.undef.abfd = h->root.u.def.section->owner;
1486       *size_change_ok = TRUE;
1487 
1488       olddef = FALSE;
1489       olddyncommon = FALSE;
1490 
1491       /* We again permit a type change when a common symbol may be
1492 	 overriding a function.  */
1493 
1494       if (bfd_is_com_section (sec))
1495 	{
1496 	  if (oldfunc)
1497 	    {
1498 	      /* If a common symbol overrides a function, make sure
1499 		 that it isn't defined dynamically nor has type
1500 		 function.  */
1501 	      h->def_dynamic = 0;
1502 	      h->type = STT_NOTYPE;
1503 	    }
1504 	  *type_change_ok = TRUE;
1505 	}
1506 
1507       if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1508 	flip = *sym_hash;
1509       else
1510 	/* This union may have been set to be non-NULL when this symbol
1511 	   was seen in a dynamic object.  We must force the union to be
1512 	   NULL, so that it is correct for a regular symbol.  */
1513 	h->verinfo.vertree = NULL;
1514     }
1515 
1516   /* Handle the special case of a new common symbol merging with an
1517      old symbol that looks like it might be a common symbol defined in
1518      a shared object.  Note that we have already handled the case in
1519      which a new common symbol should simply override the definition
1520      in the shared library.  */
1521 
1522   if (! newdyn
1523       && bfd_is_com_section (sec)
1524       && olddyncommon)
1525     {
1526       /* It would be best if we could set the hash table entry to a
1527 	 common symbol, but we don't know what to use for the section
1528 	 or the alignment.  */
1529       if (! ((*info->callbacks->multiple_common)
1530 	     (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1531 	return FALSE;
1532 
1533       /* If the presumed common symbol in the dynamic object is
1534 	 larger, pretend that the new symbol has its size.  */
1535 
1536       if (h->size > *pvalue)
1537 	*pvalue = h->size;
1538 
1539       /* We need to remember the alignment required by the symbol
1540 	 in the dynamic object.  */
1541       BFD_ASSERT (pold_alignment);
1542       *pold_alignment = h->root.u.def.section->alignment_power;
1543 
1544       olddef = FALSE;
1545       olddyncommon = FALSE;
1546 
1547       h->root.type = bfd_link_hash_undefined;
1548       h->root.u.undef.abfd = h->root.u.def.section->owner;
1549 
1550       *size_change_ok = TRUE;
1551       *type_change_ok = TRUE;
1552 
1553       if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1554 	flip = *sym_hash;
1555       else
1556 	h->verinfo.vertree = NULL;
1557     }
1558 
1559   if (flip != NULL)
1560     {
1561       /* Handle the case where we had a versioned symbol in a dynamic
1562 	 library and now find a definition in a normal object.  In this
1563 	 case, we make the versioned symbol point to the normal one.  */
1564       flip->root.type = h->root.type;
1565       flip->root.u.undef.abfd = h->root.u.undef.abfd;
1566       h->root.type = bfd_link_hash_indirect;
1567       h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1568       (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1569       if (h->def_dynamic)
1570 	{
1571 	  h->def_dynamic = 0;
1572 	  flip->ref_dynamic = 1;
1573 	}
1574     }
1575 
1576   return TRUE;
1577 }
1578 
1579 /* This function is called to create an indirect symbol from the
1580    default for the symbol with the default version if needed. The
1581    symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE.  We
1582    set DYNSYM if the new indirect symbol is dynamic.  */
1583 
1584 static bfd_boolean
1585 _bfd_elf_add_default_symbol (bfd *abfd,
1586 			     struct bfd_link_info *info,
1587 			     struct elf_link_hash_entry *h,
1588 			     const char *name,
1589 			     Elf_Internal_Sym *sym,
1590 			     asection **psec,
1591 			     bfd_vma *value,
1592 			     bfd_boolean *dynsym,
1593 			     bfd_boolean override)
1594 {
1595   bfd_boolean type_change_ok;
1596   bfd_boolean size_change_ok;
1597   bfd_boolean skip;
1598   char *shortname;
1599   struct elf_link_hash_entry *hi;
1600   struct bfd_link_hash_entry *bh;
1601   const struct elf_backend_data *bed;
1602   bfd_boolean collect;
1603   bfd_boolean dynamic;
1604   char *p;
1605   size_t len, shortlen;
1606   asection *sec;
1607 
1608   /* If this symbol has a version, and it is the default version, we
1609      create an indirect symbol from the default name to the fully
1610      decorated name.  This will cause external references which do not
1611      specify a version to be bound to this version of the symbol.  */
1612   p = strchr (name, ELF_VER_CHR);
1613   if (p == NULL || p[1] != ELF_VER_CHR)
1614     return TRUE;
1615 
1616   if (override)
1617     {
1618       /* We are overridden by an old definition. We need to check if we
1619 	 need to create the indirect symbol from the default name.  */
1620       hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1621 				 FALSE, FALSE);
1622       BFD_ASSERT (hi != NULL);
1623       if (hi == h)
1624 	return TRUE;
1625       while (hi->root.type == bfd_link_hash_indirect
1626 	     || hi->root.type == bfd_link_hash_warning)
1627 	{
1628 	  hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1629 	  if (hi == h)
1630 	    return TRUE;
1631 	}
1632     }
1633 
1634   bed = get_elf_backend_data (abfd);
1635   collect = bed->collect;
1636   dynamic = (abfd->flags & DYNAMIC) != 0;
1637 
1638   shortlen = p - name;
1639   shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1640   if (shortname == NULL)
1641     return FALSE;
1642   memcpy (shortname, name, shortlen);
1643   shortname[shortlen] = '\0';
1644 
1645   /* We are going to create a new symbol.  Merge it with any existing
1646      symbol with this name.  For the purposes of the merge, act as
1647      though we were defining the symbol we just defined, although we
1648      actually going to define an indirect symbol.  */
1649   type_change_ok = FALSE;
1650   size_change_ok = FALSE;
1651   sec = *psec;
1652   if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1653 			      NULL, NULL, &hi, &skip, &override,
1654 			      &type_change_ok, &size_change_ok))
1655     return FALSE;
1656 
1657   if (skip)
1658     goto nondefault;
1659 
1660   if (! override)
1661     {
1662       bh = &hi->root;
1663       if (! (_bfd_generic_link_add_one_symbol
1664 	     (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1665 	      0, name, FALSE, collect, &bh)))
1666 	return FALSE;
1667       hi = (struct elf_link_hash_entry *) bh;
1668     }
1669   else
1670     {
1671       /* In this case the symbol named SHORTNAME is overriding the
1672 	 indirect symbol we want to add.  We were planning on making
1673 	 SHORTNAME an indirect symbol referring to NAME.  SHORTNAME
1674 	 is the name without a version.  NAME is the fully versioned
1675 	 name, and it is the default version.
1676 
1677 	 Overriding means that we already saw a definition for the
1678 	 symbol SHORTNAME in a regular object, and it is overriding
1679 	 the symbol defined in the dynamic object.
1680 
1681 	 When this happens, we actually want to change NAME, the
1682 	 symbol we just added, to refer to SHORTNAME.  This will cause
1683 	 references to NAME in the shared object to become references
1684 	 to SHORTNAME in the regular object.  This is what we expect
1685 	 when we override a function in a shared object: that the
1686 	 references in the shared object will be mapped to the
1687 	 definition in the regular object.  */
1688 
1689       while (hi->root.type == bfd_link_hash_indirect
1690 	     || hi->root.type == bfd_link_hash_warning)
1691 	hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1692 
1693       h->root.type = bfd_link_hash_indirect;
1694       h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1695       if (h->def_dynamic)
1696 	{
1697 	  h->def_dynamic = 0;
1698 	  hi->ref_dynamic = 1;
1699 	  if (hi->ref_regular
1700 	      || hi->def_regular)
1701 	    {
1702 	      if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1703 		return FALSE;
1704 	    }
1705 	}
1706 
1707       /* Now set HI to H, so that the following code will set the
1708 	 other fields correctly.  */
1709       hi = h;
1710     }
1711 
1712   /* Check if HI is a warning symbol.  */
1713   if (hi->root.type == bfd_link_hash_warning)
1714     hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1715 
1716   /* If there is a duplicate definition somewhere, then HI may not
1717      point to an indirect symbol.  We will have reported an error to
1718      the user in that case.  */
1719 
1720   if (hi->root.type == bfd_link_hash_indirect)
1721     {
1722       struct elf_link_hash_entry *ht;
1723 
1724       ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1725       (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1726 
1727       /* See if the new flags lead us to realize that the symbol must
1728 	 be dynamic.  */
1729       if (! *dynsym)
1730 	{
1731 	  if (! dynamic)
1732 	    {
1733 	      if (! info->executable
1734 		  || hi->def_dynamic
1735 		  || hi->ref_dynamic)
1736 		*dynsym = TRUE;
1737 	    }
1738 	  else
1739 	    {
1740 	      if (hi->ref_regular)
1741 		*dynsym = TRUE;
1742 	    }
1743 	}
1744     }
1745 
1746   /* We also need to define an indirection from the nondefault version
1747      of the symbol.  */
1748 
1749 nondefault:
1750   len = strlen (name);
1751   shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1752   if (shortname == NULL)
1753     return FALSE;
1754   memcpy (shortname, name, shortlen);
1755   memcpy (shortname + shortlen, p + 1, len - shortlen);
1756 
1757   /* Once again, merge with any existing symbol.  */
1758   type_change_ok = FALSE;
1759   size_change_ok = FALSE;
1760   sec = *psec;
1761   if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1762 			      NULL, NULL, &hi, &skip, &override,
1763 			      &type_change_ok, &size_change_ok))
1764     return FALSE;
1765 
1766   if (skip)
1767     return TRUE;
1768 
1769   if (override)
1770     {
1771       /* Here SHORTNAME is a versioned name, so we don't expect to see
1772 	 the type of override we do in the case above unless it is
1773 	 overridden by a versioned definition.  */
1774       if (hi->root.type != bfd_link_hash_defined
1775 	  && hi->root.type != bfd_link_hash_defweak)
1776 	(*_bfd_error_handler)
1777 	  (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1778 	   abfd, shortname);
1779     }
1780   else
1781     {
1782       bh = &hi->root;
1783       if (! (_bfd_generic_link_add_one_symbol
1784 	     (info, abfd, shortname, BSF_INDIRECT,
1785 	      bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1786 	return FALSE;
1787       hi = (struct elf_link_hash_entry *) bh;
1788 
1789       /* If there is a duplicate definition somewhere, then HI may not
1790 	 point to an indirect symbol.  We will have reported an error
1791 	 to the user in that case.  */
1792 
1793       if (hi->root.type == bfd_link_hash_indirect)
1794 	{
1795 	  (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1796 
1797 	  /* See if the new flags lead us to realize that the symbol
1798 	     must be dynamic.  */
1799 	  if (! *dynsym)
1800 	    {
1801 	      if (! dynamic)
1802 		{
1803 		  if (! info->executable
1804 		      || hi->ref_dynamic)
1805 		    *dynsym = TRUE;
1806 		}
1807 	      else
1808 		{
1809 		  if (hi->ref_regular)
1810 		    *dynsym = TRUE;
1811 		}
1812 	    }
1813 	}
1814     }
1815 
1816   return TRUE;
1817 }
1818 
1819 /* This routine is used to export all defined symbols into the dynamic
1820    symbol table.  It is called via elf_link_hash_traverse.  */
1821 
1822 static bfd_boolean
1823 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1824 {
1825   struct elf_info_failed *eif = (struct elf_info_failed *) data;
1826 
1827   /* Ignore indirect symbols.  These are added by the versioning code.  */
1828   if (h->root.type == bfd_link_hash_indirect)
1829     return TRUE;
1830 
1831   /* Ignore this if we won't export it.  */
1832   if (!eif->info->export_dynamic && !h->dynamic)
1833     return TRUE;
1834 
1835   if (h->dynindx == -1
1836       && (h->def_regular || h->ref_regular)
1837       && ! bfd_hide_sym_by_version (eif->info->version_info,
1838 				    h->root.root.string))
1839     {
1840       if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1841 	{
1842 	  eif->failed = TRUE;
1843 	  return FALSE;
1844 	}
1845     }
1846 
1847   return TRUE;
1848 }
1849 
1850 /* Look through the symbols which are defined in other shared
1851    libraries and referenced here.  Update the list of version
1852    dependencies.  This will be put into the .gnu.version_r section.
1853    This function is called via elf_link_hash_traverse.  */
1854 
1855 static bfd_boolean
1856 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1857 					 void *data)
1858 {
1859   struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1860   Elf_Internal_Verneed *t;
1861   Elf_Internal_Vernaux *a;
1862   bfd_size_type amt;
1863 
1864   /* We only care about symbols defined in shared objects with version
1865      information.  */
1866   if (!h->def_dynamic
1867       || h->def_regular
1868       || h->dynindx == -1
1869       || h->verinfo.verdef == NULL)
1870     return TRUE;
1871 
1872   /* See if we already know about this version.  */
1873   for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1874        t != NULL;
1875        t = t->vn_nextref)
1876     {
1877       if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1878 	continue;
1879 
1880       for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1881 	if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1882 	  return TRUE;
1883 
1884       break;
1885     }
1886 
1887   /* This is a new version.  Add it to tree we are building.  */
1888 
1889   if (t == NULL)
1890     {
1891       amt = sizeof *t;
1892       t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1893       if (t == NULL)
1894 	{
1895 	  rinfo->failed = TRUE;
1896 	  return FALSE;
1897 	}
1898 
1899       t->vn_bfd = h->verinfo.verdef->vd_bfd;
1900       t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1901       elf_tdata (rinfo->info->output_bfd)->verref = t;
1902     }
1903 
1904   amt = sizeof *a;
1905   a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1906   if (a == NULL)
1907     {
1908       rinfo->failed = TRUE;
1909       return FALSE;
1910     }
1911 
1912   /* Note that we are copying a string pointer here, and testing it
1913      above.  If bfd_elf_string_from_elf_section is ever changed to
1914      discard the string data when low in memory, this will have to be
1915      fixed.  */
1916   a->vna_nodename = h->verinfo.verdef->vd_nodename;
1917 
1918   a->vna_flags = h->verinfo.verdef->vd_flags;
1919   a->vna_nextptr = t->vn_auxptr;
1920 
1921   h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1922   ++rinfo->vers;
1923 
1924   a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1925 
1926   t->vn_auxptr = a;
1927 
1928   return TRUE;
1929 }
1930 
1931 /* Figure out appropriate versions for all the symbols.  We may not
1932    have the version number script until we have read all of the input
1933    files, so until that point we don't know which symbols should be
1934    local.  This function is called via elf_link_hash_traverse.  */
1935 
1936 static bfd_boolean
1937 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1938 {
1939   struct elf_info_failed *sinfo;
1940   struct bfd_link_info *info;
1941   const struct elf_backend_data *bed;
1942   struct elf_info_failed eif;
1943   char *p;
1944   bfd_size_type amt;
1945 
1946   sinfo = (struct elf_info_failed *) data;
1947   info = sinfo->info;
1948 
1949   /* Fix the symbol flags.  */
1950   eif.failed = FALSE;
1951   eif.info = info;
1952   if (! _bfd_elf_fix_symbol_flags (h, &eif))
1953     {
1954       if (eif.failed)
1955 	sinfo->failed = TRUE;
1956       return FALSE;
1957     }
1958 
1959   /* We only need version numbers for symbols defined in regular
1960      objects.  */
1961   if (!h->def_regular)
1962     return TRUE;
1963 
1964   bed = get_elf_backend_data (info->output_bfd);
1965   p = strchr (h->root.root.string, ELF_VER_CHR);
1966   if (p != NULL && h->verinfo.vertree == NULL)
1967     {
1968       struct bfd_elf_version_tree *t;
1969       bfd_boolean hidden;
1970 
1971       hidden = TRUE;
1972 
1973       /* There are two consecutive ELF_VER_CHR characters if this is
1974 	 not a hidden symbol.  */
1975       ++p;
1976       if (*p == ELF_VER_CHR)
1977 	{
1978 	  hidden = FALSE;
1979 	  ++p;
1980 	}
1981 
1982       /* If there is no version string, we can just return out.  */
1983       if (*p == '\0')
1984 	{
1985 	  if (hidden)
1986 	    h->hidden = 1;
1987 	  return TRUE;
1988 	}
1989 
1990       /* Look for the version.  If we find it, it is no longer weak.  */
1991       for (t = sinfo->info->version_info; t != NULL; t = t->next)
1992 	{
1993 	  if (strcmp (t->name, p) == 0)
1994 	    {
1995 	      size_t len;
1996 	      char *alc;
1997 	      struct bfd_elf_version_expr *d;
1998 
1999 	      len = p - h->root.root.string;
2000 	      alc = (char *) bfd_malloc (len);
2001 	      if (alc == NULL)
2002 		{
2003 		  sinfo->failed = TRUE;
2004 		  return FALSE;
2005 		}
2006 	      memcpy (alc, h->root.root.string, len - 1);
2007 	      alc[len - 1] = '\0';
2008 	      if (alc[len - 2] == ELF_VER_CHR)
2009 		alc[len - 2] = '\0';
2010 
2011 	      h->verinfo.vertree = t;
2012 	      t->used = TRUE;
2013 	      d = NULL;
2014 
2015 	      if (t->globals.list != NULL)
2016 		d = (*t->match) (&t->globals, NULL, alc);
2017 
2018 	      /* See if there is anything to force this symbol to
2019 		 local scope.  */
2020 	      if (d == NULL && t->locals.list != NULL)
2021 		{
2022 		  d = (*t->match) (&t->locals, NULL, alc);
2023 		  if (d != NULL
2024 		      && h->dynindx != -1
2025 		      && ! info->export_dynamic)
2026 		    (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2027 		}
2028 
2029 	      free (alc);
2030 	      break;
2031 	    }
2032 	}
2033 
2034       /* If we are building an application, we need to create a
2035 	 version node for this version.  */
2036       if (t == NULL && info->executable)
2037 	{
2038 	  struct bfd_elf_version_tree **pp;
2039 	  int version_index;
2040 
2041 	  /* If we aren't going to export this symbol, we don't need
2042 	     to worry about it.  */
2043 	  if (h->dynindx == -1)
2044 	    return TRUE;
2045 
2046 	  amt = sizeof *t;
2047 	  t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2048 	  if (t == NULL)
2049 	    {
2050 	      sinfo->failed = TRUE;
2051 	      return FALSE;
2052 	    }
2053 
2054 	  t->name = p;
2055 	  t->name_indx = (unsigned int) -1;
2056 	  t->used = TRUE;
2057 
2058 	  version_index = 1;
2059 	  /* Don't count anonymous version tag.  */
2060 	  if (sinfo->info->version_info != NULL
2061 	      && sinfo->info->version_info->vernum == 0)
2062 	    version_index = 0;
2063 	  for (pp = &sinfo->info->version_info;
2064 	       *pp != NULL;
2065 	       pp = &(*pp)->next)
2066 	    ++version_index;
2067 	  t->vernum = version_index;
2068 
2069 	  *pp = t;
2070 
2071 	  h->verinfo.vertree = t;
2072 	}
2073       else if (t == NULL)
2074 	{
2075 	  /* We could not find the version for a symbol when
2076 	     generating a shared archive.  Return an error.  */
2077 	  (*_bfd_error_handler)
2078 	    (_("%B: version node not found for symbol %s"),
2079 	     info->output_bfd, h->root.root.string);
2080 	  bfd_set_error (bfd_error_bad_value);
2081 	  sinfo->failed = TRUE;
2082 	  return FALSE;
2083 	}
2084 
2085       if (hidden)
2086 	h->hidden = 1;
2087     }
2088 
2089   /* If we don't have a version for this symbol, see if we can find
2090      something.  */
2091   if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2092     {
2093       bfd_boolean hide;
2094 
2095       h->verinfo.vertree
2096 	= bfd_find_version_for_sym (sinfo->info->version_info,
2097 				    h->root.root.string, &hide);
2098       if (h->verinfo.vertree != NULL && hide)
2099 	(*bed->elf_backend_hide_symbol) (info, h, TRUE);
2100     }
2101 
2102   return TRUE;
2103 }
2104 
2105 /* Read and swap the relocs from the section indicated by SHDR.  This
2106    may be either a REL or a RELA section.  The relocations are
2107    translated into RELA relocations and stored in INTERNAL_RELOCS,
2108    which should have already been allocated to contain enough space.
2109    The EXTERNAL_RELOCS are a buffer where the external form of the
2110    relocations should be stored.
2111 
2112    Returns FALSE if something goes wrong.  */
2113 
2114 static bfd_boolean
2115 elf_link_read_relocs_from_section (bfd *abfd,
2116 				   asection *sec,
2117 				   Elf_Internal_Shdr *shdr,
2118 				   void *external_relocs,
2119 				   Elf_Internal_Rela *internal_relocs)
2120 {
2121   const struct elf_backend_data *bed;
2122   void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2123   const bfd_byte *erela;
2124   const bfd_byte *erelaend;
2125   Elf_Internal_Rela *irela;
2126   Elf_Internal_Shdr *symtab_hdr;
2127   size_t nsyms;
2128 
2129   /* Position ourselves at the start of the section.  */
2130   if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2131     return FALSE;
2132 
2133   /* Read the relocations.  */
2134   if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2135     return FALSE;
2136 
2137   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2138   nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2139 
2140   bed = get_elf_backend_data (abfd);
2141 
2142   /* Convert the external relocations to the internal format.  */
2143   if (shdr->sh_entsize == bed->s->sizeof_rel)
2144     swap_in = bed->s->swap_reloc_in;
2145   else if (shdr->sh_entsize == bed->s->sizeof_rela)
2146     swap_in = bed->s->swap_reloca_in;
2147   else
2148     {
2149       bfd_set_error (bfd_error_wrong_format);
2150       return FALSE;
2151     }
2152 
2153   erela = (const bfd_byte *) external_relocs;
2154   erelaend = erela + shdr->sh_size;
2155   irela = internal_relocs;
2156   while (erela < erelaend)
2157     {
2158       bfd_vma r_symndx;
2159 
2160       (*swap_in) (abfd, erela, irela);
2161       r_symndx = ELF32_R_SYM (irela->r_info);
2162       if (bed->s->arch_size == 64)
2163 	r_symndx >>= 24;
2164       if (nsyms > 0)
2165 	{
2166 	  if ((size_t) r_symndx >= nsyms)
2167 	    {
2168 	      (*_bfd_error_handler)
2169 		(_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2170 		   " for offset 0x%lx in section `%A'"),
2171 		 abfd, sec,
2172 		 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2173 	      bfd_set_error (bfd_error_bad_value);
2174 	      return FALSE;
2175 	    }
2176 	}
2177       else if (r_symndx != STN_UNDEF)
2178 	{
2179 	  (*_bfd_error_handler)
2180 	    (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2181 	       " when the object file has no symbol table"),
2182 	     abfd, sec,
2183 	     (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2184 	  bfd_set_error (bfd_error_bad_value);
2185 	  return FALSE;
2186 	}
2187       irela += bed->s->int_rels_per_ext_rel;
2188       erela += shdr->sh_entsize;
2189     }
2190 
2191   return TRUE;
2192 }
2193 
2194 /* Read and swap the relocs for a section O.  They may have been
2195    cached.  If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2196    not NULL, they are used as buffers to read into.  They are known to
2197    be large enough.  If the INTERNAL_RELOCS relocs argument is NULL,
2198    the return value is allocated using either malloc or bfd_alloc,
2199    according to the KEEP_MEMORY argument.  If O has two relocation
2200    sections (both REL and RELA relocations), then the REL_HDR
2201    relocations will appear first in INTERNAL_RELOCS, followed by the
2202    RELA_HDR relocations.  */
2203 
2204 Elf_Internal_Rela *
2205 _bfd_elf_link_read_relocs (bfd *abfd,
2206 			   asection *o,
2207 			   void *external_relocs,
2208 			   Elf_Internal_Rela *internal_relocs,
2209 			   bfd_boolean keep_memory)
2210 {
2211   void *alloc1 = NULL;
2212   Elf_Internal_Rela *alloc2 = NULL;
2213   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2214   struct bfd_elf_section_data *esdo = elf_section_data (o);
2215   Elf_Internal_Rela *internal_rela_relocs;
2216 
2217   if (esdo->relocs != NULL)
2218     return esdo->relocs;
2219 
2220   if (o->reloc_count == 0)
2221     return NULL;
2222 
2223   if (internal_relocs == NULL)
2224     {
2225       bfd_size_type size;
2226 
2227       size = o->reloc_count;
2228       size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2229       if (keep_memory)
2230 	internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2231       else
2232 	internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2233       if (internal_relocs == NULL)
2234 	goto error_return;
2235     }
2236 
2237   if (external_relocs == NULL)
2238     {
2239       bfd_size_type size = 0;
2240 
2241       if (esdo->rel.hdr)
2242 	size += esdo->rel.hdr->sh_size;
2243       if (esdo->rela.hdr)
2244 	size += esdo->rela.hdr->sh_size;
2245 
2246       alloc1 = bfd_malloc (size);
2247       if (alloc1 == NULL)
2248 	goto error_return;
2249       external_relocs = alloc1;
2250     }
2251 
2252   internal_rela_relocs = internal_relocs;
2253   if (esdo->rel.hdr)
2254     {
2255       if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2256 					      external_relocs,
2257 					      internal_relocs))
2258 	goto error_return;
2259       external_relocs = (((bfd_byte *) external_relocs)
2260 			 + esdo->rel.hdr->sh_size);
2261       internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2262 			       * bed->s->int_rels_per_ext_rel);
2263     }
2264 
2265   if (esdo->rela.hdr
2266       && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2267 					      external_relocs,
2268 					      internal_rela_relocs)))
2269     goto error_return;
2270 
2271   /* Cache the results for next time, if we can.  */
2272   if (keep_memory)
2273     esdo->relocs = internal_relocs;
2274 
2275   if (alloc1 != NULL)
2276     free (alloc1);
2277 
2278   /* Don't free alloc2, since if it was allocated we are passing it
2279      back (under the name of internal_relocs).  */
2280 
2281   return internal_relocs;
2282 
2283  error_return:
2284   if (alloc1 != NULL)
2285     free (alloc1);
2286   if (alloc2 != NULL)
2287     {
2288       if (keep_memory)
2289 	bfd_release (abfd, alloc2);
2290       else
2291 	free (alloc2);
2292     }
2293   return NULL;
2294 }
2295 
2296 /* Compute the size of, and allocate space for, REL_HDR which is the
2297    section header for a section containing relocations for O.  */
2298 
2299 static bfd_boolean
2300 _bfd_elf_link_size_reloc_section (bfd *abfd,
2301 				  struct bfd_elf_section_reloc_data *reldata)
2302 {
2303   Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2304 
2305   /* That allows us to calculate the size of the section.  */
2306   rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2307 
2308   /* The contents field must last into write_object_contents, so we
2309      allocate it with bfd_alloc rather than malloc.  Also since we
2310      cannot be sure that the contents will actually be filled in,
2311      we zero the allocated space.  */
2312   rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2313   if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2314     return FALSE;
2315 
2316   if (reldata->hashes == NULL && reldata->count)
2317     {
2318       struct elf_link_hash_entry **p;
2319 
2320       p = (struct elf_link_hash_entry **)
2321           bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2322       if (p == NULL)
2323 	return FALSE;
2324 
2325       reldata->hashes = p;
2326     }
2327 
2328   return TRUE;
2329 }
2330 
2331 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2332    originated from the section given by INPUT_REL_HDR) to the
2333    OUTPUT_BFD.  */
2334 
2335 bfd_boolean
2336 _bfd_elf_link_output_relocs (bfd *output_bfd,
2337 			     asection *input_section,
2338 			     Elf_Internal_Shdr *input_rel_hdr,
2339 			     Elf_Internal_Rela *internal_relocs,
2340 			     struct elf_link_hash_entry **rel_hash
2341 			       ATTRIBUTE_UNUSED)
2342 {
2343   Elf_Internal_Rela *irela;
2344   Elf_Internal_Rela *irelaend;
2345   bfd_byte *erel;
2346   struct bfd_elf_section_reloc_data *output_reldata;
2347   asection *output_section;
2348   const struct elf_backend_data *bed;
2349   void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2350   struct bfd_elf_section_data *esdo;
2351 
2352   output_section = input_section->output_section;
2353 
2354   bed = get_elf_backend_data (output_bfd);
2355   esdo = elf_section_data (output_section);
2356   if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2357     {
2358       output_reldata = &esdo->rel;
2359       swap_out = bed->s->swap_reloc_out;
2360     }
2361   else if (esdo->rela.hdr
2362 	   && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2363     {
2364       output_reldata = &esdo->rela;
2365       swap_out = bed->s->swap_reloca_out;
2366     }
2367   else
2368     {
2369       (*_bfd_error_handler)
2370 	(_("%B: relocation size mismatch in %B section %A"),
2371 	 output_bfd, input_section->owner, input_section);
2372       bfd_set_error (bfd_error_wrong_format);
2373       return FALSE;
2374     }
2375 
2376   erel = output_reldata->hdr->contents;
2377   erel += output_reldata->count * input_rel_hdr->sh_entsize;
2378   irela = internal_relocs;
2379   irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2380 		      * bed->s->int_rels_per_ext_rel);
2381   while (irela < irelaend)
2382     {
2383       (*swap_out) (output_bfd, irela, erel);
2384       irela += bed->s->int_rels_per_ext_rel;
2385       erel += input_rel_hdr->sh_entsize;
2386     }
2387 
2388   /* Bump the counter, so that we know where to add the next set of
2389      relocations.  */
2390   output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2391 
2392   return TRUE;
2393 }
2394 
2395 /* Make weak undefined symbols in PIE dynamic.  */
2396 
2397 bfd_boolean
2398 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2399 				 struct elf_link_hash_entry *h)
2400 {
2401   if (info->pie
2402       && h->dynindx == -1
2403       && h->root.type == bfd_link_hash_undefweak)
2404     return bfd_elf_link_record_dynamic_symbol (info, h);
2405 
2406   return TRUE;
2407 }
2408 
2409 /* Fix up the flags for a symbol.  This handles various cases which
2410    can only be fixed after all the input files are seen.  This is
2411    currently called by both adjust_dynamic_symbol and
2412    assign_sym_version, which is unnecessary but perhaps more robust in
2413    the face of future changes.  */
2414 
2415 static bfd_boolean
2416 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2417 			   struct elf_info_failed *eif)
2418 {
2419   const struct elf_backend_data *bed;
2420 
2421   /* If this symbol was mentioned in a non-ELF file, try to set
2422      DEF_REGULAR and REF_REGULAR correctly.  This is the only way to
2423      permit a non-ELF file to correctly refer to a symbol defined in
2424      an ELF dynamic object.  */
2425   if (h->non_elf)
2426     {
2427       while (h->root.type == bfd_link_hash_indirect)
2428 	h = (struct elf_link_hash_entry *) h->root.u.i.link;
2429 
2430       if (h->root.type != bfd_link_hash_defined
2431 	  && h->root.type != bfd_link_hash_defweak)
2432 	{
2433 	  h->ref_regular = 1;
2434 	  h->ref_regular_nonweak = 1;
2435 	}
2436       else
2437 	{
2438 	  if (h->root.u.def.section->owner != NULL
2439 	      && (bfd_get_flavour (h->root.u.def.section->owner)
2440 		  == bfd_target_elf_flavour))
2441 	    {
2442 	      h->ref_regular = 1;
2443 	      h->ref_regular_nonweak = 1;
2444 	    }
2445 	  else
2446 	    h->def_regular = 1;
2447 	}
2448 
2449       if (h->dynindx == -1
2450 	  && (h->def_dynamic
2451 	      || h->ref_dynamic))
2452 	{
2453 	  if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2454 	    {
2455 	      eif->failed = TRUE;
2456 	      return FALSE;
2457 	    }
2458 	}
2459     }
2460   else
2461     {
2462       /* Unfortunately, NON_ELF is only correct if the symbol
2463 	 was first seen in a non-ELF file.  Fortunately, if the symbol
2464 	 was first seen in an ELF file, we're probably OK unless the
2465 	 symbol was defined in a non-ELF file.  Catch that case here.
2466 	 FIXME: We're still in trouble if the symbol was first seen in
2467 	 a dynamic object, and then later in a non-ELF regular object.  */
2468       if ((h->root.type == bfd_link_hash_defined
2469 	   || h->root.type == bfd_link_hash_defweak)
2470 	  && !h->def_regular
2471 	  && (h->root.u.def.section->owner != NULL
2472 	      ? (bfd_get_flavour (h->root.u.def.section->owner)
2473 		 != bfd_target_elf_flavour)
2474 	      : (bfd_is_abs_section (h->root.u.def.section)
2475 		 && !h->def_dynamic)))
2476 	h->def_regular = 1;
2477     }
2478 
2479   /* Backend specific symbol fixup.  */
2480   bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2481   if (bed->elf_backend_fixup_symbol
2482       && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2483     return FALSE;
2484 
2485   /* If this is a final link, and the symbol was defined as a common
2486      symbol in a regular object file, and there was no definition in
2487      any dynamic object, then the linker will have allocated space for
2488      the symbol in a common section but the DEF_REGULAR
2489      flag will not have been set.  */
2490   if (h->root.type == bfd_link_hash_defined
2491       && !h->def_regular
2492       && h->ref_regular
2493       && !h->def_dynamic
2494       && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2495     h->def_regular = 1;
2496 
2497   /* If -Bsymbolic was used (which means to bind references to global
2498      symbols to the definition within the shared object), and this
2499      symbol was defined in a regular object, then it actually doesn't
2500      need a PLT entry.  Likewise, if the symbol has non-default
2501      visibility.  If the symbol has hidden or internal visibility, we
2502      will force it local.  */
2503   if (h->needs_plt
2504       && eif->info->shared
2505       && is_elf_hash_table (eif->info->hash)
2506       && (SYMBOLIC_BIND (eif->info, h)
2507 	  || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2508       && h->def_regular)
2509     {
2510       bfd_boolean force_local;
2511 
2512       force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2513 		     || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2514       (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2515     }
2516 
2517   /* If a weak undefined symbol has non-default visibility, we also
2518      hide it from the dynamic linker.  */
2519   if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2520       && h->root.type == bfd_link_hash_undefweak)
2521     (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2522 
2523   /* If this is a weak defined symbol in a dynamic object, and we know
2524      the real definition in the dynamic object, copy interesting flags
2525      over to the real definition.  */
2526   if (h->u.weakdef != NULL)
2527     {
2528       /* If the real definition is defined by a regular object file,
2529 	 don't do anything special.  See the longer description in
2530 	 _bfd_elf_adjust_dynamic_symbol, below.  */
2531       if (h->u.weakdef->def_regular)
2532 	h->u.weakdef = NULL;
2533       else
2534 	{
2535 	  struct elf_link_hash_entry *weakdef = h->u.weakdef;
2536 
2537 	  while (h->root.type == bfd_link_hash_indirect)
2538 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
2539 
2540 	  BFD_ASSERT (h->root.type == bfd_link_hash_defined
2541 		      || h->root.type == bfd_link_hash_defweak);
2542 	  BFD_ASSERT (weakdef->def_dynamic);
2543 	  BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2544 		      || weakdef->root.type == bfd_link_hash_defweak);
2545 	  (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2546 	}
2547     }
2548 
2549   return TRUE;
2550 }
2551 
2552 /* Make the backend pick a good value for a dynamic symbol.  This is
2553    called via elf_link_hash_traverse, and also calls itself
2554    recursively.  */
2555 
2556 static bfd_boolean
2557 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2558 {
2559   struct elf_info_failed *eif = (struct elf_info_failed *) data;
2560   bfd *dynobj;
2561   const struct elf_backend_data *bed;
2562 
2563   if (! is_elf_hash_table (eif->info->hash))
2564     return FALSE;
2565 
2566   /* Ignore indirect symbols.  These are added by the versioning code.  */
2567   if (h->root.type == bfd_link_hash_indirect)
2568     return TRUE;
2569 
2570   /* Fix the symbol flags.  */
2571   if (! _bfd_elf_fix_symbol_flags (h, eif))
2572     return FALSE;
2573 
2574   /* If this symbol does not require a PLT entry, and it is not
2575      defined by a dynamic object, or is not referenced by a regular
2576      object, ignore it.  We do have to handle a weak defined symbol,
2577      even if no regular object refers to it, if we decided to add it
2578      to the dynamic symbol table.  FIXME: Do we normally need to worry
2579      about symbols which are defined by one dynamic object and
2580      referenced by another one?  */
2581   if (!h->needs_plt
2582       && h->type != STT_GNU_IFUNC
2583       && (h->def_regular
2584 	  || !h->def_dynamic
2585 	  || (!h->ref_regular
2586 	      && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2587     {
2588       h->plt = elf_hash_table (eif->info)->init_plt_offset;
2589       return TRUE;
2590     }
2591 
2592   /* If we've already adjusted this symbol, don't do it again.  This
2593      can happen via a recursive call.  */
2594   if (h->dynamic_adjusted)
2595     return TRUE;
2596 
2597   /* Don't look at this symbol again.  Note that we must set this
2598      after checking the above conditions, because we may look at a
2599      symbol once, decide not to do anything, and then get called
2600      recursively later after REF_REGULAR is set below.  */
2601   h->dynamic_adjusted = 1;
2602 
2603   /* If this is a weak definition, and we know a real definition, and
2604      the real symbol is not itself defined by a regular object file,
2605      then get a good value for the real definition.  We handle the
2606      real symbol first, for the convenience of the backend routine.
2607 
2608      Note that there is a confusing case here.  If the real definition
2609      is defined by a regular object file, we don't get the real symbol
2610      from the dynamic object, but we do get the weak symbol.  If the
2611      processor backend uses a COPY reloc, then if some routine in the
2612      dynamic object changes the real symbol, we will not see that
2613      change in the corresponding weak symbol.  This is the way other
2614      ELF linkers work as well, and seems to be a result of the shared
2615      library model.
2616 
2617      I will clarify this issue.  Most SVR4 shared libraries define the
2618      variable _timezone and define timezone as a weak synonym.  The
2619      tzset call changes _timezone.  If you write
2620        extern int timezone;
2621        int _timezone = 5;
2622        int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2623      you might expect that, since timezone is a synonym for _timezone,
2624      the same number will print both times.  However, if the processor
2625      backend uses a COPY reloc, then actually timezone will be copied
2626      into your process image, and, since you define _timezone
2627      yourself, _timezone will not.  Thus timezone and _timezone will
2628      wind up at different memory locations.  The tzset call will set
2629      _timezone, leaving timezone unchanged.  */
2630 
2631   if (h->u.weakdef != NULL)
2632     {
2633       /* If we get to this point, there is an implicit reference to
2634 	 H->U.WEAKDEF by a regular object file via the weak symbol H.  */
2635       h->u.weakdef->ref_regular = 1;
2636 
2637       /* Ensure that the backend adjust_dynamic_symbol function sees
2638 	 H->U.WEAKDEF before H by recursively calling ourselves.  */
2639       if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2640 	return FALSE;
2641     }
2642 
2643   /* If a symbol has no type and no size and does not require a PLT
2644      entry, then we are probably about to do the wrong thing here: we
2645      are probably going to create a COPY reloc for an empty object.
2646      This case can arise when a shared object is built with assembly
2647      code, and the assembly code fails to set the symbol type.  */
2648   if (h->size == 0
2649       && h->type == STT_NOTYPE
2650       && !h->needs_plt)
2651     (*_bfd_error_handler)
2652       (_("warning: type and size of dynamic symbol `%s' are not defined"),
2653        h->root.root.string);
2654 
2655   dynobj = elf_hash_table (eif->info)->dynobj;
2656   bed = get_elf_backend_data (dynobj);
2657 
2658   if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2659     {
2660       eif->failed = TRUE;
2661       return FALSE;
2662     }
2663 
2664   return TRUE;
2665 }
2666 
2667 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2668    DYNBSS.  */
2669 
2670 bfd_boolean
2671 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2672 			      asection *dynbss)
2673 {
2674   unsigned int power_of_two;
2675   bfd_vma mask;
2676   asection *sec = h->root.u.def.section;
2677 
2678   /* The section aligment of definition is the maximum alignment
2679      requirement of symbols defined in the section.  Since we don't
2680      know the symbol alignment requirement, we start with the
2681      maximum alignment and check low bits of the symbol address
2682      for the minimum alignment.  */
2683   power_of_two = bfd_get_section_alignment (sec->owner, sec);
2684   mask = ((bfd_vma) 1 << power_of_two) - 1;
2685   while ((h->root.u.def.value & mask) != 0)
2686     {
2687        mask >>= 1;
2688        --power_of_two;
2689     }
2690 
2691   if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2692 						dynbss))
2693     {
2694       /* Adjust the section alignment if needed.  */
2695       if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2696 				       power_of_two))
2697 	return FALSE;
2698     }
2699 
2700   /* We make sure that the symbol will be aligned properly.  */
2701   dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2702 
2703   /* Define the symbol as being at this point in DYNBSS.  */
2704   h->root.u.def.section = dynbss;
2705   h->root.u.def.value = dynbss->size;
2706 
2707   /* Increment the size of DYNBSS to make room for the symbol.  */
2708   dynbss->size += h->size;
2709 
2710   return TRUE;
2711 }
2712 
2713 /* Adjust all external symbols pointing into SEC_MERGE sections
2714    to reflect the object merging within the sections.  */
2715 
2716 static bfd_boolean
2717 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2718 {
2719   asection *sec;
2720 
2721   if ((h->root.type == bfd_link_hash_defined
2722        || h->root.type == bfd_link_hash_defweak)
2723       && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2724       && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2725     {
2726       bfd *output_bfd = (bfd *) data;
2727 
2728       h->root.u.def.value =
2729 	_bfd_merged_section_offset (output_bfd,
2730 				    &h->root.u.def.section,
2731 				    elf_section_data (sec)->sec_info,
2732 				    h->root.u.def.value);
2733     }
2734 
2735   return TRUE;
2736 }
2737 
2738 /* Returns false if the symbol referred to by H should be considered
2739    to resolve local to the current module, and true if it should be
2740    considered to bind dynamically.  */
2741 
2742 bfd_boolean
2743 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2744 			   struct bfd_link_info *info,
2745 			   bfd_boolean not_local_protected)
2746 {
2747   bfd_boolean binding_stays_local_p;
2748   const struct elf_backend_data *bed;
2749   struct elf_link_hash_table *hash_table;
2750 
2751   if (h == NULL)
2752     return FALSE;
2753 
2754   while (h->root.type == bfd_link_hash_indirect
2755 	 || h->root.type == bfd_link_hash_warning)
2756     h = (struct elf_link_hash_entry *) h->root.u.i.link;
2757 
2758   /* If it was forced local, then clearly it's not dynamic.  */
2759   if (h->dynindx == -1)
2760     return FALSE;
2761   if (h->forced_local)
2762     return FALSE;
2763 
2764   /* Identify the cases where name binding rules say that a
2765      visible symbol resolves locally.  */
2766   binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2767 
2768   switch (ELF_ST_VISIBILITY (h->other))
2769     {
2770     case STV_INTERNAL:
2771     case STV_HIDDEN:
2772       return FALSE;
2773 
2774     case STV_PROTECTED:
2775       hash_table = elf_hash_table (info);
2776       if (!is_elf_hash_table (hash_table))
2777 	return FALSE;
2778 
2779       bed = get_elf_backend_data (hash_table->dynobj);
2780 
2781       /* Proper resolution for function pointer equality may require
2782 	 that these symbols perhaps be resolved dynamically, even though
2783 	 we should be resolving them to the current module.  */
2784       if (!not_local_protected || !bed->is_function_type (h->type))
2785 	binding_stays_local_p = TRUE;
2786       break;
2787 
2788     default:
2789       break;
2790     }
2791 
2792   /* If it isn't defined locally, then clearly it's dynamic.  */
2793   if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2794     return TRUE;
2795 
2796   /* Otherwise, the symbol is dynamic if binding rules don't tell
2797      us that it remains local.  */
2798   return !binding_stays_local_p;
2799 }
2800 
2801 /* Return true if the symbol referred to by H should be considered
2802    to resolve local to the current module, and false otherwise.  Differs
2803    from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2804    undefined symbols.  The two functions are virtually identical except
2805    for the place where forced_local and dynindx == -1 are tested.  If
2806    either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2807    the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2808    the symbol is local only for defined symbols.
2809    It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2810    !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2811    treatment of undefined weak symbols.  For those that do not make
2812    undefined weak symbols dynamic, both functions may return false.  */
2813 
2814 bfd_boolean
2815 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2816 			      struct bfd_link_info *info,
2817 			      bfd_boolean local_protected)
2818 {
2819   const struct elf_backend_data *bed;
2820   struct elf_link_hash_table *hash_table;
2821 
2822   /* If it's a local sym, of course we resolve locally.  */
2823   if (h == NULL)
2824     return TRUE;
2825 
2826   /* STV_HIDDEN or STV_INTERNAL ones must be local.  */
2827   if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2828       || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2829     return TRUE;
2830 
2831   /* Common symbols that become definitions don't get the DEF_REGULAR
2832      flag set, so test it first, and don't bail out.  */
2833   if (ELF_COMMON_DEF_P (h))
2834     /* Do nothing.  */;
2835   /* If we don't have a definition in a regular file, then we can't
2836      resolve locally.  The sym is either undefined or dynamic.  */
2837   else if (!h->def_regular)
2838     return FALSE;
2839 
2840   /* Forced local symbols resolve locally.  */
2841   if (h->forced_local)
2842     return TRUE;
2843 
2844   /* As do non-dynamic symbols.  */
2845   if (h->dynindx == -1)
2846     return TRUE;
2847 
2848   /* At this point, we know the symbol is defined and dynamic.  In an
2849      executable it must resolve locally, likewise when building symbolic
2850      shared libraries.  */
2851   if (info->executable || SYMBOLIC_BIND (info, h))
2852     return TRUE;
2853 
2854   /* Now deal with defined dynamic symbols in shared libraries.  Ones
2855      with default visibility might not resolve locally.  */
2856   if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2857     return FALSE;
2858 
2859   hash_table = elf_hash_table (info);
2860   if (!is_elf_hash_table (hash_table))
2861     return TRUE;
2862 
2863   bed = get_elf_backend_data (hash_table->dynobj);
2864 
2865   /* STV_PROTECTED non-function symbols are local.  */
2866   if (!bed->is_function_type (h->type))
2867     return TRUE;
2868 
2869   /* Function pointer equality tests may require that STV_PROTECTED
2870      symbols be treated as dynamic symbols.  If the address of a
2871      function not defined in an executable is set to that function's
2872      plt entry in the executable, then the address of the function in
2873      a shared library must also be the plt entry in the executable.  */
2874   return local_protected;
2875 }
2876 
2877 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2878    aligned.  Returns the first TLS output section.  */
2879 
2880 struct bfd_section *
2881 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2882 {
2883   struct bfd_section *sec, *tls;
2884   unsigned int align = 0;
2885 
2886   for (sec = obfd->sections; sec != NULL; sec = sec->next)
2887     if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2888       break;
2889   tls = sec;
2890 
2891   for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2892     if (sec->alignment_power > align)
2893       align = sec->alignment_power;
2894 
2895   elf_hash_table (info)->tls_sec = tls;
2896 
2897   /* Ensure the alignment of the first section is the largest alignment,
2898      so that the tls segment starts aligned.  */
2899   if (tls != NULL)
2900     tls->alignment_power = align;
2901 
2902   return tls;
2903 }
2904 
2905 /* Return TRUE iff this is a non-common, definition of a non-function symbol.  */
2906 static bfd_boolean
2907 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2908 				  Elf_Internal_Sym *sym)
2909 {
2910   const struct elf_backend_data *bed;
2911 
2912   /* Local symbols do not count, but target specific ones might.  */
2913   if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2914       && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2915     return FALSE;
2916 
2917   bed = get_elf_backend_data (abfd);
2918   /* Function symbols do not count.  */
2919   if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2920     return FALSE;
2921 
2922   /* If the section is undefined, then so is the symbol.  */
2923   if (sym->st_shndx == SHN_UNDEF)
2924     return FALSE;
2925 
2926   /* If the symbol is defined in the common section, then
2927      it is a common definition and so does not count.  */
2928   if (bed->common_definition (sym))
2929     return FALSE;
2930 
2931   /* If the symbol is in a target specific section then we
2932      must rely upon the backend to tell us what it is.  */
2933   if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2934     /* FIXME - this function is not coded yet:
2935 
2936        return _bfd_is_global_symbol_definition (abfd, sym);
2937 
2938        Instead for now assume that the definition is not global,
2939        Even if this is wrong, at least the linker will behave
2940        in the same way that it used to do.  */
2941     return FALSE;
2942 
2943   return TRUE;
2944 }
2945 
2946 /* Search the symbol table of the archive element of the archive ABFD
2947    whose archive map contains a mention of SYMDEF, and determine if
2948    the symbol is defined in this element.  */
2949 static bfd_boolean
2950 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2951 {
2952   Elf_Internal_Shdr * hdr;
2953   bfd_size_type symcount;
2954   bfd_size_type extsymcount;
2955   bfd_size_type extsymoff;
2956   Elf_Internal_Sym *isymbuf;
2957   Elf_Internal_Sym *isym;
2958   Elf_Internal_Sym *isymend;
2959   bfd_boolean result;
2960 
2961   abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2962   if (abfd == NULL)
2963     return FALSE;
2964 
2965   if (! bfd_check_format (abfd, bfd_object))
2966     return FALSE;
2967 
2968   /* If we have already included the element containing this symbol in the
2969      link then we do not need to include it again.  Just claim that any symbol
2970      it contains is not a definition, so that our caller will not decide to
2971      (re)include this element.  */
2972   if (abfd->archive_pass)
2973     return FALSE;
2974 
2975   /* Select the appropriate symbol table.  */
2976   if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2977     hdr = &elf_tdata (abfd)->symtab_hdr;
2978   else
2979     hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2980 
2981   symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2982 
2983   /* The sh_info field of the symtab header tells us where the
2984      external symbols start.  We don't care about the local symbols.  */
2985   if (elf_bad_symtab (abfd))
2986     {
2987       extsymcount = symcount;
2988       extsymoff = 0;
2989     }
2990   else
2991     {
2992       extsymcount = symcount - hdr->sh_info;
2993       extsymoff = hdr->sh_info;
2994     }
2995 
2996   if (extsymcount == 0)
2997     return FALSE;
2998 
2999   /* Read in the symbol table.  */
3000   isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3001 				  NULL, NULL, NULL);
3002   if (isymbuf == NULL)
3003     return FALSE;
3004 
3005   /* Scan the symbol table looking for SYMDEF.  */
3006   result = FALSE;
3007   for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3008     {
3009       const char *name;
3010 
3011       name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3012 					      isym->st_name);
3013       if (name == NULL)
3014 	break;
3015 
3016       if (strcmp (name, symdef->name) == 0)
3017 	{
3018 	  result = is_global_data_symbol_definition (abfd, isym);
3019 	  break;
3020 	}
3021     }
3022 
3023   free (isymbuf);
3024 
3025   return result;
3026 }
3027 
3028 /* Add an entry to the .dynamic table.  */
3029 
3030 bfd_boolean
3031 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3032 			    bfd_vma tag,
3033 			    bfd_vma val)
3034 {
3035   struct elf_link_hash_table *hash_table;
3036   const struct elf_backend_data *bed;
3037   asection *s;
3038   bfd_size_type newsize;
3039   bfd_byte *newcontents;
3040   Elf_Internal_Dyn dyn;
3041 
3042   hash_table = elf_hash_table (info);
3043   if (! is_elf_hash_table (hash_table))
3044     return FALSE;
3045 
3046   bed = get_elf_backend_data (hash_table->dynobj);
3047   s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3048   BFD_ASSERT (s != NULL);
3049 
3050   newsize = s->size + bed->s->sizeof_dyn;
3051   newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3052   if (newcontents == NULL)
3053     return FALSE;
3054 
3055   dyn.d_tag = tag;
3056   dyn.d_un.d_val = val;
3057   bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3058 
3059   s->size = newsize;
3060   s->contents = newcontents;
3061 
3062   return TRUE;
3063 }
3064 
3065 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3066    otherwise just check whether one already exists.  Returns -1 on error,
3067    1 if a DT_NEEDED tag already exists, and 0 on success.  */
3068 
3069 static int
3070 elf_add_dt_needed_tag (bfd *abfd,
3071 		       struct bfd_link_info *info,
3072 		       const char *soname,
3073 		       bfd_boolean do_it)
3074 {
3075   struct elf_link_hash_table *hash_table;
3076   bfd_size_type strindex;
3077 
3078   if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3079     return -1;
3080 
3081   hash_table = elf_hash_table (info);
3082   strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3083   if (strindex == (bfd_size_type) -1)
3084     return -1;
3085 
3086   if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3087     {
3088       asection *sdyn;
3089       const struct elf_backend_data *bed;
3090       bfd_byte *extdyn;
3091 
3092       bed = get_elf_backend_data (hash_table->dynobj);
3093       sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3094       if (sdyn != NULL)
3095 	for (extdyn = sdyn->contents;
3096 	     extdyn < sdyn->contents + sdyn->size;
3097 	     extdyn += bed->s->sizeof_dyn)
3098 	  {
3099 	    Elf_Internal_Dyn dyn;
3100 
3101 	    bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3102 	    if (dyn.d_tag == DT_NEEDED
3103 		&& dyn.d_un.d_val == strindex)
3104 	      {
3105 		_bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3106 		return 1;
3107 	      }
3108 	  }
3109     }
3110 
3111   if (do_it)
3112     {
3113       if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3114 	return -1;
3115 
3116       if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3117 	return -1;
3118     }
3119   else
3120     /* We were just checking for existence of the tag.  */
3121     _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3122 
3123   return 0;
3124 }
3125 
3126 static bfd_boolean
3127 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3128 {
3129   for (; needed != NULL; needed = needed->next)
3130     if (strcmp (soname, needed->name) == 0)
3131       return TRUE;
3132 
3133   return FALSE;
3134 }
3135 
3136 /* Sort symbol by value, section, and size.  */
3137 static int
3138 elf_sort_symbol (const void *arg1, const void *arg2)
3139 {
3140   const struct elf_link_hash_entry *h1;
3141   const struct elf_link_hash_entry *h2;
3142   bfd_signed_vma vdiff;
3143 
3144   h1 = *(const struct elf_link_hash_entry **) arg1;
3145   h2 = *(const struct elf_link_hash_entry **) arg2;
3146   vdiff = h1->root.u.def.value - h2->root.u.def.value;
3147   if (vdiff != 0)
3148     return vdiff > 0 ? 1 : -1;
3149   else
3150     {
3151       long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3152       if (sdiff != 0)
3153 	return sdiff > 0 ? 1 : -1;
3154     }
3155   vdiff = h1->size - h2->size;
3156   return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3157 }
3158 
3159 /* This function is used to adjust offsets into .dynstr for
3160    dynamic symbols.  This is called via elf_link_hash_traverse.  */
3161 
3162 static bfd_boolean
3163 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3164 {
3165   struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3166 
3167   if (h->dynindx != -1)
3168     h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3169   return TRUE;
3170 }
3171 
3172 /* Assign string offsets in .dynstr, update all structures referencing
3173    them.  */
3174 
3175 static bfd_boolean
3176 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3177 {
3178   struct elf_link_hash_table *hash_table = elf_hash_table (info);
3179   struct elf_link_local_dynamic_entry *entry;
3180   struct elf_strtab_hash *dynstr = hash_table->dynstr;
3181   bfd *dynobj = hash_table->dynobj;
3182   asection *sdyn;
3183   bfd_size_type size;
3184   const struct elf_backend_data *bed;
3185   bfd_byte *extdyn;
3186 
3187   _bfd_elf_strtab_finalize (dynstr);
3188   size = _bfd_elf_strtab_size (dynstr);
3189 
3190   bed = get_elf_backend_data (dynobj);
3191   sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3192   BFD_ASSERT (sdyn != NULL);
3193 
3194   /* Update all .dynamic entries referencing .dynstr strings.  */
3195   for (extdyn = sdyn->contents;
3196        extdyn < sdyn->contents + sdyn->size;
3197        extdyn += bed->s->sizeof_dyn)
3198     {
3199       Elf_Internal_Dyn dyn;
3200 
3201       bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3202       switch (dyn.d_tag)
3203 	{
3204 	case DT_STRSZ:
3205 	  dyn.d_un.d_val = size;
3206 	  break;
3207 	case DT_NEEDED:
3208 	case DT_SONAME:
3209 	case DT_RPATH:
3210 	case DT_RUNPATH:
3211 	case DT_FILTER:
3212 	case DT_AUXILIARY:
3213 	case DT_AUDIT:
3214 	case DT_DEPAUDIT:
3215 	  dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3216 	  break;
3217 	default:
3218 	  continue;
3219 	}
3220       bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3221     }
3222 
3223   /* Now update local dynamic symbols.  */
3224   for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3225     entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3226 						  entry->isym.st_name);
3227 
3228   /* And the rest of dynamic symbols.  */
3229   elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3230 
3231   /* Adjust version definitions.  */
3232   if (elf_tdata (output_bfd)->cverdefs)
3233     {
3234       asection *s;
3235       bfd_byte *p;
3236       bfd_size_type i;
3237       Elf_Internal_Verdef def;
3238       Elf_Internal_Verdaux defaux;
3239 
3240       s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3241       p = s->contents;
3242       do
3243 	{
3244 	  _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3245 				   &def);
3246 	  p += sizeof (Elf_External_Verdef);
3247 	  if (def.vd_aux != sizeof (Elf_External_Verdef))
3248 	    continue;
3249 	  for (i = 0; i < def.vd_cnt; ++i)
3250 	    {
3251 	      _bfd_elf_swap_verdaux_in (output_bfd,
3252 					(Elf_External_Verdaux *) p, &defaux);
3253 	      defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3254 							defaux.vda_name);
3255 	      _bfd_elf_swap_verdaux_out (output_bfd,
3256 					 &defaux, (Elf_External_Verdaux *) p);
3257 	      p += sizeof (Elf_External_Verdaux);
3258 	    }
3259 	}
3260       while (def.vd_next);
3261     }
3262 
3263   /* Adjust version references.  */
3264   if (elf_tdata (output_bfd)->verref)
3265     {
3266       asection *s;
3267       bfd_byte *p;
3268       bfd_size_type i;
3269       Elf_Internal_Verneed need;
3270       Elf_Internal_Vernaux needaux;
3271 
3272       s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3273       p = s->contents;
3274       do
3275 	{
3276 	  _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3277 				    &need);
3278 	  need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3279 	  _bfd_elf_swap_verneed_out (output_bfd, &need,
3280 				     (Elf_External_Verneed *) p);
3281 	  p += sizeof (Elf_External_Verneed);
3282 	  for (i = 0; i < need.vn_cnt; ++i)
3283 	    {
3284 	      _bfd_elf_swap_vernaux_in (output_bfd,
3285 					(Elf_External_Vernaux *) p, &needaux);
3286 	      needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3287 							 needaux.vna_name);
3288 	      _bfd_elf_swap_vernaux_out (output_bfd,
3289 					 &needaux,
3290 					 (Elf_External_Vernaux *) p);
3291 	      p += sizeof (Elf_External_Vernaux);
3292 	    }
3293 	}
3294       while (need.vn_next);
3295     }
3296 
3297   return TRUE;
3298 }
3299 
3300 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3301    The default is to only match when the INPUT and OUTPUT are exactly
3302    the same target.  */
3303 
3304 bfd_boolean
3305 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3306 				    const bfd_target *output)
3307 {
3308   return input == output;
3309 }
3310 
3311 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3312    This version is used when different targets for the same architecture
3313    are virtually identical.  */
3314 
3315 bfd_boolean
3316 _bfd_elf_relocs_compatible (const bfd_target *input,
3317 			    const bfd_target *output)
3318 {
3319   const struct elf_backend_data *obed, *ibed;
3320 
3321   if (input == output)
3322     return TRUE;
3323 
3324   ibed = xvec_get_elf_backend_data (input);
3325   obed = xvec_get_elf_backend_data (output);
3326 
3327   if (ibed->arch != obed->arch)
3328     return FALSE;
3329 
3330   /* If both backends are using this function, deem them compatible.  */
3331   return ibed->relocs_compatible == obed->relocs_compatible;
3332 }
3333 
3334 /* Add symbols from an ELF object file to the linker hash table.  */
3335 
3336 static bfd_boolean
3337 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3338 {
3339   Elf_Internal_Ehdr *ehdr;
3340   Elf_Internal_Shdr *hdr;
3341   bfd_size_type symcount;
3342   bfd_size_type extsymcount;
3343   bfd_size_type extsymoff;
3344   struct elf_link_hash_entry **sym_hash;
3345   bfd_boolean dynamic;
3346   Elf_External_Versym *extversym = NULL;
3347   Elf_External_Versym *ever;
3348   struct elf_link_hash_entry *weaks;
3349   struct elf_link_hash_entry **nondeflt_vers = NULL;
3350   bfd_size_type nondeflt_vers_cnt = 0;
3351   Elf_Internal_Sym *isymbuf = NULL;
3352   Elf_Internal_Sym *isym;
3353   Elf_Internal_Sym *isymend;
3354   const struct elf_backend_data *bed;
3355   bfd_boolean add_needed;
3356   struct elf_link_hash_table *htab;
3357   bfd_size_type amt;
3358   void *alloc_mark = NULL;
3359   struct bfd_hash_entry **old_table = NULL;
3360   unsigned int old_size = 0;
3361   unsigned int old_count = 0;
3362   void *old_tab = NULL;
3363   void *old_hash;
3364   void *old_ent;
3365   struct bfd_link_hash_entry *old_undefs = NULL;
3366   struct bfd_link_hash_entry *old_undefs_tail = NULL;
3367   long old_dynsymcount = 0;
3368   bfd_size_type old_dynstr_size = 0;
3369   size_t tabsize = 0;
3370   size_t hashsize = 0;
3371 
3372   htab = elf_hash_table (info);
3373   bed = get_elf_backend_data (abfd);
3374 
3375   if ((abfd->flags & DYNAMIC) == 0)
3376     dynamic = FALSE;
3377   else
3378     {
3379       dynamic = TRUE;
3380 
3381       /* You can't use -r against a dynamic object.  Also, there's no
3382 	 hope of using a dynamic object which does not exactly match
3383 	 the format of the output file.  */
3384       if (info->relocatable
3385 	  || !is_elf_hash_table (htab)
3386 	  || info->output_bfd->xvec != abfd->xvec)
3387 	{
3388 	  if (info->relocatable)
3389 	    bfd_set_error (bfd_error_invalid_operation);
3390 	  else
3391 	    bfd_set_error (bfd_error_wrong_format);
3392 	  goto error_return;
3393 	}
3394     }
3395 
3396   ehdr = elf_elfheader (abfd);
3397   if (info->warn_alternate_em
3398       && bed->elf_machine_code != ehdr->e_machine
3399       && ((bed->elf_machine_alt1 != 0
3400 	   && ehdr->e_machine == bed->elf_machine_alt1)
3401 	  || (bed->elf_machine_alt2 != 0
3402 	      && ehdr->e_machine == bed->elf_machine_alt2)))
3403     info->callbacks->einfo
3404       (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3405        ehdr->e_machine, abfd, bed->elf_machine_code);
3406 
3407   /* As a GNU extension, any input sections which are named
3408      .gnu.warning.SYMBOL are treated as warning symbols for the given
3409      symbol.  This differs from .gnu.warning sections, which generate
3410      warnings when they are included in an output file.  */
3411   /* PR 12761: Also generate this warning when building shared libraries.  */
3412   if (info->executable || info->shared)
3413     {
3414       asection *s;
3415 
3416       for (s = abfd->sections; s != NULL; s = s->next)
3417 	{
3418 	  const char *name;
3419 
3420 	  name = bfd_get_section_name (abfd, s);
3421 	  if (CONST_STRNEQ (name, ".gnu.warning."))
3422 	    {
3423 	      char *msg;
3424 	      bfd_size_type sz;
3425 
3426 	      name += sizeof ".gnu.warning." - 1;
3427 
3428 	      /* If this is a shared object, then look up the symbol
3429 		 in the hash table.  If it is there, and it is already
3430 		 been defined, then we will not be using the entry
3431 		 from this shared object, so we don't need to warn.
3432 		 FIXME: If we see the definition in a regular object
3433 		 later on, we will warn, but we shouldn't.  The only
3434 		 fix is to keep track of what warnings we are supposed
3435 		 to emit, and then handle them all at the end of the
3436 		 link.  */
3437 	      if (dynamic)
3438 		{
3439 		  struct elf_link_hash_entry *h;
3440 
3441 		  h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3442 
3443 		  /* FIXME: What about bfd_link_hash_common?  */
3444 		  if (h != NULL
3445 		      && (h->root.type == bfd_link_hash_defined
3446 			  || h->root.type == bfd_link_hash_defweak))
3447 		    {
3448 		      /* We don't want to issue this warning.  Clobber
3449 			 the section size so that the warning does not
3450 			 get copied into the output file.  */
3451 		      s->size = 0;
3452 		      continue;
3453 		    }
3454 		}
3455 
3456 	      sz = s->size;
3457 	      msg = (char *) bfd_alloc (abfd, sz + 1);
3458 	      if (msg == NULL)
3459 		goto error_return;
3460 
3461 	      if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3462 		goto error_return;
3463 
3464 	      msg[sz] = '\0';
3465 
3466 	      if (! (_bfd_generic_link_add_one_symbol
3467 		     (info, abfd, name, BSF_WARNING, s, 0, msg,
3468 		      FALSE, bed->collect, NULL)))
3469 		goto error_return;
3470 
3471 	      if (! info->relocatable)
3472 		{
3473 		  /* Clobber the section size so that the warning does
3474 		     not get copied into the output file.  */
3475 		  s->size = 0;
3476 
3477 		  /* Also set SEC_EXCLUDE, so that symbols defined in
3478 		     the warning section don't get copied to the output.  */
3479 		  s->flags |= SEC_EXCLUDE;
3480 		}
3481 	    }
3482 	}
3483     }
3484 
3485   add_needed = TRUE;
3486   if (! dynamic)
3487     {
3488       /* If we are creating a shared library, create all the dynamic
3489 	 sections immediately.  We need to attach them to something,
3490 	 so we attach them to this BFD, provided it is the right
3491 	 format.  FIXME: If there are no input BFD's of the same
3492 	 format as the output, we can't make a shared library.  */
3493       if (info->shared
3494 	  && is_elf_hash_table (htab)
3495 	  && info->output_bfd->xvec == abfd->xvec
3496 	  && !htab->dynamic_sections_created)
3497 	{
3498 	  if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3499 	    goto error_return;
3500 	}
3501     }
3502   else if (!is_elf_hash_table (htab))
3503     goto error_return;
3504   else
3505     {
3506       asection *s;
3507       const char *soname = NULL;
3508       char *audit = NULL;
3509       struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3510       int ret;
3511 
3512       /* ld --just-symbols and dynamic objects don't mix very well.
3513 	 ld shouldn't allow it.  */
3514       if ((s = abfd->sections) != NULL
3515 	  && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3516 	abort ();
3517 
3518       /* If this dynamic lib was specified on the command line with
3519 	 --as-needed in effect, then we don't want to add a DT_NEEDED
3520 	 tag unless the lib is actually used.  Similary for libs brought
3521 	 in by another lib's DT_NEEDED.  When --no-add-needed is used
3522 	 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3523 	 any dynamic library in DT_NEEDED tags in the dynamic lib at
3524 	 all.  */
3525       add_needed = (elf_dyn_lib_class (abfd)
3526 		    & (DYN_AS_NEEDED | DYN_DT_NEEDED
3527 		       | DYN_NO_NEEDED)) == 0;
3528 
3529       s = bfd_get_section_by_name (abfd, ".dynamic");
3530       if (s != NULL)
3531 	{
3532 	  bfd_byte *dynbuf;
3533 	  bfd_byte *extdyn;
3534 	  unsigned int elfsec;
3535 	  unsigned long shlink;
3536 
3537 	  if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3538 	    {
3539 error_free_dyn:
3540 	      free (dynbuf);
3541 	      goto error_return;
3542 	    }
3543 
3544 	  elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3545 	  if (elfsec == SHN_BAD)
3546 	    goto error_free_dyn;
3547 	  shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3548 
3549 	  for (extdyn = dynbuf;
3550 	       extdyn < dynbuf + s->size;
3551 	       extdyn += bed->s->sizeof_dyn)
3552 	    {
3553 	      Elf_Internal_Dyn dyn;
3554 
3555 	      bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3556 	      if (dyn.d_tag == DT_SONAME)
3557 		{
3558 		  unsigned int tagv = dyn.d_un.d_val;
3559 		  soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3560 		  if (soname == NULL)
3561 		    goto error_free_dyn;
3562 		}
3563 	      if (dyn.d_tag == DT_NEEDED)
3564 		{
3565 		  struct bfd_link_needed_list *n, **pn;
3566 		  char *fnm, *anm;
3567 		  unsigned int tagv = dyn.d_un.d_val;
3568 
3569 		  amt = sizeof (struct bfd_link_needed_list);
3570 		  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3571 		  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3572 		  if (n == NULL || fnm == NULL)
3573 		    goto error_free_dyn;
3574 		  amt = strlen (fnm) + 1;
3575 		  anm = (char *) bfd_alloc (abfd, amt);
3576 		  if (anm == NULL)
3577 		    goto error_free_dyn;
3578 		  memcpy (anm, fnm, amt);
3579 		  n->name = anm;
3580 		  n->by = abfd;
3581 		  n->next = NULL;
3582 		  for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3583 		    ;
3584 		  *pn = n;
3585 		}
3586 	      if (dyn.d_tag == DT_RUNPATH)
3587 		{
3588 		  struct bfd_link_needed_list *n, **pn;
3589 		  char *fnm, *anm;
3590 		  unsigned int tagv = dyn.d_un.d_val;
3591 
3592 		  amt = sizeof (struct bfd_link_needed_list);
3593 		  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3594 		  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3595 		  if (n == NULL || fnm == NULL)
3596 		    goto error_free_dyn;
3597 		  amt = strlen (fnm) + 1;
3598 		  anm = (char *) bfd_alloc (abfd, amt);
3599 		  if (anm == NULL)
3600 		    goto error_free_dyn;
3601 		  memcpy (anm, fnm, amt);
3602 		  n->name = anm;
3603 		  n->by = abfd;
3604 		  n->next = NULL;
3605 		  for (pn = & runpath;
3606 		       *pn != NULL;
3607 		       pn = &(*pn)->next)
3608 		    ;
3609 		  *pn = n;
3610 		}
3611 	      /* Ignore DT_RPATH if we have seen DT_RUNPATH.  */
3612 	      if (!runpath && dyn.d_tag == DT_RPATH)
3613 		{
3614 		  struct bfd_link_needed_list *n, **pn;
3615 		  char *fnm, *anm;
3616 		  unsigned int tagv = dyn.d_un.d_val;
3617 
3618 		  amt = sizeof (struct bfd_link_needed_list);
3619 		  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3620 		  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3621 		  if (n == NULL || fnm == NULL)
3622 		    goto error_free_dyn;
3623 		  amt = strlen (fnm) + 1;
3624 		  anm = (char *) bfd_alloc (abfd, amt);
3625 		  if (anm == NULL)
3626 		    goto error_free_dyn;
3627 		  memcpy (anm, fnm, amt);
3628 		  n->name = anm;
3629 		  n->by = abfd;
3630 		  n->next = NULL;
3631 		  for (pn = & rpath;
3632 		       *pn != NULL;
3633 		       pn = &(*pn)->next)
3634 		    ;
3635 		  *pn = n;
3636 		}
3637 	      if (dyn.d_tag == DT_AUDIT)
3638 		{
3639 		  unsigned int tagv = dyn.d_un.d_val;
3640 		  audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3641 		}
3642 	    }
3643 
3644 	  free (dynbuf);
3645 	}
3646 
3647       /* DT_RUNPATH overrides DT_RPATH.  Do _NOT_ bfd_release, as that
3648 	 frees all more recently bfd_alloc'd blocks as well.  */
3649       if (runpath)
3650 	rpath = runpath;
3651 
3652       if (rpath)
3653 	{
3654 	  struct bfd_link_needed_list **pn;
3655 	  for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3656 	    ;
3657 	  *pn = rpath;
3658 	}
3659 
3660       /* We do not want to include any of the sections in a dynamic
3661 	 object in the output file.  We hack by simply clobbering the
3662 	 list of sections in the BFD.  This could be handled more
3663 	 cleanly by, say, a new section flag; the existing
3664 	 SEC_NEVER_LOAD flag is not the one we want, because that one
3665 	 still implies that the section takes up space in the output
3666 	 file.  */
3667       bfd_section_list_clear (abfd);
3668 
3669       /* Find the name to use in a DT_NEEDED entry that refers to this
3670 	 object.  If the object has a DT_SONAME entry, we use it.
3671 	 Otherwise, if the generic linker stuck something in
3672 	 elf_dt_name, we use that.  Otherwise, we just use the file
3673 	 name.  */
3674       if (soname == NULL || *soname == '\0')
3675 	{
3676 	  soname = elf_dt_name (abfd);
3677 	  if (soname == NULL || *soname == '\0')
3678 	    soname = bfd_get_filename (abfd);
3679 	}
3680 
3681       /* Save the SONAME because sometimes the linker emulation code
3682 	 will need to know it.  */
3683       elf_dt_name (abfd) = soname;
3684 
3685       ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3686       if (ret < 0)
3687 	goto error_return;
3688 
3689       /* If we have already included this dynamic object in the
3690 	 link, just ignore it.  There is no reason to include a
3691 	 particular dynamic object more than once.  */
3692       if (ret > 0)
3693 	return TRUE;
3694 
3695       /* Save the DT_AUDIT entry for the linker emulation code. */
3696       elf_dt_audit (abfd) = audit;
3697     }
3698 
3699   /* If this is a dynamic object, we always link against the .dynsym
3700      symbol table, not the .symtab symbol table.  The dynamic linker
3701      will only see the .dynsym symbol table, so there is no reason to
3702      look at .symtab for a dynamic object.  */
3703 
3704   if (! dynamic || elf_dynsymtab (abfd) == 0)
3705     hdr = &elf_tdata (abfd)->symtab_hdr;
3706   else
3707     hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3708 
3709   symcount = hdr->sh_size / bed->s->sizeof_sym;
3710 
3711   /* The sh_info field of the symtab header tells us where the
3712      external symbols start.  We don't care about the local symbols at
3713      this point.  */
3714   if (elf_bad_symtab (abfd))
3715     {
3716       extsymcount = symcount;
3717       extsymoff = 0;
3718     }
3719   else
3720     {
3721       extsymcount = symcount - hdr->sh_info;
3722       extsymoff = hdr->sh_info;
3723     }
3724 
3725   sym_hash = NULL;
3726   if (extsymcount != 0)
3727     {
3728       isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3729 				      NULL, NULL, NULL);
3730       if (isymbuf == NULL)
3731 	goto error_return;
3732 
3733       /* We store a pointer to the hash table entry for each external
3734 	 symbol.  */
3735       amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3736       sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3737       if (sym_hash == NULL)
3738 	goto error_free_sym;
3739       elf_sym_hashes (abfd) = sym_hash;
3740     }
3741 
3742   if (dynamic)
3743     {
3744       /* Read in any version definitions.  */
3745       if (!_bfd_elf_slurp_version_tables (abfd,
3746 					  info->default_imported_symver))
3747 	goto error_free_sym;
3748 
3749       /* Read in the symbol versions, but don't bother to convert them
3750 	 to internal format.  */
3751       if (elf_dynversym (abfd) != 0)
3752 	{
3753 	  Elf_Internal_Shdr *versymhdr;
3754 
3755 	  versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3756 	  extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3757 	  if (extversym == NULL)
3758 	    goto error_free_sym;
3759 	  amt = versymhdr->sh_size;
3760 	  if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3761 	      || bfd_bread (extversym, amt, abfd) != amt)
3762 	    goto error_free_vers;
3763 	}
3764     }
3765 
3766   /* If we are loading an as-needed shared lib, save the symbol table
3767      state before we start adding symbols.  If the lib turns out
3768      to be unneeded, restore the state.  */
3769   if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3770     {
3771       unsigned int i;
3772       size_t entsize;
3773 
3774       for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3775 	{
3776 	  struct bfd_hash_entry *p;
3777 	  struct elf_link_hash_entry *h;
3778 
3779 	  for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3780 	    {
3781 	      h = (struct elf_link_hash_entry *) p;
3782 	      entsize += htab->root.table.entsize;
3783 	      if (h->root.type == bfd_link_hash_warning)
3784 		entsize += htab->root.table.entsize;
3785 	    }
3786 	}
3787 
3788       tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3789       hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3790       old_tab = bfd_malloc (tabsize + entsize + hashsize);
3791       if (old_tab == NULL)
3792 	goto error_free_vers;
3793 
3794       /* Remember the current objalloc pointer, so that all mem for
3795 	 symbols added can later be reclaimed.  */
3796       alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3797       if (alloc_mark == NULL)
3798 	goto error_free_vers;
3799 
3800       /* Make a special call to the linker "notice" function to
3801 	 tell it that we are about to handle an as-needed lib.  */
3802       if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3803 				       notice_as_needed, 0, NULL))
3804 	goto error_free_vers;
3805 
3806       /* Clone the symbol table and sym hashes.  Remember some
3807 	 pointers into the symbol table, and dynamic symbol count.  */
3808       old_hash = (char *) old_tab + tabsize;
3809       old_ent = (char *) old_hash + hashsize;
3810       memcpy (old_tab, htab->root.table.table, tabsize);
3811       memcpy (old_hash, sym_hash, hashsize);
3812       old_undefs = htab->root.undefs;
3813       old_undefs_tail = htab->root.undefs_tail;
3814       old_table = htab->root.table.table;
3815       old_size = htab->root.table.size;
3816       old_count = htab->root.table.count;
3817       old_dynsymcount = htab->dynsymcount;
3818       old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3819 
3820       for (i = 0; i < htab->root.table.size; i++)
3821 	{
3822 	  struct bfd_hash_entry *p;
3823 	  struct elf_link_hash_entry *h;
3824 
3825 	  for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3826 	    {
3827 	      memcpy (old_ent, p, htab->root.table.entsize);
3828 	      old_ent = (char *) old_ent + htab->root.table.entsize;
3829 	      h = (struct elf_link_hash_entry *) p;
3830 	      if (h->root.type == bfd_link_hash_warning)
3831 		{
3832 		  memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3833 		  old_ent = (char *) old_ent + htab->root.table.entsize;
3834 		}
3835 	    }
3836 	}
3837     }
3838 
3839   weaks = NULL;
3840   ever = extversym != NULL ? extversym + extsymoff : NULL;
3841   for (isym = isymbuf, isymend = isymbuf + extsymcount;
3842        isym < isymend;
3843        isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3844     {
3845       int bind;
3846       bfd_vma value;
3847       asection *sec, *new_sec;
3848       flagword flags;
3849       const char *name;
3850       struct elf_link_hash_entry *h;
3851       struct elf_link_hash_entry *hi;
3852       bfd_boolean definition;
3853       bfd_boolean size_change_ok;
3854       bfd_boolean type_change_ok;
3855       bfd_boolean new_weakdef;
3856       bfd_boolean new_weak;
3857       bfd_boolean old_weak;
3858       bfd_boolean override;
3859       bfd_boolean common;
3860       unsigned int old_alignment;
3861       bfd *old_bfd;
3862       bfd * undef_bfd = NULL;
3863 
3864       override = FALSE;
3865 
3866       flags = BSF_NO_FLAGS;
3867       sec = NULL;
3868       value = isym->st_value;
3869       *sym_hash = NULL;
3870       common = bed->common_definition (isym);
3871 
3872       bind = ELF_ST_BIND (isym->st_info);
3873       switch (bind)
3874 	{
3875 	case STB_LOCAL:
3876 	  /* This should be impossible, since ELF requires that all
3877 	     global symbols follow all local symbols, and that sh_info
3878 	     point to the first global symbol.  Unfortunately, Irix 5
3879 	     screws this up.  */
3880 	  continue;
3881 
3882 	case STB_GLOBAL:
3883 	  if (isym->st_shndx != SHN_UNDEF && !common)
3884 	    flags = BSF_GLOBAL;
3885 	  break;
3886 
3887 	case STB_WEAK:
3888 	  flags = BSF_WEAK;
3889 	  break;
3890 
3891 	case STB_GNU_UNIQUE:
3892 	  flags = BSF_GNU_UNIQUE;
3893 	  break;
3894 
3895 	default:
3896 	  /* Leave it up to the processor backend.  */
3897 	  break;
3898 	}
3899 
3900       if (isym->st_shndx == SHN_UNDEF)
3901 	sec = bfd_und_section_ptr;
3902       else if (isym->st_shndx == SHN_ABS)
3903 	sec = bfd_abs_section_ptr;
3904       else if (isym->st_shndx == SHN_COMMON)
3905 	{
3906 	  sec = bfd_com_section_ptr;
3907 	  /* What ELF calls the size we call the value.  What ELF
3908 	     calls the value we call the alignment.  */
3909 	  value = isym->st_size;
3910 	}
3911       else
3912 	{
3913 	  sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3914 	  if (sec == NULL)
3915 	    sec = bfd_abs_section_ptr;
3916 	  else if (discarded_section (sec))
3917 	    {
3918 	      /* Symbols from discarded section are undefined.  We keep
3919 		 its visibility.  */
3920 	      sec = bfd_und_section_ptr;
3921 	      isym->st_shndx = SHN_UNDEF;
3922 	    }
3923 	  else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3924 	    value -= sec->vma;
3925 	}
3926 
3927       name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3928 					      isym->st_name);
3929       if (name == NULL)
3930 	goto error_free_vers;
3931 
3932       if (isym->st_shndx == SHN_COMMON
3933 	  && (abfd->flags & BFD_PLUGIN) != 0)
3934 	{
3935 	  asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3936 
3937 	  if (xc == NULL)
3938 	    {
3939 	      flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3940 				 | SEC_EXCLUDE);
3941 	      xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3942 	      if (xc == NULL)
3943 		goto error_free_vers;
3944 	    }
3945 	  sec = xc;
3946 	}
3947       else if (isym->st_shndx == SHN_COMMON
3948 	       && ELF_ST_TYPE (isym->st_info) == STT_TLS
3949 	       && !info->relocatable)
3950 	{
3951 	  asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3952 
3953 	  if (tcomm == NULL)
3954 	    {
3955 	      flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3956 				 | SEC_LINKER_CREATED);
3957 	      tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3958 	      if (tcomm == NULL)
3959 		goto error_free_vers;
3960 	    }
3961 	  sec = tcomm;
3962 	}
3963       else if (bed->elf_add_symbol_hook)
3964 	{
3965 	  if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3966 					     &sec, &value))
3967 	    goto error_free_vers;
3968 
3969 	  /* The hook function sets the name to NULL if this symbol
3970 	     should be skipped for some reason.  */
3971 	  if (name == NULL)
3972 	    continue;
3973 	}
3974 
3975       /* Sanity check that all possibilities were handled.  */
3976       if (sec == NULL)
3977 	{
3978 	  bfd_set_error (bfd_error_bad_value);
3979 	  goto error_free_vers;
3980 	}
3981 
3982       if (bfd_is_und_section (sec)
3983 	  || bfd_is_com_section (sec))
3984 	definition = FALSE;
3985       else
3986 	definition = TRUE;
3987 
3988       size_change_ok = FALSE;
3989       type_change_ok = bed->type_change_ok;
3990       old_weak = FALSE;
3991       old_alignment = 0;
3992       old_bfd = NULL;
3993       new_sec = sec;
3994 
3995       if (is_elf_hash_table (htab))
3996 	{
3997 	  Elf_Internal_Versym iver;
3998 	  unsigned int vernum = 0;
3999 	  bfd_boolean skip;
4000 
4001 	  /* If this is a definition of a symbol which was previously
4002 	     referenced, then make a note of the bfd that contained the
4003 	     reference.  This is used if we need to refer to the source
4004 	     of the reference later on.  */
4005 	  if (! bfd_is_und_section (sec))
4006 	    {
4007 	      h = elf_link_hash_lookup (elf_hash_table (info), name,
4008 					FALSE, FALSE, FALSE);
4009 
4010 	      if (h != NULL
4011 		  && (h->root.type == bfd_link_hash_undefined
4012 		      || h->root.type == bfd_link_hash_undefweak)
4013 		  && h->root.u.undef.abfd)
4014 		undef_bfd = h->root.u.undef.abfd;
4015 	    }
4016 
4017 	  if (ever == NULL)
4018 	    {
4019 	      if (info->default_imported_symver)
4020 		/* Use the default symbol version created earlier.  */
4021 		iver.vs_vers = elf_tdata (abfd)->cverdefs;
4022 	      else
4023 		iver.vs_vers = 0;
4024 	    }
4025 	  else
4026 	    _bfd_elf_swap_versym_in (abfd, ever, &iver);
4027 
4028 	  vernum = iver.vs_vers & VERSYM_VERSION;
4029 
4030 	  /* If this is a hidden symbol, or if it is not version
4031 	     1, we append the version name to the symbol name.
4032 	     However, we do not modify a non-hidden absolute symbol
4033 	     if it is not a function, because it might be the version
4034 	     symbol itself.  FIXME: What if it isn't?  */
4035 	  if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4036 	      || (vernum > 1
4037 		  && (!bfd_is_abs_section (sec)
4038 		      || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4039 	    {
4040 	      const char *verstr;
4041 	      size_t namelen, verlen, newlen;
4042 	      char *newname, *p;
4043 
4044 	      if (isym->st_shndx != SHN_UNDEF)
4045 		{
4046 		  if (vernum > elf_tdata (abfd)->cverdefs)
4047 		    verstr = NULL;
4048 		  else if (vernum > 1)
4049 		    verstr =
4050 		      elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4051 		  else
4052 		    verstr = "";
4053 
4054 		  if (verstr == NULL)
4055 		    {
4056 		      (*_bfd_error_handler)
4057 			(_("%B: %s: invalid version %u (max %d)"),
4058 			 abfd, name, vernum,
4059 			 elf_tdata (abfd)->cverdefs);
4060 		      bfd_set_error (bfd_error_bad_value);
4061 		      goto error_free_vers;
4062 		    }
4063 		}
4064 	      else
4065 		{
4066 		  /* We cannot simply test for the number of
4067 		     entries in the VERNEED section since the
4068 		     numbers for the needed versions do not start
4069 		     at 0.  */
4070 		  Elf_Internal_Verneed *t;
4071 
4072 		  verstr = NULL;
4073 		  for (t = elf_tdata (abfd)->verref;
4074 		       t != NULL;
4075 		       t = t->vn_nextref)
4076 		    {
4077 		      Elf_Internal_Vernaux *a;
4078 
4079 		      for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4080 			{
4081 			  if (a->vna_other == vernum)
4082 			    {
4083 			      verstr = a->vna_nodename;
4084 			      break;
4085 			    }
4086 			}
4087 		      if (a != NULL)
4088 			break;
4089 		    }
4090 		  if (verstr == NULL)
4091 		    {
4092 		      (*_bfd_error_handler)
4093 			(_("%B: %s: invalid needed version %d"),
4094 			 abfd, name, vernum);
4095 		      bfd_set_error (bfd_error_bad_value);
4096 		      goto error_free_vers;
4097 		    }
4098 		}
4099 
4100 	      namelen = strlen (name);
4101 	      verlen = strlen (verstr);
4102 	      newlen = namelen + verlen + 2;
4103 	      if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4104 		  && isym->st_shndx != SHN_UNDEF)
4105 		++newlen;
4106 
4107 	      newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4108 	      if (newname == NULL)
4109 		goto error_free_vers;
4110 	      memcpy (newname, name, namelen);
4111 	      p = newname + namelen;
4112 	      *p++ = ELF_VER_CHR;
4113 	      /* If this is a defined non-hidden version symbol,
4114 		 we add another @ to the name.  This indicates the
4115 		 default version of the symbol.  */
4116 	      if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4117 		  && isym->st_shndx != SHN_UNDEF)
4118 		*p++ = ELF_VER_CHR;
4119 	      memcpy (p, verstr, verlen + 1);
4120 
4121 	      name = newname;
4122 	    }
4123 
4124 	  /* If necessary, make a second attempt to locate the bfd
4125 	     containing an unresolved reference to the current symbol.  */
4126 	  if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4127 	    {
4128 	      h = elf_link_hash_lookup (elf_hash_table (info), name,
4129 					FALSE, FALSE, FALSE);
4130 
4131 	      if (h != NULL
4132 		  && (h->root.type == bfd_link_hash_undefined
4133 		      || h->root.type == bfd_link_hash_undefweak)
4134 		  && h->root.u.undef.abfd)
4135 		undef_bfd = h->root.u.undef.abfd;
4136 	    }
4137 
4138 	  if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4139 				      &value, &old_weak, &old_alignment,
4140 				      sym_hash, &skip, &override,
4141 				      &type_change_ok, &size_change_ok))
4142 	    goto error_free_vers;
4143 
4144 	  if (skip)
4145 	    continue;
4146 
4147 	  if (override)
4148 	    definition = FALSE;
4149 
4150 	  h = *sym_hash;
4151 	  while (h->root.type == bfd_link_hash_indirect
4152 		 || h->root.type == bfd_link_hash_warning)
4153 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
4154 
4155 	  /* Remember the old alignment if this is a common symbol, so
4156 	     that we don't reduce the alignment later on.  We can't
4157 	     check later, because _bfd_generic_link_add_one_symbol
4158 	     will set a default for the alignment which we want to
4159 	     override. We also remember the old bfd where the existing
4160 	     definition comes from.  */
4161 	  switch (h->root.type)
4162 	    {
4163 	    default:
4164 	      break;
4165 
4166 	    case bfd_link_hash_defined:
4167 	    case bfd_link_hash_defweak:
4168 	      old_bfd = h->root.u.def.section->owner;
4169 	      break;
4170 
4171 	    case bfd_link_hash_common:
4172 	      old_bfd = h->root.u.c.p->section->owner;
4173 	      old_alignment = h->root.u.c.p->alignment_power;
4174 	      break;
4175 	    }
4176 
4177 	  if (elf_tdata (abfd)->verdef != NULL
4178 	      && vernum > 1
4179 	      && definition)
4180 	    h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4181 	}
4182 
4183       if (! (_bfd_generic_link_add_one_symbol
4184 	     (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4185 	      (struct bfd_link_hash_entry **) sym_hash)))
4186 	goto error_free_vers;
4187 
4188       h = *sym_hash;
4189       /* We need to make sure that indirect symbol dynamic flags are
4190 	 updated.  */
4191       hi = h;
4192       while (h->root.type == bfd_link_hash_indirect
4193 	     || h->root.type == bfd_link_hash_warning)
4194 	h = (struct elf_link_hash_entry *) h->root.u.i.link;
4195 
4196       *sym_hash = h;
4197 
4198       new_weak = (flags & BSF_WEAK) != 0;
4199       new_weakdef = FALSE;
4200       if (dynamic
4201 	  && definition
4202 	  && new_weak
4203 	  && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4204 	  && is_elf_hash_table (htab)
4205 	  && h->u.weakdef == NULL)
4206 	{
4207 	  /* Keep a list of all weak defined non function symbols from
4208 	     a dynamic object, using the weakdef field.  Later in this
4209 	     function we will set the weakdef field to the correct
4210 	     value.  We only put non-function symbols from dynamic
4211 	     objects on this list, because that happens to be the only
4212 	     time we need to know the normal symbol corresponding to a
4213 	     weak symbol, and the information is time consuming to
4214 	     figure out.  If the weakdef field is not already NULL,
4215 	     then this symbol was already defined by some previous
4216 	     dynamic object, and we will be using that previous
4217 	     definition anyhow.  */
4218 
4219 	  h->u.weakdef = weaks;
4220 	  weaks = h;
4221 	  new_weakdef = TRUE;
4222 	}
4223 
4224       /* Set the alignment of a common symbol.  */
4225       if ((common || bfd_is_com_section (sec))
4226 	  && h->root.type == bfd_link_hash_common)
4227 	{
4228 	  unsigned int align;
4229 
4230 	  if (common)
4231 	    align = bfd_log2 (isym->st_value);
4232 	  else
4233 	    {
4234 	      /* The new symbol is a common symbol in a shared object.
4235 		 We need to get the alignment from the section.  */
4236 	      align = new_sec->alignment_power;
4237 	    }
4238 	  if (align > old_alignment)
4239 	    h->root.u.c.p->alignment_power = align;
4240 	  else
4241 	    h->root.u.c.p->alignment_power = old_alignment;
4242 	}
4243 
4244       if (is_elf_hash_table (htab))
4245 	{
4246 	  bfd_boolean dynsym;
4247 
4248 	  /* Check the alignment when a common symbol is involved. This
4249 	     can change when a common symbol is overridden by a normal
4250 	     definition or a common symbol is ignored due to the old
4251 	     normal definition. We need to make sure the maximum
4252 	     alignment is maintained.  */
4253 	  if ((old_alignment || common)
4254 	      && h->root.type != bfd_link_hash_common)
4255 	    {
4256 	      unsigned int common_align;
4257 	      unsigned int normal_align;
4258 	      unsigned int symbol_align;
4259 	      bfd *normal_bfd;
4260 	      bfd *common_bfd;
4261 
4262 	      symbol_align = ffs (h->root.u.def.value) - 1;
4263 	      if (h->root.u.def.section->owner != NULL
4264 		  && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4265 		{
4266 		  normal_align = h->root.u.def.section->alignment_power;
4267 		  if (normal_align > symbol_align)
4268 		    normal_align = symbol_align;
4269 		}
4270 	      else
4271 		normal_align = symbol_align;
4272 
4273 	      if (old_alignment)
4274 		{
4275 		  common_align = old_alignment;
4276 		  common_bfd = old_bfd;
4277 		  normal_bfd = abfd;
4278 		}
4279 	      else
4280 		{
4281 		  common_align = bfd_log2 (isym->st_value);
4282 		  common_bfd = abfd;
4283 		  normal_bfd = old_bfd;
4284 		}
4285 
4286 	      if (normal_align < common_align)
4287 		{
4288 		  /* PR binutils/2735 */
4289 		  if (normal_bfd == NULL)
4290 		    (*_bfd_error_handler)
4291 		      (_("Warning: alignment %u of common symbol `%s' in %B"
4292 			 " is greater than the alignment (%u) of its section %A"),
4293 		       common_bfd, h->root.u.def.section,
4294 		       1 << common_align, name, 1 << normal_align);
4295 		  else
4296 		    (*_bfd_error_handler)
4297 		      (_("Warning: alignment %u of symbol `%s' in %B"
4298 			 " is smaller than %u in %B"),
4299 		       normal_bfd, common_bfd,
4300 		       1 << normal_align, name, 1 << common_align);
4301 		}
4302 	    }
4303 
4304 	  /* Remember the symbol size if it isn't undefined.  */
4305 	  if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4306 	      && (definition || h->size == 0))
4307 	    {
4308 	      if (h->size != 0
4309 		  && h->size != isym->st_size
4310 		  && ! size_change_ok)
4311 		(*_bfd_error_handler)
4312 		  (_("Warning: size of symbol `%s' changed"
4313 		     " from %lu in %B to %lu in %B"),
4314 		   old_bfd, abfd,
4315 		   name, (unsigned long) h->size,
4316 		   (unsigned long) isym->st_size);
4317 
4318 	      h->size = isym->st_size;
4319 	    }
4320 
4321 	  /* If this is a common symbol, then we always want H->SIZE
4322 	     to be the size of the common symbol.  The code just above
4323 	     won't fix the size if a common symbol becomes larger.  We
4324 	     don't warn about a size change here, because that is
4325 	     covered by --warn-common.  Allow changed between different
4326 	     function types.  */
4327 	  if (h->root.type == bfd_link_hash_common)
4328 	    h->size = h->root.u.c.size;
4329 
4330 	  if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4331 	      && ((definition && !new_weak)
4332 		  || (old_weak && h->root.type == bfd_link_hash_common)
4333 		  || h->type == STT_NOTYPE))
4334 	    {
4335 	      unsigned int type = ELF_ST_TYPE (isym->st_info);
4336 
4337 	      /* Turn an IFUNC symbol from a DSO into a normal FUNC
4338 		 symbol.  */
4339 	      if (type == STT_GNU_IFUNC
4340 		  && (abfd->flags & DYNAMIC) != 0)
4341 		type = STT_FUNC;
4342 
4343 	      if (h->type != type)
4344 		{
4345 		  if (h->type != STT_NOTYPE && ! type_change_ok)
4346 		    (*_bfd_error_handler)
4347 		      (_("Warning: type of symbol `%s' changed"
4348 			 " from %d to %d in %B"),
4349 		       abfd, name, h->type, type);
4350 
4351 		  h->type = type;
4352 		}
4353 	    }
4354 
4355 	  /* Merge st_other field.  */
4356 	  elf_merge_st_other (abfd, h, isym, definition, dynamic);
4357 
4358 	  /* Set a flag in the hash table entry indicating the type of
4359 	     reference or definition we just found.  Keep a count of
4360 	     the number of dynamic symbols we find.  A dynamic symbol
4361 	     is one which is referenced or defined by both a regular
4362 	     object and a shared object.  */
4363 	  dynsym = FALSE;
4364 	  if (! dynamic)
4365 	    {
4366 	      if (! definition)
4367 		{
4368 		  h->ref_regular = 1;
4369 		  if (bind != STB_WEAK)
4370 		    h->ref_regular_nonweak = 1;
4371 		}
4372 	      else
4373 		{
4374 		  h->def_regular = 1;
4375 		  if (h->def_dynamic)
4376 		    {
4377 		      h->def_dynamic = 0;
4378 		      h->ref_dynamic = 1;
4379 		    }
4380 		}
4381 
4382 	      /* If the indirect symbol has been forced local, don't
4383 		 make the real symbol dynamic.  */
4384 	      if ((h == hi || !hi->forced_local)
4385 		  && (! info->executable
4386 		      || h->def_dynamic
4387 		      || h->ref_dynamic))
4388 		dynsym = TRUE;
4389 	    }
4390 	  else
4391 	    {
4392 	      if (! definition)
4393 		{
4394 		  h->ref_dynamic = 1;
4395 		  hi->ref_dynamic = 1;
4396 		}
4397 	      else
4398 		{
4399 		  h->def_dynamic = 1;
4400 		  hi->def_dynamic = 1;
4401 		}
4402 
4403 	      /* If the indirect symbol has been forced local, don't
4404 		 make the real symbol dynamic.  */
4405 	      if ((h == hi || !hi->forced_local)
4406 		  && (h->def_regular
4407 		      || h->ref_regular
4408 		      || (h->u.weakdef != NULL
4409 			  && ! new_weakdef
4410 			  && h->u.weakdef->dynindx != -1)))
4411 		dynsym = TRUE;
4412 	    }
4413 
4414 	  /* We don't want to make debug symbol dynamic.  */
4415 	  if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4416 	    dynsym = FALSE;
4417 
4418 	  /* Nor should we make plugin symbols dynamic.  */
4419 	  if ((abfd->flags & BFD_PLUGIN) != 0)
4420 	    dynsym = FALSE;
4421 
4422 	  if (definition)
4423 	    {
4424 	      h->target_internal = isym->st_target_internal;
4425 	      h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4426 	    }
4427 
4428 	  /* Check to see if we need to add an indirect symbol for
4429 	     the default name.  */
4430 	  if (definition || h->root.type == bfd_link_hash_common)
4431 	    if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4432 					      &sec, &value, &dynsym,
4433 					      override))
4434 	      goto error_free_vers;
4435 
4436 	  if (definition && !dynamic)
4437 	    {
4438 	      char *p = strchr (name, ELF_VER_CHR);
4439 	      if (p != NULL && p[1] != ELF_VER_CHR)
4440 		{
4441 		  /* Queue non-default versions so that .symver x, x@FOO
4442 		     aliases can be checked.  */
4443 		  if (!nondeflt_vers)
4444 		    {
4445 		      amt = ((isymend - isym + 1)
4446 			     * sizeof (struct elf_link_hash_entry *));
4447 		      nondeflt_vers =
4448                           (struct elf_link_hash_entry **) bfd_malloc (amt);
4449 		      if (!nondeflt_vers)
4450 			goto error_free_vers;
4451 		    }
4452 		  nondeflt_vers[nondeflt_vers_cnt++] = h;
4453 		}
4454 	    }
4455 
4456 	  if (dynsym && h->dynindx == -1)
4457 	    {
4458 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
4459 		goto error_free_vers;
4460 	      if (h->u.weakdef != NULL
4461 		  && ! new_weakdef
4462 		  && h->u.weakdef->dynindx == -1)
4463 		{
4464 		  if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4465 		    goto error_free_vers;
4466 		}
4467 	    }
4468 	  else if (dynsym && h->dynindx != -1)
4469 	    /* If the symbol already has a dynamic index, but
4470 	       visibility says it should not be visible, turn it into
4471 	       a local symbol.  */
4472 	    switch (ELF_ST_VISIBILITY (h->other))
4473 	      {
4474 	      case STV_INTERNAL:
4475 	      case STV_HIDDEN:
4476 		(*bed->elf_backend_hide_symbol) (info, h, TRUE);
4477 		dynsym = FALSE;
4478 		break;
4479 	      }
4480 
4481 	  /* Don't add DT_NEEDED for references from the dummy bfd.  */
4482 	  if (!add_needed
4483 	      && definition
4484 	      && ((dynsym
4485 		   && h->ref_regular
4486 		   && (undef_bfd == NULL
4487 		       || (undef_bfd->flags & BFD_PLUGIN) == 0))
4488 		  || (h->ref_dynamic
4489 		      && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4490 		      && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4491 	    {
4492 	      int ret;
4493 	      const char *soname = elf_dt_name (abfd);
4494 
4495 	      /* A symbol from a library loaded via DT_NEEDED of some
4496 		 other library is referenced by a regular object.
4497 		 Add a DT_NEEDED entry for it.  Issue an error if
4498 		 --no-add-needed is used and the reference was not
4499 		 a weak one.  */
4500 	      if (undef_bfd != NULL
4501 		  && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4502 		{
4503 		  (*_bfd_error_handler)
4504 		    (_("%B: undefined reference to symbol '%s'"),
4505 		     undef_bfd, name);
4506 		  (*_bfd_error_handler)
4507 		    (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4508 		     abfd, name);
4509 		  bfd_set_error (bfd_error_invalid_operation);
4510 		  goto error_free_vers;
4511 		}
4512 
4513 	      elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4514                   (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4515 
4516 	      add_needed = TRUE;
4517 	      ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4518 	      if (ret < 0)
4519 		goto error_free_vers;
4520 
4521 	      BFD_ASSERT (ret == 0);
4522 	    }
4523 	}
4524     }
4525 
4526   if (extversym != NULL)
4527     {
4528       free (extversym);
4529       extversym = NULL;
4530     }
4531 
4532   if (isymbuf != NULL)
4533     {
4534       free (isymbuf);
4535       isymbuf = NULL;
4536     }
4537 
4538   if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4539     {
4540       unsigned int i;
4541 
4542       /* Restore the symbol table.  */
4543       if (bed->as_needed_cleanup)
4544 	(*bed->as_needed_cleanup) (abfd, info);
4545       old_hash = (char *) old_tab + tabsize;
4546       old_ent = (char *) old_hash + hashsize;
4547       sym_hash = elf_sym_hashes (abfd);
4548       htab->root.table.table = old_table;
4549       htab->root.table.size = old_size;
4550       htab->root.table.count = old_count;
4551       memcpy (htab->root.table.table, old_tab, tabsize);
4552       memcpy (sym_hash, old_hash, hashsize);
4553       htab->root.undefs = old_undefs;
4554       htab->root.undefs_tail = old_undefs_tail;
4555       _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4556       for (i = 0; i < htab->root.table.size; i++)
4557 	{
4558 	  struct bfd_hash_entry *p;
4559 	  struct elf_link_hash_entry *h;
4560 	  bfd_size_type size;
4561 	  unsigned int alignment_power;
4562 
4563 	  for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4564 	    {
4565 	      h = (struct elf_link_hash_entry *) p;
4566 	      if (h->root.type == bfd_link_hash_warning)
4567 		h = (struct elf_link_hash_entry *) h->root.u.i.link;
4568 	      if (h->dynindx >= old_dynsymcount
4569 		  && h->dynstr_index < old_dynstr_size)
4570 		_bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4571 
4572 	      /* Preserve the maximum alignment and size for common
4573 		 symbols even if this dynamic lib isn't on DT_NEEDED
4574 		 since it can still be loaded at run time by another
4575 		 dynamic lib.  */
4576 	      if (h->root.type == bfd_link_hash_common)
4577 		{
4578 		  size = h->root.u.c.size;
4579 		  alignment_power = h->root.u.c.p->alignment_power;
4580 		}
4581 	      else
4582 		{
4583 		  size = 0;
4584 		  alignment_power = 0;
4585 		}
4586 	      memcpy (p, old_ent, htab->root.table.entsize);
4587 	      old_ent = (char *) old_ent + htab->root.table.entsize;
4588 	      h = (struct elf_link_hash_entry *) p;
4589 	      if (h->root.type == bfd_link_hash_warning)
4590 		{
4591 		  memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4592 		  old_ent = (char *) old_ent + htab->root.table.entsize;
4593 		  h = (struct elf_link_hash_entry *) h->root.u.i.link;
4594 		}
4595 	      if (h->root.type == bfd_link_hash_common)
4596 		{
4597 		  if (size > h->root.u.c.size)
4598 		    h->root.u.c.size = size;
4599 		  if (alignment_power > h->root.u.c.p->alignment_power)
4600 		    h->root.u.c.p->alignment_power = alignment_power;
4601 		}
4602 	    }
4603 	}
4604 
4605       /* Make a special call to the linker "notice" function to
4606 	 tell it that symbols added for crefs may need to be removed.  */
4607       if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4608 				       notice_not_needed, 0, NULL))
4609 	goto error_free_vers;
4610 
4611       free (old_tab);
4612       objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4613 			   alloc_mark);
4614       if (nondeflt_vers != NULL)
4615 	free (nondeflt_vers);
4616       return TRUE;
4617     }
4618 
4619   if (old_tab != NULL)
4620     {
4621       if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4622 				       notice_needed, 0, NULL))
4623 	goto error_free_vers;
4624       free (old_tab);
4625       old_tab = NULL;
4626     }
4627 
4628   /* Now that all the symbols from this input file are created, handle
4629      .symver foo, foo@BAR such that any relocs against foo become foo@BAR.  */
4630   if (nondeflt_vers != NULL)
4631     {
4632       bfd_size_type cnt, symidx;
4633 
4634       for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4635 	{
4636 	  struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4637 	  char *shortname, *p;
4638 
4639 	  p = strchr (h->root.root.string, ELF_VER_CHR);
4640 	  if (p == NULL
4641 	      || (h->root.type != bfd_link_hash_defined
4642 		  && h->root.type != bfd_link_hash_defweak))
4643 	    continue;
4644 
4645 	  amt = p - h->root.root.string;
4646 	  shortname = (char *) bfd_malloc (amt + 1);
4647 	  if (!shortname)
4648 	    goto error_free_vers;
4649 	  memcpy (shortname, h->root.root.string, amt);
4650 	  shortname[amt] = '\0';
4651 
4652 	  hi = (struct elf_link_hash_entry *)
4653 	       bfd_link_hash_lookup (&htab->root, shortname,
4654 				     FALSE, FALSE, FALSE);
4655 	  if (hi != NULL
4656 	      && hi->root.type == h->root.type
4657 	      && hi->root.u.def.value == h->root.u.def.value
4658 	      && hi->root.u.def.section == h->root.u.def.section)
4659 	    {
4660 	      (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4661 	      hi->root.type = bfd_link_hash_indirect;
4662 	      hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4663 	      (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4664 	      sym_hash = elf_sym_hashes (abfd);
4665 	      if (sym_hash)
4666 		for (symidx = 0; symidx < extsymcount; ++symidx)
4667 		  if (sym_hash[symidx] == hi)
4668 		    {
4669 		      sym_hash[symidx] = h;
4670 		      break;
4671 		    }
4672 	    }
4673 	  free (shortname);
4674 	}
4675       free (nondeflt_vers);
4676       nondeflt_vers = NULL;
4677     }
4678 
4679   /* Now set the weakdefs field correctly for all the weak defined
4680      symbols we found.  The only way to do this is to search all the
4681      symbols.  Since we only need the information for non functions in
4682      dynamic objects, that's the only time we actually put anything on
4683      the list WEAKS.  We need this information so that if a regular
4684      object refers to a symbol defined weakly in a dynamic object, the
4685      real symbol in the dynamic object is also put in the dynamic
4686      symbols; we also must arrange for both symbols to point to the
4687      same memory location.  We could handle the general case of symbol
4688      aliasing, but a general symbol alias can only be generated in
4689      assembler code, handling it correctly would be very time
4690      consuming, and other ELF linkers don't handle general aliasing
4691      either.  */
4692   if (weaks != NULL)
4693     {
4694       struct elf_link_hash_entry **hpp;
4695       struct elf_link_hash_entry **hppend;
4696       struct elf_link_hash_entry **sorted_sym_hash;
4697       struct elf_link_hash_entry *h;
4698       size_t sym_count;
4699 
4700       /* Since we have to search the whole symbol list for each weak
4701 	 defined symbol, search time for N weak defined symbols will be
4702 	 O(N^2). Binary search will cut it down to O(NlogN).  */
4703       amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4704       sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4705       if (sorted_sym_hash == NULL)
4706 	goto error_return;
4707       sym_hash = sorted_sym_hash;
4708       hpp = elf_sym_hashes (abfd);
4709       hppend = hpp + extsymcount;
4710       sym_count = 0;
4711       for (; hpp < hppend; hpp++)
4712 	{
4713 	  h = *hpp;
4714 	  if (h != NULL
4715 	      && h->root.type == bfd_link_hash_defined
4716 	      && !bed->is_function_type (h->type))
4717 	    {
4718 	      *sym_hash = h;
4719 	      sym_hash++;
4720 	      sym_count++;
4721 	    }
4722 	}
4723 
4724       qsort (sorted_sym_hash, sym_count,
4725 	     sizeof (struct elf_link_hash_entry *),
4726 	     elf_sort_symbol);
4727 
4728       while (weaks != NULL)
4729 	{
4730 	  struct elf_link_hash_entry *hlook;
4731 	  asection *slook;
4732 	  bfd_vma vlook;
4733 	  size_t i, j, idx;
4734 
4735 	  hlook = weaks;
4736 	  weaks = hlook->u.weakdef;
4737 	  hlook->u.weakdef = NULL;
4738 
4739 	  BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4740 		      || hlook->root.type == bfd_link_hash_defweak
4741 		      || hlook->root.type == bfd_link_hash_common
4742 		      || hlook->root.type == bfd_link_hash_indirect);
4743 	  slook = hlook->root.u.def.section;
4744 	  vlook = hlook->root.u.def.value;
4745 
4746 	  i = 0;
4747 	  j = sym_count;
4748 	  while (i != j)
4749 	    {
4750 	      bfd_signed_vma vdiff;
4751 	      idx = (i + j) / 2;
4752 	      h = sorted_sym_hash[idx];
4753 	      vdiff = vlook - h->root.u.def.value;
4754 	      if (vdiff < 0)
4755 		j = idx;
4756 	      else if (vdiff > 0)
4757 		i = idx + 1;
4758 	      else
4759 		{
4760 		  long sdiff = slook->id - h->root.u.def.section->id;
4761 		  if (sdiff < 0)
4762 		    j = idx;
4763 		  else if (sdiff > 0)
4764 		    i = idx + 1;
4765 		  else
4766 		    break;
4767 		}
4768 	    }
4769 
4770 	  /* We didn't find a value/section match.  */
4771 	  if (i == j)
4772 	    continue;
4773 
4774 	  /* With multiple aliases, or when the weak symbol is already
4775 	     strongly defined, we have multiple matching symbols and
4776 	     the binary search above may land on any of them.  Step
4777 	     one past the matching symbol(s).  */
4778 	  while (++idx != j)
4779 	    {
4780 	      h = sorted_sym_hash[idx];
4781 	      if (h->root.u.def.section != slook
4782 		  || h->root.u.def.value != vlook)
4783 		break;
4784 	    }
4785 
4786 	  /* Now look back over the aliases.  Since we sorted by size
4787 	     as well as value and section, we'll choose the one with
4788 	     the largest size.  */
4789 	  while (idx-- != i)
4790 	    {
4791 	      h = sorted_sym_hash[idx];
4792 
4793 	      /* Stop if value or section doesn't match.  */
4794 	      if (h->root.u.def.section != slook
4795 		  || h->root.u.def.value != vlook)
4796 		break;
4797 	      else if (h != hlook)
4798 		{
4799 		  hlook->u.weakdef = h;
4800 
4801 		  /* If the weak definition is in the list of dynamic
4802 		     symbols, make sure the real definition is put
4803 		     there as well.  */
4804 		  if (hlook->dynindx != -1 && h->dynindx == -1)
4805 		    {
4806 		      if (! bfd_elf_link_record_dynamic_symbol (info, h))
4807 			{
4808 			err_free_sym_hash:
4809 			  free (sorted_sym_hash);
4810 			  goto error_return;
4811 			}
4812 		    }
4813 
4814 		  /* If the real definition is in the list of dynamic
4815 		     symbols, make sure the weak definition is put
4816 		     there as well.  If we don't do this, then the
4817 		     dynamic loader might not merge the entries for the
4818 		     real definition and the weak definition.  */
4819 		  if (h->dynindx != -1 && hlook->dynindx == -1)
4820 		    {
4821 		      if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4822 			goto err_free_sym_hash;
4823 		    }
4824 		  break;
4825 		}
4826 	    }
4827 	}
4828 
4829       free (sorted_sym_hash);
4830     }
4831 
4832   if (bed->check_directives
4833       && !(*bed->check_directives) (abfd, info))
4834     return FALSE;
4835 
4836   /* If this object is the same format as the output object, and it is
4837      not a shared library, then let the backend look through the
4838      relocs.
4839 
4840      This is required to build global offset table entries and to
4841      arrange for dynamic relocs.  It is not required for the
4842      particular common case of linking non PIC code, even when linking
4843      against shared libraries, but unfortunately there is no way of
4844      knowing whether an object file has been compiled PIC or not.
4845      Looking through the relocs is not particularly time consuming.
4846      The problem is that we must either (1) keep the relocs in memory,
4847      which causes the linker to require additional runtime memory or
4848      (2) read the relocs twice from the input file, which wastes time.
4849      This would be a good case for using mmap.
4850 
4851      I have no idea how to handle linking PIC code into a file of a
4852      different format.  It probably can't be done.  */
4853   if (! dynamic
4854       && is_elf_hash_table (htab)
4855       && bed->check_relocs != NULL
4856       && elf_object_id (abfd) == elf_hash_table_id (htab)
4857       && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4858     {
4859       asection *o;
4860 
4861       for (o = abfd->sections; o != NULL; o = o->next)
4862 	{
4863 	  Elf_Internal_Rela *internal_relocs;
4864 	  bfd_boolean ok;
4865 
4866 	  if ((o->flags & SEC_RELOC) == 0
4867 	      || o->reloc_count == 0
4868 	      || ((info->strip == strip_all || info->strip == strip_debugger)
4869 		  && (o->flags & SEC_DEBUGGING) != 0)
4870 	      || bfd_is_abs_section (o->output_section))
4871 	    continue;
4872 
4873 	  internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4874 						       info->keep_memory);
4875 	  if (internal_relocs == NULL)
4876 	    goto error_return;
4877 
4878 	  ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4879 
4880 	  if (elf_section_data (o)->relocs != internal_relocs)
4881 	    free (internal_relocs);
4882 
4883 	  if (! ok)
4884 	    goto error_return;
4885 	}
4886     }
4887 
4888   /* If this is a non-traditional link, try to optimize the handling
4889      of the .stab/.stabstr sections.  */
4890   if (! dynamic
4891       && ! info->traditional_format
4892       && is_elf_hash_table (htab)
4893       && (info->strip != strip_all && info->strip != strip_debugger))
4894     {
4895       asection *stabstr;
4896 
4897       stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4898       if (stabstr != NULL)
4899 	{
4900 	  bfd_size_type string_offset = 0;
4901 	  asection *stab;
4902 
4903 	  for (stab = abfd->sections; stab; stab = stab->next)
4904 	    if (CONST_STRNEQ (stab->name, ".stab")
4905 		&& (!stab->name[5] ||
4906 		    (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4907 		&& (stab->flags & SEC_MERGE) == 0
4908 		&& !bfd_is_abs_section (stab->output_section))
4909 	      {
4910 		struct bfd_elf_section_data *secdata;
4911 
4912 		secdata = elf_section_data (stab);
4913 		if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4914 					       stabstr, &secdata->sec_info,
4915 					       &string_offset))
4916 		  goto error_return;
4917 		if (secdata->sec_info)
4918 		  stab->sec_info_type = SEC_INFO_TYPE_STABS;
4919 	    }
4920 	}
4921     }
4922 
4923   if (is_elf_hash_table (htab) && add_needed)
4924     {
4925       /* Add this bfd to the loaded list.  */
4926       struct elf_link_loaded_list *n;
4927 
4928       n = (struct elf_link_loaded_list *)
4929           bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4930       if (n == NULL)
4931 	goto error_return;
4932       n->abfd = abfd;
4933       n->next = htab->loaded;
4934       htab->loaded = n;
4935     }
4936 
4937   return TRUE;
4938 
4939  error_free_vers:
4940   if (old_tab != NULL)
4941     free (old_tab);
4942   if (nondeflt_vers != NULL)
4943     free (nondeflt_vers);
4944   if (extversym != NULL)
4945     free (extversym);
4946  error_free_sym:
4947   if (isymbuf != NULL)
4948     free (isymbuf);
4949  error_return:
4950   return FALSE;
4951 }
4952 
4953 /* Return the linker hash table entry of a symbol that might be
4954    satisfied by an archive symbol.  Return -1 on error.  */
4955 
4956 struct elf_link_hash_entry *
4957 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4958 				struct bfd_link_info *info,
4959 				const char *name)
4960 {
4961   struct elf_link_hash_entry *h;
4962   char *p, *copy;
4963   size_t len, first;
4964 
4965   h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4966   if (h != NULL)
4967     return h;
4968 
4969   /* If this is a default version (the name contains @@), look up the
4970      symbol again with only one `@' as well as without the version.
4971      The effect is that references to the symbol with and without the
4972      version will be matched by the default symbol in the archive.  */
4973 
4974   p = strchr (name, ELF_VER_CHR);
4975   if (p == NULL || p[1] != ELF_VER_CHR)
4976     return h;
4977 
4978   /* First check with only one `@'.  */
4979   len = strlen (name);
4980   copy = (char *) bfd_alloc (abfd, len);
4981   if (copy == NULL)
4982     return (struct elf_link_hash_entry *) 0 - 1;
4983 
4984   first = p - name + 1;
4985   memcpy (copy, name, first);
4986   memcpy (copy + first, name + first + 1, len - first);
4987 
4988   h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4989   if (h == NULL)
4990     {
4991       /* We also need to check references to the symbol without the
4992 	 version.  */
4993       copy[first - 1] = '\0';
4994       h = elf_link_hash_lookup (elf_hash_table (info), copy,
4995 				FALSE, FALSE, TRUE);
4996     }
4997 
4998   bfd_release (abfd, copy);
4999   return h;
5000 }
5001 
5002 /* Add symbols from an ELF archive file to the linker hash table.  We
5003    don't use _bfd_generic_link_add_archive_symbols because of a
5004    problem which arises on UnixWare.  The UnixWare libc.so is an
5005    archive which includes an entry libc.so.1 which defines a bunch of
5006    symbols.  The libc.so archive also includes a number of other
5007    object files, which also define symbols, some of which are the same
5008    as those defined in libc.so.1.  Correct linking requires that we
5009    consider each object file in turn, and include it if it defines any
5010    symbols we need.  _bfd_generic_link_add_archive_symbols does not do
5011    this; it looks through the list of undefined symbols, and includes
5012    any object file which defines them.  When this algorithm is used on
5013    UnixWare, it winds up pulling in libc.so.1 early and defining a
5014    bunch of symbols.  This means that some of the other objects in the
5015    archive are not included in the link, which is incorrect since they
5016    precede libc.so.1 in the archive.
5017 
5018    Fortunately, ELF archive handling is simpler than that done by
5019    _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5020    oddities.  In ELF, if we find a symbol in the archive map, and the
5021    symbol is currently undefined, we know that we must pull in that
5022    object file.
5023 
5024    Unfortunately, we do have to make multiple passes over the symbol
5025    table until nothing further is resolved.  */
5026 
5027 static bfd_boolean
5028 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5029 {
5030   symindex c;
5031   bfd_boolean *defined = NULL;
5032   bfd_boolean *included = NULL;
5033   carsym *symdefs;
5034   bfd_boolean loop;
5035   bfd_size_type amt;
5036   const struct elf_backend_data *bed;
5037   struct elf_link_hash_entry * (*archive_symbol_lookup)
5038     (bfd *, struct bfd_link_info *, const char *);
5039 
5040   if (! bfd_has_map (abfd))
5041     {
5042       /* An empty archive is a special case.  */
5043       if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5044 	return TRUE;
5045       bfd_set_error (bfd_error_no_armap);
5046       return FALSE;
5047     }
5048 
5049   /* Keep track of all symbols we know to be already defined, and all
5050      files we know to be already included.  This is to speed up the
5051      second and subsequent passes.  */
5052   c = bfd_ardata (abfd)->symdef_count;
5053   if (c == 0)
5054     return TRUE;
5055   amt = c;
5056   amt *= sizeof (bfd_boolean);
5057   defined = (bfd_boolean *) bfd_zmalloc (amt);
5058   included = (bfd_boolean *) bfd_zmalloc (amt);
5059   if (defined == NULL || included == NULL)
5060     goto error_return;
5061 
5062   symdefs = bfd_ardata (abfd)->symdefs;
5063   bed = get_elf_backend_data (abfd);
5064   archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5065 
5066   do
5067     {
5068       file_ptr last;
5069       symindex i;
5070       carsym *symdef;
5071       carsym *symdefend;
5072 
5073       loop = FALSE;
5074       last = -1;
5075 
5076       symdef = symdefs;
5077       symdefend = symdef + c;
5078       for (i = 0; symdef < symdefend; symdef++, i++)
5079 	{
5080 	  struct elf_link_hash_entry *h;
5081 	  bfd *element;
5082 	  struct bfd_link_hash_entry *undefs_tail;
5083 	  symindex mark;
5084 
5085 	  if (defined[i] || included[i])
5086 	    continue;
5087 	  if (symdef->file_offset == last)
5088 	    {
5089 	      included[i] = TRUE;
5090 	      continue;
5091 	    }
5092 
5093 	  h = archive_symbol_lookup (abfd, info, symdef->name);
5094 	  if (h == (struct elf_link_hash_entry *) 0 - 1)
5095 	    goto error_return;
5096 
5097 	  if (h == NULL)
5098 	    continue;
5099 
5100 	  if (h->root.type == bfd_link_hash_common)
5101 	    {
5102 	      /* We currently have a common symbol.  The archive map contains
5103 		 a reference to this symbol, so we may want to include it.  We
5104 		 only want to include it however, if this archive element
5105 		 contains a definition of the symbol, not just another common
5106 		 declaration of it.
5107 
5108 		 Unfortunately some archivers (including GNU ar) will put
5109 		 declarations of common symbols into their archive maps, as
5110 		 well as real definitions, so we cannot just go by the archive
5111 		 map alone.  Instead we must read in the element's symbol
5112 		 table and check that to see what kind of symbol definition
5113 		 this is.  */
5114 	      if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5115 		continue;
5116 	    }
5117 	  else if (h->root.type != bfd_link_hash_undefined)
5118 	    {
5119 	      if (h->root.type != bfd_link_hash_undefweak)
5120 		defined[i] = TRUE;
5121 	      continue;
5122 	    }
5123 
5124 	  /* We need to include this archive member.  */
5125 	  element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5126 	  if (element == NULL)
5127 	    goto error_return;
5128 
5129 	  if (! bfd_check_format (element, bfd_object))
5130 	    goto error_return;
5131 
5132 	  /* Doublecheck that we have not included this object
5133 	     already--it should be impossible, but there may be
5134 	     something wrong with the archive.  */
5135 	  if (element->archive_pass != 0)
5136 	    {
5137 	      bfd_set_error (bfd_error_bad_value);
5138 	      goto error_return;
5139 	    }
5140 	  element->archive_pass = 1;
5141 
5142 	  undefs_tail = info->hash->undefs_tail;
5143 
5144 	  if (!(*info->callbacks
5145 		->add_archive_element) (info, element, symdef->name, &element))
5146 	    goto error_return;
5147 	  if (!bfd_link_add_symbols (element, info))
5148 	    goto error_return;
5149 
5150 	  /* If there are any new undefined symbols, we need to make
5151 	     another pass through the archive in order to see whether
5152 	     they can be defined.  FIXME: This isn't perfect, because
5153 	     common symbols wind up on undefs_tail and because an
5154 	     undefined symbol which is defined later on in this pass
5155 	     does not require another pass.  This isn't a bug, but it
5156 	     does make the code less efficient than it could be.  */
5157 	  if (undefs_tail != info->hash->undefs_tail)
5158 	    loop = TRUE;
5159 
5160 	  /* Look backward to mark all symbols from this object file
5161 	     which we have already seen in this pass.  */
5162 	  mark = i;
5163 	  do
5164 	    {
5165 	      included[mark] = TRUE;
5166 	      if (mark == 0)
5167 		break;
5168 	      --mark;
5169 	    }
5170 	  while (symdefs[mark].file_offset == symdef->file_offset);
5171 
5172 	  /* We mark subsequent symbols from this object file as we go
5173 	     on through the loop.  */
5174 	  last = symdef->file_offset;
5175 	}
5176     }
5177   while (loop);
5178 
5179   free (defined);
5180   free (included);
5181 
5182   return TRUE;
5183 
5184  error_return:
5185   if (defined != NULL)
5186     free (defined);
5187   if (included != NULL)
5188     free (included);
5189   return FALSE;
5190 }
5191 
5192 /* Given an ELF BFD, add symbols to the global hash table as
5193    appropriate.  */
5194 
5195 bfd_boolean
5196 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5197 {
5198   switch (bfd_get_format (abfd))
5199     {
5200     case bfd_object:
5201       return elf_link_add_object_symbols (abfd, info);
5202     case bfd_archive:
5203       return elf_link_add_archive_symbols (abfd, info);
5204     default:
5205       bfd_set_error (bfd_error_wrong_format);
5206       return FALSE;
5207     }
5208 }
5209 
5210 struct hash_codes_info
5211 {
5212   unsigned long *hashcodes;
5213   bfd_boolean error;
5214 };
5215 
5216 /* This function will be called though elf_link_hash_traverse to store
5217    all hash value of the exported symbols in an array.  */
5218 
5219 static bfd_boolean
5220 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5221 {
5222   struct hash_codes_info *inf = (struct hash_codes_info *) data;
5223   const char *name;
5224   char *p;
5225   unsigned long ha;
5226   char *alc = NULL;
5227 
5228   /* Ignore indirect symbols.  These are added by the versioning code.  */
5229   if (h->dynindx == -1)
5230     return TRUE;
5231 
5232   name = h->root.root.string;
5233   p = strchr (name, ELF_VER_CHR);
5234   if (p != NULL)
5235     {
5236       alc = (char *) bfd_malloc (p - name + 1);
5237       if (alc == NULL)
5238 	{
5239 	  inf->error = TRUE;
5240 	  return FALSE;
5241 	}
5242       memcpy (alc, name, p - name);
5243       alc[p - name] = '\0';
5244       name = alc;
5245     }
5246 
5247   /* Compute the hash value.  */
5248   ha = bfd_elf_hash (name);
5249 
5250   /* Store the found hash value in the array given as the argument.  */
5251   *(inf->hashcodes)++ = ha;
5252 
5253   /* And store it in the struct so that we can put it in the hash table
5254      later.  */
5255   h->u.elf_hash_value = ha;
5256 
5257   if (alc != NULL)
5258     free (alc);
5259 
5260   return TRUE;
5261 }
5262 
5263 struct collect_gnu_hash_codes
5264 {
5265   bfd *output_bfd;
5266   const struct elf_backend_data *bed;
5267   unsigned long int nsyms;
5268   unsigned long int maskbits;
5269   unsigned long int *hashcodes;
5270   unsigned long int *hashval;
5271   unsigned long int *indx;
5272   unsigned long int *counts;
5273   bfd_vma *bitmask;
5274   bfd_byte *contents;
5275   long int min_dynindx;
5276   unsigned long int bucketcount;
5277   unsigned long int symindx;
5278   long int local_indx;
5279   long int shift1, shift2;
5280   unsigned long int mask;
5281   bfd_boolean error;
5282 };
5283 
5284 /* This function will be called though elf_link_hash_traverse to store
5285    all hash value of the exported symbols in an array.  */
5286 
5287 static bfd_boolean
5288 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5289 {
5290   struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5291   const char *name;
5292   char *p;
5293   unsigned long ha;
5294   char *alc = NULL;
5295 
5296   /* Ignore indirect symbols.  These are added by the versioning code.  */
5297   if (h->dynindx == -1)
5298     return TRUE;
5299 
5300   /* Ignore also local symbols and undefined symbols.  */
5301   if (! (*s->bed->elf_hash_symbol) (h))
5302     return TRUE;
5303 
5304   name = h->root.root.string;
5305   p = strchr (name, ELF_VER_CHR);
5306   if (p != NULL)
5307     {
5308       alc = (char *) bfd_malloc (p - name + 1);
5309       if (alc == NULL)
5310 	{
5311 	  s->error = TRUE;
5312 	  return FALSE;
5313 	}
5314       memcpy (alc, name, p - name);
5315       alc[p - name] = '\0';
5316       name = alc;
5317     }
5318 
5319   /* Compute the hash value.  */
5320   ha = bfd_elf_gnu_hash (name);
5321 
5322   /* Store the found hash value in the array for compute_bucket_count,
5323      and also for .dynsym reordering purposes.  */
5324   s->hashcodes[s->nsyms] = ha;
5325   s->hashval[h->dynindx] = ha;
5326   ++s->nsyms;
5327   if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5328     s->min_dynindx = h->dynindx;
5329 
5330   if (alc != NULL)
5331     free (alc);
5332 
5333   return TRUE;
5334 }
5335 
5336 /* This function will be called though elf_link_hash_traverse to do
5337    final dynaminc symbol renumbering.  */
5338 
5339 static bfd_boolean
5340 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5341 {
5342   struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5343   unsigned long int bucket;
5344   unsigned long int val;
5345 
5346   /* Ignore indirect symbols.  */
5347   if (h->dynindx == -1)
5348     return TRUE;
5349 
5350   /* Ignore also local symbols and undefined symbols.  */
5351   if (! (*s->bed->elf_hash_symbol) (h))
5352     {
5353       if (h->dynindx >= s->min_dynindx)
5354 	h->dynindx = s->local_indx++;
5355       return TRUE;
5356     }
5357 
5358   bucket = s->hashval[h->dynindx] % s->bucketcount;
5359   val = (s->hashval[h->dynindx] >> s->shift1)
5360 	& ((s->maskbits >> s->shift1) - 1);
5361   s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5362   s->bitmask[val]
5363     |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5364   val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5365   if (s->counts[bucket] == 1)
5366     /* Last element terminates the chain.  */
5367     val |= 1;
5368   bfd_put_32 (s->output_bfd, val,
5369 	      s->contents + (s->indx[bucket] - s->symindx) * 4);
5370   --s->counts[bucket];
5371   h->dynindx = s->indx[bucket]++;
5372   return TRUE;
5373 }
5374 
5375 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section.  */
5376 
5377 bfd_boolean
5378 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5379 {
5380   return !(h->forced_local
5381 	   || h->root.type == bfd_link_hash_undefined
5382 	   || h->root.type == bfd_link_hash_undefweak
5383 	   || ((h->root.type == bfd_link_hash_defined
5384 		|| h->root.type == bfd_link_hash_defweak)
5385 	       && h->root.u.def.section->output_section == NULL));
5386 }
5387 
5388 /* Array used to determine the number of hash table buckets to use
5389    based on the number of symbols there are.  If there are fewer than
5390    3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5391    fewer than 37 we use 17 buckets, and so forth.  We never use more
5392    than 32771 buckets.  */
5393 
5394 static const size_t elf_buckets[] =
5395 {
5396   1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5397   16411, 32771, 0
5398 };
5399 
5400 /* Compute bucket count for hashing table.  We do not use a static set
5401    of possible tables sizes anymore.  Instead we determine for all
5402    possible reasonable sizes of the table the outcome (i.e., the
5403    number of collisions etc) and choose the best solution.  The
5404    weighting functions are not too simple to allow the table to grow
5405    without bounds.  Instead one of the weighting factors is the size.
5406    Therefore the result is always a good payoff between few collisions
5407    (= short chain lengths) and table size.  */
5408 static size_t
5409 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5410 		      unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5411 		      unsigned long int nsyms,
5412 		      int gnu_hash)
5413 {
5414   size_t best_size = 0;
5415   unsigned long int i;
5416 
5417   /* We have a problem here.  The following code to optimize the table
5418      size requires an integer type with more the 32 bits.  If
5419      BFD_HOST_U_64_BIT is set we know about such a type.  */
5420 #ifdef BFD_HOST_U_64_BIT
5421   if (info->optimize)
5422     {
5423       size_t minsize;
5424       size_t maxsize;
5425       BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5426       bfd *dynobj = elf_hash_table (info)->dynobj;
5427       size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5428       const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5429       unsigned long int *counts;
5430       bfd_size_type amt;
5431       unsigned int no_improvement_count = 0;
5432 
5433       /* Possible optimization parameters: if we have NSYMS symbols we say
5434 	 that the hashing table must at least have NSYMS/4 and at most
5435 	 2*NSYMS buckets.  */
5436       minsize = nsyms / 4;
5437       if (minsize == 0)
5438 	minsize = 1;
5439       best_size = maxsize = nsyms * 2;
5440       if (gnu_hash)
5441 	{
5442 	  if (minsize < 2)
5443 	    minsize = 2;
5444 	  if ((best_size & 31) == 0)
5445 	    ++best_size;
5446 	}
5447 
5448       /* Create array where we count the collisions in.  We must use bfd_malloc
5449 	 since the size could be large.  */
5450       amt = maxsize;
5451       amt *= sizeof (unsigned long int);
5452       counts = (unsigned long int *) bfd_malloc (amt);
5453       if (counts == NULL)
5454 	return 0;
5455 
5456       /* Compute the "optimal" size for the hash table.  The criteria is a
5457 	 minimal chain length.  The minor criteria is (of course) the size
5458 	 of the table.  */
5459       for (i = minsize; i < maxsize; ++i)
5460 	{
5461 	  /* Walk through the array of hashcodes and count the collisions.  */
5462 	  BFD_HOST_U_64_BIT max;
5463 	  unsigned long int j;
5464 	  unsigned long int fact;
5465 
5466 	  if (gnu_hash && (i & 31) == 0)
5467 	    continue;
5468 
5469 	  memset (counts, '\0', i * sizeof (unsigned long int));
5470 
5471 	  /* Determine how often each hash bucket is used.  */
5472 	  for (j = 0; j < nsyms; ++j)
5473 	    ++counts[hashcodes[j] % i];
5474 
5475 	  /* For the weight function we need some information about the
5476 	     pagesize on the target.  This is information need not be 100%
5477 	     accurate.  Since this information is not available (so far) we
5478 	     define it here to a reasonable default value.  If it is crucial
5479 	     to have a better value some day simply define this value.  */
5480 # ifndef BFD_TARGET_PAGESIZE
5481 #  define BFD_TARGET_PAGESIZE	(4096)
5482 # endif
5483 
5484 	  /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5485 	     and the chains.  */
5486 	  max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5487 
5488 # if 1
5489 	  /* Variant 1: optimize for short chains.  We add the squares
5490 	     of all the chain lengths (which favors many small chain
5491 	     over a few long chains).  */
5492 	  for (j = 0; j < i; ++j)
5493 	    max += counts[j] * counts[j];
5494 
5495 	  /* This adds penalties for the overall size of the table.  */
5496 	  fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5497 	  max *= fact * fact;
5498 # else
5499 	  /* Variant 2: Optimize a lot more for small table.  Here we
5500 	     also add squares of the size but we also add penalties for
5501 	     empty slots (the +1 term).  */
5502 	  for (j = 0; j < i; ++j)
5503 	    max += (1 + counts[j]) * (1 + counts[j]);
5504 
5505 	  /* The overall size of the table is considered, but not as
5506 	     strong as in variant 1, where it is squared.  */
5507 	  fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5508 	  max *= fact;
5509 # endif
5510 
5511 	  /* Compare with current best results.  */
5512 	  if (max < best_chlen)
5513 	    {
5514 	      best_chlen = max;
5515 	      best_size = i;
5516               no_improvement_count = 0;
5517 	    }
5518 	  /* PR 11843: Avoid futile long searches for the best bucket size
5519 	     when there are a large number of symbols.  */
5520 	  else if (++no_improvement_count == 100)
5521 	    break;
5522 	}
5523 
5524       free (counts);
5525     }
5526   else
5527 #endif /* defined (BFD_HOST_U_64_BIT) */
5528     {
5529       /* This is the fallback solution if no 64bit type is available or if we
5530 	 are not supposed to spend much time on optimizations.  We select the
5531 	 bucket count using a fixed set of numbers.  */
5532       for (i = 0; elf_buckets[i] != 0; i++)
5533 	{
5534 	  best_size = elf_buckets[i];
5535 	  if (nsyms < elf_buckets[i + 1])
5536 	    break;
5537 	}
5538       if (gnu_hash && best_size < 2)
5539 	best_size = 2;
5540     }
5541 
5542   return best_size;
5543 }
5544 
5545 /* Size any SHT_GROUP section for ld -r.  */
5546 
5547 bfd_boolean
5548 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5549 {
5550   bfd *ibfd;
5551 
5552   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5553     if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5554 	&& !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5555       return FALSE;
5556   return TRUE;
5557 }
5558 
5559 /* Set a default stack segment size.  The value in INFO wins.  If it
5560    is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5561    undefined it is initialized.  */
5562 
5563 bfd_boolean
5564 bfd_elf_stack_segment_size (bfd *output_bfd,
5565 			    struct bfd_link_info *info,
5566 			    const char *legacy_symbol,
5567 			    bfd_vma default_size)
5568 {
5569   struct elf_link_hash_entry *h = NULL;
5570 
5571   /* Look for legacy symbol.  */
5572   if (legacy_symbol)
5573     h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5574 			      FALSE, FALSE, FALSE);
5575   if (h && (h->root.type == bfd_link_hash_defined
5576 	    || h->root.type == bfd_link_hash_defweak)
5577       && h->def_regular
5578       && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5579     {
5580       /* The symbol has no type if specified on the command line.  */
5581       h->type = STT_OBJECT;
5582       if (info->stacksize)
5583 	(*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5584 			       output_bfd, legacy_symbol);
5585       else if (h->root.u.def.section != bfd_abs_section_ptr)
5586 	(*_bfd_error_handler) (_("%B: %s not absolute"),
5587 			       output_bfd, legacy_symbol);
5588       else
5589 	info->stacksize = h->root.u.def.value;
5590     }
5591 
5592   if (!info->stacksize)
5593     /* If the user didn't set a size, or explicitly inhibit the
5594        size, set it now.  */
5595     info->stacksize = default_size;
5596 
5597   /* Provide the legacy symbol, if it is referenced.  */
5598   if (h && (h->root.type == bfd_link_hash_undefined
5599 	    || h->root.type == bfd_link_hash_undefweak))
5600     {
5601       struct bfd_link_hash_entry *bh = NULL;
5602 
5603       if (!(_bfd_generic_link_add_one_symbol
5604 	    (info, output_bfd, legacy_symbol,
5605 	     BSF_GLOBAL, bfd_abs_section_ptr,
5606 	     info->stacksize >= 0 ? info->stacksize : 0,
5607 	     NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5608 	return FALSE;
5609 
5610       h = (struct elf_link_hash_entry *) bh;
5611       h->def_regular = 1;
5612       h->type = STT_OBJECT;
5613     }
5614 
5615   return TRUE;
5616 }
5617 
5618 /* Set up the sizes and contents of the ELF dynamic sections.  This is
5619    called by the ELF linker emulation before_allocation routine.  We
5620    must set the sizes of the sections before the linker sets the
5621    addresses of the various sections.  */
5622 
5623 bfd_boolean
5624 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5625 			       const char *soname,
5626 			       const char *rpath,
5627 			       const char *filter_shlib,
5628 			       const char *audit,
5629 			       const char *depaudit,
5630 			       const char * const *auxiliary_filters,
5631 			       struct bfd_link_info *info,
5632 			       asection **sinterpptr)
5633 {
5634   bfd_size_type soname_indx;
5635   bfd *dynobj;
5636   const struct elf_backend_data *bed;
5637   struct elf_info_failed asvinfo;
5638 
5639   *sinterpptr = NULL;
5640 
5641   soname_indx = (bfd_size_type) -1;
5642 
5643   if (!is_elf_hash_table (info->hash))
5644     return TRUE;
5645 
5646   bed = get_elf_backend_data (output_bfd);
5647 
5648   /* Any syms created from now on start with -1 in
5649      got.refcount/offset and plt.refcount/offset.  */
5650   elf_hash_table (info)->init_got_refcount
5651     = elf_hash_table (info)->init_got_offset;
5652   elf_hash_table (info)->init_plt_refcount
5653     = elf_hash_table (info)->init_plt_offset;
5654 
5655   if (info->relocatable
5656       && !_bfd_elf_size_group_sections (info))
5657     return FALSE;
5658 
5659   /* The backend may have to create some sections regardless of whether
5660      we're dynamic or not.  */
5661   if (bed->elf_backend_always_size_sections
5662       && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5663     return FALSE;
5664 
5665   /* Determine any GNU_STACK segment requirements, after the backend
5666      has had a chance to set a default segment size.  */
5667   if (info->execstack)
5668     elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5669   else if (info->noexecstack)
5670     elf_stack_flags (output_bfd) = PF_R | PF_W;
5671   else
5672     {
5673       bfd *inputobj;
5674       asection *notesec = NULL;
5675       int exec = 0;
5676 
5677       for (inputobj = info->input_bfds;
5678 	   inputobj;
5679 	   inputobj = inputobj->link_next)
5680 	{
5681 	  asection *s;
5682 
5683 	  if (inputobj->flags
5684 	      & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5685 	    continue;
5686 	  s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5687 	  if (s)
5688 	    {
5689 	      if (s->flags & SEC_CODE)
5690 		exec = PF_X;
5691 	      notesec = s;
5692 	    }
5693 	  else if (bed->default_execstack)
5694 	    exec = PF_X;
5695 	}
5696       if (notesec || info->stacksize > 0)
5697 	elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5698       if (notesec && exec && info->relocatable
5699 	  && notesec->output_section != bfd_abs_section_ptr)
5700 	notesec->output_section->flags |= SEC_CODE;
5701     }
5702 
5703   dynobj = elf_hash_table (info)->dynobj;
5704 
5705   if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5706     {
5707       struct elf_info_failed eif;
5708       struct elf_link_hash_entry *h;
5709       asection *dynstr;
5710       struct bfd_elf_version_tree *t;
5711       struct bfd_elf_version_expr *d;
5712       asection *s;
5713       bfd_boolean all_defined;
5714 
5715       *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5716       BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5717 
5718       if (soname != NULL)
5719 	{
5720 	  soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5721 					     soname, TRUE);
5722 	  if (soname_indx == (bfd_size_type) -1
5723 	      || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5724 	    return FALSE;
5725 	}
5726 
5727       if (info->symbolic)
5728 	{
5729 	  if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5730 	    return FALSE;
5731 	  info->flags |= DF_SYMBOLIC;
5732 	}
5733 
5734       if (rpath != NULL)
5735 	{
5736 	  bfd_size_type indx;
5737 	  bfd_vma tag;
5738 
5739 	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5740 				      TRUE);
5741 	  if (indx == (bfd_size_type) -1)
5742 	    return FALSE;
5743 
5744 	  tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5745 	  if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5746 	    return FALSE;
5747 	}
5748 
5749       if (filter_shlib != NULL)
5750 	{
5751 	  bfd_size_type indx;
5752 
5753 	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5754 				      filter_shlib, TRUE);
5755 	  if (indx == (bfd_size_type) -1
5756 	      || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5757 	    return FALSE;
5758 	}
5759 
5760       if (auxiliary_filters != NULL)
5761 	{
5762 	  const char * const *p;
5763 
5764 	  for (p = auxiliary_filters; *p != NULL; p++)
5765 	    {
5766 	      bfd_size_type indx;
5767 
5768 	      indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5769 					  *p, TRUE);
5770 	      if (indx == (bfd_size_type) -1
5771 		  || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5772 		return FALSE;
5773 	    }
5774 	}
5775 
5776       if (audit != NULL)
5777 	{
5778 	  bfd_size_type indx;
5779 
5780 	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5781 				      TRUE);
5782 	  if (indx == (bfd_size_type) -1
5783 	      || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5784 	    return FALSE;
5785 	}
5786 
5787       if (depaudit != NULL)
5788 	{
5789 	  bfd_size_type indx;
5790 
5791 	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5792 				      TRUE);
5793 	  if (indx == (bfd_size_type) -1
5794 	      || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5795 	    return FALSE;
5796 	}
5797 
5798       eif.info = info;
5799       eif.failed = FALSE;
5800 
5801       /* If we are supposed to export all symbols into the dynamic symbol
5802 	 table (this is not the normal case), then do so.  */
5803       if (info->export_dynamic
5804 	  || (info->executable && info->dynamic))
5805 	{
5806 	  elf_link_hash_traverse (elf_hash_table (info),
5807 				  _bfd_elf_export_symbol,
5808 				  &eif);
5809 	  if (eif.failed)
5810 	    return FALSE;
5811 	}
5812 
5813       /* Make all global versions with definition.  */
5814       for (t = info->version_info; t != NULL; t = t->next)
5815 	for (d = t->globals.list; d != NULL; d = d->next)
5816 	  if (!d->symver && d->literal)
5817 	    {
5818 	      const char *verstr, *name;
5819 	      size_t namelen, verlen, newlen;
5820 	      char *newname, *p, leading_char;
5821 	      struct elf_link_hash_entry *newh;
5822 
5823 	      leading_char = bfd_get_symbol_leading_char (output_bfd);
5824 	      name = d->pattern;
5825 	      namelen = strlen (name) + (leading_char != '\0');
5826 	      verstr = t->name;
5827 	      verlen = strlen (verstr);
5828 	      newlen = namelen + verlen + 3;
5829 
5830 	      newname = (char *) bfd_malloc (newlen);
5831 	      if (newname == NULL)
5832 		return FALSE;
5833 	      newname[0] = leading_char;
5834 	      memcpy (newname + (leading_char != '\0'), name, namelen);
5835 
5836 	      /* Check the hidden versioned definition.  */
5837 	      p = newname + namelen;
5838 	      *p++ = ELF_VER_CHR;
5839 	      memcpy (p, verstr, verlen + 1);
5840 	      newh = elf_link_hash_lookup (elf_hash_table (info),
5841 					   newname, FALSE, FALSE,
5842 					   FALSE);
5843 	      if (newh == NULL
5844 		  || (newh->root.type != bfd_link_hash_defined
5845 		      && newh->root.type != bfd_link_hash_defweak))
5846 		{
5847 		  /* Check the default versioned definition.  */
5848 		  *p++ = ELF_VER_CHR;
5849 		  memcpy (p, verstr, verlen + 1);
5850 		  newh = elf_link_hash_lookup (elf_hash_table (info),
5851 					       newname, FALSE, FALSE,
5852 					       FALSE);
5853 		}
5854 	      free (newname);
5855 
5856 	      /* Mark this version if there is a definition and it is
5857 		 not defined in a shared object.  */
5858 	      if (newh != NULL
5859 		  && !newh->def_dynamic
5860 		  && (newh->root.type == bfd_link_hash_defined
5861 		      || newh->root.type == bfd_link_hash_defweak))
5862 		d->symver = 1;
5863 	    }
5864 
5865       /* Attach all the symbols to their version information.  */
5866       asvinfo.info = info;
5867       asvinfo.failed = FALSE;
5868 
5869       elf_link_hash_traverse (elf_hash_table (info),
5870 			      _bfd_elf_link_assign_sym_version,
5871 			      &asvinfo);
5872       if (asvinfo.failed)
5873 	return FALSE;
5874 
5875       if (!info->allow_undefined_version)
5876 	{
5877 	  /* Check if all global versions have a definition.  */
5878 	  all_defined = TRUE;
5879 	  for (t = info->version_info; t != NULL; t = t->next)
5880 	    for (d = t->globals.list; d != NULL; d = d->next)
5881 	      if (d->literal && !d->symver && !d->script)
5882 		{
5883 		  (*_bfd_error_handler)
5884 		    (_("%s: undefined version: %s"),
5885 		     d->pattern, t->name);
5886 		  all_defined = FALSE;
5887 		}
5888 
5889 	  if (!all_defined)
5890 	    {
5891 	      bfd_set_error (bfd_error_bad_value);
5892 	      return FALSE;
5893 	    }
5894 	}
5895 
5896       /* Find all symbols which were defined in a dynamic object and make
5897 	 the backend pick a reasonable value for them.  */
5898       elf_link_hash_traverse (elf_hash_table (info),
5899 			      _bfd_elf_adjust_dynamic_symbol,
5900 			      &eif);
5901       if (eif.failed)
5902 	return FALSE;
5903 
5904       /* Add some entries to the .dynamic section.  We fill in some of the
5905 	 values later, in bfd_elf_final_link, but we must add the entries
5906 	 now so that we know the final size of the .dynamic section.  */
5907 
5908       /* If there are initialization and/or finalization functions to
5909 	 call then add the corresponding DT_INIT/DT_FINI entries.  */
5910       h = (info->init_function
5911 	   ? elf_link_hash_lookup (elf_hash_table (info),
5912 				   info->init_function, FALSE,
5913 				   FALSE, FALSE)
5914 	   : NULL);
5915       if (h != NULL
5916 	  && (h->ref_regular
5917 	      || h->def_regular))
5918 	{
5919 	  if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5920 	    return FALSE;
5921 	}
5922       h = (info->fini_function
5923 	   ? elf_link_hash_lookup (elf_hash_table (info),
5924 				   info->fini_function, FALSE,
5925 				   FALSE, FALSE)
5926 	   : NULL);
5927       if (h != NULL
5928 	  && (h->ref_regular
5929 	      || h->def_regular))
5930 	{
5931 	  if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5932 	    return FALSE;
5933 	}
5934 
5935       s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5936       if (s != NULL && s->linker_has_input)
5937 	{
5938 	  /* DT_PREINIT_ARRAY is not allowed in shared library.  */
5939 	  if (! info->executable)
5940 	    {
5941 	      bfd *sub;
5942 	      asection *o;
5943 
5944 	      for (sub = info->input_bfds; sub != NULL;
5945 		   sub = sub->link_next)
5946 		if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5947 		  for (o = sub->sections; o != NULL; o = o->next)
5948 		    if (elf_section_data (o)->this_hdr.sh_type
5949 			== SHT_PREINIT_ARRAY)
5950 		      {
5951 			(*_bfd_error_handler)
5952 			  (_("%B: .preinit_array section is not allowed in DSO"),
5953 			   sub);
5954 			break;
5955 		      }
5956 
5957 	      bfd_set_error (bfd_error_nonrepresentable_section);
5958 	      return FALSE;
5959 	    }
5960 
5961 	  if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5962 	      || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5963 	    return FALSE;
5964 	}
5965       s = bfd_get_section_by_name (output_bfd, ".init_array");
5966       if (s != NULL && s->linker_has_input)
5967 	{
5968 	  if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5969 	      || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5970 	    return FALSE;
5971 	}
5972       s = bfd_get_section_by_name (output_bfd, ".fini_array");
5973       if (s != NULL && s->linker_has_input)
5974 	{
5975 	  if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5976 	      || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5977 	    return FALSE;
5978 	}
5979 
5980       dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5981       /* If .dynstr is excluded from the link, we don't want any of
5982 	 these tags.  Strictly, we should be checking each section
5983 	 individually;  This quick check covers for the case where
5984 	 someone does a /DISCARD/ : { *(*) }.  */
5985       if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5986 	{
5987 	  bfd_size_type strsize;
5988 
5989 	  strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5990 	  if ((info->emit_hash
5991 	       && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5992 	      || (info->emit_gnu_hash
5993 		  && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5994 	      || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5995 	      || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5996 	      || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5997 	      || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5998 					      bed->s->sizeof_sym))
5999 	    return FALSE;
6000 	}
6001     }
6002 
6003   /* The backend must work out the sizes of all the other dynamic
6004      sections.  */
6005   if (dynobj != NULL
6006       && bed->elf_backend_size_dynamic_sections != NULL
6007       && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6008     return FALSE;
6009 
6010   if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6011     return FALSE;
6012 
6013   if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6014     {
6015       unsigned long section_sym_count;
6016       struct bfd_elf_version_tree *verdefs;
6017       asection *s;
6018 
6019       /* Set up the version definition section.  */
6020       s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6021       BFD_ASSERT (s != NULL);
6022 
6023       /* We may have created additional version definitions if we are
6024 	 just linking a regular application.  */
6025       verdefs = info->version_info;
6026 
6027       /* Skip anonymous version tag.  */
6028       if (verdefs != NULL && verdefs->vernum == 0)
6029 	verdefs = verdefs->next;
6030 
6031       if (verdefs == NULL && !info->create_default_symver)
6032 	s->flags |= SEC_EXCLUDE;
6033       else
6034 	{
6035 	  unsigned int cdefs;
6036 	  bfd_size_type size;
6037 	  struct bfd_elf_version_tree *t;
6038 	  bfd_byte *p;
6039 	  Elf_Internal_Verdef def;
6040 	  Elf_Internal_Verdaux defaux;
6041 	  struct bfd_link_hash_entry *bh;
6042 	  struct elf_link_hash_entry *h;
6043 	  const char *name;
6044 
6045 	  cdefs = 0;
6046 	  size = 0;
6047 
6048 	  /* Make space for the base version.  */
6049 	  size += sizeof (Elf_External_Verdef);
6050 	  size += sizeof (Elf_External_Verdaux);
6051 	  ++cdefs;
6052 
6053 	  /* Make space for the default version.  */
6054 	  if (info->create_default_symver)
6055 	    {
6056 	      size += sizeof (Elf_External_Verdef);
6057 	      ++cdefs;
6058 	    }
6059 
6060 	  for (t = verdefs; t != NULL; t = t->next)
6061 	    {
6062 	      struct bfd_elf_version_deps *n;
6063 
6064 	      /* Don't emit base version twice.  */
6065 	      if (t->vernum == 0)
6066 		continue;
6067 
6068 	      size += sizeof (Elf_External_Verdef);
6069 	      size += sizeof (Elf_External_Verdaux);
6070 	      ++cdefs;
6071 
6072 	      for (n = t->deps; n != NULL; n = n->next)
6073 		size += sizeof (Elf_External_Verdaux);
6074 	    }
6075 
6076 	  s->size = size;
6077 	  s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6078 	  if (s->contents == NULL && s->size != 0)
6079 	    return FALSE;
6080 
6081 	  /* Fill in the version definition section.  */
6082 
6083 	  p = s->contents;
6084 
6085 	  def.vd_version = VER_DEF_CURRENT;
6086 	  def.vd_flags = VER_FLG_BASE;
6087 	  def.vd_ndx = 1;
6088 	  def.vd_cnt = 1;
6089 	  if (info->create_default_symver)
6090 	    {
6091 	      def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6092 	      def.vd_next = sizeof (Elf_External_Verdef);
6093 	    }
6094 	  else
6095 	    {
6096 	      def.vd_aux = sizeof (Elf_External_Verdef);
6097 	      def.vd_next = (sizeof (Elf_External_Verdef)
6098 			     + sizeof (Elf_External_Verdaux));
6099 	    }
6100 
6101 	  if (soname_indx != (bfd_size_type) -1)
6102 	    {
6103 	      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6104 				      soname_indx);
6105 	      def.vd_hash = bfd_elf_hash (soname);
6106 	      defaux.vda_name = soname_indx;
6107 	      name = soname;
6108 	    }
6109 	  else
6110 	    {
6111 	      bfd_size_type indx;
6112 
6113 	      name = lbasename (output_bfd->filename);
6114 	      def.vd_hash = bfd_elf_hash (name);
6115 	      indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6116 					  name, FALSE);
6117 	      if (indx == (bfd_size_type) -1)
6118 		return FALSE;
6119 	      defaux.vda_name = indx;
6120 	    }
6121 	  defaux.vda_next = 0;
6122 
6123 	  _bfd_elf_swap_verdef_out (output_bfd, &def,
6124 				    (Elf_External_Verdef *) p);
6125 	  p += sizeof (Elf_External_Verdef);
6126 	  if (info->create_default_symver)
6127 	    {
6128 	      /* Add a symbol representing this version.  */
6129 	      bh = NULL;
6130 	      if (! (_bfd_generic_link_add_one_symbol
6131 		     (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6132 		      0, NULL, FALSE,
6133 		      get_elf_backend_data (dynobj)->collect, &bh)))
6134 		return FALSE;
6135 	      h = (struct elf_link_hash_entry *) bh;
6136 	      h->non_elf = 0;
6137 	      h->def_regular = 1;
6138 	      h->type = STT_OBJECT;
6139 	      h->verinfo.vertree = NULL;
6140 
6141 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
6142 		return FALSE;
6143 
6144 	      /* Create a duplicate of the base version with the same
6145 		 aux block, but different flags.  */
6146 	      def.vd_flags = 0;
6147 	      def.vd_ndx = 2;
6148 	      def.vd_aux = sizeof (Elf_External_Verdef);
6149 	      if (verdefs)
6150 		def.vd_next = (sizeof (Elf_External_Verdef)
6151 			       + sizeof (Elf_External_Verdaux));
6152 	      else
6153 		def.vd_next = 0;
6154 	      _bfd_elf_swap_verdef_out (output_bfd, &def,
6155 					(Elf_External_Verdef *) p);
6156 	      p += sizeof (Elf_External_Verdef);
6157 	    }
6158 	  _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6159 				     (Elf_External_Verdaux *) p);
6160 	  p += sizeof (Elf_External_Verdaux);
6161 
6162 	  for (t = verdefs; t != NULL; t = t->next)
6163 	    {
6164 	      unsigned int cdeps;
6165 	      struct bfd_elf_version_deps *n;
6166 
6167 	      /* Don't emit the base version twice.  */
6168 	      if (t->vernum == 0)
6169 		continue;
6170 
6171 	      cdeps = 0;
6172 	      for (n = t->deps; n != NULL; n = n->next)
6173 		++cdeps;
6174 
6175 	      /* Add a symbol representing this version.  */
6176 	      bh = NULL;
6177 	      if (! (_bfd_generic_link_add_one_symbol
6178 		     (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6179 		      0, NULL, FALSE,
6180 		      get_elf_backend_data (dynobj)->collect, &bh)))
6181 		return FALSE;
6182 	      h = (struct elf_link_hash_entry *) bh;
6183 	      h->non_elf = 0;
6184 	      h->def_regular = 1;
6185 	      h->type = STT_OBJECT;
6186 	      h->verinfo.vertree = t;
6187 
6188 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
6189 		return FALSE;
6190 
6191 	      def.vd_version = VER_DEF_CURRENT;
6192 	      def.vd_flags = 0;
6193 	      if (t->globals.list == NULL
6194 		  && t->locals.list == NULL
6195 		  && ! t->used)
6196 		def.vd_flags |= VER_FLG_WEAK;
6197 	      def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6198 	      def.vd_cnt = cdeps + 1;
6199 	      def.vd_hash = bfd_elf_hash (t->name);
6200 	      def.vd_aux = sizeof (Elf_External_Verdef);
6201 	      def.vd_next = 0;
6202 
6203 	      /* If a basever node is next, it *must* be the last node in
6204 		 the chain, otherwise Verdef construction breaks.  */
6205 	      if (t->next != NULL && t->next->vernum == 0)
6206 		BFD_ASSERT (t->next->next == NULL);
6207 
6208 	      if (t->next != NULL && t->next->vernum != 0)
6209 		def.vd_next = (sizeof (Elf_External_Verdef)
6210 			       + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6211 
6212 	      _bfd_elf_swap_verdef_out (output_bfd, &def,
6213 					(Elf_External_Verdef *) p);
6214 	      p += sizeof (Elf_External_Verdef);
6215 
6216 	      defaux.vda_name = h->dynstr_index;
6217 	      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6218 				      h->dynstr_index);
6219 	      defaux.vda_next = 0;
6220 	      if (t->deps != NULL)
6221 		defaux.vda_next = sizeof (Elf_External_Verdaux);
6222 	      t->name_indx = defaux.vda_name;
6223 
6224 	      _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6225 					 (Elf_External_Verdaux *) p);
6226 	      p += sizeof (Elf_External_Verdaux);
6227 
6228 	      for (n = t->deps; n != NULL; n = n->next)
6229 		{
6230 		  if (n->version_needed == NULL)
6231 		    {
6232 		      /* This can happen if there was an error in the
6233 			 version script.  */
6234 		      defaux.vda_name = 0;
6235 		    }
6236 		  else
6237 		    {
6238 		      defaux.vda_name = n->version_needed->name_indx;
6239 		      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6240 					      defaux.vda_name);
6241 		    }
6242 		  if (n->next == NULL)
6243 		    defaux.vda_next = 0;
6244 		  else
6245 		    defaux.vda_next = sizeof (Elf_External_Verdaux);
6246 
6247 		  _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6248 					     (Elf_External_Verdaux *) p);
6249 		  p += sizeof (Elf_External_Verdaux);
6250 		}
6251 	    }
6252 
6253 	  if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6254 	      || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6255 	    return FALSE;
6256 
6257 	  elf_tdata (output_bfd)->cverdefs = cdefs;
6258 	}
6259 
6260       if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6261 	{
6262 	  if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6263 	    return FALSE;
6264 	}
6265       else if (info->flags & DF_BIND_NOW)
6266 	{
6267 	  if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6268 	    return FALSE;
6269 	}
6270 
6271       if (info->flags_1)
6272 	{
6273 	  if (info->executable)
6274 	    info->flags_1 &= ~ (DF_1_INITFIRST
6275 				| DF_1_NODELETE
6276 				| DF_1_NOOPEN);
6277 	  if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6278 	    return FALSE;
6279 	}
6280 
6281       /* Work out the size of the version reference section.  */
6282 
6283       s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6284       BFD_ASSERT (s != NULL);
6285       {
6286 	struct elf_find_verdep_info sinfo;
6287 
6288 	sinfo.info = info;
6289 	sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6290 	if (sinfo.vers == 0)
6291 	  sinfo.vers = 1;
6292 	sinfo.failed = FALSE;
6293 
6294 	elf_link_hash_traverse (elf_hash_table (info),
6295 				_bfd_elf_link_find_version_dependencies,
6296 				&sinfo);
6297 	if (sinfo.failed)
6298 	  return FALSE;
6299 
6300 	if (elf_tdata (output_bfd)->verref == NULL)
6301 	  s->flags |= SEC_EXCLUDE;
6302 	else
6303 	  {
6304 	    Elf_Internal_Verneed *t;
6305 	    unsigned int size;
6306 	    unsigned int crefs;
6307 	    bfd_byte *p;
6308 
6309 	    /* Build the version dependency section.  */
6310 	    size = 0;
6311 	    crefs = 0;
6312 	    for (t = elf_tdata (output_bfd)->verref;
6313 		 t != NULL;
6314 		 t = t->vn_nextref)
6315 	      {
6316 		Elf_Internal_Vernaux *a;
6317 
6318 		size += sizeof (Elf_External_Verneed);
6319 		++crefs;
6320 		for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6321 		  size += sizeof (Elf_External_Vernaux);
6322 	      }
6323 
6324 	    s->size = size;
6325 	    s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6326 	    if (s->contents == NULL)
6327 	      return FALSE;
6328 
6329 	    p = s->contents;
6330 	    for (t = elf_tdata (output_bfd)->verref;
6331 		 t != NULL;
6332 		 t = t->vn_nextref)
6333 	      {
6334 		unsigned int caux;
6335 		Elf_Internal_Vernaux *a;
6336 		bfd_size_type indx;
6337 
6338 		caux = 0;
6339 		for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6340 		  ++caux;
6341 
6342 		t->vn_version = VER_NEED_CURRENT;
6343 		t->vn_cnt = caux;
6344 		indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6345 					    elf_dt_name (t->vn_bfd) != NULL
6346 					    ? elf_dt_name (t->vn_bfd)
6347 					    : lbasename (t->vn_bfd->filename),
6348 					    FALSE);
6349 		if (indx == (bfd_size_type) -1)
6350 		  return FALSE;
6351 		t->vn_file = indx;
6352 		t->vn_aux = sizeof (Elf_External_Verneed);
6353 		if (t->vn_nextref == NULL)
6354 		  t->vn_next = 0;
6355 		else
6356 		  t->vn_next = (sizeof (Elf_External_Verneed)
6357 				+ caux * sizeof (Elf_External_Vernaux));
6358 
6359 		_bfd_elf_swap_verneed_out (output_bfd, t,
6360 					   (Elf_External_Verneed *) p);
6361 		p += sizeof (Elf_External_Verneed);
6362 
6363 		for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6364 		  {
6365 		    a->vna_hash = bfd_elf_hash (a->vna_nodename);
6366 		    indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6367 						a->vna_nodename, FALSE);
6368 		    if (indx == (bfd_size_type) -1)
6369 		      return FALSE;
6370 		    a->vna_name = indx;
6371 		    if (a->vna_nextptr == NULL)
6372 		      a->vna_next = 0;
6373 		    else
6374 		      a->vna_next = sizeof (Elf_External_Vernaux);
6375 
6376 		    _bfd_elf_swap_vernaux_out (output_bfd, a,
6377 					       (Elf_External_Vernaux *) p);
6378 		    p += sizeof (Elf_External_Vernaux);
6379 		  }
6380 	      }
6381 
6382 	    if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6383 		|| !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6384 	      return FALSE;
6385 
6386 	    elf_tdata (output_bfd)->cverrefs = crefs;
6387 	  }
6388       }
6389 
6390       if ((elf_tdata (output_bfd)->cverrefs == 0
6391 	   && elf_tdata (output_bfd)->cverdefs == 0)
6392 	  || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6393 					     &section_sym_count) == 0)
6394 	{
6395 	  s = bfd_get_linker_section (dynobj, ".gnu.version");
6396 	  s->flags |= SEC_EXCLUDE;
6397 	}
6398     }
6399   return TRUE;
6400 }
6401 
6402 /* Find the first non-excluded output section.  We'll use its
6403    section symbol for some emitted relocs.  */
6404 void
6405 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6406 {
6407   asection *s;
6408 
6409   for (s = output_bfd->sections; s != NULL; s = s->next)
6410     if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6411 	&& !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6412       {
6413 	elf_hash_table (info)->text_index_section = s;
6414 	break;
6415       }
6416 }
6417 
6418 /* Find two non-excluded output sections, one for code, one for data.
6419    We'll use their section symbols for some emitted relocs.  */
6420 void
6421 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6422 {
6423   asection *s;
6424 
6425   /* Data first, since setting text_index_section changes
6426      _bfd_elf_link_omit_section_dynsym.  */
6427   for (s = output_bfd->sections; s != NULL; s = s->next)
6428     if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6429 	&& !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6430       {
6431 	elf_hash_table (info)->data_index_section = s;
6432 	break;
6433       }
6434 
6435   for (s = output_bfd->sections; s != NULL; s = s->next)
6436     if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6437 	 == (SEC_ALLOC | SEC_READONLY))
6438 	&& !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6439       {
6440 	elf_hash_table (info)->text_index_section = s;
6441 	break;
6442       }
6443 
6444   if (elf_hash_table (info)->text_index_section == NULL)
6445     elf_hash_table (info)->text_index_section
6446       = elf_hash_table (info)->data_index_section;
6447 }
6448 
6449 bfd_boolean
6450 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6451 {
6452   const struct elf_backend_data *bed;
6453 
6454   if (!is_elf_hash_table (info->hash))
6455     return TRUE;
6456 
6457   bed = get_elf_backend_data (output_bfd);
6458   (*bed->elf_backend_init_index_section) (output_bfd, info);
6459 
6460   if (elf_hash_table (info)->dynamic_sections_created)
6461     {
6462       bfd *dynobj;
6463       asection *s;
6464       bfd_size_type dynsymcount;
6465       unsigned long section_sym_count;
6466       unsigned int dtagcount;
6467 
6468       dynobj = elf_hash_table (info)->dynobj;
6469 
6470       /* Assign dynsym indicies.  In a shared library we generate a
6471 	 section symbol for each output section, which come first.
6472 	 Next come all of the back-end allocated local dynamic syms,
6473 	 followed by the rest of the global symbols.  */
6474 
6475       dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6476 						    &section_sym_count);
6477 
6478       /* Work out the size of the symbol version section.  */
6479       s = bfd_get_linker_section (dynobj, ".gnu.version");
6480       BFD_ASSERT (s != NULL);
6481       if (dynsymcount != 0
6482 	  && (s->flags & SEC_EXCLUDE) == 0)
6483 	{
6484 	  s->size = dynsymcount * sizeof (Elf_External_Versym);
6485 	  s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6486 	  if (s->contents == NULL)
6487 	    return FALSE;
6488 
6489 	  if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6490 	    return FALSE;
6491 	}
6492 
6493       /* Set the size of the .dynsym and .hash sections.  We counted
6494 	 the number of dynamic symbols in elf_link_add_object_symbols.
6495 	 We will build the contents of .dynsym and .hash when we build
6496 	 the final symbol table, because until then we do not know the
6497 	 correct value to give the symbols.  We built the .dynstr
6498 	 section as we went along in elf_link_add_object_symbols.  */
6499       s = bfd_get_linker_section (dynobj, ".dynsym");
6500       BFD_ASSERT (s != NULL);
6501       s->size = dynsymcount * bed->s->sizeof_sym;
6502 
6503       if (dynsymcount != 0)
6504 	{
6505 	  s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6506 	  if (s->contents == NULL)
6507 	    return FALSE;
6508 
6509 	  /* The first entry in .dynsym is a dummy symbol.
6510 	     Clear all the section syms, in case we don't output them all.  */
6511 	  ++section_sym_count;
6512 	  memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6513 	}
6514 
6515       elf_hash_table (info)->bucketcount = 0;
6516 
6517       /* Compute the size of the hashing table.  As a side effect this
6518 	 computes the hash values for all the names we export.  */
6519       if (info->emit_hash)
6520 	{
6521 	  unsigned long int *hashcodes;
6522 	  struct hash_codes_info hashinf;
6523 	  bfd_size_type amt;
6524 	  unsigned long int nsyms;
6525 	  size_t bucketcount;
6526 	  size_t hash_entry_size;
6527 
6528 	  /* Compute the hash values for all exported symbols.  At the same
6529 	     time store the values in an array so that we could use them for
6530 	     optimizations.  */
6531 	  amt = dynsymcount * sizeof (unsigned long int);
6532 	  hashcodes = (unsigned long int *) bfd_malloc (amt);
6533 	  if (hashcodes == NULL)
6534 	    return FALSE;
6535 	  hashinf.hashcodes = hashcodes;
6536 	  hashinf.error = FALSE;
6537 
6538 	  /* Put all hash values in HASHCODES.  */
6539 	  elf_link_hash_traverse (elf_hash_table (info),
6540 				  elf_collect_hash_codes, &hashinf);
6541 	  if (hashinf.error)
6542 	    {
6543 	      free (hashcodes);
6544 	      return FALSE;
6545 	    }
6546 
6547 	  nsyms = hashinf.hashcodes - hashcodes;
6548 	  bucketcount
6549 	    = compute_bucket_count (info, hashcodes, nsyms, 0);
6550 	  free (hashcodes);
6551 
6552 	  if (bucketcount == 0)
6553 	    return FALSE;
6554 
6555 	  elf_hash_table (info)->bucketcount = bucketcount;
6556 
6557 	  s = bfd_get_linker_section (dynobj, ".hash");
6558 	  BFD_ASSERT (s != NULL);
6559 	  hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6560 	  s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6561 	  s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6562 	  if (s->contents == NULL)
6563 	    return FALSE;
6564 
6565 	  bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6566 	  bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6567 		   s->contents + hash_entry_size);
6568 	}
6569 
6570       if (info->emit_gnu_hash)
6571 	{
6572 	  size_t i, cnt;
6573 	  unsigned char *contents;
6574 	  struct collect_gnu_hash_codes cinfo;
6575 	  bfd_size_type amt;
6576 	  size_t bucketcount;
6577 
6578 	  memset (&cinfo, 0, sizeof (cinfo));
6579 
6580 	  /* Compute the hash values for all exported symbols.  At the same
6581 	     time store the values in an array so that we could use them for
6582 	     optimizations.  */
6583 	  amt = dynsymcount * 2 * sizeof (unsigned long int);
6584 	  cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6585 	  if (cinfo.hashcodes == NULL)
6586 	    return FALSE;
6587 
6588 	  cinfo.hashval = cinfo.hashcodes + dynsymcount;
6589 	  cinfo.min_dynindx = -1;
6590 	  cinfo.output_bfd = output_bfd;
6591 	  cinfo.bed = bed;
6592 
6593 	  /* Put all hash values in HASHCODES.  */
6594 	  elf_link_hash_traverse (elf_hash_table (info),
6595 				  elf_collect_gnu_hash_codes, &cinfo);
6596 	  if (cinfo.error)
6597 	    {
6598 	      free (cinfo.hashcodes);
6599 	      return FALSE;
6600 	    }
6601 
6602 	  bucketcount
6603 	    = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6604 
6605 	  if (bucketcount == 0)
6606 	    {
6607 	      free (cinfo.hashcodes);
6608 	      return FALSE;
6609 	    }
6610 
6611 	  s = bfd_get_linker_section (dynobj, ".gnu.hash");
6612 	  BFD_ASSERT (s != NULL);
6613 
6614 	  if (cinfo.nsyms == 0)
6615 	    {
6616 	      /* Empty .gnu.hash section is special.  */
6617 	      BFD_ASSERT (cinfo.min_dynindx == -1);
6618 	      free (cinfo.hashcodes);
6619 	      s->size = 5 * 4 + bed->s->arch_size / 8;
6620 	      contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6621 	      if (contents == NULL)
6622 		return FALSE;
6623 	      s->contents = contents;
6624 	      /* 1 empty bucket.  */
6625 	      bfd_put_32 (output_bfd, 1, contents);
6626 	      /* SYMIDX above the special symbol 0.  */
6627 	      bfd_put_32 (output_bfd, 1, contents + 4);
6628 	      /* Just one word for bitmask.  */
6629 	      bfd_put_32 (output_bfd, 1, contents + 8);
6630 	      /* Only hash fn bloom filter.  */
6631 	      bfd_put_32 (output_bfd, 0, contents + 12);
6632 	      /* No hashes are valid - empty bitmask.  */
6633 	      bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6634 	      /* No hashes in the only bucket.  */
6635 	      bfd_put_32 (output_bfd, 0,
6636 			  contents + 16 + bed->s->arch_size / 8);
6637 	    }
6638 	  else
6639 	    {
6640 	      unsigned long int maskwords, maskbitslog2, x;
6641 	      BFD_ASSERT (cinfo.min_dynindx != -1);
6642 
6643 	      x = cinfo.nsyms;
6644 	      maskbitslog2 = 1;
6645 	      while ((x >>= 1) != 0)
6646 		++maskbitslog2;
6647 	      if (maskbitslog2 < 3)
6648 		maskbitslog2 = 5;
6649 	      else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6650 		maskbitslog2 = maskbitslog2 + 3;
6651 	      else
6652 		maskbitslog2 = maskbitslog2 + 2;
6653 	      if (bed->s->arch_size == 64)
6654 		{
6655 		  if (maskbitslog2 == 5)
6656 		    maskbitslog2 = 6;
6657 		  cinfo.shift1 = 6;
6658 		}
6659 	      else
6660 		cinfo.shift1 = 5;
6661 	      cinfo.mask = (1 << cinfo.shift1) - 1;
6662 	      cinfo.shift2 = maskbitslog2;
6663 	      cinfo.maskbits = 1 << maskbitslog2;
6664 	      maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6665 	      amt = bucketcount * sizeof (unsigned long int) * 2;
6666 	      amt += maskwords * sizeof (bfd_vma);
6667 	      cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6668 	      if (cinfo.bitmask == NULL)
6669 		{
6670 		  free (cinfo.hashcodes);
6671 		  return FALSE;
6672 		}
6673 
6674 	      cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6675 	      cinfo.indx = cinfo.counts + bucketcount;
6676 	      cinfo.symindx = dynsymcount - cinfo.nsyms;
6677 	      memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6678 
6679 	      /* Determine how often each hash bucket is used.  */
6680 	      memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6681 	      for (i = 0; i < cinfo.nsyms; ++i)
6682 		++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6683 
6684 	      for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6685 		if (cinfo.counts[i] != 0)
6686 		  {
6687 		    cinfo.indx[i] = cnt;
6688 		    cnt += cinfo.counts[i];
6689 		  }
6690 	      BFD_ASSERT (cnt == dynsymcount);
6691 	      cinfo.bucketcount = bucketcount;
6692 	      cinfo.local_indx = cinfo.min_dynindx;
6693 
6694 	      s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6695 	      s->size += cinfo.maskbits / 8;
6696 	      contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6697 	      if (contents == NULL)
6698 		{
6699 		  free (cinfo.bitmask);
6700 		  free (cinfo.hashcodes);
6701 		  return FALSE;
6702 		}
6703 
6704 	      s->contents = contents;
6705 	      bfd_put_32 (output_bfd, bucketcount, contents);
6706 	      bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6707 	      bfd_put_32 (output_bfd, maskwords, contents + 8);
6708 	      bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6709 	      contents += 16 + cinfo.maskbits / 8;
6710 
6711 	      for (i = 0; i < bucketcount; ++i)
6712 		{
6713 		  if (cinfo.counts[i] == 0)
6714 		    bfd_put_32 (output_bfd, 0, contents);
6715 		  else
6716 		    bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6717 		  contents += 4;
6718 		}
6719 
6720 	      cinfo.contents = contents;
6721 
6722 	      /* Renumber dynamic symbols, populate .gnu.hash section.  */
6723 	      elf_link_hash_traverse (elf_hash_table (info),
6724 				      elf_renumber_gnu_hash_syms, &cinfo);
6725 
6726 	      contents = s->contents + 16;
6727 	      for (i = 0; i < maskwords; ++i)
6728 		{
6729 		  bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6730 			   contents);
6731 		  contents += bed->s->arch_size / 8;
6732 		}
6733 
6734 	      free (cinfo.bitmask);
6735 	      free (cinfo.hashcodes);
6736 	    }
6737 	}
6738 
6739       s = bfd_get_linker_section (dynobj, ".dynstr");
6740       BFD_ASSERT (s != NULL);
6741 
6742       elf_finalize_dynstr (output_bfd, info);
6743 
6744       s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6745 
6746       for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6747 	if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6748 	  return FALSE;
6749     }
6750 
6751   return TRUE;
6752 }
6753 
6754 /* Make sure sec_info_type is cleared if sec_info is cleared too.  */
6755 
6756 static void
6757 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6758 			    asection *sec)
6759 {
6760   BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6761   sec->sec_info_type = SEC_INFO_TYPE_NONE;
6762 }
6763 
6764 /* Finish SHF_MERGE section merging.  */
6765 
6766 bfd_boolean
6767 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6768 {
6769   bfd *ibfd;
6770   asection *sec;
6771 
6772   if (!is_elf_hash_table (info->hash))
6773     return FALSE;
6774 
6775   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6776     if ((ibfd->flags & DYNAMIC) == 0)
6777       for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6778 	if ((sec->flags & SEC_MERGE) != 0
6779 	    && !bfd_is_abs_section (sec->output_section))
6780 	  {
6781 	    struct bfd_elf_section_data *secdata;
6782 
6783 	    secdata = elf_section_data (sec);
6784 	    if (! _bfd_add_merge_section (abfd,
6785 					  &elf_hash_table (info)->merge_info,
6786 					  sec, &secdata->sec_info))
6787 	      return FALSE;
6788 	    else if (secdata->sec_info)
6789 	      sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6790 	  }
6791 
6792   if (elf_hash_table (info)->merge_info != NULL)
6793     _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6794 			 merge_sections_remove_hook);
6795   return TRUE;
6796 }
6797 
6798 /* Create an entry in an ELF linker hash table.  */
6799 
6800 struct bfd_hash_entry *
6801 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6802 			    struct bfd_hash_table *table,
6803 			    const char *string)
6804 {
6805   /* Allocate the structure if it has not already been allocated by a
6806      subclass.  */
6807   if (entry == NULL)
6808     {
6809       entry = (struct bfd_hash_entry *)
6810           bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6811       if (entry == NULL)
6812 	return entry;
6813     }
6814 
6815   /* Call the allocation method of the superclass.  */
6816   entry = _bfd_link_hash_newfunc (entry, table, string);
6817   if (entry != NULL)
6818     {
6819       struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6820       struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6821 
6822       /* Set local fields.  */
6823       ret->indx = -1;
6824       ret->dynindx = -1;
6825       ret->got = htab->init_got_refcount;
6826       ret->plt = htab->init_plt_refcount;
6827       memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6828 			      - offsetof (struct elf_link_hash_entry, size)));
6829       /* Assume that we have been called by a non-ELF symbol reader.
6830 	 This flag is then reset by the code which reads an ELF input
6831 	 file.  This ensures that a symbol created by a non-ELF symbol
6832 	 reader will have the flag set correctly.  */
6833       ret->non_elf = 1;
6834     }
6835 
6836   return entry;
6837 }
6838 
6839 /* Copy data from an indirect symbol to its direct symbol, hiding the
6840    old indirect symbol.  Also used for copying flags to a weakdef.  */
6841 
6842 void
6843 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6844 				  struct elf_link_hash_entry *dir,
6845 				  struct elf_link_hash_entry *ind)
6846 {
6847   struct elf_link_hash_table *htab;
6848 
6849   /* Copy down any references that we may have already seen to the
6850      symbol which just became indirect.  */
6851 
6852   dir->ref_dynamic |= ind->ref_dynamic;
6853   dir->ref_regular |= ind->ref_regular;
6854   dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6855   dir->non_got_ref |= ind->non_got_ref;
6856   dir->needs_plt |= ind->needs_plt;
6857   dir->pointer_equality_needed |= ind->pointer_equality_needed;
6858 
6859   if (ind->root.type != bfd_link_hash_indirect)
6860     return;
6861 
6862   /* Copy over the global and procedure linkage table refcount entries.
6863      These may have been already set up by a check_relocs routine.  */
6864   htab = elf_hash_table (info);
6865   if (ind->got.refcount > htab->init_got_refcount.refcount)
6866     {
6867       if (dir->got.refcount < 0)
6868 	dir->got.refcount = 0;
6869       dir->got.refcount += ind->got.refcount;
6870       ind->got.refcount = htab->init_got_refcount.refcount;
6871     }
6872 
6873   if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6874     {
6875       if (dir->plt.refcount < 0)
6876 	dir->plt.refcount = 0;
6877       dir->plt.refcount += ind->plt.refcount;
6878       ind->plt.refcount = htab->init_plt_refcount.refcount;
6879     }
6880 
6881   if (ind->dynindx != -1)
6882     {
6883       if (dir->dynindx != -1)
6884 	_bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6885       dir->dynindx = ind->dynindx;
6886       dir->dynstr_index = ind->dynstr_index;
6887       ind->dynindx = -1;
6888       ind->dynstr_index = 0;
6889     }
6890 }
6891 
6892 void
6893 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6894 				struct elf_link_hash_entry *h,
6895 				bfd_boolean force_local)
6896 {
6897   /* STT_GNU_IFUNC symbol must go through PLT.  */
6898   if (h->type != STT_GNU_IFUNC)
6899     {
6900       h->plt = elf_hash_table (info)->init_plt_offset;
6901       h->needs_plt = 0;
6902     }
6903   if (force_local)
6904     {
6905       h->forced_local = 1;
6906       if (h->dynindx != -1)
6907 	{
6908 	  h->dynindx = -1;
6909 	  _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6910 				  h->dynstr_index);
6911 	}
6912     }
6913 }
6914 
6915 /* Initialize an ELF linker hash table.  *TABLE has been zeroed by our
6916    caller.  */
6917 
6918 bfd_boolean
6919 _bfd_elf_link_hash_table_init
6920   (struct elf_link_hash_table *table,
6921    bfd *abfd,
6922    struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6923 				      struct bfd_hash_table *,
6924 				      const char *),
6925    unsigned int entsize,
6926    enum elf_target_id target_id)
6927 {
6928   bfd_boolean ret;
6929   int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6930 
6931   table->init_got_refcount.refcount = can_refcount - 1;
6932   table->init_plt_refcount.refcount = can_refcount - 1;
6933   table->init_got_offset.offset = -(bfd_vma) 1;
6934   table->init_plt_offset.offset = -(bfd_vma) 1;
6935   /* The first dynamic symbol is a dummy.  */
6936   table->dynsymcount = 1;
6937 
6938   ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6939 
6940   table->root.type = bfd_link_elf_hash_table;
6941   table->hash_table_id = target_id;
6942 
6943   return ret;
6944 }
6945 
6946 /* Create an ELF linker hash table.  */
6947 
6948 struct bfd_link_hash_table *
6949 _bfd_elf_link_hash_table_create (bfd *abfd)
6950 {
6951   struct elf_link_hash_table *ret;
6952   bfd_size_type amt = sizeof (struct elf_link_hash_table);
6953 
6954   ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6955   if (ret == NULL)
6956     return NULL;
6957 
6958   if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6959 				       sizeof (struct elf_link_hash_entry),
6960 				       GENERIC_ELF_DATA))
6961     {
6962       free (ret);
6963       return NULL;
6964     }
6965 
6966   return &ret->root;
6967 }
6968 
6969 /* Destroy an ELF linker hash table.  */
6970 
6971 void
6972 _bfd_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
6973 {
6974   struct elf_link_hash_table *htab = (struct elf_link_hash_table *) hash;
6975   if (htab->dynstr != NULL)
6976     _bfd_elf_strtab_free (htab->dynstr);
6977   _bfd_merge_sections_free (htab->merge_info);
6978   _bfd_generic_link_hash_table_free (hash);
6979 }
6980 
6981 /* This is a hook for the ELF emulation code in the generic linker to
6982    tell the backend linker what file name to use for the DT_NEEDED
6983    entry for a dynamic object.  */
6984 
6985 void
6986 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6987 {
6988   if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6989       && bfd_get_format (abfd) == bfd_object)
6990     elf_dt_name (abfd) = name;
6991 }
6992 
6993 int
6994 bfd_elf_get_dyn_lib_class (bfd *abfd)
6995 {
6996   int lib_class;
6997   if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6998       && bfd_get_format (abfd) == bfd_object)
6999     lib_class = elf_dyn_lib_class (abfd);
7000   else
7001     lib_class = 0;
7002   return lib_class;
7003 }
7004 
7005 void
7006 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7007 {
7008   if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7009       && bfd_get_format (abfd) == bfd_object)
7010     elf_dyn_lib_class (abfd) = lib_class;
7011 }
7012 
7013 /* Get the list of DT_NEEDED entries for a link.  This is a hook for
7014    the linker ELF emulation code.  */
7015 
7016 struct bfd_link_needed_list *
7017 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7018 			 struct bfd_link_info *info)
7019 {
7020   if (! is_elf_hash_table (info->hash))
7021     return NULL;
7022   return elf_hash_table (info)->needed;
7023 }
7024 
7025 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link.  This is a
7026    hook for the linker ELF emulation code.  */
7027 
7028 struct bfd_link_needed_list *
7029 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7030 			  struct bfd_link_info *info)
7031 {
7032   if (! is_elf_hash_table (info->hash))
7033     return NULL;
7034   return elf_hash_table (info)->runpath;
7035 }
7036 
7037 /* Get the name actually used for a dynamic object for a link.  This
7038    is the SONAME entry if there is one.  Otherwise, it is the string
7039    passed to bfd_elf_set_dt_needed_name, or it is the filename.  */
7040 
7041 const char *
7042 bfd_elf_get_dt_soname (bfd *abfd)
7043 {
7044   if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7045       && bfd_get_format (abfd) == bfd_object)
7046     return elf_dt_name (abfd);
7047   return NULL;
7048 }
7049 
7050 /* Get the list of DT_NEEDED entries from a BFD.  This is a hook for
7051    the ELF linker emulation code.  */
7052 
7053 bfd_boolean
7054 bfd_elf_get_bfd_needed_list (bfd *abfd,
7055 			     struct bfd_link_needed_list **pneeded)
7056 {
7057   asection *s;
7058   bfd_byte *dynbuf = NULL;
7059   unsigned int elfsec;
7060   unsigned long shlink;
7061   bfd_byte *extdyn, *extdynend;
7062   size_t extdynsize;
7063   void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7064 
7065   *pneeded = NULL;
7066 
7067   if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7068       || bfd_get_format (abfd) != bfd_object)
7069     return TRUE;
7070 
7071   s = bfd_get_section_by_name (abfd, ".dynamic");
7072   if (s == NULL || s->size == 0)
7073     return TRUE;
7074 
7075   if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7076     goto error_return;
7077 
7078   elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7079   if (elfsec == SHN_BAD)
7080     goto error_return;
7081 
7082   shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7083 
7084   extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7085   swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7086 
7087   extdyn = dynbuf;
7088   extdynend = extdyn + s->size;
7089   for (; extdyn < extdynend; extdyn += extdynsize)
7090     {
7091       Elf_Internal_Dyn dyn;
7092 
7093       (*swap_dyn_in) (abfd, extdyn, &dyn);
7094 
7095       if (dyn.d_tag == DT_NULL)
7096 	break;
7097 
7098       if (dyn.d_tag == DT_NEEDED)
7099 	{
7100 	  const char *string;
7101 	  struct bfd_link_needed_list *l;
7102 	  unsigned int tagv = dyn.d_un.d_val;
7103 	  bfd_size_type amt;
7104 
7105 	  string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7106 	  if (string == NULL)
7107 	    goto error_return;
7108 
7109 	  amt = sizeof *l;
7110 	  l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7111 	  if (l == NULL)
7112 	    goto error_return;
7113 
7114 	  l->by = abfd;
7115 	  l->name = string;
7116 	  l->next = *pneeded;
7117 	  *pneeded = l;
7118 	}
7119     }
7120 
7121   free (dynbuf);
7122 
7123   return TRUE;
7124 
7125  error_return:
7126   if (dynbuf != NULL)
7127     free (dynbuf);
7128   return FALSE;
7129 }
7130 
7131 struct elf_symbuf_symbol
7132 {
7133   unsigned long st_name;	/* Symbol name, index in string tbl */
7134   unsigned char st_info;	/* Type and binding attributes */
7135   unsigned char st_other;	/* Visibilty, and target specific */
7136 };
7137 
7138 struct elf_symbuf_head
7139 {
7140   struct elf_symbuf_symbol *ssym;
7141   bfd_size_type count;
7142   unsigned int st_shndx;
7143 };
7144 
7145 struct elf_symbol
7146 {
7147   union
7148     {
7149       Elf_Internal_Sym *isym;
7150       struct elf_symbuf_symbol *ssym;
7151     } u;
7152   const char *name;
7153 };
7154 
7155 /* Sort references to symbols by ascending section number.  */
7156 
7157 static int
7158 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7159 {
7160   const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7161   const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7162 
7163   return s1->st_shndx - s2->st_shndx;
7164 }
7165 
7166 static int
7167 elf_sym_name_compare (const void *arg1, const void *arg2)
7168 {
7169   const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7170   const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7171   return strcmp (s1->name, s2->name);
7172 }
7173 
7174 static struct elf_symbuf_head *
7175 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7176 {
7177   Elf_Internal_Sym **ind, **indbufend, **indbuf;
7178   struct elf_symbuf_symbol *ssym;
7179   struct elf_symbuf_head *ssymbuf, *ssymhead;
7180   bfd_size_type i, shndx_count, total_size;
7181 
7182   indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7183   if (indbuf == NULL)
7184     return NULL;
7185 
7186   for (ind = indbuf, i = 0; i < symcount; i++)
7187     if (isymbuf[i].st_shndx != SHN_UNDEF)
7188       *ind++ = &isymbuf[i];
7189   indbufend = ind;
7190 
7191   qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7192 	 elf_sort_elf_symbol);
7193 
7194   shndx_count = 0;
7195   if (indbufend > indbuf)
7196     for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7197       if (ind[0]->st_shndx != ind[1]->st_shndx)
7198 	shndx_count++;
7199 
7200   total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7201 		+ (indbufend - indbuf) * sizeof (*ssym));
7202   ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7203   if (ssymbuf == NULL)
7204     {
7205       free (indbuf);
7206       return NULL;
7207     }
7208 
7209   ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7210   ssymbuf->ssym = NULL;
7211   ssymbuf->count = shndx_count;
7212   ssymbuf->st_shndx = 0;
7213   for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7214     {
7215       if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7216 	{
7217 	  ssymhead++;
7218 	  ssymhead->ssym = ssym;
7219 	  ssymhead->count = 0;
7220 	  ssymhead->st_shndx = (*ind)->st_shndx;
7221 	}
7222       ssym->st_name = (*ind)->st_name;
7223       ssym->st_info = (*ind)->st_info;
7224       ssym->st_other = (*ind)->st_other;
7225       ssymhead->count++;
7226     }
7227   BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7228 	      && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7229 		  == total_size));
7230 
7231   free (indbuf);
7232   return ssymbuf;
7233 }
7234 
7235 /* Check if 2 sections define the same set of local and global
7236    symbols.  */
7237 
7238 static bfd_boolean
7239 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7240 				   struct bfd_link_info *info)
7241 {
7242   bfd *bfd1, *bfd2;
7243   const struct elf_backend_data *bed1, *bed2;
7244   Elf_Internal_Shdr *hdr1, *hdr2;
7245   bfd_size_type symcount1, symcount2;
7246   Elf_Internal_Sym *isymbuf1, *isymbuf2;
7247   struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7248   Elf_Internal_Sym *isym, *isymend;
7249   struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7250   bfd_size_type count1, count2, i;
7251   unsigned int shndx1, shndx2;
7252   bfd_boolean result;
7253 
7254   bfd1 = sec1->owner;
7255   bfd2 = sec2->owner;
7256 
7257   /* Both sections have to be in ELF.  */
7258   if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7259       || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7260     return FALSE;
7261 
7262   if (elf_section_type (sec1) != elf_section_type (sec2))
7263     return FALSE;
7264 
7265   shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7266   shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7267   if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7268     return FALSE;
7269 
7270   bed1 = get_elf_backend_data (bfd1);
7271   bed2 = get_elf_backend_data (bfd2);
7272   hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7273   symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7274   hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7275   symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7276 
7277   if (symcount1 == 0 || symcount2 == 0)
7278     return FALSE;
7279 
7280   result = FALSE;
7281   isymbuf1 = NULL;
7282   isymbuf2 = NULL;
7283   ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7284   ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7285 
7286   if (ssymbuf1 == NULL)
7287     {
7288       isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7289 				       NULL, NULL, NULL);
7290       if (isymbuf1 == NULL)
7291 	goto done;
7292 
7293       if (!info->reduce_memory_overheads)
7294 	elf_tdata (bfd1)->symbuf = ssymbuf1
7295 	  = elf_create_symbuf (symcount1, isymbuf1);
7296     }
7297 
7298   if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7299     {
7300       isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7301 				       NULL, NULL, NULL);
7302       if (isymbuf2 == NULL)
7303 	goto done;
7304 
7305       if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7306 	elf_tdata (bfd2)->symbuf = ssymbuf2
7307 	  = elf_create_symbuf (symcount2, isymbuf2);
7308     }
7309 
7310   if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7311     {
7312       /* Optimized faster version.  */
7313       bfd_size_type lo, hi, mid;
7314       struct elf_symbol *symp;
7315       struct elf_symbuf_symbol *ssym, *ssymend;
7316 
7317       lo = 0;
7318       hi = ssymbuf1->count;
7319       ssymbuf1++;
7320       count1 = 0;
7321       while (lo < hi)
7322 	{
7323 	  mid = (lo + hi) / 2;
7324 	  if (shndx1 < ssymbuf1[mid].st_shndx)
7325 	    hi = mid;
7326 	  else if (shndx1 > ssymbuf1[mid].st_shndx)
7327 	    lo = mid + 1;
7328 	  else
7329 	    {
7330 	      count1 = ssymbuf1[mid].count;
7331 	      ssymbuf1 += mid;
7332 	      break;
7333 	    }
7334 	}
7335 
7336       lo = 0;
7337       hi = ssymbuf2->count;
7338       ssymbuf2++;
7339       count2 = 0;
7340       while (lo < hi)
7341 	{
7342 	  mid = (lo + hi) / 2;
7343 	  if (shndx2 < ssymbuf2[mid].st_shndx)
7344 	    hi = mid;
7345 	  else if (shndx2 > ssymbuf2[mid].st_shndx)
7346 	    lo = mid + 1;
7347 	  else
7348 	    {
7349 	      count2 = ssymbuf2[mid].count;
7350 	      ssymbuf2 += mid;
7351 	      break;
7352 	    }
7353 	}
7354 
7355       if (count1 == 0 || count2 == 0 || count1 != count2)
7356 	goto done;
7357 
7358       symtable1 = (struct elf_symbol *)
7359           bfd_malloc (count1 * sizeof (struct elf_symbol));
7360       symtable2 = (struct elf_symbol *)
7361           bfd_malloc (count2 * sizeof (struct elf_symbol));
7362       if (symtable1 == NULL || symtable2 == NULL)
7363 	goto done;
7364 
7365       symp = symtable1;
7366       for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7367 	   ssym < ssymend; ssym++, symp++)
7368 	{
7369 	  symp->u.ssym = ssym;
7370 	  symp->name = bfd_elf_string_from_elf_section (bfd1,
7371 							hdr1->sh_link,
7372 							ssym->st_name);
7373 	}
7374 
7375       symp = symtable2;
7376       for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7377 	   ssym < ssymend; ssym++, symp++)
7378 	{
7379 	  symp->u.ssym = ssym;
7380 	  symp->name = bfd_elf_string_from_elf_section (bfd2,
7381 							hdr2->sh_link,
7382 							ssym->st_name);
7383 	}
7384 
7385       /* Sort symbol by name.  */
7386       qsort (symtable1, count1, sizeof (struct elf_symbol),
7387 	     elf_sym_name_compare);
7388       qsort (symtable2, count1, sizeof (struct elf_symbol),
7389 	     elf_sym_name_compare);
7390 
7391       for (i = 0; i < count1; i++)
7392 	/* Two symbols must have the same binding, type and name.  */
7393 	if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7394 	    || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7395 	    || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7396 	  goto done;
7397 
7398       result = TRUE;
7399       goto done;
7400     }
7401 
7402   symtable1 = (struct elf_symbol *)
7403       bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7404   symtable2 = (struct elf_symbol *)
7405       bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7406   if (symtable1 == NULL || symtable2 == NULL)
7407     goto done;
7408 
7409   /* Count definitions in the section.  */
7410   count1 = 0;
7411   for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7412     if (isym->st_shndx == shndx1)
7413       symtable1[count1++].u.isym = isym;
7414 
7415   count2 = 0;
7416   for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7417     if (isym->st_shndx == shndx2)
7418       symtable2[count2++].u.isym = isym;
7419 
7420   if (count1 == 0 || count2 == 0 || count1 != count2)
7421     goto done;
7422 
7423   for (i = 0; i < count1; i++)
7424     symtable1[i].name
7425       = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7426 					 symtable1[i].u.isym->st_name);
7427 
7428   for (i = 0; i < count2; i++)
7429     symtable2[i].name
7430       = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7431 					 symtable2[i].u.isym->st_name);
7432 
7433   /* Sort symbol by name.  */
7434   qsort (symtable1, count1, sizeof (struct elf_symbol),
7435 	 elf_sym_name_compare);
7436   qsort (symtable2, count1, sizeof (struct elf_symbol),
7437 	 elf_sym_name_compare);
7438 
7439   for (i = 0; i < count1; i++)
7440     /* Two symbols must have the same binding, type and name.  */
7441     if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7442 	|| symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7443 	|| strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7444       goto done;
7445 
7446   result = TRUE;
7447 
7448 done:
7449   if (symtable1)
7450     free (symtable1);
7451   if (symtable2)
7452     free (symtable2);
7453   if (isymbuf1)
7454     free (isymbuf1);
7455   if (isymbuf2)
7456     free (isymbuf2);
7457 
7458   return result;
7459 }
7460 
7461 /* Return TRUE if 2 section types are compatible.  */
7462 
7463 bfd_boolean
7464 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7465 				 bfd *bbfd, const asection *bsec)
7466 {
7467   if (asec == NULL
7468       || bsec == NULL
7469       || abfd->xvec->flavour != bfd_target_elf_flavour
7470       || bbfd->xvec->flavour != bfd_target_elf_flavour)
7471     return TRUE;
7472 
7473   return elf_section_type (asec) == elf_section_type (bsec);
7474 }
7475 
7476 /* Final phase of ELF linker.  */
7477 
7478 /* A structure we use to avoid passing large numbers of arguments.  */
7479 
7480 struct elf_final_link_info
7481 {
7482   /* General link information.  */
7483   struct bfd_link_info *info;
7484   /* Output BFD.  */
7485   bfd *output_bfd;
7486   /* Symbol string table.  */
7487   struct bfd_strtab_hash *symstrtab;
7488   /* .dynsym section.  */
7489   asection *dynsym_sec;
7490   /* .hash section.  */
7491   asection *hash_sec;
7492   /* symbol version section (.gnu.version).  */
7493   asection *symver_sec;
7494   /* Buffer large enough to hold contents of any section.  */
7495   bfd_byte *contents;
7496   /* Buffer large enough to hold external relocs of any section.  */
7497   void *external_relocs;
7498   /* Buffer large enough to hold internal relocs of any section.  */
7499   Elf_Internal_Rela *internal_relocs;
7500   /* Buffer large enough to hold external local symbols of any input
7501      BFD.  */
7502   bfd_byte *external_syms;
7503   /* And a buffer for symbol section indices.  */
7504   Elf_External_Sym_Shndx *locsym_shndx;
7505   /* Buffer large enough to hold internal local symbols of any input
7506      BFD.  */
7507   Elf_Internal_Sym *internal_syms;
7508   /* Array large enough to hold a symbol index for each local symbol
7509      of any input BFD.  */
7510   long *indices;
7511   /* Array large enough to hold a section pointer for each local
7512      symbol of any input BFD.  */
7513   asection **sections;
7514   /* Buffer to hold swapped out symbols.  */
7515   bfd_byte *symbuf;
7516   /* And one for symbol section indices.  */
7517   Elf_External_Sym_Shndx *symshndxbuf;
7518   /* Number of swapped out symbols in buffer.  */
7519   size_t symbuf_count;
7520   /* Number of symbols which fit in symbuf.  */
7521   size_t symbuf_size;
7522   /* And same for symshndxbuf.  */
7523   size_t shndxbuf_size;
7524   /* Number of STT_FILE syms seen.  */
7525   size_t filesym_count;
7526 };
7527 
7528 /* This struct is used to pass information to elf_link_output_extsym.  */
7529 
7530 struct elf_outext_info
7531 {
7532   bfd_boolean failed;
7533   bfd_boolean localsyms;
7534   bfd_boolean need_second_pass;
7535   bfd_boolean second_pass;
7536   struct elf_final_link_info *flinfo;
7537 };
7538 
7539 
7540 /* Support for evaluating a complex relocation.
7541 
7542    Complex relocations are generalized, self-describing relocations.  The
7543    implementation of them consists of two parts: complex symbols, and the
7544    relocations themselves.
7545 
7546    The relocations are use a reserved elf-wide relocation type code (R_RELC
7547    external / BFD_RELOC_RELC internal) and an encoding of relocation field
7548    information (start bit, end bit, word width, etc) into the addend.  This
7549    information is extracted from CGEN-generated operand tables within gas.
7550 
7551    Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7552    internal) representing prefix-notation expressions, including but not
7553    limited to those sorts of expressions normally encoded as addends in the
7554    addend field.  The symbol mangling format is:
7555 
7556    <node> := <literal>
7557           |  <unary-operator> ':' <node>
7558           |  <binary-operator> ':' <node> ':' <node>
7559 	  ;
7560 
7561    <literal> := 's' <digits=N> ':' <N character symbol name>
7562              |  'S' <digits=N> ':' <N character section name>
7563 	     |  '#' <hexdigits>
7564 	     ;
7565 
7566    <binary-operator> := as in C
7567    <unary-operator> := as in C, plus "0-" for unambiguous negation.  */
7568 
7569 static void
7570 set_symbol_value (bfd *bfd_with_globals,
7571 		  Elf_Internal_Sym *isymbuf,
7572 		  size_t locsymcount,
7573 		  size_t symidx,
7574 		  bfd_vma val)
7575 {
7576   struct elf_link_hash_entry **sym_hashes;
7577   struct elf_link_hash_entry *h;
7578   size_t extsymoff = locsymcount;
7579 
7580   if (symidx < locsymcount)
7581     {
7582       Elf_Internal_Sym *sym;
7583 
7584       sym = isymbuf + symidx;
7585       if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7586 	{
7587 	  /* It is a local symbol: move it to the
7588 	     "absolute" section and give it a value.  */
7589 	  sym->st_shndx = SHN_ABS;
7590 	  sym->st_value = val;
7591 	  return;
7592 	}
7593       BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7594       extsymoff = 0;
7595     }
7596 
7597   /* It is a global symbol: set its link type
7598      to "defined" and give it a value.  */
7599 
7600   sym_hashes = elf_sym_hashes (bfd_with_globals);
7601   h = sym_hashes [symidx - extsymoff];
7602   while (h->root.type == bfd_link_hash_indirect
7603 	 || h->root.type == bfd_link_hash_warning)
7604     h = (struct elf_link_hash_entry *) h->root.u.i.link;
7605   h->root.type = bfd_link_hash_defined;
7606   h->root.u.def.value = val;
7607   h->root.u.def.section = bfd_abs_section_ptr;
7608 }
7609 
7610 static bfd_boolean
7611 resolve_symbol (const char *name,
7612 		bfd *input_bfd,
7613 		struct elf_final_link_info *flinfo,
7614 		bfd_vma *result,
7615 		Elf_Internal_Sym *isymbuf,
7616 		size_t locsymcount)
7617 {
7618   Elf_Internal_Sym *sym;
7619   struct bfd_link_hash_entry *global_entry;
7620   const char *candidate = NULL;
7621   Elf_Internal_Shdr *symtab_hdr;
7622   size_t i;
7623 
7624   symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7625 
7626   for (i = 0; i < locsymcount; ++ i)
7627     {
7628       sym = isymbuf + i;
7629 
7630       if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7631 	continue;
7632 
7633       candidate = bfd_elf_string_from_elf_section (input_bfd,
7634 						   symtab_hdr->sh_link,
7635 						   sym->st_name);
7636 #ifdef DEBUG
7637       printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7638 	      name, candidate, (unsigned long) sym->st_value);
7639 #endif
7640       if (candidate && strcmp (candidate, name) == 0)
7641 	{
7642 	  asection *sec = flinfo->sections [i];
7643 
7644 	  *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7645 	  *result += sec->output_offset + sec->output_section->vma;
7646 #ifdef DEBUG
7647 	  printf ("Found symbol with value %8.8lx\n",
7648 		  (unsigned long) *result);
7649 #endif
7650 	  return TRUE;
7651 	}
7652     }
7653 
7654   /* Hmm, haven't found it yet. perhaps it is a global.  */
7655   global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7656 				       FALSE, FALSE, TRUE);
7657   if (!global_entry)
7658     return FALSE;
7659 
7660   if (global_entry->type == bfd_link_hash_defined
7661       || global_entry->type == bfd_link_hash_defweak)
7662     {
7663       *result = (global_entry->u.def.value
7664 		 + global_entry->u.def.section->output_section->vma
7665 		 + global_entry->u.def.section->output_offset);
7666 #ifdef DEBUG
7667       printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7668 	      global_entry->root.string, (unsigned long) *result);
7669 #endif
7670       return TRUE;
7671     }
7672 
7673   return FALSE;
7674 }
7675 
7676 static bfd_boolean
7677 resolve_section (const char *name,
7678 		 asection *sections,
7679 		 bfd_vma *result)
7680 {
7681   asection *curr;
7682   unsigned int len;
7683 
7684   for (curr = sections; curr; curr = curr->next)
7685     if (strcmp (curr->name, name) == 0)
7686       {
7687 	*result = curr->vma;
7688 	return TRUE;
7689       }
7690 
7691   /* Hmm. still haven't found it. try pseudo-section names.  */
7692   for (curr = sections; curr; curr = curr->next)
7693     {
7694       len = strlen (curr->name);
7695       if (len > strlen (name))
7696 	continue;
7697 
7698       if (strncmp (curr->name, name, len) == 0)
7699 	{
7700 	  if (strncmp (".end", name + len, 4) == 0)
7701 	    {
7702 	      *result = curr->vma + curr->size;
7703 	      return TRUE;
7704 	    }
7705 
7706 	  /* Insert more pseudo-section names here, if you like.  */
7707 	}
7708     }
7709 
7710   return FALSE;
7711 }
7712 
7713 static void
7714 undefined_reference (const char *reftype, const char *name)
7715 {
7716   _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7717 		      reftype, name);
7718 }
7719 
7720 static bfd_boolean
7721 eval_symbol (bfd_vma *result,
7722 	     const char **symp,
7723 	     bfd *input_bfd,
7724 	     struct elf_final_link_info *flinfo,
7725 	     bfd_vma dot,
7726 	     Elf_Internal_Sym *isymbuf,
7727 	     size_t locsymcount,
7728 	     int signed_p)
7729 {
7730   size_t len;
7731   size_t symlen;
7732   bfd_vma a;
7733   bfd_vma b;
7734   char symbuf[4096];
7735   const char *sym = *symp;
7736   const char *symend;
7737   bfd_boolean symbol_is_section = FALSE;
7738 
7739   len = strlen (sym);
7740   symend = sym + len;
7741 
7742   if (len < 1 || len > sizeof (symbuf))
7743     {
7744       bfd_set_error (bfd_error_invalid_operation);
7745       return FALSE;
7746     }
7747 
7748   switch (* sym)
7749     {
7750     case '.':
7751       *result = dot;
7752       *symp = sym + 1;
7753       return TRUE;
7754 
7755     case '#':
7756       ++sym;
7757       *result = strtoul (sym, (char **) symp, 16);
7758       return TRUE;
7759 
7760     case 'S':
7761       symbol_is_section = TRUE;
7762     case 's':
7763       ++sym;
7764       symlen = strtol (sym, (char **) symp, 10);
7765       sym = *symp + 1; /* Skip the trailing ':'.  */
7766 
7767       if (symend < sym || symlen + 1 > sizeof (symbuf))
7768 	{
7769 	  bfd_set_error (bfd_error_invalid_operation);
7770 	  return FALSE;
7771 	}
7772 
7773       memcpy (symbuf, sym, symlen);
7774       symbuf[symlen] = '\0';
7775       *symp = sym + symlen;
7776 
7777       /* Is it always possible, with complex symbols, that gas "mis-guessed"
7778 	 the symbol as a section, or vice-versa. so we're pretty liberal in our
7779 	 interpretation here; section means "try section first", not "must be a
7780 	 section", and likewise with symbol.  */
7781 
7782       if (symbol_is_section)
7783 	{
7784 	  if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7785 	      && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7786 				  isymbuf, locsymcount))
7787 	    {
7788 	      undefined_reference ("section", symbuf);
7789 	      return FALSE;
7790 	    }
7791 	}
7792       else
7793 	{
7794 	  if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7795 			       isymbuf, locsymcount)
7796 	      && !resolve_section (symbuf, flinfo->output_bfd->sections,
7797 				   result))
7798 	    {
7799 	      undefined_reference ("symbol", symbuf);
7800 	      return FALSE;
7801 	    }
7802 	}
7803 
7804       return TRUE;
7805 
7806       /* All that remains are operators.  */
7807 
7808 #define UNARY_OP(op)						\
7809   if (strncmp (sym, #op, strlen (#op)) == 0)			\
7810     {								\
7811       sym += strlen (#op);					\
7812       if (*sym == ':')						\
7813 	++sym;							\
7814       *symp = sym;						\
7815       if (!eval_symbol (&a, symp, input_bfd, flinfo, dot,	\
7816 			isymbuf, locsymcount, signed_p))	\
7817 	return FALSE;						\
7818       if (signed_p)						\
7819 	*result = op ((bfd_signed_vma) a);			\
7820       else							\
7821 	*result = op a;						\
7822       return TRUE;						\
7823     }
7824 
7825 #define BINARY_OP(op)						\
7826   if (strncmp (sym, #op, strlen (#op)) == 0)			\
7827     {								\
7828       sym += strlen (#op);					\
7829       if (*sym == ':')						\
7830 	++sym;							\
7831       *symp = sym;						\
7832       if (!eval_symbol (&a, symp, input_bfd, flinfo, dot,	\
7833 			isymbuf, locsymcount, signed_p))	\
7834 	return FALSE;						\
7835       ++*symp;							\
7836       if (!eval_symbol (&b, symp, input_bfd, flinfo, dot,	\
7837 			isymbuf, locsymcount, signed_p))	\
7838 	return FALSE;						\
7839       if (signed_p)						\
7840 	*result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b);	\
7841       else							\
7842 	*result = a op b;					\
7843       return TRUE;						\
7844     }
7845 
7846     default:
7847       UNARY_OP  (0-);
7848       BINARY_OP (<<);
7849       BINARY_OP (>>);
7850       BINARY_OP (==);
7851       BINARY_OP (!=);
7852       BINARY_OP (<=);
7853       BINARY_OP (>=);
7854       BINARY_OP (&&);
7855       BINARY_OP (||);
7856       UNARY_OP  (~);
7857       UNARY_OP  (!);
7858       BINARY_OP (*);
7859       BINARY_OP (/);
7860       BINARY_OP (%);
7861       BINARY_OP (^);
7862       BINARY_OP (|);
7863       BINARY_OP (&);
7864       BINARY_OP (+);
7865       BINARY_OP (-);
7866       BINARY_OP (<);
7867       BINARY_OP (>);
7868 #undef UNARY_OP
7869 #undef BINARY_OP
7870       _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7871       bfd_set_error (bfd_error_invalid_operation);
7872       return FALSE;
7873     }
7874 }
7875 
7876 static void
7877 put_value (bfd_vma size,
7878 	   unsigned long chunksz,
7879 	   bfd *input_bfd,
7880 	   bfd_vma x,
7881 	   bfd_byte *location)
7882 {
7883   location += (size - chunksz);
7884 
7885   for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7886     {
7887       switch (chunksz)
7888 	{
7889 	default:
7890 	case 0:
7891 	  abort ();
7892 	case 1:
7893 	  bfd_put_8 (input_bfd, x, location);
7894 	  break;
7895 	case 2:
7896 	  bfd_put_16 (input_bfd, x, location);
7897 	  break;
7898 	case 4:
7899 	  bfd_put_32 (input_bfd, x, location);
7900 	  break;
7901 	case 8:
7902 #ifdef BFD64
7903 	  bfd_put_64 (input_bfd, x, location);
7904 #else
7905 	  abort ();
7906 #endif
7907 	  break;
7908 	}
7909     }
7910 }
7911 
7912 static bfd_vma
7913 get_value (bfd_vma size,
7914 	   unsigned long chunksz,
7915 	   bfd *input_bfd,
7916 	   bfd_byte *location)
7917 {
7918   int shift;
7919   bfd_vma x = 0;
7920 
7921   /* Sanity checks.  */
7922   BFD_ASSERT (chunksz <= sizeof (x)
7923 	      && size >= chunksz
7924 	      && chunksz != 0
7925 	      && (size % chunksz) == 0
7926 	      && input_bfd != NULL
7927 	      && location != NULL);
7928 
7929   if (chunksz == sizeof (x))
7930     {
7931       BFD_ASSERT (size == chunksz);
7932 
7933       /* Make sure that we do not perform an undefined shift operation.
7934 	 We know that size == chunksz so there will only be one iteration
7935 	 of the loop below.  */
7936       shift = 0;
7937     }
7938   else
7939     shift = 8 * chunksz;
7940 
7941   for (; size; size -= chunksz, location += chunksz)
7942     {
7943       switch (chunksz)
7944 	{
7945 	case 1:
7946 	  x = (x << shift) | bfd_get_8 (input_bfd, location);
7947 	  break;
7948 	case 2:
7949 	  x = (x << shift) | bfd_get_16 (input_bfd, location);
7950 	  break;
7951 	case 4:
7952 	  x = (x << shift) | bfd_get_32 (input_bfd, location);
7953 	  break;
7954 #ifdef BFD64
7955 	case 8:
7956 	  x = (x << shift) | bfd_get_64 (input_bfd, location);
7957 	  break;
7958 #endif
7959 	default:
7960 	  abort ();
7961 	}
7962     }
7963   return x;
7964 }
7965 
7966 static void
7967 decode_complex_addend (unsigned long *start,   /* in bits */
7968 		       unsigned long *oplen,   /* in bits */
7969 		       unsigned long *len,     /* in bits */
7970 		       unsigned long *wordsz,  /* in bytes */
7971 		       unsigned long *chunksz, /* in bytes */
7972 		       unsigned long *lsb0_p,
7973 		       unsigned long *signed_p,
7974 		       unsigned long *trunc_p,
7975 		       unsigned long encoded)
7976 {
7977   * start     =  encoded        & 0x3F;
7978   * len       = (encoded >>  6) & 0x3F;
7979   * oplen     = (encoded >> 12) & 0x3F;
7980   * wordsz    = (encoded >> 18) & 0xF;
7981   * chunksz   = (encoded >> 22) & 0xF;
7982   * lsb0_p    = (encoded >> 27) & 1;
7983   * signed_p  = (encoded >> 28) & 1;
7984   * trunc_p   = (encoded >> 29) & 1;
7985 }
7986 
7987 bfd_reloc_status_type
7988 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7989 				    asection *input_section ATTRIBUTE_UNUSED,
7990 				    bfd_byte *contents,
7991 				    Elf_Internal_Rela *rel,
7992 				    bfd_vma relocation)
7993 {
7994   bfd_vma shift, x, mask;
7995   unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7996   bfd_reloc_status_type r;
7997 
7998   /*  Perform this reloc, since it is complex.
7999       (this is not to say that it necessarily refers to a complex
8000       symbol; merely that it is a self-describing CGEN based reloc.
8001       i.e. the addend has the complete reloc information (bit start, end,
8002       word size, etc) encoded within it.).  */
8003 
8004   decode_complex_addend (&start, &oplen, &len, &wordsz,
8005 			 &chunksz, &lsb0_p, &signed_p,
8006 			 &trunc_p, rel->r_addend);
8007 
8008   mask = (((1L << (len - 1)) - 1) << 1) | 1;
8009 
8010   if (lsb0_p)
8011     shift = (start + 1) - len;
8012   else
8013     shift = (8 * wordsz) - (start + len);
8014 
8015   /* FIXME: octets_per_byte.  */
8016   x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
8017 
8018 #ifdef DEBUG
8019   printf ("Doing complex reloc: "
8020 	  "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8021 	  "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8022 	  "    dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8023 	  lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8024 	  oplen, (unsigned long) x, (unsigned long) mask,
8025 	  (unsigned long) relocation);
8026 #endif
8027 
8028   r = bfd_reloc_ok;
8029   if (! trunc_p)
8030     /* Now do an overflow check.  */
8031     r = bfd_check_overflow ((signed_p
8032 			     ? complain_overflow_signed
8033 			     : complain_overflow_unsigned),
8034 			    len, 0, (8 * wordsz),
8035 			    relocation);
8036 
8037   /* Do the deed.  */
8038   x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8039 
8040 #ifdef DEBUG
8041   printf ("           relocation: %8.8lx\n"
8042 	  "         shifted mask: %8.8lx\n"
8043 	  " shifted/masked reloc: %8.8lx\n"
8044 	  "               result: %8.8lx\n",
8045 	  (unsigned long) relocation, (unsigned long) (mask << shift),
8046 	  (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8047 #endif
8048   /* FIXME: octets_per_byte.  */
8049   put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
8050   return r;
8051 }
8052 
8053 /* When performing a relocatable link, the input relocations are
8054    preserved.  But, if they reference global symbols, the indices
8055    referenced must be updated.  Update all the relocations found in
8056    RELDATA.  */
8057 
8058 static void
8059 elf_link_adjust_relocs (bfd *abfd,
8060 			struct bfd_elf_section_reloc_data *reldata)
8061 {
8062   unsigned int i;
8063   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8064   bfd_byte *erela;
8065   void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8066   void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8067   bfd_vma r_type_mask;
8068   int r_sym_shift;
8069   unsigned int count = reldata->count;
8070   struct elf_link_hash_entry **rel_hash = reldata->hashes;
8071 
8072   if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8073     {
8074       swap_in = bed->s->swap_reloc_in;
8075       swap_out = bed->s->swap_reloc_out;
8076     }
8077   else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8078     {
8079       swap_in = bed->s->swap_reloca_in;
8080       swap_out = bed->s->swap_reloca_out;
8081     }
8082   else
8083     abort ();
8084 
8085   if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8086     abort ();
8087 
8088   if (bed->s->arch_size == 32)
8089     {
8090       r_type_mask = 0xff;
8091       r_sym_shift = 8;
8092     }
8093   else
8094     {
8095       r_type_mask = 0xffffffff;
8096       r_sym_shift = 32;
8097     }
8098 
8099   erela = reldata->hdr->contents;
8100   for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8101     {
8102       Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8103       unsigned int j;
8104 
8105       if (*rel_hash == NULL)
8106 	continue;
8107 
8108       BFD_ASSERT ((*rel_hash)->indx >= 0);
8109 
8110       (*swap_in) (abfd, erela, irela);
8111       for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8112 	irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8113 			   | (irela[j].r_info & r_type_mask));
8114       (*swap_out) (abfd, irela, erela);
8115     }
8116 }
8117 
8118 struct elf_link_sort_rela
8119 {
8120   union {
8121     bfd_vma offset;
8122     bfd_vma sym_mask;
8123   } u;
8124   enum elf_reloc_type_class type;
8125   /* We use this as an array of size int_rels_per_ext_rel.  */
8126   Elf_Internal_Rela rela[1];
8127 };
8128 
8129 static int
8130 elf_link_sort_cmp1 (const void *A, const void *B)
8131 {
8132   const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8133   const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8134   int relativea, relativeb;
8135 
8136   relativea = a->type == reloc_class_relative;
8137   relativeb = b->type == reloc_class_relative;
8138 
8139   if (relativea < relativeb)
8140     return 1;
8141   if (relativea > relativeb)
8142     return -1;
8143   if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8144     return -1;
8145   if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8146     return 1;
8147   if (a->rela->r_offset < b->rela->r_offset)
8148     return -1;
8149   if (a->rela->r_offset > b->rela->r_offset)
8150     return 1;
8151   return 0;
8152 }
8153 
8154 static int
8155 elf_link_sort_cmp2 (const void *A, const void *B)
8156 {
8157   const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8158   const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8159   int copya, copyb;
8160 
8161   if (a->u.offset < b->u.offset)
8162     return -1;
8163   if (a->u.offset > b->u.offset)
8164     return 1;
8165   copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8166   copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8167   if (copya < copyb)
8168     return -1;
8169   if (copya > copyb)
8170     return 1;
8171   if (a->rela->r_offset < b->rela->r_offset)
8172     return -1;
8173   if (a->rela->r_offset > b->rela->r_offset)
8174     return 1;
8175   return 0;
8176 }
8177 
8178 static size_t
8179 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8180 {
8181   asection *dynamic_relocs;
8182   asection *rela_dyn;
8183   asection *rel_dyn;
8184   bfd_size_type count, size;
8185   size_t i, ret, sort_elt, ext_size;
8186   bfd_byte *sort, *s_non_relative, *p;
8187   struct elf_link_sort_rela *sq;
8188   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8189   int i2e = bed->s->int_rels_per_ext_rel;
8190   void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8191   void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8192   struct bfd_link_order *lo;
8193   bfd_vma r_sym_mask;
8194   bfd_boolean use_rela;
8195 
8196   /* Find a dynamic reloc section.  */
8197   rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8198   rel_dyn  = bfd_get_section_by_name (abfd, ".rel.dyn");
8199   if (rela_dyn != NULL && rela_dyn->size > 0
8200       && rel_dyn != NULL && rel_dyn->size > 0)
8201     {
8202       bfd_boolean use_rela_initialised = FALSE;
8203 
8204       /* This is just here to stop gcc from complaining.
8205 	 It's initialization checking code is not perfect.  */
8206       use_rela = TRUE;
8207 
8208       /* Both sections are present.  Examine the sizes
8209 	 of the indirect sections to help us choose.  */
8210       for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8211 	if (lo->type == bfd_indirect_link_order)
8212 	  {
8213 	    asection *o = lo->u.indirect.section;
8214 
8215 	    if ((o->size % bed->s->sizeof_rela) == 0)
8216 	      {
8217 		if ((o->size % bed->s->sizeof_rel) == 0)
8218 		  /* Section size is divisible by both rel and rela sizes.
8219 		     It is of no help to us.  */
8220 		  ;
8221 		else
8222 		  {
8223 		    /* Section size is only divisible by rela.  */
8224 		    if (use_rela_initialised && (use_rela == FALSE))
8225 		      {
8226 			_bfd_error_handler
8227 			  (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8228 			bfd_set_error (bfd_error_invalid_operation);
8229 			return 0;
8230 		      }
8231 		    else
8232 		      {
8233 			use_rela = TRUE;
8234 			use_rela_initialised = TRUE;
8235 		      }
8236 		  }
8237 	      }
8238 	    else if ((o->size % bed->s->sizeof_rel) == 0)
8239 	      {
8240 		/* Section size is only divisible by rel.  */
8241 		if (use_rela_initialised && (use_rela == TRUE))
8242 		  {
8243 		    _bfd_error_handler
8244 		      (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8245 		    bfd_set_error (bfd_error_invalid_operation);
8246 		    return 0;
8247 		  }
8248 		else
8249 		  {
8250 		    use_rela = FALSE;
8251 		    use_rela_initialised = TRUE;
8252 		  }
8253 	      }
8254 	    else
8255 	      {
8256 		/* The section size is not divisible by either - something is wrong.  */
8257 		_bfd_error_handler
8258 		  (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8259 		bfd_set_error (bfd_error_invalid_operation);
8260 		return 0;
8261 	      }
8262 	  }
8263 
8264       for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8265 	if (lo->type == bfd_indirect_link_order)
8266 	  {
8267 	    asection *o = lo->u.indirect.section;
8268 
8269 	    if ((o->size % bed->s->sizeof_rela) == 0)
8270 	      {
8271 		if ((o->size % bed->s->sizeof_rel) == 0)
8272 		  /* Section size is divisible by both rel and rela sizes.
8273 		     It is of no help to us.  */
8274 		  ;
8275 		else
8276 		  {
8277 		    /* Section size is only divisible by rela.  */
8278 		    if (use_rela_initialised && (use_rela == FALSE))
8279 		      {
8280 			_bfd_error_handler
8281 			  (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8282 			bfd_set_error (bfd_error_invalid_operation);
8283 			return 0;
8284 		      }
8285 		    else
8286 		      {
8287 			use_rela = TRUE;
8288 			use_rela_initialised = TRUE;
8289 		      }
8290 		  }
8291 	      }
8292 	    else if ((o->size % bed->s->sizeof_rel) == 0)
8293 	      {
8294 		/* Section size is only divisible by rel.  */
8295 		if (use_rela_initialised && (use_rela == TRUE))
8296 		  {
8297 		    _bfd_error_handler
8298 		      (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8299 		    bfd_set_error (bfd_error_invalid_operation);
8300 		    return 0;
8301 		  }
8302 		else
8303 		  {
8304 		    use_rela = FALSE;
8305 		    use_rela_initialised = TRUE;
8306 		  }
8307 	      }
8308 	    else
8309 	      {
8310 		/* The section size is not divisible by either - something is wrong.  */
8311 		_bfd_error_handler
8312 		  (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8313 		bfd_set_error (bfd_error_invalid_operation);
8314 		return 0;
8315 	      }
8316 	  }
8317 
8318       if (! use_rela_initialised)
8319 	/* Make a guess.  */
8320 	use_rela = TRUE;
8321     }
8322   else if (rela_dyn != NULL && rela_dyn->size > 0)
8323     use_rela = TRUE;
8324   else if (rel_dyn != NULL && rel_dyn->size > 0)
8325     use_rela = FALSE;
8326   else
8327     return 0;
8328 
8329   if (use_rela)
8330     {
8331       dynamic_relocs = rela_dyn;
8332       ext_size = bed->s->sizeof_rela;
8333       swap_in = bed->s->swap_reloca_in;
8334       swap_out = bed->s->swap_reloca_out;
8335     }
8336   else
8337     {
8338       dynamic_relocs = rel_dyn;
8339       ext_size = bed->s->sizeof_rel;
8340       swap_in = bed->s->swap_reloc_in;
8341       swap_out = bed->s->swap_reloc_out;
8342     }
8343 
8344   size = 0;
8345   for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8346     if (lo->type == bfd_indirect_link_order)
8347       size += lo->u.indirect.section->size;
8348 
8349   if (size != dynamic_relocs->size)
8350     return 0;
8351 
8352   sort_elt = (sizeof (struct elf_link_sort_rela)
8353 	      + (i2e - 1) * sizeof (Elf_Internal_Rela));
8354 
8355   count = dynamic_relocs->size / ext_size;
8356   if (count == 0)
8357     return 0;
8358   sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8359 
8360   if (sort == NULL)
8361     {
8362       (*info->callbacks->warning)
8363 	(info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8364       return 0;
8365     }
8366 
8367   if (bed->s->arch_size == 32)
8368     r_sym_mask = ~(bfd_vma) 0xff;
8369   else
8370     r_sym_mask = ~(bfd_vma) 0xffffffff;
8371 
8372   for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8373     if (lo->type == bfd_indirect_link_order)
8374       {
8375 	bfd_byte *erel, *erelend;
8376 	asection *o = lo->u.indirect.section;
8377 
8378 	if (o->contents == NULL && o->size != 0)
8379 	  {
8380 	    /* This is a reloc section that is being handled as a normal
8381 	       section.  See bfd_section_from_shdr.  We can't combine
8382 	       relocs in this case.  */
8383 	    free (sort);
8384 	    return 0;
8385 	  }
8386 	erel = o->contents;
8387 	erelend = o->contents + o->size;
8388 	/* FIXME: octets_per_byte.  */
8389 	p = sort + o->output_offset / ext_size * sort_elt;
8390 
8391 	while (erel < erelend)
8392 	  {
8393 	    struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8394 
8395 	    (*swap_in) (abfd, erel, s->rela);
8396 	    s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8397 	    s->u.sym_mask = r_sym_mask;
8398 	    p += sort_elt;
8399 	    erel += ext_size;
8400 	  }
8401       }
8402 
8403   qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8404 
8405   for (i = 0, p = sort; i < count; i++, p += sort_elt)
8406     {
8407       struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8408       if (s->type != reloc_class_relative)
8409 	break;
8410     }
8411   ret = i;
8412   s_non_relative = p;
8413 
8414   sq = (struct elf_link_sort_rela *) s_non_relative;
8415   for (; i < count; i++, p += sort_elt)
8416     {
8417       struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8418       if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8419 	sq = sp;
8420       sp->u.offset = sq->rela->r_offset;
8421     }
8422 
8423   qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8424 
8425   for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8426     if (lo->type == bfd_indirect_link_order)
8427       {
8428 	bfd_byte *erel, *erelend;
8429 	asection *o = lo->u.indirect.section;
8430 
8431 	erel = o->contents;
8432 	erelend = o->contents + o->size;
8433 	/* FIXME: octets_per_byte.  */
8434 	p = sort + o->output_offset / ext_size * sort_elt;
8435 	while (erel < erelend)
8436 	  {
8437 	    struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8438 	    (*swap_out) (abfd, s->rela, erel);
8439 	    p += sort_elt;
8440 	    erel += ext_size;
8441 	  }
8442       }
8443 
8444   free (sort);
8445   *psec = dynamic_relocs;
8446   return ret;
8447 }
8448 
8449 /* Flush the output symbols to the file.  */
8450 
8451 static bfd_boolean
8452 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8453 			    const struct elf_backend_data *bed)
8454 {
8455   if (flinfo->symbuf_count > 0)
8456     {
8457       Elf_Internal_Shdr *hdr;
8458       file_ptr pos;
8459       bfd_size_type amt;
8460 
8461       hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8462       pos = hdr->sh_offset + hdr->sh_size;
8463       amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8464       if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8465 	  || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8466 	return FALSE;
8467 
8468       hdr->sh_size += amt;
8469       flinfo->symbuf_count = 0;
8470     }
8471 
8472   return TRUE;
8473 }
8474 
8475 /* Add a symbol to the output symbol table.  */
8476 
8477 static int
8478 elf_link_output_sym (struct elf_final_link_info *flinfo,
8479 		     const char *name,
8480 		     Elf_Internal_Sym *elfsym,
8481 		     asection *input_sec,
8482 		     struct elf_link_hash_entry *h)
8483 {
8484   bfd_byte *dest;
8485   Elf_External_Sym_Shndx *destshndx;
8486   int (*output_symbol_hook)
8487     (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8488      struct elf_link_hash_entry *);
8489   const struct elf_backend_data *bed;
8490 
8491   bed = get_elf_backend_data (flinfo->output_bfd);
8492   output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8493   if (output_symbol_hook != NULL)
8494     {
8495       int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8496       if (ret != 1)
8497 	return ret;
8498     }
8499 
8500   if (name == NULL || *name == '\0')
8501     elfsym->st_name = 0;
8502   else if (input_sec->flags & SEC_EXCLUDE)
8503     elfsym->st_name = 0;
8504   else
8505     {
8506       elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8507 							    name, TRUE, FALSE);
8508       if (elfsym->st_name == (unsigned long) -1)
8509 	return 0;
8510     }
8511 
8512   if (flinfo->symbuf_count >= flinfo->symbuf_size)
8513     {
8514       if (! elf_link_flush_output_syms (flinfo, bed))
8515 	return 0;
8516     }
8517 
8518   dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8519   destshndx = flinfo->symshndxbuf;
8520   if (destshndx != NULL)
8521     {
8522       if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8523 	{
8524 	  bfd_size_type amt;
8525 
8526 	  amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8527 	  destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8528                                                               amt * 2);
8529 	  if (destshndx == NULL)
8530 	    return 0;
8531 	  flinfo->symshndxbuf = destshndx;
8532 	  memset ((char *) destshndx + amt, 0, amt);
8533 	  flinfo->shndxbuf_size *= 2;
8534 	}
8535       destshndx += bfd_get_symcount (flinfo->output_bfd);
8536     }
8537 
8538   bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8539   flinfo->symbuf_count += 1;
8540   bfd_get_symcount (flinfo->output_bfd) += 1;
8541 
8542   return 1;
8543 }
8544 
8545 /* Return TRUE if the dynamic symbol SYM in ABFD is supported.  */
8546 
8547 static bfd_boolean
8548 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8549 {
8550   if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8551       && sym->st_shndx < SHN_LORESERVE)
8552     {
8553       /* The gABI doesn't support dynamic symbols in output sections
8554 	 beyond 64k.  */
8555       (*_bfd_error_handler)
8556 	(_("%B: Too many sections: %d (>= %d)"),
8557 	 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8558       bfd_set_error (bfd_error_nonrepresentable_section);
8559       return FALSE;
8560     }
8561   return TRUE;
8562 }
8563 
8564 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8565    allowing an unsatisfied unversioned symbol in the DSO to match a
8566    versioned symbol that would normally require an explicit version.
8567    We also handle the case that a DSO references a hidden symbol
8568    which may be satisfied by a versioned symbol in another DSO.  */
8569 
8570 static bfd_boolean
8571 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8572 				 const struct elf_backend_data *bed,
8573 				 struct elf_link_hash_entry *h)
8574 {
8575   bfd *abfd;
8576   struct elf_link_loaded_list *loaded;
8577 
8578   if (!is_elf_hash_table (info->hash))
8579     return FALSE;
8580 
8581   /* Check indirect symbol.  */
8582   while (h->root.type == bfd_link_hash_indirect)
8583     h = (struct elf_link_hash_entry *) h->root.u.i.link;
8584 
8585   switch (h->root.type)
8586     {
8587     default:
8588       abfd = NULL;
8589       break;
8590 
8591     case bfd_link_hash_undefined:
8592     case bfd_link_hash_undefweak:
8593       abfd = h->root.u.undef.abfd;
8594       if ((abfd->flags & DYNAMIC) == 0
8595 	  || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8596 	return FALSE;
8597       break;
8598 
8599     case bfd_link_hash_defined:
8600     case bfd_link_hash_defweak:
8601       abfd = h->root.u.def.section->owner;
8602       break;
8603 
8604     case bfd_link_hash_common:
8605       abfd = h->root.u.c.p->section->owner;
8606       break;
8607     }
8608   BFD_ASSERT (abfd != NULL);
8609 
8610   for (loaded = elf_hash_table (info)->loaded;
8611        loaded != NULL;
8612        loaded = loaded->next)
8613     {
8614       bfd *input;
8615       Elf_Internal_Shdr *hdr;
8616       bfd_size_type symcount;
8617       bfd_size_type extsymcount;
8618       bfd_size_type extsymoff;
8619       Elf_Internal_Shdr *versymhdr;
8620       Elf_Internal_Sym *isym;
8621       Elf_Internal_Sym *isymend;
8622       Elf_Internal_Sym *isymbuf;
8623       Elf_External_Versym *ever;
8624       Elf_External_Versym *extversym;
8625 
8626       input = loaded->abfd;
8627 
8628       /* We check each DSO for a possible hidden versioned definition.  */
8629       if (input == abfd
8630 	  || (input->flags & DYNAMIC) == 0
8631 	  || elf_dynversym (input) == 0)
8632 	continue;
8633 
8634       hdr = &elf_tdata (input)->dynsymtab_hdr;
8635 
8636       symcount = hdr->sh_size / bed->s->sizeof_sym;
8637       if (elf_bad_symtab (input))
8638 	{
8639 	  extsymcount = symcount;
8640 	  extsymoff = 0;
8641 	}
8642       else
8643 	{
8644 	  extsymcount = symcount - hdr->sh_info;
8645 	  extsymoff = hdr->sh_info;
8646 	}
8647 
8648       if (extsymcount == 0)
8649 	continue;
8650 
8651       isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8652 				      NULL, NULL, NULL);
8653       if (isymbuf == NULL)
8654 	return FALSE;
8655 
8656       /* Read in any version definitions.  */
8657       versymhdr = &elf_tdata (input)->dynversym_hdr;
8658       extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8659       if (extversym == NULL)
8660 	goto error_ret;
8661 
8662       if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8663 	  || (bfd_bread (extversym, versymhdr->sh_size, input)
8664 	      != versymhdr->sh_size))
8665 	{
8666 	  free (extversym);
8667 	error_ret:
8668 	  free (isymbuf);
8669 	  return FALSE;
8670 	}
8671 
8672       ever = extversym + extsymoff;
8673       isymend = isymbuf + extsymcount;
8674       for (isym = isymbuf; isym < isymend; isym++, ever++)
8675 	{
8676 	  const char *name;
8677 	  Elf_Internal_Versym iver;
8678 	  unsigned short version_index;
8679 
8680 	  if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8681 	      || isym->st_shndx == SHN_UNDEF)
8682 	    continue;
8683 
8684 	  name = bfd_elf_string_from_elf_section (input,
8685 						  hdr->sh_link,
8686 						  isym->st_name);
8687 	  if (strcmp (name, h->root.root.string) != 0)
8688 	    continue;
8689 
8690 	  _bfd_elf_swap_versym_in (input, ever, &iver);
8691 
8692 	  if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8693 	      && !(h->def_regular
8694 		   && h->forced_local))
8695 	    {
8696 	      /* If we have a non-hidden versioned sym, then it should
8697 		 have provided a definition for the undefined sym unless
8698 		 it is defined in a non-shared object and forced local.
8699 	       */
8700 	      abort ();
8701 	    }
8702 
8703 	  version_index = iver.vs_vers & VERSYM_VERSION;
8704 	  if (version_index == 1 || version_index == 2)
8705 	    {
8706 	      /* This is the base or first version.  We can use it.  */
8707 	      free (extversym);
8708 	      free (isymbuf);
8709 	      return TRUE;
8710 	    }
8711 	}
8712 
8713       free (extversym);
8714       free (isymbuf);
8715     }
8716 
8717   return FALSE;
8718 }
8719 
8720 /* Add an external symbol to the symbol table.  This is called from
8721    the hash table traversal routine.  When generating a shared object,
8722    we go through the symbol table twice.  The first time we output
8723    anything that might have been forced to local scope in a version
8724    script.  The second time we output the symbols that are still
8725    global symbols.  */
8726 
8727 static bfd_boolean
8728 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8729 {
8730   struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8731   struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8732   struct elf_final_link_info *flinfo = eoinfo->flinfo;
8733   bfd_boolean strip;
8734   Elf_Internal_Sym sym;
8735   asection *input_sec;
8736   const struct elf_backend_data *bed;
8737   long indx;
8738   int ret;
8739 
8740   if (h->root.type == bfd_link_hash_warning)
8741     {
8742       h = (struct elf_link_hash_entry *) h->root.u.i.link;
8743       if (h->root.type == bfd_link_hash_new)
8744 	return TRUE;
8745     }
8746 
8747   /* Decide whether to output this symbol in this pass.  */
8748   if (eoinfo->localsyms)
8749     {
8750       if (!h->forced_local)
8751 	return TRUE;
8752       if (eoinfo->second_pass
8753 	  && !((h->root.type == bfd_link_hash_defined
8754 		|| h->root.type == bfd_link_hash_defweak)
8755 	       && h->root.u.def.section->output_section != NULL))
8756 	return TRUE;
8757     }
8758   else
8759     {
8760       if (h->forced_local)
8761 	return TRUE;
8762     }
8763 
8764   bed = get_elf_backend_data (flinfo->output_bfd);
8765 
8766   if (h->root.type == bfd_link_hash_undefined)
8767     {
8768       /* If we have an undefined symbol reference here then it must have
8769 	 come from a shared library that is being linked in.  (Undefined
8770 	 references in regular files have already been handled unless
8771 	 they are in unreferenced sections which are removed by garbage
8772 	 collection).  */
8773       bfd_boolean ignore_undef = FALSE;
8774 
8775       /* Some symbols may be special in that the fact that they're
8776 	 undefined can be safely ignored - let backend determine that.  */
8777       if (bed->elf_backend_ignore_undef_symbol)
8778 	ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8779 
8780       /* If we are reporting errors for this situation then do so now.  */
8781       if (!ignore_undef
8782 	  && h->ref_dynamic
8783 	  && (!h->ref_regular || flinfo->info->gc_sections)
8784 	  && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8785 	  && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8786 	{
8787 	  if (!(flinfo->info->callbacks->undefined_symbol
8788 		(flinfo->info, h->root.root.string,
8789 		 h->ref_regular ? NULL : h->root.u.undef.abfd,
8790 		 NULL, 0,
8791 		 (flinfo->info->unresolved_syms_in_shared_libs
8792 		  == RM_GENERATE_ERROR))))
8793 	    {
8794 	      bfd_set_error (bfd_error_bad_value);
8795 	      eoinfo->failed = TRUE;
8796 	      return FALSE;
8797 	    }
8798 	}
8799     }
8800 
8801   /* We should also warn if a forced local symbol is referenced from
8802      shared libraries.  */
8803   if (!flinfo->info->relocatable
8804       && flinfo->info->executable
8805       && h->forced_local
8806       && h->ref_dynamic
8807       && h->def_regular
8808       && !h->dynamic_def
8809       && h->ref_dynamic_nonweak
8810       && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8811     {
8812       bfd *def_bfd;
8813       const char *msg;
8814       struct elf_link_hash_entry *hi = h;
8815 
8816       /* Check indirect symbol.  */
8817       while (hi->root.type == bfd_link_hash_indirect)
8818 	hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8819 
8820       if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8821 	msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8822       else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8823 	msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8824       else
8825 	msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8826       def_bfd = flinfo->output_bfd;
8827       if (hi->root.u.def.section != bfd_abs_section_ptr)
8828 	def_bfd = hi->root.u.def.section->owner;
8829       (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8830 			     h->root.root.string);
8831       bfd_set_error (bfd_error_bad_value);
8832       eoinfo->failed = TRUE;
8833       return FALSE;
8834     }
8835 
8836   /* We don't want to output symbols that have never been mentioned by
8837      a regular file, or that we have been told to strip.  However, if
8838      h->indx is set to -2, the symbol is used by a reloc and we must
8839      output it.  */
8840   if (h->indx == -2)
8841     strip = FALSE;
8842   else if ((h->def_dynamic
8843 	    || h->ref_dynamic
8844 	    || h->root.type == bfd_link_hash_new)
8845 	   && !h->def_regular
8846 	   && !h->ref_regular)
8847     strip = TRUE;
8848   else if (flinfo->info->strip == strip_all)
8849     strip = TRUE;
8850   else if (flinfo->info->strip == strip_some
8851 	   && bfd_hash_lookup (flinfo->info->keep_hash,
8852 			       h->root.root.string, FALSE, FALSE) == NULL)
8853     strip = TRUE;
8854   else if ((h->root.type == bfd_link_hash_defined
8855 	    || h->root.type == bfd_link_hash_defweak)
8856 	   && ((flinfo->info->strip_discarded
8857 		&& discarded_section (h->root.u.def.section))
8858 	       || (h->root.u.def.section->owner != NULL
8859 		   && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8860     strip = TRUE;
8861   else if ((h->root.type == bfd_link_hash_undefined
8862 	    || h->root.type == bfd_link_hash_undefweak)
8863 	   && h->root.u.undef.abfd != NULL
8864 	   && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8865     strip = TRUE;
8866   else
8867     strip = FALSE;
8868 
8869   /* If we're stripping it, and it's not a dynamic symbol, there's
8870      nothing else to do unless it is a forced local symbol or a
8871      STT_GNU_IFUNC symbol.  */
8872   if (strip
8873       && h->dynindx == -1
8874       && h->type != STT_GNU_IFUNC
8875       && !h->forced_local)
8876     return TRUE;
8877 
8878   sym.st_value = 0;
8879   sym.st_size = h->size;
8880   sym.st_other = h->other;
8881   if (h->forced_local)
8882     {
8883       sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8884       /* Turn off visibility on local symbol.  */
8885       sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8886     }
8887   /* Set STB_GNU_UNIQUE only if symbol is defined in regular object.  */
8888   else if (h->unique_global && h->def_regular)
8889     sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8890   else if (h->root.type == bfd_link_hash_undefweak
8891 	   || h->root.type == bfd_link_hash_defweak)
8892     sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8893   else
8894     sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8895   sym.st_target_internal = h->target_internal;
8896 
8897   switch (h->root.type)
8898     {
8899     default:
8900     case bfd_link_hash_new:
8901     case bfd_link_hash_warning:
8902       abort ();
8903       return FALSE;
8904 
8905     case bfd_link_hash_undefined:
8906     case bfd_link_hash_undefweak:
8907       input_sec = bfd_und_section_ptr;
8908       sym.st_shndx = SHN_UNDEF;
8909       break;
8910 
8911     case bfd_link_hash_defined:
8912     case bfd_link_hash_defweak:
8913       {
8914 	input_sec = h->root.u.def.section;
8915 	if (input_sec->output_section != NULL)
8916 	  {
8917 	    if (eoinfo->localsyms && flinfo->filesym_count == 1)
8918 	      {
8919 		bfd_boolean second_pass_sym
8920 		  = (input_sec->owner == flinfo->output_bfd
8921 		     || input_sec->owner == NULL
8922 		     || (input_sec->flags & SEC_LINKER_CREATED) != 0
8923 		     || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8924 
8925 		eoinfo->need_second_pass |= second_pass_sym;
8926 		if (eoinfo->second_pass != second_pass_sym)
8927 		  return TRUE;
8928 	      }
8929 
8930 	    sym.st_shndx =
8931 	      _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8932 						 input_sec->output_section);
8933 	    if (sym.st_shndx == SHN_BAD)
8934 	      {
8935 		(*_bfd_error_handler)
8936 		  (_("%B: could not find output section %A for input section %A"),
8937 		   flinfo->output_bfd, input_sec->output_section, input_sec);
8938 		bfd_set_error (bfd_error_nonrepresentable_section);
8939 		eoinfo->failed = TRUE;
8940 		return FALSE;
8941 	      }
8942 
8943 	    /* ELF symbols in relocatable files are section relative,
8944 	       but in nonrelocatable files they are virtual
8945 	       addresses.  */
8946 	    sym.st_value = h->root.u.def.value + input_sec->output_offset;
8947 	    if (!flinfo->info->relocatable)
8948 	      {
8949 		sym.st_value += input_sec->output_section->vma;
8950 		if (h->type == STT_TLS)
8951 		  {
8952 		    asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8953 		    if (tls_sec != NULL)
8954 		      sym.st_value -= tls_sec->vma;
8955 		    else
8956 		      {
8957 			/* The TLS section may have been garbage collected.  */
8958 			BFD_ASSERT (flinfo->info->gc_sections
8959 				    && !input_sec->gc_mark);
8960 		      }
8961 		  }
8962 	      }
8963 	  }
8964 	else
8965 	  {
8966 	    BFD_ASSERT (input_sec->owner == NULL
8967 			|| (input_sec->owner->flags & DYNAMIC) != 0);
8968 	    sym.st_shndx = SHN_UNDEF;
8969 	    input_sec = bfd_und_section_ptr;
8970 	  }
8971       }
8972       break;
8973 
8974     case bfd_link_hash_common:
8975       input_sec = h->root.u.c.p->section;
8976       sym.st_shndx = bed->common_section_index (input_sec);
8977       sym.st_value = 1 << h->root.u.c.p->alignment_power;
8978       break;
8979 
8980     case bfd_link_hash_indirect:
8981       /* These symbols are created by symbol versioning.  They point
8982 	 to the decorated version of the name.  For example, if the
8983 	 symbol foo@@GNU_1.2 is the default, which should be used when
8984 	 foo is used with no version, then we add an indirect symbol
8985 	 foo which points to foo@@GNU_1.2.  We ignore these symbols,
8986 	 since the indirected symbol is already in the hash table.  */
8987       return TRUE;
8988     }
8989 
8990   /* Give the processor backend a chance to tweak the symbol value,
8991      and also to finish up anything that needs to be done for this
8992      symbol.  FIXME: Not calling elf_backend_finish_dynamic_symbol for
8993      forced local syms when non-shared is due to a historical quirk.
8994      STT_GNU_IFUNC symbol must go through PLT.  */
8995   if ((h->type == STT_GNU_IFUNC
8996        && h->def_regular
8997        && !flinfo->info->relocatable)
8998       || ((h->dynindx != -1
8999 	   || h->forced_local)
9000 	  && ((flinfo->info->shared
9001 	       && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9002 		   || h->root.type != bfd_link_hash_undefweak))
9003 	      || !h->forced_local)
9004 	  && elf_hash_table (flinfo->info)->dynamic_sections_created))
9005     {
9006       if (! ((*bed->elf_backend_finish_dynamic_symbol)
9007 	     (flinfo->output_bfd, flinfo->info, h, &sym)))
9008 	{
9009 	  eoinfo->failed = TRUE;
9010 	  return FALSE;
9011 	}
9012     }
9013 
9014   /* If we are marking the symbol as undefined, and there are no
9015      non-weak references to this symbol from a regular object, then
9016      mark the symbol as weak undefined; if there are non-weak
9017      references, mark the symbol as strong.  We can't do this earlier,
9018      because it might not be marked as undefined until the
9019      finish_dynamic_symbol routine gets through with it.  */
9020   if (sym.st_shndx == SHN_UNDEF
9021       && h->ref_regular
9022       && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9023 	  || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9024     {
9025       int bindtype;
9026       unsigned int type = ELF_ST_TYPE (sym.st_info);
9027 
9028       /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9029       if (type == STT_GNU_IFUNC)
9030 	type = STT_FUNC;
9031 
9032       if (h->ref_regular_nonweak)
9033 	bindtype = STB_GLOBAL;
9034       else
9035 	bindtype = STB_WEAK;
9036       sym.st_info = ELF_ST_INFO (bindtype, type);
9037     }
9038 
9039   /* If this is a symbol defined in a dynamic library, don't use the
9040      symbol size from the dynamic library.  Relinking an executable
9041      against a new library may introduce gratuitous changes in the
9042      executable's symbols if we keep the size.  */
9043   if (sym.st_shndx == SHN_UNDEF
9044       && !h->def_regular
9045       && h->def_dynamic)
9046     sym.st_size = 0;
9047 
9048   /* If a non-weak symbol with non-default visibility is not defined
9049      locally, it is a fatal error.  */
9050   if (!flinfo->info->relocatable
9051       && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9052       && ELF_ST_BIND (sym.st_info) != STB_WEAK
9053       && h->root.type == bfd_link_hash_undefined
9054       && !h->def_regular)
9055     {
9056       const char *msg;
9057 
9058       if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9059 	msg = _("%B: protected symbol `%s' isn't defined");
9060       else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9061 	msg = _("%B: internal symbol `%s' isn't defined");
9062       else
9063 	msg = _("%B: hidden symbol `%s' isn't defined");
9064       (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9065       bfd_set_error (bfd_error_bad_value);
9066       eoinfo->failed = TRUE;
9067       return FALSE;
9068     }
9069 
9070   /* If this symbol should be put in the .dynsym section, then put it
9071      there now.  We already know the symbol index.  We also fill in
9072      the entry in the .hash section.  */
9073   if (flinfo->dynsym_sec != NULL
9074       && h->dynindx != -1
9075       && elf_hash_table (flinfo->info)->dynamic_sections_created)
9076     {
9077       bfd_byte *esym;
9078 
9079       /* Since there is no version information in the dynamic string,
9080 	 if there is no version info in symbol version section, we will
9081 	 have a run-time problem.  */
9082       if (h->verinfo.verdef == NULL)
9083 	{
9084 	  char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9085 
9086 	  if (p && p [1] != '\0')
9087 	    {
9088 	      (*_bfd_error_handler)
9089 		(_("%B: No symbol version section for versioned symbol `%s'"),
9090 		 flinfo->output_bfd, h->root.root.string);
9091 	      eoinfo->failed = TRUE;
9092 	      return FALSE;
9093 	    }
9094 	}
9095 
9096       sym.st_name = h->dynstr_index;
9097       esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9098       if (!check_dynsym (flinfo->output_bfd, &sym))
9099 	{
9100 	  eoinfo->failed = TRUE;
9101 	  return FALSE;
9102 	}
9103       bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9104 
9105       if (flinfo->hash_sec != NULL)
9106 	{
9107 	  size_t hash_entry_size;
9108 	  bfd_byte *bucketpos;
9109 	  bfd_vma chain;
9110 	  size_t bucketcount;
9111 	  size_t bucket;
9112 
9113 	  bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9114 	  bucket = h->u.elf_hash_value % bucketcount;
9115 
9116 	  hash_entry_size
9117 	    = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9118 	  bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9119 		       + (bucket + 2) * hash_entry_size);
9120 	  chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9121 	  bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9122 		   bucketpos);
9123 	  bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9124 		   ((bfd_byte *) flinfo->hash_sec->contents
9125 		    + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9126 	}
9127 
9128       if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9129 	{
9130 	  Elf_Internal_Versym iversym;
9131 	  Elf_External_Versym *eversym;
9132 
9133 	  if (!h->def_regular)
9134 	    {
9135 	      if (h->verinfo.verdef == NULL)
9136 		iversym.vs_vers = 0;
9137 	      else
9138 		iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9139 	    }
9140 	  else
9141 	    {
9142 	      if (h->verinfo.vertree == NULL)
9143 		iversym.vs_vers = 1;
9144 	      else
9145 		iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9146 	      if (flinfo->info->create_default_symver)
9147 		iversym.vs_vers++;
9148 	    }
9149 
9150 	  if (h->hidden)
9151 	    iversym.vs_vers |= VERSYM_HIDDEN;
9152 
9153 	  eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9154 	  eversym += h->dynindx;
9155 	  _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9156 	}
9157     }
9158 
9159   /* If we're stripping it, then it was just a dynamic symbol, and
9160      there's nothing else to do.  */
9161   if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9162     return TRUE;
9163 
9164   indx = bfd_get_symcount (flinfo->output_bfd);
9165   ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9166   if (ret == 0)
9167     {
9168       eoinfo->failed = TRUE;
9169       return FALSE;
9170     }
9171   else if (ret == 1)
9172     h->indx = indx;
9173   else if (h->indx == -2)
9174     abort();
9175 
9176   return TRUE;
9177 }
9178 
9179 /* Return TRUE if special handling is done for relocs in SEC against
9180    symbols defined in discarded sections.  */
9181 
9182 static bfd_boolean
9183 elf_section_ignore_discarded_relocs (asection *sec)
9184 {
9185   const struct elf_backend_data *bed;
9186 
9187   switch (sec->sec_info_type)
9188     {
9189     case SEC_INFO_TYPE_STABS:
9190     case SEC_INFO_TYPE_EH_FRAME:
9191       return TRUE;
9192     default:
9193       break;
9194     }
9195 
9196   bed = get_elf_backend_data (sec->owner);
9197   if (bed->elf_backend_ignore_discarded_relocs != NULL
9198       && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9199     return TRUE;
9200 
9201   return FALSE;
9202 }
9203 
9204 /* Return a mask saying how ld should treat relocations in SEC against
9205    symbols defined in discarded sections.  If this function returns
9206    COMPLAIN set, ld will issue a warning message.  If this function
9207    returns PRETEND set, and the discarded section was link-once and the
9208    same size as the kept link-once section, ld will pretend that the
9209    symbol was actually defined in the kept section.  Otherwise ld will
9210    zero the reloc (at least that is the intent, but some cooperation by
9211    the target dependent code is needed, particularly for REL targets).  */
9212 
9213 unsigned int
9214 _bfd_elf_default_action_discarded (asection *sec)
9215 {
9216   if (sec->flags & SEC_DEBUGGING)
9217     return PRETEND;
9218 
9219   if (strcmp (".eh_frame", sec->name) == 0)
9220     return 0;
9221 
9222   if (strcmp (".gcc_except_table", sec->name) == 0)
9223     return 0;
9224 
9225   return COMPLAIN | PRETEND;
9226 }
9227 
9228 /* Find a match between a section and a member of a section group.  */
9229 
9230 static asection *
9231 match_group_member (asection *sec, asection *group,
9232 		    struct bfd_link_info *info)
9233 {
9234   asection *first = elf_next_in_group (group);
9235   asection *s = first;
9236 
9237   while (s != NULL)
9238     {
9239       if (bfd_elf_match_symbols_in_sections (s, sec, info))
9240 	return s;
9241 
9242       s = elf_next_in_group (s);
9243       if (s == first)
9244 	break;
9245     }
9246 
9247   return NULL;
9248 }
9249 
9250 /* Check if the kept section of a discarded section SEC can be used
9251    to replace it.  Return the replacement if it is OK.  Otherwise return
9252    NULL.  */
9253 
9254 asection *
9255 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9256 {
9257   asection *kept;
9258 
9259   kept = sec->kept_section;
9260   if (kept != NULL)
9261     {
9262       if ((kept->flags & SEC_GROUP) != 0)
9263 	kept = match_group_member (sec, kept, info);
9264       if (kept != NULL
9265 	  && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9266 	      != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9267 	kept = NULL;
9268       sec->kept_section = kept;
9269     }
9270   return kept;
9271 }
9272 
9273 /* Link an input file into the linker output file.  This function
9274    handles all the sections and relocations of the input file at once.
9275    This is so that we only have to read the local symbols once, and
9276    don't have to keep them in memory.  */
9277 
9278 static bfd_boolean
9279 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9280 {
9281   int (*relocate_section)
9282     (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9283      Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9284   bfd *output_bfd;
9285   Elf_Internal_Shdr *symtab_hdr;
9286   size_t locsymcount;
9287   size_t extsymoff;
9288   Elf_Internal_Sym *isymbuf;
9289   Elf_Internal_Sym *isym;
9290   Elf_Internal_Sym *isymend;
9291   long *pindex;
9292   asection **ppsection;
9293   asection *o;
9294   const struct elf_backend_data *bed;
9295   struct elf_link_hash_entry **sym_hashes;
9296   bfd_size_type address_size;
9297   bfd_vma r_type_mask;
9298   int r_sym_shift;
9299   bfd_boolean have_file_sym = FALSE;
9300 
9301   output_bfd = flinfo->output_bfd;
9302   bed = get_elf_backend_data (output_bfd);
9303   relocate_section = bed->elf_backend_relocate_section;
9304 
9305   /* If this is a dynamic object, we don't want to do anything here:
9306      we don't want the local symbols, and we don't want the section
9307      contents.  */
9308   if ((input_bfd->flags & DYNAMIC) != 0)
9309     return TRUE;
9310 
9311   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9312   if (elf_bad_symtab (input_bfd))
9313     {
9314       locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9315       extsymoff = 0;
9316     }
9317   else
9318     {
9319       locsymcount = symtab_hdr->sh_info;
9320       extsymoff = symtab_hdr->sh_info;
9321     }
9322 
9323   /* Read the local symbols.  */
9324   isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9325   if (isymbuf == NULL && locsymcount != 0)
9326     {
9327       isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9328 				      flinfo->internal_syms,
9329 				      flinfo->external_syms,
9330 				      flinfo->locsym_shndx);
9331       if (isymbuf == NULL)
9332 	return FALSE;
9333     }
9334 
9335   /* Find local symbol sections and adjust values of symbols in
9336      SEC_MERGE sections.  Write out those local symbols we know are
9337      going into the output file.  */
9338   isymend = isymbuf + locsymcount;
9339   for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9340        isym < isymend;
9341        isym++, pindex++, ppsection++)
9342     {
9343       asection *isec;
9344       const char *name;
9345       Elf_Internal_Sym osym;
9346       long indx;
9347       int ret;
9348 
9349       *pindex = -1;
9350 
9351       if (elf_bad_symtab (input_bfd))
9352 	{
9353 	  if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9354 	    {
9355 	      *ppsection = NULL;
9356 	      continue;
9357 	    }
9358 	}
9359 
9360       if (isym->st_shndx == SHN_UNDEF)
9361 	isec = bfd_und_section_ptr;
9362       else if (isym->st_shndx == SHN_ABS)
9363 	isec = bfd_abs_section_ptr;
9364       else if (isym->st_shndx == SHN_COMMON)
9365 	isec = bfd_com_section_ptr;
9366       else
9367 	{
9368 	  isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9369 	  if (isec == NULL)
9370 	    {
9371 	      /* Don't attempt to output symbols with st_shnx in the
9372 		 reserved range other than SHN_ABS and SHN_COMMON.  */
9373 	      *ppsection = NULL;
9374 	      continue;
9375 	    }
9376 	  else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9377 		   && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9378 	    isym->st_value =
9379 	      _bfd_merged_section_offset (output_bfd, &isec,
9380 					  elf_section_data (isec)->sec_info,
9381 					  isym->st_value);
9382 	}
9383 
9384       *ppsection = isec;
9385 
9386       /* Don't output the first, undefined, symbol.  */
9387       if (ppsection == flinfo->sections)
9388 	continue;
9389 
9390       if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9391 	{
9392 	  /* We never output section symbols.  Instead, we use the
9393 	     section symbol of the corresponding section in the output
9394 	     file.  */
9395 	  continue;
9396 	}
9397 
9398       /* If we are stripping all symbols, we don't want to output this
9399 	 one.  */
9400       if (flinfo->info->strip == strip_all)
9401 	continue;
9402 
9403       /* If we are discarding all local symbols, we don't want to
9404 	 output this one.  If we are generating a relocatable output
9405 	 file, then some of the local symbols may be required by
9406 	 relocs; we output them below as we discover that they are
9407 	 needed.  */
9408       if (flinfo->info->discard == discard_all)
9409 	continue;
9410 
9411       /* If this symbol is defined in a section which we are
9412 	 discarding, we don't need to keep it.  */
9413       if (isym->st_shndx != SHN_UNDEF
9414 	  && isym->st_shndx < SHN_LORESERVE
9415 	  && bfd_section_removed_from_list (output_bfd,
9416 					    isec->output_section))
9417 	continue;
9418 
9419       /* Get the name of the symbol.  */
9420       name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9421 					      isym->st_name);
9422       if (name == NULL)
9423 	return FALSE;
9424 
9425       /* See if we are discarding symbols with this name.  */
9426       if ((flinfo->info->strip == strip_some
9427 	   && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9428 	       == NULL))
9429 	  || (((flinfo->info->discard == discard_sec_merge
9430 		&& (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9431 	       || flinfo->info->discard == discard_l)
9432 	      && bfd_is_local_label_name (input_bfd, name)))
9433 	continue;
9434 
9435       if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9436 	{
9437 	  have_file_sym = TRUE;
9438 	  flinfo->filesym_count += 1;
9439 	}
9440       if (!have_file_sym)
9441 	{
9442 	  /* In the absence of debug info, bfd_find_nearest_line uses
9443 	     FILE symbols to determine the source file for local
9444 	     function symbols.  Provide a FILE symbol here if input
9445 	     files lack such, so that their symbols won't be
9446 	     associated with a previous input file.  It's not the
9447 	     source file, but the best we can do.  */
9448 	  have_file_sym = TRUE;
9449 	  flinfo->filesym_count += 1;
9450 	  memset (&osym, 0, sizeof (osym));
9451 	  osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9452 	  osym.st_shndx = SHN_ABS;
9453 	  if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9454 				    bfd_abs_section_ptr, NULL))
9455 	    return FALSE;
9456 	}
9457 
9458       osym = *isym;
9459 
9460       /* Adjust the section index for the output file.  */
9461       osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9462 							 isec->output_section);
9463       if (osym.st_shndx == SHN_BAD)
9464 	return FALSE;
9465 
9466       /* ELF symbols in relocatable files are section relative, but
9467 	 in executable files they are virtual addresses.  Note that
9468 	 this code assumes that all ELF sections have an associated
9469 	 BFD section with a reasonable value for output_offset; below
9470 	 we assume that they also have a reasonable value for
9471 	 output_section.  Any special sections must be set up to meet
9472 	 these requirements.  */
9473       osym.st_value += isec->output_offset;
9474       if (!flinfo->info->relocatable)
9475 	{
9476 	  osym.st_value += isec->output_section->vma;
9477 	  if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9478 	    {
9479 	      /* STT_TLS symbols are relative to PT_TLS segment base.  */
9480 	      BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9481 	      osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9482 	    }
9483 	}
9484 
9485       indx = bfd_get_symcount (output_bfd);
9486       ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9487       if (ret == 0)
9488 	return FALSE;
9489       else if (ret == 1)
9490 	*pindex = indx;
9491     }
9492 
9493   if (bed->s->arch_size == 32)
9494     {
9495       r_type_mask = 0xff;
9496       r_sym_shift = 8;
9497       address_size = 4;
9498     }
9499   else
9500     {
9501       r_type_mask = 0xffffffff;
9502       r_sym_shift = 32;
9503       address_size = 8;
9504     }
9505 
9506   /* Relocate the contents of each section.  */
9507   sym_hashes = elf_sym_hashes (input_bfd);
9508   for (o = input_bfd->sections; o != NULL; o = o->next)
9509     {
9510       bfd_byte *contents;
9511 
9512       if (! o->linker_mark)
9513 	{
9514 	  /* This section was omitted from the link.  */
9515 	  continue;
9516 	}
9517 
9518       if (flinfo->info->relocatable
9519 	  && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9520 	{
9521 	  /* Deal with the group signature symbol.  */
9522 	  struct bfd_elf_section_data *sec_data = elf_section_data (o);
9523 	  unsigned long symndx = sec_data->this_hdr.sh_info;
9524 	  asection *osec = o->output_section;
9525 
9526 	  if (symndx >= locsymcount
9527 	      || (elf_bad_symtab (input_bfd)
9528 		  && flinfo->sections[symndx] == NULL))
9529 	    {
9530 	      struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9531 	      while (h->root.type == bfd_link_hash_indirect
9532 		     || h->root.type == bfd_link_hash_warning)
9533 		h = (struct elf_link_hash_entry *) h->root.u.i.link;
9534 	      /* Arrange for symbol to be output.  */
9535 	      h->indx = -2;
9536 	      elf_section_data (osec)->this_hdr.sh_info = -2;
9537 	    }
9538 	  else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9539 	    {
9540 	      /* We'll use the output section target_index.  */
9541 	      asection *sec = flinfo->sections[symndx]->output_section;
9542 	      elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9543 	    }
9544 	  else
9545 	    {
9546 	      if (flinfo->indices[symndx] == -1)
9547 		{
9548 		  /* Otherwise output the local symbol now.  */
9549 		  Elf_Internal_Sym sym = isymbuf[symndx];
9550 		  asection *sec = flinfo->sections[symndx]->output_section;
9551 		  const char *name;
9552 		  long indx;
9553 		  int ret;
9554 
9555 		  name = bfd_elf_string_from_elf_section (input_bfd,
9556 							  symtab_hdr->sh_link,
9557 							  sym.st_name);
9558 		  if (name == NULL)
9559 		    return FALSE;
9560 
9561 		  sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9562 								    sec);
9563 		  if (sym.st_shndx == SHN_BAD)
9564 		    return FALSE;
9565 
9566 		  sym.st_value += o->output_offset;
9567 
9568 		  indx = bfd_get_symcount (output_bfd);
9569 		  ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9570 		  if (ret == 0)
9571 		    return FALSE;
9572 		  else if (ret == 1)
9573 		    flinfo->indices[symndx] = indx;
9574 		  else
9575 		    abort ();
9576 		}
9577 	      elf_section_data (osec)->this_hdr.sh_info
9578 		= flinfo->indices[symndx];
9579 	    }
9580 	}
9581 
9582       if ((o->flags & SEC_HAS_CONTENTS) == 0
9583 	  || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9584 	continue;
9585 
9586       if ((o->flags & SEC_LINKER_CREATED) != 0)
9587 	{
9588 	  /* Section was created by _bfd_elf_link_create_dynamic_sections
9589 	     or somesuch.  */
9590 	  continue;
9591 	}
9592 
9593       /* Get the contents of the section.  They have been cached by a
9594 	 relaxation routine.  Note that o is a section in an input
9595 	 file, so the contents field will not have been set by any of
9596 	 the routines which work on output files.  */
9597       if (elf_section_data (o)->this_hdr.contents != NULL)
9598 	contents = elf_section_data (o)->this_hdr.contents;
9599       else
9600 	{
9601 	  contents = flinfo->contents;
9602 	  if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9603 	    return FALSE;
9604 	}
9605 
9606       if ((o->flags & SEC_RELOC) != 0)
9607 	{
9608 	  Elf_Internal_Rela *internal_relocs;
9609 	  Elf_Internal_Rela *rel, *relend;
9610 	  int action_discarded;
9611 	  int ret;
9612 
9613 	  /* Get the swapped relocs.  */
9614 	  internal_relocs
9615 	    = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9616 					 flinfo->internal_relocs, FALSE);
9617 	  if (internal_relocs == NULL
9618 	      && o->reloc_count > 0)
9619 	    return FALSE;
9620 
9621 	  /* We need to reverse-copy input .ctors/.dtors sections if
9622 	     they are placed in .init_array/.finit_array for output.  */
9623 	  if (o->size > address_size
9624 	      && ((strncmp (o->name, ".ctors", 6) == 0
9625 		   && strcmp (o->output_section->name,
9626 			      ".init_array") == 0)
9627 		  || (strncmp (o->name, ".dtors", 6) == 0
9628 		      && strcmp (o->output_section->name,
9629 				 ".fini_array") == 0))
9630 	      && (o->name[6] == 0 || o->name[6] == '.'))
9631 	    {
9632 	      if (o->size != o->reloc_count * address_size)
9633 		{
9634 		  (*_bfd_error_handler)
9635 		    (_("error: %B: size of section %A is not "
9636 		       "multiple of address size"),
9637 		     input_bfd, o);
9638 		  bfd_set_error (bfd_error_on_input);
9639 		  return FALSE;
9640 		}
9641 	      o->flags |= SEC_ELF_REVERSE_COPY;
9642 	    }
9643 
9644 	  action_discarded = -1;
9645 	  if (!elf_section_ignore_discarded_relocs (o))
9646 	    action_discarded = (*bed->action_discarded) (o);
9647 
9648 	  /* Run through the relocs evaluating complex reloc symbols and
9649 	     looking for relocs against symbols from discarded sections
9650 	     or section symbols from removed link-once sections.
9651 	     Complain about relocs against discarded sections.  Zero
9652 	     relocs against removed link-once sections.  */
9653 
9654 	  rel = internal_relocs;
9655 	  relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9656 	  for ( ; rel < relend; rel++)
9657 	    {
9658 	      unsigned long r_symndx = rel->r_info >> r_sym_shift;
9659 	      unsigned int s_type;
9660 	      asection **ps, *sec;
9661 	      struct elf_link_hash_entry *h = NULL;
9662 	      const char *sym_name;
9663 
9664 	      if (r_symndx == STN_UNDEF)
9665 		continue;
9666 
9667 	      if (r_symndx >= locsymcount
9668 		  || (elf_bad_symtab (input_bfd)
9669 		      && flinfo->sections[r_symndx] == NULL))
9670 		{
9671 		  h = sym_hashes[r_symndx - extsymoff];
9672 
9673 		  /* Badly formatted input files can contain relocs that
9674 		     reference non-existant symbols.  Check here so that
9675 		     we do not seg fault.  */
9676 		  if (h == NULL)
9677 		    {
9678 		      char buffer [32];
9679 
9680 		      sprintf_vma (buffer, rel->r_info);
9681 		      (*_bfd_error_handler)
9682 			(_("error: %B contains a reloc (0x%s) for section %A "
9683 			   "that references a non-existent global symbol"),
9684 			 input_bfd, o, buffer);
9685 		      bfd_set_error (bfd_error_bad_value);
9686 		      return FALSE;
9687 		    }
9688 
9689 		  while (h->root.type == bfd_link_hash_indirect
9690 			 || h->root.type == bfd_link_hash_warning)
9691 		    h = (struct elf_link_hash_entry *) h->root.u.i.link;
9692 
9693 		  s_type = h->type;
9694 
9695 		  ps = NULL;
9696 		  if (h->root.type == bfd_link_hash_defined
9697 		      || h->root.type == bfd_link_hash_defweak)
9698 		    ps = &h->root.u.def.section;
9699 
9700 		  sym_name = h->root.root.string;
9701 		}
9702 	      else
9703 		{
9704 		  Elf_Internal_Sym *sym = isymbuf + r_symndx;
9705 
9706 		  s_type = ELF_ST_TYPE (sym->st_info);
9707 		  ps = &flinfo->sections[r_symndx];
9708 		  sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9709 					       sym, *ps);
9710 		}
9711 
9712 	      if ((s_type == STT_RELC || s_type == STT_SRELC)
9713 		  && !flinfo->info->relocatable)
9714 		{
9715 		  bfd_vma val;
9716 		  bfd_vma dot = (rel->r_offset
9717 				 + o->output_offset + o->output_section->vma);
9718 #ifdef DEBUG
9719 		  printf ("Encountered a complex symbol!");
9720 		  printf (" (input_bfd %s, section %s, reloc %ld\n",
9721 			  input_bfd->filename, o->name,
9722 			  (long) (rel - internal_relocs));
9723 		  printf (" symbol: idx  %8.8lx, name %s\n",
9724 			  r_symndx, sym_name);
9725 		  printf (" reloc : info %8.8lx, addr %8.8lx\n",
9726 			  (unsigned long) rel->r_info,
9727 			  (unsigned long) rel->r_offset);
9728 #endif
9729 		  if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9730 				    isymbuf, locsymcount, s_type == STT_SRELC))
9731 		    return FALSE;
9732 
9733 		  /* Symbol evaluated OK.  Update to absolute value.  */
9734 		  set_symbol_value (input_bfd, isymbuf, locsymcount,
9735 				    r_symndx, val);
9736 		  continue;
9737 		}
9738 
9739 	      if (action_discarded != -1 && ps != NULL)
9740 		{
9741 		  /* Complain if the definition comes from a
9742 		     discarded section.  */
9743 		  if ((sec = *ps) != NULL && discarded_section (sec))
9744 		    {
9745 		      BFD_ASSERT (r_symndx != STN_UNDEF);
9746 		      if (action_discarded & COMPLAIN)
9747 			(*flinfo->info->callbacks->einfo)
9748 			  (_("%X`%s' referenced in section `%A' of %B: "
9749 			     "defined in discarded section `%A' of %B\n"),
9750 			   sym_name, o, input_bfd, sec, sec->owner);
9751 
9752 		      /* Try to do the best we can to support buggy old
9753 			 versions of gcc.  Pretend that the symbol is
9754 			 really defined in the kept linkonce section.
9755 			 FIXME: This is quite broken.  Modifying the
9756 			 symbol here means we will be changing all later
9757 			 uses of the symbol, not just in this section.  */
9758 		      if (action_discarded & PRETEND)
9759 			{
9760 			  asection *kept;
9761 
9762 			  kept = _bfd_elf_check_kept_section (sec,
9763 							      flinfo->info);
9764 			  if (kept != NULL)
9765 			    {
9766 			      *ps = kept;
9767 			      continue;
9768 			    }
9769 			}
9770 		    }
9771 		}
9772 	    }
9773 
9774 	  /* Relocate the section by invoking a back end routine.
9775 
9776 	     The back end routine is responsible for adjusting the
9777 	     section contents as necessary, and (if using Rela relocs
9778 	     and generating a relocatable output file) adjusting the
9779 	     reloc addend as necessary.
9780 
9781 	     The back end routine does not have to worry about setting
9782 	     the reloc address or the reloc symbol index.
9783 
9784 	     The back end routine is given a pointer to the swapped in
9785 	     internal symbols, and can access the hash table entries
9786 	     for the external symbols via elf_sym_hashes (input_bfd).
9787 
9788 	     When generating relocatable output, the back end routine
9789 	     must handle STB_LOCAL/STT_SECTION symbols specially.  The
9790 	     output symbol is going to be a section symbol
9791 	     corresponding to the output section, which will require
9792 	     the addend to be adjusted.  */
9793 
9794 	  ret = (*relocate_section) (output_bfd, flinfo->info,
9795 				     input_bfd, o, contents,
9796 				     internal_relocs,
9797 				     isymbuf,
9798 				     flinfo->sections);
9799 	  if (!ret)
9800 	    return FALSE;
9801 
9802 	  if (ret == 2
9803 	      || flinfo->info->relocatable
9804 	      || flinfo->info->emitrelocations)
9805 	    {
9806 	      Elf_Internal_Rela *irela;
9807 	      Elf_Internal_Rela *irelaend, *irelamid;
9808 	      bfd_vma last_offset;
9809 	      struct elf_link_hash_entry **rel_hash;
9810 	      struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9811 	      Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9812 	      unsigned int next_erel;
9813 	      bfd_boolean rela_normal;
9814 	      struct bfd_elf_section_data *esdi, *esdo;
9815 
9816 	      esdi = elf_section_data (o);
9817 	      esdo = elf_section_data (o->output_section);
9818 	      rela_normal = FALSE;
9819 
9820 	      /* Adjust the reloc addresses and symbol indices.  */
9821 
9822 	      irela = internal_relocs;
9823 	      irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9824 	      rel_hash = esdo->rel.hashes + esdo->rel.count;
9825 	      /* We start processing the REL relocs, if any.  When we reach
9826 		 IRELAMID in the loop, we switch to the RELA relocs.  */
9827 	      irelamid = irela;
9828 	      if (esdi->rel.hdr != NULL)
9829 		irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9830 			     * bed->s->int_rels_per_ext_rel);
9831 	      rel_hash_list = rel_hash;
9832 	      rela_hash_list = NULL;
9833 	      last_offset = o->output_offset;
9834 	      if (!flinfo->info->relocatable)
9835 		last_offset += o->output_section->vma;
9836 	      for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9837 		{
9838 		  unsigned long r_symndx;
9839 		  asection *sec;
9840 		  Elf_Internal_Sym sym;
9841 
9842 		  if (next_erel == bed->s->int_rels_per_ext_rel)
9843 		    {
9844 		      rel_hash++;
9845 		      next_erel = 0;
9846 		    }
9847 
9848 		  if (irela == irelamid)
9849 		    {
9850 		      rel_hash = esdo->rela.hashes + esdo->rela.count;
9851 		      rela_hash_list = rel_hash;
9852 		      rela_normal = bed->rela_normal;
9853 		    }
9854 
9855 		  irela->r_offset = _bfd_elf_section_offset (output_bfd,
9856 							     flinfo->info, o,
9857 							     irela->r_offset);
9858 		  if (irela->r_offset >= (bfd_vma) -2)
9859 		    {
9860 		      /* This is a reloc for a deleted entry or somesuch.
9861 			 Turn it into an R_*_NONE reloc, at the same
9862 			 offset as the last reloc.  elf_eh_frame.c and
9863 			 bfd_elf_discard_info rely on reloc offsets
9864 			 being ordered.  */
9865 		      irela->r_offset = last_offset;
9866 		      irela->r_info = 0;
9867 		      irela->r_addend = 0;
9868 		      continue;
9869 		    }
9870 
9871 		  irela->r_offset += o->output_offset;
9872 
9873 		  /* Relocs in an executable have to be virtual addresses.  */
9874 		  if (!flinfo->info->relocatable)
9875 		    irela->r_offset += o->output_section->vma;
9876 
9877 		  last_offset = irela->r_offset;
9878 
9879 		  r_symndx = irela->r_info >> r_sym_shift;
9880 		  if (r_symndx == STN_UNDEF)
9881 		    continue;
9882 
9883 		  if (r_symndx >= locsymcount
9884 		      || (elf_bad_symtab (input_bfd)
9885 			  && flinfo->sections[r_symndx] == NULL))
9886 		    {
9887 		      struct elf_link_hash_entry *rh;
9888 		      unsigned long indx;
9889 
9890 		      /* This is a reloc against a global symbol.  We
9891 			 have not yet output all the local symbols, so
9892 			 we do not know the symbol index of any global
9893 			 symbol.  We set the rel_hash entry for this
9894 			 reloc to point to the global hash table entry
9895 			 for this symbol.  The symbol index is then
9896 			 set at the end of bfd_elf_final_link.  */
9897 		      indx = r_symndx - extsymoff;
9898 		      rh = elf_sym_hashes (input_bfd)[indx];
9899 		      while (rh->root.type == bfd_link_hash_indirect
9900 			     || rh->root.type == bfd_link_hash_warning)
9901 			rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9902 
9903 		      /* Setting the index to -2 tells
9904 			 elf_link_output_extsym that this symbol is
9905 			 used by a reloc.  */
9906 		      BFD_ASSERT (rh->indx < 0);
9907 		      rh->indx = -2;
9908 
9909 		      *rel_hash = rh;
9910 
9911 		      continue;
9912 		    }
9913 
9914 		  /* This is a reloc against a local symbol.  */
9915 
9916 		  *rel_hash = NULL;
9917 		  sym = isymbuf[r_symndx];
9918 		  sec = flinfo->sections[r_symndx];
9919 		  if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9920 		    {
9921 		      /* I suppose the backend ought to fill in the
9922 			 section of any STT_SECTION symbol against a
9923 			 processor specific section.  */
9924 		      r_symndx = STN_UNDEF;
9925 		      if (bfd_is_abs_section (sec))
9926 			;
9927 		      else if (sec == NULL || sec->owner == NULL)
9928 			{
9929 			  bfd_set_error (bfd_error_bad_value);
9930 			  return FALSE;
9931 			}
9932 		      else
9933 			{
9934 			  asection *osec = sec->output_section;
9935 
9936 			  /* If we have discarded a section, the output
9937 			     section will be the absolute section.  In
9938 			     case of discarded SEC_MERGE sections, use
9939 			     the kept section.  relocate_section should
9940 			     have already handled discarded linkonce
9941 			     sections.  */
9942 			  if (bfd_is_abs_section (osec)
9943 			      && sec->kept_section != NULL
9944 			      && sec->kept_section->output_section != NULL)
9945 			    {
9946 			      osec = sec->kept_section->output_section;
9947 			      irela->r_addend -= osec->vma;
9948 			    }
9949 
9950 			  if (!bfd_is_abs_section (osec))
9951 			    {
9952 			      r_symndx = osec->target_index;
9953 			      if (r_symndx == STN_UNDEF)
9954 				{
9955 				  irela->r_addend += osec->vma;
9956 				  osec = _bfd_nearby_section (output_bfd, osec,
9957 							      osec->vma);
9958 				  irela->r_addend -= osec->vma;
9959 				  r_symndx = osec->target_index;
9960 				}
9961 			    }
9962 			}
9963 
9964 		      /* Adjust the addend according to where the
9965 			 section winds up in the output section.  */
9966 		      if (rela_normal)
9967 			irela->r_addend += sec->output_offset;
9968 		    }
9969 		  else
9970 		    {
9971 		      if (flinfo->indices[r_symndx] == -1)
9972 			{
9973 			  unsigned long shlink;
9974 			  const char *name;
9975 			  asection *osec;
9976 			  long indx;
9977 
9978 			  if (flinfo->info->strip == strip_all)
9979 			    {
9980 			      /* You can't do ld -r -s.  */
9981 			      bfd_set_error (bfd_error_invalid_operation);
9982 			      return FALSE;
9983 			    }
9984 
9985 			  /* This symbol was skipped earlier, but
9986 			     since it is needed by a reloc, we
9987 			     must output it now.  */
9988 			  shlink = symtab_hdr->sh_link;
9989 			  name = (bfd_elf_string_from_elf_section
9990 				  (input_bfd, shlink, sym.st_name));
9991 			  if (name == NULL)
9992 			    return FALSE;
9993 
9994 			  osec = sec->output_section;
9995 			  sym.st_shndx =
9996 			    _bfd_elf_section_from_bfd_section (output_bfd,
9997 							       osec);
9998 			  if (sym.st_shndx == SHN_BAD)
9999 			    return FALSE;
10000 
10001 			  sym.st_value += sec->output_offset;
10002 			  if (!flinfo->info->relocatable)
10003 			    {
10004 			      sym.st_value += osec->vma;
10005 			      if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10006 				{
10007 				  /* STT_TLS symbols are relative to PT_TLS
10008 				     segment base.  */
10009 				  BFD_ASSERT (elf_hash_table (flinfo->info)
10010 					      ->tls_sec != NULL);
10011 				  sym.st_value -= (elf_hash_table (flinfo->info)
10012 						   ->tls_sec->vma);
10013 				}
10014 			    }
10015 
10016 			  indx = bfd_get_symcount (output_bfd);
10017 			  ret = elf_link_output_sym (flinfo, name, &sym, sec,
10018 						     NULL);
10019 			  if (ret == 0)
10020 			    return FALSE;
10021 			  else if (ret == 1)
10022 			    flinfo->indices[r_symndx] = indx;
10023 			  else
10024 			    abort ();
10025 			}
10026 
10027 		      r_symndx = flinfo->indices[r_symndx];
10028 		    }
10029 
10030 		  irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10031 				   | (irela->r_info & r_type_mask));
10032 		}
10033 
10034 	      /* Swap out the relocs.  */
10035 	      input_rel_hdr = esdi->rel.hdr;
10036 	      if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10037 		{
10038 		  if (!bed->elf_backend_emit_relocs (output_bfd, o,
10039 						     input_rel_hdr,
10040 						     internal_relocs,
10041 						     rel_hash_list))
10042 		    return FALSE;
10043 		  internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10044 				      * bed->s->int_rels_per_ext_rel);
10045 		  rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10046 		}
10047 
10048 	      input_rela_hdr = esdi->rela.hdr;
10049 	      if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10050 		{
10051 		  if (!bed->elf_backend_emit_relocs (output_bfd, o,
10052 						     input_rela_hdr,
10053 						     internal_relocs,
10054 						     rela_hash_list))
10055 		    return FALSE;
10056 		}
10057 	    }
10058 	}
10059 
10060       /* Write out the modified section contents.  */
10061       if (bed->elf_backend_write_section
10062 	  && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10063 						contents))
10064 	{
10065 	  /* Section written out.  */
10066 	}
10067       else switch (o->sec_info_type)
10068 	{
10069 	case SEC_INFO_TYPE_STABS:
10070 	  if (! (_bfd_write_section_stabs
10071 		 (output_bfd,
10072 		  &elf_hash_table (flinfo->info)->stab_info,
10073 		  o, &elf_section_data (o)->sec_info, contents)))
10074 	    return FALSE;
10075 	  break;
10076 	case SEC_INFO_TYPE_MERGE:
10077 	  if (! _bfd_write_merged_section (output_bfd, o,
10078 					   elf_section_data (o)->sec_info))
10079 	    return FALSE;
10080 	  break;
10081 	case SEC_INFO_TYPE_EH_FRAME:
10082 	  {
10083 	    if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10084 						   o, contents))
10085 	      return FALSE;
10086 	  }
10087 	  break;
10088 	default:
10089 	  {
10090 	    /* FIXME: octets_per_byte.  */
10091 	    if (! (o->flags & SEC_EXCLUDE))
10092 	      {
10093 		file_ptr offset = (file_ptr) o->output_offset;
10094 		bfd_size_type todo = o->size;
10095 		if ((o->flags & SEC_ELF_REVERSE_COPY))
10096 		  {
10097 		    /* Reverse-copy input section to output.  */
10098 		    do
10099 		      {
10100 			todo -= address_size;
10101 			if (! bfd_set_section_contents (output_bfd,
10102 							o->output_section,
10103 							contents + todo,
10104 							offset,
10105 							address_size))
10106 			  return FALSE;
10107 			if (todo == 0)
10108 			  break;
10109 			offset += address_size;
10110 		      }
10111 		    while (1);
10112 		  }
10113 		else if (! bfd_set_section_contents (output_bfd,
10114 						     o->output_section,
10115 						     contents,
10116 						     offset, todo))
10117 		  return FALSE;
10118 	      }
10119 	  }
10120 	  break;
10121 	}
10122     }
10123 
10124   return TRUE;
10125 }
10126 
10127 /* Generate a reloc when linking an ELF file.  This is a reloc
10128    requested by the linker, and does not come from any input file.  This
10129    is used to build constructor and destructor tables when linking
10130    with -Ur.  */
10131 
10132 static bfd_boolean
10133 elf_reloc_link_order (bfd *output_bfd,
10134 		      struct bfd_link_info *info,
10135 		      asection *output_section,
10136 		      struct bfd_link_order *link_order)
10137 {
10138   reloc_howto_type *howto;
10139   long indx;
10140   bfd_vma offset;
10141   bfd_vma addend;
10142   struct bfd_elf_section_reloc_data *reldata;
10143   struct elf_link_hash_entry **rel_hash_ptr;
10144   Elf_Internal_Shdr *rel_hdr;
10145   const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10146   Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10147   bfd_byte *erel;
10148   unsigned int i;
10149   struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10150 
10151   howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10152   if (howto == NULL)
10153     {
10154       bfd_set_error (bfd_error_bad_value);
10155       return FALSE;
10156     }
10157 
10158   addend = link_order->u.reloc.p->addend;
10159 
10160   if (esdo->rel.hdr)
10161     reldata = &esdo->rel;
10162   else if (esdo->rela.hdr)
10163     reldata = &esdo->rela;
10164   else
10165     {
10166       reldata = NULL;
10167       BFD_ASSERT (0);
10168     }
10169 
10170   /* Figure out the symbol index.  */
10171   rel_hash_ptr = reldata->hashes + reldata->count;
10172   if (link_order->type == bfd_section_reloc_link_order)
10173     {
10174       indx = link_order->u.reloc.p->u.section->target_index;
10175       BFD_ASSERT (indx != 0);
10176       *rel_hash_ptr = NULL;
10177     }
10178   else
10179     {
10180       struct elf_link_hash_entry *h;
10181 
10182       /* Treat a reloc against a defined symbol as though it were
10183 	 actually against the section.  */
10184       h = ((struct elf_link_hash_entry *)
10185 	   bfd_wrapped_link_hash_lookup (output_bfd, info,
10186 					 link_order->u.reloc.p->u.name,
10187 					 FALSE, FALSE, TRUE));
10188       if (h != NULL
10189 	  && (h->root.type == bfd_link_hash_defined
10190 	      || h->root.type == bfd_link_hash_defweak))
10191 	{
10192 	  asection *section;
10193 
10194 	  section = h->root.u.def.section;
10195 	  indx = section->output_section->target_index;
10196 	  *rel_hash_ptr = NULL;
10197 	  /* It seems that we ought to add the symbol value to the
10198 	     addend here, but in practice it has already been added
10199 	     because it was passed to constructor_callback.  */
10200 	  addend += section->output_section->vma + section->output_offset;
10201 	}
10202       else if (h != NULL)
10203 	{
10204 	  /* Setting the index to -2 tells elf_link_output_extsym that
10205 	     this symbol is used by a reloc.  */
10206 	  h->indx = -2;
10207 	  *rel_hash_ptr = h;
10208 	  indx = 0;
10209 	}
10210       else
10211 	{
10212 	  if (! ((*info->callbacks->unattached_reloc)
10213 		 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10214 	    return FALSE;
10215 	  indx = 0;
10216 	}
10217     }
10218 
10219   /* If this is an inplace reloc, we must write the addend into the
10220      object file.  */
10221   if (howto->partial_inplace && addend != 0)
10222     {
10223       bfd_size_type size;
10224       bfd_reloc_status_type rstat;
10225       bfd_byte *buf;
10226       bfd_boolean ok;
10227       const char *sym_name;
10228 
10229       size = (bfd_size_type) bfd_get_reloc_size (howto);
10230       buf = (bfd_byte *) bfd_zmalloc (size);
10231       if (buf == NULL)
10232 	return FALSE;
10233       rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10234       switch (rstat)
10235 	{
10236 	case bfd_reloc_ok:
10237 	  break;
10238 
10239 	default:
10240 	case bfd_reloc_outofrange:
10241 	  abort ();
10242 
10243 	case bfd_reloc_overflow:
10244 	  if (link_order->type == bfd_section_reloc_link_order)
10245 	    sym_name = bfd_section_name (output_bfd,
10246 					 link_order->u.reloc.p->u.section);
10247 	  else
10248 	    sym_name = link_order->u.reloc.p->u.name;
10249 	  if (! ((*info->callbacks->reloc_overflow)
10250 		 (info, NULL, sym_name, howto->name, addend, NULL,
10251 		  NULL, (bfd_vma) 0)))
10252 	    {
10253 	      free (buf);
10254 	      return FALSE;
10255 	    }
10256 	  break;
10257 	}
10258       ok = bfd_set_section_contents (output_bfd, output_section, buf,
10259 				     link_order->offset, size);
10260       free (buf);
10261       if (! ok)
10262 	return FALSE;
10263     }
10264 
10265   /* The address of a reloc is relative to the section in a
10266      relocatable file, and is a virtual address in an executable
10267      file.  */
10268   offset = link_order->offset;
10269   if (! info->relocatable)
10270     offset += output_section->vma;
10271 
10272   for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10273     {
10274       irel[i].r_offset = offset;
10275       irel[i].r_info = 0;
10276       irel[i].r_addend = 0;
10277     }
10278   if (bed->s->arch_size == 32)
10279     irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10280   else
10281     irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10282 
10283   rel_hdr = reldata->hdr;
10284   erel = rel_hdr->contents;
10285   if (rel_hdr->sh_type == SHT_REL)
10286     {
10287       erel += reldata->count * bed->s->sizeof_rel;
10288       (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10289     }
10290   else
10291     {
10292       irel[0].r_addend = addend;
10293       erel += reldata->count * bed->s->sizeof_rela;
10294       (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10295     }
10296 
10297   ++reldata->count;
10298 
10299   return TRUE;
10300 }
10301 
10302 
10303 /* Get the output vma of the section pointed to by the sh_link field.  */
10304 
10305 static bfd_vma
10306 elf_get_linked_section_vma (struct bfd_link_order *p)
10307 {
10308   Elf_Internal_Shdr **elf_shdrp;
10309   asection *s;
10310   int elfsec;
10311 
10312   s = p->u.indirect.section;
10313   elf_shdrp = elf_elfsections (s->owner);
10314   elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10315   elfsec = elf_shdrp[elfsec]->sh_link;
10316   /* PR 290:
10317      The Intel C compiler generates SHT_IA_64_UNWIND with
10318      SHF_LINK_ORDER.  But it doesn't set the sh_link or
10319      sh_info fields.  Hence we could get the situation
10320      where elfsec is 0.  */
10321   if (elfsec == 0)
10322     {
10323       const struct elf_backend_data *bed
10324 	= get_elf_backend_data (s->owner);
10325       if (bed->link_order_error_handler)
10326 	bed->link_order_error_handler
10327 	  (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10328       return 0;
10329     }
10330   else
10331     {
10332       s = elf_shdrp[elfsec]->bfd_section;
10333       return s->output_section->vma + s->output_offset;
10334     }
10335 }
10336 
10337 
10338 /* Compare two sections based on the locations of the sections they are
10339    linked to.  Used by elf_fixup_link_order.  */
10340 
10341 static int
10342 compare_link_order (const void * a, const void * b)
10343 {
10344   bfd_vma apos;
10345   bfd_vma bpos;
10346 
10347   apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10348   bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10349   if (apos < bpos)
10350     return -1;
10351   return apos > bpos;
10352 }
10353 
10354 
10355 /* Looks for sections with SHF_LINK_ORDER set.  Rearranges them into the same
10356    order as their linked sections.  Returns false if this could not be done
10357    because an output section includes both ordered and unordered
10358    sections.  Ideally we'd do this in the linker proper.  */
10359 
10360 static bfd_boolean
10361 elf_fixup_link_order (bfd *abfd, asection *o)
10362 {
10363   int seen_linkorder;
10364   int seen_other;
10365   int n;
10366   struct bfd_link_order *p;
10367   bfd *sub;
10368   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10369   unsigned elfsec;
10370   struct bfd_link_order **sections;
10371   asection *s, *other_sec, *linkorder_sec;
10372   bfd_vma offset;
10373 
10374   other_sec = NULL;
10375   linkorder_sec = NULL;
10376   seen_other = 0;
10377   seen_linkorder = 0;
10378   for (p = o->map_head.link_order; p != NULL; p = p->next)
10379     {
10380       if (p->type == bfd_indirect_link_order)
10381 	{
10382 	  s = p->u.indirect.section;
10383 	  sub = s->owner;
10384 	  if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10385 	      && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10386 	      && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10387 	      && elfsec < elf_numsections (sub)
10388 	      && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10389 	      && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10390 	    {
10391 	      seen_linkorder++;
10392 	      linkorder_sec = s;
10393 	    }
10394 	  else
10395 	    {
10396 	      seen_other++;
10397 	      other_sec = s;
10398 	    }
10399 	}
10400       else
10401 	seen_other++;
10402 
10403       if (seen_other && seen_linkorder)
10404 	{
10405 	  if (other_sec && linkorder_sec)
10406 	    (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10407 				   o, linkorder_sec,
10408 				   linkorder_sec->owner, other_sec,
10409 				   other_sec->owner);
10410 	  else
10411 	    (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10412 				   o);
10413 	  bfd_set_error (bfd_error_bad_value);
10414 	  return FALSE;
10415 	}
10416     }
10417 
10418   if (!seen_linkorder)
10419     return TRUE;
10420 
10421   sections = (struct bfd_link_order **)
10422     bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10423   if (sections == NULL)
10424     return FALSE;
10425   seen_linkorder = 0;
10426 
10427   for (p = o->map_head.link_order; p != NULL; p = p->next)
10428     {
10429       sections[seen_linkorder++] = p;
10430     }
10431   /* Sort the input sections in the order of their linked section.  */
10432   qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10433 	 compare_link_order);
10434 
10435   /* Change the offsets of the sections.  */
10436   offset = 0;
10437   for (n = 0; n < seen_linkorder; n++)
10438     {
10439       s = sections[n]->u.indirect.section;
10440       offset &= ~(bfd_vma) 0 << s->alignment_power;
10441       s->output_offset = offset;
10442       sections[n]->offset = offset;
10443       /* FIXME: octets_per_byte.  */
10444       offset += sections[n]->size;
10445     }
10446 
10447   free (sections);
10448   return TRUE;
10449 }
10450 
10451 static void
10452 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10453 {
10454   asection *o;
10455 
10456   if (flinfo->symstrtab != NULL)
10457     _bfd_stringtab_free (flinfo->symstrtab);
10458   if (flinfo->contents != NULL)
10459     free (flinfo->contents);
10460   if (flinfo->external_relocs != NULL)
10461     free (flinfo->external_relocs);
10462   if (flinfo->internal_relocs != NULL)
10463     free (flinfo->internal_relocs);
10464   if (flinfo->external_syms != NULL)
10465     free (flinfo->external_syms);
10466   if (flinfo->locsym_shndx != NULL)
10467     free (flinfo->locsym_shndx);
10468   if (flinfo->internal_syms != NULL)
10469     free (flinfo->internal_syms);
10470   if (flinfo->indices != NULL)
10471     free (flinfo->indices);
10472   if (flinfo->sections != NULL)
10473     free (flinfo->sections);
10474   if (flinfo->symbuf != NULL)
10475     free (flinfo->symbuf);
10476   if (flinfo->symshndxbuf != NULL)
10477     free (flinfo->symshndxbuf);
10478   for (o = obfd->sections; o != NULL; o = o->next)
10479     {
10480       struct bfd_elf_section_data *esdo = elf_section_data (o);
10481       if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10482 	free (esdo->rel.hashes);
10483       if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10484 	free (esdo->rela.hashes);
10485     }
10486 }
10487 
10488 /* Do the final step of an ELF link.  */
10489 
10490 bfd_boolean
10491 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10492 {
10493   bfd_boolean dynamic;
10494   bfd_boolean emit_relocs;
10495   bfd *dynobj;
10496   struct elf_final_link_info flinfo;
10497   asection *o;
10498   struct bfd_link_order *p;
10499   bfd *sub;
10500   bfd_size_type max_contents_size;
10501   bfd_size_type max_external_reloc_size;
10502   bfd_size_type max_internal_reloc_count;
10503   bfd_size_type max_sym_count;
10504   bfd_size_type max_sym_shndx_count;
10505   file_ptr off;
10506   Elf_Internal_Sym elfsym;
10507   unsigned int i;
10508   Elf_Internal_Shdr *symtab_hdr;
10509   Elf_Internal_Shdr *symtab_shndx_hdr;
10510   Elf_Internal_Shdr *symstrtab_hdr;
10511   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10512   struct elf_outext_info eoinfo;
10513   bfd_boolean merged;
10514   size_t relativecount = 0;
10515   asection *reldyn = 0;
10516   bfd_size_type amt;
10517   asection *attr_section = NULL;
10518   bfd_vma attr_size = 0;
10519   const char *std_attrs_section;
10520 
10521   if (! is_elf_hash_table (info->hash))
10522     return FALSE;
10523 
10524   if (info->shared)
10525     abfd->flags |= DYNAMIC;
10526 
10527   dynamic = elf_hash_table (info)->dynamic_sections_created;
10528   dynobj = elf_hash_table (info)->dynobj;
10529 
10530   emit_relocs = (info->relocatable
10531 		 || info->emitrelocations);
10532 
10533   flinfo.info = info;
10534   flinfo.output_bfd = abfd;
10535   flinfo.symstrtab = _bfd_elf_stringtab_init ();
10536   if (flinfo.symstrtab == NULL)
10537     return FALSE;
10538 
10539   if (! dynamic)
10540     {
10541       flinfo.dynsym_sec = NULL;
10542       flinfo.hash_sec = NULL;
10543       flinfo.symver_sec = NULL;
10544     }
10545   else
10546     {
10547       flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10548       flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10549       /* Note that dynsym_sec can be NULL (on VMS).  */
10550       flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10551       /* Note that it is OK if symver_sec is NULL.  */
10552     }
10553 
10554   flinfo.contents = NULL;
10555   flinfo.external_relocs = NULL;
10556   flinfo.internal_relocs = NULL;
10557   flinfo.external_syms = NULL;
10558   flinfo.locsym_shndx = NULL;
10559   flinfo.internal_syms = NULL;
10560   flinfo.indices = NULL;
10561   flinfo.sections = NULL;
10562   flinfo.symbuf = NULL;
10563   flinfo.symshndxbuf = NULL;
10564   flinfo.symbuf_count = 0;
10565   flinfo.shndxbuf_size = 0;
10566   flinfo.filesym_count = 0;
10567 
10568   /* The object attributes have been merged.  Remove the input
10569      sections from the link, and set the contents of the output
10570      secton.  */
10571   std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10572   for (o = abfd->sections; o != NULL; o = o->next)
10573     {
10574       if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10575 	  || strcmp (o->name, ".gnu.attributes") == 0)
10576 	{
10577 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
10578 	    {
10579 	      asection *input_section;
10580 
10581 	      if (p->type != bfd_indirect_link_order)
10582 		continue;
10583 	      input_section = p->u.indirect.section;
10584 	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
10585 		 elf_link_input_bfd ignores this section.  */
10586 	      input_section->flags &= ~SEC_HAS_CONTENTS;
10587 	    }
10588 
10589 	  attr_size = bfd_elf_obj_attr_size (abfd);
10590 	  if (attr_size)
10591 	    {
10592 	      bfd_set_section_size (abfd, o, attr_size);
10593 	      attr_section = o;
10594 	      /* Skip this section later on.  */
10595 	      o->map_head.link_order = NULL;
10596 	    }
10597 	  else
10598 	    o->flags |= SEC_EXCLUDE;
10599 	}
10600     }
10601 
10602   /* Count up the number of relocations we will output for each output
10603      section, so that we know the sizes of the reloc sections.  We
10604      also figure out some maximum sizes.  */
10605   max_contents_size = 0;
10606   max_external_reloc_size = 0;
10607   max_internal_reloc_count = 0;
10608   max_sym_count = 0;
10609   max_sym_shndx_count = 0;
10610   merged = FALSE;
10611   for (o = abfd->sections; o != NULL; o = o->next)
10612     {
10613       struct bfd_elf_section_data *esdo = elf_section_data (o);
10614       o->reloc_count = 0;
10615 
10616       for (p = o->map_head.link_order; p != NULL; p = p->next)
10617 	{
10618 	  unsigned int reloc_count = 0;
10619 	  struct bfd_elf_section_data *esdi = NULL;
10620 
10621 	  if (p->type == bfd_section_reloc_link_order
10622 	      || p->type == bfd_symbol_reloc_link_order)
10623 	    reloc_count = 1;
10624 	  else if (p->type == bfd_indirect_link_order)
10625 	    {
10626 	      asection *sec;
10627 
10628 	      sec = p->u.indirect.section;
10629 	      esdi = elf_section_data (sec);
10630 
10631 	      /* Mark all sections which are to be included in the
10632 		 link.  This will normally be every section.  We need
10633 		 to do this so that we can identify any sections which
10634 		 the linker has decided to not include.  */
10635 	      sec->linker_mark = TRUE;
10636 
10637 	      if (sec->flags & SEC_MERGE)
10638 		merged = TRUE;
10639 
10640 	      if (esdo->this_hdr.sh_type == SHT_REL
10641 		  || esdo->this_hdr.sh_type == SHT_RELA)
10642 		/* Some backends use reloc_count in relocation sections
10643 		   to count particular types of relocs.  Of course,
10644 		   reloc sections themselves can't have relocations.  */
10645 		reloc_count = 0;
10646 	      else if (info->relocatable || info->emitrelocations)
10647 		reloc_count = sec->reloc_count;
10648 	      else if (bed->elf_backend_count_relocs)
10649 		reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10650 
10651 	      if (sec->rawsize > max_contents_size)
10652 		max_contents_size = sec->rawsize;
10653 	      if (sec->size > max_contents_size)
10654 		max_contents_size = sec->size;
10655 
10656 	      /* We are interested in just local symbols, not all
10657 		 symbols.  */
10658 	      if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10659 		  && (sec->owner->flags & DYNAMIC) == 0)
10660 		{
10661 		  size_t sym_count;
10662 
10663 		  if (elf_bad_symtab (sec->owner))
10664 		    sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10665 				 / bed->s->sizeof_sym);
10666 		  else
10667 		    sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10668 
10669 		  if (sym_count > max_sym_count)
10670 		    max_sym_count = sym_count;
10671 
10672 		  if (sym_count > max_sym_shndx_count
10673 		      && elf_symtab_shndx (sec->owner) != 0)
10674 		    max_sym_shndx_count = sym_count;
10675 
10676 		  if ((sec->flags & SEC_RELOC) != 0)
10677 		    {
10678 		      size_t ext_size = 0;
10679 
10680 		      if (esdi->rel.hdr != NULL)
10681 			ext_size = esdi->rel.hdr->sh_size;
10682 		      if (esdi->rela.hdr != NULL)
10683 			ext_size += esdi->rela.hdr->sh_size;
10684 
10685 		      if (ext_size > max_external_reloc_size)
10686 			max_external_reloc_size = ext_size;
10687 		      if (sec->reloc_count > max_internal_reloc_count)
10688 			max_internal_reloc_count = sec->reloc_count;
10689 		    }
10690 		}
10691 	    }
10692 
10693 	  if (reloc_count == 0)
10694 	    continue;
10695 
10696 	  o->reloc_count += reloc_count;
10697 
10698 	  if (p->type == bfd_indirect_link_order
10699 	      && (info->relocatable || info->emitrelocations))
10700 	    {
10701 	      if (esdi->rel.hdr)
10702 		esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10703 	      if (esdi->rela.hdr)
10704 		esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10705 	    }
10706 	  else
10707 	    {
10708 	      if (o->use_rela_p)
10709 		esdo->rela.count += reloc_count;
10710 	      else
10711 		esdo->rel.count += reloc_count;
10712 	    }
10713 	}
10714 
10715       if (o->reloc_count > 0)
10716 	o->flags |= SEC_RELOC;
10717       else
10718 	{
10719 	  /* Explicitly clear the SEC_RELOC flag.  The linker tends to
10720 	     set it (this is probably a bug) and if it is set
10721 	     assign_section_numbers will create a reloc section.  */
10722 	  o->flags &=~ SEC_RELOC;
10723 	}
10724 
10725       /* If the SEC_ALLOC flag is not set, force the section VMA to
10726 	 zero.  This is done in elf_fake_sections as well, but forcing
10727 	 the VMA to 0 here will ensure that relocs against these
10728 	 sections are handled correctly.  */
10729       if ((o->flags & SEC_ALLOC) == 0
10730 	  && ! o->user_set_vma)
10731 	o->vma = 0;
10732     }
10733 
10734   if (! info->relocatable && merged)
10735     elf_link_hash_traverse (elf_hash_table (info),
10736 			    _bfd_elf_link_sec_merge_syms, abfd);
10737 
10738   /* Figure out the file positions for everything but the symbol table
10739      and the relocs.  We set symcount to force assign_section_numbers
10740      to create a symbol table.  */
10741   bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10742   BFD_ASSERT (! abfd->output_has_begun);
10743   if (! _bfd_elf_compute_section_file_positions (abfd, info))
10744     goto error_return;
10745 
10746   /* Set sizes, and assign file positions for reloc sections.  */
10747   for (o = abfd->sections; o != NULL; o = o->next)
10748     {
10749       struct bfd_elf_section_data *esdo = elf_section_data (o);
10750       if ((o->flags & SEC_RELOC) != 0)
10751 	{
10752 	  if (esdo->rel.hdr
10753 	      && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10754 	    goto error_return;
10755 
10756 	  if (esdo->rela.hdr
10757 	      && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10758 	    goto error_return;
10759 	}
10760 
10761       /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10762 	 to count upwards while actually outputting the relocations.  */
10763       esdo->rel.count = 0;
10764       esdo->rela.count = 0;
10765     }
10766 
10767   _bfd_elf_assign_file_positions_for_relocs (abfd);
10768 
10769   /* We have now assigned file positions for all the sections except
10770      .symtab and .strtab.  We start the .symtab section at the current
10771      file position, and write directly to it.  We build the .strtab
10772      section in memory.  */
10773   bfd_get_symcount (abfd) = 0;
10774   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10775   /* sh_name is set in prep_headers.  */
10776   symtab_hdr->sh_type = SHT_SYMTAB;
10777   /* sh_flags, sh_addr and sh_size all start off zero.  */
10778   symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10779   /* sh_link is set in assign_section_numbers.  */
10780   /* sh_info is set below.  */
10781   /* sh_offset is set just below.  */
10782   symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10783 
10784   off = elf_next_file_pos (abfd);
10785   off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10786 
10787   /* Note that at this point elf_next_file_pos (abfd) is
10788      incorrect.  We do not yet know the size of the .symtab section.
10789      We correct next_file_pos below, after we do know the size.  */
10790 
10791   /* Allocate a buffer to hold swapped out symbols.  This is to avoid
10792      continuously seeking to the right position in the file.  */
10793   if (! info->keep_memory || max_sym_count < 20)
10794     flinfo.symbuf_size = 20;
10795   else
10796     flinfo.symbuf_size = max_sym_count;
10797   amt = flinfo.symbuf_size;
10798   amt *= bed->s->sizeof_sym;
10799   flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10800   if (flinfo.symbuf == NULL)
10801     goto error_return;
10802   if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10803     {
10804       /* Wild guess at number of output symbols.  realloc'd as needed.  */
10805       amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10806       flinfo.shndxbuf_size = amt;
10807       amt *= sizeof (Elf_External_Sym_Shndx);
10808       flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10809       if (flinfo.symshndxbuf == NULL)
10810 	goto error_return;
10811     }
10812 
10813   /* Start writing out the symbol table.  The first symbol is always a
10814      dummy symbol.  */
10815   if (info->strip != strip_all
10816       || emit_relocs)
10817     {
10818       elfsym.st_value = 0;
10819       elfsym.st_size = 0;
10820       elfsym.st_info = 0;
10821       elfsym.st_other = 0;
10822       elfsym.st_shndx = SHN_UNDEF;
10823       elfsym.st_target_internal = 0;
10824       if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10825 			       NULL) != 1)
10826 	goto error_return;
10827     }
10828 
10829   /* Output a symbol for each section.  We output these even if we are
10830      discarding local symbols, since they are used for relocs.  These
10831      symbols have no names.  We store the index of each one in the
10832      index field of the section, so that we can find it again when
10833      outputting relocs.  */
10834   if (info->strip != strip_all
10835       || emit_relocs)
10836     {
10837       elfsym.st_size = 0;
10838       elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10839       elfsym.st_other = 0;
10840       elfsym.st_value = 0;
10841       elfsym.st_target_internal = 0;
10842       for (i = 1; i < elf_numsections (abfd); i++)
10843 	{
10844 	  o = bfd_section_from_elf_index (abfd, i);
10845 	  if (o != NULL)
10846 	    {
10847 	      o->target_index = bfd_get_symcount (abfd);
10848 	      elfsym.st_shndx = i;
10849 	      if (!info->relocatable)
10850 		elfsym.st_value = o->vma;
10851 	      if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10852 		goto error_return;
10853 	    }
10854 	}
10855     }
10856 
10857   /* Allocate some memory to hold information read in from the input
10858      files.  */
10859   if (max_contents_size != 0)
10860     {
10861       flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10862       if (flinfo.contents == NULL)
10863 	goto error_return;
10864     }
10865 
10866   if (max_external_reloc_size != 0)
10867     {
10868       flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10869       if (flinfo.external_relocs == NULL)
10870 	goto error_return;
10871     }
10872 
10873   if (max_internal_reloc_count != 0)
10874     {
10875       amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10876       amt *= sizeof (Elf_Internal_Rela);
10877       flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10878       if (flinfo.internal_relocs == NULL)
10879 	goto error_return;
10880     }
10881 
10882   if (max_sym_count != 0)
10883     {
10884       amt = max_sym_count * bed->s->sizeof_sym;
10885       flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10886       if (flinfo.external_syms == NULL)
10887 	goto error_return;
10888 
10889       amt = max_sym_count * sizeof (Elf_Internal_Sym);
10890       flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10891       if (flinfo.internal_syms == NULL)
10892 	goto error_return;
10893 
10894       amt = max_sym_count * sizeof (long);
10895       flinfo.indices = (long int *) bfd_malloc (amt);
10896       if (flinfo.indices == NULL)
10897 	goto error_return;
10898 
10899       amt = max_sym_count * sizeof (asection *);
10900       flinfo.sections = (asection **) bfd_malloc (amt);
10901       if (flinfo.sections == NULL)
10902 	goto error_return;
10903     }
10904 
10905   if (max_sym_shndx_count != 0)
10906     {
10907       amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10908       flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10909       if (flinfo.locsym_shndx == NULL)
10910 	goto error_return;
10911     }
10912 
10913   if (elf_hash_table (info)->tls_sec)
10914     {
10915       bfd_vma base, end = 0;
10916       asection *sec;
10917 
10918       for (sec = elf_hash_table (info)->tls_sec;
10919 	   sec && (sec->flags & SEC_THREAD_LOCAL);
10920 	   sec = sec->next)
10921 	{
10922 	  bfd_size_type size = sec->size;
10923 
10924 	  if (size == 0
10925 	      && (sec->flags & SEC_HAS_CONTENTS) == 0)
10926 	    {
10927 	      struct bfd_link_order *ord = sec->map_tail.link_order;
10928 
10929 	      if (ord != NULL)
10930 		size = ord->offset + ord->size;
10931 	    }
10932 	  end = sec->vma + size;
10933 	}
10934       base = elf_hash_table (info)->tls_sec->vma;
10935       /* Only align end of TLS section if static TLS doesn't have special
10936 	 alignment requirements.  */
10937       if (bed->static_tls_alignment == 1)
10938 	end = align_power (end,
10939 			   elf_hash_table (info)->tls_sec->alignment_power);
10940       elf_hash_table (info)->tls_size = end - base;
10941     }
10942 
10943   /* Reorder SHF_LINK_ORDER sections.  */
10944   for (o = abfd->sections; o != NULL; o = o->next)
10945     {
10946       if (!elf_fixup_link_order (abfd, o))
10947 	return FALSE;
10948     }
10949 
10950   /* Since ELF permits relocations to be against local symbols, we
10951      must have the local symbols available when we do the relocations.
10952      Since we would rather only read the local symbols once, and we
10953      would rather not keep them in memory, we handle all the
10954      relocations for a single input file at the same time.
10955 
10956      Unfortunately, there is no way to know the total number of local
10957      symbols until we have seen all of them, and the local symbol
10958      indices precede the global symbol indices.  This means that when
10959      we are generating relocatable output, and we see a reloc against
10960      a global symbol, we can not know the symbol index until we have
10961      finished examining all the local symbols to see which ones we are
10962      going to output.  To deal with this, we keep the relocations in
10963      memory, and don't output them until the end of the link.  This is
10964      an unfortunate waste of memory, but I don't see a good way around
10965      it.  Fortunately, it only happens when performing a relocatable
10966      link, which is not the common case.  FIXME: If keep_memory is set
10967      we could write the relocs out and then read them again; I don't
10968      know how bad the memory loss will be.  */
10969 
10970   for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10971     sub->output_has_begun = FALSE;
10972   for (o = abfd->sections; o != NULL; o = o->next)
10973     {
10974       for (p = o->map_head.link_order; p != NULL; p = p->next)
10975 	{
10976 	  if (p->type == bfd_indirect_link_order
10977 	      && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10978 		  == bfd_target_elf_flavour)
10979 	      && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10980 	    {
10981 	      if (! sub->output_has_begun)
10982 		{
10983 		  if (! elf_link_input_bfd (&flinfo, sub))
10984 		    goto error_return;
10985 		  sub->output_has_begun = TRUE;
10986 		}
10987 	    }
10988 	  else if (p->type == bfd_section_reloc_link_order
10989 		   || p->type == bfd_symbol_reloc_link_order)
10990 	    {
10991 	      if (! elf_reloc_link_order (abfd, info, o, p))
10992 		goto error_return;
10993 	    }
10994 	  else
10995 	    {
10996 	      if (! _bfd_default_link_order (abfd, info, o, p))
10997 		{
10998 		  if (p->type == bfd_indirect_link_order
10999 		      && (bfd_get_flavour (sub)
11000 			  == bfd_target_elf_flavour)
11001 		      && (elf_elfheader (sub)->e_ident[EI_CLASS]
11002 			  != bed->s->elfclass))
11003 		    {
11004 		      const char *iclass, *oclass;
11005 
11006 		      if (bed->s->elfclass == ELFCLASS64)
11007 			{
11008 			  iclass = "ELFCLASS32";
11009 			  oclass = "ELFCLASS64";
11010 			}
11011 		      else
11012 			{
11013 			  iclass = "ELFCLASS64";
11014 			  oclass = "ELFCLASS32";
11015 			}
11016 
11017 		      bfd_set_error (bfd_error_wrong_format);
11018 		      (*_bfd_error_handler)
11019 			(_("%B: file class %s incompatible with %s"),
11020 			 sub, iclass, oclass);
11021 		    }
11022 
11023 		  goto error_return;
11024 		}
11025 	    }
11026 	}
11027     }
11028 
11029   /* Free symbol buffer if needed.  */
11030   if (!info->reduce_memory_overheads)
11031     {
11032       for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11033 	if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11034 	    && elf_tdata (sub)->symbuf)
11035 	  {
11036 	    free (elf_tdata (sub)->symbuf);
11037 	    elf_tdata (sub)->symbuf = NULL;
11038 	  }
11039     }
11040 
11041   /* Output a FILE symbol so that following locals are not associated
11042      with the wrong input file.  */
11043   memset (&elfsym, 0, sizeof (elfsym));
11044   elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
11045   elfsym.st_shndx = SHN_ABS;
11046 
11047   if (flinfo.filesym_count > 1
11048       && !elf_link_output_sym (&flinfo, NULL, &elfsym,
11049 			       bfd_und_section_ptr, NULL))
11050     return FALSE;
11051 
11052   /* Output any global symbols that got converted to local in a
11053      version script or due to symbol visibility.  We do this in a
11054      separate step since ELF requires all local symbols to appear
11055      prior to any global symbols.  FIXME: We should only do this if
11056      some global symbols were, in fact, converted to become local.
11057      FIXME: Will this work correctly with the Irix 5 linker?  */
11058   eoinfo.failed = FALSE;
11059   eoinfo.flinfo = &flinfo;
11060   eoinfo.localsyms = TRUE;
11061   eoinfo.need_second_pass = FALSE;
11062   eoinfo.second_pass = FALSE;
11063   bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11064   if (eoinfo.failed)
11065     return FALSE;
11066 
11067   if (flinfo.filesym_count == 1
11068       && !elf_link_output_sym (&flinfo, NULL, &elfsym,
11069 			       bfd_und_section_ptr, NULL))
11070     return FALSE;
11071 
11072   if (eoinfo.need_second_pass)
11073     {
11074       eoinfo.second_pass = TRUE;
11075       bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11076       if (eoinfo.failed)
11077 	return FALSE;
11078     }
11079 
11080   /* If backend needs to output some local symbols not present in the hash
11081      table, do it now.  */
11082   if (bed->elf_backend_output_arch_local_syms)
11083     {
11084       typedef int (*out_sym_func)
11085 	(void *, const char *, Elf_Internal_Sym *, asection *,
11086 	 struct elf_link_hash_entry *);
11087 
11088       if (! ((*bed->elf_backend_output_arch_local_syms)
11089 	     (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11090 	return FALSE;
11091     }
11092 
11093   /* That wrote out all the local symbols.  Finish up the symbol table
11094      with the global symbols. Even if we want to strip everything we
11095      can, we still need to deal with those global symbols that got
11096      converted to local in a version script.  */
11097 
11098   /* The sh_info field records the index of the first non local symbol.  */
11099   symtab_hdr->sh_info = bfd_get_symcount (abfd);
11100 
11101   if (dynamic
11102       && flinfo.dynsym_sec != NULL
11103       && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11104     {
11105       Elf_Internal_Sym sym;
11106       bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11107       long last_local = 0;
11108 
11109       /* Write out the section symbols for the output sections.  */
11110       if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11111 	{
11112 	  asection *s;
11113 
11114 	  sym.st_size = 0;
11115 	  sym.st_name = 0;
11116 	  sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11117 	  sym.st_other = 0;
11118 	  sym.st_target_internal = 0;
11119 
11120 	  for (s = abfd->sections; s != NULL; s = s->next)
11121 	    {
11122 	      int indx;
11123 	      bfd_byte *dest;
11124 	      long dynindx;
11125 
11126 	      dynindx = elf_section_data (s)->dynindx;
11127 	      if (dynindx <= 0)
11128 		continue;
11129 	      indx = elf_section_data (s)->this_idx;
11130 	      BFD_ASSERT (indx > 0);
11131 	      sym.st_shndx = indx;
11132 	      if (! check_dynsym (abfd, &sym))
11133 		return FALSE;
11134 	      sym.st_value = s->vma;
11135 	      dest = dynsym + dynindx * bed->s->sizeof_sym;
11136 	      if (last_local < dynindx)
11137 		last_local = dynindx;
11138 	      bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11139 	    }
11140 	}
11141 
11142       /* Write out the local dynsyms.  */
11143       if (elf_hash_table (info)->dynlocal)
11144 	{
11145 	  struct elf_link_local_dynamic_entry *e;
11146 	  for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11147 	    {
11148 	      asection *s;
11149 	      bfd_byte *dest;
11150 
11151 	      /* Copy the internal symbol and turn off visibility.
11152 		 Note that we saved a word of storage and overwrote
11153 		 the original st_name with the dynstr_index.  */
11154 	      sym = e->isym;
11155 	      sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11156 
11157 	      s = bfd_section_from_elf_index (e->input_bfd,
11158 					      e->isym.st_shndx);
11159 	      if (s != NULL)
11160 		{
11161 		  sym.st_shndx =
11162 		    elf_section_data (s->output_section)->this_idx;
11163 		  if (! check_dynsym (abfd, &sym))
11164 		    return FALSE;
11165 		  sym.st_value = (s->output_section->vma
11166 				  + s->output_offset
11167 				  + e->isym.st_value);
11168 		}
11169 
11170 	      if (last_local < e->dynindx)
11171 		last_local = e->dynindx;
11172 
11173 	      dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11174 	      bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11175 	    }
11176 	}
11177 
11178       elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11179 	last_local + 1;
11180     }
11181 
11182   /* We get the global symbols from the hash table.  */
11183   eoinfo.failed = FALSE;
11184   eoinfo.localsyms = FALSE;
11185   eoinfo.flinfo = &flinfo;
11186   bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11187   if (eoinfo.failed)
11188     return FALSE;
11189 
11190   /* If backend needs to output some symbols not present in the hash
11191      table, do it now.  */
11192   if (bed->elf_backend_output_arch_syms)
11193     {
11194       typedef int (*out_sym_func)
11195 	(void *, const char *, Elf_Internal_Sym *, asection *,
11196 	 struct elf_link_hash_entry *);
11197 
11198       if (! ((*bed->elf_backend_output_arch_syms)
11199 	     (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11200 	return FALSE;
11201     }
11202 
11203   /* Flush all symbols to the file.  */
11204   if (! elf_link_flush_output_syms (&flinfo, bed))
11205     return FALSE;
11206 
11207   /* Now we know the size of the symtab section.  */
11208   off += symtab_hdr->sh_size;
11209 
11210   symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11211   if (symtab_shndx_hdr->sh_name != 0)
11212     {
11213       symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11214       symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11215       symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11216       amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11217       symtab_shndx_hdr->sh_size = amt;
11218 
11219       off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11220 						       off, TRUE);
11221 
11222       if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11223 	  || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11224 	return FALSE;
11225     }
11226 
11227 
11228   /* Finish up and write out the symbol string table (.strtab)
11229      section.  */
11230   symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11231   /* sh_name was set in prep_headers.  */
11232   symstrtab_hdr->sh_type = SHT_STRTAB;
11233   symstrtab_hdr->sh_flags = 0;
11234   symstrtab_hdr->sh_addr = 0;
11235   symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11236   symstrtab_hdr->sh_entsize = 0;
11237   symstrtab_hdr->sh_link = 0;
11238   symstrtab_hdr->sh_info = 0;
11239   /* sh_offset is set just below.  */
11240   symstrtab_hdr->sh_addralign = 1;
11241 
11242   off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11243   elf_next_file_pos (abfd) = off;
11244 
11245   if (bfd_get_symcount (abfd) > 0)
11246     {
11247       if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11248 	  || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11249 	return FALSE;
11250     }
11251 
11252   /* Adjust the relocs to have the correct symbol indices.  */
11253   for (o = abfd->sections; o != NULL; o = o->next)
11254     {
11255       struct bfd_elf_section_data *esdo = elf_section_data (o);
11256       if ((o->flags & SEC_RELOC) == 0)
11257 	continue;
11258 
11259       if (esdo->rel.hdr != NULL)
11260 	elf_link_adjust_relocs (abfd, &esdo->rel);
11261       if (esdo->rela.hdr != NULL)
11262 	elf_link_adjust_relocs (abfd, &esdo->rela);
11263 
11264       /* Set the reloc_count field to 0 to prevent write_relocs from
11265 	 trying to swap the relocs out itself.  */
11266       o->reloc_count = 0;
11267     }
11268 
11269   if (dynamic && info->combreloc && dynobj != NULL)
11270     relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11271 
11272   /* If we are linking against a dynamic object, or generating a
11273      shared library, finish up the dynamic linking information.  */
11274   if (dynamic)
11275     {
11276       bfd_byte *dyncon, *dynconend;
11277 
11278       /* Fix up .dynamic entries.  */
11279       o = bfd_get_linker_section (dynobj, ".dynamic");
11280       BFD_ASSERT (o != NULL);
11281 
11282       dyncon = o->contents;
11283       dynconend = o->contents + o->size;
11284       for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11285 	{
11286 	  Elf_Internal_Dyn dyn;
11287 	  const char *name;
11288 	  unsigned int type;
11289 
11290 	  bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11291 
11292 	  switch (dyn.d_tag)
11293 	    {
11294 	    default:
11295 	      continue;
11296 	    case DT_NULL:
11297 	      if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11298 		{
11299 		  switch (elf_section_data (reldyn)->this_hdr.sh_type)
11300 		    {
11301 		    case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11302 		    case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11303 		    default: continue;
11304 		    }
11305 		  dyn.d_un.d_val = relativecount;
11306 		  relativecount = 0;
11307 		  break;
11308 		}
11309 	      continue;
11310 
11311 	    case DT_INIT:
11312 	      name = info->init_function;
11313 	      goto get_sym;
11314 	    case DT_FINI:
11315 	      name = info->fini_function;
11316 	    get_sym:
11317 	      {
11318 		struct elf_link_hash_entry *h;
11319 
11320 		h = elf_link_hash_lookup (elf_hash_table (info), name,
11321 					  FALSE, FALSE, TRUE);
11322 		if (h != NULL
11323 		    && (h->root.type == bfd_link_hash_defined
11324 			|| h->root.type == bfd_link_hash_defweak))
11325 		  {
11326 		    dyn.d_un.d_ptr = h->root.u.def.value;
11327 		    o = h->root.u.def.section;
11328 		    if (o->output_section != NULL)
11329 		      dyn.d_un.d_ptr += (o->output_section->vma
11330 					 + o->output_offset);
11331 		    else
11332 		      {
11333 			/* The symbol is imported from another shared
11334 			   library and does not apply to this one.  */
11335 			dyn.d_un.d_ptr = 0;
11336 		      }
11337 		    break;
11338 		  }
11339 	      }
11340 	      continue;
11341 
11342 	    case DT_PREINIT_ARRAYSZ:
11343 	      name = ".preinit_array";
11344 	      goto get_size;
11345 	    case DT_INIT_ARRAYSZ:
11346 	      name = ".init_array";
11347 	      goto get_size;
11348 	    case DT_FINI_ARRAYSZ:
11349 	      name = ".fini_array";
11350 	    get_size:
11351 	      o = bfd_get_section_by_name (abfd, name);
11352 	      if (o == NULL)
11353 		{
11354 		  (*_bfd_error_handler)
11355 		    (_("%B: could not find output section %s"), abfd, name);
11356 		  goto error_return;
11357 		}
11358 	      if (o->size == 0)
11359 		(*_bfd_error_handler)
11360 		  (_("warning: %s section has zero size"), name);
11361 	      dyn.d_un.d_val = o->size;
11362 	      break;
11363 
11364 	    case DT_PREINIT_ARRAY:
11365 	      name = ".preinit_array";
11366 	      goto get_vma;
11367 	    case DT_INIT_ARRAY:
11368 	      name = ".init_array";
11369 	      goto get_vma;
11370 	    case DT_FINI_ARRAY:
11371 	      name = ".fini_array";
11372 	      goto get_vma;
11373 
11374 	    case DT_HASH:
11375 	      name = ".hash";
11376 	      goto get_vma;
11377 	    case DT_GNU_HASH:
11378 	      name = ".gnu.hash";
11379 	      goto get_vma;
11380 	    case DT_STRTAB:
11381 	      name = ".dynstr";
11382 	      goto get_vma;
11383 	    case DT_SYMTAB:
11384 	      name = ".dynsym";
11385 	      goto get_vma;
11386 	    case DT_VERDEF:
11387 	      name = ".gnu.version_d";
11388 	      goto get_vma;
11389 	    case DT_VERNEED:
11390 	      name = ".gnu.version_r";
11391 	      goto get_vma;
11392 	    case DT_VERSYM:
11393 	      name = ".gnu.version";
11394 	    get_vma:
11395 	      o = bfd_get_section_by_name (abfd, name);
11396 	      if (o == NULL)
11397 		{
11398 		  (*_bfd_error_handler)
11399 		    (_("%B: could not find output section %s"), abfd, name);
11400 		  goto error_return;
11401 		}
11402 	      if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11403 		{
11404 		  (*_bfd_error_handler)
11405 		    (_("warning: section '%s' is being made into a note"), name);
11406 		  bfd_set_error (bfd_error_nonrepresentable_section);
11407 		  goto error_return;
11408 		}
11409 	      dyn.d_un.d_ptr = o->vma;
11410 	      break;
11411 
11412 	    case DT_REL:
11413 	    case DT_RELA:
11414 	    case DT_RELSZ:
11415 	    case DT_RELASZ:
11416 	      if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11417 		type = SHT_REL;
11418 	      else
11419 		type = SHT_RELA;
11420 	      dyn.d_un.d_val = 0;
11421 	      dyn.d_un.d_ptr = 0;
11422 	      for (i = 1; i < elf_numsections (abfd); i++)
11423 		{
11424 		  Elf_Internal_Shdr *hdr;
11425 
11426 		  hdr = elf_elfsections (abfd)[i];
11427 		  if (hdr->sh_type == type
11428 		      && (hdr->sh_flags & SHF_ALLOC) != 0)
11429 		    {
11430 		      if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11431 			dyn.d_un.d_val += hdr->sh_size;
11432 		      else
11433 			{
11434 			  if (dyn.d_un.d_ptr == 0
11435 			      || hdr->sh_addr < dyn.d_un.d_ptr)
11436 			    dyn.d_un.d_ptr = hdr->sh_addr;
11437 			}
11438 		    }
11439 		}
11440 	      break;
11441 	    }
11442 	  bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11443 	}
11444     }
11445 
11446   /* If we have created any dynamic sections, then output them.  */
11447   if (dynobj != NULL)
11448     {
11449       if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11450 	goto error_return;
11451 
11452       /* Check for DT_TEXTREL (late, in case the backend removes it).  */
11453       if (((info->warn_shared_textrel && info->shared)
11454 	   || info->error_textrel)
11455 	  && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11456 	{
11457 	  bfd_byte *dyncon, *dynconend;
11458 
11459 	  dyncon = o->contents;
11460 	  dynconend = o->contents + o->size;
11461 	  for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11462 	    {
11463 	      Elf_Internal_Dyn dyn;
11464 
11465 	      bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11466 
11467 	      if (dyn.d_tag == DT_TEXTREL)
11468 		{
11469 		  if (info->error_textrel)
11470 		    info->callbacks->einfo
11471 		      (_("%P%X: read-only segment has dynamic relocations.\n"));
11472 		  else
11473 		    info->callbacks->einfo
11474 		      (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11475 		  break;
11476 		}
11477 	    }
11478 	}
11479 
11480       for (o = dynobj->sections; o != NULL; o = o->next)
11481 	{
11482 	  if ((o->flags & SEC_HAS_CONTENTS) == 0
11483 	      || o->size == 0
11484 	      || o->output_section == bfd_abs_section_ptr)
11485 	    continue;
11486 	  if ((o->flags & SEC_LINKER_CREATED) == 0)
11487 	    {
11488 	      /* At this point, we are only interested in sections
11489 		 created by _bfd_elf_link_create_dynamic_sections.  */
11490 	      continue;
11491 	    }
11492 	  if (elf_hash_table (info)->stab_info.stabstr == o)
11493 	    continue;
11494 	  if (elf_hash_table (info)->eh_info.hdr_sec == o)
11495 	    continue;
11496 	  if (strcmp (o->name, ".dynstr") != 0)
11497 	    {
11498 	      /* FIXME: octets_per_byte.  */
11499 	      if (! bfd_set_section_contents (abfd, o->output_section,
11500 					      o->contents,
11501 					      (file_ptr) o->output_offset,
11502 					      o->size))
11503 		goto error_return;
11504 	    }
11505 	  else
11506 	    {
11507 	      /* The contents of the .dynstr section are actually in a
11508 		 stringtab.  */
11509 	      off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11510 	      if (bfd_seek (abfd, off, SEEK_SET) != 0
11511 		  || ! _bfd_elf_strtab_emit (abfd,
11512 					     elf_hash_table (info)->dynstr))
11513 		goto error_return;
11514 	    }
11515 	}
11516     }
11517 
11518   if (info->relocatable)
11519     {
11520       bfd_boolean failed = FALSE;
11521 
11522       bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11523       if (failed)
11524 	goto error_return;
11525     }
11526 
11527   /* If we have optimized stabs strings, output them.  */
11528   if (elf_hash_table (info)->stab_info.stabstr != NULL)
11529     {
11530       if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11531 	goto error_return;
11532     }
11533 
11534   if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11535     goto error_return;
11536 
11537   elf_final_link_free (abfd, &flinfo);
11538 
11539   elf_linker (abfd) = TRUE;
11540 
11541   if (attr_section)
11542     {
11543       bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11544       if (contents == NULL)
11545 	return FALSE;	/* Bail out and fail.  */
11546       bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11547       bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11548       free (contents);
11549     }
11550 
11551   return TRUE;
11552 
11553  error_return:
11554   elf_final_link_free (abfd, &flinfo);
11555   return FALSE;
11556 }
11557 
11558 /* Initialize COOKIE for input bfd ABFD.  */
11559 
11560 static bfd_boolean
11561 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11562 		   struct bfd_link_info *info, bfd *abfd)
11563 {
11564   Elf_Internal_Shdr *symtab_hdr;
11565   const struct elf_backend_data *bed;
11566 
11567   bed = get_elf_backend_data (abfd);
11568   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11569 
11570   cookie->abfd = abfd;
11571   cookie->sym_hashes = elf_sym_hashes (abfd);
11572   cookie->bad_symtab = elf_bad_symtab (abfd);
11573   if (cookie->bad_symtab)
11574     {
11575       cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11576       cookie->extsymoff = 0;
11577     }
11578   else
11579     {
11580       cookie->locsymcount = symtab_hdr->sh_info;
11581       cookie->extsymoff = symtab_hdr->sh_info;
11582     }
11583 
11584   if (bed->s->arch_size == 32)
11585     cookie->r_sym_shift = 8;
11586   else
11587     cookie->r_sym_shift = 32;
11588 
11589   cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11590   if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11591     {
11592       cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11593 					      cookie->locsymcount, 0,
11594 					      NULL, NULL, NULL);
11595       if (cookie->locsyms == NULL)
11596 	{
11597 	  info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11598 	  return FALSE;
11599 	}
11600       if (info->keep_memory)
11601 	symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11602     }
11603   return TRUE;
11604 }
11605 
11606 /* Free the memory allocated by init_reloc_cookie, if appropriate.  */
11607 
11608 static void
11609 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11610 {
11611   Elf_Internal_Shdr *symtab_hdr;
11612 
11613   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11614   if (cookie->locsyms != NULL
11615       && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11616     free (cookie->locsyms);
11617 }
11618 
11619 /* Initialize the relocation information in COOKIE for input section SEC
11620    of input bfd ABFD.  */
11621 
11622 static bfd_boolean
11623 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11624 			struct bfd_link_info *info, bfd *abfd,
11625 			asection *sec)
11626 {
11627   const struct elf_backend_data *bed;
11628 
11629   if (sec->reloc_count == 0)
11630     {
11631       cookie->rels = NULL;
11632       cookie->relend = NULL;
11633     }
11634   else
11635     {
11636       bed = get_elf_backend_data (abfd);
11637 
11638       cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11639 						info->keep_memory);
11640       if (cookie->rels == NULL)
11641 	return FALSE;
11642       cookie->rel = cookie->rels;
11643       cookie->relend = (cookie->rels
11644 			+ sec->reloc_count * bed->s->int_rels_per_ext_rel);
11645     }
11646   cookie->rel = cookie->rels;
11647   return TRUE;
11648 }
11649 
11650 /* Free the memory allocated by init_reloc_cookie_rels,
11651    if appropriate.  */
11652 
11653 static void
11654 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11655 			asection *sec)
11656 {
11657   if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11658     free (cookie->rels);
11659 }
11660 
11661 /* Initialize the whole of COOKIE for input section SEC.  */
11662 
11663 static bfd_boolean
11664 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11665 			       struct bfd_link_info *info,
11666 			       asection *sec)
11667 {
11668   if (!init_reloc_cookie (cookie, info, sec->owner))
11669     goto error1;
11670   if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11671     goto error2;
11672   return TRUE;
11673 
11674  error2:
11675   fini_reloc_cookie (cookie, sec->owner);
11676  error1:
11677   return FALSE;
11678 }
11679 
11680 /* Free the memory allocated by init_reloc_cookie_for_section,
11681    if appropriate.  */
11682 
11683 static void
11684 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11685 			       asection *sec)
11686 {
11687   fini_reloc_cookie_rels (cookie, sec);
11688   fini_reloc_cookie (cookie, sec->owner);
11689 }
11690 
11691 /* Garbage collect unused sections.  */
11692 
11693 /* Default gc_mark_hook.  */
11694 
11695 asection *
11696 _bfd_elf_gc_mark_hook (asection *sec,
11697 		       struct bfd_link_info *info ATTRIBUTE_UNUSED,
11698 		       Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11699 		       struct elf_link_hash_entry *h,
11700 		       Elf_Internal_Sym *sym)
11701 {
11702   const char *sec_name;
11703 
11704   if (h != NULL)
11705     {
11706       switch (h->root.type)
11707 	{
11708 	case bfd_link_hash_defined:
11709 	case bfd_link_hash_defweak:
11710 	  return h->root.u.def.section;
11711 
11712 	case bfd_link_hash_common:
11713 	  return h->root.u.c.p->section;
11714 
11715 	case bfd_link_hash_undefined:
11716 	case bfd_link_hash_undefweak:
11717 	  /* To work around a glibc bug, keep all XXX input sections
11718 	     when there is an as yet undefined reference to __start_XXX
11719 	     or __stop_XXX symbols.  The linker will later define such
11720 	     symbols for orphan input sections that have a name
11721 	     representable as a C identifier.  */
11722 	  if (strncmp (h->root.root.string, "__start_", 8) == 0)
11723 	    sec_name = h->root.root.string + 8;
11724 	  else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11725 	    sec_name = h->root.root.string + 7;
11726 	  else
11727 	    sec_name = NULL;
11728 
11729 	  if (sec_name && *sec_name != '\0')
11730 	    {
11731 	      bfd *i;
11732 
11733 	      for (i = info->input_bfds; i; i = i->link_next)
11734 		{
11735 		  sec = bfd_get_section_by_name (i, sec_name);
11736 		  if (sec)
11737 		    sec->flags |= SEC_KEEP;
11738 		}
11739 	    }
11740 	  break;
11741 
11742 	default:
11743 	  break;
11744 	}
11745     }
11746   else
11747     return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11748 
11749   return NULL;
11750 }
11751 
11752 /* COOKIE->rel describes a relocation against section SEC, which is
11753    a section we've decided to keep.  Return the section that contains
11754    the relocation symbol, or NULL if no section contains it.  */
11755 
11756 asection *
11757 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11758 		       elf_gc_mark_hook_fn gc_mark_hook,
11759 		       struct elf_reloc_cookie *cookie)
11760 {
11761   unsigned long r_symndx;
11762   struct elf_link_hash_entry *h;
11763 
11764   r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11765   if (r_symndx == STN_UNDEF)
11766     return NULL;
11767 
11768   if (r_symndx >= cookie->locsymcount
11769       || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11770     {
11771       h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11772       while (h->root.type == bfd_link_hash_indirect
11773 	     || h->root.type == bfd_link_hash_warning)
11774 	h = (struct elf_link_hash_entry *) h->root.u.i.link;
11775       h->mark = 1;
11776       /* If this symbol is weak and there is a non-weak definition, we
11777 	 keep the non-weak definition because many backends put
11778 	 dynamic reloc info on the non-weak definition for code
11779 	 handling copy relocs.  */
11780       if (h->u.weakdef != NULL)
11781 	h->u.weakdef->mark = 1;
11782       return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11783     }
11784 
11785   return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11786 			  &cookie->locsyms[r_symndx]);
11787 }
11788 
11789 /* COOKIE->rel describes a relocation against section SEC, which is
11790    a section we've decided to keep.  Mark the section that contains
11791    the relocation symbol.  */
11792 
11793 bfd_boolean
11794 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11795 			asection *sec,
11796 			elf_gc_mark_hook_fn gc_mark_hook,
11797 			struct elf_reloc_cookie *cookie)
11798 {
11799   asection *rsec;
11800 
11801   rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11802   if (rsec && !rsec->gc_mark)
11803     {
11804       if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11805 	  || (rsec->owner->flags & DYNAMIC) != 0)
11806 	rsec->gc_mark = 1;
11807       else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11808 	return FALSE;
11809     }
11810   return TRUE;
11811 }
11812 
11813 /* The mark phase of garbage collection.  For a given section, mark
11814    it and any sections in this section's group, and all the sections
11815    which define symbols to which it refers.  */
11816 
11817 bfd_boolean
11818 _bfd_elf_gc_mark (struct bfd_link_info *info,
11819 		  asection *sec,
11820 		  elf_gc_mark_hook_fn gc_mark_hook)
11821 {
11822   bfd_boolean ret;
11823   asection *group_sec, *eh_frame;
11824 
11825   sec->gc_mark = 1;
11826 
11827   /* Mark all the sections in the group.  */
11828   group_sec = elf_section_data (sec)->next_in_group;
11829   if (group_sec && !group_sec->gc_mark)
11830     if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11831       return FALSE;
11832 
11833   /* Look through the section relocs.  */
11834   ret = TRUE;
11835   eh_frame = elf_eh_frame_section (sec->owner);
11836   if ((sec->flags & SEC_RELOC) != 0
11837       && sec->reloc_count > 0
11838       && sec != eh_frame)
11839     {
11840       struct elf_reloc_cookie cookie;
11841 
11842       if (!init_reloc_cookie_for_section (&cookie, info, sec))
11843 	ret = FALSE;
11844       else
11845 	{
11846 	  for (; cookie.rel < cookie.relend; cookie.rel++)
11847 	    if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11848 	      {
11849 		ret = FALSE;
11850 		break;
11851 	      }
11852 	  fini_reloc_cookie_for_section (&cookie, sec);
11853 	}
11854     }
11855 
11856   if (ret && eh_frame && elf_fde_list (sec))
11857     {
11858       struct elf_reloc_cookie cookie;
11859 
11860       if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11861 	ret = FALSE;
11862       else
11863 	{
11864 	  if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11865 				      gc_mark_hook, &cookie))
11866 	    ret = FALSE;
11867 	  fini_reloc_cookie_for_section (&cookie, eh_frame);
11868 	}
11869     }
11870 
11871   return ret;
11872 }
11873 
11874 /* Keep debug and special sections.  */
11875 
11876 bfd_boolean
11877 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11878 				 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11879 {
11880   bfd *ibfd;
11881 
11882   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11883     {
11884       asection *isec;
11885       bfd_boolean some_kept;
11886 
11887       if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11888 	continue;
11889 
11890       /* Ensure all linker created sections are kept, and see whether
11891 	 any other section is already marked.  */
11892       some_kept = FALSE;
11893       for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11894 	{
11895 	  if ((isec->flags & SEC_LINKER_CREATED) != 0)
11896 	    isec->gc_mark = 1;
11897 	  else if (isec->gc_mark)
11898 	    some_kept = TRUE;
11899 	}
11900 
11901       /* If no section in this file will be kept, then we can
11902 	 toss out debug sections.  */
11903       if (!some_kept)
11904 	continue;
11905 
11906       /* Keep debug and special sections like .comment when they are
11907 	 not part of a group, or when we have single-member groups.  */
11908       for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11909 	if ((elf_next_in_group (isec) == NULL
11910 	     || elf_next_in_group (isec) == isec)
11911 	    && ((isec->flags & SEC_DEBUGGING) != 0
11912 		|| (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11913 	  isec->gc_mark = 1;
11914     }
11915   return TRUE;
11916 }
11917 
11918 /* Sweep symbols in swept sections.  Called via elf_link_hash_traverse.  */
11919 
11920 struct elf_gc_sweep_symbol_info
11921 {
11922   struct bfd_link_info *info;
11923   void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11924 		       bfd_boolean);
11925 };
11926 
11927 static bfd_boolean
11928 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11929 {
11930   if (!h->mark
11931       && (((h->root.type == bfd_link_hash_defined
11932 	    || h->root.type == bfd_link_hash_defweak)
11933 	   && !(h->def_regular
11934 		&& h->root.u.def.section->gc_mark))
11935 	  || h->root.type == bfd_link_hash_undefined
11936 	  || h->root.type == bfd_link_hash_undefweak))
11937     {
11938       struct elf_gc_sweep_symbol_info *inf;
11939 
11940       inf = (struct elf_gc_sweep_symbol_info *) data;
11941       (*inf->hide_symbol) (inf->info, h, TRUE);
11942       h->def_regular = 0;
11943       h->ref_regular = 0;
11944       h->ref_regular_nonweak = 0;
11945     }
11946 
11947   return TRUE;
11948 }
11949 
11950 /* The sweep phase of garbage collection.  Remove all garbage sections.  */
11951 
11952 typedef bfd_boolean (*gc_sweep_hook_fn)
11953   (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11954 
11955 static bfd_boolean
11956 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11957 {
11958   bfd *sub;
11959   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11960   gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11961   unsigned long section_sym_count;
11962   struct elf_gc_sweep_symbol_info sweep_info;
11963 
11964   for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11965     {
11966       asection *o;
11967 
11968       if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11969 	continue;
11970 
11971       for (o = sub->sections; o != NULL; o = o->next)
11972 	{
11973 	  /* When any section in a section group is kept, we keep all
11974 	     sections in the section group.  If the first member of
11975 	     the section group is excluded, we will also exclude the
11976 	     group section.  */
11977 	  if (o->flags & SEC_GROUP)
11978 	    {
11979 	      asection *first = elf_next_in_group (o);
11980 	      o->gc_mark = first->gc_mark;
11981 	    }
11982 
11983 	  if (o->gc_mark)
11984 	    continue;
11985 
11986 	  /* Skip sweeping sections already excluded.  */
11987 	  if (o->flags & SEC_EXCLUDE)
11988 	    continue;
11989 
11990 	  /* Since this is early in the link process, it is simple
11991 	     to remove a section from the output.  */
11992 	  o->flags |= SEC_EXCLUDE;
11993 
11994 	  if (info->print_gc_sections && o->size != 0)
11995 	    _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11996 
11997 	  /* But we also have to update some of the relocation
11998 	     info we collected before.  */
11999 	  if (gc_sweep_hook
12000 	      && (o->flags & SEC_RELOC) != 0
12001 	      && o->reloc_count > 0
12002 	      && !bfd_is_abs_section (o->output_section))
12003 	    {
12004 	      Elf_Internal_Rela *internal_relocs;
12005 	      bfd_boolean r;
12006 
12007 	      internal_relocs
12008 		= _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12009 					     info->keep_memory);
12010 	      if (internal_relocs == NULL)
12011 		return FALSE;
12012 
12013 	      r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12014 
12015 	      if (elf_section_data (o)->relocs != internal_relocs)
12016 		free (internal_relocs);
12017 
12018 	      if (!r)
12019 		return FALSE;
12020 	    }
12021 	}
12022     }
12023 
12024   /* Remove the symbols that were in the swept sections from the dynamic
12025      symbol table.  GCFIXME: Anyone know how to get them out of the
12026      static symbol table as well?  */
12027   sweep_info.info = info;
12028   sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12029   elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12030 			  &sweep_info);
12031 
12032   _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12033   return TRUE;
12034 }
12035 
12036 /* Propagate collected vtable information.  This is called through
12037    elf_link_hash_traverse.  */
12038 
12039 static bfd_boolean
12040 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12041 {
12042   /* Those that are not vtables.  */
12043   if (h->vtable == NULL || h->vtable->parent == NULL)
12044     return TRUE;
12045 
12046   /* Those vtables that do not have parents, we cannot merge.  */
12047   if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12048     return TRUE;
12049 
12050   /* If we've already been done, exit.  */
12051   if (h->vtable->used && h->vtable->used[-1])
12052     return TRUE;
12053 
12054   /* Make sure the parent's table is up to date.  */
12055   elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12056 
12057   if (h->vtable->used == NULL)
12058     {
12059       /* None of this table's entries were referenced.  Re-use the
12060 	 parent's table.  */
12061       h->vtable->used = h->vtable->parent->vtable->used;
12062       h->vtable->size = h->vtable->parent->vtable->size;
12063     }
12064   else
12065     {
12066       size_t n;
12067       bfd_boolean *cu, *pu;
12068 
12069       /* Or the parent's entries into ours.  */
12070       cu = h->vtable->used;
12071       cu[-1] = TRUE;
12072       pu = h->vtable->parent->vtable->used;
12073       if (pu != NULL)
12074 	{
12075 	  const struct elf_backend_data *bed;
12076 	  unsigned int log_file_align;
12077 
12078 	  bed = get_elf_backend_data (h->root.u.def.section->owner);
12079 	  log_file_align = bed->s->log_file_align;
12080 	  n = h->vtable->parent->vtable->size >> log_file_align;
12081 	  while (n--)
12082 	    {
12083 	      if (*pu)
12084 		*cu = TRUE;
12085 	      pu++;
12086 	      cu++;
12087 	    }
12088 	}
12089     }
12090 
12091   return TRUE;
12092 }
12093 
12094 static bfd_boolean
12095 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12096 {
12097   asection *sec;
12098   bfd_vma hstart, hend;
12099   Elf_Internal_Rela *relstart, *relend, *rel;
12100   const struct elf_backend_data *bed;
12101   unsigned int log_file_align;
12102 
12103   /* Take care of both those symbols that do not describe vtables as
12104      well as those that are not loaded.  */
12105   if (h->vtable == NULL || h->vtable->parent == NULL)
12106     return TRUE;
12107 
12108   BFD_ASSERT (h->root.type == bfd_link_hash_defined
12109 	      || h->root.type == bfd_link_hash_defweak);
12110 
12111   sec = h->root.u.def.section;
12112   hstart = h->root.u.def.value;
12113   hend = hstart + h->size;
12114 
12115   relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12116   if (!relstart)
12117     return *(bfd_boolean *) okp = FALSE;
12118   bed = get_elf_backend_data (sec->owner);
12119   log_file_align = bed->s->log_file_align;
12120 
12121   relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12122 
12123   for (rel = relstart; rel < relend; ++rel)
12124     if (rel->r_offset >= hstart && rel->r_offset < hend)
12125       {
12126 	/* If the entry is in use, do nothing.  */
12127 	if (h->vtable->used
12128 	    && (rel->r_offset - hstart) < h->vtable->size)
12129 	  {
12130 	    bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12131 	    if (h->vtable->used[entry])
12132 	      continue;
12133 	  }
12134 	/* Otherwise, kill it.  */
12135 	rel->r_offset = rel->r_info = rel->r_addend = 0;
12136       }
12137 
12138   return TRUE;
12139 }
12140 
12141 /* Mark sections containing dynamically referenced symbols.  When
12142    building shared libraries, we must assume that any visible symbol is
12143    referenced.  */
12144 
12145 bfd_boolean
12146 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12147 {
12148   struct bfd_link_info *info = (struct bfd_link_info *) inf;
12149 
12150   if ((h->root.type == bfd_link_hash_defined
12151        || h->root.type == bfd_link_hash_defweak)
12152       && (h->ref_dynamic
12153 	  || ((!info->executable || info->export_dynamic)
12154 	      && h->def_regular
12155 	      && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12156 	      && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12157 	      && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12158 		  || !bfd_hide_sym_by_version (info->version_info,
12159 					       h->root.root.string)))))
12160     h->root.u.def.section->flags |= SEC_KEEP;
12161 
12162   return TRUE;
12163 }
12164 
12165 /* Keep all sections containing symbols undefined on the command-line,
12166    and the section containing the entry symbol.  */
12167 
12168 void
12169 _bfd_elf_gc_keep (struct bfd_link_info *info)
12170 {
12171   struct bfd_sym_chain *sym;
12172 
12173   for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12174     {
12175       struct elf_link_hash_entry *h;
12176 
12177       h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12178 				FALSE, FALSE, FALSE);
12179 
12180       if (h != NULL
12181 	  && (h->root.type == bfd_link_hash_defined
12182 	      || h->root.type == bfd_link_hash_defweak)
12183 	  && !bfd_is_abs_section (h->root.u.def.section))
12184 	h->root.u.def.section->flags |= SEC_KEEP;
12185     }
12186 }
12187 
12188 /* Do mark and sweep of unused sections.  */
12189 
12190 bfd_boolean
12191 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12192 {
12193   bfd_boolean ok = TRUE;
12194   bfd *sub;
12195   elf_gc_mark_hook_fn gc_mark_hook;
12196   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12197 
12198   if (!bed->can_gc_sections
12199       || !is_elf_hash_table (info->hash))
12200     {
12201       (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12202       return TRUE;
12203     }
12204 
12205   bed->gc_keep (info);
12206 
12207   /* Try to parse each bfd's .eh_frame section.  Point elf_eh_frame_section
12208      at the .eh_frame section if we can mark the FDEs individually.  */
12209   _bfd_elf_begin_eh_frame_parsing (info);
12210   for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12211     {
12212       asection *sec;
12213       struct elf_reloc_cookie cookie;
12214 
12215       sec = bfd_get_section_by_name (sub, ".eh_frame");
12216       while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12217 	{
12218 	  _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12219 	  if (elf_section_data (sec)->sec_info
12220 	      && (sec->flags & SEC_LINKER_CREATED) == 0)
12221 	    elf_eh_frame_section (sub) = sec;
12222 	  fini_reloc_cookie_for_section (&cookie, sec);
12223 	  sec = bfd_get_next_section_by_name (sec);
12224 	}
12225     }
12226   _bfd_elf_end_eh_frame_parsing (info);
12227 
12228   /* Apply transitive closure to the vtable entry usage info.  */
12229   elf_link_hash_traverse (elf_hash_table (info),
12230 			  elf_gc_propagate_vtable_entries_used,
12231 			  &ok);
12232   if (!ok)
12233     return FALSE;
12234 
12235   /* Kill the vtable relocations that were not used.  */
12236   elf_link_hash_traverse (elf_hash_table (info),
12237 			  elf_gc_smash_unused_vtentry_relocs,
12238 			  &ok);
12239   if (!ok)
12240     return FALSE;
12241 
12242   /* Mark dynamically referenced symbols.  */
12243   if (elf_hash_table (info)->dynamic_sections_created)
12244     elf_link_hash_traverse (elf_hash_table (info),
12245 			    bed->gc_mark_dynamic_ref,
12246 			    info);
12247 
12248   /* Grovel through relocs to find out who stays ...  */
12249   gc_mark_hook = bed->gc_mark_hook;
12250   for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12251     {
12252       asection *o;
12253 
12254       if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12255 	continue;
12256 
12257       /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12258 	 Also treat note sections as a root, if the section is not part
12259 	 of a group.  */
12260       for (o = sub->sections; o != NULL; o = o->next)
12261 	if (!o->gc_mark
12262 	    && (o->flags & SEC_EXCLUDE) == 0
12263 	    && ((o->flags & SEC_KEEP) != 0
12264 		|| (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12265 		    && elf_next_in_group (o) == NULL )))
12266 	  {
12267 	    if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12268 	      return FALSE;
12269 	  }
12270     }
12271 
12272   /* Allow the backend to mark additional target specific sections.  */
12273   bed->gc_mark_extra_sections (info, gc_mark_hook);
12274 
12275   /* ... and mark SEC_EXCLUDE for those that go.  */
12276   return elf_gc_sweep (abfd, info);
12277 }
12278 
12279 /* Called from check_relocs to record the existence of a VTINHERIT reloc.  */
12280 
12281 bfd_boolean
12282 bfd_elf_gc_record_vtinherit (bfd *abfd,
12283 			     asection *sec,
12284 			     struct elf_link_hash_entry *h,
12285 			     bfd_vma offset)
12286 {
12287   struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12288   struct elf_link_hash_entry **search, *child;
12289   bfd_size_type extsymcount;
12290   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12291 
12292   /* The sh_info field of the symtab header tells us where the
12293      external symbols start.  We don't care about the local symbols at
12294      this point.  */
12295   extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12296   if (!elf_bad_symtab (abfd))
12297     extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12298 
12299   sym_hashes = elf_sym_hashes (abfd);
12300   sym_hashes_end = sym_hashes + extsymcount;
12301 
12302   /* Hunt down the child symbol, which is in this section at the same
12303      offset as the relocation.  */
12304   for (search = sym_hashes; search != sym_hashes_end; ++search)
12305     {
12306       if ((child = *search) != NULL
12307 	  && (child->root.type == bfd_link_hash_defined
12308 	      || child->root.type == bfd_link_hash_defweak)
12309 	  && child->root.u.def.section == sec
12310 	  && child->root.u.def.value == offset)
12311 	goto win;
12312     }
12313 
12314   (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12315 			 abfd, sec, (unsigned long) offset);
12316   bfd_set_error (bfd_error_invalid_operation);
12317   return FALSE;
12318 
12319  win:
12320   if (!child->vtable)
12321     {
12322       child->vtable = (struct elf_link_virtual_table_entry *)
12323           bfd_zalloc (abfd, sizeof (*child->vtable));
12324       if (!child->vtable)
12325 	return FALSE;
12326     }
12327   if (!h)
12328     {
12329       /* This *should* only be the absolute section.  It could potentially
12330 	 be that someone has defined a non-global vtable though, which
12331 	 would be bad.  It isn't worth paging in the local symbols to be
12332 	 sure though; that case should simply be handled by the assembler.  */
12333 
12334       child->vtable->parent = (struct elf_link_hash_entry *) -1;
12335     }
12336   else
12337     child->vtable->parent = h;
12338 
12339   return TRUE;
12340 }
12341 
12342 /* Called from check_relocs to record the existence of a VTENTRY reloc.  */
12343 
12344 bfd_boolean
12345 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12346 			   asection *sec ATTRIBUTE_UNUSED,
12347 			   struct elf_link_hash_entry *h,
12348 			   bfd_vma addend)
12349 {
12350   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12351   unsigned int log_file_align = bed->s->log_file_align;
12352 
12353   if (!h->vtable)
12354     {
12355       h->vtable = (struct elf_link_virtual_table_entry *)
12356           bfd_zalloc (abfd, sizeof (*h->vtable));
12357       if (!h->vtable)
12358 	return FALSE;
12359     }
12360 
12361   if (addend >= h->vtable->size)
12362     {
12363       size_t size, bytes, file_align;
12364       bfd_boolean *ptr = h->vtable->used;
12365 
12366       /* While the symbol is undefined, we have to be prepared to handle
12367 	 a zero size.  */
12368       file_align = 1 << log_file_align;
12369       if (h->root.type == bfd_link_hash_undefined)
12370 	size = addend + file_align;
12371       else
12372 	{
12373 	  size = h->size;
12374 	  if (addend >= size)
12375 	    {
12376 	      /* Oops!  We've got a reference past the defined end of
12377 		 the table.  This is probably a bug -- shall we warn?  */
12378 	      size = addend + file_align;
12379 	    }
12380 	}
12381       size = (size + file_align - 1) & -file_align;
12382 
12383       /* Allocate one extra entry for use as a "done" flag for the
12384 	 consolidation pass.  */
12385       bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12386 
12387       if (ptr)
12388 	{
12389 	  ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12390 
12391 	  if (ptr != NULL)
12392 	    {
12393 	      size_t oldbytes;
12394 
12395 	      oldbytes = (((h->vtable->size >> log_file_align) + 1)
12396 			  * sizeof (bfd_boolean));
12397 	      memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12398 	    }
12399 	}
12400       else
12401 	ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12402 
12403       if (ptr == NULL)
12404 	return FALSE;
12405 
12406       /* And arrange for that done flag to be at index -1.  */
12407       h->vtable->used = ptr + 1;
12408       h->vtable->size = size;
12409     }
12410 
12411   h->vtable->used[addend >> log_file_align] = TRUE;
12412 
12413   return TRUE;
12414 }
12415 
12416 /* Map an ELF section header flag to its corresponding string.  */
12417 typedef struct
12418 {
12419   char *flag_name;
12420   flagword flag_value;
12421 } elf_flags_to_name_table;
12422 
12423 static elf_flags_to_name_table elf_flags_to_names [] =
12424 {
12425   { "SHF_WRITE", SHF_WRITE },
12426   { "SHF_ALLOC", SHF_ALLOC },
12427   { "SHF_EXECINSTR", SHF_EXECINSTR },
12428   { "SHF_MERGE", SHF_MERGE },
12429   { "SHF_STRINGS", SHF_STRINGS },
12430   { "SHF_INFO_LINK", SHF_INFO_LINK},
12431   { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12432   { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12433   { "SHF_GROUP", SHF_GROUP },
12434   { "SHF_TLS", SHF_TLS },
12435   { "SHF_MASKOS", SHF_MASKOS },
12436   { "SHF_EXCLUDE", SHF_EXCLUDE },
12437 };
12438 
12439 /* Returns TRUE if the section is to be included, otherwise FALSE.  */
12440 bfd_boolean
12441 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12442 			      struct flag_info *flaginfo,
12443 			      asection *section)
12444 {
12445   const bfd_vma sh_flags = elf_section_flags (section);
12446 
12447   if (!flaginfo->flags_initialized)
12448     {
12449       bfd *obfd = info->output_bfd;
12450       const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12451       struct flag_info_list *tf = flaginfo->flag_list;
12452       int with_hex = 0;
12453       int without_hex = 0;
12454 
12455       for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12456 	{
12457 	  unsigned i;
12458 	  flagword (*lookup) (char *);
12459 
12460 	  lookup = bed->elf_backend_lookup_section_flags_hook;
12461 	  if (lookup != NULL)
12462 	    {
12463 	      flagword hexval = (*lookup) ((char *) tf->name);
12464 
12465 	      if (hexval != 0)
12466 		{
12467 		  if (tf->with == with_flags)
12468 		    with_hex |= hexval;
12469 		  else if (tf->with == without_flags)
12470 		    without_hex |= hexval;
12471 		  tf->valid = TRUE;
12472 		  continue;
12473 		}
12474 	    }
12475 	  for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12476 	    {
12477 	      if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12478 		{
12479 		  if (tf->with == with_flags)
12480 		    with_hex |= elf_flags_to_names[i].flag_value;
12481 		  else if (tf->with == without_flags)
12482 		    without_hex |= elf_flags_to_names[i].flag_value;
12483 		  tf->valid = TRUE;
12484 		  break;
12485 		}
12486 	    }
12487 	  if (!tf->valid)
12488 	    {
12489 	      info->callbacks->einfo
12490 		(_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12491 	      return FALSE;
12492 	    }
12493 	}
12494       flaginfo->flags_initialized = TRUE;
12495       flaginfo->only_with_flags |= with_hex;
12496       flaginfo->not_with_flags |= without_hex;
12497     }
12498 
12499   if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12500     return FALSE;
12501 
12502   if ((flaginfo->not_with_flags & sh_flags) != 0)
12503     return FALSE;
12504 
12505   return TRUE;
12506 }
12507 
12508 struct alloc_got_off_arg {
12509   bfd_vma gotoff;
12510   struct bfd_link_info *info;
12511 };
12512 
12513 /* We need a special top-level link routine to convert got reference counts
12514    to real got offsets.  */
12515 
12516 static bfd_boolean
12517 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12518 {
12519   struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12520   bfd *obfd = gofarg->info->output_bfd;
12521   const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12522 
12523   if (h->got.refcount > 0)
12524     {
12525       h->got.offset = gofarg->gotoff;
12526       gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12527     }
12528   else
12529     h->got.offset = (bfd_vma) -1;
12530 
12531   return TRUE;
12532 }
12533 
12534 /* And an accompanying bit to work out final got entry offsets once
12535    we're done.  Should be called from final_link.  */
12536 
12537 bfd_boolean
12538 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12539 					struct bfd_link_info *info)
12540 {
12541   bfd *i;
12542   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12543   bfd_vma gotoff;
12544   struct alloc_got_off_arg gofarg;
12545 
12546   BFD_ASSERT (abfd == info->output_bfd);
12547 
12548   if (! is_elf_hash_table (info->hash))
12549     return FALSE;
12550 
12551   /* The GOT offset is relative to the .got section, but the GOT header is
12552      put into the .got.plt section, if the backend uses it.  */
12553   if (bed->want_got_plt)
12554     gotoff = 0;
12555   else
12556     gotoff = bed->got_header_size;
12557 
12558   /* Do the local .got entries first.  */
12559   for (i = info->input_bfds; i; i = i->link_next)
12560     {
12561       bfd_signed_vma *local_got;
12562       bfd_size_type j, locsymcount;
12563       Elf_Internal_Shdr *symtab_hdr;
12564 
12565       if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12566 	continue;
12567 
12568       local_got = elf_local_got_refcounts (i);
12569       if (!local_got)
12570 	continue;
12571 
12572       symtab_hdr = &elf_tdata (i)->symtab_hdr;
12573       if (elf_bad_symtab (i))
12574 	locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12575       else
12576 	locsymcount = symtab_hdr->sh_info;
12577 
12578       for (j = 0; j < locsymcount; ++j)
12579 	{
12580 	  if (local_got[j] > 0)
12581 	    {
12582 	      local_got[j] = gotoff;
12583 	      gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12584 	    }
12585 	  else
12586 	    local_got[j] = (bfd_vma) -1;
12587 	}
12588     }
12589 
12590   /* Then the global .got entries.  .plt refcounts are handled by
12591      adjust_dynamic_symbol  */
12592   gofarg.gotoff = gotoff;
12593   gofarg.info = info;
12594   elf_link_hash_traverse (elf_hash_table (info),
12595 			  elf_gc_allocate_got_offsets,
12596 			  &gofarg);
12597   return TRUE;
12598 }
12599 
12600 /* Many folk need no more in the way of final link than this, once
12601    got entry reference counting is enabled.  */
12602 
12603 bfd_boolean
12604 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12605 {
12606   if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12607     return FALSE;
12608 
12609   /* Invoke the regular ELF backend linker to do all the work.  */
12610   return bfd_elf_final_link (abfd, info);
12611 }
12612 
12613 bfd_boolean
12614 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12615 {
12616   struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12617 
12618   if (rcookie->bad_symtab)
12619     rcookie->rel = rcookie->rels;
12620 
12621   for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12622     {
12623       unsigned long r_symndx;
12624 
12625       if (! rcookie->bad_symtab)
12626 	if (rcookie->rel->r_offset > offset)
12627 	  return FALSE;
12628       if (rcookie->rel->r_offset != offset)
12629 	continue;
12630 
12631       r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12632       if (r_symndx == STN_UNDEF)
12633 	return TRUE;
12634 
12635       if (r_symndx >= rcookie->locsymcount
12636 	  || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12637 	{
12638 	  struct elf_link_hash_entry *h;
12639 
12640 	  h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12641 
12642 	  while (h->root.type == bfd_link_hash_indirect
12643 		 || h->root.type == bfd_link_hash_warning)
12644 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
12645 
12646 	  if ((h->root.type == bfd_link_hash_defined
12647 	       || h->root.type == bfd_link_hash_defweak)
12648 	      && discarded_section (h->root.u.def.section))
12649 	    return TRUE;
12650 	  else
12651 	    return FALSE;
12652 	}
12653       else
12654 	{
12655 	  /* It's not a relocation against a global symbol,
12656 	     but it could be a relocation against a local
12657 	     symbol for a discarded section.  */
12658 	  asection *isec;
12659 	  Elf_Internal_Sym *isym;
12660 
12661 	  /* Need to: get the symbol; get the section.  */
12662 	  isym = &rcookie->locsyms[r_symndx];
12663 	  isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12664 	  if (isec != NULL && discarded_section (isec))
12665 	    return TRUE;
12666 	}
12667       return FALSE;
12668     }
12669   return FALSE;
12670 }
12671 
12672 /* Discard unneeded references to discarded sections.
12673    Returns TRUE if any section's size was changed.  */
12674 /* This function assumes that the relocations are in sorted order,
12675    which is true for all known assemblers.  */
12676 
12677 bfd_boolean
12678 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12679 {
12680   struct elf_reloc_cookie cookie;
12681   asection *stab, *eh;
12682   const struct elf_backend_data *bed;
12683   bfd *abfd;
12684   bfd_boolean ret = FALSE;
12685 
12686   if (info->traditional_format
12687       || !is_elf_hash_table (info->hash))
12688     return FALSE;
12689 
12690   _bfd_elf_begin_eh_frame_parsing (info);
12691   for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12692     {
12693       if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12694 	continue;
12695 
12696       bed = get_elf_backend_data (abfd);
12697 
12698       eh = NULL;
12699       if (!info->relocatable)
12700 	{
12701 	  eh = bfd_get_section_by_name (abfd, ".eh_frame");
12702 	  while (eh != NULL
12703 		 && (eh->size == 0
12704 		     || bfd_is_abs_section (eh->output_section)))
12705 	    eh = bfd_get_next_section_by_name (eh);
12706 	}
12707 
12708       stab = bfd_get_section_by_name (abfd, ".stab");
12709       if (stab != NULL
12710 	  && (stab->size == 0
12711 	      || bfd_is_abs_section (stab->output_section)
12712 	      || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12713 	stab = NULL;
12714 
12715       if (stab == NULL
12716 	  && eh == NULL
12717 	  && bed->elf_backend_discard_info == NULL)
12718 	continue;
12719 
12720       if (!init_reloc_cookie (&cookie, info, abfd))
12721 	return FALSE;
12722 
12723       if (stab != NULL
12724 	  && stab->reloc_count > 0
12725 	  && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12726 	{
12727 	  if (_bfd_discard_section_stabs (abfd, stab,
12728 					  elf_section_data (stab)->sec_info,
12729 					  bfd_elf_reloc_symbol_deleted_p,
12730 					  &cookie))
12731 	    ret = TRUE;
12732 	  fini_reloc_cookie_rels (&cookie, stab);
12733 	}
12734 
12735       while (eh != NULL
12736 	     && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12737 	{
12738 	  _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12739 	  if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12740 						 bfd_elf_reloc_symbol_deleted_p,
12741 						 &cookie))
12742 	    ret = TRUE;
12743 	  fini_reloc_cookie_rels (&cookie, eh);
12744 	  eh = bfd_get_next_section_by_name (eh);
12745 	}
12746 
12747       if (bed->elf_backend_discard_info != NULL
12748 	  && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12749 	ret = TRUE;
12750 
12751       fini_reloc_cookie (&cookie, abfd);
12752     }
12753   _bfd_elf_end_eh_frame_parsing (info);
12754 
12755   if (info->eh_frame_hdr
12756       && !info->relocatable
12757       && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12758     ret = TRUE;
12759 
12760   return ret;
12761 }
12762 
12763 bfd_boolean
12764 _bfd_elf_section_already_linked (bfd *abfd,
12765 				 asection *sec,
12766 				 struct bfd_link_info *info)
12767 {
12768   flagword flags;
12769   const char *name, *key;
12770   struct bfd_section_already_linked *l;
12771   struct bfd_section_already_linked_hash_entry *already_linked_list;
12772 
12773   if (sec->output_section == bfd_abs_section_ptr)
12774     return FALSE;
12775 
12776   flags = sec->flags;
12777 
12778   /* Return if it isn't a linkonce section.  A comdat group section
12779      also has SEC_LINK_ONCE set.  */
12780   if ((flags & SEC_LINK_ONCE) == 0)
12781     return FALSE;
12782 
12783   /* Don't put group member sections on our list of already linked
12784      sections.  They are handled as a group via their group section.  */
12785   if (elf_sec_group (sec) != NULL)
12786     return FALSE;
12787 
12788   /* For a SHT_GROUP section, use the group signature as the key.  */
12789   name = sec->name;
12790   if ((flags & SEC_GROUP) != 0
12791       && elf_next_in_group (sec) != NULL
12792       && elf_group_name (elf_next_in_group (sec)) != NULL)
12793     key = elf_group_name (elf_next_in_group (sec));
12794   else
12795     {
12796       /* Otherwise we should have a .gnu.linkonce.<type>.<key> section.  */
12797       if (CONST_STRNEQ (name, ".gnu.linkonce.")
12798 	  && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12799 	key++;
12800       else
12801 	/* Must be a user linkonce section that doesn't follow gcc's
12802 	   naming convention.  In this case we won't be matching
12803 	   single member groups.  */
12804 	key = name;
12805     }
12806 
12807   already_linked_list = bfd_section_already_linked_table_lookup (key);
12808 
12809   for (l = already_linked_list->entry; l != NULL; l = l->next)
12810     {
12811       /* We may have 2 different types of sections on the list: group
12812 	 sections with a signature of <key> (<key> is some string),
12813 	 and linkonce sections named .gnu.linkonce.<type>.<key>.
12814 	 Match like sections.  LTO plugin sections are an exception.
12815 	 They are always named .gnu.linkonce.t.<key> and match either
12816 	 type of section.  */
12817       if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12818 	   && ((flags & SEC_GROUP) != 0
12819 	       || strcmp (name, l->sec->name) == 0))
12820 	  || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12821 	{
12822 	  /* The section has already been linked.  See if we should
12823 	     issue a warning.  */
12824 	  if (!_bfd_handle_already_linked (sec, l, info))
12825 	    return FALSE;
12826 
12827 	  if (flags & SEC_GROUP)
12828 	    {
12829 	      asection *first = elf_next_in_group (sec);
12830 	      asection *s = first;
12831 
12832 	      while (s != NULL)
12833 		{
12834 		  s->output_section = bfd_abs_section_ptr;
12835 		  /* Record which group discards it.  */
12836 		  s->kept_section = l->sec;
12837 		  s = elf_next_in_group (s);
12838 		  /* These lists are circular.  */
12839 		  if (s == first)
12840 		    break;
12841 		}
12842 	    }
12843 
12844 	  return TRUE;
12845 	}
12846     }
12847 
12848   /* A single member comdat group section may be discarded by a
12849      linkonce section and vice versa.  */
12850   if ((flags & SEC_GROUP) != 0)
12851     {
12852       asection *first = elf_next_in_group (sec);
12853 
12854       if (first != NULL && elf_next_in_group (first) == first)
12855 	/* Check this single member group against linkonce sections.  */
12856 	for (l = already_linked_list->entry; l != NULL; l = l->next)
12857 	  if ((l->sec->flags & SEC_GROUP) == 0
12858 	      && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12859 	    {
12860 	      first->output_section = bfd_abs_section_ptr;
12861 	      first->kept_section = l->sec;
12862 	      sec->output_section = bfd_abs_section_ptr;
12863 	      break;
12864 	    }
12865     }
12866   else
12867     /* Check this linkonce section against single member groups.  */
12868     for (l = already_linked_list->entry; l != NULL; l = l->next)
12869       if (l->sec->flags & SEC_GROUP)
12870 	{
12871 	  asection *first = elf_next_in_group (l->sec);
12872 
12873 	  if (first != NULL
12874 	      && elf_next_in_group (first) == first
12875 	      && bfd_elf_match_symbols_in_sections (first, sec, info))
12876 	    {
12877 	      sec->output_section = bfd_abs_section_ptr;
12878 	      sec->kept_section = first;
12879 	      break;
12880 	    }
12881 	}
12882 
12883   /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12884      referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12885      specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12886      prefix) instead.  `.gnu.linkonce.r.*' were the `.rodata' part of its
12887      matching `.gnu.linkonce.t.*'.  If `.gnu.linkonce.r.F' is not discarded
12888      but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12889      `.gnu.linkonce.t.F' section from a different bfd not requiring any
12890      `.gnu.linkonce.r.F'.  Thus `.gnu.linkonce.r.F' should be discarded.
12891      The reverse order cannot happen as there is never a bfd with only the
12892      `.gnu.linkonce.r.F' section.  The order of sections in a bfd does not
12893      matter as here were are looking only for cross-bfd sections.  */
12894 
12895   if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12896     for (l = already_linked_list->entry; l != NULL; l = l->next)
12897       if ((l->sec->flags & SEC_GROUP) == 0
12898 	  && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12899 	{
12900 	  if (abfd != l->sec->owner)
12901 	    sec->output_section = bfd_abs_section_ptr;
12902 	  break;
12903 	}
12904 
12905   /* This is the first section with this name.  Record it.  */
12906   if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12907     info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12908   return sec->output_section == bfd_abs_section_ptr;
12909 }
12910 
12911 bfd_boolean
12912 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12913 {
12914   return sym->st_shndx == SHN_COMMON;
12915 }
12916 
12917 unsigned int
12918 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12919 {
12920   return SHN_COMMON;
12921 }
12922 
12923 asection *
12924 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12925 {
12926   return bfd_com_section_ptr;
12927 }
12928 
12929 bfd_vma
12930 _bfd_elf_default_got_elt_size (bfd *abfd,
12931 			       struct bfd_link_info *info ATTRIBUTE_UNUSED,
12932 			       struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12933 			       bfd *ibfd ATTRIBUTE_UNUSED,
12934 			       unsigned long symndx ATTRIBUTE_UNUSED)
12935 {
12936   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12937   return bed->s->arch_size / 8;
12938 }
12939 
12940 /* Routines to support the creation of dynamic relocs.  */
12941 
12942 /* Returns the name of the dynamic reloc section associated with SEC.  */
12943 
12944 static const char *
12945 get_dynamic_reloc_section_name (bfd *       abfd,
12946 				asection *  sec,
12947 				bfd_boolean is_rela)
12948 {
12949   char *name;
12950   const char *old_name = bfd_get_section_name (NULL, sec);
12951   const char *prefix = is_rela ? ".rela" : ".rel";
12952 
12953   if (old_name == NULL)
12954     return NULL;
12955 
12956   name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12957   sprintf (name, "%s%s", prefix, old_name);
12958 
12959   return name;
12960 }
12961 
12962 /* Returns the dynamic reloc section associated with SEC.
12963    If necessary compute the name of the dynamic reloc section based
12964    on SEC's name (looked up in ABFD's string table) and the setting
12965    of IS_RELA.  */
12966 
12967 asection *
12968 _bfd_elf_get_dynamic_reloc_section (bfd *       abfd,
12969 				    asection *  sec,
12970 				    bfd_boolean is_rela)
12971 {
12972   asection * reloc_sec = elf_section_data (sec)->sreloc;
12973 
12974   if (reloc_sec == NULL)
12975     {
12976       const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12977 
12978       if (name != NULL)
12979 	{
12980 	  reloc_sec = bfd_get_linker_section (abfd, name);
12981 
12982 	  if (reloc_sec != NULL)
12983 	    elf_section_data (sec)->sreloc = reloc_sec;
12984 	}
12985     }
12986 
12987   return reloc_sec;
12988 }
12989 
12990 /* Returns the dynamic reloc section associated with SEC.  If the
12991    section does not exist it is created and attached to the DYNOBJ
12992    bfd and stored in the SRELOC field of SEC's elf_section_data
12993    structure.
12994 
12995    ALIGNMENT is the alignment for the newly created section and
12996    IS_RELA defines whether the name should be .rela.<SEC's name>
12997    or .rel.<SEC's name>.  The section name is looked up in the
12998    string table associated with ABFD.  */
12999 
13000 asection *
13001 _bfd_elf_make_dynamic_reloc_section (asection *         sec,
13002 				     bfd *		dynobj,
13003 				     unsigned int	alignment,
13004 				     bfd *              abfd,
13005 				     bfd_boolean        is_rela)
13006 {
13007   asection * reloc_sec = elf_section_data (sec)->sreloc;
13008 
13009   if (reloc_sec == NULL)
13010     {
13011       const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13012 
13013       if (name == NULL)
13014 	return NULL;
13015 
13016       reloc_sec = bfd_get_linker_section (dynobj, name);
13017 
13018       if (reloc_sec == NULL)
13019 	{
13020 	  flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13021 			    | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13022 	  if ((sec->flags & SEC_ALLOC) != 0)
13023 	    flags |= SEC_ALLOC | SEC_LOAD;
13024 
13025 	  reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13026 	  if (reloc_sec != NULL)
13027 	    {
13028 	      if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13029 		reloc_sec = NULL;
13030 	    }
13031 	}
13032 
13033       elf_section_data (sec)->sreloc = reloc_sec;
13034     }
13035 
13036   return reloc_sec;
13037 }
13038 
13039 /* Copy the ELF symbol type associated with a linker hash entry.  */
13040 void
13041 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
13042     struct bfd_link_hash_entry * hdest,
13043     struct bfd_link_hash_entry * hsrc)
13044 {
13045   struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
13046   struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
13047 
13048   ehdest->type = ehsrc->type;
13049   ehdest->target_internal = ehsrc->target_internal;
13050 }
13051 
13052 /* Append a RELA relocation REL to section S in BFD.  */
13053 
13054 void
13055 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13056 {
13057   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13058   bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13059   BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13060   bed->s->swap_reloca_out (abfd, rel, loc);
13061 }
13062 
13063 /* Append a REL relocation REL to section S in BFD.  */
13064 
13065 void
13066 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13067 {
13068   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13069   bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13070   BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13071   bed->s->swap_reloc_out (abfd, rel, loc);
13072 }
13073