xref: /dragonfly/contrib/gdb-7/bfd/elflink.c (revision 6693db17)
1 /* ELF linking support for BFD.
2    Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3    2005, 2006, 2007, 2008, 2009
4    Free Software Foundation, Inc.
5 
6    This file is part of BFD, the Binary File Descriptor library.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, write to the Free Software
20    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21    MA 02110-1301, USA.  */
22 
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32 
33 /* This struct is used to pass information to routines called via
34    elf_link_hash_traverse which must return failure.  */
35 
36 struct elf_info_failed
37 {
38   struct bfd_link_info *info;
39   struct bfd_elf_version_tree *verdefs;
40   bfd_boolean failed;
41 };
42 
43 /* This structure is used to pass information to
44    _bfd_elf_link_find_version_dependencies.  */
45 
46 struct elf_find_verdep_info
47 {
48   /* General link information.  */
49   struct bfd_link_info *info;
50   /* The number of dependencies.  */
51   unsigned int vers;
52   /* Whether we had a failure.  */
53   bfd_boolean failed;
54 };
55 
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57   (struct elf_link_hash_entry *, struct elf_info_failed *);
58 
59 /* Define a symbol in a dynamic linkage section.  */
60 
61 struct elf_link_hash_entry *
62 _bfd_elf_define_linkage_sym (bfd *abfd,
63 			     struct bfd_link_info *info,
64 			     asection *sec,
65 			     const char *name)
66 {
67   struct elf_link_hash_entry *h;
68   struct bfd_link_hash_entry *bh;
69   const struct elf_backend_data *bed;
70 
71   h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72   if (h != NULL)
73     {
74       /* Zap symbol defined in an as-needed lib that wasn't linked.
75 	 This is a symptom of a larger problem:  Absolute symbols
76 	 defined in shared libraries can't be overridden, because we
77 	 lose the link to the bfd which is via the symbol section.  */
78       h->root.type = bfd_link_hash_new;
79     }
80 
81   bh = &h->root;
82   if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 					 sec, 0, NULL, FALSE,
84 					 get_elf_backend_data (abfd)->collect,
85 					 &bh))
86     return NULL;
87   h = (struct elf_link_hash_entry *) bh;
88   h->def_regular = 1;
89   h->type = STT_OBJECT;
90   h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91 
92   bed = get_elf_backend_data (abfd);
93   (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94   return h;
95 }
96 
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100   flagword flags;
101   asection *s;
102   struct elf_link_hash_entry *h;
103   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104   struct elf_link_hash_table *htab = elf_hash_table (info);
105 
106   /* This function may be called more than once.  */
107   s = bfd_get_section_by_name (abfd, ".got");
108   if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
109     return TRUE;
110 
111   flags = bed->dynamic_sec_flags;
112 
113   s = bfd_make_section_with_flags (abfd,
114 				   (bed->rela_plts_and_copies_p
115 				    ? ".rela.got" : ".rel.got"),
116 				   (bed->dynamic_sec_flags
117 				    | SEC_READONLY));
118   if (s == NULL
119       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120     return FALSE;
121   htab->srelgot = s;
122 
123   s = bfd_make_section_with_flags (abfd, ".got", flags);
124   if (s == NULL
125       || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126     return FALSE;
127   htab->sgot = s;
128 
129   if (bed->want_got_plt)
130     {
131       s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
132       if (s == NULL
133 	  || !bfd_set_section_alignment (abfd, s,
134 					 bed->s->log_file_align))
135 	return FALSE;
136       htab->sgotplt = s;
137     }
138 
139   /* The first bit of the global offset table is the header.  */
140   s->size += bed->got_header_size;
141 
142   if (bed->want_got_sym)
143     {
144       /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 	 (or .got.plt) section.  We don't do this in the linker script
146 	 because we don't want to define the symbol if we are not creating
147 	 a global offset table.  */
148       h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 				       "_GLOBAL_OFFSET_TABLE_");
150       elf_hash_table (info)->hgot = h;
151       if (h == NULL)
152 	return FALSE;
153     }
154 
155   return TRUE;
156 }
157 
158 /* Create a strtab to hold the dynamic symbol names.  */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162   struct elf_link_hash_table *hash_table;
163 
164   hash_table = elf_hash_table (info);
165   if (hash_table->dynobj == NULL)
166     hash_table->dynobj = abfd;
167 
168   if (hash_table->dynstr == NULL)
169     {
170       hash_table->dynstr = _bfd_elf_strtab_init ();
171       if (hash_table->dynstr == NULL)
172 	return FALSE;
173     }
174   return TRUE;
175 }
176 
177 /* Create some sections which will be filled in with dynamic linking
178    information.  ABFD is an input file which requires dynamic sections
179    to be created.  The dynamic sections take up virtual memory space
180    when the final executable is run, so we need to create them before
181    addresses are assigned to the output sections.  We work out the
182    actual contents and size of these sections later.  */
183 
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187   flagword flags;
188   register asection *s;
189   const struct elf_backend_data *bed;
190 
191   if (! is_elf_hash_table (info->hash))
192     return FALSE;
193 
194   if (elf_hash_table (info)->dynamic_sections_created)
195     return TRUE;
196 
197   if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198     return FALSE;
199 
200   abfd = elf_hash_table (info)->dynobj;
201   bed = get_elf_backend_data (abfd);
202 
203   flags = bed->dynamic_sec_flags;
204 
205   /* A dynamically linked executable has a .interp section, but a
206      shared library does not.  */
207   if (info->executable)
208     {
209       s = bfd_make_section_with_flags (abfd, ".interp",
210 				       flags | SEC_READONLY);
211       if (s == NULL)
212 	return FALSE;
213     }
214 
215   /* Create sections to hold version informations.  These are removed
216      if they are not needed.  */
217   s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
218 				   flags | SEC_READONLY);
219   if (s == NULL
220       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221     return FALSE;
222 
223   s = bfd_make_section_with_flags (abfd, ".gnu.version",
224 				   flags | SEC_READONLY);
225   if (s == NULL
226       || ! bfd_set_section_alignment (abfd, s, 1))
227     return FALSE;
228 
229   s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
230 				   flags | SEC_READONLY);
231   if (s == NULL
232       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233     return FALSE;
234 
235   s = bfd_make_section_with_flags (abfd, ".dynsym",
236 				   flags | SEC_READONLY);
237   if (s == NULL
238       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239     return FALSE;
240 
241   s = bfd_make_section_with_flags (abfd, ".dynstr",
242 				   flags | SEC_READONLY);
243   if (s == NULL)
244     return FALSE;
245 
246   s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
247   if (s == NULL
248       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249     return FALSE;
250 
251   /* The special symbol _DYNAMIC is always set to the start of the
252      .dynamic section.  We could set _DYNAMIC in a linker script, but we
253      only want to define it if we are, in fact, creating a .dynamic
254      section.  We don't want to define it if there is no .dynamic
255      section, since on some ELF platforms the start up code examines it
256      to decide how to initialize the process.  */
257   if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
258     return FALSE;
259 
260   if (info->emit_hash)
261     {
262       s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
263       if (s == NULL
264 	  || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
265 	return FALSE;
266       elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
267     }
268 
269   if (info->emit_gnu_hash)
270     {
271       s = bfd_make_section_with_flags (abfd, ".gnu.hash",
272 				       flags | SEC_READONLY);
273       if (s == NULL
274 	  || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
275 	return FALSE;
276       /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
277 	 4 32-bit words followed by variable count of 64-bit words, then
278 	 variable count of 32-bit words.  */
279       if (bed->s->arch_size == 64)
280 	elf_section_data (s)->this_hdr.sh_entsize = 0;
281       else
282 	elf_section_data (s)->this_hdr.sh_entsize = 4;
283     }
284 
285   /* Let the backend create the rest of the sections.  This lets the
286      backend set the right flags.  The backend will normally create
287      the .got and .plt sections.  */
288   if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
289     return FALSE;
290 
291   elf_hash_table (info)->dynamic_sections_created = TRUE;
292 
293   return TRUE;
294 }
295 
296 /* Create dynamic sections when linking against a dynamic object.  */
297 
298 bfd_boolean
299 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
300 {
301   flagword flags, pltflags;
302   struct elf_link_hash_entry *h;
303   asection *s;
304   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
305   struct elf_link_hash_table *htab = elf_hash_table (info);
306 
307   /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
308      .rel[a].bss sections.  */
309   flags = bed->dynamic_sec_flags;
310 
311   pltflags = flags;
312   if (bed->plt_not_loaded)
313     /* We do not clear SEC_ALLOC here because we still want the OS to
314        allocate space for the section; it's just that there's nothing
315        to read in from the object file.  */
316     pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
317   else
318     pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
319   if (bed->plt_readonly)
320     pltflags |= SEC_READONLY;
321 
322   s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
323   if (s == NULL
324       || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
325     return FALSE;
326   htab->splt = s;
327 
328   /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
329      .plt section.  */
330   if (bed->want_plt_sym)
331     {
332       h = _bfd_elf_define_linkage_sym (abfd, info, s,
333 				       "_PROCEDURE_LINKAGE_TABLE_");
334       elf_hash_table (info)->hplt = h;
335       if (h == NULL)
336 	return FALSE;
337     }
338 
339   s = bfd_make_section_with_flags (abfd,
340 				   (bed->rela_plts_and_copies_p
341 				    ? ".rela.plt" : ".rel.plt"),
342 				   flags | SEC_READONLY);
343   if (s == NULL
344       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
345     return FALSE;
346   htab->srelplt = s;
347 
348   if (! _bfd_elf_create_got_section (abfd, info))
349     return FALSE;
350 
351   if (bed->want_dynbss)
352     {
353       /* The .dynbss section is a place to put symbols which are defined
354 	 by dynamic objects, are referenced by regular objects, and are
355 	 not functions.  We must allocate space for them in the process
356 	 image and use a R_*_COPY reloc to tell the dynamic linker to
357 	 initialize them at run time.  The linker script puts the .dynbss
358 	 section into the .bss section of the final image.  */
359       s = bfd_make_section_with_flags (abfd, ".dynbss",
360 				       (SEC_ALLOC
361 					| SEC_LINKER_CREATED));
362       if (s == NULL)
363 	return FALSE;
364 
365       /* The .rel[a].bss section holds copy relocs.  This section is not
366 	 normally needed.  We need to create it here, though, so that the
367 	 linker will map it to an output section.  We can't just create it
368 	 only if we need it, because we will not know whether we need it
369 	 until we have seen all the input files, and the first time the
370 	 main linker code calls BFD after examining all the input files
371 	 (size_dynamic_sections) the input sections have already been
372 	 mapped to the output sections.  If the section turns out not to
373 	 be needed, we can discard it later.  We will never need this
374 	 section when generating a shared object, since they do not use
375 	 copy relocs.  */
376       if (! info->shared)
377 	{
378 	  s = bfd_make_section_with_flags (abfd,
379 					   (bed->rela_plts_and_copies_p
380 					    ? ".rela.bss" : ".rel.bss"),
381 					   flags | SEC_READONLY);
382 	  if (s == NULL
383 	      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
384 	    return FALSE;
385 	}
386     }
387 
388   return TRUE;
389 }
390 
391 /* Record a new dynamic symbol.  We record the dynamic symbols as we
392    read the input files, since we need to have a list of all of them
393    before we can determine the final sizes of the output sections.
394    Note that we may actually call this function even though we are not
395    going to output any dynamic symbols; in some cases we know that a
396    symbol should be in the dynamic symbol table, but only if there is
397    one.  */
398 
399 bfd_boolean
400 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
401 				    struct elf_link_hash_entry *h)
402 {
403   if (h->dynindx == -1)
404     {
405       struct elf_strtab_hash *dynstr;
406       char *p;
407       const char *name;
408       bfd_size_type indx;
409 
410       /* XXX: The ABI draft says the linker must turn hidden and
411 	 internal symbols into STB_LOCAL symbols when producing the
412 	 DSO. However, if ld.so honors st_other in the dynamic table,
413 	 this would not be necessary.  */
414       switch (ELF_ST_VISIBILITY (h->other))
415 	{
416 	case STV_INTERNAL:
417 	case STV_HIDDEN:
418 	  if (h->root.type != bfd_link_hash_undefined
419 	      && h->root.type != bfd_link_hash_undefweak)
420 	    {
421 	      h->forced_local = 1;
422 	      if (!elf_hash_table (info)->is_relocatable_executable)
423 		return TRUE;
424 	    }
425 
426 	default:
427 	  break;
428 	}
429 
430       h->dynindx = elf_hash_table (info)->dynsymcount;
431       ++elf_hash_table (info)->dynsymcount;
432 
433       dynstr = elf_hash_table (info)->dynstr;
434       if (dynstr == NULL)
435 	{
436 	  /* Create a strtab to hold the dynamic symbol names.  */
437 	  elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
438 	  if (dynstr == NULL)
439 	    return FALSE;
440 	}
441 
442       /* We don't put any version information in the dynamic string
443 	 table.  */
444       name = h->root.root.string;
445       p = strchr (name, ELF_VER_CHR);
446       if (p != NULL)
447 	/* We know that the p points into writable memory.  In fact,
448 	   there are only a few symbols that have read-only names, being
449 	   those like _GLOBAL_OFFSET_TABLE_ that are created specially
450 	   by the backends.  Most symbols will have names pointing into
451 	   an ELF string table read from a file, or to objalloc memory.  */
452 	*p = 0;
453 
454       indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
455 
456       if (p != NULL)
457 	*p = ELF_VER_CHR;
458 
459       if (indx == (bfd_size_type) -1)
460 	return FALSE;
461       h->dynstr_index = indx;
462     }
463 
464   return TRUE;
465 }
466 
467 /* Mark a symbol dynamic.  */
468 
469 static void
470 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
471 				  struct elf_link_hash_entry *h,
472 				  Elf_Internal_Sym *sym)
473 {
474   struct bfd_elf_dynamic_list *d = info->dynamic_list;
475 
476   /* It may be called more than once on the same H.  */
477   if(h->dynamic || info->relocatable)
478     return;
479 
480   if ((info->dynamic_data
481        && (h->type == STT_OBJECT
482 	   || (sym != NULL
483 	       && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
484       || (d != NULL
485 	  && h->root.type == bfd_link_hash_new
486 	  && (*d->match) (&d->head, NULL, h->root.root.string)))
487     h->dynamic = 1;
488 }
489 
490 /* Record an assignment to a symbol made by a linker script.  We need
491    this in case some dynamic object refers to this symbol.  */
492 
493 bfd_boolean
494 bfd_elf_record_link_assignment (bfd *output_bfd,
495 				struct bfd_link_info *info,
496 				const char *name,
497 				bfd_boolean provide,
498 				bfd_boolean hidden)
499 {
500   struct elf_link_hash_entry *h, *hv;
501   struct elf_link_hash_table *htab;
502   const struct elf_backend_data *bed;
503 
504   if (!is_elf_hash_table (info->hash))
505     return TRUE;
506 
507   htab = elf_hash_table (info);
508   h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
509   if (h == NULL)
510     return provide;
511 
512   switch (h->root.type)
513     {
514     case bfd_link_hash_defined:
515     case bfd_link_hash_defweak:
516     case bfd_link_hash_common:
517       break;
518     case bfd_link_hash_undefweak:
519     case bfd_link_hash_undefined:
520       /* Since we're defining the symbol, don't let it seem to have not
521 	 been defined.  record_dynamic_symbol and size_dynamic_sections
522 	 may depend on this.  */
523       h->root.type = bfd_link_hash_new;
524       if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
525 	bfd_link_repair_undef_list (&htab->root);
526       break;
527     case bfd_link_hash_new:
528       bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
529       h->non_elf = 0;
530       break;
531     case bfd_link_hash_indirect:
532       /* We had a versioned symbol in a dynamic library.  We make the
533 	 the versioned symbol point to this one.  */
534       bed = get_elf_backend_data (output_bfd);
535       hv = h;
536       while (hv->root.type == bfd_link_hash_indirect
537 	     || hv->root.type == bfd_link_hash_warning)
538 	hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
539       /* We don't need to update h->root.u since linker will set them
540 	 later.  */
541       h->root.type = bfd_link_hash_undefined;
542       hv->root.type = bfd_link_hash_indirect;
543       hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
544       (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
545       break;
546     case bfd_link_hash_warning:
547       abort ();
548       break;
549     }
550 
551   /* If this symbol is being provided by the linker script, and it is
552      currently defined by a dynamic object, but not by a regular
553      object, then mark it as undefined so that the generic linker will
554      force the correct value.  */
555   if (provide
556       && h->def_dynamic
557       && !h->def_regular)
558     h->root.type = bfd_link_hash_undefined;
559 
560   /* If this symbol is not being provided by the linker script, and it is
561      currently defined by a dynamic object, but not by a regular object,
562      then clear out any version information because the symbol will not be
563      associated with the dynamic object any more.  */
564   if (!provide
565       && h->def_dynamic
566       && !h->def_regular)
567     h->verinfo.verdef = NULL;
568 
569   h->def_regular = 1;
570 
571   if (provide && hidden)
572     {
573       const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
574 
575       h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
576       (*bed->elf_backend_hide_symbol) (info, h, TRUE);
577     }
578 
579   /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
580      and executables.  */
581   if (!info->relocatable
582       && h->dynindx != -1
583       && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
584 	  || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
585     h->forced_local = 1;
586 
587   if ((h->def_dynamic
588        || h->ref_dynamic
589        || info->shared
590        || (info->executable && elf_hash_table (info)->is_relocatable_executable))
591       && h->dynindx == -1)
592     {
593       if (! bfd_elf_link_record_dynamic_symbol (info, h))
594 	return FALSE;
595 
596       /* If this is a weak defined symbol, and we know a corresponding
597 	 real symbol from the same dynamic object, make sure the real
598 	 symbol is also made into a dynamic symbol.  */
599       if (h->u.weakdef != NULL
600 	  && h->u.weakdef->dynindx == -1)
601 	{
602 	  if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
603 	    return FALSE;
604 	}
605     }
606 
607   return TRUE;
608 }
609 
610 /* Record a new local dynamic symbol.  Returns 0 on failure, 1 on
611    success, and 2 on a failure caused by attempting to record a symbol
612    in a discarded section, eg. a discarded link-once section symbol.  */
613 
614 int
615 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
616 					  bfd *input_bfd,
617 					  long input_indx)
618 {
619   bfd_size_type amt;
620   struct elf_link_local_dynamic_entry *entry;
621   struct elf_link_hash_table *eht;
622   struct elf_strtab_hash *dynstr;
623   unsigned long dynstr_index;
624   char *name;
625   Elf_External_Sym_Shndx eshndx;
626   char esym[sizeof (Elf64_External_Sym)];
627 
628   if (! is_elf_hash_table (info->hash))
629     return 0;
630 
631   /* See if the entry exists already.  */
632   for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
633     if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
634       return 1;
635 
636   amt = sizeof (*entry);
637   entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
638   if (entry == NULL)
639     return 0;
640 
641   /* Go find the symbol, so that we can find it's name.  */
642   if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
643 			     1, input_indx, &entry->isym, esym, &eshndx))
644     {
645       bfd_release (input_bfd, entry);
646       return 0;
647     }
648 
649   if (entry->isym.st_shndx != SHN_UNDEF
650       && entry->isym.st_shndx < SHN_LORESERVE)
651     {
652       asection *s;
653 
654       s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
655       if (s == NULL || bfd_is_abs_section (s->output_section))
656 	{
657 	  /* We can still bfd_release here as nothing has done another
658 	     bfd_alloc.  We can't do this later in this function.  */
659 	  bfd_release (input_bfd, entry);
660 	  return 2;
661 	}
662     }
663 
664   name = (bfd_elf_string_from_elf_section
665 	  (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
666 	   entry->isym.st_name));
667 
668   dynstr = elf_hash_table (info)->dynstr;
669   if (dynstr == NULL)
670     {
671       /* Create a strtab to hold the dynamic symbol names.  */
672       elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
673       if (dynstr == NULL)
674 	return 0;
675     }
676 
677   dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
678   if (dynstr_index == (unsigned long) -1)
679     return 0;
680   entry->isym.st_name = dynstr_index;
681 
682   eht = elf_hash_table (info);
683 
684   entry->next = eht->dynlocal;
685   eht->dynlocal = entry;
686   entry->input_bfd = input_bfd;
687   entry->input_indx = input_indx;
688   eht->dynsymcount++;
689 
690   /* Whatever binding the symbol had before, it's now local.  */
691   entry->isym.st_info
692     = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
693 
694   /* The dynindx will be set at the end of size_dynamic_sections.  */
695 
696   return 1;
697 }
698 
699 /* Return the dynindex of a local dynamic symbol.  */
700 
701 long
702 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
703 				    bfd *input_bfd,
704 				    long input_indx)
705 {
706   struct elf_link_local_dynamic_entry *e;
707 
708   for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
709     if (e->input_bfd == input_bfd && e->input_indx == input_indx)
710       return e->dynindx;
711   return -1;
712 }
713 
714 /* This function is used to renumber the dynamic symbols, if some of
715    them are removed because they are marked as local.  This is called
716    via elf_link_hash_traverse.  */
717 
718 static bfd_boolean
719 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
720 				      void *data)
721 {
722   size_t *count = (size_t *) data;
723 
724   if (h->root.type == bfd_link_hash_warning)
725     h = (struct elf_link_hash_entry *) h->root.u.i.link;
726 
727   if (h->forced_local)
728     return TRUE;
729 
730   if (h->dynindx != -1)
731     h->dynindx = ++(*count);
732 
733   return TRUE;
734 }
735 
736 
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738    STB_LOCAL binding.  */
739 
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 					    void *data)
743 {
744   size_t *count = (size_t *) data;
745 
746   if (h->root.type == bfd_link_hash_warning)
747     h = (struct elf_link_hash_entry *) h->root.u.i.link;
748 
749   if (!h->forced_local)
750     return TRUE;
751 
752   if (h->dynindx != -1)
753     h->dynindx = ++(*count);
754 
755   return TRUE;
756 }
757 
758 /* Return true if the dynamic symbol for a given section should be
759    omitted when creating a shared library.  */
760 bfd_boolean
761 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
762 				   struct bfd_link_info *info,
763 				   asection *p)
764 {
765   struct elf_link_hash_table *htab;
766 
767   switch (elf_section_data (p)->this_hdr.sh_type)
768     {
769     case SHT_PROGBITS:
770     case SHT_NOBITS:
771       /* If sh_type is yet undecided, assume it could be
772 	 SHT_PROGBITS/SHT_NOBITS.  */
773     case SHT_NULL:
774       htab = elf_hash_table (info);
775       if (p == htab->tls_sec)
776 	return FALSE;
777 
778       if (htab->text_index_section != NULL)
779 	return p != htab->text_index_section && p != htab->data_index_section;
780 
781       if (strcmp (p->name, ".got") == 0
782 	  || strcmp (p->name, ".got.plt") == 0
783 	  || strcmp (p->name, ".plt") == 0)
784 	{
785 	  asection *ip;
786 
787 	  if (htab->dynobj != NULL
788 	      && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
789 	      && (ip->flags & SEC_LINKER_CREATED)
790 	      && ip->output_section == p)
791 	    return TRUE;
792 	}
793       return FALSE;
794 
795       /* There shouldn't be section relative relocations
796 	 against any other section.  */
797     default:
798       return TRUE;
799     }
800 }
801 
802 /* Assign dynsym indices.  In a shared library we generate a section
803    symbol for each output section, which come first.  Next come symbols
804    which have been forced to local binding.  Then all of the back-end
805    allocated local dynamic syms, followed by the rest of the global
806    symbols.  */
807 
808 static unsigned long
809 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
810 				struct bfd_link_info *info,
811 				unsigned long *section_sym_count)
812 {
813   unsigned long dynsymcount = 0;
814 
815   if (info->shared || elf_hash_table (info)->is_relocatable_executable)
816     {
817       const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
818       asection *p;
819       for (p = output_bfd->sections; p ; p = p->next)
820 	if ((p->flags & SEC_EXCLUDE) == 0
821 	    && (p->flags & SEC_ALLOC) != 0
822 	    && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
823 	  elf_section_data (p)->dynindx = ++dynsymcount;
824 	else
825 	  elf_section_data (p)->dynindx = 0;
826     }
827   *section_sym_count = dynsymcount;
828 
829   elf_link_hash_traverse (elf_hash_table (info),
830 			  elf_link_renumber_local_hash_table_dynsyms,
831 			  &dynsymcount);
832 
833   if (elf_hash_table (info)->dynlocal)
834     {
835       struct elf_link_local_dynamic_entry *p;
836       for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
837 	p->dynindx = ++dynsymcount;
838     }
839 
840   elf_link_hash_traverse (elf_hash_table (info),
841 			  elf_link_renumber_hash_table_dynsyms,
842 			  &dynsymcount);
843 
844   /* There is an unused NULL entry at the head of the table which
845      we must account for in our count.  Unless there weren't any
846      symbols, which means we'll have no table at all.  */
847   if (dynsymcount != 0)
848     ++dynsymcount;
849 
850   elf_hash_table (info)->dynsymcount = dynsymcount;
851   return dynsymcount;
852 }
853 
854 /* Merge st_other field.  */
855 
856 static void
857 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
858 		    Elf_Internal_Sym *isym, bfd_boolean definition,
859 		    bfd_boolean dynamic)
860 {
861   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
862 
863   /* If st_other has a processor-specific meaning, specific
864      code might be needed here. We never merge the visibility
865      attribute with the one from a dynamic object.  */
866   if (bed->elf_backend_merge_symbol_attribute)
867     (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
868 						dynamic);
869 
870   /* If this symbol has default visibility and the user has requested
871      we not re-export it, then mark it as hidden.  */
872   if (definition
873       && !dynamic
874       && (abfd->no_export
875 	  || (abfd->my_archive && abfd->my_archive->no_export))
876       && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
877     isym->st_other = (STV_HIDDEN
878 		      | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
879 
880   if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
881     {
882       unsigned char hvis, symvis, other, nvis;
883 
884       /* Only merge the visibility. Leave the remainder of the
885 	 st_other field to elf_backend_merge_symbol_attribute.  */
886       other = h->other & ~ELF_ST_VISIBILITY (-1);
887 
888       /* Combine visibilities, using the most constraining one.  */
889       hvis = ELF_ST_VISIBILITY (h->other);
890       symvis = ELF_ST_VISIBILITY (isym->st_other);
891       if (! hvis)
892 	nvis = symvis;
893       else if (! symvis)
894 	nvis = hvis;
895       else
896 	nvis = hvis < symvis ? hvis : symvis;
897 
898       h->other = other | nvis;
899     }
900 }
901 
902 /* This function is called when we want to define a new symbol.  It
903    handles the various cases which arise when we find a definition in
904    a dynamic object, or when there is already a definition in a
905    dynamic object.  The new symbol is described by NAME, SYM, PSEC,
906    and PVALUE.  We set SYM_HASH to the hash table entry.  We set
907    OVERRIDE if the old symbol is overriding a new definition.  We set
908    TYPE_CHANGE_OK if it is OK for the type to change.  We set
909    SIZE_CHANGE_OK if it is OK for the size to change.  By OK to
910    change, we mean that we shouldn't warn if the type or size does
911    change.  We set POLD_ALIGNMENT if an old common symbol in a dynamic
912    object is overridden by a regular object.  */
913 
914 bfd_boolean
915 _bfd_elf_merge_symbol (bfd *abfd,
916 		       struct bfd_link_info *info,
917 		       const char *name,
918 		       Elf_Internal_Sym *sym,
919 		       asection **psec,
920 		       bfd_vma *pvalue,
921 		       unsigned int *pold_alignment,
922 		       struct elf_link_hash_entry **sym_hash,
923 		       bfd_boolean *skip,
924 		       bfd_boolean *override,
925 		       bfd_boolean *type_change_ok,
926 		       bfd_boolean *size_change_ok)
927 {
928   asection *sec, *oldsec;
929   struct elf_link_hash_entry *h;
930   struct elf_link_hash_entry *flip;
931   int bind;
932   bfd *oldbfd;
933   bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
934   bfd_boolean newweak, oldweak, newfunc, oldfunc;
935   const struct elf_backend_data *bed;
936 
937   *skip = FALSE;
938   *override = FALSE;
939 
940   sec = *psec;
941   bind = ELF_ST_BIND (sym->st_info);
942 
943   /* Silently discard TLS symbols from --just-syms.  There's no way to
944      combine a static TLS block with a new TLS block for this executable.  */
945   if (ELF_ST_TYPE (sym->st_info) == STT_TLS
946       && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
947     {
948       *skip = TRUE;
949       return TRUE;
950     }
951 
952   if (! bfd_is_und_section (sec))
953     h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
954   else
955     h = ((struct elf_link_hash_entry *)
956 	 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
957   if (h == NULL)
958     return FALSE;
959   *sym_hash = h;
960 
961   bed = get_elf_backend_data (abfd);
962 
963   /* This code is for coping with dynamic objects, and is only useful
964      if we are doing an ELF link.  */
965   if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
966     return TRUE;
967 
968   /* For merging, we only care about real symbols.  */
969 
970   while (h->root.type == bfd_link_hash_indirect
971 	 || h->root.type == bfd_link_hash_warning)
972     h = (struct elf_link_hash_entry *) h->root.u.i.link;
973 
974   /* We have to check it for every instance since the first few may be
975      refereences and not all compilers emit symbol type for undefined
976      symbols.  */
977   bfd_elf_link_mark_dynamic_symbol (info, h, sym);
978 
979   /* If we just created the symbol, mark it as being an ELF symbol.
980      Other than that, there is nothing to do--there is no merge issue
981      with a newly defined symbol--so we just return.  */
982 
983   if (h->root.type == bfd_link_hash_new)
984     {
985       h->non_elf = 0;
986       return TRUE;
987     }
988 
989   /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
990      existing symbol.  */
991 
992   switch (h->root.type)
993     {
994     default:
995       oldbfd = NULL;
996       oldsec = NULL;
997       break;
998 
999     case bfd_link_hash_undefined:
1000     case bfd_link_hash_undefweak:
1001       oldbfd = h->root.u.undef.abfd;
1002       oldsec = NULL;
1003       break;
1004 
1005     case bfd_link_hash_defined:
1006     case bfd_link_hash_defweak:
1007       oldbfd = h->root.u.def.section->owner;
1008       oldsec = h->root.u.def.section;
1009       break;
1010 
1011     case bfd_link_hash_common:
1012       oldbfd = h->root.u.c.p->section->owner;
1013       oldsec = h->root.u.c.p->section;
1014       break;
1015     }
1016 
1017   /* In cases involving weak versioned symbols, we may wind up trying
1018      to merge a symbol with itself.  Catch that here, to avoid the
1019      confusion that results if we try to override a symbol with
1020      itself.  The additional tests catch cases like
1021      _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1022      dynamic object, which we do want to handle here.  */
1023   if (abfd == oldbfd
1024       && ((abfd->flags & DYNAMIC) == 0
1025 	  || !h->def_regular))
1026     return TRUE;
1027 
1028   /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1029      respectively, is from a dynamic object.  */
1030 
1031   newdyn = (abfd->flags & DYNAMIC) != 0;
1032 
1033   olddyn = FALSE;
1034   if (oldbfd != NULL)
1035     olddyn = (oldbfd->flags & DYNAMIC) != 0;
1036   else if (oldsec != NULL)
1037     {
1038       /* This handles the special SHN_MIPS_{TEXT,DATA} section
1039 	 indices used by MIPS ELF.  */
1040       olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1041     }
1042 
1043   /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1044      respectively, appear to be a definition rather than reference.  */
1045 
1046   newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1047 
1048   olddef = (h->root.type != bfd_link_hash_undefined
1049 	    && h->root.type != bfd_link_hash_undefweak
1050 	    && h->root.type != bfd_link_hash_common);
1051 
1052   /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1053      respectively, appear to be a function.  */
1054 
1055   newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1056 	     && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1057 
1058   oldfunc = (h->type != STT_NOTYPE
1059 	     && bed->is_function_type (h->type));
1060 
1061   /* When we try to create a default indirect symbol from the dynamic
1062      definition with the default version, we skip it if its type and
1063      the type of existing regular definition mismatch.  We only do it
1064      if the existing regular definition won't be dynamic.  */
1065   if (pold_alignment == NULL
1066       && !info->shared
1067       && !info->export_dynamic
1068       && !h->ref_dynamic
1069       && newdyn
1070       && newdef
1071       && !olddyn
1072       && (olddef || h->root.type == bfd_link_hash_common)
1073       && ELF_ST_TYPE (sym->st_info) != h->type
1074       && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1075       && h->type != STT_NOTYPE
1076       && !(newfunc && oldfunc))
1077     {
1078       *skip = TRUE;
1079       return TRUE;
1080     }
1081 
1082   /* Check TLS symbol.  We don't check undefined symbol introduced by
1083      "ld -u".  */
1084   if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1085       && ELF_ST_TYPE (sym->st_info) != h->type
1086       && oldbfd != NULL)
1087     {
1088       bfd *ntbfd, *tbfd;
1089       bfd_boolean ntdef, tdef;
1090       asection *ntsec, *tsec;
1091 
1092       if (h->type == STT_TLS)
1093 	{
1094 	  ntbfd = abfd;
1095 	  ntsec = sec;
1096 	  ntdef = newdef;
1097 	  tbfd = oldbfd;
1098 	  tsec = oldsec;
1099 	  tdef = olddef;
1100 	}
1101       else
1102 	{
1103 	  ntbfd = oldbfd;
1104 	  ntsec = oldsec;
1105 	  ntdef = olddef;
1106 	  tbfd = abfd;
1107 	  tsec = sec;
1108 	  tdef = newdef;
1109 	}
1110 
1111       if (tdef && ntdef)
1112 	(*_bfd_error_handler)
1113 	  (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1114 	   tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1115       else if (!tdef && !ntdef)
1116 	(*_bfd_error_handler)
1117 	  (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1118 	   tbfd, ntbfd, h->root.root.string);
1119       else if (tdef)
1120 	(*_bfd_error_handler)
1121 	  (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1122 	   tbfd, tsec, ntbfd, h->root.root.string);
1123       else
1124 	(*_bfd_error_handler)
1125 	  (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1126 	   tbfd, ntbfd, ntsec, h->root.root.string);
1127 
1128       bfd_set_error (bfd_error_bad_value);
1129       return FALSE;
1130     }
1131 
1132   /* We need to remember if a symbol has a definition in a dynamic
1133      object or is weak in all dynamic objects. Internal and hidden
1134      visibility will make it unavailable to dynamic objects.  */
1135   if (newdyn && !h->dynamic_def)
1136     {
1137       if (!bfd_is_und_section (sec))
1138 	h->dynamic_def = 1;
1139       else
1140 	{
1141 	  /* Check if this symbol is weak in all dynamic objects. If it
1142 	     is the first time we see it in a dynamic object, we mark
1143 	     if it is weak. Otherwise, we clear it.  */
1144 	  if (!h->ref_dynamic)
1145 	    {
1146 	      if (bind == STB_WEAK)
1147 		h->dynamic_weak = 1;
1148 	    }
1149 	  else if (bind != STB_WEAK)
1150 	    h->dynamic_weak = 0;
1151 	}
1152     }
1153 
1154   /* If the old symbol has non-default visibility, we ignore the new
1155      definition from a dynamic object.  */
1156   if (newdyn
1157       && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1158       && !bfd_is_und_section (sec))
1159     {
1160       *skip = TRUE;
1161       /* Make sure this symbol is dynamic.  */
1162       h->ref_dynamic = 1;
1163       /* A protected symbol has external availability. Make sure it is
1164 	 recorded as dynamic.
1165 
1166 	 FIXME: Should we check type and size for protected symbol?  */
1167       if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1168 	return bfd_elf_link_record_dynamic_symbol (info, h);
1169       else
1170 	return TRUE;
1171     }
1172   else if (!newdyn
1173 	   && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1174 	   && h->def_dynamic)
1175     {
1176       /* If the new symbol with non-default visibility comes from a
1177 	 relocatable file and the old definition comes from a dynamic
1178 	 object, we remove the old definition.  */
1179       if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1180 	{
1181 	  /* Handle the case where the old dynamic definition is
1182 	     default versioned.  We need to copy the symbol info from
1183 	     the symbol with default version to the normal one if it
1184 	     was referenced before.  */
1185 	  if (h->ref_regular)
1186 	    {
1187 	      const struct elf_backend_data *bed
1188 		= get_elf_backend_data (abfd);
1189 	      struct elf_link_hash_entry *vh = *sym_hash;
1190 	      vh->root.type = h->root.type;
1191 	      h->root.type = bfd_link_hash_indirect;
1192 	      (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1193 	      /* Protected symbols will override the dynamic definition
1194 		 with default version.  */
1195 	      if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1196 		{
1197 		  h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1198 		  vh->dynamic_def = 1;
1199 		  vh->ref_dynamic = 1;
1200 		}
1201 	      else
1202 		{
1203 		  h->root.type = vh->root.type;
1204 		  vh->ref_dynamic = 0;
1205 		  /* We have to hide it here since it was made dynamic
1206 		     global with extra bits when the symbol info was
1207 		     copied from the old dynamic definition.  */
1208 		  (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1209 		}
1210 	      h = vh;
1211 	    }
1212 	  else
1213 	    h = *sym_hash;
1214 	}
1215 
1216       if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1217 	  && bfd_is_und_section (sec))
1218 	{
1219 	  /* If the new symbol is undefined and the old symbol was
1220 	     also undefined before, we need to make sure
1221 	     _bfd_generic_link_add_one_symbol doesn't mess
1222 	     up the linker hash table undefs list.  Since the old
1223 	     definition came from a dynamic object, it is still on the
1224 	     undefs list.  */
1225 	  h->root.type = bfd_link_hash_undefined;
1226 	  h->root.u.undef.abfd = abfd;
1227 	}
1228       else
1229 	{
1230 	  h->root.type = bfd_link_hash_new;
1231 	  h->root.u.undef.abfd = NULL;
1232 	}
1233 
1234       if (h->def_dynamic)
1235 	{
1236 	  h->def_dynamic = 0;
1237 	  h->ref_dynamic = 1;
1238 	  h->dynamic_def = 1;
1239 	}
1240       /* FIXME: Should we check type and size for protected symbol?  */
1241       h->size = 0;
1242       h->type = 0;
1243       return TRUE;
1244     }
1245 
1246   /* Differentiate strong and weak symbols.  */
1247   newweak = bind == STB_WEAK;
1248   oldweak = (h->root.type == bfd_link_hash_defweak
1249 	     || h->root.type == bfd_link_hash_undefweak);
1250 
1251   if (bind == STB_GNU_UNIQUE)
1252     h->unique_global = 1;
1253 
1254   /* If a new weak symbol definition comes from a regular file and the
1255      old symbol comes from a dynamic library, we treat the new one as
1256      strong.  Similarly, an old weak symbol definition from a regular
1257      file is treated as strong when the new symbol comes from a dynamic
1258      library.  Further, an old weak symbol from a dynamic library is
1259      treated as strong if the new symbol is from a dynamic library.
1260      This reflects the way glibc's ld.so works.
1261 
1262      Do this before setting *type_change_ok or *size_change_ok so that
1263      we warn properly when dynamic library symbols are overridden.  */
1264 
1265   if (newdef && !newdyn && olddyn)
1266     newweak = FALSE;
1267   if (olddef && newdyn)
1268     oldweak = FALSE;
1269 
1270   /* Allow changes between different types of function symbol.  */
1271   if (newfunc && oldfunc)
1272     *type_change_ok = TRUE;
1273 
1274   /* It's OK to change the type if either the existing symbol or the
1275      new symbol is weak.  A type change is also OK if the old symbol
1276      is undefined and the new symbol is defined.  */
1277 
1278   if (oldweak
1279       || newweak
1280       || (newdef
1281 	  && h->root.type == bfd_link_hash_undefined))
1282     *type_change_ok = TRUE;
1283 
1284   /* It's OK to change the size if either the existing symbol or the
1285      new symbol is weak, or if the old symbol is undefined.  */
1286 
1287   if (*type_change_ok
1288       || h->root.type == bfd_link_hash_undefined)
1289     *size_change_ok = TRUE;
1290 
1291   /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1292      symbol, respectively, appears to be a common symbol in a dynamic
1293      object.  If a symbol appears in an uninitialized section, and is
1294      not weak, and is not a function, then it may be a common symbol
1295      which was resolved when the dynamic object was created.  We want
1296      to treat such symbols specially, because they raise special
1297      considerations when setting the symbol size: if the symbol
1298      appears as a common symbol in a regular object, and the size in
1299      the regular object is larger, we must make sure that we use the
1300      larger size.  This problematic case can always be avoided in C,
1301      but it must be handled correctly when using Fortran shared
1302      libraries.
1303 
1304      Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1305      likewise for OLDDYNCOMMON and OLDDEF.
1306 
1307      Note that this test is just a heuristic, and that it is quite
1308      possible to have an uninitialized symbol in a shared object which
1309      is really a definition, rather than a common symbol.  This could
1310      lead to some minor confusion when the symbol really is a common
1311      symbol in some regular object.  However, I think it will be
1312      harmless.  */
1313 
1314   if (newdyn
1315       && newdef
1316       && !newweak
1317       && (sec->flags & SEC_ALLOC) != 0
1318       && (sec->flags & SEC_LOAD) == 0
1319       && sym->st_size > 0
1320       && !newfunc)
1321     newdyncommon = TRUE;
1322   else
1323     newdyncommon = FALSE;
1324 
1325   if (olddyn
1326       && olddef
1327       && h->root.type == bfd_link_hash_defined
1328       && h->def_dynamic
1329       && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1330       && (h->root.u.def.section->flags & SEC_LOAD) == 0
1331       && h->size > 0
1332       && !oldfunc)
1333     olddyncommon = TRUE;
1334   else
1335     olddyncommon = FALSE;
1336 
1337   /* We now know everything about the old and new symbols.  We ask the
1338      backend to check if we can merge them.  */
1339   if (bed->merge_symbol
1340       && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1341 			     pold_alignment, skip, override,
1342 			     type_change_ok, size_change_ok,
1343 			     &newdyn, &newdef, &newdyncommon, &newweak,
1344 			     abfd, &sec,
1345 			     &olddyn, &olddef, &olddyncommon, &oldweak,
1346 			     oldbfd, &oldsec))
1347     return FALSE;
1348 
1349   /* If both the old and the new symbols look like common symbols in a
1350      dynamic object, set the size of the symbol to the larger of the
1351      two.  */
1352 
1353   if (olddyncommon
1354       && newdyncommon
1355       && sym->st_size != h->size)
1356     {
1357       /* Since we think we have two common symbols, issue a multiple
1358 	 common warning if desired.  Note that we only warn if the
1359 	 size is different.  If the size is the same, we simply let
1360 	 the old symbol override the new one as normally happens with
1361 	 symbols defined in dynamic objects.  */
1362 
1363       if (! ((*info->callbacks->multiple_common)
1364 	     (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1365 	      h->size, abfd, bfd_link_hash_common, sym->st_size)))
1366 	return FALSE;
1367 
1368       if (sym->st_size > h->size)
1369 	h->size = sym->st_size;
1370 
1371       *size_change_ok = TRUE;
1372     }
1373 
1374   /* If we are looking at a dynamic object, and we have found a
1375      definition, we need to see if the symbol was already defined by
1376      some other object.  If so, we want to use the existing
1377      definition, and we do not want to report a multiple symbol
1378      definition error; we do this by clobbering *PSEC to be
1379      bfd_und_section_ptr.
1380 
1381      We treat a common symbol as a definition if the symbol in the
1382      shared library is a function, since common symbols always
1383      represent variables; this can cause confusion in principle, but
1384      any such confusion would seem to indicate an erroneous program or
1385      shared library.  We also permit a common symbol in a regular
1386      object to override a weak symbol in a shared object.  */
1387 
1388   if (newdyn
1389       && newdef
1390       && (olddef
1391 	  || (h->root.type == bfd_link_hash_common
1392 	      && (newweak || newfunc))))
1393     {
1394       *override = TRUE;
1395       newdef = FALSE;
1396       newdyncommon = FALSE;
1397 
1398       *psec = sec = bfd_und_section_ptr;
1399       *size_change_ok = TRUE;
1400 
1401       /* If we get here when the old symbol is a common symbol, then
1402 	 we are explicitly letting it override a weak symbol or
1403 	 function in a dynamic object, and we don't want to warn about
1404 	 a type change.  If the old symbol is a defined symbol, a type
1405 	 change warning may still be appropriate.  */
1406 
1407       if (h->root.type == bfd_link_hash_common)
1408 	*type_change_ok = TRUE;
1409     }
1410 
1411   /* Handle the special case of an old common symbol merging with a
1412      new symbol which looks like a common symbol in a shared object.
1413      We change *PSEC and *PVALUE to make the new symbol look like a
1414      common symbol, and let _bfd_generic_link_add_one_symbol do the
1415      right thing.  */
1416 
1417   if (newdyncommon
1418       && h->root.type == bfd_link_hash_common)
1419     {
1420       *override = TRUE;
1421       newdef = FALSE;
1422       newdyncommon = FALSE;
1423       *pvalue = sym->st_size;
1424       *psec = sec = bed->common_section (oldsec);
1425       *size_change_ok = TRUE;
1426     }
1427 
1428   /* Skip weak definitions of symbols that are already defined.  */
1429   if (newdef && olddef && newweak)
1430     {
1431       *skip = TRUE;
1432 
1433       /* Merge st_other.  If the symbol already has a dynamic index,
1434 	 but visibility says it should not be visible, turn it into a
1435 	 local symbol.  */
1436       elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1437       if (h->dynindx != -1)
1438 	switch (ELF_ST_VISIBILITY (h->other))
1439 	  {
1440 	  case STV_INTERNAL:
1441 	  case STV_HIDDEN:
1442 	    (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1443 	    break;
1444 	  }
1445     }
1446 
1447   /* If the old symbol is from a dynamic object, and the new symbol is
1448      a definition which is not from a dynamic object, then the new
1449      symbol overrides the old symbol.  Symbols from regular files
1450      always take precedence over symbols from dynamic objects, even if
1451      they are defined after the dynamic object in the link.
1452 
1453      As above, we again permit a common symbol in a regular object to
1454      override a definition in a shared object if the shared object
1455      symbol is a function or is weak.  */
1456 
1457   flip = NULL;
1458   if (!newdyn
1459       && (newdef
1460 	  || (bfd_is_com_section (sec)
1461 	      && (oldweak || oldfunc)))
1462       && olddyn
1463       && olddef
1464       && h->def_dynamic)
1465     {
1466       /* Change the hash table entry to undefined, and let
1467 	 _bfd_generic_link_add_one_symbol do the right thing with the
1468 	 new definition.  */
1469 
1470       h->root.type = bfd_link_hash_undefined;
1471       h->root.u.undef.abfd = h->root.u.def.section->owner;
1472       *size_change_ok = TRUE;
1473 
1474       olddef = FALSE;
1475       olddyncommon = FALSE;
1476 
1477       /* We again permit a type change when a common symbol may be
1478 	 overriding a function.  */
1479 
1480       if (bfd_is_com_section (sec))
1481 	{
1482 	  if (oldfunc)
1483 	    {
1484 	      /* If a common symbol overrides a function, make sure
1485 		 that it isn't defined dynamically nor has type
1486 		 function.  */
1487 	      h->def_dynamic = 0;
1488 	      h->type = STT_NOTYPE;
1489 	    }
1490 	  *type_change_ok = TRUE;
1491 	}
1492 
1493       if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1494 	flip = *sym_hash;
1495       else
1496 	/* This union may have been set to be non-NULL when this symbol
1497 	   was seen in a dynamic object.  We must force the union to be
1498 	   NULL, so that it is correct for a regular symbol.  */
1499 	h->verinfo.vertree = NULL;
1500     }
1501 
1502   /* Handle the special case of a new common symbol merging with an
1503      old symbol that looks like it might be a common symbol defined in
1504      a shared object.  Note that we have already handled the case in
1505      which a new common symbol should simply override the definition
1506      in the shared library.  */
1507 
1508   if (! newdyn
1509       && bfd_is_com_section (sec)
1510       && olddyncommon)
1511     {
1512       /* It would be best if we could set the hash table entry to a
1513 	 common symbol, but we don't know what to use for the section
1514 	 or the alignment.  */
1515       if (! ((*info->callbacks->multiple_common)
1516 	     (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1517 	      h->size, abfd, bfd_link_hash_common, sym->st_size)))
1518 	return FALSE;
1519 
1520       /* If the presumed common symbol in the dynamic object is
1521 	 larger, pretend that the new symbol has its size.  */
1522 
1523       if (h->size > *pvalue)
1524 	*pvalue = h->size;
1525 
1526       /* We need to remember the alignment required by the symbol
1527 	 in the dynamic object.  */
1528       BFD_ASSERT (pold_alignment);
1529       *pold_alignment = h->root.u.def.section->alignment_power;
1530 
1531       olddef = FALSE;
1532       olddyncommon = FALSE;
1533 
1534       h->root.type = bfd_link_hash_undefined;
1535       h->root.u.undef.abfd = h->root.u.def.section->owner;
1536 
1537       *size_change_ok = TRUE;
1538       *type_change_ok = TRUE;
1539 
1540       if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1541 	flip = *sym_hash;
1542       else
1543 	h->verinfo.vertree = NULL;
1544     }
1545 
1546   if (flip != NULL)
1547     {
1548       /* Handle the case where we had a versioned symbol in a dynamic
1549 	 library and now find a definition in a normal object.  In this
1550 	 case, we make the versioned symbol point to the normal one.  */
1551       const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1552       flip->root.type = h->root.type;
1553       flip->root.u.undef.abfd = h->root.u.undef.abfd;
1554       h->root.type = bfd_link_hash_indirect;
1555       h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1556       (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1557       if (h->def_dynamic)
1558 	{
1559 	  h->def_dynamic = 0;
1560 	  flip->ref_dynamic = 1;
1561 	}
1562     }
1563 
1564   return TRUE;
1565 }
1566 
1567 /* This function is called to create an indirect symbol from the
1568    default for the symbol with the default version if needed. The
1569    symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE.  We
1570    set DYNSYM if the new indirect symbol is dynamic.  */
1571 
1572 static bfd_boolean
1573 _bfd_elf_add_default_symbol (bfd *abfd,
1574 			     struct bfd_link_info *info,
1575 			     struct elf_link_hash_entry *h,
1576 			     const char *name,
1577 			     Elf_Internal_Sym *sym,
1578 			     asection **psec,
1579 			     bfd_vma *value,
1580 			     bfd_boolean *dynsym,
1581 			     bfd_boolean override)
1582 {
1583   bfd_boolean type_change_ok;
1584   bfd_boolean size_change_ok;
1585   bfd_boolean skip;
1586   char *shortname;
1587   struct elf_link_hash_entry *hi;
1588   struct bfd_link_hash_entry *bh;
1589   const struct elf_backend_data *bed;
1590   bfd_boolean collect;
1591   bfd_boolean dynamic;
1592   char *p;
1593   size_t len, shortlen;
1594   asection *sec;
1595 
1596   /* If this symbol has a version, and it is the default version, we
1597      create an indirect symbol from the default name to the fully
1598      decorated name.  This will cause external references which do not
1599      specify a version to be bound to this version of the symbol.  */
1600   p = strchr (name, ELF_VER_CHR);
1601   if (p == NULL || p[1] != ELF_VER_CHR)
1602     return TRUE;
1603 
1604   if (override)
1605     {
1606       /* We are overridden by an old definition. We need to check if we
1607 	 need to create the indirect symbol from the default name.  */
1608       hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1609 				 FALSE, FALSE);
1610       BFD_ASSERT (hi != NULL);
1611       if (hi == h)
1612 	return TRUE;
1613       while (hi->root.type == bfd_link_hash_indirect
1614 	     || hi->root.type == bfd_link_hash_warning)
1615 	{
1616 	  hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1617 	  if (hi == h)
1618 	    return TRUE;
1619 	}
1620     }
1621 
1622   bed = get_elf_backend_data (abfd);
1623   collect = bed->collect;
1624   dynamic = (abfd->flags & DYNAMIC) != 0;
1625 
1626   shortlen = p - name;
1627   shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1628   if (shortname == NULL)
1629     return FALSE;
1630   memcpy (shortname, name, shortlen);
1631   shortname[shortlen] = '\0';
1632 
1633   /* We are going to create a new symbol.  Merge it with any existing
1634      symbol with this name.  For the purposes of the merge, act as
1635      though we were defining the symbol we just defined, although we
1636      actually going to define an indirect symbol.  */
1637   type_change_ok = FALSE;
1638   size_change_ok = FALSE;
1639   sec = *psec;
1640   if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1641 			      NULL, &hi, &skip, &override,
1642 			      &type_change_ok, &size_change_ok))
1643     return FALSE;
1644 
1645   if (skip)
1646     goto nondefault;
1647 
1648   if (! override)
1649     {
1650       bh = &hi->root;
1651       if (! (_bfd_generic_link_add_one_symbol
1652 	     (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1653 	      0, name, FALSE, collect, &bh)))
1654 	return FALSE;
1655       hi = (struct elf_link_hash_entry *) bh;
1656     }
1657   else
1658     {
1659       /* In this case the symbol named SHORTNAME is overriding the
1660 	 indirect symbol we want to add.  We were planning on making
1661 	 SHORTNAME an indirect symbol referring to NAME.  SHORTNAME
1662 	 is the name without a version.  NAME is the fully versioned
1663 	 name, and it is the default version.
1664 
1665 	 Overriding means that we already saw a definition for the
1666 	 symbol SHORTNAME in a regular object, and it is overriding
1667 	 the symbol defined in the dynamic object.
1668 
1669 	 When this happens, we actually want to change NAME, the
1670 	 symbol we just added, to refer to SHORTNAME.  This will cause
1671 	 references to NAME in the shared object to become references
1672 	 to SHORTNAME in the regular object.  This is what we expect
1673 	 when we override a function in a shared object: that the
1674 	 references in the shared object will be mapped to the
1675 	 definition in the regular object.  */
1676 
1677       while (hi->root.type == bfd_link_hash_indirect
1678 	     || hi->root.type == bfd_link_hash_warning)
1679 	hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1680 
1681       h->root.type = bfd_link_hash_indirect;
1682       h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1683       if (h->def_dynamic)
1684 	{
1685 	  h->def_dynamic = 0;
1686 	  hi->ref_dynamic = 1;
1687 	  if (hi->ref_regular
1688 	      || hi->def_regular)
1689 	    {
1690 	      if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1691 		return FALSE;
1692 	    }
1693 	}
1694 
1695       /* Now set HI to H, so that the following code will set the
1696 	 other fields correctly.  */
1697       hi = h;
1698     }
1699 
1700   /* Check if HI is a warning symbol.  */
1701   if (hi->root.type == bfd_link_hash_warning)
1702     hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1703 
1704   /* If there is a duplicate definition somewhere, then HI may not
1705      point to an indirect symbol.  We will have reported an error to
1706      the user in that case.  */
1707 
1708   if (hi->root.type == bfd_link_hash_indirect)
1709     {
1710       struct elf_link_hash_entry *ht;
1711 
1712       ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1713       (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1714 
1715       /* See if the new flags lead us to realize that the symbol must
1716 	 be dynamic.  */
1717       if (! *dynsym)
1718 	{
1719 	  if (! dynamic)
1720 	    {
1721 	      if (info->shared
1722 		  || hi->ref_dynamic)
1723 		*dynsym = TRUE;
1724 	    }
1725 	  else
1726 	    {
1727 	      if (hi->ref_regular)
1728 		*dynsym = TRUE;
1729 	    }
1730 	}
1731     }
1732 
1733   /* We also need to define an indirection from the nondefault version
1734      of the symbol.  */
1735 
1736 nondefault:
1737   len = strlen (name);
1738   shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1739   if (shortname == NULL)
1740     return FALSE;
1741   memcpy (shortname, name, shortlen);
1742   memcpy (shortname + shortlen, p + 1, len - shortlen);
1743 
1744   /* Once again, merge with any existing symbol.  */
1745   type_change_ok = FALSE;
1746   size_change_ok = FALSE;
1747   sec = *psec;
1748   if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1749 			      NULL, &hi, &skip, &override,
1750 			      &type_change_ok, &size_change_ok))
1751     return FALSE;
1752 
1753   if (skip)
1754     return TRUE;
1755 
1756   if (override)
1757     {
1758       /* Here SHORTNAME is a versioned name, so we don't expect to see
1759 	 the type of override we do in the case above unless it is
1760 	 overridden by a versioned definition.  */
1761       if (hi->root.type != bfd_link_hash_defined
1762 	  && hi->root.type != bfd_link_hash_defweak)
1763 	(*_bfd_error_handler)
1764 	  (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1765 	   abfd, shortname);
1766     }
1767   else
1768     {
1769       bh = &hi->root;
1770       if (! (_bfd_generic_link_add_one_symbol
1771 	     (info, abfd, shortname, BSF_INDIRECT,
1772 	      bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1773 	return FALSE;
1774       hi = (struct elf_link_hash_entry *) bh;
1775 
1776       /* If there is a duplicate definition somewhere, then HI may not
1777 	 point to an indirect symbol.  We will have reported an error
1778 	 to the user in that case.  */
1779 
1780       if (hi->root.type == bfd_link_hash_indirect)
1781 	{
1782 	  (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1783 
1784 	  /* See if the new flags lead us to realize that the symbol
1785 	     must be dynamic.  */
1786 	  if (! *dynsym)
1787 	    {
1788 	      if (! dynamic)
1789 		{
1790 		  if (info->shared
1791 		      || hi->ref_dynamic)
1792 		    *dynsym = TRUE;
1793 		}
1794 	      else
1795 		{
1796 		  if (hi->ref_regular)
1797 		    *dynsym = TRUE;
1798 		}
1799 	    }
1800 	}
1801     }
1802 
1803   return TRUE;
1804 }
1805 
1806 /* This routine is used to export all defined symbols into the dynamic
1807    symbol table.  It is called via elf_link_hash_traverse.  */
1808 
1809 static bfd_boolean
1810 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1811 {
1812   struct elf_info_failed *eif = (struct elf_info_failed *) data;
1813 
1814   /* Ignore this if we won't export it.  */
1815   if (!eif->info->export_dynamic && !h->dynamic)
1816     return TRUE;
1817 
1818   /* Ignore indirect symbols.  These are added by the versioning code.  */
1819   if (h->root.type == bfd_link_hash_indirect)
1820     return TRUE;
1821 
1822   if (h->root.type == bfd_link_hash_warning)
1823     h = (struct elf_link_hash_entry *) h->root.u.i.link;
1824 
1825   if (h->dynindx == -1
1826       && (h->def_regular
1827 	  || h->ref_regular))
1828     {
1829       bfd_boolean hide;
1830 
1831       if (eif->verdefs == NULL
1832 	  || (bfd_find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
1833 	      && !hide))
1834 	{
1835 	  if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1836 	    {
1837 	      eif->failed = TRUE;
1838 	      return FALSE;
1839 	    }
1840 	}
1841     }
1842 
1843   return TRUE;
1844 }
1845 
1846 /* Look through the symbols which are defined in other shared
1847    libraries and referenced here.  Update the list of version
1848    dependencies.  This will be put into the .gnu.version_r section.
1849    This function is called via elf_link_hash_traverse.  */
1850 
1851 static bfd_boolean
1852 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1853 					 void *data)
1854 {
1855   struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1856   Elf_Internal_Verneed *t;
1857   Elf_Internal_Vernaux *a;
1858   bfd_size_type amt;
1859 
1860   if (h->root.type == bfd_link_hash_warning)
1861     h = (struct elf_link_hash_entry *) h->root.u.i.link;
1862 
1863   /* We only care about symbols defined in shared objects with version
1864      information.  */
1865   if (!h->def_dynamic
1866       || h->def_regular
1867       || h->dynindx == -1
1868       || h->verinfo.verdef == NULL)
1869     return TRUE;
1870 
1871   /* See if we already know about this version.  */
1872   for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1873        t != NULL;
1874        t = t->vn_nextref)
1875     {
1876       if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1877 	continue;
1878 
1879       for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1880 	if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1881 	  return TRUE;
1882 
1883       break;
1884     }
1885 
1886   /* This is a new version.  Add it to tree we are building.  */
1887 
1888   if (t == NULL)
1889     {
1890       amt = sizeof *t;
1891       t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1892       if (t == NULL)
1893 	{
1894 	  rinfo->failed = TRUE;
1895 	  return FALSE;
1896 	}
1897 
1898       t->vn_bfd = h->verinfo.verdef->vd_bfd;
1899       t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1900       elf_tdata (rinfo->info->output_bfd)->verref = t;
1901     }
1902 
1903   amt = sizeof *a;
1904   a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1905   if (a == NULL)
1906     {
1907       rinfo->failed = TRUE;
1908       return FALSE;
1909     }
1910 
1911   /* Note that we are copying a string pointer here, and testing it
1912      above.  If bfd_elf_string_from_elf_section is ever changed to
1913      discard the string data when low in memory, this will have to be
1914      fixed.  */
1915   a->vna_nodename = h->verinfo.verdef->vd_nodename;
1916 
1917   a->vna_flags = h->verinfo.verdef->vd_flags;
1918   a->vna_nextptr = t->vn_auxptr;
1919 
1920   h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1921   ++rinfo->vers;
1922 
1923   a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1924 
1925   t->vn_auxptr = a;
1926 
1927   return TRUE;
1928 }
1929 
1930 /* Figure out appropriate versions for all the symbols.  We may not
1931    have the version number script until we have read all of the input
1932    files, so until that point we don't know which symbols should be
1933    local.  This function is called via elf_link_hash_traverse.  */
1934 
1935 static bfd_boolean
1936 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1937 {
1938   struct elf_info_failed *sinfo;
1939   struct bfd_link_info *info;
1940   const struct elf_backend_data *bed;
1941   struct elf_info_failed eif;
1942   char *p;
1943   bfd_size_type amt;
1944 
1945   sinfo = (struct elf_info_failed *) data;
1946   info = sinfo->info;
1947 
1948   if (h->root.type == bfd_link_hash_warning)
1949     h = (struct elf_link_hash_entry *) h->root.u.i.link;
1950 
1951   /* Fix the symbol flags.  */
1952   eif.failed = FALSE;
1953   eif.info = info;
1954   if (! _bfd_elf_fix_symbol_flags (h, &eif))
1955     {
1956       if (eif.failed)
1957 	sinfo->failed = TRUE;
1958       return FALSE;
1959     }
1960 
1961   /* We only need version numbers for symbols defined in regular
1962      objects.  */
1963   if (!h->def_regular)
1964     return TRUE;
1965 
1966   bed = get_elf_backend_data (info->output_bfd);
1967   p = strchr (h->root.root.string, ELF_VER_CHR);
1968   if (p != NULL && h->verinfo.vertree == NULL)
1969     {
1970       struct bfd_elf_version_tree *t;
1971       bfd_boolean hidden;
1972 
1973       hidden = TRUE;
1974 
1975       /* There are two consecutive ELF_VER_CHR characters if this is
1976 	 not a hidden symbol.  */
1977       ++p;
1978       if (*p == ELF_VER_CHR)
1979 	{
1980 	  hidden = FALSE;
1981 	  ++p;
1982 	}
1983 
1984       /* If there is no version string, we can just return out.  */
1985       if (*p == '\0')
1986 	{
1987 	  if (hidden)
1988 	    h->hidden = 1;
1989 	  return TRUE;
1990 	}
1991 
1992       /* Look for the version.  If we find it, it is no longer weak.  */
1993       for (t = sinfo->verdefs; t != NULL; t = t->next)
1994 	{
1995 	  if (strcmp (t->name, p) == 0)
1996 	    {
1997 	      size_t len;
1998 	      char *alc;
1999 	      struct bfd_elf_version_expr *d;
2000 
2001 	      len = p - h->root.root.string;
2002 	      alc = (char *) bfd_malloc (len);
2003 	      if (alc == NULL)
2004 		{
2005 		  sinfo->failed = TRUE;
2006 		  return FALSE;
2007 		}
2008 	      memcpy (alc, h->root.root.string, len - 1);
2009 	      alc[len - 1] = '\0';
2010 	      if (alc[len - 2] == ELF_VER_CHR)
2011 		alc[len - 2] = '\0';
2012 
2013 	      h->verinfo.vertree = t;
2014 	      t->used = TRUE;
2015 	      d = NULL;
2016 
2017 	      if (t->globals.list != NULL)
2018 		d = (*t->match) (&t->globals, NULL, alc);
2019 
2020 	      /* See if there is anything to force this symbol to
2021 		 local scope.  */
2022 	      if (d == NULL && t->locals.list != NULL)
2023 		{
2024 		  d = (*t->match) (&t->locals, NULL, alc);
2025 		  if (d != NULL
2026 		      && h->dynindx != -1
2027 		      && ! info->export_dynamic)
2028 		    (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2029 		}
2030 
2031 	      free (alc);
2032 	      break;
2033 	    }
2034 	}
2035 
2036       /* If we are building an application, we need to create a
2037 	 version node for this version.  */
2038       if (t == NULL && info->executable)
2039 	{
2040 	  struct bfd_elf_version_tree **pp;
2041 	  int version_index;
2042 
2043 	  /* If we aren't going to export this symbol, we don't need
2044 	     to worry about it.  */
2045 	  if (h->dynindx == -1)
2046 	    return TRUE;
2047 
2048 	  amt = sizeof *t;
2049 	  t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2050 	  if (t == NULL)
2051 	    {
2052 	      sinfo->failed = TRUE;
2053 	      return FALSE;
2054 	    }
2055 
2056 	  t->name = p;
2057 	  t->name_indx = (unsigned int) -1;
2058 	  t->used = TRUE;
2059 
2060 	  version_index = 1;
2061 	  /* Don't count anonymous version tag.  */
2062 	  if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2063 	    version_index = 0;
2064 	  for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2065 	    ++version_index;
2066 	  t->vernum = version_index;
2067 
2068 	  *pp = t;
2069 
2070 	  h->verinfo.vertree = t;
2071 	}
2072       else if (t == NULL)
2073 	{
2074 	  /* We could not find the version for a symbol when
2075 	     generating a shared archive.  Return an error.  */
2076 	  (*_bfd_error_handler)
2077 	    (_("%B: version node not found for symbol %s"),
2078 	     info->output_bfd, h->root.root.string);
2079 	  bfd_set_error (bfd_error_bad_value);
2080 	  sinfo->failed = TRUE;
2081 	  return FALSE;
2082 	}
2083 
2084       if (hidden)
2085 	h->hidden = 1;
2086     }
2087 
2088   /* If we don't have a version for this symbol, see if we can find
2089      something.  */
2090   if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2091     {
2092       bfd_boolean hide;
2093 
2094       h->verinfo.vertree = bfd_find_version_for_sym (sinfo->verdefs,
2095 						 h->root.root.string, &hide);
2096       if (h->verinfo.vertree != NULL && hide)
2097 	(*bed->elf_backend_hide_symbol) (info, h, TRUE);
2098     }
2099 
2100   return TRUE;
2101 }
2102 
2103 /* Read and swap the relocs from the section indicated by SHDR.  This
2104    may be either a REL or a RELA section.  The relocations are
2105    translated into RELA relocations and stored in INTERNAL_RELOCS,
2106    which should have already been allocated to contain enough space.
2107    The EXTERNAL_RELOCS are a buffer where the external form of the
2108    relocations should be stored.
2109 
2110    Returns FALSE if something goes wrong.  */
2111 
2112 static bfd_boolean
2113 elf_link_read_relocs_from_section (bfd *abfd,
2114 				   asection *sec,
2115 				   Elf_Internal_Shdr *shdr,
2116 				   void *external_relocs,
2117 				   Elf_Internal_Rela *internal_relocs)
2118 {
2119   const struct elf_backend_data *bed;
2120   void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2121   const bfd_byte *erela;
2122   const bfd_byte *erelaend;
2123   Elf_Internal_Rela *irela;
2124   Elf_Internal_Shdr *symtab_hdr;
2125   size_t nsyms;
2126 
2127   /* Position ourselves at the start of the section.  */
2128   if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2129     return FALSE;
2130 
2131   /* Read the relocations.  */
2132   if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2133     return FALSE;
2134 
2135   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2136   nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2137 
2138   bed = get_elf_backend_data (abfd);
2139 
2140   /* Convert the external relocations to the internal format.  */
2141   if (shdr->sh_entsize == bed->s->sizeof_rel)
2142     swap_in = bed->s->swap_reloc_in;
2143   else if (shdr->sh_entsize == bed->s->sizeof_rela)
2144     swap_in = bed->s->swap_reloca_in;
2145   else
2146     {
2147       bfd_set_error (bfd_error_wrong_format);
2148       return FALSE;
2149     }
2150 
2151   erela = (const bfd_byte *) external_relocs;
2152   erelaend = erela + shdr->sh_size;
2153   irela = internal_relocs;
2154   while (erela < erelaend)
2155     {
2156       bfd_vma r_symndx;
2157 
2158       (*swap_in) (abfd, erela, irela);
2159       r_symndx = ELF32_R_SYM (irela->r_info);
2160       if (bed->s->arch_size == 64)
2161 	r_symndx >>= 24;
2162       if (nsyms > 0)
2163 	{
2164 	  if ((size_t) r_symndx >= nsyms)
2165 	    {
2166 	      (*_bfd_error_handler)
2167 		(_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2168 		   " for offset 0x%lx in section `%A'"),
2169 		 abfd, sec,
2170 		 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2171 	      bfd_set_error (bfd_error_bad_value);
2172 	      return FALSE;
2173 	    }
2174 	}
2175       else if (r_symndx != 0)
2176 	{
2177 	  (*_bfd_error_handler)
2178 	    (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2179 	       " when the object file has no symbol table"),
2180 	     abfd, sec,
2181 	     (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2182 	  bfd_set_error (bfd_error_bad_value);
2183 	  return FALSE;
2184 	}
2185       irela += bed->s->int_rels_per_ext_rel;
2186       erela += shdr->sh_entsize;
2187     }
2188 
2189   return TRUE;
2190 }
2191 
2192 /* Read and swap the relocs for a section O.  They may have been
2193    cached.  If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2194    not NULL, they are used as buffers to read into.  They are known to
2195    be large enough.  If the INTERNAL_RELOCS relocs argument is NULL,
2196    the return value is allocated using either malloc or bfd_alloc,
2197    according to the KEEP_MEMORY argument.  If O has two relocation
2198    sections (both REL and RELA relocations), then the REL_HDR
2199    relocations will appear first in INTERNAL_RELOCS, followed by the
2200    REL_HDR2 relocations.  */
2201 
2202 Elf_Internal_Rela *
2203 _bfd_elf_link_read_relocs (bfd *abfd,
2204 			   asection *o,
2205 			   void *external_relocs,
2206 			   Elf_Internal_Rela *internal_relocs,
2207 			   bfd_boolean keep_memory)
2208 {
2209   Elf_Internal_Shdr *rel_hdr;
2210   void *alloc1 = NULL;
2211   Elf_Internal_Rela *alloc2 = NULL;
2212   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2213 
2214   if (elf_section_data (o)->relocs != NULL)
2215     return elf_section_data (o)->relocs;
2216 
2217   if (o->reloc_count == 0)
2218     return NULL;
2219 
2220   rel_hdr = &elf_section_data (o)->rel_hdr;
2221 
2222   if (internal_relocs == NULL)
2223     {
2224       bfd_size_type size;
2225 
2226       size = o->reloc_count;
2227       size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2228       if (keep_memory)
2229 	internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2230       else
2231 	internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2232       if (internal_relocs == NULL)
2233 	goto error_return;
2234     }
2235 
2236   if (external_relocs == NULL)
2237     {
2238       bfd_size_type size = rel_hdr->sh_size;
2239 
2240       if (elf_section_data (o)->rel_hdr2)
2241 	size += elf_section_data (o)->rel_hdr2->sh_size;
2242       alloc1 = bfd_malloc (size);
2243       if (alloc1 == NULL)
2244 	goto error_return;
2245       external_relocs = alloc1;
2246     }
2247 
2248   if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2249 					  external_relocs,
2250 					  internal_relocs))
2251     goto error_return;
2252   if (elf_section_data (o)->rel_hdr2
2253       && (!elf_link_read_relocs_from_section
2254 	  (abfd, o,
2255 	   elf_section_data (o)->rel_hdr2,
2256 	   ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2257 	   internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2258 			      * bed->s->int_rels_per_ext_rel))))
2259     goto error_return;
2260 
2261   /* Cache the results for next time, if we can.  */
2262   if (keep_memory)
2263     elf_section_data (o)->relocs = internal_relocs;
2264 
2265   if (alloc1 != NULL)
2266     free (alloc1);
2267 
2268   /* Don't free alloc2, since if it was allocated we are passing it
2269      back (under the name of internal_relocs).  */
2270 
2271   return internal_relocs;
2272 
2273  error_return:
2274   if (alloc1 != NULL)
2275     free (alloc1);
2276   if (alloc2 != NULL)
2277     {
2278       if (keep_memory)
2279 	bfd_release (abfd, alloc2);
2280       else
2281 	free (alloc2);
2282     }
2283   return NULL;
2284 }
2285 
2286 /* Compute the size of, and allocate space for, REL_HDR which is the
2287    section header for a section containing relocations for O.  */
2288 
2289 static bfd_boolean
2290 _bfd_elf_link_size_reloc_section (bfd *abfd,
2291 				  Elf_Internal_Shdr *rel_hdr,
2292 				  asection *o)
2293 {
2294   bfd_size_type reloc_count;
2295   bfd_size_type num_rel_hashes;
2296 
2297   /* Figure out how many relocations there will be.  */
2298   if (rel_hdr == &elf_section_data (o)->rel_hdr)
2299     reloc_count = elf_section_data (o)->rel_count;
2300   else
2301     reloc_count = elf_section_data (o)->rel_count2;
2302 
2303   num_rel_hashes = o->reloc_count;
2304   if (num_rel_hashes < reloc_count)
2305     num_rel_hashes = reloc_count;
2306 
2307   /* That allows us to calculate the size of the section.  */
2308   rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2309 
2310   /* The contents field must last into write_object_contents, so we
2311      allocate it with bfd_alloc rather than malloc.  Also since we
2312      cannot be sure that the contents will actually be filled in,
2313      we zero the allocated space.  */
2314   rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2315   if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2316     return FALSE;
2317 
2318   /* We only allocate one set of hash entries, so we only do it the
2319      first time we are called.  */
2320   if (elf_section_data (o)->rel_hashes == NULL
2321       && num_rel_hashes)
2322     {
2323       struct elf_link_hash_entry **p;
2324 
2325       p = (struct elf_link_hash_entry **)
2326           bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2327       if (p == NULL)
2328 	return FALSE;
2329 
2330       elf_section_data (o)->rel_hashes = p;
2331     }
2332 
2333   return TRUE;
2334 }
2335 
2336 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2337    originated from the section given by INPUT_REL_HDR) to the
2338    OUTPUT_BFD.  */
2339 
2340 bfd_boolean
2341 _bfd_elf_link_output_relocs (bfd *output_bfd,
2342 			     asection *input_section,
2343 			     Elf_Internal_Shdr *input_rel_hdr,
2344 			     Elf_Internal_Rela *internal_relocs,
2345 			     struct elf_link_hash_entry **rel_hash
2346 			       ATTRIBUTE_UNUSED)
2347 {
2348   Elf_Internal_Rela *irela;
2349   Elf_Internal_Rela *irelaend;
2350   bfd_byte *erel;
2351   Elf_Internal_Shdr *output_rel_hdr;
2352   asection *output_section;
2353   unsigned int *rel_countp = NULL;
2354   const struct elf_backend_data *bed;
2355   void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2356 
2357   output_section = input_section->output_section;
2358   output_rel_hdr = NULL;
2359 
2360   if (elf_section_data (output_section)->rel_hdr.sh_entsize
2361       == input_rel_hdr->sh_entsize)
2362     {
2363       output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2364       rel_countp = &elf_section_data (output_section)->rel_count;
2365     }
2366   else if (elf_section_data (output_section)->rel_hdr2
2367 	   && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2368 	       == input_rel_hdr->sh_entsize))
2369     {
2370       output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2371       rel_countp = &elf_section_data (output_section)->rel_count2;
2372     }
2373   else
2374     {
2375       (*_bfd_error_handler)
2376 	(_("%B: relocation size mismatch in %B section %A"),
2377 	 output_bfd, input_section->owner, input_section);
2378       bfd_set_error (bfd_error_wrong_format);
2379       return FALSE;
2380     }
2381 
2382   bed = get_elf_backend_data (output_bfd);
2383   if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2384     swap_out = bed->s->swap_reloc_out;
2385   else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2386     swap_out = bed->s->swap_reloca_out;
2387   else
2388     abort ();
2389 
2390   erel = output_rel_hdr->contents;
2391   erel += *rel_countp * input_rel_hdr->sh_entsize;
2392   irela = internal_relocs;
2393   irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2394 		      * bed->s->int_rels_per_ext_rel);
2395   while (irela < irelaend)
2396     {
2397       (*swap_out) (output_bfd, irela, erel);
2398       irela += bed->s->int_rels_per_ext_rel;
2399       erel += input_rel_hdr->sh_entsize;
2400     }
2401 
2402   /* Bump the counter, so that we know where to add the next set of
2403      relocations.  */
2404   *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2405 
2406   return TRUE;
2407 }
2408 
2409 /* Make weak undefined symbols in PIE dynamic.  */
2410 
2411 bfd_boolean
2412 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2413 				 struct elf_link_hash_entry *h)
2414 {
2415   if (info->pie
2416       && h->dynindx == -1
2417       && h->root.type == bfd_link_hash_undefweak)
2418     return bfd_elf_link_record_dynamic_symbol (info, h);
2419 
2420   return TRUE;
2421 }
2422 
2423 /* Fix up the flags for a symbol.  This handles various cases which
2424    can only be fixed after all the input files are seen.  This is
2425    currently called by both adjust_dynamic_symbol and
2426    assign_sym_version, which is unnecessary but perhaps more robust in
2427    the face of future changes.  */
2428 
2429 static bfd_boolean
2430 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2431 			   struct elf_info_failed *eif)
2432 {
2433   const struct elf_backend_data *bed;
2434 
2435   /* If this symbol was mentioned in a non-ELF file, try to set
2436      DEF_REGULAR and REF_REGULAR correctly.  This is the only way to
2437      permit a non-ELF file to correctly refer to a symbol defined in
2438      an ELF dynamic object.  */
2439   if (h->non_elf)
2440     {
2441       while (h->root.type == bfd_link_hash_indirect)
2442 	h = (struct elf_link_hash_entry *) h->root.u.i.link;
2443 
2444       if (h->root.type != bfd_link_hash_defined
2445 	  && h->root.type != bfd_link_hash_defweak)
2446 	{
2447 	  h->ref_regular = 1;
2448 	  h->ref_regular_nonweak = 1;
2449 	}
2450       else
2451 	{
2452 	  if (h->root.u.def.section->owner != NULL
2453 	      && (bfd_get_flavour (h->root.u.def.section->owner)
2454 		  == bfd_target_elf_flavour))
2455 	    {
2456 	      h->ref_regular = 1;
2457 	      h->ref_regular_nonweak = 1;
2458 	    }
2459 	  else
2460 	    h->def_regular = 1;
2461 	}
2462 
2463       if (h->dynindx == -1
2464 	  && (h->def_dynamic
2465 	      || h->ref_dynamic))
2466 	{
2467 	  if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2468 	    {
2469 	      eif->failed = TRUE;
2470 	      return FALSE;
2471 	    }
2472 	}
2473     }
2474   else
2475     {
2476       /* Unfortunately, NON_ELF is only correct if the symbol
2477 	 was first seen in a non-ELF file.  Fortunately, if the symbol
2478 	 was first seen in an ELF file, we're probably OK unless the
2479 	 symbol was defined in a non-ELF file.  Catch that case here.
2480 	 FIXME: We're still in trouble if the symbol was first seen in
2481 	 a dynamic object, and then later in a non-ELF regular object.  */
2482       if ((h->root.type == bfd_link_hash_defined
2483 	   || h->root.type == bfd_link_hash_defweak)
2484 	  && !h->def_regular
2485 	  && (h->root.u.def.section->owner != NULL
2486 	      ? (bfd_get_flavour (h->root.u.def.section->owner)
2487 		 != bfd_target_elf_flavour)
2488 	      : (bfd_is_abs_section (h->root.u.def.section)
2489 		 && !h->def_dynamic)))
2490 	h->def_regular = 1;
2491     }
2492 
2493   /* Backend specific symbol fixup.  */
2494   bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2495   if (bed->elf_backend_fixup_symbol
2496       && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2497     return FALSE;
2498 
2499   /* If this is a final link, and the symbol was defined as a common
2500      symbol in a regular object file, and there was no definition in
2501      any dynamic object, then the linker will have allocated space for
2502      the symbol in a common section but the DEF_REGULAR
2503      flag will not have been set.  */
2504   if (h->root.type == bfd_link_hash_defined
2505       && !h->def_regular
2506       && h->ref_regular
2507       && !h->def_dynamic
2508       && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2509     h->def_regular = 1;
2510 
2511   /* If -Bsymbolic was used (which means to bind references to global
2512      symbols to the definition within the shared object), and this
2513      symbol was defined in a regular object, then it actually doesn't
2514      need a PLT entry.  Likewise, if the symbol has non-default
2515      visibility.  If the symbol has hidden or internal visibility, we
2516      will force it local.  */
2517   if (h->needs_plt
2518       && eif->info->shared
2519       && is_elf_hash_table (eif->info->hash)
2520       && (SYMBOLIC_BIND (eif->info, h)
2521 	  || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2522       && h->def_regular)
2523     {
2524       bfd_boolean force_local;
2525 
2526       force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2527 		     || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2528       (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2529     }
2530 
2531   /* If a weak undefined symbol has non-default visibility, we also
2532      hide it from the dynamic linker.  */
2533   if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2534       && h->root.type == bfd_link_hash_undefweak)
2535     (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2536 
2537   /* If this is a weak defined symbol in a dynamic object, and we know
2538      the real definition in the dynamic object, copy interesting flags
2539      over to the real definition.  */
2540   if (h->u.weakdef != NULL)
2541     {
2542       struct elf_link_hash_entry *weakdef;
2543 
2544       weakdef = h->u.weakdef;
2545       if (h->root.type == bfd_link_hash_indirect)
2546 	h = (struct elf_link_hash_entry *) h->root.u.i.link;
2547 
2548       BFD_ASSERT (h->root.type == bfd_link_hash_defined
2549 		  || h->root.type == bfd_link_hash_defweak);
2550       BFD_ASSERT (weakdef->def_dynamic);
2551 
2552       /* If the real definition is defined by a regular object file,
2553 	 don't do anything special.  See the longer description in
2554 	 _bfd_elf_adjust_dynamic_symbol, below.  */
2555       if (weakdef->def_regular)
2556 	h->u.weakdef = NULL;
2557       else
2558 	{
2559 	  BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2560 		      || weakdef->root.type == bfd_link_hash_defweak);
2561 	  (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2562 	}
2563     }
2564 
2565   return TRUE;
2566 }
2567 
2568 /* Make the backend pick a good value for a dynamic symbol.  This is
2569    called via elf_link_hash_traverse, and also calls itself
2570    recursively.  */
2571 
2572 static bfd_boolean
2573 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2574 {
2575   struct elf_info_failed *eif = (struct elf_info_failed *) data;
2576   bfd *dynobj;
2577   const struct elf_backend_data *bed;
2578 
2579   if (! is_elf_hash_table (eif->info->hash))
2580     return FALSE;
2581 
2582   if (h->root.type == bfd_link_hash_warning)
2583     {
2584       h->got = elf_hash_table (eif->info)->init_got_offset;
2585       h->plt = elf_hash_table (eif->info)->init_plt_offset;
2586 
2587       /* When warning symbols are created, they **replace** the "real"
2588 	 entry in the hash table, thus we never get to see the real
2589 	 symbol in a hash traversal.  So look at it now.  */
2590       h = (struct elf_link_hash_entry *) h->root.u.i.link;
2591     }
2592 
2593   /* Ignore indirect symbols.  These are added by the versioning code.  */
2594   if (h->root.type == bfd_link_hash_indirect)
2595     return TRUE;
2596 
2597   /* Fix the symbol flags.  */
2598   if (! _bfd_elf_fix_symbol_flags (h, eif))
2599     return FALSE;
2600 
2601   /* If this symbol does not require a PLT entry, and it is not
2602      defined by a dynamic object, or is not referenced by a regular
2603      object, ignore it.  We do have to handle a weak defined symbol,
2604      even if no regular object refers to it, if we decided to add it
2605      to the dynamic symbol table.  FIXME: Do we normally need to worry
2606      about symbols which are defined by one dynamic object and
2607      referenced by another one?  */
2608   if (!h->needs_plt
2609       && h->type != STT_GNU_IFUNC
2610       && (h->def_regular
2611 	  || !h->def_dynamic
2612 	  || (!h->ref_regular
2613 	      && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2614     {
2615       h->plt = elf_hash_table (eif->info)->init_plt_offset;
2616       return TRUE;
2617     }
2618 
2619   /* If we've already adjusted this symbol, don't do it again.  This
2620      can happen via a recursive call.  */
2621   if (h->dynamic_adjusted)
2622     return TRUE;
2623 
2624   /* Don't look at this symbol again.  Note that we must set this
2625      after checking the above conditions, because we may look at a
2626      symbol once, decide not to do anything, and then get called
2627      recursively later after REF_REGULAR is set below.  */
2628   h->dynamic_adjusted = 1;
2629 
2630   /* If this is a weak definition, and we know a real definition, and
2631      the real symbol is not itself defined by a regular object file,
2632      then get a good value for the real definition.  We handle the
2633      real symbol first, for the convenience of the backend routine.
2634 
2635      Note that there is a confusing case here.  If the real definition
2636      is defined by a regular object file, we don't get the real symbol
2637      from the dynamic object, but we do get the weak symbol.  If the
2638      processor backend uses a COPY reloc, then if some routine in the
2639      dynamic object changes the real symbol, we will not see that
2640      change in the corresponding weak symbol.  This is the way other
2641      ELF linkers work as well, and seems to be a result of the shared
2642      library model.
2643 
2644      I will clarify this issue.  Most SVR4 shared libraries define the
2645      variable _timezone and define timezone as a weak synonym.  The
2646      tzset call changes _timezone.  If you write
2647        extern int timezone;
2648        int _timezone = 5;
2649        int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2650      you might expect that, since timezone is a synonym for _timezone,
2651      the same number will print both times.  However, if the processor
2652      backend uses a COPY reloc, then actually timezone will be copied
2653      into your process image, and, since you define _timezone
2654      yourself, _timezone will not.  Thus timezone and _timezone will
2655      wind up at different memory locations.  The tzset call will set
2656      _timezone, leaving timezone unchanged.  */
2657 
2658   if (h->u.weakdef != NULL)
2659     {
2660       /* If we get to this point, we know there is an implicit
2661 	 reference by a regular object file via the weak symbol H.
2662 	 FIXME: Is this really true?  What if the traversal finds
2663 	 H->U.WEAKDEF before it finds H?  */
2664       h->u.weakdef->ref_regular = 1;
2665 
2666       if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2667 	return FALSE;
2668     }
2669 
2670   /* If a symbol has no type and no size and does not require a PLT
2671      entry, then we are probably about to do the wrong thing here: we
2672      are probably going to create a COPY reloc for an empty object.
2673      This case can arise when a shared object is built with assembly
2674      code, and the assembly code fails to set the symbol type.  */
2675   if (h->size == 0
2676       && h->type == STT_NOTYPE
2677       && !h->needs_plt)
2678     (*_bfd_error_handler)
2679       (_("warning: type and size of dynamic symbol `%s' are not defined"),
2680        h->root.root.string);
2681 
2682   dynobj = elf_hash_table (eif->info)->dynobj;
2683   bed = get_elf_backend_data (dynobj);
2684 
2685   if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2686     {
2687       eif->failed = TRUE;
2688       return FALSE;
2689     }
2690 
2691   return TRUE;
2692 }
2693 
2694 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2695    DYNBSS.  */
2696 
2697 bfd_boolean
2698 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2699 			      asection *dynbss)
2700 {
2701   unsigned int power_of_two;
2702   bfd_vma mask;
2703   asection *sec = h->root.u.def.section;
2704 
2705   /* The section aligment of definition is the maximum alignment
2706      requirement of symbols defined in the section.  Since we don't
2707      know the symbol alignment requirement, we start with the
2708      maximum alignment and check low bits of the symbol address
2709      for the minimum alignment.  */
2710   power_of_two = bfd_get_section_alignment (sec->owner, sec);
2711   mask = ((bfd_vma) 1 << power_of_two) - 1;
2712   while ((h->root.u.def.value & mask) != 0)
2713     {
2714        mask >>= 1;
2715        --power_of_two;
2716     }
2717 
2718   if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2719 						dynbss))
2720     {
2721       /* Adjust the section alignment if needed.  */
2722       if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2723 				       power_of_two))
2724 	return FALSE;
2725     }
2726 
2727   /* We make sure that the symbol will be aligned properly.  */
2728   dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2729 
2730   /* Define the symbol as being at this point in DYNBSS.  */
2731   h->root.u.def.section = dynbss;
2732   h->root.u.def.value = dynbss->size;
2733 
2734   /* Increment the size of DYNBSS to make room for the symbol.  */
2735   dynbss->size += h->size;
2736 
2737   return TRUE;
2738 }
2739 
2740 /* Adjust all external symbols pointing into SEC_MERGE sections
2741    to reflect the object merging within the sections.  */
2742 
2743 static bfd_boolean
2744 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2745 {
2746   asection *sec;
2747 
2748   if (h->root.type == bfd_link_hash_warning)
2749     h = (struct elf_link_hash_entry *) h->root.u.i.link;
2750 
2751   if ((h->root.type == bfd_link_hash_defined
2752        || h->root.type == bfd_link_hash_defweak)
2753       && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2754       && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2755     {
2756       bfd *output_bfd = (bfd *) data;
2757 
2758       h->root.u.def.value =
2759 	_bfd_merged_section_offset (output_bfd,
2760 				    &h->root.u.def.section,
2761 				    elf_section_data (sec)->sec_info,
2762 				    h->root.u.def.value);
2763     }
2764 
2765   return TRUE;
2766 }
2767 
2768 /* Returns false if the symbol referred to by H should be considered
2769    to resolve local to the current module, and true if it should be
2770    considered to bind dynamically.  */
2771 
2772 bfd_boolean
2773 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2774 			   struct bfd_link_info *info,
2775 			   bfd_boolean ignore_protected)
2776 {
2777   bfd_boolean binding_stays_local_p;
2778   const struct elf_backend_data *bed;
2779   struct elf_link_hash_table *hash_table;
2780 
2781   if (h == NULL)
2782     return FALSE;
2783 
2784   while (h->root.type == bfd_link_hash_indirect
2785 	 || h->root.type == bfd_link_hash_warning)
2786     h = (struct elf_link_hash_entry *) h->root.u.i.link;
2787 
2788   /* If it was forced local, then clearly it's not dynamic.  */
2789   if (h->dynindx == -1)
2790     return FALSE;
2791   if (h->forced_local)
2792     return FALSE;
2793 
2794   /* Identify the cases where name binding rules say that a
2795      visible symbol resolves locally.  */
2796   binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2797 
2798   switch (ELF_ST_VISIBILITY (h->other))
2799     {
2800     case STV_INTERNAL:
2801     case STV_HIDDEN:
2802       return FALSE;
2803 
2804     case STV_PROTECTED:
2805       hash_table = elf_hash_table (info);
2806       if (!is_elf_hash_table (hash_table))
2807 	return FALSE;
2808 
2809       bed = get_elf_backend_data (hash_table->dynobj);
2810 
2811       /* Proper resolution for function pointer equality may require
2812 	 that these symbols perhaps be resolved dynamically, even though
2813 	 we should be resolving them to the current module.  */
2814       if (!ignore_protected || !bed->is_function_type (h->type))
2815 	binding_stays_local_p = TRUE;
2816       break;
2817 
2818     default:
2819       break;
2820     }
2821 
2822   /* If it isn't defined locally, then clearly it's dynamic.  */
2823   if (!h->def_regular)
2824     return TRUE;
2825 
2826   /* Otherwise, the symbol is dynamic if binding rules don't tell
2827      us that it remains local.  */
2828   return !binding_stays_local_p;
2829 }
2830 
2831 /* Return true if the symbol referred to by H should be considered
2832    to resolve local to the current module, and false otherwise.  Differs
2833    from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2834    undefined symbols and weak symbols.  */
2835 
2836 bfd_boolean
2837 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2838 			      struct bfd_link_info *info,
2839 			      bfd_boolean local_protected)
2840 {
2841   const struct elf_backend_data *bed;
2842   struct elf_link_hash_table *hash_table;
2843 
2844   /* If it's a local sym, of course we resolve locally.  */
2845   if (h == NULL)
2846     return TRUE;
2847 
2848   /* STV_HIDDEN or STV_INTERNAL ones must be local.  */
2849   if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2850       || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2851     return TRUE;
2852 
2853   /* Common symbols that become definitions don't get the DEF_REGULAR
2854      flag set, so test it first, and don't bail out.  */
2855   if (ELF_COMMON_DEF_P (h))
2856     /* Do nothing.  */;
2857   /* If we don't have a definition in a regular file, then we can't
2858      resolve locally.  The sym is either undefined or dynamic.  */
2859   else if (!h->def_regular)
2860     return FALSE;
2861 
2862   /* Forced local symbols resolve locally.  */
2863   if (h->forced_local)
2864     return TRUE;
2865 
2866   /* As do non-dynamic symbols.  */
2867   if (h->dynindx == -1)
2868     return TRUE;
2869 
2870   /* At this point, we know the symbol is defined and dynamic.  In an
2871      executable it must resolve locally, likewise when building symbolic
2872      shared libraries.  */
2873   if (info->executable || SYMBOLIC_BIND (info, h))
2874     return TRUE;
2875 
2876   /* Now deal with defined dynamic symbols in shared libraries.  Ones
2877      with default visibility might not resolve locally.  */
2878   if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2879     return FALSE;
2880 
2881   hash_table = elf_hash_table (info);
2882   if (!is_elf_hash_table (hash_table))
2883     return TRUE;
2884 
2885   bed = get_elf_backend_data (hash_table->dynobj);
2886 
2887   /* STV_PROTECTED non-function symbols are local.  */
2888   if (!bed->is_function_type (h->type))
2889     return TRUE;
2890 
2891   /* Function pointer equality tests may require that STV_PROTECTED
2892      symbols be treated as dynamic symbols, even when we know that the
2893      dynamic linker will resolve them locally.  */
2894   return local_protected;
2895 }
2896 
2897 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2898    aligned.  Returns the first TLS output section.  */
2899 
2900 struct bfd_section *
2901 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2902 {
2903   struct bfd_section *sec, *tls;
2904   unsigned int align = 0;
2905 
2906   for (sec = obfd->sections; sec != NULL; sec = sec->next)
2907     if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2908       break;
2909   tls = sec;
2910 
2911   for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2912     if (sec->alignment_power > align)
2913       align = sec->alignment_power;
2914 
2915   elf_hash_table (info)->tls_sec = tls;
2916 
2917   /* Ensure the alignment of the first section is the largest alignment,
2918      so that the tls segment starts aligned.  */
2919   if (tls != NULL)
2920     tls->alignment_power = align;
2921 
2922   return tls;
2923 }
2924 
2925 /* Return TRUE iff this is a non-common, definition of a non-function symbol.  */
2926 static bfd_boolean
2927 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2928 				  Elf_Internal_Sym *sym)
2929 {
2930   const struct elf_backend_data *bed;
2931 
2932   /* Local symbols do not count, but target specific ones might.  */
2933   if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2934       && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2935     return FALSE;
2936 
2937   bed = get_elf_backend_data (abfd);
2938   /* Function symbols do not count.  */
2939   if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2940     return FALSE;
2941 
2942   /* If the section is undefined, then so is the symbol.  */
2943   if (sym->st_shndx == SHN_UNDEF)
2944     return FALSE;
2945 
2946   /* If the symbol is defined in the common section, then
2947      it is a common definition and so does not count.  */
2948   if (bed->common_definition (sym))
2949     return FALSE;
2950 
2951   /* If the symbol is in a target specific section then we
2952      must rely upon the backend to tell us what it is.  */
2953   if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2954     /* FIXME - this function is not coded yet:
2955 
2956        return _bfd_is_global_symbol_definition (abfd, sym);
2957 
2958        Instead for now assume that the definition is not global,
2959        Even if this is wrong, at least the linker will behave
2960        in the same way that it used to do.  */
2961     return FALSE;
2962 
2963   return TRUE;
2964 }
2965 
2966 /* Search the symbol table of the archive element of the archive ABFD
2967    whose archive map contains a mention of SYMDEF, and determine if
2968    the symbol is defined in this element.  */
2969 static bfd_boolean
2970 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2971 {
2972   Elf_Internal_Shdr * hdr;
2973   bfd_size_type symcount;
2974   bfd_size_type extsymcount;
2975   bfd_size_type extsymoff;
2976   Elf_Internal_Sym *isymbuf;
2977   Elf_Internal_Sym *isym;
2978   Elf_Internal_Sym *isymend;
2979   bfd_boolean result;
2980 
2981   abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2982   if (abfd == NULL)
2983     return FALSE;
2984 
2985   if (! bfd_check_format (abfd, bfd_object))
2986     return FALSE;
2987 
2988   /* If we have already included the element containing this symbol in the
2989      link then we do not need to include it again.  Just claim that any symbol
2990      it contains is not a definition, so that our caller will not decide to
2991      (re)include this element.  */
2992   if (abfd->archive_pass)
2993     return FALSE;
2994 
2995   /* Select the appropriate symbol table.  */
2996   if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2997     hdr = &elf_tdata (abfd)->symtab_hdr;
2998   else
2999     hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3000 
3001   symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3002 
3003   /* The sh_info field of the symtab header tells us where the
3004      external symbols start.  We don't care about the local symbols.  */
3005   if (elf_bad_symtab (abfd))
3006     {
3007       extsymcount = symcount;
3008       extsymoff = 0;
3009     }
3010   else
3011     {
3012       extsymcount = symcount - hdr->sh_info;
3013       extsymoff = hdr->sh_info;
3014     }
3015 
3016   if (extsymcount == 0)
3017     return FALSE;
3018 
3019   /* Read in the symbol table.  */
3020   isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3021 				  NULL, NULL, NULL);
3022   if (isymbuf == NULL)
3023     return FALSE;
3024 
3025   /* Scan the symbol table looking for SYMDEF.  */
3026   result = FALSE;
3027   for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3028     {
3029       const char *name;
3030 
3031       name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3032 					      isym->st_name);
3033       if (name == NULL)
3034 	break;
3035 
3036       if (strcmp (name, symdef->name) == 0)
3037 	{
3038 	  result = is_global_data_symbol_definition (abfd, isym);
3039 	  break;
3040 	}
3041     }
3042 
3043   free (isymbuf);
3044 
3045   return result;
3046 }
3047 
3048 /* Add an entry to the .dynamic table.  */
3049 
3050 bfd_boolean
3051 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3052 			    bfd_vma tag,
3053 			    bfd_vma val)
3054 {
3055   struct elf_link_hash_table *hash_table;
3056   const struct elf_backend_data *bed;
3057   asection *s;
3058   bfd_size_type newsize;
3059   bfd_byte *newcontents;
3060   Elf_Internal_Dyn dyn;
3061 
3062   hash_table = elf_hash_table (info);
3063   if (! is_elf_hash_table (hash_table))
3064     return FALSE;
3065 
3066   bed = get_elf_backend_data (hash_table->dynobj);
3067   s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3068   BFD_ASSERT (s != NULL);
3069 
3070   newsize = s->size + bed->s->sizeof_dyn;
3071   newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3072   if (newcontents == NULL)
3073     return FALSE;
3074 
3075   dyn.d_tag = tag;
3076   dyn.d_un.d_val = val;
3077   bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3078 
3079   s->size = newsize;
3080   s->contents = newcontents;
3081 
3082   return TRUE;
3083 }
3084 
3085 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3086    otherwise just check whether one already exists.  Returns -1 on error,
3087    1 if a DT_NEEDED tag already exists, and 0 on success.  */
3088 
3089 static int
3090 elf_add_dt_needed_tag (bfd *abfd,
3091 		       struct bfd_link_info *info,
3092 		       const char *soname,
3093 		       bfd_boolean do_it)
3094 {
3095   struct elf_link_hash_table *hash_table;
3096   bfd_size_type oldsize;
3097   bfd_size_type strindex;
3098 
3099   if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3100     return -1;
3101 
3102   hash_table = elf_hash_table (info);
3103   oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3104   strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3105   if (strindex == (bfd_size_type) -1)
3106     return -1;
3107 
3108   if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3109     {
3110       asection *sdyn;
3111       const struct elf_backend_data *bed;
3112       bfd_byte *extdyn;
3113 
3114       bed = get_elf_backend_data (hash_table->dynobj);
3115       sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3116       if (sdyn != NULL)
3117 	for (extdyn = sdyn->contents;
3118 	     extdyn < sdyn->contents + sdyn->size;
3119 	     extdyn += bed->s->sizeof_dyn)
3120 	  {
3121 	    Elf_Internal_Dyn dyn;
3122 
3123 	    bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3124 	    if (dyn.d_tag == DT_NEEDED
3125 		&& dyn.d_un.d_val == strindex)
3126 	      {
3127 		_bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3128 		return 1;
3129 	      }
3130 	  }
3131     }
3132 
3133   if (do_it)
3134     {
3135       if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3136 	return -1;
3137 
3138       if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3139 	return -1;
3140     }
3141   else
3142     /* We were just checking for existence of the tag.  */
3143     _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3144 
3145   return 0;
3146 }
3147 
3148 static bfd_boolean
3149 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3150 {
3151   for (; needed != NULL; needed = needed->next)
3152     if (strcmp (soname, needed->name) == 0)
3153       return TRUE;
3154 
3155   return FALSE;
3156 }
3157 
3158 /* Sort symbol by value and section.  */
3159 static int
3160 elf_sort_symbol (const void *arg1, const void *arg2)
3161 {
3162   const struct elf_link_hash_entry *h1;
3163   const struct elf_link_hash_entry *h2;
3164   bfd_signed_vma vdiff;
3165 
3166   h1 = *(const struct elf_link_hash_entry **) arg1;
3167   h2 = *(const struct elf_link_hash_entry **) arg2;
3168   vdiff = h1->root.u.def.value - h2->root.u.def.value;
3169   if (vdiff != 0)
3170     return vdiff > 0 ? 1 : -1;
3171   else
3172     {
3173       long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3174       if (sdiff != 0)
3175 	return sdiff > 0 ? 1 : -1;
3176     }
3177   return 0;
3178 }
3179 
3180 /* This function is used to adjust offsets into .dynstr for
3181    dynamic symbols.  This is called via elf_link_hash_traverse.  */
3182 
3183 static bfd_boolean
3184 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3185 {
3186   struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3187 
3188   if (h->root.type == bfd_link_hash_warning)
3189     h = (struct elf_link_hash_entry *) h->root.u.i.link;
3190 
3191   if (h->dynindx != -1)
3192     h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3193   return TRUE;
3194 }
3195 
3196 /* Assign string offsets in .dynstr, update all structures referencing
3197    them.  */
3198 
3199 static bfd_boolean
3200 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3201 {
3202   struct elf_link_hash_table *hash_table = elf_hash_table (info);
3203   struct elf_link_local_dynamic_entry *entry;
3204   struct elf_strtab_hash *dynstr = hash_table->dynstr;
3205   bfd *dynobj = hash_table->dynobj;
3206   asection *sdyn;
3207   bfd_size_type size;
3208   const struct elf_backend_data *bed;
3209   bfd_byte *extdyn;
3210 
3211   _bfd_elf_strtab_finalize (dynstr);
3212   size = _bfd_elf_strtab_size (dynstr);
3213 
3214   bed = get_elf_backend_data (dynobj);
3215   sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3216   BFD_ASSERT (sdyn != NULL);
3217 
3218   /* Update all .dynamic entries referencing .dynstr strings.  */
3219   for (extdyn = sdyn->contents;
3220        extdyn < sdyn->contents + sdyn->size;
3221        extdyn += bed->s->sizeof_dyn)
3222     {
3223       Elf_Internal_Dyn dyn;
3224 
3225       bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3226       switch (dyn.d_tag)
3227 	{
3228 	case DT_STRSZ:
3229 	  dyn.d_un.d_val = size;
3230 	  break;
3231 	case DT_NEEDED:
3232 	case DT_SONAME:
3233 	case DT_RPATH:
3234 	case DT_RUNPATH:
3235 	case DT_FILTER:
3236 	case DT_AUXILIARY:
3237 	  dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3238 	  break;
3239 	default:
3240 	  continue;
3241 	}
3242       bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3243     }
3244 
3245   /* Now update local dynamic symbols.  */
3246   for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3247     entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3248 						  entry->isym.st_name);
3249 
3250   /* And the rest of dynamic symbols.  */
3251   elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3252 
3253   /* Adjust version definitions.  */
3254   if (elf_tdata (output_bfd)->cverdefs)
3255     {
3256       asection *s;
3257       bfd_byte *p;
3258       bfd_size_type i;
3259       Elf_Internal_Verdef def;
3260       Elf_Internal_Verdaux defaux;
3261 
3262       s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3263       p = s->contents;
3264       do
3265 	{
3266 	  _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3267 				   &def);
3268 	  p += sizeof (Elf_External_Verdef);
3269 	  if (def.vd_aux != sizeof (Elf_External_Verdef))
3270 	    continue;
3271 	  for (i = 0; i < def.vd_cnt; ++i)
3272 	    {
3273 	      _bfd_elf_swap_verdaux_in (output_bfd,
3274 					(Elf_External_Verdaux *) p, &defaux);
3275 	      defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3276 							defaux.vda_name);
3277 	      _bfd_elf_swap_verdaux_out (output_bfd,
3278 					 &defaux, (Elf_External_Verdaux *) p);
3279 	      p += sizeof (Elf_External_Verdaux);
3280 	    }
3281 	}
3282       while (def.vd_next);
3283     }
3284 
3285   /* Adjust version references.  */
3286   if (elf_tdata (output_bfd)->verref)
3287     {
3288       asection *s;
3289       bfd_byte *p;
3290       bfd_size_type i;
3291       Elf_Internal_Verneed need;
3292       Elf_Internal_Vernaux needaux;
3293 
3294       s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3295       p = s->contents;
3296       do
3297 	{
3298 	  _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3299 				    &need);
3300 	  need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3301 	  _bfd_elf_swap_verneed_out (output_bfd, &need,
3302 				     (Elf_External_Verneed *) p);
3303 	  p += sizeof (Elf_External_Verneed);
3304 	  for (i = 0; i < need.vn_cnt; ++i)
3305 	    {
3306 	      _bfd_elf_swap_vernaux_in (output_bfd,
3307 					(Elf_External_Vernaux *) p, &needaux);
3308 	      needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3309 							 needaux.vna_name);
3310 	      _bfd_elf_swap_vernaux_out (output_bfd,
3311 					 &needaux,
3312 					 (Elf_External_Vernaux *) p);
3313 	      p += sizeof (Elf_External_Vernaux);
3314 	    }
3315 	}
3316       while (need.vn_next);
3317     }
3318 
3319   return TRUE;
3320 }
3321 
3322 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3323    The default is to only match when the INPUT and OUTPUT are exactly
3324    the same target.  */
3325 
3326 bfd_boolean
3327 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3328 				    const bfd_target *output)
3329 {
3330   return input == output;
3331 }
3332 
3333 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3334    This version is used when different targets for the same architecture
3335    are virtually identical.  */
3336 
3337 bfd_boolean
3338 _bfd_elf_relocs_compatible (const bfd_target *input,
3339 			    const bfd_target *output)
3340 {
3341   const struct elf_backend_data *obed, *ibed;
3342 
3343   if (input == output)
3344     return TRUE;
3345 
3346   ibed = xvec_get_elf_backend_data (input);
3347   obed = xvec_get_elf_backend_data (output);
3348 
3349   if (ibed->arch != obed->arch)
3350     return FALSE;
3351 
3352   /* If both backends are using this function, deem them compatible.  */
3353   return ibed->relocs_compatible == obed->relocs_compatible;
3354 }
3355 
3356 /* Add symbols from an ELF object file to the linker hash table.  */
3357 
3358 static bfd_boolean
3359 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3360 {
3361   Elf_Internal_Ehdr *ehdr;
3362   Elf_Internal_Shdr *hdr;
3363   bfd_size_type symcount;
3364   bfd_size_type extsymcount;
3365   bfd_size_type extsymoff;
3366   struct elf_link_hash_entry **sym_hash;
3367   bfd_boolean dynamic;
3368   Elf_External_Versym *extversym = NULL;
3369   Elf_External_Versym *ever;
3370   struct elf_link_hash_entry *weaks;
3371   struct elf_link_hash_entry **nondeflt_vers = NULL;
3372   bfd_size_type nondeflt_vers_cnt = 0;
3373   Elf_Internal_Sym *isymbuf = NULL;
3374   Elf_Internal_Sym *isym;
3375   Elf_Internal_Sym *isymend;
3376   const struct elf_backend_data *bed;
3377   bfd_boolean add_needed;
3378   struct elf_link_hash_table *htab;
3379   bfd_size_type amt;
3380   void *alloc_mark = NULL;
3381   struct bfd_hash_entry **old_table = NULL;
3382   unsigned int old_size = 0;
3383   unsigned int old_count = 0;
3384   void *old_tab = NULL;
3385   void *old_hash;
3386   void *old_ent;
3387   struct bfd_link_hash_entry *old_undefs = NULL;
3388   struct bfd_link_hash_entry *old_undefs_tail = NULL;
3389   long old_dynsymcount = 0;
3390   size_t tabsize = 0;
3391   size_t hashsize = 0;
3392 
3393   htab = elf_hash_table (info);
3394   bed = get_elf_backend_data (abfd);
3395 
3396   if ((abfd->flags & DYNAMIC) == 0)
3397     dynamic = FALSE;
3398   else
3399     {
3400       dynamic = TRUE;
3401 
3402       /* You can't use -r against a dynamic object.  Also, there's no
3403 	 hope of using a dynamic object which does not exactly match
3404 	 the format of the output file.  */
3405       if (info->relocatable
3406 	  || !is_elf_hash_table (htab)
3407 	  || info->output_bfd->xvec != abfd->xvec)
3408 	{
3409 	  if (info->relocatable)
3410 	    bfd_set_error (bfd_error_invalid_operation);
3411 	  else
3412 	    bfd_set_error (bfd_error_wrong_format);
3413 	  goto error_return;
3414 	}
3415     }
3416 
3417   ehdr = elf_elfheader (abfd);
3418   if (info->warn_alternate_em
3419       && bed->elf_machine_code != ehdr->e_machine
3420       && ((bed->elf_machine_alt1 != 0
3421 	   && ehdr->e_machine == bed->elf_machine_alt1)
3422 	  || (bed->elf_machine_alt2 != 0
3423 	      && ehdr->e_machine == bed->elf_machine_alt2)))
3424     info->callbacks->einfo
3425       (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3426        ehdr->e_machine, abfd, bed->elf_machine_code);
3427 
3428   /* As a GNU extension, any input sections which are named
3429      .gnu.warning.SYMBOL are treated as warning symbols for the given
3430      symbol.  This differs from .gnu.warning sections, which generate
3431      warnings when they are included in an output file.  */
3432   if (info->executable)
3433     {
3434       asection *s;
3435 
3436       for (s = abfd->sections; s != NULL; s = s->next)
3437 	{
3438 	  const char *name;
3439 
3440 	  name = bfd_get_section_name (abfd, s);
3441 	  if (CONST_STRNEQ (name, ".gnu.warning."))
3442 	    {
3443 	      char *msg;
3444 	      bfd_size_type sz;
3445 
3446 	      name += sizeof ".gnu.warning." - 1;
3447 
3448 	      /* If this is a shared object, then look up the symbol
3449 		 in the hash table.  If it is there, and it is already
3450 		 been defined, then we will not be using the entry
3451 		 from this shared object, so we don't need to warn.
3452 		 FIXME: If we see the definition in a regular object
3453 		 later on, we will warn, but we shouldn't.  The only
3454 		 fix is to keep track of what warnings we are supposed
3455 		 to emit, and then handle them all at the end of the
3456 		 link.  */
3457 	      if (dynamic)
3458 		{
3459 		  struct elf_link_hash_entry *h;
3460 
3461 		  h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3462 
3463 		  /* FIXME: What about bfd_link_hash_common?  */
3464 		  if (h != NULL
3465 		      && (h->root.type == bfd_link_hash_defined
3466 			  || h->root.type == bfd_link_hash_defweak))
3467 		    {
3468 		      /* We don't want to issue this warning.  Clobber
3469 			 the section size so that the warning does not
3470 			 get copied into the output file.  */
3471 		      s->size = 0;
3472 		      continue;
3473 		    }
3474 		}
3475 
3476 	      sz = s->size;
3477 	      msg = (char *) bfd_alloc (abfd, sz + 1);
3478 	      if (msg == NULL)
3479 		goto error_return;
3480 
3481 	      if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3482 		goto error_return;
3483 
3484 	      msg[sz] = '\0';
3485 
3486 	      if (! (_bfd_generic_link_add_one_symbol
3487 		     (info, abfd, name, BSF_WARNING, s, 0, msg,
3488 		      FALSE, bed->collect, NULL)))
3489 		goto error_return;
3490 
3491 	      if (! info->relocatable)
3492 		{
3493 		  /* Clobber the section size so that the warning does
3494 		     not get copied into the output file.  */
3495 		  s->size = 0;
3496 
3497 		  /* Also set SEC_EXCLUDE, so that symbols defined in
3498 		     the warning section don't get copied to the output.  */
3499 		  s->flags |= SEC_EXCLUDE;
3500 		}
3501 	    }
3502 	}
3503     }
3504 
3505   add_needed = TRUE;
3506   if (! dynamic)
3507     {
3508       /* If we are creating a shared library, create all the dynamic
3509 	 sections immediately.  We need to attach them to something,
3510 	 so we attach them to this BFD, provided it is the right
3511 	 format.  FIXME: If there are no input BFD's of the same
3512 	 format as the output, we can't make a shared library.  */
3513       if (info->shared
3514 	  && is_elf_hash_table (htab)
3515 	  && info->output_bfd->xvec == abfd->xvec
3516 	  && !htab->dynamic_sections_created)
3517 	{
3518 	  if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3519 	    goto error_return;
3520 	}
3521     }
3522   else if (!is_elf_hash_table (htab))
3523     goto error_return;
3524   else
3525     {
3526       asection *s;
3527       const char *soname = NULL;
3528       struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3529       int ret;
3530 
3531       /* ld --just-symbols and dynamic objects don't mix very well.
3532 	 ld shouldn't allow it.  */
3533       if ((s = abfd->sections) != NULL
3534 	  && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3535 	abort ();
3536 
3537       /* If this dynamic lib was specified on the command line with
3538 	 --as-needed in effect, then we don't want to add a DT_NEEDED
3539 	 tag unless the lib is actually used.  Similary for libs brought
3540 	 in by another lib's DT_NEEDED.  When --no-add-needed is used
3541 	 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3542 	 any dynamic library in DT_NEEDED tags in the dynamic lib at
3543 	 all.  */
3544       add_needed = (elf_dyn_lib_class (abfd)
3545 		    & (DYN_AS_NEEDED | DYN_DT_NEEDED
3546 		       | DYN_NO_NEEDED)) == 0;
3547 
3548       s = bfd_get_section_by_name (abfd, ".dynamic");
3549       if (s != NULL)
3550 	{
3551 	  bfd_byte *dynbuf;
3552 	  bfd_byte *extdyn;
3553 	  unsigned int elfsec;
3554 	  unsigned long shlink;
3555 
3556 	  if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3557 	    {
3558 error_free_dyn:
3559 	      free (dynbuf);
3560 	      goto error_return;
3561 	    }
3562 
3563 	  elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3564 	  if (elfsec == SHN_BAD)
3565 	    goto error_free_dyn;
3566 	  shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3567 
3568 	  for (extdyn = dynbuf;
3569 	       extdyn < dynbuf + s->size;
3570 	       extdyn += bed->s->sizeof_dyn)
3571 	    {
3572 	      Elf_Internal_Dyn dyn;
3573 
3574 	      bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3575 	      if (dyn.d_tag == DT_SONAME)
3576 		{
3577 		  unsigned int tagv = dyn.d_un.d_val;
3578 		  soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3579 		  if (soname == NULL)
3580 		    goto error_free_dyn;
3581 		}
3582 	      if (dyn.d_tag == DT_NEEDED)
3583 		{
3584 		  struct bfd_link_needed_list *n, **pn;
3585 		  char *fnm, *anm;
3586 		  unsigned int tagv = dyn.d_un.d_val;
3587 
3588 		  amt = sizeof (struct bfd_link_needed_list);
3589 		  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3590 		  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3591 		  if (n == NULL || fnm == NULL)
3592 		    goto error_free_dyn;
3593 		  amt = strlen (fnm) + 1;
3594 		  anm = (char *) bfd_alloc (abfd, amt);
3595 		  if (anm == NULL)
3596 		    goto error_free_dyn;
3597 		  memcpy (anm, fnm, amt);
3598 		  n->name = anm;
3599 		  n->by = abfd;
3600 		  n->next = NULL;
3601 		  for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3602 		    ;
3603 		  *pn = n;
3604 		}
3605 	      if (dyn.d_tag == DT_RUNPATH)
3606 		{
3607 		  struct bfd_link_needed_list *n, **pn;
3608 		  char *fnm, *anm;
3609 		  unsigned int tagv = dyn.d_un.d_val;
3610 
3611 		  amt = sizeof (struct bfd_link_needed_list);
3612 		  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3613 		  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3614 		  if (n == NULL || fnm == NULL)
3615 		    goto error_free_dyn;
3616 		  amt = strlen (fnm) + 1;
3617 		  anm = (char *) bfd_alloc (abfd, amt);
3618 		  if (anm == NULL)
3619 		    goto error_free_dyn;
3620 		  memcpy (anm, fnm, amt);
3621 		  n->name = anm;
3622 		  n->by = abfd;
3623 		  n->next = NULL;
3624 		  for (pn = & runpath;
3625 		       *pn != NULL;
3626 		       pn = &(*pn)->next)
3627 		    ;
3628 		  *pn = n;
3629 		}
3630 	      /* Ignore DT_RPATH if we have seen DT_RUNPATH.  */
3631 	      if (!runpath && dyn.d_tag == DT_RPATH)
3632 		{
3633 		  struct bfd_link_needed_list *n, **pn;
3634 		  char *fnm, *anm;
3635 		  unsigned int tagv = dyn.d_un.d_val;
3636 
3637 		  amt = sizeof (struct bfd_link_needed_list);
3638 		  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3639 		  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3640 		  if (n == NULL || fnm == NULL)
3641 		    goto error_free_dyn;
3642 		  amt = strlen (fnm) + 1;
3643 		  anm = (char *) bfd_alloc (abfd, amt);
3644 		  if (anm == NULL)
3645 		    goto error_free_dyn;
3646 		  memcpy (anm, fnm, amt);
3647 		  n->name = anm;
3648 		  n->by = abfd;
3649 		  n->next = NULL;
3650 		  for (pn = & rpath;
3651 		       *pn != NULL;
3652 		       pn = &(*pn)->next)
3653 		    ;
3654 		  *pn = n;
3655 		}
3656 	    }
3657 
3658 	  free (dynbuf);
3659 	}
3660 
3661       /* DT_RUNPATH overrides DT_RPATH.  Do _NOT_ bfd_release, as that
3662 	 frees all more recently bfd_alloc'd blocks as well.  */
3663       if (runpath)
3664 	rpath = runpath;
3665 
3666       if (rpath)
3667 	{
3668 	  struct bfd_link_needed_list **pn;
3669 	  for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3670 	    ;
3671 	  *pn = rpath;
3672 	}
3673 
3674       /* We do not want to include any of the sections in a dynamic
3675 	 object in the output file.  We hack by simply clobbering the
3676 	 list of sections in the BFD.  This could be handled more
3677 	 cleanly by, say, a new section flag; the existing
3678 	 SEC_NEVER_LOAD flag is not the one we want, because that one
3679 	 still implies that the section takes up space in the output
3680 	 file.  */
3681       bfd_section_list_clear (abfd);
3682 
3683       /* Find the name to use in a DT_NEEDED entry that refers to this
3684 	 object.  If the object has a DT_SONAME entry, we use it.
3685 	 Otherwise, if the generic linker stuck something in
3686 	 elf_dt_name, we use that.  Otherwise, we just use the file
3687 	 name.  */
3688       if (soname == NULL || *soname == '\0')
3689 	{
3690 	  soname = elf_dt_name (abfd);
3691 	  if (soname == NULL || *soname == '\0')
3692 	    soname = bfd_get_filename (abfd);
3693 	}
3694 
3695       /* Save the SONAME because sometimes the linker emulation code
3696 	 will need to know it.  */
3697       elf_dt_name (abfd) = soname;
3698 
3699       ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3700       if (ret < 0)
3701 	goto error_return;
3702 
3703       /* If we have already included this dynamic object in the
3704 	 link, just ignore it.  There is no reason to include a
3705 	 particular dynamic object more than once.  */
3706       if (ret > 0)
3707 	return TRUE;
3708     }
3709 
3710   /* If this is a dynamic object, we always link against the .dynsym
3711      symbol table, not the .symtab symbol table.  The dynamic linker
3712      will only see the .dynsym symbol table, so there is no reason to
3713      look at .symtab for a dynamic object.  */
3714 
3715   if (! dynamic || elf_dynsymtab (abfd) == 0)
3716     hdr = &elf_tdata (abfd)->symtab_hdr;
3717   else
3718     hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3719 
3720   symcount = hdr->sh_size / bed->s->sizeof_sym;
3721 
3722   /* The sh_info field of the symtab header tells us where the
3723      external symbols start.  We don't care about the local symbols at
3724      this point.  */
3725   if (elf_bad_symtab (abfd))
3726     {
3727       extsymcount = symcount;
3728       extsymoff = 0;
3729     }
3730   else
3731     {
3732       extsymcount = symcount - hdr->sh_info;
3733       extsymoff = hdr->sh_info;
3734     }
3735 
3736   sym_hash = NULL;
3737   if (extsymcount != 0)
3738     {
3739       isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3740 				      NULL, NULL, NULL);
3741       if (isymbuf == NULL)
3742 	goto error_return;
3743 
3744       /* We store a pointer to the hash table entry for each external
3745 	 symbol.  */
3746       amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3747       sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3748       if (sym_hash == NULL)
3749 	goto error_free_sym;
3750       elf_sym_hashes (abfd) = sym_hash;
3751     }
3752 
3753   if (dynamic)
3754     {
3755       /* Read in any version definitions.  */
3756       if (!_bfd_elf_slurp_version_tables (abfd,
3757 					  info->default_imported_symver))
3758 	goto error_free_sym;
3759 
3760       /* Read in the symbol versions, but don't bother to convert them
3761 	 to internal format.  */
3762       if (elf_dynversym (abfd) != 0)
3763 	{
3764 	  Elf_Internal_Shdr *versymhdr;
3765 
3766 	  versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3767 	  extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3768 	  if (extversym == NULL)
3769 	    goto error_free_sym;
3770 	  amt = versymhdr->sh_size;
3771 	  if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3772 	      || bfd_bread (extversym, amt, abfd) != amt)
3773 	    goto error_free_vers;
3774 	}
3775     }
3776 
3777   /* If we are loading an as-needed shared lib, save the symbol table
3778      state before we start adding symbols.  If the lib turns out
3779      to be unneeded, restore the state.  */
3780   if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3781     {
3782       unsigned int i;
3783       size_t entsize;
3784 
3785       for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3786 	{
3787 	  struct bfd_hash_entry *p;
3788 	  struct elf_link_hash_entry *h;
3789 
3790 	  for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3791 	    {
3792 	      h = (struct elf_link_hash_entry *) p;
3793 	      entsize += htab->root.table.entsize;
3794 	      if (h->root.type == bfd_link_hash_warning)
3795 		entsize += htab->root.table.entsize;
3796 	    }
3797 	}
3798 
3799       tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3800       hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3801       old_tab = bfd_malloc (tabsize + entsize + hashsize);
3802       if (old_tab == NULL)
3803 	goto error_free_vers;
3804 
3805       /* Remember the current objalloc pointer, so that all mem for
3806 	 symbols added can later be reclaimed.  */
3807       alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3808       if (alloc_mark == NULL)
3809 	goto error_free_vers;
3810 
3811       /* Make a special call to the linker "notice" function to
3812 	 tell it that we are about to handle an as-needed lib.  */
3813       if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3814 				       notice_as_needed))
3815 	goto error_free_vers;
3816 
3817       /* Clone the symbol table and sym hashes.  Remember some
3818 	 pointers into the symbol table, and dynamic symbol count.  */
3819       old_hash = (char *) old_tab + tabsize;
3820       old_ent = (char *) old_hash + hashsize;
3821       memcpy (old_tab, htab->root.table.table, tabsize);
3822       memcpy (old_hash, sym_hash, hashsize);
3823       old_undefs = htab->root.undefs;
3824       old_undefs_tail = htab->root.undefs_tail;
3825       old_table = htab->root.table.table;
3826       old_size = htab->root.table.size;
3827       old_count = htab->root.table.count;
3828       old_dynsymcount = htab->dynsymcount;
3829 
3830       for (i = 0; i < htab->root.table.size; i++)
3831 	{
3832 	  struct bfd_hash_entry *p;
3833 	  struct elf_link_hash_entry *h;
3834 
3835 	  for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3836 	    {
3837 	      memcpy (old_ent, p, htab->root.table.entsize);
3838 	      old_ent = (char *) old_ent + htab->root.table.entsize;
3839 	      h = (struct elf_link_hash_entry *) p;
3840 	      if (h->root.type == bfd_link_hash_warning)
3841 		{
3842 		  memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3843 		  old_ent = (char *) old_ent + htab->root.table.entsize;
3844 		}
3845 	    }
3846 	}
3847     }
3848 
3849   weaks = NULL;
3850   ever = extversym != NULL ? extversym + extsymoff : NULL;
3851   for (isym = isymbuf, isymend = isymbuf + extsymcount;
3852        isym < isymend;
3853        isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3854     {
3855       int bind;
3856       bfd_vma value;
3857       asection *sec, *new_sec;
3858       flagword flags;
3859       const char *name;
3860       struct elf_link_hash_entry *h;
3861       bfd_boolean definition;
3862       bfd_boolean size_change_ok;
3863       bfd_boolean type_change_ok;
3864       bfd_boolean new_weakdef;
3865       bfd_boolean override;
3866       bfd_boolean common;
3867       unsigned int old_alignment;
3868       bfd *old_bfd;
3869 
3870       override = FALSE;
3871 
3872       flags = BSF_NO_FLAGS;
3873       sec = NULL;
3874       value = isym->st_value;
3875       *sym_hash = NULL;
3876       common = bed->common_definition (isym);
3877 
3878       bind = ELF_ST_BIND (isym->st_info);
3879       switch (bind)
3880 	{
3881 	case STB_LOCAL:
3882 	  /* This should be impossible, since ELF requires that all
3883 	     global symbols follow all local symbols, and that sh_info
3884 	     point to the first global symbol.  Unfortunately, Irix 5
3885 	     screws this up.  */
3886 	  continue;
3887 
3888 	case STB_GLOBAL:
3889 	  if (isym->st_shndx != SHN_UNDEF && !common)
3890 	    flags = BSF_GLOBAL;
3891 	  break;
3892 
3893 	case STB_WEAK:
3894 	  flags = BSF_WEAK;
3895 	  break;
3896 
3897 	case STB_GNU_UNIQUE:
3898 	  flags = BSF_GNU_UNIQUE;
3899 	  break;
3900 
3901 	default:
3902 	  /* Leave it up to the processor backend.  */
3903 	  break;
3904 	}
3905 
3906       if (isym->st_shndx == SHN_UNDEF)
3907 	sec = bfd_und_section_ptr;
3908       else if (isym->st_shndx == SHN_ABS)
3909 	sec = bfd_abs_section_ptr;
3910       else if (isym->st_shndx == SHN_COMMON)
3911 	{
3912 	  sec = bfd_com_section_ptr;
3913 	  /* What ELF calls the size we call the value.  What ELF
3914 	     calls the value we call the alignment.  */
3915 	  value = isym->st_size;
3916 	}
3917       else
3918 	{
3919 	  sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3920 	  if (sec == NULL)
3921 	    sec = bfd_abs_section_ptr;
3922 	  else if (sec->kept_section)
3923 	    {
3924 	      /* Symbols from discarded section are undefined.  We keep
3925 		 its visibility.  */
3926 	      sec = bfd_und_section_ptr;
3927 	      isym->st_shndx = SHN_UNDEF;
3928 	    }
3929 	  else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3930 	    value -= sec->vma;
3931 	}
3932 
3933       name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3934 					      isym->st_name);
3935       if (name == NULL)
3936 	goto error_free_vers;
3937 
3938       if (isym->st_shndx == SHN_COMMON
3939 	  && ELF_ST_TYPE (isym->st_info) == STT_TLS
3940 	  && !info->relocatable)
3941 	{
3942 	  asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3943 
3944 	  if (tcomm == NULL)
3945 	    {
3946 	      tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3947 						   (SEC_ALLOC
3948 						    | SEC_IS_COMMON
3949 						    | SEC_LINKER_CREATED
3950 						    | SEC_THREAD_LOCAL));
3951 	      if (tcomm == NULL)
3952 		goto error_free_vers;
3953 	    }
3954 	  sec = tcomm;
3955 	}
3956       else if (bed->elf_add_symbol_hook)
3957 	{
3958 	  if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3959 					     &sec, &value))
3960 	    goto error_free_vers;
3961 
3962 	  /* The hook function sets the name to NULL if this symbol
3963 	     should be skipped for some reason.  */
3964 	  if (name == NULL)
3965 	    continue;
3966 	}
3967 
3968       /* Sanity check that all possibilities were handled.  */
3969       if (sec == NULL)
3970 	{
3971 	  bfd_set_error (bfd_error_bad_value);
3972 	  goto error_free_vers;
3973 	}
3974 
3975       if (bfd_is_und_section (sec)
3976 	  || bfd_is_com_section (sec))
3977 	definition = FALSE;
3978       else
3979 	definition = TRUE;
3980 
3981       size_change_ok = FALSE;
3982       type_change_ok = bed->type_change_ok;
3983       old_alignment = 0;
3984       old_bfd = NULL;
3985       new_sec = sec;
3986 
3987       if (is_elf_hash_table (htab))
3988 	{
3989 	  Elf_Internal_Versym iver;
3990 	  unsigned int vernum = 0;
3991 	  bfd_boolean skip;
3992 
3993 	  if (ever == NULL)
3994 	    {
3995 	      if (info->default_imported_symver)
3996 		/* Use the default symbol version created earlier.  */
3997 		iver.vs_vers = elf_tdata (abfd)->cverdefs;
3998 	      else
3999 		iver.vs_vers = 0;
4000 	    }
4001 	  else
4002 	    _bfd_elf_swap_versym_in (abfd, ever, &iver);
4003 
4004 	  vernum = iver.vs_vers & VERSYM_VERSION;
4005 
4006 	  /* If this is a hidden symbol, or if it is not version
4007 	     1, we append the version name to the symbol name.
4008 	     However, we do not modify a non-hidden absolute symbol
4009 	     if it is not a function, because it might be the version
4010 	     symbol itself.  FIXME: What if it isn't?  */
4011 	  if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4012 	      || (vernum > 1
4013 		  && (!bfd_is_abs_section (sec)
4014 		      || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4015 	    {
4016 	      const char *verstr;
4017 	      size_t namelen, verlen, newlen;
4018 	      char *newname, *p;
4019 
4020 	      if (isym->st_shndx != SHN_UNDEF)
4021 		{
4022 		  if (vernum > elf_tdata (abfd)->cverdefs)
4023 		    verstr = NULL;
4024 		  else if (vernum > 1)
4025 		    verstr =
4026 		      elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4027 		  else
4028 		    verstr = "";
4029 
4030 		  if (verstr == NULL)
4031 		    {
4032 		      (*_bfd_error_handler)
4033 			(_("%B: %s: invalid version %u (max %d)"),
4034 			 abfd, name, vernum,
4035 			 elf_tdata (abfd)->cverdefs);
4036 		      bfd_set_error (bfd_error_bad_value);
4037 		      goto error_free_vers;
4038 		    }
4039 		}
4040 	      else
4041 		{
4042 		  /* We cannot simply test for the number of
4043 		     entries in the VERNEED section since the
4044 		     numbers for the needed versions do not start
4045 		     at 0.  */
4046 		  Elf_Internal_Verneed *t;
4047 
4048 		  verstr = NULL;
4049 		  for (t = elf_tdata (abfd)->verref;
4050 		       t != NULL;
4051 		       t = t->vn_nextref)
4052 		    {
4053 		      Elf_Internal_Vernaux *a;
4054 
4055 		      for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4056 			{
4057 			  if (a->vna_other == vernum)
4058 			    {
4059 			      verstr = a->vna_nodename;
4060 			      break;
4061 			    }
4062 			}
4063 		      if (a != NULL)
4064 			break;
4065 		    }
4066 		  if (verstr == NULL)
4067 		    {
4068 		      (*_bfd_error_handler)
4069 			(_("%B: %s: invalid needed version %d"),
4070 			 abfd, name, vernum);
4071 		      bfd_set_error (bfd_error_bad_value);
4072 		      goto error_free_vers;
4073 		    }
4074 		}
4075 
4076 	      namelen = strlen (name);
4077 	      verlen = strlen (verstr);
4078 	      newlen = namelen + verlen + 2;
4079 	      if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4080 		  && isym->st_shndx != SHN_UNDEF)
4081 		++newlen;
4082 
4083 	      newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4084 	      if (newname == NULL)
4085 		goto error_free_vers;
4086 	      memcpy (newname, name, namelen);
4087 	      p = newname + namelen;
4088 	      *p++ = ELF_VER_CHR;
4089 	      /* If this is a defined non-hidden version symbol,
4090 		 we add another @ to the name.  This indicates the
4091 		 default version of the symbol.  */
4092 	      if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4093 		  && isym->st_shndx != SHN_UNDEF)
4094 		*p++ = ELF_VER_CHR;
4095 	      memcpy (p, verstr, verlen + 1);
4096 
4097 	      name = newname;
4098 	    }
4099 
4100 	  if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4101 				      &value, &old_alignment,
4102 				      sym_hash, &skip, &override,
4103 				      &type_change_ok, &size_change_ok))
4104 	    goto error_free_vers;
4105 
4106 	  if (skip)
4107 	    continue;
4108 
4109 	  if (override)
4110 	    definition = FALSE;
4111 
4112 	  h = *sym_hash;
4113 	  while (h->root.type == bfd_link_hash_indirect
4114 		 || h->root.type == bfd_link_hash_warning)
4115 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
4116 
4117 	  /* Remember the old alignment if this is a common symbol, so
4118 	     that we don't reduce the alignment later on.  We can't
4119 	     check later, because _bfd_generic_link_add_one_symbol
4120 	     will set a default for the alignment which we want to
4121 	     override. We also remember the old bfd where the existing
4122 	     definition comes from.  */
4123 	  switch (h->root.type)
4124 	    {
4125 	    default:
4126 	      break;
4127 
4128 	    case bfd_link_hash_defined:
4129 	    case bfd_link_hash_defweak:
4130 	      old_bfd = h->root.u.def.section->owner;
4131 	      break;
4132 
4133 	    case bfd_link_hash_common:
4134 	      old_bfd = h->root.u.c.p->section->owner;
4135 	      old_alignment = h->root.u.c.p->alignment_power;
4136 	      break;
4137 	    }
4138 
4139 	  if (elf_tdata (abfd)->verdef != NULL
4140 	      && ! override
4141 	      && vernum > 1
4142 	      && definition)
4143 	    h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4144 	}
4145 
4146       if (! (_bfd_generic_link_add_one_symbol
4147 	     (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4148 	      (struct bfd_link_hash_entry **) sym_hash)))
4149 	goto error_free_vers;
4150 
4151       h = *sym_hash;
4152       while (h->root.type == bfd_link_hash_indirect
4153 	     || h->root.type == bfd_link_hash_warning)
4154 	h = (struct elf_link_hash_entry *) h->root.u.i.link;
4155 
4156       *sym_hash = h;
4157       h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4158 
4159       new_weakdef = FALSE;
4160       if (dynamic
4161 	  && definition
4162 	  && (flags & BSF_WEAK) != 0
4163 	  && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4164 	  && is_elf_hash_table (htab)
4165 	  && h->u.weakdef == NULL)
4166 	{
4167 	  /* Keep a list of all weak defined non function symbols from
4168 	     a dynamic object, using the weakdef field.  Later in this
4169 	     function we will set the weakdef field to the correct
4170 	     value.  We only put non-function symbols from dynamic
4171 	     objects on this list, because that happens to be the only
4172 	     time we need to know the normal symbol corresponding to a
4173 	     weak symbol, and the information is time consuming to
4174 	     figure out.  If the weakdef field is not already NULL,
4175 	     then this symbol was already defined by some previous
4176 	     dynamic object, and we will be using that previous
4177 	     definition anyhow.  */
4178 
4179 	  h->u.weakdef = weaks;
4180 	  weaks = h;
4181 	  new_weakdef = TRUE;
4182 	}
4183 
4184       /* Set the alignment of a common symbol.  */
4185       if ((common || bfd_is_com_section (sec))
4186 	  && h->root.type == bfd_link_hash_common)
4187 	{
4188 	  unsigned int align;
4189 
4190 	  if (common)
4191 	    align = bfd_log2 (isym->st_value);
4192 	  else
4193 	    {
4194 	      /* The new symbol is a common symbol in a shared object.
4195 		 We need to get the alignment from the section.  */
4196 	      align = new_sec->alignment_power;
4197 	    }
4198 	  if (align > old_alignment
4199 	      /* Permit an alignment power of zero if an alignment of one
4200 		 is specified and no other alignments have been specified.  */
4201 	      || (isym->st_value == 1 && old_alignment == 0))
4202 	    h->root.u.c.p->alignment_power = align;
4203 	  else
4204 	    h->root.u.c.p->alignment_power = old_alignment;
4205 	}
4206 
4207       if (is_elf_hash_table (htab))
4208 	{
4209 	  bfd_boolean dynsym;
4210 
4211 	  /* Check the alignment when a common symbol is involved. This
4212 	     can change when a common symbol is overridden by a normal
4213 	     definition or a common symbol is ignored due to the old
4214 	     normal definition. We need to make sure the maximum
4215 	     alignment is maintained.  */
4216 	  if ((old_alignment || common)
4217 	      && h->root.type != bfd_link_hash_common)
4218 	    {
4219 	      unsigned int common_align;
4220 	      unsigned int normal_align;
4221 	      unsigned int symbol_align;
4222 	      bfd *normal_bfd;
4223 	      bfd *common_bfd;
4224 
4225 	      symbol_align = ffs (h->root.u.def.value) - 1;
4226 	      if (h->root.u.def.section->owner != NULL
4227 		  && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4228 		{
4229 		  normal_align = h->root.u.def.section->alignment_power;
4230 		  if (normal_align > symbol_align)
4231 		    normal_align = symbol_align;
4232 		}
4233 	      else
4234 		normal_align = symbol_align;
4235 
4236 	      if (old_alignment)
4237 		{
4238 		  common_align = old_alignment;
4239 		  common_bfd = old_bfd;
4240 		  normal_bfd = abfd;
4241 		}
4242 	      else
4243 		{
4244 		  common_align = bfd_log2 (isym->st_value);
4245 		  common_bfd = abfd;
4246 		  normal_bfd = old_bfd;
4247 		}
4248 
4249 	      if (normal_align < common_align)
4250 		{
4251 		  /* PR binutils/2735 */
4252 		  if (normal_bfd == NULL)
4253 		    (*_bfd_error_handler)
4254 		      (_("Warning: alignment %u of common symbol `%s' in %B"
4255 			 " is greater than the alignment (%u) of its section %A"),
4256 		       common_bfd, h->root.u.def.section,
4257 		       1 << common_align, name, 1 << normal_align);
4258 		  else
4259 		    (*_bfd_error_handler)
4260 		      (_("Warning: alignment %u of symbol `%s' in %B"
4261 			 " is smaller than %u in %B"),
4262 		       normal_bfd, common_bfd,
4263 		       1 << normal_align, name, 1 << common_align);
4264 		}
4265 	    }
4266 
4267 	  /* Remember the symbol size if it isn't undefined.  */
4268 	  if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4269 	      && (definition || h->size == 0))
4270 	    {
4271 	      if (h->size != 0
4272 		  && h->size != isym->st_size
4273 		  && ! size_change_ok)
4274 		(*_bfd_error_handler)
4275 		  (_("Warning: size of symbol `%s' changed"
4276 		     " from %lu in %B to %lu in %B"),
4277 		   old_bfd, abfd,
4278 		   name, (unsigned long) h->size,
4279 		   (unsigned long) isym->st_size);
4280 
4281 	      h->size = isym->st_size;
4282 	    }
4283 
4284 	  /* If this is a common symbol, then we always want H->SIZE
4285 	     to be the size of the common symbol.  The code just above
4286 	     won't fix the size if a common symbol becomes larger.  We
4287 	     don't warn about a size change here, because that is
4288 	     covered by --warn-common.  Allow changed between different
4289 	     function types.  */
4290 	  if (h->root.type == bfd_link_hash_common)
4291 	    h->size = h->root.u.c.size;
4292 
4293 	  if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4294 	      && (definition || h->type == STT_NOTYPE))
4295 	    {
4296 	      unsigned int type = ELF_ST_TYPE (isym->st_info);
4297 
4298 	      /* Turn an IFUNC symbol from a DSO into a normal FUNC
4299 		 symbol.  */
4300 	      if (type == STT_GNU_IFUNC
4301 		  && (abfd->flags & DYNAMIC) != 0)
4302 		type = STT_FUNC;
4303 
4304 	      if (h->type != type)
4305 		{
4306 		  if (h->type != STT_NOTYPE && ! type_change_ok)
4307 		    (*_bfd_error_handler)
4308 		      (_("Warning: type of symbol `%s' changed"
4309 			 " from %d to %d in %B"),
4310 		       abfd, name, h->type, type);
4311 
4312 		  h->type = type;
4313 		}
4314 	    }
4315 
4316 	  /* Merge st_other field.  */
4317 	  elf_merge_st_other (abfd, h, isym, definition, dynamic);
4318 
4319 	  /* Set a flag in the hash table entry indicating the type of
4320 	     reference or definition we just found.  Keep a count of
4321 	     the number of dynamic symbols we find.  A dynamic symbol
4322 	     is one which is referenced or defined by both a regular
4323 	     object and a shared object.  */
4324 	  dynsym = FALSE;
4325 	  if (! dynamic)
4326 	    {
4327 	      if (! definition)
4328 		{
4329 		  h->ref_regular = 1;
4330 		  if (bind != STB_WEAK)
4331 		    h->ref_regular_nonweak = 1;
4332 		}
4333 	      else
4334 		{
4335 		  h->def_regular = 1;
4336 		  if (h->def_dynamic)
4337 		    {
4338 		      h->def_dynamic = 0;
4339 		      h->ref_dynamic = 1;
4340 		      h->dynamic_def = 1;
4341 		    }
4342 		}
4343 	      if (! info->executable
4344 		  || h->def_dynamic
4345 		  || h->ref_dynamic)
4346 		dynsym = TRUE;
4347 	    }
4348 	  else
4349 	    {
4350 	      if (! definition)
4351 		h->ref_dynamic = 1;
4352 	      else
4353 		h->def_dynamic = 1;
4354 	      if (h->def_regular
4355 		  || h->ref_regular
4356 		  || (h->u.weakdef != NULL
4357 		      && ! new_weakdef
4358 		      && h->u.weakdef->dynindx != -1))
4359 		dynsym = TRUE;
4360 	    }
4361 
4362 	  if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4363 	    {
4364 	      /* We don't want to make debug symbol dynamic.  */
4365 	      (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4366 	      dynsym = FALSE;
4367 	    }
4368 
4369 	  /* Check to see if we need to add an indirect symbol for
4370 	     the default name.  */
4371 	  if (definition || h->root.type == bfd_link_hash_common)
4372 	    if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4373 					      &sec, &value, &dynsym,
4374 					      override))
4375 	      goto error_free_vers;
4376 
4377 	  if (definition && !dynamic)
4378 	    {
4379 	      char *p = strchr (name, ELF_VER_CHR);
4380 	      if (p != NULL && p[1] != ELF_VER_CHR)
4381 		{
4382 		  /* Queue non-default versions so that .symver x, x@FOO
4383 		     aliases can be checked.  */
4384 		  if (!nondeflt_vers)
4385 		    {
4386 		      amt = ((isymend - isym + 1)
4387 			     * sizeof (struct elf_link_hash_entry *));
4388 		      nondeflt_vers =
4389                           (struct elf_link_hash_entry **) bfd_malloc (amt);
4390 		      if (!nondeflt_vers)
4391 			goto error_free_vers;
4392 		    }
4393 		  nondeflt_vers[nondeflt_vers_cnt++] = h;
4394 		}
4395 	    }
4396 
4397 	  if (dynsym && h->dynindx == -1)
4398 	    {
4399 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
4400 		goto error_free_vers;
4401 	      if (h->u.weakdef != NULL
4402 		  && ! new_weakdef
4403 		  && h->u.weakdef->dynindx == -1)
4404 		{
4405 		  if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4406 		    goto error_free_vers;
4407 		}
4408 	    }
4409 	  else if (dynsym && h->dynindx != -1)
4410 	    /* If the symbol already has a dynamic index, but
4411 	       visibility says it should not be visible, turn it into
4412 	       a local symbol.  */
4413 	    switch (ELF_ST_VISIBILITY (h->other))
4414 	      {
4415 	      case STV_INTERNAL:
4416 	      case STV_HIDDEN:
4417 		(*bed->elf_backend_hide_symbol) (info, h, TRUE);
4418 		dynsym = FALSE;
4419 		break;
4420 	      }
4421 
4422 	  if (!add_needed
4423 	      && definition
4424 	      && ((dynsym
4425 		   && h->ref_regular)
4426 		  || (h->ref_dynamic
4427 		      && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4428 		      && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4429 	    {
4430 	      int ret;
4431 	      const char *soname = elf_dt_name (abfd);
4432 
4433 	      /* A symbol from a library loaded via DT_NEEDED of some
4434 		 other library is referenced by a regular object.
4435 		 Add a DT_NEEDED entry for it.  Issue an error if
4436 		 --no-add-needed is used.  */
4437 	      if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4438 		{
4439 		  (*_bfd_error_handler)
4440 		    (_("%s: invalid DSO for symbol `%s' definition"),
4441 		     abfd, name);
4442 		  bfd_set_error (bfd_error_bad_value);
4443 		  goto error_free_vers;
4444 		}
4445 
4446 	      elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4447                   (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4448 
4449 	      add_needed = TRUE;
4450 	      ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4451 	      if (ret < 0)
4452 		goto error_free_vers;
4453 
4454 	      BFD_ASSERT (ret == 0);
4455 	    }
4456 	}
4457     }
4458 
4459   if (extversym != NULL)
4460     {
4461       free (extversym);
4462       extversym = NULL;
4463     }
4464 
4465   if (isymbuf != NULL)
4466     {
4467       free (isymbuf);
4468       isymbuf = NULL;
4469     }
4470 
4471   if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4472     {
4473       unsigned int i;
4474 
4475       /* Restore the symbol table.  */
4476       if (bed->as_needed_cleanup)
4477 	(*bed->as_needed_cleanup) (abfd, info);
4478       old_hash = (char *) old_tab + tabsize;
4479       old_ent = (char *) old_hash + hashsize;
4480       sym_hash = elf_sym_hashes (abfd);
4481       htab->root.table.table = old_table;
4482       htab->root.table.size = old_size;
4483       htab->root.table.count = old_count;
4484       memcpy (htab->root.table.table, old_tab, tabsize);
4485       memcpy (sym_hash, old_hash, hashsize);
4486       htab->root.undefs = old_undefs;
4487       htab->root.undefs_tail = old_undefs_tail;
4488       for (i = 0; i < htab->root.table.size; i++)
4489 	{
4490 	  struct bfd_hash_entry *p;
4491 	  struct elf_link_hash_entry *h;
4492 
4493 	  for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4494 	    {
4495 	      h = (struct elf_link_hash_entry *) p;
4496 	      if (h->root.type == bfd_link_hash_warning)
4497 		h = (struct elf_link_hash_entry *) h->root.u.i.link;
4498 	      if (h->dynindx >= old_dynsymcount)
4499 		_bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4500 
4501 	      memcpy (p, old_ent, htab->root.table.entsize);
4502 	      old_ent = (char *) old_ent + htab->root.table.entsize;
4503 	      h = (struct elf_link_hash_entry *) p;
4504 	      if (h->root.type == bfd_link_hash_warning)
4505 		{
4506 		  memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4507 		  old_ent = (char *) old_ent + htab->root.table.entsize;
4508 		}
4509 	    }
4510 	}
4511 
4512       /* Make a special call to the linker "notice" function to
4513 	 tell it that symbols added for crefs may need to be removed.  */
4514       if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4515 				       notice_not_needed))
4516 	goto error_free_vers;
4517 
4518       free (old_tab);
4519       objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4520 			   alloc_mark);
4521       if (nondeflt_vers != NULL)
4522 	free (nondeflt_vers);
4523       return TRUE;
4524     }
4525 
4526   if (old_tab != NULL)
4527     {
4528       if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4529 				       notice_needed))
4530 	goto error_free_vers;
4531       free (old_tab);
4532       old_tab = NULL;
4533     }
4534 
4535   /* Now that all the symbols from this input file are created, handle
4536      .symver foo, foo@BAR such that any relocs against foo become foo@BAR.  */
4537   if (nondeflt_vers != NULL)
4538     {
4539       bfd_size_type cnt, symidx;
4540 
4541       for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4542 	{
4543 	  struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4544 	  char *shortname, *p;
4545 
4546 	  p = strchr (h->root.root.string, ELF_VER_CHR);
4547 	  if (p == NULL
4548 	      || (h->root.type != bfd_link_hash_defined
4549 		  && h->root.type != bfd_link_hash_defweak))
4550 	    continue;
4551 
4552 	  amt = p - h->root.root.string;
4553 	  shortname = (char *) bfd_malloc (amt + 1);
4554 	  if (!shortname)
4555 	    goto error_free_vers;
4556 	  memcpy (shortname, h->root.root.string, amt);
4557 	  shortname[amt] = '\0';
4558 
4559 	  hi = (struct elf_link_hash_entry *)
4560 	       bfd_link_hash_lookup (&htab->root, shortname,
4561 				     FALSE, FALSE, FALSE);
4562 	  if (hi != NULL
4563 	      && hi->root.type == h->root.type
4564 	      && hi->root.u.def.value == h->root.u.def.value
4565 	      && hi->root.u.def.section == h->root.u.def.section)
4566 	    {
4567 	      (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4568 	      hi->root.type = bfd_link_hash_indirect;
4569 	      hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4570 	      (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4571 	      sym_hash = elf_sym_hashes (abfd);
4572 	      if (sym_hash)
4573 		for (symidx = 0; symidx < extsymcount; ++symidx)
4574 		  if (sym_hash[symidx] == hi)
4575 		    {
4576 		      sym_hash[symidx] = h;
4577 		      break;
4578 		    }
4579 	    }
4580 	  free (shortname);
4581 	}
4582       free (nondeflt_vers);
4583       nondeflt_vers = NULL;
4584     }
4585 
4586   /* Now set the weakdefs field correctly for all the weak defined
4587      symbols we found.  The only way to do this is to search all the
4588      symbols.  Since we only need the information for non functions in
4589      dynamic objects, that's the only time we actually put anything on
4590      the list WEAKS.  We need this information so that if a regular
4591      object refers to a symbol defined weakly in a dynamic object, the
4592      real symbol in the dynamic object is also put in the dynamic
4593      symbols; we also must arrange for both symbols to point to the
4594      same memory location.  We could handle the general case of symbol
4595      aliasing, but a general symbol alias can only be generated in
4596      assembler code, handling it correctly would be very time
4597      consuming, and other ELF linkers don't handle general aliasing
4598      either.  */
4599   if (weaks != NULL)
4600     {
4601       struct elf_link_hash_entry **hpp;
4602       struct elf_link_hash_entry **hppend;
4603       struct elf_link_hash_entry **sorted_sym_hash;
4604       struct elf_link_hash_entry *h;
4605       size_t sym_count;
4606 
4607       /* Since we have to search the whole symbol list for each weak
4608 	 defined symbol, search time for N weak defined symbols will be
4609 	 O(N^2). Binary search will cut it down to O(NlogN).  */
4610       amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4611       sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4612       if (sorted_sym_hash == NULL)
4613 	goto error_return;
4614       sym_hash = sorted_sym_hash;
4615       hpp = elf_sym_hashes (abfd);
4616       hppend = hpp + extsymcount;
4617       sym_count = 0;
4618       for (; hpp < hppend; hpp++)
4619 	{
4620 	  h = *hpp;
4621 	  if (h != NULL
4622 	      && h->root.type == bfd_link_hash_defined
4623 	      && !bed->is_function_type (h->type))
4624 	    {
4625 	      *sym_hash = h;
4626 	      sym_hash++;
4627 	      sym_count++;
4628 	    }
4629 	}
4630 
4631       qsort (sorted_sym_hash, sym_count,
4632 	     sizeof (struct elf_link_hash_entry *),
4633 	     elf_sort_symbol);
4634 
4635       while (weaks != NULL)
4636 	{
4637 	  struct elf_link_hash_entry *hlook;
4638 	  asection *slook;
4639 	  bfd_vma vlook;
4640 	  long ilook;
4641 	  size_t i, j, idx;
4642 
4643 	  hlook = weaks;
4644 	  weaks = hlook->u.weakdef;
4645 	  hlook->u.weakdef = NULL;
4646 
4647 	  BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4648 		      || hlook->root.type == bfd_link_hash_defweak
4649 		      || hlook->root.type == bfd_link_hash_common
4650 		      || hlook->root.type == bfd_link_hash_indirect);
4651 	  slook = hlook->root.u.def.section;
4652 	  vlook = hlook->root.u.def.value;
4653 
4654 	  ilook = -1;
4655 	  i = 0;
4656 	  j = sym_count;
4657 	  while (i < j)
4658 	    {
4659 	      bfd_signed_vma vdiff;
4660 	      idx = (i + j) / 2;
4661 	      h = sorted_sym_hash [idx];
4662 	      vdiff = vlook - h->root.u.def.value;
4663 	      if (vdiff < 0)
4664 		j = idx;
4665 	      else if (vdiff > 0)
4666 		i = idx + 1;
4667 	      else
4668 		{
4669 		  long sdiff = slook->id - h->root.u.def.section->id;
4670 		  if (sdiff < 0)
4671 		    j = idx;
4672 		  else if (sdiff > 0)
4673 		    i = idx + 1;
4674 		  else
4675 		    {
4676 		      ilook = idx;
4677 		      break;
4678 		    }
4679 		}
4680 	    }
4681 
4682 	  /* We didn't find a value/section match.  */
4683 	  if (ilook == -1)
4684 	    continue;
4685 
4686 	  for (i = ilook; i < sym_count; i++)
4687 	    {
4688 	      h = sorted_sym_hash [i];
4689 
4690 	      /* Stop if value or section doesn't match.  */
4691 	      if (h->root.u.def.value != vlook
4692 		  || h->root.u.def.section != slook)
4693 		break;
4694 	      else if (h != hlook)
4695 		{
4696 		  hlook->u.weakdef = h;
4697 
4698 		  /* If the weak definition is in the list of dynamic
4699 		     symbols, make sure the real definition is put
4700 		     there as well.  */
4701 		  if (hlook->dynindx != -1 && h->dynindx == -1)
4702 		    {
4703 		      if (! bfd_elf_link_record_dynamic_symbol (info, h))
4704 			{
4705 			err_free_sym_hash:
4706 			  free (sorted_sym_hash);
4707 			  goto error_return;
4708 			}
4709 		    }
4710 
4711 		  /* If the real definition is in the list of dynamic
4712 		     symbols, make sure the weak definition is put
4713 		     there as well.  If we don't do this, then the
4714 		     dynamic loader might not merge the entries for the
4715 		     real definition and the weak definition.  */
4716 		  if (h->dynindx != -1 && hlook->dynindx == -1)
4717 		    {
4718 		      if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4719 			goto err_free_sym_hash;
4720 		    }
4721 		  break;
4722 		}
4723 	    }
4724 	}
4725 
4726       free (sorted_sym_hash);
4727     }
4728 
4729   if (bed->check_directives
4730       && !(*bed->check_directives) (abfd, info))
4731     return FALSE;
4732 
4733   /* If this object is the same format as the output object, and it is
4734      not a shared library, then let the backend look through the
4735      relocs.
4736 
4737      This is required to build global offset table entries and to
4738      arrange for dynamic relocs.  It is not required for the
4739      particular common case of linking non PIC code, even when linking
4740      against shared libraries, but unfortunately there is no way of
4741      knowing whether an object file has been compiled PIC or not.
4742      Looking through the relocs is not particularly time consuming.
4743      The problem is that we must either (1) keep the relocs in memory,
4744      which causes the linker to require additional runtime memory or
4745      (2) read the relocs twice from the input file, which wastes time.
4746      This would be a good case for using mmap.
4747 
4748      I have no idea how to handle linking PIC code into a file of a
4749      different format.  It probably can't be done.  */
4750   if (! dynamic
4751       && is_elf_hash_table (htab)
4752       && bed->check_relocs != NULL
4753       && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4754     {
4755       asection *o;
4756 
4757       for (o = abfd->sections; o != NULL; o = o->next)
4758 	{
4759 	  Elf_Internal_Rela *internal_relocs;
4760 	  bfd_boolean ok;
4761 
4762 	  if ((o->flags & SEC_RELOC) == 0
4763 	      || o->reloc_count == 0
4764 	      || ((info->strip == strip_all || info->strip == strip_debugger)
4765 		  && (o->flags & SEC_DEBUGGING) != 0)
4766 	      || bfd_is_abs_section (o->output_section))
4767 	    continue;
4768 
4769 	  internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4770 						       info->keep_memory);
4771 	  if (internal_relocs == NULL)
4772 	    goto error_return;
4773 
4774 	  ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4775 
4776 	  if (elf_section_data (o)->relocs != internal_relocs)
4777 	    free (internal_relocs);
4778 
4779 	  if (! ok)
4780 	    goto error_return;
4781 	}
4782     }
4783 
4784   /* If this is a non-traditional link, try to optimize the handling
4785      of the .stab/.stabstr sections.  */
4786   if (! dynamic
4787       && ! info->traditional_format
4788       && is_elf_hash_table (htab)
4789       && (info->strip != strip_all && info->strip != strip_debugger))
4790     {
4791       asection *stabstr;
4792 
4793       stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4794       if (stabstr != NULL)
4795 	{
4796 	  bfd_size_type string_offset = 0;
4797 	  asection *stab;
4798 
4799 	  for (stab = abfd->sections; stab; stab = stab->next)
4800 	    if (CONST_STRNEQ (stab->name, ".stab")
4801 		&& (!stab->name[5] ||
4802 		    (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4803 		&& (stab->flags & SEC_MERGE) == 0
4804 		&& !bfd_is_abs_section (stab->output_section))
4805 	      {
4806 		struct bfd_elf_section_data *secdata;
4807 
4808 		secdata = elf_section_data (stab);
4809 		if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4810 					       stabstr, &secdata->sec_info,
4811 					       &string_offset))
4812 		  goto error_return;
4813 		if (secdata->sec_info)
4814 		  stab->sec_info_type = ELF_INFO_TYPE_STABS;
4815 	    }
4816 	}
4817     }
4818 
4819   if (is_elf_hash_table (htab) && add_needed)
4820     {
4821       /* Add this bfd to the loaded list.  */
4822       struct elf_link_loaded_list *n;
4823 
4824       n = (struct elf_link_loaded_list *)
4825           bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4826       if (n == NULL)
4827 	goto error_return;
4828       n->abfd = abfd;
4829       n->next = htab->loaded;
4830       htab->loaded = n;
4831     }
4832 
4833   return TRUE;
4834 
4835  error_free_vers:
4836   if (old_tab != NULL)
4837     free (old_tab);
4838   if (nondeflt_vers != NULL)
4839     free (nondeflt_vers);
4840   if (extversym != NULL)
4841     free (extversym);
4842  error_free_sym:
4843   if (isymbuf != NULL)
4844     free (isymbuf);
4845  error_return:
4846   return FALSE;
4847 }
4848 
4849 /* Return the linker hash table entry of a symbol that might be
4850    satisfied by an archive symbol.  Return -1 on error.  */
4851 
4852 struct elf_link_hash_entry *
4853 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4854 				struct bfd_link_info *info,
4855 				const char *name)
4856 {
4857   struct elf_link_hash_entry *h;
4858   char *p, *copy;
4859   size_t len, first;
4860 
4861   h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4862   if (h != NULL)
4863     return h;
4864 
4865   /* If this is a default version (the name contains @@), look up the
4866      symbol again with only one `@' as well as without the version.
4867      The effect is that references to the symbol with and without the
4868      version will be matched by the default symbol in the archive.  */
4869 
4870   p = strchr (name, ELF_VER_CHR);
4871   if (p == NULL || p[1] != ELF_VER_CHR)
4872     return h;
4873 
4874   /* First check with only one `@'.  */
4875   len = strlen (name);
4876   copy = (char *) bfd_alloc (abfd, len);
4877   if (copy == NULL)
4878     return (struct elf_link_hash_entry *) 0 - 1;
4879 
4880   first = p - name + 1;
4881   memcpy (copy, name, first);
4882   memcpy (copy + first, name + first + 1, len - first);
4883 
4884   h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4885   if (h == NULL)
4886     {
4887       /* We also need to check references to the symbol without the
4888 	 version.  */
4889       copy[first - 1] = '\0';
4890       h = elf_link_hash_lookup (elf_hash_table (info), copy,
4891 				FALSE, FALSE, FALSE);
4892     }
4893 
4894   bfd_release (abfd, copy);
4895   return h;
4896 }
4897 
4898 /* Add symbols from an ELF archive file to the linker hash table.  We
4899    don't use _bfd_generic_link_add_archive_symbols because of a
4900    problem which arises on UnixWare.  The UnixWare libc.so is an
4901    archive which includes an entry libc.so.1 which defines a bunch of
4902    symbols.  The libc.so archive also includes a number of other
4903    object files, which also define symbols, some of which are the same
4904    as those defined in libc.so.1.  Correct linking requires that we
4905    consider each object file in turn, and include it if it defines any
4906    symbols we need.  _bfd_generic_link_add_archive_symbols does not do
4907    this; it looks through the list of undefined symbols, and includes
4908    any object file which defines them.  When this algorithm is used on
4909    UnixWare, it winds up pulling in libc.so.1 early and defining a
4910    bunch of symbols.  This means that some of the other objects in the
4911    archive are not included in the link, which is incorrect since they
4912    precede libc.so.1 in the archive.
4913 
4914    Fortunately, ELF archive handling is simpler than that done by
4915    _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4916    oddities.  In ELF, if we find a symbol in the archive map, and the
4917    symbol is currently undefined, we know that we must pull in that
4918    object file.
4919 
4920    Unfortunately, we do have to make multiple passes over the symbol
4921    table until nothing further is resolved.  */
4922 
4923 static bfd_boolean
4924 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4925 {
4926   symindex c;
4927   bfd_boolean *defined = NULL;
4928   bfd_boolean *included = NULL;
4929   carsym *symdefs;
4930   bfd_boolean loop;
4931   bfd_size_type amt;
4932   const struct elf_backend_data *bed;
4933   struct elf_link_hash_entry * (*archive_symbol_lookup)
4934     (bfd *, struct bfd_link_info *, const char *);
4935 
4936   if (! bfd_has_map (abfd))
4937     {
4938       /* An empty archive is a special case.  */
4939       if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4940 	return TRUE;
4941       bfd_set_error (bfd_error_no_armap);
4942       return FALSE;
4943     }
4944 
4945   /* Keep track of all symbols we know to be already defined, and all
4946      files we know to be already included.  This is to speed up the
4947      second and subsequent passes.  */
4948   c = bfd_ardata (abfd)->symdef_count;
4949   if (c == 0)
4950     return TRUE;
4951   amt = c;
4952   amt *= sizeof (bfd_boolean);
4953   defined = (bfd_boolean *) bfd_zmalloc (amt);
4954   included = (bfd_boolean *) bfd_zmalloc (amt);
4955   if (defined == NULL || included == NULL)
4956     goto error_return;
4957 
4958   symdefs = bfd_ardata (abfd)->symdefs;
4959   bed = get_elf_backend_data (abfd);
4960   archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4961 
4962   do
4963     {
4964       file_ptr last;
4965       symindex i;
4966       carsym *symdef;
4967       carsym *symdefend;
4968 
4969       loop = FALSE;
4970       last = -1;
4971 
4972       symdef = symdefs;
4973       symdefend = symdef + c;
4974       for (i = 0; symdef < symdefend; symdef++, i++)
4975 	{
4976 	  struct elf_link_hash_entry *h;
4977 	  bfd *element;
4978 	  struct bfd_link_hash_entry *undefs_tail;
4979 	  symindex mark;
4980 
4981 	  if (defined[i] || included[i])
4982 	    continue;
4983 	  if (symdef->file_offset == last)
4984 	    {
4985 	      included[i] = TRUE;
4986 	      continue;
4987 	    }
4988 
4989 	  h = archive_symbol_lookup (abfd, info, symdef->name);
4990 	  if (h == (struct elf_link_hash_entry *) 0 - 1)
4991 	    goto error_return;
4992 
4993 	  if (h == NULL)
4994 	    continue;
4995 
4996 	  if (h->root.type == bfd_link_hash_common)
4997 	    {
4998 	      /* We currently have a common symbol.  The archive map contains
4999 		 a reference to this symbol, so we may want to include it.  We
5000 		 only want to include it however, if this archive element
5001 		 contains a definition of the symbol, not just another common
5002 		 declaration of it.
5003 
5004 		 Unfortunately some archivers (including GNU ar) will put
5005 		 declarations of common symbols into their archive maps, as
5006 		 well as real definitions, so we cannot just go by the archive
5007 		 map alone.  Instead we must read in the element's symbol
5008 		 table and check that to see what kind of symbol definition
5009 		 this is.  */
5010 	      if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5011 		continue;
5012 	    }
5013 	  else if (h->root.type != bfd_link_hash_undefined)
5014 	    {
5015 	      if (h->root.type != bfd_link_hash_undefweak)
5016 		defined[i] = TRUE;
5017 	      continue;
5018 	    }
5019 
5020 	  /* We need to include this archive member.  */
5021 	  element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5022 	  if (element == NULL)
5023 	    goto error_return;
5024 
5025 	  if (! bfd_check_format (element, bfd_object))
5026 	    goto error_return;
5027 
5028 	  /* Doublecheck that we have not included this object
5029 	     already--it should be impossible, but there may be
5030 	     something wrong with the archive.  */
5031 	  if (element->archive_pass != 0)
5032 	    {
5033 	      bfd_set_error (bfd_error_bad_value);
5034 	      goto error_return;
5035 	    }
5036 	  element->archive_pass = 1;
5037 
5038 	  undefs_tail = info->hash->undefs_tail;
5039 
5040 	  if (! (*info->callbacks->add_archive_element) (info, element,
5041 							 symdef->name))
5042 	    goto error_return;
5043 	  if (! bfd_link_add_symbols (element, info))
5044 	    goto error_return;
5045 
5046 	  /* If there are any new undefined symbols, we need to make
5047 	     another pass through the archive in order to see whether
5048 	     they can be defined.  FIXME: This isn't perfect, because
5049 	     common symbols wind up on undefs_tail and because an
5050 	     undefined symbol which is defined later on in this pass
5051 	     does not require another pass.  This isn't a bug, but it
5052 	     does make the code less efficient than it could be.  */
5053 	  if (undefs_tail != info->hash->undefs_tail)
5054 	    loop = TRUE;
5055 
5056 	  /* Look backward to mark all symbols from this object file
5057 	     which we have already seen in this pass.  */
5058 	  mark = i;
5059 	  do
5060 	    {
5061 	      included[mark] = TRUE;
5062 	      if (mark == 0)
5063 		break;
5064 	      --mark;
5065 	    }
5066 	  while (symdefs[mark].file_offset == symdef->file_offset);
5067 
5068 	  /* We mark subsequent symbols from this object file as we go
5069 	     on through the loop.  */
5070 	  last = symdef->file_offset;
5071 	}
5072     }
5073   while (loop);
5074 
5075   free (defined);
5076   free (included);
5077 
5078   return TRUE;
5079 
5080  error_return:
5081   if (defined != NULL)
5082     free (defined);
5083   if (included != NULL)
5084     free (included);
5085   return FALSE;
5086 }
5087 
5088 /* Given an ELF BFD, add symbols to the global hash table as
5089    appropriate.  */
5090 
5091 bfd_boolean
5092 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5093 {
5094   switch (bfd_get_format (abfd))
5095     {
5096     case bfd_object:
5097       return elf_link_add_object_symbols (abfd, info);
5098     case bfd_archive:
5099       return elf_link_add_archive_symbols (abfd, info);
5100     default:
5101       bfd_set_error (bfd_error_wrong_format);
5102       return FALSE;
5103     }
5104 }
5105 
5106 struct hash_codes_info
5107 {
5108   unsigned long *hashcodes;
5109   bfd_boolean error;
5110 };
5111 
5112 /* This function will be called though elf_link_hash_traverse to store
5113    all hash value of the exported symbols in an array.  */
5114 
5115 static bfd_boolean
5116 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5117 {
5118   struct hash_codes_info *inf = (struct hash_codes_info *) data;
5119   const char *name;
5120   char *p;
5121   unsigned long ha;
5122   char *alc = NULL;
5123 
5124   if (h->root.type == bfd_link_hash_warning)
5125     h = (struct elf_link_hash_entry *) h->root.u.i.link;
5126 
5127   /* Ignore indirect symbols.  These are added by the versioning code.  */
5128   if (h->dynindx == -1)
5129     return TRUE;
5130 
5131   name = h->root.root.string;
5132   p = strchr (name, ELF_VER_CHR);
5133   if (p != NULL)
5134     {
5135       alc = (char *) bfd_malloc (p - name + 1);
5136       if (alc == NULL)
5137 	{
5138 	  inf->error = TRUE;
5139 	  return FALSE;
5140 	}
5141       memcpy (alc, name, p - name);
5142       alc[p - name] = '\0';
5143       name = alc;
5144     }
5145 
5146   /* Compute the hash value.  */
5147   ha = bfd_elf_hash (name);
5148 
5149   /* Store the found hash value in the array given as the argument.  */
5150   *(inf->hashcodes)++ = ha;
5151 
5152   /* And store it in the struct so that we can put it in the hash table
5153      later.  */
5154   h->u.elf_hash_value = ha;
5155 
5156   if (alc != NULL)
5157     free (alc);
5158 
5159   return TRUE;
5160 }
5161 
5162 struct collect_gnu_hash_codes
5163 {
5164   bfd *output_bfd;
5165   const struct elf_backend_data *bed;
5166   unsigned long int nsyms;
5167   unsigned long int maskbits;
5168   unsigned long int *hashcodes;
5169   unsigned long int *hashval;
5170   unsigned long int *indx;
5171   unsigned long int *counts;
5172   bfd_vma *bitmask;
5173   bfd_byte *contents;
5174   long int min_dynindx;
5175   unsigned long int bucketcount;
5176   unsigned long int symindx;
5177   long int local_indx;
5178   long int shift1, shift2;
5179   unsigned long int mask;
5180   bfd_boolean error;
5181 };
5182 
5183 /* This function will be called though elf_link_hash_traverse to store
5184    all hash value of the exported symbols in an array.  */
5185 
5186 static bfd_boolean
5187 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5188 {
5189   struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5190   const char *name;
5191   char *p;
5192   unsigned long ha;
5193   char *alc = NULL;
5194 
5195   if (h->root.type == bfd_link_hash_warning)
5196     h = (struct elf_link_hash_entry *) h->root.u.i.link;
5197 
5198   /* Ignore indirect symbols.  These are added by the versioning code.  */
5199   if (h->dynindx == -1)
5200     return TRUE;
5201 
5202   /* Ignore also local symbols and undefined symbols.  */
5203   if (! (*s->bed->elf_hash_symbol) (h))
5204     return TRUE;
5205 
5206   name = h->root.root.string;
5207   p = strchr (name, ELF_VER_CHR);
5208   if (p != NULL)
5209     {
5210       alc = (char *) bfd_malloc (p - name + 1);
5211       if (alc == NULL)
5212 	{
5213 	  s->error = TRUE;
5214 	  return FALSE;
5215 	}
5216       memcpy (alc, name, p - name);
5217       alc[p - name] = '\0';
5218       name = alc;
5219     }
5220 
5221   /* Compute the hash value.  */
5222   ha = bfd_elf_gnu_hash (name);
5223 
5224   /* Store the found hash value in the array for compute_bucket_count,
5225      and also for .dynsym reordering purposes.  */
5226   s->hashcodes[s->nsyms] = ha;
5227   s->hashval[h->dynindx] = ha;
5228   ++s->nsyms;
5229   if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5230     s->min_dynindx = h->dynindx;
5231 
5232   if (alc != NULL)
5233     free (alc);
5234 
5235   return TRUE;
5236 }
5237 
5238 /* This function will be called though elf_link_hash_traverse to do
5239    final dynaminc symbol renumbering.  */
5240 
5241 static bfd_boolean
5242 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5243 {
5244   struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5245   unsigned long int bucket;
5246   unsigned long int val;
5247 
5248   if (h->root.type == bfd_link_hash_warning)
5249     h = (struct elf_link_hash_entry *) h->root.u.i.link;
5250 
5251   /* Ignore indirect symbols.  */
5252   if (h->dynindx == -1)
5253     return TRUE;
5254 
5255   /* Ignore also local symbols and undefined symbols.  */
5256   if (! (*s->bed->elf_hash_symbol) (h))
5257     {
5258       if (h->dynindx >= s->min_dynindx)
5259 	h->dynindx = s->local_indx++;
5260       return TRUE;
5261     }
5262 
5263   bucket = s->hashval[h->dynindx] % s->bucketcount;
5264   val = (s->hashval[h->dynindx] >> s->shift1)
5265 	& ((s->maskbits >> s->shift1) - 1);
5266   s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5267   s->bitmask[val]
5268     |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5269   val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5270   if (s->counts[bucket] == 1)
5271     /* Last element terminates the chain.  */
5272     val |= 1;
5273   bfd_put_32 (s->output_bfd, val,
5274 	      s->contents + (s->indx[bucket] - s->symindx) * 4);
5275   --s->counts[bucket];
5276   h->dynindx = s->indx[bucket]++;
5277   return TRUE;
5278 }
5279 
5280 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section.  */
5281 
5282 bfd_boolean
5283 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5284 {
5285   return !(h->forced_local
5286 	   || h->root.type == bfd_link_hash_undefined
5287 	   || h->root.type == bfd_link_hash_undefweak
5288 	   || ((h->root.type == bfd_link_hash_defined
5289 		|| h->root.type == bfd_link_hash_defweak)
5290 	       && h->root.u.def.section->output_section == NULL));
5291 }
5292 
5293 /* Array used to determine the number of hash table buckets to use
5294    based on the number of symbols there are.  If there are fewer than
5295    3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5296    fewer than 37 we use 17 buckets, and so forth.  We never use more
5297    than 32771 buckets.  */
5298 
5299 static const size_t elf_buckets[] =
5300 {
5301   1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5302   16411, 32771, 0
5303 };
5304 
5305 /* Compute bucket count for hashing table.  We do not use a static set
5306    of possible tables sizes anymore.  Instead we determine for all
5307    possible reasonable sizes of the table the outcome (i.e., the
5308    number of collisions etc) and choose the best solution.  The
5309    weighting functions are not too simple to allow the table to grow
5310    without bounds.  Instead one of the weighting factors is the size.
5311    Therefore the result is always a good payoff between few collisions
5312    (= short chain lengths) and table size.  */
5313 static size_t
5314 compute_bucket_count (struct bfd_link_info *info,
5315 		      unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5316 		      unsigned long int nsyms,
5317 		      int gnu_hash)
5318 {
5319   size_t best_size = 0;
5320   unsigned long int i;
5321 
5322   /* We have a problem here.  The following code to optimize the table
5323      size requires an integer type with more the 32 bits.  If
5324      BFD_HOST_U_64_BIT is set we know about such a type.  */
5325 #ifdef BFD_HOST_U_64_BIT
5326   if (info->optimize)
5327     {
5328       size_t minsize;
5329       size_t maxsize;
5330       BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5331       bfd *dynobj = elf_hash_table (info)->dynobj;
5332       size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5333       const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5334       unsigned long int *counts;
5335       bfd_size_type amt;
5336 
5337       /* Possible optimization parameters: if we have NSYMS symbols we say
5338 	 that the hashing table must at least have NSYMS/4 and at most
5339 	 2*NSYMS buckets.  */
5340       minsize = nsyms / 4;
5341       if (minsize == 0)
5342 	minsize = 1;
5343       best_size = maxsize = nsyms * 2;
5344       if (gnu_hash)
5345 	{
5346 	  if (minsize < 2)
5347 	    minsize = 2;
5348 	  if ((best_size & 31) == 0)
5349 	    ++best_size;
5350 	}
5351 
5352       /* Create array where we count the collisions in.  We must use bfd_malloc
5353 	 since the size could be large.  */
5354       amt = maxsize;
5355       amt *= sizeof (unsigned long int);
5356       counts = (unsigned long int *) bfd_malloc (amt);
5357       if (counts == NULL)
5358 	return 0;
5359 
5360       /* Compute the "optimal" size for the hash table.  The criteria is a
5361 	 minimal chain length.  The minor criteria is (of course) the size
5362 	 of the table.  */
5363       for (i = minsize; i < maxsize; ++i)
5364 	{
5365 	  /* Walk through the array of hashcodes and count the collisions.  */
5366 	  BFD_HOST_U_64_BIT max;
5367 	  unsigned long int j;
5368 	  unsigned long int fact;
5369 
5370 	  if (gnu_hash && (i & 31) == 0)
5371 	    continue;
5372 
5373 	  memset (counts, '\0', i * sizeof (unsigned long int));
5374 
5375 	  /* Determine how often each hash bucket is used.  */
5376 	  for (j = 0; j < nsyms; ++j)
5377 	    ++counts[hashcodes[j] % i];
5378 
5379 	  /* For the weight function we need some information about the
5380 	     pagesize on the target.  This is information need not be 100%
5381 	     accurate.  Since this information is not available (so far) we
5382 	     define it here to a reasonable default value.  If it is crucial
5383 	     to have a better value some day simply define this value.  */
5384 # ifndef BFD_TARGET_PAGESIZE
5385 #  define BFD_TARGET_PAGESIZE	(4096)
5386 # endif
5387 
5388 	  /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5389 	     and the chains.  */
5390 	  max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5391 
5392 # if 1
5393 	  /* Variant 1: optimize for short chains.  We add the squares
5394 	     of all the chain lengths (which favors many small chain
5395 	     over a few long chains).  */
5396 	  for (j = 0; j < i; ++j)
5397 	    max += counts[j] * counts[j];
5398 
5399 	  /* This adds penalties for the overall size of the table.  */
5400 	  fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5401 	  max *= fact * fact;
5402 # else
5403 	  /* Variant 2: Optimize a lot more for small table.  Here we
5404 	     also add squares of the size but we also add penalties for
5405 	     empty slots (the +1 term).  */
5406 	  for (j = 0; j < i; ++j)
5407 	    max += (1 + counts[j]) * (1 + counts[j]);
5408 
5409 	  /* The overall size of the table is considered, but not as
5410 	     strong as in variant 1, where it is squared.  */
5411 	  fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5412 	  max *= fact;
5413 # endif
5414 
5415 	  /* Compare with current best results.  */
5416 	  if (max < best_chlen)
5417 	    {
5418 	      best_chlen = max;
5419 	      best_size = i;
5420 	    }
5421 	}
5422 
5423       free (counts);
5424     }
5425   else
5426 #endif /* defined (BFD_HOST_U_64_BIT) */
5427     {
5428       /* This is the fallback solution if no 64bit type is available or if we
5429 	 are not supposed to spend much time on optimizations.  We select the
5430 	 bucket count using a fixed set of numbers.  */
5431       for (i = 0; elf_buckets[i] != 0; i++)
5432 	{
5433 	  best_size = elf_buckets[i];
5434 	  if (nsyms < elf_buckets[i + 1])
5435 	    break;
5436 	}
5437       if (gnu_hash && best_size < 2)
5438 	best_size = 2;
5439     }
5440 
5441   return best_size;
5442 }
5443 
5444 /* Set up the sizes and contents of the ELF dynamic sections.  This is
5445    called by the ELF linker emulation before_allocation routine.  We
5446    must set the sizes of the sections before the linker sets the
5447    addresses of the various sections.  */
5448 
5449 bfd_boolean
5450 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5451 			       const char *soname,
5452 			       const char *rpath,
5453 			       const char *filter_shlib,
5454 			       const char * const *auxiliary_filters,
5455 			       struct bfd_link_info *info,
5456 			       asection **sinterpptr,
5457 			       struct bfd_elf_version_tree *verdefs)
5458 {
5459   bfd_size_type soname_indx;
5460   bfd *dynobj;
5461   const struct elf_backend_data *bed;
5462   struct elf_info_failed asvinfo;
5463 
5464   *sinterpptr = NULL;
5465 
5466   soname_indx = (bfd_size_type) -1;
5467 
5468   if (!is_elf_hash_table (info->hash))
5469     return TRUE;
5470 
5471   bed = get_elf_backend_data (output_bfd);
5472   if (info->execstack)
5473     elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5474   else if (info->noexecstack)
5475     elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5476   else
5477     {
5478       bfd *inputobj;
5479       asection *notesec = NULL;
5480       int exec = 0;
5481 
5482       for (inputobj = info->input_bfds;
5483 	   inputobj;
5484 	   inputobj = inputobj->link_next)
5485 	{
5486 	  asection *s;
5487 
5488 	  if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5489 	    continue;
5490 	  s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5491 	  if (s)
5492 	    {
5493 	      if (s->flags & SEC_CODE)
5494 		exec = PF_X;
5495 	      notesec = s;
5496 	    }
5497 	  else if (bed->default_execstack)
5498 	    exec = PF_X;
5499 	}
5500       if (notesec)
5501 	{
5502 	  elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5503 	  if (exec && info->relocatable
5504 	      && notesec->output_section != bfd_abs_section_ptr)
5505 	    notesec->output_section->flags |= SEC_CODE;
5506 	}
5507     }
5508 
5509   /* Any syms created from now on start with -1 in
5510      got.refcount/offset and plt.refcount/offset.  */
5511   elf_hash_table (info)->init_got_refcount
5512     = elf_hash_table (info)->init_got_offset;
5513   elf_hash_table (info)->init_plt_refcount
5514     = elf_hash_table (info)->init_plt_offset;
5515 
5516   /* The backend may have to create some sections regardless of whether
5517      we're dynamic or not.  */
5518   if (bed->elf_backend_always_size_sections
5519       && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5520     return FALSE;
5521 
5522   if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5523     return FALSE;
5524 
5525   dynobj = elf_hash_table (info)->dynobj;
5526 
5527   /* If there were no dynamic objects in the link, there is nothing to
5528      do here.  */
5529   if (dynobj == NULL)
5530     return TRUE;
5531 
5532   if (elf_hash_table (info)->dynamic_sections_created)
5533     {
5534       struct elf_info_failed eif;
5535       struct elf_link_hash_entry *h;
5536       asection *dynstr;
5537       struct bfd_elf_version_tree *t;
5538       struct bfd_elf_version_expr *d;
5539       asection *s;
5540       bfd_boolean all_defined;
5541 
5542       *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5543       BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5544 
5545       if (soname != NULL)
5546 	{
5547 	  soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5548 					     soname, TRUE);
5549 	  if (soname_indx == (bfd_size_type) -1
5550 	      || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5551 	    return FALSE;
5552 	}
5553 
5554       if (info->symbolic)
5555 	{
5556 	  if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5557 	    return FALSE;
5558 	  info->flags |= DF_SYMBOLIC;
5559 	}
5560 
5561       if (rpath != NULL)
5562 	{
5563 	  bfd_size_type indx;
5564 
5565 	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5566 				      TRUE);
5567 	  if (indx == (bfd_size_type) -1
5568 	      || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5569 	    return FALSE;
5570 
5571 	  if  (info->new_dtags)
5572 	    {
5573 	      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5574 	      if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5575 		return FALSE;
5576 	    }
5577 	}
5578 
5579       if (filter_shlib != NULL)
5580 	{
5581 	  bfd_size_type indx;
5582 
5583 	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5584 				      filter_shlib, TRUE);
5585 	  if (indx == (bfd_size_type) -1
5586 	      || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5587 	    return FALSE;
5588 	}
5589 
5590       if (auxiliary_filters != NULL)
5591 	{
5592 	  const char * const *p;
5593 
5594 	  for (p = auxiliary_filters; *p != NULL; p++)
5595 	    {
5596 	      bfd_size_type indx;
5597 
5598 	      indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5599 					  *p, TRUE);
5600 	      if (indx == (bfd_size_type) -1
5601 		  || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5602 		return FALSE;
5603 	    }
5604 	}
5605 
5606       eif.info = info;
5607       eif.verdefs = verdefs;
5608       eif.failed = FALSE;
5609 
5610       /* If we are supposed to export all symbols into the dynamic symbol
5611 	 table (this is not the normal case), then do so.  */
5612       if (info->export_dynamic
5613 	  || (info->executable && info->dynamic))
5614 	{
5615 	  elf_link_hash_traverse (elf_hash_table (info),
5616 				  _bfd_elf_export_symbol,
5617 				  &eif);
5618 	  if (eif.failed)
5619 	    return FALSE;
5620 	}
5621 
5622       /* Make all global versions with definition.  */
5623       for (t = verdefs; t != NULL; t = t->next)
5624 	for (d = t->globals.list; d != NULL; d = d->next)
5625 	  if (!d->symver && d->literal)
5626 	    {
5627 	      const char *verstr, *name;
5628 	      size_t namelen, verlen, newlen;
5629 	      char *newname, *p;
5630 	      struct elf_link_hash_entry *newh;
5631 
5632 	      name = d->pattern;
5633 	      namelen = strlen (name);
5634 	      verstr = t->name;
5635 	      verlen = strlen (verstr);
5636 	      newlen = namelen + verlen + 3;
5637 
5638 	      newname = (char *) bfd_malloc (newlen);
5639 	      if (newname == NULL)
5640 		return FALSE;
5641 	      memcpy (newname, name, namelen);
5642 
5643 	      /* Check the hidden versioned definition.  */
5644 	      p = newname + namelen;
5645 	      *p++ = ELF_VER_CHR;
5646 	      memcpy (p, verstr, verlen + 1);
5647 	      newh = elf_link_hash_lookup (elf_hash_table (info),
5648 					   newname, FALSE, FALSE,
5649 					   FALSE);
5650 	      if (newh == NULL
5651 		  || (newh->root.type != bfd_link_hash_defined
5652 		      && newh->root.type != bfd_link_hash_defweak))
5653 		{
5654 		  /* Check the default versioned definition.  */
5655 		  *p++ = ELF_VER_CHR;
5656 		  memcpy (p, verstr, verlen + 1);
5657 		  newh = elf_link_hash_lookup (elf_hash_table (info),
5658 					       newname, FALSE, FALSE,
5659 					       FALSE);
5660 		}
5661 	      free (newname);
5662 
5663 	      /* Mark this version if there is a definition and it is
5664 		 not defined in a shared object.  */
5665 	      if (newh != NULL
5666 		  && !newh->def_dynamic
5667 		  && (newh->root.type == bfd_link_hash_defined
5668 		      || newh->root.type == bfd_link_hash_defweak))
5669 		d->symver = 1;
5670 	    }
5671 
5672       /* Attach all the symbols to their version information.  */
5673       asvinfo.info = info;
5674       asvinfo.verdefs = verdefs;
5675       asvinfo.failed = FALSE;
5676 
5677       elf_link_hash_traverse (elf_hash_table (info),
5678 			      _bfd_elf_link_assign_sym_version,
5679 			      &asvinfo);
5680       if (asvinfo.failed)
5681 	return FALSE;
5682 
5683       if (!info->allow_undefined_version)
5684 	{
5685 	  /* Check if all global versions have a definition.  */
5686 	  all_defined = TRUE;
5687 	  for (t = verdefs; t != NULL; t = t->next)
5688 	    for (d = t->globals.list; d != NULL; d = d->next)
5689 	      if (d->literal && !d->symver && !d->script)
5690 		{
5691 		  (*_bfd_error_handler)
5692 		    (_("%s: undefined version: %s"),
5693 		     d->pattern, t->name);
5694 		  all_defined = FALSE;
5695 		}
5696 
5697 	  if (!all_defined)
5698 	    {
5699 	      bfd_set_error (bfd_error_bad_value);
5700 	      return FALSE;
5701 	    }
5702 	}
5703 
5704       /* Find all symbols which were defined in a dynamic object and make
5705 	 the backend pick a reasonable value for them.  */
5706       elf_link_hash_traverse (elf_hash_table (info),
5707 			      _bfd_elf_adjust_dynamic_symbol,
5708 			      &eif);
5709       if (eif.failed)
5710 	return FALSE;
5711 
5712       /* Add some entries to the .dynamic section.  We fill in some of the
5713 	 values later, in bfd_elf_final_link, but we must add the entries
5714 	 now so that we know the final size of the .dynamic section.  */
5715 
5716       /* If there are initialization and/or finalization functions to
5717 	 call then add the corresponding DT_INIT/DT_FINI entries.  */
5718       h = (info->init_function
5719 	   ? elf_link_hash_lookup (elf_hash_table (info),
5720 				   info->init_function, FALSE,
5721 				   FALSE, FALSE)
5722 	   : NULL);
5723       if (h != NULL
5724 	  && (h->ref_regular
5725 	      || h->def_regular))
5726 	{
5727 	  if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5728 	    return FALSE;
5729 	}
5730       h = (info->fini_function
5731 	   ? elf_link_hash_lookup (elf_hash_table (info),
5732 				   info->fini_function, FALSE,
5733 				   FALSE, FALSE)
5734 	   : NULL);
5735       if (h != NULL
5736 	  && (h->ref_regular
5737 	      || h->def_regular))
5738 	{
5739 	  if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5740 	    return FALSE;
5741 	}
5742 
5743       s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5744       if (s != NULL && s->linker_has_input)
5745 	{
5746 	  /* DT_PREINIT_ARRAY is not allowed in shared library.  */
5747 	  if (! info->executable)
5748 	    {
5749 	      bfd *sub;
5750 	      asection *o;
5751 
5752 	      for (sub = info->input_bfds; sub != NULL;
5753 		   sub = sub->link_next)
5754 		if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5755 		  for (o = sub->sections; o != NULL; o = o->next)
5756 		    if (elf_section_data (o)->this_hdr.sh_type
5757 			== SHT_PREINIT_ARRAY)
5758 		      {
5759 			(*_bfd_error_handler)
5760 			  (_("%B: .preinit_array section is not allowed in DSO"),
5761 			   sub);
5762 			break;
5763 		      }
5764 
5765 	      bfd_set_error (bfd_error_nonrepresentable_section);
5766 	      return FALSE;
5767 	    }
5768 
5769 	  if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5770 	      || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5771 	    return FALSE;
5772 	}
5773       s = bfd_get_section_by_name (output_bfd, ".init_array");
5774       if (s != NULL && s->linker_has_input)
5775 	{
5776 	  if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5777 	      || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5778 	    return FALSE;
5779 	}
5780       s = bfd_get_section_by_name (output_bfd, ".fini_array");
5781       if (s != NULL && s->linker_has_input)
5782 	{
5783 	  if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5784 	      || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5785 	    return FALSE;
5786 	}
5787 
5788       dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5789       /* If .dynstr is excluded from the link, we don't want any of
5790 	 these tags.  Strictly, we should be checking each section
5791 	 individually;  This quick check covers for the case where
5792 	 someone does a /DISCARD/ : { *(*) }.  */
5793       if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5794 	{
5795 	  bfd_size_type strsize;
5796 
5797 	  strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5798 	  if ((info->emit_hash
5799 	       && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5800 	      || (info->emit_gnu_hash
5801 		  && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5802 	      || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5803 	      || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5804 	      || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5805 	      || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5806 					      bed->s->sizeof_sym))
5807 	    return FALSE;
5808 	}
5809     }
5810 
5811   /* The backend must work out the sizes of all the other dynamic
5812      sections.  */
5813   if (bed->elf_backend_size_dynamic_sections
5814       && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5815     return FALSE;
5816 
5817   if (elf_hash_table (info)->dynamic_sections_created)
5818     {
5819       unsigned long section_sym_count;
5820       asection *s;
5821 
5822       /* Set up the version definition section.  */
5823       s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5824       BFD_ASSERT (s != NULL);
5825 
5826       /* We may have created additional version definitions if we are
5827 	 just linking a regular application.  */
5828       verdefs = asvinfo.verdefs;
5829 
5830       /* Skip anonymous version tag.  */
5831       if (verdefs != NULL && verdefs->vernum == 0)
5832 	verdefs = verdefs->next;
5833 
5834       if (verdefs == NULL && !info->create_default_symver)
5835 	s->flags |= SEC_EXCLUDE;
5836       else
5837 	{
5838 	  unsigned int cdefs;
5839 	  bfd_size_type size;
5840 	  struct bfd_elf_version_tree *t;
5841 	  bfd_byte *p;
5842 	  Elf_Internal_Verdef def;
5843 	  Elf_Internal_Verdaux defaux;
5844 	  struct bfd_link_hash_entry *bh;
5845 	  struct elf_link_hash_entry *h;
5846 	  const char *name;
5847 
5848 	  cdefs = 0;
5849 	  size = 0;
5850 
5851 	  /* Make space for the base version.  */
5852 	  size += sizeof (Elf_External_Verdef);
5853 	  size += sizeof (Elf_External_Verdaux);
5854 	  ++cdefs;
5855 
5856 	  /* Make space for the default version.  */
5857 	  if (info->create_default_symver)
5858 	    {
5859 	      size += sizeof (Elf_External_Verdef);
5860 	      ++cdefs;
5861 	    }
5862 
5863 	  for (t = verdefs; t != NULL; t = t->next)
5864 	    {
5865 	      struct bfd_elf_version_deps *n;
5866 
5867 	      size += sizeof (Elf_External_Verdef);
5868 	      size += sizeof (Elf_External_Verdaux);
5869 	      ++cdefs;
5870 
5871 	      for (n = t->deps; n != NULL; n = n->next)
5872 		size += sizeof (Elf_External_Verdaux);
5873 	    }
5874 
5875 	  s->size = size;
5876 	  s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5877 	  if (s->contents == NULL && s->size != 0)
5878 	    return FALSE;
5879 
5880 	  /* Fill in the version definition section.  */
5881 
5882 	  p = s->contents;
5883 
5884 	  def.vd_version = VER_DEF_CURRENT;
5885 	  def.vd_flags = VER_FLG_BASE;
5886 	  def.vd_ndx = 1;
5887 	  def.vd_cnt = 1;
5888 	  if (info->create_default_symver)
5889 	    {
5890 	      def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5891 	      def.vd_next = sizeof (Elf_External_Verdef);
5892 	    }
5893 	  else
5894 	    {
5895 	      def.vd_aux = sizeof (Elf_External_Verdef);
5896 	      def.vd_next = (sizeof (Elf_External_Verdef)
5897 			     + sizeof (Elf_External_Verdaux));
5898 	    }
5899 
5900 	  if (soname_indx != (bfd_size_type) -1)
5901 	    {
5902 	      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5903 				      soname_indx);
5904 	      def.vd_hash = bfd_elf_hash (soname);
5905 	      defaux.vda_name = soname_indx;
5906 	      name = soname;
5907 	    }
5908 	  else
5909 	    {
5910 	      bfd_size_type indx;
5911 
5912 	      name = lbasename (output_bfd->filename);
5913 	      def.vd_hash = bfd_elf_hash (name);
5914 	      indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5915 					  name, FALSE);
5916 	      if (indx == (bfd_size_type) -1)
5917 		return FALSE;
5918 	      defaux.vda_name = indx;
5919 	    }
5920 	  defaux.vda_next = 0;
5921 
5922 	  _bfd_elf_swap_verdef_out (output_bfd, &def,
5923 				    (Elf_External_Verdef *) p);
5924 	  p += sizeof (Elf_External_Verdef);
5925 	  if (info->create_default_symver)
5926 	    {
5927 	      /* Add a symbol representing this version.  */
5928 	      bh = NULL;
5929 	      if (! (_bfd_generic_link_add_one_symbol
5930 		     (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5931 		      0, NULL, FALSE,
5932 		      get_elf_backend_data (dynobj)->collect, &bh)))
5933 		return FALSE;
5934 	      h = (struct elf_link_hash_entry *) bh;
5935 	      h->non_elf = 0;
5936 	      h->def_regular = 1;
5937 	      h->type = STT_OBJECT;
5938 	      h->verinfo.vertree = NULL;
5939 
5940 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
5941 		return FALSE;
5942 
5943 	      /* Create a duplicate of the base version with the same
5944 		 aux block, but different flags.  */
5945 	      def.vd_flags = 0;
5946 	      def.vd_ndx = 2;
5947 	      def.vd_aux = sizeof (Elf_External_Verdef);
5948 	      if (verdefs)
5949 		def.vd_next = (sizeof (Elf_External_Verdef)
5950 			       + sizeof (Elf_External_Verdaux));
5951 	      else
5952 		def.vd_next = 0;
5953 	      _bfd_elf_swap_verdef_out (output_bfd, &def,
5954 					(Elf_External_Verdef *) p);
5955 	      p += sizeof (Elf_External_Verdef);
5956 	    }
5957 	  _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5958 				     (Elf_External_Verdaux *) p);
5959 	  p += sizeof (Elf_External_Verdaux);
5960 
5961 	  for (t = verdefs; t != NULL; t = t->next)
5962 	    {
5963 	      unsigned int cdeps;
5964 	      struct bfd_elf_version_deps *n;
5965 
5966 	      cdeps = 0;
5967 	      for (n = t->deps; n != NULL; n = n->next)
5968 		++cdeps;
5969 
5970 	      /* Add a symbol representing this version.  */
5971 	      bh = NULL;
5972 	      if (! (_bfd_generic_link_add_one_symbol
5973 		     (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5974 		      0, NULL, FALSE,
5975 		      get_elf_backend_data (dynobj)->collect, &bh)))
5976 		return FALSE;
5977 	      h = (struct elf_link_hash_entry *) bh;
5978 	      h->non_elf = 0;
5979 	      h->def_regular = 1;
5980 	      h->type = STT_OBJECT;
5981 	      h->verinfo.vertree = t;
5982 
5983 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
5984 		return FALSE;
5985 
5986 	      def.vd_version = VER_DEF_CURRENT;
5987 	      def.vd_flags = 0;
5988 	      if (t->globals.list == NULL
5989 		  && t->locals.list == NULL
5990 		  && ! t->used)
5991 		def.vd_flags |= VER_FLG_WEAK;
5992 	      def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5993 	      def.vd_cnt = cdeps + 1;
5994 	      def.vd_hash = bfd_elf_hash (t->name);
5995 	      def.vd_aux = sizeof (Elf_External_Verdef);
5996 	      def.vd_next = 0;
5997 	      if (t->next != NULL)
5998 		def.vd_next = (sizeof (Elf_External_Verdef)
5999 			       + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6000 
6001 	      _bfd_elf_swap_verdef_out (output_bfd, &def,
6002 					(Elf_External_Verdef *) p);
6003 	      p += sizeof (Elf_External_Verdef);
6004 
6005 	      defaux.vda_name = h->dynstr_index;
6006 	      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6007 				      h->dynstr_index);
6008 	      defaux.vda_next = 0;
6009 	      if (t->deps != NULL)
6010 		defaux.vda_next = sizeof (Elf_External_Verdaux);
6011 	      t->name_indx = defaux.vda_name;
6012 
6013 	      _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6014 					 (Elf_External_Verdaux *) p);
6015 	      p += sizeof (Elf_External_Verdaux);
6016 
6017 	      for (n = t->deps; n != NULL; n = n->next)
6018 		{
6019 		  if (n->version_needed == NULL)
6020 		    {
6021 		      /* This can happen if there was an error in the
6022 			 version script.  */
6023 		      defaux.vda_name = 0;
6024 		    }
6025 		  else
6026 		    {
6027 		      defaux.vda_name = n->version_needed->name_indx;
6028 		      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6029 					      defaux.vda_name);
6030 		    }
6031 		  if (n->next == NULL)
6032 		    defaux.vda_next = 0;
6033 		  else
6034 		    defaux.vda_next = sizeof (Elf_External_Verdaux);
6035 
6036 		  _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6037 					     (Elf_External_Verdaux *) p);
6038 		  p += sizeof (Elf_External_Verdaux);
6039 		}
6040 	    }
6041 
6042 	  if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6043 	      || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6044 	    return FALSE;
6045 
6046 	  elf_tdata (output_bfd)->cverdefs = cdefs;
6047 	}
6048 
6049       if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6050 	{
6051 	  if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6052 	    return FALSE;
6053 	}
6054       else if (info->flags & DF_BIND_NOW)
6055 	{
6056 	  if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6057 	    return FALSE;
6058 	}
6059 
6060       if (info->flags_1)
6061 	{
6062 	  if (info->executable)
6063 	    info->flags_1 &= ~ (DF_1_INITFIRST
6064 				| DF_1_NODELETE
6065 				| DF_1_NOOPEN);
6066 	  if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6067 	    return FALSE;
6068 	}
6069 
6070       /* Work out the size of the version reference section.  */
6071 
6072       s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6073       BFD_ASSERT (s != NULL);
6074       {
6075 	struct elf_find_verdep_info sinfo;
6076 
6077 	sinfo.info = info;
6078 	sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6079 	if (sinfo.vers == 0)
6080 	  sinfo.vers = 1;
6081 	sinfo.failed = FALSE;
6082 
6083 	elf_link_hash_traverse (elf_hash_table (info),
6084 				_bfd_elf_link_find_version_dependencies,
6085 				&sinfo);
6086 	if (sinfo.failed)
6087 	  return FALSE;
6088 
6089 	if (elf_tdata (output_bfd)->verref == NULL)
6090 	  s->flags |= SEC_EXCLUDE;
6091 	else
6092 	  {
6093 	    Elf_Internal_Verneed *t;
6094 	    unsigned int size;
6095 	    unsigned int crefs;
6096 	    bfd_byte *p;
6097 
6098 	    /* Build the version definition section.  */
6099 	    size = 0;
6100 	    crefs = 0;
6101 	    for (t = elf_tdata (output_bfd)->verref;
6102 		 t != NULL;
6103 		 t = t->vn_nextref)
6104 	      {
6105 		Elf_Internal_Vernaux *a;
6106 
6107 		size += sizeof (Elf_External_Verneed);
6108 		++crefs;
6109 		for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6110 		  size += sizeof (Elf_External_Vernaux);
6111 	      }
6112 
6113 	    s->size = size;
6114 	    s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6115 	    if (s->contents == NULL)
6116 	      return FALSE;
6117 
6118 	    p = s->contents;
6119 	    for (t = elf_tdata (output_bfd)->verref;
6120 		 t != NULL;
6121 		 t = t->vn_nextref)
6122 	      {
6123 		unsigned int caux;
6124 		Elf_Internal_Vernaux *a;
6125 		bfd_size_type indx;
6126 
6127 		caux = 0;
6128 		for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6129 		  ++caux;
6130 
6131 		t->vn_version = VER_NEED_CURRENT;
6132 		t->vn_cnt = caux;
6133 		indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6134 					    elf_dt_name (t->vn_bfd) != NULL
6135 					    ? elf_dt_name (t->vn_bfd)
6136 					    : lbasename (t->vn_bfd->filename),
6137 					    FALSE);
6138 		if (indx == (bfd_size_type) -1)
6139 		  return FALSE;
6140 		t->vn_file = indx;
6141 		t->vn_aux = sizeof (Elf_External_Verneed);
6142 		if (t->vn_nextref == NULL)
6143 		  t->vn_next = 0;
6144 		else
6145 		  t->vn_next = (sizeof (Elf_External_Verneed)
6146 				+ caux * sizeof (Elf_External_Vernaux));
6147 
6148 		_bfd_elf_swap_verneed_out (output_bfd, t,
6149 					   (Elf_External_Verneed *) p);
6150 		p += sizeof (Elf_External_Verneed);
6151 
6152 		for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6153 		  {
6154 		    a->vna_hash = bfd_elf_hash (a->vna_nodename);
6155 		    indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6156 						a->vna_nodename, FALSE);
6157 		    if (indx == (bfd_size_type) -1)
6158 		      return FALSE;
6159 		    a->vna_name = indx;
6160 		    if (a->vna_nextptr == NULL)
6161 		      a->vna_next = 0;
6162 		    else
6163 		      a->vna_next = sizeof (Elf_External_Vernaux);
6164 
6165 		    _bfd_elf_swap_vernaux_out (output_bfd, a,
6166 					       (Elf_External_Vernaux *) p);
6167 		    p += sizeof (Elf_External_Vernaux);
6168 		  }
6169 	      }
6170 
6171 	    if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6172 		|| !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6173 	      return FALSE;
6174 
6175 	    elf_tdata (output_bfd)->cverrefs = crefs;
6176 	  }
6177       }
6178 
6179       if ((elf_tdata (output_bfd)->cverrefs == 0
6180 	   && elf_tdata (output_bfd)->cverdefs == 0)
6181 	  || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6182 					     &section_sym_count) == 0)
6183 	{
6184 	  s = bfd_get_section_by_name (dynobj, ".gnu.version");
6185 	  s->flags |= SEC_EXCLUDE;
6186 	}
6187     }
6188   return TRUE;
6189 }
6190 
6191 /* Find the first non-excluded output section.  We'll use its
6192    section symbol for some emitted relocs.  */
6193 void
6194 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6195 {
6196   asection *s;
6197 
6198   for (s = output_bfd->sections; s != NULL; s = s->next)
6199     if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6200 	&& !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6201       {
6202 	elf_hash_table (info)->text_index_section = s;
6203 	break;
6204       }
6205 }
6206 
6207 /* Find two non-excluded output sections, one for code, one for data.
6208    We'll use their section symbols for some emitted relocs.  */
6209 void
6210 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6211 {
6212   asection *s;
6213 
6214   /* Data first, since setting text_index_section changes
6215      _bfd_elf_link_omit_section_dynsym.  */
6216   for (s = output_bfd->sections; s != NULL; s = s->next)
6217     if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6218 	&& !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6219       {
6220 	elf_hash_table (info)->data_index_section = s;
6221 	break;
6222       }
6223 
6224   for (s = output_bfd->sections; s != NULL; s = s->next)
6225     if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6226 	 == (SEC_ALLOC | SEC_READONLY))
6227 	&& !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6228       {
6229 	elf_hash_table (info)->text_index_section = s;
6230 	break;
6231       }
6232 
6233   if (elf_hash_table (info)->text_index_section == NULL)
6234     elf_hash_table (info)->text_index_section
6235       = elf_hash_table (info)->data_index_section;
6236 }
6237 
6238 bfd_boolean
6239 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6240 {
6241   const struct elf_backend_data *bed;
6242 
6243   if (!is_elf_hash_table (info->hash))
6244     return TRUE;
6245 
6246   bed = get_elf_backend_data (output_bfd);
6247   (*bed->elf_backend_init_index_section) (output_bfd, info);
6248 
6249   if (elf_hash_table (info)->dynamic_sections_created)
6250     {
6251       bfd *dynobj;
6252       asection *s;
6253       bfd_size_type dynsymcount;
6254       unsigned long section_sym_count;
6255       unsigned int dtagcount;
6256 
6257       dynobj = elf_hash_table (info)->dynobj;
6258 
6259       /* Assign dynsym indicies.  In a shared library we generate a
6260 	 section symbol for each output section, which come first.
6261 	 Next come all of the back-end allocated local dynamic syms,
6262 	 followed by the rest of the global symbols.  */
6263 
6264       dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6265 						    &section_sym_count);
6266 
6267       /* Work out the size of the symbol version section.  */
6268       s = bfd_get_section_by_name (dynobj, ".gnu.version");
6269       BFD_ASSERT (s != NULL);
6270       if (dynsymcount != 0
6271 	  && (s->flags & SEC_EXCLUDE) == 0)
6272 	{
6273 	  s->size = dynsymcount * sizeof (Elf_External_Versym);
6274 	  s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6275 	  if (s->contents == NULL)
6276 	    return FALSE;
6277 
6278 	  if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6279 	    return FALSE;
6280 	}
6281 
6282       /* Set the size of the .dynsym and .hash sections.  We counted
6283 	 the number of dynamic symbols in elf_link_add_object_symbols.
6284 	 We will build the contents of .dynsym and .hash when we build
6285 	 the final symbol table, because until then we do not know the
6286 	 correct value to give the symbols.  We built the .dynstr
6287 	 section as we went along in elf_link_add_object_symbols.  */
6288       s = bfd_get_section_by_name (dynobj, ".dynsym");
6289       BFD_ASSERT (s != NULL);
6290       s->size = dynsymcount * bed->s->sizeof_sym;
6291 
6292       if (dynsymcount != 0)
6293 	{
6294 	  s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6295 	  if (s->contents == NULL)
6296 	    return FALSE;
6297 
6298 	  /* The first entry in .dynsym is a dummy symbol.
6299 	     Clear all the section syms, in case we don't output them all.  */
6300 	  ++section_sym_count;
6301 	  memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6302 	}
6303 
6304       elf_hash_table (info)->bucketcount = 0;
6305 
6306       /* Compute the size of the hashing table.  As a side effect this
6307 	 computes the hash values for all the names we export.  */
6308       if (info->emit_hash)
6309 	{
6310 	  unsigned long int *hashcodes;
6311 	  struct hash_codes_info hashinf;
6312 	  bfd_size_type amt;
6313 	  unsigned long int nsyms;
6314 	  size_t bucketcount;
6315 	  size_t hash_entry_size;
6316 
6317 	  /* Compute the hash values for all exported symbols.  At the same
6318 	     time store the values in an array so that we could use them for
6319 	     optimizations.  */
6320 	  amt = dynsymcount * sizeof (unsigned long int);
6321 	  hashcodes = (unsigned long int *) bfd_malloc (amt);
6322 	  if (hashcodes == NULL)
6323 	    return FALSE;
6324 	  hashinf.hashcodes = hashcodes;
6325 	  hashinf.error = FALSE;
6326 
6327 	  /* Put all hash values in HASHCODES.  */
6328 	  elf_link_hash_traverse (elf_hash_table (info),
6329 				  elf_collect_hash_codes, &hashinf);
6330 	  if (hashinf.error)
6331 	    {
6332 	      free (hashcodes);
6333 	      return FALSE;
6334 	    }
6335 
6336 	  nsyms = hashinf.hashcodes - hashcodes;
6337 	  bucketcount
6338 	    = compute_bucket_count (info, hashcodes, nsyms, 0);
6339 	  free (hashcodes);
6340 
6341 	  if (bucketcount == 0)
6342 	    return FALSE;
6343 
6344 	  elf_hash_table (info)->bucketcount = bucketcount;
6345 
6346 	  s = bfd_get_section_by_name (dynobj, ".hash");
6347 	  BFD_ASSERT (s != NULL);
6348 	  hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6349 	  s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6350 	  s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6351 	  if (s->contents == NULL)
6352 	    return FALSE;
6353 
6354 	  bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6355 	  bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6356 		   s->contents + hash_entry_size);
6357 	}
6358 
6359       if (info->emit_gnu_hash)
6360 	{
6361 	  size_t i, cnt;
6362 	  unsigned char *contents;
6363 	  struct collect_gnu_hash_codes cinfo;
6364 	  bfd_size_type amt;
6365 	  size_t bucketcount;
6366 
6367 	  memset (&cinfo, 0, sizeof (cinfo));
6368 
6369 	  /* Compute the hash values for all exported symbols.  At the same
6370 	     time store the values in an array so that we could use them for
6371 	     optimizations.  */
6372 	  amt = dynsymcount * 2 * sizeof (unsigned long int);
6373 	  cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6374 	  if (cinfo.hashcodes == NULL)
6375 	    return FALSE;
6376 
6377 	  cinfo.hashval = cinfo.hashcodes + dynsymcount;
6378 	  cinfo.min_dynindx = -1;
6379 	  cinfo.output_bfd = output_bfd;
6380 	  cinfo.bed = bed;
6381 
6382 	  /* Put all hash values in HASHCODES.  */
6383 	  elf_link_hash_traverse (elf_hash_table (info),
6384 				  elf_collect_gnu_hash_codes, &cinfo);
6385 	  if (cinfo.error)
6386 	    {
6387 	      free (cinfo.hashcodes);
6388 	      return FALSE;
6389 	    }
6390 
6391 	  bucketcount
6392 	    = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6393 
6394 	  if (bucketcount == 0)
6395 	    {
6396 	      free (cinfo.hashcodes);
6397 	      return FALSE;
6398 	    }
6399 
6400 	  s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6401 	  BFD_ASSERT (s != NULL);
6402 
6403 	  if (cinfo.nsyms == 0)
6404 	    {
6405 	      /* Empty .gnu.hash section is special.  */
6406 	      BFD_ASSERT (cinfo.min_dynindx == -1);
6407 	      free (cinfo.hashcodes);
6408 	      s->size = 5 * 4 + bed->s->arch_size / 8;
6409 	      contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6410 	      if (contents == NULL)
6411 		return FALSE;
6412 	      s->contents = contents;
6413 	      /* 1 empty bucket.  */
6414 	      bfd_put_32 (output_bfd, 1, contents);
6415 	      /* SYMIDX above the special symbol 0.  */
6416 	      bfd_put_32 (output_bfd, 1, contents + 4);
6417 	      /* Just one word for bitmask.  */
6418 	      bfd_put_32 (output_bfd, 1, contents + 8);
6419 	      /* Only hash fn bloom filter.  */
6420 	      bfd_put_32 (output_bfd, 0, contents + 12);
6421 	      /* No hashes are valid - empty bitmask.  */
6422 	      bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6423 	      /* No hashes in the only bucket.  */
6424 	      bfd_put_32 (output_bfd, 0,
6425 			  contents + 16 + bed->s->arch_size / 8);
6426 	    }
6427 	  else
6428 	    {
6429 	      unsigned long int maskwords, maskbitslog2;
6430 	      BFD_ASSERT (cinfo.min_dynindx != -1);
6431 
6432 	      maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6433 	      if (maskbitslog2 < 3)
6434 		maskbitslog2 = 5;
6435 	      else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6436 		maskbitslog2 = maskbitslog2 + 3;
6437 	      else
6438 		maskbitslog2 = maskbitslog2 + 2;
6439 	      if (bed->s->arch_size == 64)
6440 		{
6441 		  if (maskbitslog2 == 5)
6442 		    maskbitslog2 = 6;
6443 		  cinfo.shift1 = 6;
6444 		}
6445 	      else
6446 		cinfo.shift1 = 5;
6447 	      cinfo.mask = (1 << cinfo.shift1) - 1;
6448 	      cinfo.shift2 = maskbitslog2;
6449 	      cinfo.maskbits = 1 << maskbitslog2;
6450 	      maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6451 	      amt = bucketcount * sizeof (unsigned long int) * 2;
6452 	      amt += maskwords * sizeof (bfd_vma);
6453 	      cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6454 	      if (cinfo.bitmask == NULL)
6455 		{
6456 		  free (cinfo.hashcodes);
6457 		  return FALSE;
6458 		}
6459 
6460 	      cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6461 	      cinfo.indx = cinfo.counts + bucketcount;
6462 	      cinfo.symindx = dynsymcount - cinfo.nsyms;
6463 	      memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6464 
6465 	      /* Determine how often each hash bucket is used.  */
6466 	      memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6467 	      for (i = 0; i < cinfo.nsyms; ++i)
6468 		++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6469 
6470 	      for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6471 		if (cinfo.counts[i] != 0)
6472 		  {
6473 		    cinfo.indx[i] = cnt;
6474 		    cnt += cinfo.counts[i];
6475 		  }
6476 	      BFD_ASSERT (cnt == dynsymcount);
6477 	      cinfo.bucketcount = bucketcount;
6478 	      cinfo.local_indx = cinfo.min_dynindx;
6479 
6480 	      s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6481 	      s->size += cinfo.maskbits / 8;
6482 	      contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6483 	      if (contents == NULL)
6484 		{
6485 		  free (cinfo.bitmask);
6486 		  free (cinfo.hashcodes);
6487 		  return FALSE;
6488 		}
6489 
6490 	      s->contents = contents;
6491 	      bfd_put_32 (output_bfd, bucketcount, contents);
6492 	      bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6493 	      bfd_put_32 (output_bfd, maskwords, contents + 8);
6494 	      bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6495 	      contents += 16 + cinfo.maskbits / 8;
6496 
6497 	      for (i = 0; i < bucketcount; ++i)
6498 		{
6499 		  if (cinfo.counts[i] == 0)
6500 		    bfd_put_32 (output_bfd, 0, contents);
6501 		  else
6502 		    bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6503 		  contents += 4;
6504 		}
6505 
6506 	      cinfo.contents = contents;
6507 
6508 	      /* Renumber dynamic symbols, populate .gnu.hash section.  */
6509 	      elf_link_hash_traverse (elf_hash_table (info),
6510 				      elf_renumber_gnu_hash_syms, &cinfo);
6511 
6512 	      contents = s->contents + 16;
6513 	      for (i = 0; i < maskwords; ++i)
6514 		{
6515 		  bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6516 			   contents);
6517 		  contents += bed->s->arch_size / 8;
6518 		}
6519 
6520 	      free (cinfo.bitmask);
6521 	      free (cinfo.hashcodes);
6522 	    }
6523 	}
6524 
6525       s = bfd_get_section_by_name (dynobj, ".dynstr");
6526       BFD_ASSERT (s != NULL);
6527 
6528       elf_finalize_dynstr (output_bfd, info);
6529 
6530       s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6531 
6532       for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6533 	if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6534 	  return FALSE;
6535     }
6536 
6537   return TRUE;
6538 }
6539 
6540 /* Indicate that we are only retrieving symbol values from this
6541    section.  */
6542 
6543 void
6544 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6545 {
6546   if (is_elf_hash_table (info->hash))
6547     sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6548   _bfd_generic_link_just_syms (sec, info);
6549 }
6550 
6551 /* Make sure sec_info_type is cleared if sec_info is cleared too.  */
6552 
6553 static void
6554 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6555 			    asection *sec)
6556 {
6557   BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6558   sec->sec_info_type = ELF_INFO_TYPE_NONE;
6559 }
6560 
6561 /* Finish SHF_MERGE section merging.  */
6562 
6563 bfd_boolean
6564 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6565 {
6566   bfd *ibfd;
6567   asection *sec;
6568 
6569   if (!is_elf_hash_table (info->hash))
6570     return FALSE;
6571 
6572   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6573     if ((ibfd->flags & DYNAMIC) == 0)
6574       for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6575 	if ((sec->flags & SEC_MERGE) != 0
6576 	    && !bfd_is_abs_section (sec->output_section))
6577 	  {
6578 	    struct bfd_elf_section_data *secdata;
6579 
6580 	    secdata = elf_section_data (sec);
6581 	    if (! _bfd_add_merge_section (abfd,
6582 					  &elf_hash_table (info)->merge_info,
6583 					  sec, &secdata->sec_info))
6584 	      return FALSE;
6585 	    else if (secdata->sec_info)
6586 	      sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6587 	  }
6588 
6589   if (elf_hash_table (info)->merge_info != NULL)
6590     _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6591 			 merge_sections_remove_hook);
6592   return TRUE;
6593 }
6594 
6595 /* Create an entry in an ELF linker hash table.  */
6596 
6597 struct bfd_hash_entry *
6598 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6599 			    struct bfd_hash_table *table,
6600 			    const char *string)
6601 {
6602   /* Allocate the structure if it has not already been allocated by a
6603      subclass.  */
6604   if (entry == NULL)
6605     {
6606       entry = (struct bfd_hash_entry *)
6607           bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6608       if (entry == NULL)
6609 	return entry;
6610     }
6611 
6612   /* Call the allocation method of the superclass.  */
6613   entry = _bfd_link_hash_newfunc (entry, table, string);
6614   if (entry != NULL)
6615     {
6616       struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6617       struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6618 
6619       /* Set local fields.  */
6620       ret->indx = -1;
6621       ret->dynindx = -1;
6622       ret->got = htab->init_got_refcount;
6623       ret->plt = htab->init_plt_refcount;
6624       memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6625 			      - offsetof (struct elf_link_hash_entry, size)));
6626       /* Assume that we have been called by a non-ELF symbol reader.
6627 	 This flag is then reset by the code which reads an ELF input
6628 	 file.  This ensures that a symbol created by a non-ELF symbol
6629 	 reader will have the flag set correctly.  */
6630       ret->non_elf = 1;
6631     }
6632 
6633   return entry;
6634 }
6635 
6636 /* Copy data from an indirect symbol to its direct symbol, hiding the
6637    old indirect symbol.  Also used for copying flags to a weakdef.  */
6638 
6639 void
6640 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6641 				  struct elf_link_hash_entry *dir,
6642 				  struct elf_link_hash_entry *ind)
6643 {
6644   struct elf_link_hash_table *htab;
6645 
6646   /* Copy down any references that we may have already seen to the
6647      symbol which just became indirect.  */
6648 
6649   dir->ref_dynamic |= ind->ref_dynamic;
6650   dir->ref_regular |= ind->ref_regular;
6651   dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6652   dir->non_got_ref |= ind->non_got_ref;
6653   dir->needs_plt |= ind->needs_plt;
6654   dir->pointer_equality_needed |= ind->pointer_equality_needed;
6655 
6656   if (ind->root.type != bfd_link_hash_indirect)
6657     return;
6658 
6659   /* Copy over the global and procedure linkage table refcount entries.
6660      These may have been already set up by a check_relocs routine.  */
6661   htab = elf_hash_table (info);
6662   if (ind->got.refcount > htab->init_got_refcount.refcount)
6663     {
6664       if (dir->got.refcount < 0)
6665 	dir->got.refcount = 0;
6666       dir->got.refcount += ind->got.refcount;
6667       ind->got.refcount = htab->init_got_refcount.refcount;
6668     }
6669 
6670   if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6671     {
6672       if (dir->plt.refcount < 0)
6673 	dir->plt.refcount = 0;
6674       dir->plt.refcount += ind->plt.refcount;
6675       ind->plt.refcount = htab->init_plt_refcount.refcount;
6676     }
6677 
6678   if (ind->dynindx != -1)
6679     {
6680       if (dir->dynindx != -1)
6681 	_bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6682       dir->dynindx = ind->dynindx;
6683       dir->dynstr_index = ind->dynstr_index;
6684       ind->dynindx = -1;
6685       ind->dynstr_index = 0;
6686     }
6687 }
6688 
6689 void
6690 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6691 				struct elf_link_hash_entry *h,
6692 				bfd_boolean force_local)
6693 {
6694   /* STT_GNU_IFUNC symbol must go through PLT.  */
6695   if (h->type != STT_GNU_IFUNC)
6696     {
6697       h->plt = elf_hash_table (info)->init_plt_offset;
6698       h->needs_plt = 0;
6699     }
6700   if (force_local)
6701     {
6702       h->forced_local = 1;
6703       if (h->dynindx != -1)
6704 	{
6705 	  h->dynindx = -1;
6706 	  _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6707 				  h->dynstr_index);
6708 	}
6709     }
6710 }
6711 
6712 /* Initialize an ELF linker hash table.  */
6713 
6714 bfd_boolean
6715 _bfd_elf_link_hash_table_init
6716   (struct elf_link_hash_table *table,
6717    bfd *abfd,
6718    struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6719 				      struct bfd_hash_table *,
6720 				      const char *),
6721    unsigned int entsize)
6722 {
6723   bfd_boolean ret;
6724   int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6725 
6726   memset (table, 0, sizeof * table);
6727   table->init_got_refcount.refcount = can_refcount - 1;
6728   table->init_plt_refcount.refcount = can_refcount - 1;
6729   table->init_got_offset.offset = -(bfd_vma) 1;
6730   table->init_plt_offset.offset = -(bfd_vma) 1;
6731   /* The first dynamic symbol is a dummy.  */
6732   table->dynsymcount = 1;
6733 
6734   ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6735   table->root.type = bfd_link_elf_hash_table;
6736 
6737   return ret;
6738 }
6739 
6740 /* Create an ELF linker hash table.  */
6741 
6742 struct bfd_link_hash_table *
6743 _bfd_elf_link_hash_table_create (bfd *abfd)
6744 {
6745   struct elf_link_hash_table *ret;
6746   bfd_size_type amt = sizeof (struct elf_link_hash_table);
6747 
6748   ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6749   if (ret == NULL)
6750     return NULL;
6751 
6752   if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6753 				       sizeof (struct elf_link_hash_entry)))
6754     {
6755       free (ret);
6756       return NULL;
6757     }
6758 
6759   return &ret->root;
6760 }
6761 
6762 /* This is a hook for the ELF emulation code in the generic linker to
6763    tell the backend linker what file name to use for the DT_NEEDED
6764    entry for a dynamic object.  */
6765 
6766 void
6767 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6768 {
6769   if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6770       && bfd_get_format (abfd) == bfd_object)
6771     elf_dt_name (abfd) = name;
6772 }
6773 
6774 int
6775 bfd_elf_get_dyn_lib_class (bfd *abfd)
6776 {
6777   int lib_class;
6778   if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6779       && bfd_get_format (abfd) == bfd_object)
6780     lib_class = elf_dyn_lib_class (abfd);
6781   else
6782     lib_class = 0;
6783   return lib_class;
6784 }
6785 
6786 void
6787 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6788 {
6789   if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6790       && bfd_get_format (abfd) == bfd_object)
6791     elf_dyn_lib_class (abfd) = lib_class;
6792 }
6793 
6794 /* Get the list of DT_NEEDED entries for a link.  This is a hook for
6795    the linker ELF emulation code.  */
6796 
6797 struct bfd_link_needed_list *
6798 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6799 			 struct bfd_link_info *info)
6800 {
6801   if (! is_elf_hash_table (info->hash))
6802     return NULL;
6803   return elf_hash_table (info)->needed;
6804 }
6805 
6806 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link.  This is a
6807    hook for the linker ELF emulation code.  */
6808 
6809 struct bfd_link_needed_list *
6810 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6811 			  struct bfd_link_info *info)
6812 {
6813   if (! is_elf_hash_table (info->hash))
6814     return NULL;
6815   return elf_hash_table (info)->runpath;
6816 }
6817 
6818 /* Get the name actually used for a dynamic object for a link.  This
6819    is the SONAME entry if there is one.  Otherwise, it is the string
6820    passed to bfd_elf_set_dt_needed_name, or it is the filename.  */
6821 
6822 const char *
6823 bfd_elf_get_dt_soname (bfd *abfd)
6824 {
6825   if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6826       && bfd_get_format (abfd) == bfd_object)
6827     return elf_dt_name (abfd);
6828   return NULL;
6829 }
6830 
6831 /* Get the list of DT_NEEDED entries from a BFD.  This is a hook for
6832    the ELF linker emulation code.  */
6833 
6834 bfd_boolean
6835 bfd_elf_get_bfd_needed_list (bfd *abfd,
6836 			     struct bfd_link_needed_list **pneeded)
6837 {
6838   asection *s;
6839   bfd_byte *dynbuf = NULL;
6840   unsigned int elfsec;
6841   unsigned long shlink;
6842   bfd_byte *extdyn, *extdynend;
6843   size_t extdynsize;
6844   void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6845 
6846   *pneeded = NULL;
6847 
6848   if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6849       || bfd_get_format (abfd) != bfd_object)
6850     return TRUE;
6851 
6852   s = bfd_get_section_by_name (abfd, ".dynamic");
6853   if (s == NULL || s->size == 0)
6854     return TRUE;
6855 
6856   if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6857     goto error_return;
6858 
6859   elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6860   if (elfsec == SHN_BAD)
6861     goto error_return;
6862 
6863   shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6864 
6865   extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6866   swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6867 
6868   extdyn = dynbuf;
6869   extdynend = extdyn + s->size;
6870   for (; extdyn < extdynend; extdyn += extdynsize)
6871     {
6872       Elf_Internal_Dyn dyn;
6873 
6874       (*swap_dyn_in) (abfd, extdyn, &dyn);
6875 
6876       if (dyn.d_tag == DT_NULL)
6877 	break;
6878 
6879       if (dyn.d_tag == DT_NEEDED)
6880 	{
6881 	  const char *string;
6882 	  struct bfd_link_needed_list *l;
6883 	  unsigned int tagv = dyn.d_un.d_val;
6884 	  bfd_size_type amt;
6885 
6886 	  string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6887 	  if (string == NULL)
6888 	    goto error_return;
6889 
6890 	  amt = sizeof *l;
6891 	  l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
6892 	  if (l == NULL)
6893 	    goto error_return;
6894 
6895 	  l->by = abfd;
6896 	  l->name = string;
6897 	  l->next = *pneeded;
6898 	  *pneeded = l;
6899 	}
6900     }
6901 
6902   free (dynbuf);
6903 
6904   return TRUE;
6905 
6906  error_return:
6907   if (dynbuf != NULL)
6908     free (dynbuf);
6909   return FALSE;
6910 }
6911 
6912 struct elf_symbuf_symbol
6913 {
6914   unsigned long st_name;	/* Symbol name, index in string tbl */
6915   unsigned char st_info;	/* Type and binding attributes */
6916   unsigned char st_other;	/* Visibilty, and target specific */
6917 };
6918 
6919 struct elf_symbuf_head
6920 {
6921   struct elf_symbuf_symbol *ssym;
6922   bfd_size_type count;
6923   unsigned int st_shndx;
6924 };
6925 
6926 struct elf_symbol
6927 {
6928   union
6929     {
6930       Elf_Internal_Sym *isym;
6931       struct elf_symbuf_symbol *ssym;
6932     } u;
6933   const char *name;
6934 };
6935 
6936 /* Sort references to symbols by ascending section number.  */
6937 
6938 static int
6939 elf_sort_elf_symbol (const void *arg1, const void *arg2)
6940 {
6941   const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
6942   const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
6943 
6944   return s1->st_shndx - s2->st_shndx;
6945 }
6946 
6947 static int
6948 elf_sym_name_compare (const void *arg1, const void *arg2)
6949 {
6950   const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
6951   const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
6952   return strcmp (s1->name, s2->name);
6953 }
6954 
6955 static struct elf_symbuf_head *
6956 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
6957 {
6958   Elf_Internal_Sym **ind, **indbufend, **indbuf;
6959   struct elf_symbuf_symbol *ssym;
6960   struct elf_symbuf_head *ssymbuf, *ssymhead;
6961   bfd_size_type i, shndx_count, total_size;
6962 
6963   indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
6964   if (indbuf == NULL)
6965     return NULL;
6966 
6967   for (ind = indbuf, i = 0; i < symcount; i++)
6968     if (isymbuf[i].st_shndx != SHN_UNDEF)
6969       *ind++ = &isymbuf[i];
6970   indbufend = ind;
6971 
6972   qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
6973 	 elf_sort_elf_symbol);
6974 
6975   shndx_count = 0;
6976   if (indbufend > indbuf)
6977     for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
6978       if (ind[0]->st_shndx != ind[1]->st_shndx)
6979 	shndx_count++;
6980 
6981   total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
6982 		+ (indbufend - indbuf) * sizeof (*ssym));
6983   ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
6984   if (ssymbuf == NULL)
6985     {
6986       free (indbuf);
6987       return NULL;
6988     }
6989 
6990   ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
6991   ssymbuf->ssym = NULL;
6992   ssymbuf->count = shndx_count;
6993   ssymbuf->st_shndx = 0;
6994   for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
6995     {
6996       if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
6997 	{
6998 	  ssymhead++;
6999 	  ssymhead->ssym = ssym;
7000 	  ssymhead->count = 0;
7001 	  ssymhead->st_shndx = (*ind)->st_shndx;
7002 	}
7003       ssym->st_name = (*ind)->st_name;
7004       ssym->st_info = (*ind)->st_info;
7005       ssym->st_other = (*ind)->st_other;
7006       ssymhead->count++;
7007     }
7008   BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7009 	      && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7010 		  == total_size));
7011 
7012   free (indbuf);
7013   return ssymbuf;
7014 }
7015 
7016 /* Check if 2 sections define the same set of local and global
7017    symbols.  */
7018 
7019 static bfd_boolean
7020 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7021 				   struct bfd_link_info *info)
7022 {
7023   bfd *bfd1, *bfd2;
7024   const struct elf_backend_data *bed1, *bed2;
7025   Elf_Internal_Shdr *hdr1, *hdr2;
7026   bfd_size_type symcount1, symcount2;
7027   Elf_Internal_Sym *isymbuf1, *isymbuf2;
7028   struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7029   Elf_Internal_Sym *isym, *isymend;
7030   struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7031   bfd_size_type count1, count2, i;
7032   unsigned int shndx1, shndx2;
7033   bfd_boolean result;
7034 
7035   bfd1 = sec1->owner;
7036   bfd2 = sec2->owner;
7037 
7038   /* Both sections have to be in ELF.  */
7039   if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7040       || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7041     return FALSE;
7042 
7043   if (elf_section_type (sec1) != elf_section_type (sec2))
7044     return FALSE;
7045 
7046   shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7047   shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7048   if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7049     return FALSE;
7050 
7051   bed1 = get_elf_backend_data (bfd1);
7052   bed2 = get_elf_backend_data (bfd2);
7053   hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7054   symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7055   hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7056   symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7057 
7058   if (symcount1 == 0 || symcount2 == 0)
7059     return FALSE;
7060 
7061   result = FALSE;
7062   isymbuf1 = NULL;
7063   isymbuf2 = NULL;
7064   ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7065   ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7066 
7067   if (ssymbuf1 == NULL)
7068     {
7069       isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7070 				       NULL, NULL, NULL);
7071       if (isymbuf1 == NULL)
7072 	goto done;
7073 
7074       if (!info->reduce_memory_overheads)
7075 	elf_tdata (bfd1)->symbuf = ssymbuf1
7076 	  = elf_create_symbuf (symcount1, isymbuf1);
7077     }
7078 
7079   if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7080     {
7081       isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7082 				       NULL, NULL, NULL);
7083       if (isymbuf2 == NULL)
7084 	goto done;
7085 
7086       if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7087 	elf_tdata (bfd2)->symbuf = ssymbuf2
7088 	  = elf_create_symbuf (symcount2, isymbuf2);
7089     }
7090 
7091   if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7092     {
7093       /* Optimized faster version.  */
7094       bfd_size_type lo, hi, mid;
7095       struct elf_symbol *symp;
7096       struct elf_symbuf_symbol *ssym, *ssymend;
7097 
7098       lo = 0;
7099       hi = ssymbuf1->count;
7100       ssymbuf1++;
7101       count1 = 0;
7102       while (lo < hi)
7103 	{
7104 	  mid = (lo + hi) / 2;
7105 	  if (shndx1 < ssymbuf1[mid].st_shndx)
7106 	    hi = mid;
7107 	  else if (shndx1 > ssymbuf1[mid].st_shndx)
7108 	    lo = mid + 1;
7109 	  else
7110 	    {
7111 	      count1 = ssymbuf1[mid].count;
7112 	      ssymbuf1 += mid;
7113 	      break;
7114 	    }
7115 	}
7116 
7117       lo = 0;
7118       hi = ssymbuf2->count;
7119       ssymbuf2++;
7120       count2 = 0;
7121       while (lo < hi)
7122 	{
7123 	  mid = (lo + hi) / 2;
7124 	  if (shndx2 < ssymbuf2[mid].st_shndx)
7125 	    hi = mid;
7126 	  else if (shndx2 > ssymbuf2[mid].st_shndx)
7127 	    lo = mid + 1;
7128 	  else
7129 	    {
7130 	      count2 = ssymbuf2[mid].count;
7131 	      ssymbuf2 += mid;
7132 	      break;
7133 	    }
7134 	}
7135 
7136       if (count1 == 0 || count2 == 0 || count1 != count2)
7137 	goto done;
7138 
7139       symtable1 = (struct elf_symbol *)
7140           bfd_malloc (count1 * sizeof (struct elf_symbol));
7141       symtable2 = (struct elf_symbol *)
7142           bfd_malloc (count2 * sizeof (struct elf_symbol));
7143       if (symtable1 == NULL || symtable2 == NULL)
7144 	goto done;
7145 
7146       symp = symtable1;
7147       for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7148 	   ssym < ssymend; ssym++, symp++)
7149 	{
7150 	  symp->u.ssym = ssym;
7151 	  symp->name = bfd_elf_string_from_elf_section (bfd1,
7152 							hdr1->sh_link,
7153 							ssym->st_name);
7154 	}
7155 
7156       symp = symtable2;
7157       for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7158 	   ssym < ssymend; ssym++, symp++)
7159 	{
7160 	  symp->u.ssym = ssym;
7161 	  symp->name = bfd_elf_string_from_elf_section (bfd2,
7162 							hdr2->sh_link,
7163 							ssym->st_name);
7164 	}
7165 
7166       /* Sort symbol by name.  */
7167       qsort (symtable1, count1, sizeof (struct elf_symbol),
7168 	     elf_sym_name_compare);
7169       qsort (symtable2, count1, sizeof (struct elf_symbol),
7170 	     elf_sym_name_compare);
7171 
7172       for (i = 0; i < count1; i++)
7173 	/* Two symbols must have the same binding, type and name.  */
7174 	if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7175 	    || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7176 	    || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7177 	  goto done;
7178 
7179       result = TRUE;
7180       goto done;
7181     }
7182 
7183   symtable1 = (struct elf_symbol *)
7184       bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7185   symtable2 = (struct elf_symbol *)
7186       bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7187   if (symtable1 == NULL || symtable2 == NULL)
7188     goto done;
7189 
7190   /* Count definitions in the section.  */
7191   count1 = 0;
7192   for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7193     if (isym->st_shndx == shndx1)
7194       symtable1[count1++].u.isym = isym;
7195 
7196   count2 = 0;
7197   for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7198     if (isym->st_shndx == shndx2)
7199       symtable2[count2++].u.isym = isym;
7200 
7201   if (count1 == 0 || count2 == 0 || count1 != count2)
7202     goto done;
7203 
7204   for (i = 0; i < count1; i++)
7205     symtable1[i].name
7206       = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7207 					 symtable1[i].u.isym->st_name);
7208 
7209   for (i = 0; i < count2; i++)
7210     symtable2[i].name
7211       = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7212 					 symtable2[i].u.isym->st_name);
7213 
7214   /* Sort symbol by name.  */
7215   qsort (symtable1, count1, sizeof (struct elf_symbol),
7216 	 elf_sym_name_compare);
7217   qsort (symtable2, count1, sizeof (struct elf_symbol),
7218 	 elf_sym_name_compare);
7219 
7220   for (i = 0; i < count1; i++)
7221     /* Two symbols must have the same binding, type and name.  */
7222     if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7223 	|| symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7224 	|| strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7225       goto done;
7226 
7227   result = TRUE;
7228 
7229 done:
7230   if (symtable1)
7231     free (symtable1);
7232   if (symtable2)
7233     free (symtable2);
7234   if (isymbuf1)
7235     free (isymbuf1);
7236   if (isymbuf2)
7237     free (isymbuf2);
7238 
7239   return result;
7240 }
7241 
7242 /* Return TRUE if 2 section types are compatible.  */
7243 
7244 bfd_boolean
7245 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7246 				 bfd *bbfd, const asection *bsec)
7247 {
7248   if (asec == NULL
7249       || bsec == NULL
7250       || abfd->xvec->flavour != bfd_target_elf_flavour
7251       || bbfd->xvec->flavour != bfd_target_elf_flavour)
7252     return TRUE;
7253 
7254   return elf_section_type (asec) == elf_section_type (bsec);
7255 }
7256 
7257 /* Final phase of ELF linker.  */
7258 
7259 /* A structure we use to avoid passing large numbers of arguments.  */
7260 
7261 struct elf_final_link_info
7262 {
7263   /* General link information.  */
7264   struct bfd_link_info *info;
7265   /* Output BFD.  */
7266   bfd *output_bfd;
7267   /* Symbol string table.  */
7268   struct bfd_strtab_hash *symstrtab;
7269   /* .dynsym section.  */
7270   asection *dynsym_sec;
7271   /* .hash section.  */
7272   asection *hash_sec;
7273   /* symbol version section (.gnu.version).  */
7274   asection *symver_sec;
7275   /* Buffer large enough to hold contents of any section.  */
7276   bfd_byte *contents;
7277   /* Buffer large enough to hold external relocs of any section.  */
7278   void *external_relocs;
7279   /* Buffer large enough to hold internal relocs of any section.  */
7280   Elf_Internal_Rela *internal_relocs;
7281   /* Buffer large enough to hold external local symbols of any input
7282      BFD.  */
7283   bfd_byte *external_syms;
7284   /* And a buffer for symbol section indices.  */
7285   Elf_External_Sym_Shndx *locsym_shndx;
7286   /* Buffer large enough to hold internal local symbols of any input
7287      BFD.  */
7288   Elf_Internal_Sym *internal_syms;
7289   /* Array large enough to hold a symbol index for each local symbol
7290      of any input BFD.  */
7291   long *indices;
7292   /* Array large enough to hold a section pointer for each local
7293      symbol of any input BFD.  */
7294   asection **sections;
7295   /* Buffer to hold swapped out symbols.  */
7296   bfd_byte *symbuf;
7297   /* And one for symbol section indices.  */
7298   Elf_External_Sym_Shndx *symshndxbuf;
7299   /* Number of swapped out symbols in buffer.  */
7300   size_t symbuf_count;
7301   /* Number of symbols which fit in symbuf.  */
7302   size_t symbuf_size;
7303   /* And same for symshndxbuf.  */
7304   size_t shndxbuf_size;
7305 };
7306 
7307 /* This struct is used to pass information to elf_link_output_extsym.  */
7308 
7309 struct elf_outext_info
7310 {
7311   bfd_boolean failed;
7312   bfd_boolean localsyms;
7313   struct elf_final_link_info *finfo;
7314 };
7315 
7316 
7317 /* Support for evaluating a complex relocation.
7318 
7319    Complex relocations are generalized, self-describing relocations.  The
7320    implementation of them consists of two parts: complex symbols, and the
7321    relocations themselves.
7322 
7323    The relocations are use a reserved elf-wide relocation type code (R_RELC
7324    external / BFD_RELOC_RELC internal) and an encoding of relocation field
7325    information (start bit, end bit, word width, etc) into the addend.  This
7326    information is extracted from CGEN-generated operand tables within gas.
7327 
7328    Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7329    internal) representing prefix-notation expressions, including but not
7330    limited to those sorts of expressions normally encoded as addends in the
7331    addend field.  The symbol mangling format is:
7332 
7333    <node> := <literal>
7334           |  <unary-operator> ':' <node>
7335           |  <binary-operator> ':' <node> ':' <node>
7336 	  ;
7337 
7338    <literal> := 's' <digits=N> ':' <N character symbol name>
7339              |  'S' <digits=N> ':' <N character section name>
7340 	     |  '#' <hexdigits>
7341 	     ;
7342 
7343    <binary-operator> := as in C
7344    <unary-operator> := as in C, plus "0-" for unambiguous negation.  */
7345 
7346 static void
7347 set_symbol_value (bfd *bfd_with_globals,
7348 		  Elf_Internal_Sym *isymbuf,
7349 		  size_t locsymcount,
7350 		  size_t symidx,
7351 		  bfd_vma val)
7352 {
7353   struct elf_link_hash_entry **sym_hashes;
7354   struct elf_link_hash_entry *h;
7355   size_t extsymoff = locsymcount;
7356 
7357   if (symidx < locsymcount)
7358     {
7359       Elf_Internal_Sym *sym;
7360 
7361       sym = isymbuf + symidx;
7362       if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7363 	{
7364 	  /* It is a local symbol: move it to the
7365 	     "absolute" section and give it a value.  */
7366 	  sym->st_shndx = SHN_ABS;
7367 	  sym->st_value = val;
7368 	  return;
7369 	}
7370       BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7371       extsymoff = 0;
7372     }
7373 
7374   /* It is a global symbol: set its link type
7375      to "defined" and give it a value.  */
7376 
7377   sym_hashes = elf_sym_hashes (bfd_with_globals);
7378   h = sym_hashes [symidx - extsymoff];
7379   while (h->root.type == bfd_link_hash_indirect
7380 	 || h->root.type == bfd_link_hash_warning)
7381     h = (struct elf_link_hash_entry *) h->root.u.i.link;
7382   h->root.type = bfd_link_hash_defined;
7383   h->root.u.def.value = val;
7384   h->root.u.def.section = bfd_abs_section_ptr;
7385 }
7386 
7387 static bfd_boolean
7388 resolve_symbol (const char *name,
7389 		bfd *input_bfd,
7390 		struct elf_final_link_info *finfo,
7391 		bfd_vma *result,
7392 		Elf_Internal_Sym *isymbuf,
7393 		size_t locsymcount)
7394 {
7395   Elf_Internal_Sym *sym;
7396   struct bfd_link_hash_entry *global_entry;
7397   const char *candidate = NULL;
7398   Elf_Internal_Shdr *symtab_hdr;
7399   size_t i;
7400 
7401   symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7402 
7403   for (i = 0; i < locsymcount; ++ i)
7404     {
7405       sym = isymbuf + i;
7406 
7407       if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7408 	continue;
7409 
7410       candidate = bfd_elf_string_from_elf_section (input_bfd,
7411 						   symtab_hdr->sh_link,
7412 						   sym->st_name);
7413 #ifdef DEBUG
7414       printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7415 	      name, candidate, (unsigned long) sym->st_value);
7416 #endif
7417       if (candidate && strcmp (candidate, name) == 0)
7418 	{
7419 	  asection *sec = finfo->sections [i];
7420 
7421 	  *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7422 	  *result += sec->output_offset + sec->output_section->vma;
7423 #ifdef DEBUG
7424 	  printf ("Found symbol with value %8.8lx\n",
7425 		  (unsigned long) *result);
7426 #endif
7427 	  return TRUE;
7428 	}
7429     }
7430 
7431   /* Hmm, haven't found it yet. perhaps it is a global.  */
7432   global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7433 				       FALSE, FALSE, TRUE);
7434   if (!global_entry)
7435     return FALSE;
7436 
7437   if (global_entry->type == bfd_link_hash_defined
7438       || global_entry->type == bfd_link_hash_defweak)
7439     {
7440       *result = (global_entry->u.def.value
7441 		 + global_entry->u.def.section->output_section->vma
7442 		 + global_entry->u.def.section->output_offset);
7443 #ifdef DEBUG
7444       printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7445 	      global_entry->root.string, (unsigned long) *result);
7446 #endif
7447       return TRUE;
7448     }
7449 
7450   return FALSE;
7451 }
7452 
7453 static bfd_boolean
7454 resolve_section (const char *name,
7455 		 asection *sections,
7456 		 bfd_vma *result)
7457 {
7458   asection *curr;
7459   unsigned int len;
7460 
7461   for (curr = sections; curr; curr = curr->next)
7462     if (strcmp (curr->name, name) == 0)
7463       {
7464 	*result = curr->vma;
7465 	return TRUE;
7466       }
7467 
7468   /* Hmm. still haven't found it. try pseudo-section names.  */
7469   for (curr = sections; curr; curr = curr->next)
7470     {
7471       len = strlen (curr->name);
7472       if (len > strlen (name))
7473 	continue;
7474 
7475       if (strncmp (curr->name, name, len) == 0)
7476 	{
7477 	  if (strncmp (".end", name + len, 4) == 0)
7478 	    {
7479 	      *result = curr->vma + curr->size;
7480 	      return TRUE;
7481 	    }
7482 
7483 	  /* Insert more pseudo-section names here, if you like.  */
7484 	}
7485     }
7486 
7487   return FALSE;
7488 }
7489 
7490 static void
7491 undefined_reference (const char *reftype, const char *name)
7492 {
7493   _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7494 		      reftype, name);
7495 }
7496 
7497 static bfd_boolean
7498 eval_symbol (bfd_vma *result,
7499 	     const char **symp,
7500 	     bfd *input_bfd,
7501 	     struct elf_final_link_info *finfo,
7502 	     bfd_vma dot,
7503 	     Elf_Internal_Sym *isymbuf,
7504 	     size_t locsymcount,
7505 	     int signed_p)
7506 {
7507   size_t len;
7508   size_t symlen;
7509   bfd_vma a;
7510   bfd_vma b;
7511   char symbuf[4096];
7512   const char *sym = *symp;
7513   const char *symend;
7514   bfd_boolean symbol_is_section = FALSE;
7515 
7516   len = strlen (sym);
7517   symend = sym + len;
7518 
7519   if (len < 1 || len > sizeof (symbuf))
7520     {
7521       bfd_set_error (bfd_error_invalid_operation);
7522       return FALSE;
7523     }
7524 
7525   switch (* sym)
7526     {
7527     case '.':
7528       *result = dot;
7529       *symp = sym + 1;
7530       return TRUE;
7531 
7532     case '#':
7533       ++sym;
7534       *result = strtoul (sym, (char **) symp, 16);
7535       return TRUE;
7536 
7537     case 'S':
7538       symbol_is_section = TRUE;
7539     case 's':
7540       ++sym;
7541       symlen = strtol (sym, (char **) symp, 10);
7542       sym = *symp + 1; /* Skip the trailing ':'.  */
7543 
7544       if (symend < sym || symlen + 1 > sizeof (symbuf))
7545 	{
7546 	  bfd_set_error (bfd_error_invalid_operation);
7547 	  return FALSE;
7548 	}
7549 
7550       memcpy (symbuf, sym, symlen);
7551       symbuf[symlen] = '\0';
7552       *symp = sym + symlen;
7553 
7554       /* Is it always possible, with complex symbols, that gas "mis-guessed"
7555 	 the symbol as a section, or vice-versa. so we're pretty liberal in our
7556 	 interpretation here; section means "try section first", not "must be a
7557 	 section", and likewise with symbol.  */
7558 
7559       if (symbol_is_section)
7560 	{
7561 	  if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7562 	      && !resolve_symbol (symbuf, input_bfd, finfo, result,
7563 				  isymbuf, locsymcount))
7564 	    {
7565 	      undefined_reference ("section", symbuf);
7566 	      return FALSE;
7567 	    }
7568 	}
7569       else
7570 	{
7571 	  if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7572 			       isymbuf, locsymcount)
7573 	      && !resolve_section (symbuf, finfo->output_bfd->sections,
7574 				   result))
7575 	    {
7576 	      undefined_reference ("symbol", symbuf);
7577 	      return FALSE;
7578 	    }
7579 	}
7580 
7581       return TRUE;
7582 
7583       /* All that remains are operators.  */
7584 
7585 #define UNARY_OP(op)						\
7586   if (strncmp (sym, #op, strlen (#op)) == 0)			\
7587     {								\
7588       sym += strlen (#op);					\
7589       if (*sym == ':')						\
7590 	++sym;							\
7591       *symp = sym;						\
7592       if (!eval_symbol (&a, symp, input_bfd, finfo, dot,	\
7593 			isymbuf, locsymcount, signed_p))	\
7594 	return FALSE;						\
7595       if (signed_p)						\
7596 	*result = op ((bfd_signed_vma) a);			\
7597       else							\
7598 	*result = op a;						\
7599       return TRUE;						\
7600     }
7601 
7602 #define BINARY_OP(op)						\
7603   if (strncmp (sym, #op, strlen (#op)) == 0)			\
7604     {								\
7605       sym += strlen (#op);					\
7606       if (*sym == ':')						\
7607 	++sym;							\
7608       *symp = sym;						\
7609       if (!eval_symbol (&a, symp, input_bfd, finfo, dot,	\
7610 			isymbuf, locsymcount, signed_p))	\
7611 	return FALSE;						\
7612       ++*symp;							\
7613       if (!eval_symbol (&b, symp, input_bfd, finfo, dot,	\
7614 			isymbuf, locsymcount, signed_p))	\
7615 	return FALSE;						\
7616       if (signed_p)						\
7617 	*result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b);	\
7618       else							\
7619 	*result = a op b;					\
7620       return TRUE;						\
7621     }
7622 
7623     default:
7624       UNARY_OP  (0-);
7625       BINARY_OP (<<);
7626       BINARY_OP (>>);
7627       BINARY_OP (==);
7628       BINARY_OP (!=);
7629       BINARY_OP (<=);
7630       BINARY_OP (>=);
7631       BINARY_OP (&&);
7632       BINARY_OP (||);
7633       UNARY_OP  (~);
7634       UNARY_OP  (!);
7635       BINARY_OP (*);
7636       BINARY_OP (/);
7637       BINARY_OP (%);
7638       BINARY_OP (^);
7639       BINARY_OP (|);
7640       BINARY_OP (&);
7641       BINARY_OP (+);
7642       BINARY_OP (-);
7643       BINARY_OP (<);
7644       BINARY_OP (>);
7645 #undef UNARY_OP
7646 #undef BINARY_OP
7647       _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7648       bfd_set_error (bfd_error_invalid_operation);
7649       return FALSE;
7650     }
7651 }
7652 
7653 static void
7654 put_value (bfd_vma size,
7655 	   unsigned long chunksz,
7656 	   bfd *input_bfd,
7657 	   bfd_vma x,
7658 	   bfd_byte *location)
7659 {
7660   location += (size - chunksz);
7661 
7662   for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7663     {
7664       switch (chunksz)
7665 	{
7666 	default:
7667 	case 0:
7668 	  abort ();
7669 	case 1:
7670 	  bfd_put_8 (input_bfd, x, location);
7671 	  break;
7672 	case 2:
7673 	  bfd_put_16 (input_bfd, x, location);
7674 	  break;
7675 	case 4:
7676 	  bfd_put_32 (input_bfd, x, location);
7677 	  break;
7678 	case 8:
7679 #ifdef BFD64
7680 	  bfd_put_64 (input_bfd, x, location);
7681 #else
7682 	  abort ();
7683 #endif
7684 	  break;
7685 	}
7686     }
7687 }
7688 
7689 static bfd_vma
7690 get_value (bfd_vma size,
7691 	   unsigned long chunksz,
7692 	   bfd *input_bfd,
7693 	   bfd_byte *location)
7694 {
7695   bfd_vma x = 0;
7696 
7697   for (; size; size -= chunksz, location += chunksz)
7698     {
7699       switch (chunksz)
7700 	{
7701 	default:
7702 	case 0:
7703 	  abort ();
7704 	case 1:
7705 	  x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7706 	  break;
7707 	case 2:
7708 	  x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7709 	  break;
7710 	case 4:
7711 	  x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7712 	  break;
7713 	case 8:
7714 #ifdef BFD64
7715 	  x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7716 #else
7717 	  abort ();
7718 #endif
7719 	  break;
7720 	}
7721     }
7722   return x;
7723 }
7724 
7725 static void
7726 decode_complex_addend (unsigned long *start,   /* in bits */
7727 		       unsigned long *oplen,   /* in bits */
7728 		       unsigned long *len,     /* in bits */
7729 		       unsigned long *wordsz,  /* in bytes */
7730 		       unsigned long *chunksz, /* in bytes */
7731 		       unsigned long *lsb0_p,
7732 		       unsigned long *signed_p,
7733 		       unsigned long *trunc_p,
7734 		       unsigned long encoded)
7735 {
7736   * start     =  encoded        & 0x3F;
7737   * len       = (encoded >>  6) & 0x3F;
7738   * oplen     = (encoded >> 12) & 0x3F;
7739   * wordsz    = (encoded >> 18) & 0xF;
7740   * chunksz   = (encoded >> 22) & 0xF;
7741   * lsb0_p    = (encoded >> 27) & 1;
7742   * signed_p  = (encoded >> 28) & 1;
7743   * trunc_p   = (encoded >> 29) & 1;
7744 }
7745 
7746 bfd_reloc_status_type
7747 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7748 				    asection *input_section ATTRIBUTE_UNUSED,
7749 				    bfd_byte *contents,
7750 				    Elf_Internal_Rela *rel,
7751 				    bfd_vma relocation)
7752 {
7753   bfd_vma shift, x, mask;
7754   unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7755   bfd_reloc_status_type r;
7756 
7757   /*  Perform this reloc, since it is complex.
7758       (this is not to say that it necessarily refers to a complex
7759       symbol; merely that it is a self-describing CGEN based reloc.
7760       i.e. the addend has the complete reloc information (bit start, end,
7761       word size, etc) encoded within it.).  */
7762 
7763   decode_complex_addend (&start, &oplen, &len, &wordsz,
7764 			 &chunksz, &lsb0_p, &signed_p,
7765 			 &trunc_p, rel->r_addend);
7766 
7767   mask = (((1L << (len - 1)) - 1) << 1) | 1;
7768 
7769   if (lsb0_p)
7770     shift = (start + 1) - len;
7771   else
7772     shift = (8 * wordsz) - (start + len);
7773 
7774   /* FIXME: octets_per_byte.  */
7775   x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7776 
7777 #ifdef DEBUG
7778   printf ("Doing complex reloc: "
7779 	  "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7780 	  "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7781 	  "    dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7782 	  lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7783 	  oplen, x, mask,  relocation);
7784 #endif
7785 
7786   r = bfd_reloc_ok;
7787   if (! trunc_p)
7788     /* Now do an overflow check.  */
7789     r = bfd_check_overflow ((signed_p
7790 			     ? complain_overflow_signed
7791 			     : complain_overflow_unsigned),
7792 			    len, 0, (8 * wordsz),
7793 			    relocation);
7794 
7795   /* Do the deed.  */
7796   x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7797 
7798 #ifdef DEBUG
7799   printf ("           relocation: %8.8lx\n"
7800 	  "         shifted mask: %8.8lx\n"
7801 	  " shifted/masked reloc: %8.8lx\n"
7802 	  "               result: %8.8lx\n",
7803 	  relocation, (mask << shift),
7804 	  ((relocation & mask) << shift), x);
7805 #endif
7806   /* FIXME: octets_per_byte.  */
7807   put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7808   return r;
7809 }
7810 
7811 /* When performing a relocatable link, the input relocations are
7812    preserved.  But, if they reference global symbols, the indices
7813    referenced must be updated.  Update all the relocations in
7814    REL_HDR (there are COUNT of them), using the data in REL_HASH.  */
7815 
7816 static void
7817 elf_link_adjust_relocs (bfd *abfd,
7818 			Elf_Internal_Shdr *rel_hdr,
7819 			unsigned int count,
7820 			struct elf_link_hash_entry **rel_hash)
7821 {
7822   unsigned int i;
7823   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7824   bfd_byte *erela;
7825   void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7826   void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7827   bfd_vma r_type_mask;
7828   int r_sym_shift;
7829 
7830   if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7831     {
7832       swap_in = bed->s->swap_reloc_in;
7833       swap_out = bed->s->swap_reloc_out;
7834     }
7835   else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7836     {
7837       swap_in = bed->s->swap_reloca_in;
7838       swap_out = bed->s->swap_reloca_out;
7839     }
7840   else
7841     abort ();
7842 
7843   if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7844     abort ();
7845 
7846   if (bed->s->arch_size == 32)
7847     {
7848       r_type_mask = 0xff;
7849       r_sym_shift = 8;
7850     }
7851   else
7852     {
7853       r_type_mask = 0xffffffff;
7854       r_sym_shift = 32;
7855     }
7856 
7857   erela = rel_hdr->contents;
7858   for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7859     {
7860       Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7861       unsigned int j;
7862 
7863       if (*rel_hash == NULL)
7864 	continue;
7865 
7866       BFD_ASSERT ((*rel_hash)->indx >= 0);
7867 
7868       (*swap_in) (abfd, erela, irela);
7869       for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7870 	irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7871 			   | (irela[j].r_info & r_type_mask));
7872       (*swap_out) (abfd, irela, erela);
7873     }
7874 }
7875 
7876 struct elf_link_sort_rela
7877 {
7878   union {
7879     bfd_vma offset;
7880     bfd_vma sym_mask;
7881   } u;
7882   enum elf_reloc_type_class type;
7883   /* We use this as an array of size int_rels_per_ext_rel.  */
7884   Elf_Internal_Rela rela[1];
7885 };
7886 
7887 static int
7888 elf_link_sort_cmp1 (const void *A, const void *B)
7889 {
7890   const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
7891   const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
7892   int relativea, relativeb;
7893 
7894   relativea = a->type == reloc_class_relative;
7895   relativeb = b->type == reloc_class_relative;
7896 
7897   if (relativea < relativeb)
7898     return 1;
7899   if (relativea > relativeb)
7900     return -1;
7901   if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7902     return -1;
7903   if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7904     return 1;
7905   if (a->rela->r_offset < b->rela->r_offset)
7906     return -1;
7907   if (a->rela->r_offset > b->rela->r_offset)
7908     return 1;
7909   return 0;
7910 }
7911 
7912 static int
7913 elf_link_sort_cmp2 (const void *A, const void *B)
7914 {
7915   const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
7916   const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
7917   int copya, copyb;
7918 
7919   if (a->u.offset < b->u.offset)
7920     return -1;
7921   if (a->u.offset > b->u.offset)
7922     return 1;
7923   copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
7924   copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
7925   if (copya < copyb)
7926     return -1;
7927   if (copya > copyb)
7928     return 1;
7929   if (a->rela->r_offset < b->rela->r_offset)
7930     return -1;
7931   if (a->rela->r_offset > b->rela->r_offset)
7932     return 1;
7933   return 0;
7934 }
7935 
7936 static size_t
7937 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
7938 {
7939   asection *dynamic_relocs;
7940   asection *rela_dyn;
7941   asection *rel_dyn;
7942   bfd_size_type count, size;
7943   size_t i, ret, sort_elt, ext_size;
7944   bfd_byte *sort, *s_non_relative, *p;
7945   struct elf_link_sort_rela *sq;
7946   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7947   int i2e = bed->s->int_rels_per_ext_rel;
7948   void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7949   void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7950   struct bfd_link_order *lo;
7951   bfd_vma r_sym_mask;
7952   bfd_boolean use_rela;
7953 
7954   /* Find a dynamic reloc section.  */
7955   rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
7956   rel_dyn  = bfd_get_section_by_name (abfd, ".rel.dyn");
7957   if (rela_dyn != NULL && rela_dyn->size > 0
7958       && rel_dyn != NULL && rel_dyn->size > 0)
7959     {
7960       bfd_boolean use_rela_initialised = FALSE;
7961 
7962       /* This is just here to stop gcc from complaining.
7963 	 It's initialization checking code is not perfect.  */
7964       use_rela = TRUE;
7965 
7966       /* Both sections are present.  Examine the sizes
7967 	 of the indirect sections to help us choose.  */
7968       for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7969 	if (lo->type == bfd_indirect_link_order)
7970 	  {
7971 	    asection *o = lo->u.indirect.section;
7972 
7973 	    if ((o->size % bed->s->sizeof_rela) == 0)
7974 	      {
7975 		if ((o->size % bed->s->sizeof_rel) == 0)
7976 		  /* Section size is divisible by both rel and rela sizes.
7977 		     It is of no help to us.  */
7978 		  ;
7979 		else
7980 		  {
7981 		    /* Section size is only divisible by rela.  */
7982 		    if (use_rela_initialised && (use_rela == FALSE))
7983 		      {
7984 			_bfd_error_handler
7985 			  (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7986 			bfd_set_error (bfd_error_invalid_operation);
7987 			return 0;
7988 		      }
7989 		    else
7990 		      {
7991 			use_rela = TRUE;
7992 			use_rela_initialised = TRUE;
7993 		      }
7994 		  }
7995 	      }
7996 	    else if ((o->size % bed->s->sizeof_rel) == 0)
7997 	      {
7998 		/* Section size is only divisible by rel.  */
7999 		if (use_rela_initialised && (use_rela == TRUE))
8000 		  {
8001 		    _bfd_error_handler
8002 		      (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8003 		    bfd_set_error (bfd_error_invalid_operation);
8004 		    return 0;
8005 		  }
8006 		else
8007 		  {
8008 		    use_rela = FALSE;
8009 		    use_rela_initialised = TRUE;
8010 		  }
8011 	      }
8012 	    else
8013 	      {
8014 		/* The section size is not divisible by either - something is wrong.  */
8015 		_bfd_error_handler
8016 		  (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8017 		bfd_set_error (bfd_error_invalid_operation);
8018 		return 0;
8019 	      }
8020 	  }
8021 
8022       for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8023 	if (lo->type == bfd_indirect_link_order)
8024 	  {
8025 	    asection *o = lo->u.indirect.section;
8026 
8027 	    if ((o->size % bed->s->sizeof_rela) == 0)
8028 	      {
8029 		if ((o->size % bed->s->sizeof_rel) == 0)
8030 		  /* Section size is divisible by both rel and rela sizes.
8031 		     It is of no help to us.  */
8032 		  ;
8033 		else
8034 		  {
8035 		    /* Section size is only divisible by rela.  */
8036 		    if (use_rela_initialised && (use_rela == FALSE))
8037 		      {
8038 			_bfd_error_handler
8039 			  (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8040 			bfd_set_error (bfd_error_invalid_operation);
8041 			return 0;
8042 		      }
8043 		    else
8044 		      {
8045 			use_rela = TRUE;
8046 			use_rela_initialised = TRUE;
8047 		      }
8048 		  }
8049 	      }
8050 	    else if ((o->size % bed->s->sizeof_rel) == 0)
8051 	      {
8052 		/* Section size is only divisible by rel.  */
8053 		if (use_rela_initialised && (use_rela == TRUE))
8054 		  {
8055 		    _bfd_error_handler
8056 		      (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8057 		    bfd_set_error (bfd_error_invalid_operation);
8058 		    return 0;
8059 		  }
8060 		else
8061 		  {
8062 		    use_rela = FALSE;
8063 		    use_rela_initialised = TRUE;
8064 		  }
8065 	      }
8066 	    else
8067 	      {
8068 		/* The section size is not divisible by either - something is wrong.  */
8069 		_bfd_error_handler
8070 		  (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8071 		bfd_set_error (bfd_error_invalid_operation);
8072 		return 0;
8073 	      }
8074 	  }
8075 
8076       if (! use_rela_initialised)
8077 	/* Make a guess.  */
8078 	use_rela = TRUE;
8079     }
8080   else if (rela_dyn != NULL && rela_dyn->size > 0)
8081     use_rela = TRUE;
8082   else if (rel_dyn != NULL && rel_dyn->size > 0)
8083     use_rela = FALSE;
8084   else
8085     return 0;
8086 
8087   if (use_rela)
8088     {
8089       dynamic_relocs = rela_dyn;
8090       ext_size = bed->s->sizeof_rela;
8091       swap_in = bed->s->swap_reloca_in;
8092       swap_out = bed->s->swap_reloca_out;
8093     }
8094   else
8095     {
8096       dynamic_relocs = rel_dyn;
8097       ext_size = bed->s->sizeof_rel;
8098       swap_in = bed->s->swap_reloc_in;
8099       swap_out = bed->s->swap_reloc_out;
8100     }
8101 
8102   size = 0;
8103   for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8104     if (lo->type == bfd_indirect_link_order)
8105       size += lo->u.indirect.section->size;
8106 
8107   if (size != dynamic_relocs->size)
8108     return 0;
8109 
8110   sort_elt = (sizeof (struct elf_link_sort_rela)
8111 	      + (i2e - 1) * sizeof (Elf_Internal_Rela));
8112 
8113   count = dynamic_relocs->size / ext_size;
8114   if (count == 0)
8115     return 0;
8116   sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8117 
8118   if (sort == NULL)
8119     {
8120       (*info->callbacks->warning)
8121 	(info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8122       return 0;
8123     }
8124 
8125   if (bed->s->arch_size == 32)
8126     r_sym_mask = ~(bfd_vma) 0xff;
8127   else
8128     r_sym_mask = ~(bfd_vma) 0xffffffff;
8129 
8130   for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8131     if (lo->type == bfd_indirect_link_order)
8132       {
8133 	bfd_byte *erel, *erelend;
8134 	asection *o = lo->u.indirect.section;
8135 
8136 	if (o->contents == NULL && o->size != 0)
8137 	  {
8138 	    /* This is a reloc section that is being handled as a normal
8139 	       section.  See bfd_section_from_shdr.  We can't combine
8140 	       relocs in this case.  */
8141 	    free (sort);
8142 	    return 0;
8143 	  }
8144 	erel = o->contents;
8145 	erelend = o->contents + o->size;
8146 	/* FIXME: octets_per_byte.  */
8147 	p = sort + o->output_offset / ext_size * sort_elt;
8148 
8149 	while (erel < erelend)
8150 	  {
8151 	    struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8152 
8153 	    (*swap_in) (abfd, erel, s->rela);
8154 	    s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8155 	    s->u.sym_mask = r_sym_mask;
8156 	    p += sort_elt;
8157 	    erel += ext_size;
8158 	  }
8159       }
8160 
8161   qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8162 
8163   for (i = 0, p = sort; i < count; i++, p += sort_elt)
8164     {
8165       struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8166       if (s->type != reloc_class_relative)
8167 	break;
8168     }
8169   ret = i;
8170   s_non_relative = p;
8171 
8172   sq = (struct elf_link_sort_rela *) s_non_relative;
8173   for (; i < count; i++, p += sort_elt)
8174     {
8175       struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8176       if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8177 	sq = sp;
8178       sp->u.offset = sq->rela->r_offset;
8179     }
8180 
8181   qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8182 
8183   for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8184     if (lo->type == bfd_indirect_link_order)
8185       {
8186 	bfd_byte *erel, *erelend;
8187 	asection *o = lo->u.indirect.section;
8188 
8189 	erel = o->contents;
8190 	erelend = o->contents + o->size;
8191 	/* FIXME: octets_per_byte.  */
8192 	p = sort + o->output_offset / ext_size * sort_elt;
8193 	while (erel < erelend)
8194 	  {
8195 	    struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8196 	    (*swap_out) (abfd, s->rela, erel);
8197 	    p += sort_elt;
8198 	    erel += ext_size;
8199 	  }
8200       }
8201 
8202   free (sort);
8203   *psec = dynamic_relocs;
8204   return ret;
8205 }
8206 
8207 /* Flush the output symbols to the file.  */
8208 
8209 static bfd_boolean
8210 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8211 			    const struct elf_backend_data *bed)
8212 {
8213   if (finfo->symbuf_count > 0)
8214     {
8215       Elf_Internal_Shdr *hdr;
8216       file_ptr pos;
8217       bfd_size_type amt;
8218 
8219       hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8220       pos = hdr->sh_offset + hdr->sh_size;
8221       amt = finfo->symbuf_count * bed->s->sizeof_sym;
8222       if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8223 	  || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8224 	return FALSE;
8225 
8226       hdr->sh_size += amt;
8227       finfo->symbuf_count = 0;
8228     }
8229 
8230   return TRUE;
8231 }
8232 
8233 /* Add a symbol to the output symbol table.  */
8234 
8235 static int
8236 elf_link_output_sym (struct elf_final_link_info *finfo,
8237 		     const char *name,
8238 		     Elf_Internal_Sym *elfsym,
8239 		     asection *input_sec,
8240 		     struct elf_link_hash_entry *h)
8241 {
8242   bfd_byte *dest;
8243   Elf_External_Sym_Shndx *destshndx;
8244   int (*output_symbol_hook)
8245     (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8246      struct elf_link_hash_entry *);
8247   const struct elf_backend_data *bed;
8248 
8249   bed = get_elf_backend_data (finfo->output_bfd);
8250   output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8251   if (output_symbol_hook != NULL)
8252     {
8253       int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8254       if (ret != 1)
8255 	return ret;
8256     }
8257 
8258   if (name == NULL || *name == '\0')
8259     elfsym->st_name = 0;
8260   else if (input_sec->flags & SEC_EXCLUDE)
8261     elfsym->st_name = 0;
8262   else
8263     {
8264       elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8265 							    name, TRUE, FALSE);
8266       if (elfsym->st_name == (unsigned long) -1)
8267 	return 0;
8268     }
8269 
8270   if (finfo->symbuf_count >= finfo->symbuf_size)
8271     {
8272       if (! elf_link_flush_output_syms (finfo, bed))
8273 	return 0;
8274     }
8275 
8276   dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8277   destshndx = finfo->symshndxbuf;
8278   if (destshndx != NULL)
8279     {
8280       if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8281 	{
8282 	  bfd_size_type amt;
8283 
8284 	  amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8285 	  destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8286                                                               amt * 2);
8287 	  if (destshndx == NULL)
8288 	    return 0;
8289 	  finfo->symshndxbuf = destshndx;
8290 	  memset ((char *) destshndx + amt, 0, amt);
8291 	  finfo->shndxbuf_size *= 2;
8292 	}
8293       destshndx += bfd_get_symcount (finfo->output_bfd);
8294     }
8295 
8296   bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8297   finfo->symbuf_count += 1;
8298   bfd_get_symcount (finfo->output_bfd) += 1;
8299 
8300   return 1;
8301 }
8302 
8303 /* Return TRUE if the dynamic symbol SYM in ABFD is supported.  */
8304 
8305 static bfd_boolean
8306 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8307 {
8308   if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8309       && sym->st_shndx < SHN_LORESERVE)
8310     {
8311       /* The gABI doesn't support dynamic symbols in output sections
8312 	 beyond 64k.  */
8313       (*_bfd_error_handler)
8314 	(_("%B: Too many sections: %d (>= %d)"),
8315 	 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8316       bfd_set_error (bfd_error_nonrepresentable_section);
8317       return FALSE;
8318     }
8319   return TRUE;
8320 }
8321 
8322 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8323    allowing an unsatisfied unversioned symbol in the DSO to match a
8324    versioned symbol that would normally require an explicit version.
8325    We also handle the case that a DSO references a hidden symbol
8326    which may be satisfied by a versioned symbol in another DSO.  */
8327 
8328 static bfd_boolean
8329 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8330 				 const struct elf_backend_data *bed,
8331 				 struct elf_link_hash_entry *h)
8332 {
8333   bfd *abfd;
8334   struct elf_link_loaded_list *loaded;
8335 
8336   if (!is_elf_hash_table (info->hash))
8337     return FALSE;
8338 
8339   switch (h->root.type)
8340     {
8341     default:
8342       abfd = NULL;
8343       break;
8344 
8345     case bfd_link_hash_undefined:
8346     case bfd_link_hash_undefweak:
8347       abfd = h->root.u.undef.abfd;
8348       if ((abfd->flags & DYNAMIC) == 0
8349 	  || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8350 	return FALSE;
8351       break;
8352 
8353     case bfd_link_hash_defined:
8354     case bfd_link_hash_defweak:
8355       abfd = h->root.u.def.section->owner;
8356       break;
8357 
8358     case bfd_link_hash_common:
8359       abfd = h->root.u.c.p->section->owner;
8360       break;
8361     }
8362   BFD_ASSERT (abfd != NULL);
8363 
8364   for (loaded = elf_hash_table (info)->loaded;
8365        loaded != NULL;
8366        loaded = loaded->next)
8367     {
8368       bfd *input;
8369       Elf_Internal_Shdr *hdr;
8370       bfd_size_type symcount;
8371       bfd_size_type extsymcount;
8372       bfd_size_type extsymoff;
8373       Elf_Internal_Shdr *versymhdr;
8374       Elf_Internal_Sym *isym;
8375       Elf_Internal_Sym *isymend;
8376       Elf_Internal_Sym *isymbuf;
8377       Elf_External_Versym *ever;
8378       Elf_External_Versym *extversym;
8379 
8380       input = loaded->abfd;
8381 
8382       /* We check each DSO for a possible hidden versioned definition.  */
8383       if (input == abfd
8384 	  || (input->flags & DYNAMIC) == 0
8385 	  || elf_dynversym (input) == 0)
8386 	continue;
8387 
8388       hdr = &elf_tdata (input)->dynsymtab_hdr;
8389 
8390       symcount = hdr->sh_size / bed->s->sizeof_sym;
8391       if (elf_bad_symtab (input))
8392 	{
8393 	  extsymcount = symcount;
8394 	  extsymoff = 0;
8395 	}
8396       else
8397 	{
8398 	  extsymcount = symcount - hdr->sh_info;
8399 	  extsymoff = hdr->sh_info;
8400 	}
8401 
8402       if (extsymcount == 0)
8403 	continue;
8404 
8405       isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8406 				      NULL, NULL, NULL);
8407       if (isymbuf == NULL)
8408 	return FALSE;
8409 
8410       /* Read in any version definitions.  */
8411       versymhdr = &elf_tdata (input)->dynversym_hdr;
8412       extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8413       if (extversym == NULL)
8414 	goto error_ret;
8415 
8416       if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8417 	  || (bfd_bread (extversym, versymhdr->sh_size, input)
8418 	      != versymhdr->sh_size))
8419 	{
8420 	  free (extversym);
8421 	error_ret:
8422 	  free (isymbuf);
8423 	  return FALSE;
8424 	}
8425 
8426       ever = extversym + extsymoff;
8427       isymend = isymbuf + extsymcount;
8428       for (isym = isymbuf; isym < isymend; isym++, ever++)
8429 	{
8430 	  const char *name;
8431 	  Elf_Internal_Versym iver;
8432 	  unsigned short version_index;
8433 
8434 	  if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8435 	      || isym->st_shndx == SHN_UNDEF)
8436 	    continue;
8437 
8438 	  name = bfd_elf_string_from_elf_section (input,
8439 						  hdr->sh_link,
8440 						  isym->st_name);
8441 	  if (strcmp (name, h->root.root.string) != 0)
8442 	    continue;
8443 
8444 	  _bfd_elf_swap_versym_in (input, ever, &iver);
8445 
8446 	  if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
8447 	    {
8448 	      /* If we have a non-hidden versioned sym, then it should
8449 		 have provided a definition for the undefined sym.  */
8450 	      abort ();
8451 	    }
8452 
8453 	  version_index = iver.vs_vers & VERSYM_VERSION;
8454 	  if (version_index == 1 || version_index == 2)
8455 	    {
8456 	      /* This is the base or first version.  We can use it.  */
8457 	      free (extversym);
8458 	      free (isymbuf);
8459 	      return TRUE;
8460 	    }
8461 	}
8462 
8463       free (extversym);
8464       free (isymbuf);
8465     }
8466 
8467   return FALSE;
8468 }
8469 
8470 /* Add an external symbol to the symbol table.  This is called from
8471    the hash table traversal routine.  When generating a shared object,
8472    we go through the symbol table twice.  The first time we output
8473    anything that might have been forced to local scope in a version
8474    script.  The second time we output the symbols that are still
8475    global symbols.  */
8476 
8477 static bfd_boolean
8478 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8479 {
8480   struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8481   struct elf_final_link_info *finfo = eoinfo->finfo;
8482   bfd_boolean strip;
8483   Elf_Internal_Sym sym;
8484   asection *input_sec;
8485   const struct elf_backend_data *bed;
8486   long indx;
8487   int ret;
8488 
8489   if (h->root.type == bfd_link_hash_warning)
8490     {
8491       h = (struct elf_link_hash_entry *) h->root.u.i.link;
8492       if (h->root.type == bfd_link_hash_new)
8493 	return TRUE;
8494     }
8495 
8496   /* Decide whether to output this symbol in this pass.  */
8497   if (eoinfo->localsyms)
8498     {
8499       if (!h->forced_local)
8500 	return TRUE;
8501     }
8502   else
8503     {
8504       if (h->forced_local)
8505 	return TRUE;
8506     }
8507 
8508   bed = get_elf_backend_data (finfo->output_bfd);
8509 
8510   if (h->root.type == bfd_link_hash_undefined)
8511     {
8512       /* If we have an undefined symbol reference here then it must have
8513 	 come from a shared library that is being linked in.  (Undefined
8514 	 references in regular files have already been handled).  */
8515       bfd_boolean ignore_undef = FALSE;
8516 
8517       /* Some symbols may be special in that the fact that they're
8518 	 undefined can be safely ignored - let backend determine that.  */
8519       if (bed->elf_backend_ignore_undef_symbol)
8520 	ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8521 
8522       /* If we are reporting errors for this situation then do so now.  */
8523       if (ignore_undef == FALSE
8524 	  && h->ref_dynamic
8525 	  && ! h->ref_regular
8526 	  && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8527 	  && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8528 	{
8529 	  if (! (finfo->info->callbacks->undefined_symbol
8530 		 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
8531 		  NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8532 	    {
8533 	      eoinfo->failed = TRUE;
8534 	      return FALSE;
8535 	    }
8536 	}
8537     }
8538 
8539   /* We should also warn if a forced local symbol is referenced from
8540      shared libraries.  */
8541   if (! finfo->info->relocatable
8542       && (! finfo->info->shared)
8543       && h->forced_local
8544       && h->ref_dynamic
8545       && !h->dynamic_def
8546       && !h->dynamic_weak
8547       && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8548     {
8549       (*_bfd_error_handler)
8550 	(_("%B: %s symbol `%s' in %B is referenced by DSO"),
8551 	 finfo->output_bfd,
8552 	 h->root.u.def.section == bfd_abs_section_ptr
8553 	 ? finfo->output_bfd : h->root.u.def.section->owner,
8554 	 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8555 	 ? "internal"
8556 	 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8557 	 ? "hidden" : "local",
8558 	 h->root.root.string);
8559       eoinfo->failed = TRUE;
8560       return FALSE;
8561     }
8562 
8563   /* We don't want to output symbols that have never been mentioned by
8564      a regular file, or that we have been told to strip.  However, if
8565      h->indx is set to -2, the symbol is used by a reloc and we must
8566      output it.  */
8567   if (h->indx == -2)
8568     strip = FALSE;
8569   else if ((h->def_dynamic
8570 	    || h->ref_dynamic
8571 	    || h->root.type == bfd_link_hash_new)
8572 	   && !h->def_regular
8573 	   && !h->ref_regular)
8574     strip = TRUE;
8575   else if (finfo->info->strip == strip_all)
8576     strip = TRUE;
8577   else if (finfo->info->strip == strip_some
8578 	   && bfd_hash_lookup (finfo->info->keep_hash,
8579 			       h->root.root.string, FALSE, FALSE) == NULL)
8580     strip = TRUE;
8581   else if (finfo->info->strip_discarded
8582 	   && (h->root.type == bfd_link_hash_defined
8583 	       || h->root.type == bfd_link_hash_defweak)
8584 	   && elf_discarded_section (h->root.u.def.section))
8585     strip = TRUE;
8586   else
8587     strip = FALSE;
8588 
8589   /* If we're stripping it, and it's not a dynamic symbol, there's
8590      nothing else to do unless it is a forced local symbol.  */
8591   if (strip
8592       && h->dynindx == -1
8593       && !h->forced_local)
8594     return TRUE;
8595 
8596   sym.st_value = 0;
8597   sym.st_size = h->size;
8598   sym.st_other = h->other;
8599   if (h->forced_local)
8600     sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8601   else if (h->unique_global)
8602     sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8603   else if (h->root.type == bfd_link_hash_undefweak
8604 	   || h->root.type == bfd_link_hash_defweak)
8605     sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8606   else
8607     sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8608 
8609   switch (h->root.type)
8610     {
8611     default:
8612     case bfd_link_hash_new:
8613     case bfd_link_hash_warning:
8614       abort ();
8615       return FALSE;
8616 
8617     case bfd_link_hash_undefined:
8618     case bfd_link_hash_undefweak:
8619       input_sec = bfd_und_section_ptr;
8620       sym.st_shndx = SHN_UNDEF;
8621       break;
8622 
8623     case bfd_link_hash_defined:
8624     case bfd_link_hash_defweak:
8625       {
8626 	input_sec = h->root.u.def.section;
8627 	if (input_sec->output_section != NULL)
8628 	  {
8629 	    sym.st_shndx =
8630 	      _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8631 						 input_sec->output_section);
8632 	    if (sym.st_shndx == SHN_BAD)
8633 	      {
8634 		(*_bfd_error_handler)
8635 		  (_("%B: could not find output section %A for input section %A"),
8636 		   finfo->output_bfd, input_sec->output_section, input_sec);
8637 		eoinfo->failed = TRUE;
8638 		return FALSE;
8639 	      }
8640 
8641 	    /* ELF symbols in relocatable files are section relative,
8642 	       but in nonrelocatable files they are virtual
8643 	       addresses.  */
8644 	    sym.st_value = h->root.u.def.value + input_sec->output_offset;
8645 	    if (! finfo->info->relocatable)
8646 	      {
8647 		sym.st_value += input_sec->output_section->vma;
8648 		if (h->type == STT_TLS)
8649 		  {
8650 		    asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8651 		    if (tls_sec != NULL)
8652 		      sym.st_value -= tls_sec->vma;
8653 		    else
8654 		      {
8655 			/* The TLS section may have been garbage collected.  */
8656 			BFD_ASSERT (finfo->info->gc_sections
8657 				    && !input_sec->gc_mark);
8658 		      }
8659 		  }
8660 	      }
8661 	  }
8662 	else
8663 	  {
8664 	    BFD_ASSERT (input_sec->owner == NULL
8665 			|| (input_sec->owner->flags & DYNAMIC) != 0);
8666 	    sym.st_shndx = SHN_UNDEF;
8667 	    input_sec = bfd_und_section_ptr;
8668 	  }
8669       }
8670       break;
8671 
8672     case bfd_link_hash_common:
8673       input_sec = h->root.u.c.p->section;
8674       sym.st_shndx = bed->common_section_index (input_sec);
8675       sym.st_value = 1 << h->root.u.c.p->alignment_power;
8676       break;
8677 
8678     case bfd_link_hash_indirect:
8679       /* These symbols are created by symbol versioning.  They point
8680 	 to the decorated version of the name.  For example, if the
8681 	 symbol foo@@GNU_1.2 is the default, which should be used when
8682 	 foo is used with no version, then we add an indirect symbol
8683 	 foo which points to foo@@GNU_1.2.  We ignore these symbols,
8684 	 since the indirected symbol is already in the hash table.  */
8685       return TRUE;
8686     }
8687 
8688   /* Give the processor backend a chance to tweak the symbol value,
8689      and also to finish up anything that needs to be done for this
8690      symbol.  FIXME: Not calling elf_backend_finish_dynamic_symbol for
8691      forced local syms when non-shared is due to a historical quirk.
8692      STT_GNU_IFUNC symbol must go through PLT.  */
8693   if ((h->type == STT_GNU_IFUNC
8694        && h->def_regular
8695        && !finfo->info->relocatable)
8696       || ((h->dynindx != -1
8697 	   || h->forced_local)
8698 	  && ((finfo->info->shared
8699 	       && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8700 		   || h->root.type != bfd_link_hash_undefweak))
8701 	      || !h->forced_local)
8702 	  && elf_hash_table (finfo->info)->dynamic_sections_created))
8703     {
8704       if (! ((*bed->elf_backend_finish_dynamic_symbol)
8705 	     (finfo->output_bfd, finfo->info, h, &sym)))
8706 	{
8707 	  eoinfo->failed = TRUE;
8708 	  return FALSE;
8709 	}
8710     }
8711 
8712   /* If we are marking the symbol as undefined, and there are no
8713      non-weak references to this symbol from a regular object, then
8714      mark the symbol as weak undefined; if there are non-weak
8715      references, mark the symbol as strong.  We can't do this earlier,
8716      because it might not be marked as undefined until the
8717      finish_dynamic_symbol routine gets through with it.  */
8718   if (sym.st_shndx == SHN_UNDEF
8719       && h->ref_regular
8720       && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8721 	  || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8722     {
8723       int bindtype;
8724       unsigned int type = ELF_ST_TYPE (sym.st_info);
8725 
8726       /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8727       if (type == STT_GNU_IFUNC)
8728 	type = STT_FUNC;
8729 
8730       if (h->ref_regular_nonweak)
8731 	bindtype = STB_GLOBAL;
8732       else
8733 	bindtype = STB_WEAK;
8734       sym.st_info = ELF_ST_INFO (bindtype, type);
8735     }
8736 
8737   /* If this is a symbol defined in a dynamic library, don't use the
8738      symbol size from the dynamic library.  Relinking an executable
8739      against a new library may introduce gratuitous changes in the
8740      executable's symbols if we keep the size.  */
8741   if (sym.st_shndx == SHN_UNDEF
8742       && !h->def_regular
8743       && h->def_dynamic)
8744     sym.st_size = 0;
8745 
8746   /* If a non-weak symbol with non-default visibility is not defined
8747      locally, it is a fatal error.  */
8748   if (! finfo->info->relocatable
8749       && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8750       && ELF_ST_BIND (sym.st_info) != STB_WEAK
8751       && h->root.type == bfd_link_hash_undefined
8752       && !h->def_regular)
8753     {
8754       (*_bfd_error_handler)
8755 	(_("%B: %s symbol `%s' isn't defined"),
8756 	 finfo->output_bfd,
8757 	 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8758 	 ? "protected"
8759 	 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8760 	 ? "internal" : "hidden",
8761 	 h->root.root.string);
8762       eoinfo->failed = TRUE;
8763       return FALSE;
8764     }
8765 
8766   /* If this symbol should be put in the .dynsym section, then put it
8767      there now.  We already know the symbol index.  We also fill in
8768      the entry in the .hash section.  */
8769   if (h->dynindx != -1
8770       && elf_hash_table (finfo->info)->dynamic_sections_created)
8771     {
8772       bfd_byte *esym;
8773 
8774       sym.st_name = h->dynstr_index;
8775       esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8776       if (! check_dynsym (finfo->output_bfd, &sym))
8777 	{
8778 	  eoinfo->failed = TRUE;
8779 	  return FALSE;
8780 	}
8781       bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8782 
8783       if (finfo->hash_sec != NULL)
8784 	{
8785 	  size_t hash_entry_size;
8786 	  bfd_byte *bucketpos;
8787 	  bfd_vma chain;
8788 	  size_t bucketcount;
8789 	  size_t bucket;
8790 
8791 	  bucketcount = elf_hash_table (finfo->info)->bucketcount;
8792 	  bucket = h->u.elf_hash_value % bucketcount;
8793 
8794 	  hash_entry_size
8795 	    = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8796 	  bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8797 		       + (bucket + 2) * hash_entry_size);
8798 	  chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8799 	  bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8800 	  bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8801 		   ((bfd_byte *) finfo->hash_sec->contents
8802 		    + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8803 	}
8804 
8805       if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8806 	{
8807 	  Elf_Internal_Versym iversym;
8808 	  Elf_External_Versym *eversym;
8809 
8810 	  if (!h->def_regular)
8811 	    {
8812 	      if (h->verinfo.verdef == NULL)
8813 		iversym.vs_vers = 0;
8814 	      else
8815 		iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8816 	    }
8817 	  else
8818 	    {
8819 	      if (h->verinfo.vertree == NULL)
8820 		iversym.vs_vers = 1;
8821 	      else
8822 		iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8823 	      if (finfo->info->create_default_symver)
8824 		iversym.vs_vers++;
8825 	    }
8826 
8827 	  if (h->hidden)
8828 	    iversym.vs_vers |= VERSYM_HIDDEN;
8829 
8830 	  eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8831 	  eversym += h->dynindx;
8832 	  _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8833 	}
8834     }
8835 
8836   /* If we're stripping it, then it was just a dynamic symbol, and
8837      there's nothing else to do.  */
8838   if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8839     return TRUE;
8840 
8841   indx = bfd_get_symcount (finfo->output_bfd);
8842   ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8843   if (ret == 0)
8844     {
8845       eoinfo->failed = TRUE;
8846       return FALSE;
8847     }
8848   else if (ret == 1)
8849     h->indx = indx;
8850   else if (h->indx == -2)
8851     abort();
8852 
8853   return TRUE;
8854 }
8855 
8856 /* Return TRUE if special handling is done for relocs in SEC against
8857    symbols defined in discarded sections.  */
8858 
8859 static bfd_boolean
8860 elf_section_ignore_discarded_relocs (asection *sec)
8861 {
8862   const struct elf_backend_data *bed;
8863 
8864   switch (sec->sec_info_type)
8865     {
8866     case ELF_INFO_TYPE_STABS:
8867     case ELF_INFO_TYPE_EH_FRAME:
8868       return TRUE;
8869     default:
8870       break;
8871     }
8872 
8873   bed = get_elf_backend_data (sec->owner);
8874   if (bed->elf_backend_ignore_discarded_relocs != NULL
8875       && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8876     return TRUE;
8877 
8878   return FALSE;
8879 }
8880 
8881 /* Return a mask saying how ld should treat relocations in SEC against
8882    symbols defined in discarded sections.  If this function returns
8883    COMPLAIN set, ld will issue a warning message.  If this function
8884    returns PRETEND set, and the discarded section was link-once and the
8885    same size as the kept link-once section, ld will pretend that the
8886    symbol was actually defined in the kept section.  Otherwise ld will
8887    zero the reloc (at least that is the intent, but some cooperation by
8888    the target dependent code is needed, particularly for REL targets).  */
8889 
8890 unsigned int
8891 _bfd_elf_default_action_discarded (asection *sec)
8892 {
8893   if (sec->flags & SEC_DEBUGGING)
8894     return PRETEND;
8895 
8896   if (strcmp (".eh_frame", sec->name) == 0)
8897     return 0;
8898 
8899   if (strcmp (".gcc_except_table", sec->name) == 0)
8900     return 0;
8901 
8902   return COMPLAIN | PRETEND;
8903 }
8904 
8905 /* Find a match between a section and a member of a section group.  */
8906 
8907 static asection *
8908 match_group_member (asection *sec, asection *group,
8909 		    struct bfd_link_info *info)
8910 {
8911   asection *first = elf_next_in_group (group);
8912   asection *s = first;
8913 
8914   while (s != NULL)
8915     {
8916       if (bfd_elf_match_symbols_in_sections (s, sec, info))
8917 	return s;
8918 
8919       s = elf_next_in_group (s);
8920       if (s == first)
8921 	break;
8922     }
8923 
8924   return NULL;
8925 }
8926 
8927 /* Check if the kept section of a discarded section SEC can be used
8928    to replace it.  Return the replacement if it is OK.  Otherwise return
8929    NULL.  */
8930 
8931 asection *
8932 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
8933 {
8934   asection *kept;
8935 
8936   kept = sec->kept_section;
8937   if (kept != NULL)
8938     {
8939       if ((kept->flags & SEC_GROUP) != 0)
8940 	kept = match_group_member (sec, kept, info);
8941       if (kept != NULL
8942 	  && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
8943 	      != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8944 	kept = NULL;
8945       sec->kept_section = kept;
8946     }
8947   return kept;
8948 }
8949 
8950 /* Link an input file into the linker output file.  This function
8951    handles all the sections and relocations of the input file at once.
8952    This is so that we only have to read the local symbols once, and
8953    don't have to keep them in memory.  */
8954 
8955 static bfd_boolean
8956 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
8957 {
8958   int (*relocate_section)
8959     (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
8960      Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
8961   bfd *output_bfd;
8962   Elf_Internal_Shdr *symtab_hdr;
8963   size_t locsymcount;
8964   size_t extsymoff;
8965   Elf_Internal_Sym *isymbuf;
8966   Elf_Internal_Sym *isym;
8967   Elf_Internal_Sym *isymend;
8968   long *pindex;
8969   asection **ppsection;
8970   asection *o;
8971   const struct elf_backend_data *bed;
8972   struct elf_link_hash_entry **sym_hashes;
8973 
8974   output_bfd = finfo->output_bfd;
8975   bed = get_elf_backend_data (output_bfd);
8976   relocate_section = bed->elf_backend_relocate_section;
8977 
8978   /* If this is a dynamic object, we don't want to do anything here:
8979      we don't want the local symbols, and we don't want the section
8980      contents.  */
8981   if ((input_bfd->flags & DYNAMIC) != 0)
8982     return TRUE;
8983 
8984   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8985   if (elf_bad_symtab (input_bfd))
8986     {
8987       locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8988       extsymoff = 0;
8989     }
8990   else
8991     {
8992       locsymcount = symtab_hdr->sh_info;
8993       extsymoff = symtab_hdr->sh_info;
8994     }
8995 
8996   /* Read the local symbols.  */
8997   isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8998   if (isymbuf == NULL && locsymcount != 0)
8999     {
9000       isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9001 				      finfo->internal_syms,
9002 				      finfo->external_syms,
9003 				      finfo->locsym_shndx);
9004       if (isymbuf == NULL)
9005 	return FALSE;
9006     }
9007 
9008   /* Find local symbol sections and adjust values of symbols in
9009      SEC_MERGE sections.  Write out those local symbols we know are
9010      going into the output file.  */
9011   isymend = isymbuf + locsymcount;
9012   for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9013        isym < isymend;
9014        isym++, pindex++, ppsection++)
9015     {
9016       asection *isec;
9017       const char *name;
9018       Elf_Internal_Sym osym;
9019       long indx;
9020       int ret;
9021 
9022       *pindex = -1;
9023 
9024       if (elf_bad_symtab (input_bfd))
9025 	{
9026 	  if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9027 	    {
9028 	      *ppsection = NULL;
9029 	      continue;
9030 	    }
9031 	}
9032 
9033       if (isym->st_shndx == SHN_UNDEF)
9034 	isec = bfd_und_section_ptr;
9035       else if (isym->st_shndx == SHN_ABS)
9036 	isec = bfd_abs_section_ptr;
9037       else if (isym->st_shndx == SHN_COMMON)
9038 	isec = bfd_com_section_ptr;
9039       else
9040 	{
9041 	  isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9042 	  if (isec == NULL)
9043 	    {
9044 	      /* Don't attempt to output symbols with st_shnx in the
9045 		 reserved range other than SHN_ABS and SHN_COMMON.  */
9046 	      *ppsection = NULL;
9047 	      continue;
9048 	    }
9049 	  else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9050 		   && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9051 	    isym->st_value =
9052 	      _bfd_merged_section_offset (output_bfd, &isec,
9053 					  elf_section_data (isec)->sec_info,
9054 					  isym->st_value);
9055 	}
9056 
9057       *ppsection = isec;
9058 
9059       /* Don't output the first, undefined, symbol.  */
9060       if (ppsection == finfo->sections)
9061 	continue;
9062 
9063       if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9064 	{
9065 	  /* We never output section symbols.  Instead, we use the
9066 	     section symbol of the corresponding section in the output
9067 	     file.  */
9068 	  continue;
9069 	}
9070 
9071       /* If we are stripping all symbols, we don't want to output this
9072 	 one.  */
9073       if (finfo->info->strip == strip_all)
9074 	continue;
9075 
9076       /* If we are discarding all local symbols, we don't want to
9077 	 output this one.  If we are generating a relocatable output
9078 	 file, then some of the local symbols may be required by
9079 	 relocs; we output them below as we discover that they are
9080 	 needed.  */
9081       if (finfo->info->discard == discard_all)
9082 	continue;
9083 
9084       /* If this symbol is defined in a section which we are
9085 	 discarding, we don't need to keep it.  */
9086       if (isym->st_shndx != SHN_UNDEF
9087 	  && isym->st_shndx < SHN_LORESERVE
9088 	  && bfd_section_removed_from_list (output_bfd,
9089 					    isec->output_section))
9090 	continue;
9091 
9092       /* Get the name of the symbol.  */
9093       name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9094 					      isym->st_name);
9095       if (name == NULL)
9096 	return FALSE;
9097 
9098       /* See if we are discarding symbols with this name.  */
9099       if ((finfo->info->strip == strip_some
9100 	   && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9101 	       == NULL))
9102 	  || (((finfo->info->discard == discard_sec_merge
9103 		&& (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9104 	       || finfo->info->discard == discard_l)
9105 	      && bfd_is_local_label_name (input_bfd, name)))
9106 	continue;
9107 
9108       osym = *isym;
9109 
9110       /* Adjust the section index for the output file.  */
9111       osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9112 							 isec->output_section);
9113       if (osym.st_shndx == SHN_BAD)
9114 	return FALSE;
9115 
9116       /* ELF symbols in relocatable files are section relative, but
9117 	 in executable files they are virtual addresses.  Note that
9118 	 this code assumes that all ELF sections have an associated
9119 	 BFD section with a reasonable value for output_offset; below
9120 	 we assume that they also have a reasonable value for
9121 	 output_section.  Any special sections must be set up to meet
9122 	 these requirements.  */
9123       osym.st_value += isec->output_offset;
9124       if (! finfo->info->relocatable)
9125 	{
9126 	  osym.st_value += isec->output_section->vma;
9127 	  if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9128 	    {
9129 	      /* STT_TLS symbols are relative to PT_TLS segment base.  */
9130 	      BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9131 	      osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9132 	    }
9133 	}
9134 
9135       indx = bfd_get_symcount (output_bfd);
9136       ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9137       if (ret == 0)
9138 	return FALSE;
9139       else if (ret == 1)
9140 	*pindex = indx;
9141     }
9142 
9143   /* Relocate the contents of each section.  */
9144   sym_hashes = elf_sym_hashes (input_bfd);
9145   for (o = input_bfd->sections; o != NULL; o = o->next)
9146     {
9147       bfd_byte *contents;
9148 
9149       if (! o->linker_mark)
9150 	{
9151 	  /* This section was omitted from the link.  */
9152 	  continue;
9153 	}
9154 
9155       if (finfo->info->relocatable
9156 	  && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9157 	{
9158 	  /* Deal with the group signature symbol.  */
9159 	  struct bfd_elf_section_data *sec_data = elf_section_data (o);
9160 	  unsigned long symndx = sec_data->this_hdr.sh_info;
9161 	  asection *osec = o->output_section;
9162 
9163 	  if (symndx >= locsymcount
9164 	      || (elf_bad_symtab (input_bfd)
9165 		  && finfo->sections[symndx] == NULL))
9166 	    {
9167 	      struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9168 	      while (h->root.type == bfd_link_hash_indirect
9169 		     || h->root.type == bfd_link_hash_warning)
9170 		h = (struct elf_link_hash_entry *) h->root.u.i.link;
9171 	      /* Arrange for symbol to be output.  */
9172 	      h->indx = -2;
9173 	      elf_section_data (osec)->this_hdr.sh_info = -2;
9174 	    }
9175 	  else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9176 	    {
9177 	      /* We'll use the output section target_index.  */
9178 	      asection *sec = finfo->sections[symndx]->output_section;
9179 	      elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9180 	    }
9181 	  else
9182 	    {
9183 	      if (finfo->indices[symndx] == -1)
9184 		{
9185 		  /* Otherwise output the local symbol now.  */
9186 		  Elf_Internal_Sym sym = isymbuf[symndx];
9187 		  asection *sec = finfo->sections[symndx]->output_section;
9188 		  const char *name;
9189 		  long indx;
9190 		  int ret;
9191 
9192 		  name = bfd_elf_string_from_elf_section (input_bfd,
9193 							  symtab_hdr->sh_link,
9194 							  sym.st_name);
9195 		  if (name == NULL)
9196 		    return FALSE;
9197 
9198 		  sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9199 								    sec);
9200 		  if (sym.st_shndx == SHN_BAD)
9201 		    return FALSE;
9202 
9203 		  sym.st_value += o->output_offset;
9204 
9205 		  indx = bfd_get_symcount (output_bfd);
9206 		  ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9207 		  if (ret == 0)
9208 		    return FALSE;
9209 		  else if (ret == 1)
9210 		    finfo->indices[symndx] = indx;
9211 		  else
9212 		    abort ();
9213 		}
9214 	      elf_section_data (osec)->this_hdr.sh_info
9215 		= finfo->indices[symndx];
9216 	    }
9217 	}
9218 
9219       if ((o->flags & SEC_HAS_CONTENTS) == 0
9220 	  || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9221 	continue;
9222 
9223       if ((o->flags & SEC_LINKER_CREATED) != 0)
9224 	{
9225 	  /* Section was created by _bfd_elf_link_create_dynamic_sections
9226 	     or somesuch.  */
9227 	  continue;
9228 	}
9229 
9230       /* Get the contents of the section.  They have been cached by a
9231 	 relaxation routine.  Note that o is a section in an input
9232 	 file, so the contents field will not have been set by any of
9233 	 the routines which work on output files.  */
9234       if (elf_section_data (o)->this_hdr.contents != NULL)
9235 	contents = elf_section_data (o)->this_hdr.contents;
9236       else
9237 	{
9238 	  bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9239 
9240 	  contents = finfo->contents;
9241 	  if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9242 	    return FALSE;
9243 	}
9244 
9245       if ((o->flags & SEC_RELOC) != 0)
9246 	{
9247 	  Elf_Internal_Rela *internal_relocs;
9248 	  Elf_Internal_Rela *rel, *relend;
9249 	  bfd_vma r_type_mask;
9250 	  int r_sym_shift;
9251 	  int action_discarded;
9252 	  int ret;
9253 
9254 	  /* Get the swapped relocs.  */
9255 	  internal_relocs
9256 	    = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9257 					 finfo->internal_relocs, FALSE);
9258 	  if (internal_relocs == NULL
9259 	      && o->reloc_count > 0)
9260 	    return FALSE;
9261 
9262 	  if (bed->s->arch_size == 32)
9263 	    {
9264 	      r_type_mask = 0xff;
9265 	      r_sym_shift = 8;
9266 	    }
9267 	  else
9268 	    {
9269 	      r_type_mask = 0xffffffff;
9270 	      r_sym_shift = 32;
9271 	    }
9272 
9273 	  action_discarded = -1;
9274 	  if (!elf_section_ignore_discarded_relocs (o))
9275 	    action_discarded = (*bed->action_discarded) (o);
9276 
9277 	  /* Run through the relocs evaluating complex reloc symbols and
9278 	     looking for relocs against symbols from discarded sections
9279 	     or section symbols from removed link-once sections.
9280 	     Complain about relocs against discarded sections.  Zero
9281 	     relocs against removed link-once sections.  */
9282 
9283 	  rel = internal_relocs;
9284 	  relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9285 	  for ( ; rel < relend; rel++)
9286 	    {
9287 	      unsigned long r_symndx = rel->r_info >> r_sym_shift;
9288 	      unsigned int s_type;
9289 	      asection **ps, *sec;
9290 	      struct elf_link_hash_entry *h = NULL;
9291 	      const char *sym_name;
9292 
9293 	      if (r_symndx == STN_UNDEF)
9294 		continue;
9295 
9296 	      if (r_symndx >= locsymcount
9297 		  || (elf_bad_symtab (input_bfd)
9298 		      && finfo->sections[r_symndx] == NULL))
9299 		{
9300 		  h = sym_hashes[r_symndx - extsymoff];
9301 
9302 		  /* Badly formatted input files can contain relocs that
9303 		     reference non-existant symbols.  Check here so that
9304 		     we do not seg fault.  */
9305 		  if (h == NULL)
9306 		    {
9307 		      char buffer [32];
9308 
9309 		      sprintf_vma (buffer, rel->r_info);
9310 		      (*_bfd_error_handler)
9311 			(_("error: %B contains a reloc (0x%s) for section %A "
9312 			   "that references a non-existent global symbol"),
9313 			 input_bfd, o, buffer);
9314 		      bfd_set_error (bfd_error_bad_value);
9315 		      return FALSE;
9316 		    }
9317 
9318 		  while (h->root.type == bfd_link_hash_indirect
9319 			 || h->root.type == bfd_link_hash_warning)
9320 		    h = (struct elf_link_hash_entry *) h->root.u.i.link;
9321 
9322 		  s_type = h->type;
9323 
9324 		  ps = NULL;
9325 		  if (h->root.type == bfd_link_hash_defined
9326 		      || h->root.type == bfd_link_hash_defweak)
9327 		    ps = &h->root.u.def.section;
9328 
9329 		  sym_name = h->root.root.string;
9330 		}
9331 	      else
9332 		{
9333 		  Elf_Internal_Sym *sym = isymbuf + r_symndx;
9334 
9335 		  s_type = ELF_ST_TYPE (sym->st_info);
9336 		  ps = &finfo->sections[r_symndx];
9337 		  sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9338 					       sym, *ps);
9339 		}
9340 
9341 	      if ((s_type == STT_RELC || s_type == STT_SRELC)
9342 		  && !finfo->info->relocatable)
9343 		{
9344 		  bfd_vma val;
9345 		  bfd_vma dot = (rel->r_offset
9346 				 + o->output_offset + o->output_section->vma);
9347 #ifdef DEBUG
9348 		  printf ("Encountered a complex symbol!");
9349 		  printf (" (input_bfd %s, section %s, reloc %ld\n",
9350 			  input_bfd->filename, o->name, rel - internal_relocs);
9351 		  printf (" symbol: idx  %8.8lx, name %s\n",
9352 			  r_symndx, sym_name);
9353 		  printf (" reloc : info %8.8lx, addr %8.8lx\n",
9354 			  (unsigned long) rel->r_info,
9355 			  (unsigned long) rel->r_offset);
9356 #endif
9357 		  if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9358 				    isymbuf, locsymcount, s_type == STT_SRELC))
9359 		    return FALSE;
9360 
9361 		  /* Symbol evaluated OK.  Update to absolute value.  */
9362 		  set_symbol_value (input_bfd, isymbuf, locsymcount,
9363 				    r_symndx, val);
9364 		  continue;
9365 		}
9366 
9367 	      if (action_discarded != -1 && ps != NULL)
9368 		{
9369 		  /* Complain if the definition comes from a
9370 		     discarded section.  */
9371 		  if ((sec = *ps) != NULL && elf_discarded_section (sec))
9372 		    {
9373 		      BFD_ASSERT (r_symndx != 0);
9374 		      if (action_discarded & COMPLAIN)
9375 			(*finfo->info->callbacks->einfo)
9376 			  (_("%X`%s' referenced in section `%A' of %B: "
9377 			     "defined in discarded section `%A' of %B\n"),
9378 			   sym_name, o, input_bfd, sec, sec->owner);
9379 
9380 		      /* Try to do the best we can to support buggy old
9381 			 versions of gcc.  Pretend that the symbol is
9382 			 really defined in the kept linkonce section.
9383 			 FIXME: This is quite broken.  Modifying the
9384 			 symbol here means we will be changing all later
9385 			 uses of the symbol, not just in this section.  */
9386 		      if (action_discarded & PRETEND)
9387 			{
9388 			  asection *kept;
9389 
9390 			  kept = _bfd_elf_check_kept_section (sec,
9391 							      finfo->info);
9392 			  if (kept != NULL)
9393 			    {
9394 			      *ps = kept;
9395 			      continue;
9396 			    }
9397 			}
9398 		    }
9399 		}
9400 	    }
9401 
9402 	  /* Relocate the section by invoking a back end routine.
9403 
9404 	     The back end routine is responsible for adjusting the
9405 	     section contents as necessary, and (if using Rela relocs
9406 	     and generating a relocatable output file) adjusting the
9407 	     reloc addend as necessary.
9408 
9409 	     The back end routine does not have to worry about setting
9410 	     the reloc address or the reloc symbol index.
9411 
9412 	     The back end routine is given a pointer to the swapped in
9413 	     internal symbols, and can access the hash table entries
9414 	     for the external symbols via elf_sym_hashes (input_bfd).
9415 
9416 	     When generating relocatable output, the back end routine
9417 	     must handle STB_LOCAL/STT_SECTION symbols specially.  The
9418 	     output symbol is going to be a section symbol
9419 	     corresponding to the output section, which will require
9420 	     the addend to be adjusted.  */
9421 
9422 	  ret = (*relocate_section) (output_bfd, finfo->info,
9423 				     input_bfd, o, contents,
9424 				     internal_relocs,
9425 				     isymbuf,
9426 				     finfo->sections);
9427 	  if (!ret)
9428 	    return FALSE;
9429 
9430 	  if (ret == 2
9431 	      || finfo->info->relocatable
9432 	      || finfo->info->emitrelocations)
9433 	    {
9434 	      Elf_Internal_Rela *irela;
9435 	      Elf_Internal_Rela *irelaend;
9436 	      bfd_vma last_offset;
9437 	      struct elf_link_hash_entry **rel_hash;
9438 	      struct elf_link_hash_entry **rel_hash_list;
9439 	      Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9440 	      unsigned int next_erel;
9441 	      bfd_boolean rela_normal;
9442 
9443 	      input_rel_hdr = &elf_section_data (o)->rel_hdr;
9444 	      rela_normal = (bed->rela_normal
9445 			     && (input_rel_hdr->sh_entsize
9446 				 == bed->s->sizeof_rela));
9447 
9448 	      /* Adjust the reloc addresses and symbol indices.  */
9449 
9450 	      irela = internal_relocs;
9451 	      irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9452 	      rel_hash = (elf_section_data (o->output_section)->rel_hashes
9453 			  + elf_section_data (o->output_section)->rel_count
9454 			  + elf_section_data (o->output_section)->rel_count2);
9455 	      rel_hash_list = rel_hash;
9456 	      last_offset = o->output_offset;
9457 	      if (!finfo->info->relocatable)
9458 		last_offset += o->output_section->vma;
9459 	      for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9460 		{
9461 		  unsigned long r_symndx;
9462 		  asection *sec;
9463 		  Elf_Internal_Sym sym;
9464 
9465 		  if (next_erel == bed->s->int_rels_per_ext_rel)
9466 		    {
9467 		      rel_hash++;
9468 		      next_erel = 0;
9469 		    }
9470 
9471 		  irela->r_offset = _bfd_elf_section_offset (output_bfd,
9472 							     finfo->info, o,
9473 							     irela->r_offset);
9474 		  if (irela->r_offset >= (bfd_vma) -2)
9475 		    {
9476 		      /* This is a reloc for a deleted entry or somesuch.
9477 			 Turn it into an R_*_NONE reloc, at the same
9478 			 offset as the last reloc.  elf_eh_frame.c and
9479 			 bfd_elf_discard_info rely on reloc offsets
9480 			 being ordered.  */
9481 		      irela->r_offset = last_offset;
9482 		      irela->r_info = 0;
9483 		      irela->r_addend = 0;
9484 		      continue;
9485 		    }
9486 
9487 		  irela->r_offset += o->output_offset;
9488 
9489 		  /* Relocs in an executable have to be virtual addresses.  */
9490 		  if (!finfo->info->relocatable)
9491 		    irela->r_offset += o->output_section->vma;
9492 
9493 		  last_offset = irela->r_offset;
9494 
9495 		  r_symndx = irela->r_info >> r_sym_shift;
9496 		  if (r_symndx == STN_UNDEF)
9497 		    continue;
9498 
9499 		  if (r_symndx >= locsymcount
9500 		      || (elf_bad_symtab (input_bfd)
9501 			  && finfo->sections[r_symndx] == NULL))
9502 		    {
9503 		      struct elf_link_hash_entry *rh;
9504 		      unsigned long indx;
9505 
9506 		      /* This is a reloc against a global symbol.  We
9507 			 have not yet output all the local symbols, so
9508 			 we do not know the symbol index of any global
9509 			 symbol.  We set the rel_hash entry for this
9510 			 reloc to point to the global hash table entry
9511 			 for this symbol.  The symbol index is then
9512 			 set at the end of bfd_elf_final_link.  */
9513 		      indx = r_symndx - extsymoff;
9514 		      rh = elf_sym_hashes (input_bfd)[indx];
9515 		      while (rh->root.type == bfd_link_hash_indirect
9516 			     || rh->root.type == bfd_link_hash_warning)
9517 			rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9518 
9519 		      /* Setting the index to -2 tells
9520 			 elf_link_output_extsym that this symbol is
9521 			 used by a reloc.  */
9522 		      BFD_ASSERT (rh->indx < 0);
9523 		      rh->indx = -2;
9524 
9525 		      *rel_hash = rh;
9526 
9527 		      continue;
9528 		    }
9529 
9530 		  /* This is a reloc against a local symbol.  */
9531 
9532 		  *rel_hash = NULL;
9533 		  sym = isymbuf[r_symndx];
9534 		  sec = finfo->sections[r_symndx];
9535 		  if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9536 		    {
9537 		      /* I suppose the backend ought to fill in the
9538 			 section of any STT_SECTION symbol against a
9539 			 processor specific section.  */
9540 		      r_symndx = 0;
9541 		      if (bfd_is_abs_section (sec))
9542 			;
9543 		      else if (sec == NULL || sec->owner == NULL)
9544 			{
9545 			  bfd_set_error (bfd_error_bad_value);
9546 			  return FALSE;
9547 			}
9548 		      else
9549 			{
9550 			  asection *osec = sec->output_section;
9551 
9552 			  /* If we have discarded a section, the output
9553 			     section will be the absolute section.  In
9554 			     case of discarded SEC_MERGE sections, use
9555 			     the kept section.  relocate_section should
9556 			     have already handled discarded linkonce
9557 			     sections.  */
9558 			  if (bfd_is_abs_section (osec)
9559 			      && sec->kept_section != NULL
9560 			      && sec->kept_section->output_section != NULL)
9561 			    {
9562 			      osec = sec->kept_section->output_section;
9563 			      irela->r_addend -= osec->vma;
9564 			    }
9565 
9566 			  if (!bfd_is_abs_section (osec))
9567 			    {
9568 			      r_symndx = osec->target_index;
9569 			      if (r_symndx == 0)
9570 				{
9571 				  struct elf_link_hash_table *htab;
9572 				  asection *oi;
9573 
9574 				  htab = elf_hash_table (finfo->info);
9575 				  oi = htab->text_index_section;
9576 				  if ((osec->flags & SEC_READONLY) == 0
9577 				      && htab->data_index_section != NULL)
9578 				    oi = htab->data_index_section;
9579 
9580 				  if (oi != NULL)
9581 				    {
9582 				      irela->r_addend += osec->vma - oi->vma;
9583 				      r_symndx = oi->target_index;
9584 				    }
9585 				}
9586 
9587 			      BFD_ASSERT (r_symndx != 0);
9588 			    }
9589 			}
9590 
9591 		      /* Adjust the addend according to where the
9592 			 section winds up in the output section.  */
9593 		      if (rela_normal)
9594 			irela->r_addend += sec->output_offset;
9595 		    }
9596 		  else
9597 		    {
9598 		      if (finfo->indices[r_symndx] == -1)
9599 			{
9600 			  unsigned long shlink;
9601 			  const char *name;
9602 			  asection *osec;
9603 			  long indx;
9604 
9605 			  if (finfo->info->strip == strip_all)
9606 			    {
9607 			      /* You can't do ld -r -s.  */
9608 			      bfd_set_error (bfd_error_invalid_operation);
9609 			      return FALSE;
9610 			    }
9611 
9612 			  /* This symbol was skipped earlier, but
9613 			     since it is needed by a reloc, we
9614 			     must output it now.  */
9615 			  shlink = symtab_hdr->sh_link;
9616 			  name = (bfd_elf_string_from_elf_section
9617 				  (input_bfd, shlink, sym.st_name));
9618 			  if (name == NULL)
9619 			    return FALSE;
9620 
9621 			  osec = sec->output_section;
9622 			  sym.st_shndx =
9623 			    _bfd_elf_section_from_bfd_section (output_bfd,
9624 							       osec);
9625 			  if (sym.st_shndx == SHN_BAD)
9626 			    return FALSE;
9627 
9628 			  sym.st_value += sec->output_offset;
9629 			  if (! finfo->info->relocatable)
9630 			    {
9631 			      sym.st_value += osec->vma;
9632 			      if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9633 				{
9634 				  /* STT_TLS symbols are relative to PT_TLS
9635 				     segment base.  */
9636 				  BFD_ASSERT (elf_hash_table (finfo->info)
9637 					      ->tls_sec != NULL);
9638 				  sym.st_value -= (elf_hash_table (finfo->info)
9639 						   ->tls_sec->vma);
9640 				}
9641 			    }
9642 
9643 			  indx = bfd_get_symcount (output_bfd);
9644 			  ret = elf_link_output_sym (finfo, name, &sym, sec,
9645 						     NULL);
9646 			  if (ret == 0)
9647 			    return FALSE;
9648 			  else if (ret == 1)
9649 			    finfo->indices[r_symndx] = indx;
9650 			  else
9651 			    abort ();
9652 			}
9653 
9654 		      r_symndx = finfo->indices[r_symndx];
9655 		    }
9656 
9657 		  irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9658 				   | (irela->r_info & r_type_mask));
9659 		}
9660 
9661 	      /* Swap out the relocs.  */
9662 	      if (input_rel_hdr->sh_size != 0
9663 		  && !bed->elf_backend_emit_relocs (output_bfd, o,
9664 						    input_rel_hdr,
9665 						    internal_relocs,
9666 						    rel_hash_list))
9667 		return FALSE;
9668 
9669 	      input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9670 	      if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9671 		{
9672 		  internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9673 				      * bed->s->int_rels_per_ext_rel);
9674 		  rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9675 		  if (!bed->elf_backend_emit_relocs (output_bfd, o,
9676 						     input_rel_hdr2,
9677 						     internal_relocs,
9678 						     rel_hash_list))
9679 		    return FALSE;
9680 		}
9681 	    }
9682 	}
9683 
9684       /* Write out the modified section contents.  */
9685       if (bed->elf_backend_write_section
9686 	  && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9687 						contents))
9688 	{
9689 	  /* Section written out.  */
9690 	}
9691       else switch (o->sec_info_type)
9692 	{
9693 	case ELF_INFO_TYPE_STABS:
9694 	  if (! (_bfd_write_section_stabs
9695 		 (output_bfd,
9696 		  &elf_hash_table (finfo->info)->stab_info,
9697 		  o, &elf_section_data (o)->sec_info, contents)))
9698 	    return FALSE;
9699 	  break;
9700 	case ELF_INFO_TYPE_MERGE:
9701 	  if (! _bfd_write_merged_section (output_bfd, o,
9702 					   elf_section_data (o)->sec_info))
9703 	    return FALSE;
9704 	  break;
9705 	case ELF_INFO_TYPE_EH_FRAME:
9706 	  {
9707 	    if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9708 						   o, contents))
9709 	      return FALSE;
9710 	  }
9711 	  break;
9712 	default:
9713 	  {
9714 	    /* FIXME: octets_per_byte.  */
9715 	    if (! (o->flags & SEC_EXCLUDE)
9716 		&& ! (o->output_section->flags & SEC_NEVER_LOAD)
9717 		&& ! bfd_set_section_contents (output_bfd, o->output_section,
9718 					       contents,
9719 					       (file_ptr) o->output_offset,
9720 					       o->size))
9721 	      return FALSE;
9722 	  }
9723 	  break;
9724 	}
9725     }
9726 
9727   return TRUE;
9728 }
9729 
9730 /* Generate a reloc when linking an ELF file.  This is a reloc
9731    requested by the linker, and does not come from any input file.  This
9732    is used to build constructor and destructor tables when linking
9733    with -Ur.  */
9734 
9735 static bfd_boolean
9736 elf_reloc_link_order (bfd *output_bfd,
9737 		      struct bfd_link_info *info,
9738 		      asection *output_section,
9739 		      struct bfd_link_order *link_order)
9740 {
9741   reloc_howto_type *howto;
9742   long indx;
9743   bfd_vma offset;
9744   bfd_vma addend;
9745   struct elf_link_hash_entry **rel_hash_ptr;
9746   Elf_Internal_Shdr *rel_hdr;
9747   const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9748   Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9749   bfd_byte *erel;
9750   unsigned int i;
9751 
9752   howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9753   if (howto == NULL)
9754     {
9755       bfd_set_error (bfd_error_bad_value);
9756       return FALSE;
9757     }
9758 
9759   addend = link_order->u.reloc.p->addend;
9760 
9761   /* Figure out the symbol index.  */
9762   rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9763 		  + elf_section_data (output_section)->rel_count
9764 		  + elf_section_data (output_section)->rel_count2);
9765   if (link_order->type == bfd_section_reloc_link_order)
9766     {
9767       indx = link_order->u.reloc.p->u.section->target_index;
9768       BFD_ASSERT (indx != 0);
9769       *rel_hash_ptr = NULL;
9770     }
9771   else
9772     {
9773       struct elf_link_hash_entry *h;
9774 
9775       /* Treat a reloc against a defined symbol as though it were
9776 	 actually against the section.  */
9777       h = ((struct elf_link_hash_entry *)
9778 	   bfd_wrapped_link_hash_lookup (output_bfd, info,
9779 					 link_order->u.reloc.p->u.name,
9780 					 FALSE, FALSE, TRUE));
9781       if (h != NULL
9782 	  && (h->root.type == bfd_link_hash_defined
9783 	      || h->root.type == bfd_link_hash_defweak))
9784 	{
9785 	  asection *section;
9786 
9787 	  section = h->root.u.def.section;
9788 	  indx = section->output_section->target_index;
9789 	  *rel_hash_ptr = NULL;
9790 	  /* It seems that we ought to add the symbol value to the
9791 	     addend here, but in practice it has already been added
9792 	     because it was passed to constructor_callback.  */
9793 	  addend += section->output_section->vma + section->output_offset;
9794 	}
9795       else if (h != NULL)
9796 	{
9797 	  /* Setting the index to -2 tells elf_link_output_extsym that
9798 	     this symbol is used by a reloc.  */
9799 	  h->indx = -2;
9800 	  *rel_hash_ptr = h;
9801 	  indx = 0;
9802 	}
9803       else
9804 	{
9805 	  if (! ((*info->callbacks->unattached_reloc)
9806 		 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9807 	    return FALSE;
9808 	  indx = 0;
9809 	}
9810     }
9811 
9812   /* If this is an inplace reloc, we must write the addend into the
9813      object file.  */
9814   if (howto->partial_inplace && addend != 0)
9815     {
9816       bfd_size_type size;
9817       bfd_reloc_status_type rstat;
9818       bfd_byte *buf;
9819       bfd_boolean ok;
9820       const char *sym_name;
9821 
9822       size = (bfd_size_type) bfd_get_reloc_size (howto);
9823       buf = (bfd_byte *) bfd_zmalloc (size);
9824       if (buf == NULL)
9825 	return FALSE;
9826       rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9827       switch (rstat)
9828 	{
9829 	case bfd_reloc_ok:
9830 	  break;
9831 
9832 	default:
9833 	case bfd_reloc_outofrange:
9834 	  abort ();
9835 
9836 	case bfd_reloc_overflow:
9837 	  if (link_order->type == bfd_section_reloc_link_order)
9838 	    sym_name = bfd_section_name (output_bfd,
9839 					 link_order->u.reloc.p->u.section);
9840 	  else
9841 	    sym_name = link_order->u.reloc.p->u.name;
9842 	  if (! ((*info->callbacks->reloc_overflow)
9843 		 (info, NULL, sym_name, howto->name, addend, NULL,
9844 		  NULL, (bfd_vma) 0)))
9845 	    {
9846 	      free (buf);
9847 	      return FALSE;
9848 	    }
9849 	  break;
9850 	}
9851       ok = bfd_set_section_contents (output_bfd, output_section, buf,
9852 				     link_order->offset, size);
9853       free (buf);
9854       if (! ok)
9855 	return FALSE;
9856     }
9857 
9858   /* The address of a reloc is relative to the section in a
9859      relocatable file, and is a virtual address in an executable
9860      file.  */
9861   offset = link_order->offset;
9862   if (! info->relocatable)
9863     offset += output_section->vma;
9864 
9865   for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9866     {
9867       irel[i].r_offset = offset;
9868       irel[i].r_info = 0;
9869       irel[i].r_addend = 0;
9870     }
9871   if (bed->s->arch_size == 32)
9872     irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9873   else
9874     irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9875 
9876   rel_hdr = &elf_section_data (output_section)->rel_hdr;
9877   erel = rel_hdr->contents;
9878   if (rel_hdr->sh_type == SHT_REL)
9879     {
9880       erel += (elf_section_data (output_section)->rel_count
9881 	       * bed->s->sizeof_rel);
9882       (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
9883     }
9884   else
9885     {
9886       irel[0].r_addend = addend;
9887       erel += (elf_section_data (output_section)->rel_count
9888 	       * bed->s->sizeof_rela);
9889       (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
9890     }
9891 
9892   ++elf_section_data (output_section)->rel_count;
9893 
9894   return TRUE;
9895 }
9896 
9897 
9898 /* Get the output vma of the section pointed to by the sh_link field.  */
9899 
9900 static bfd_vma
9901 elf_get_linked_section_vma (struct bfd_link_order *p)
9902 {
9903   Elf_Internal_Shdr **elf_shdrp;
9904   asection *s;
9905   int elfsec;
9906 
9907   s = p->u.indirect.section;
9908   elf_shdrp = elf_elfsections (s->owner);
9909   elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
9910   elfsec = elf_shdrp[elfsec]->sh_link;
9911   /* PR 290:
9912      The Intel C compiler generates SHT_IA_64_UNWIND with
9913      SHF_LINK_ORDER.  But it doesn't set the sh_link or
9914      sh_info fields.  Hence we could get the situation
9915      where elfsec is 0.  */
9916   if (elfsec == 0)
9917     {
9918       const struct elf_backend_data *bed
9919 	= get_elf_backend_data (s->owner);
9920       if (bed->link_order_error_handler)
9921 	bed->link_order_error_handler
9922 	  (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
9923       return 0;
9924     }
9925   else
9926     {
9927       s = elf_shdrp[elfsec]->bfd_section;
9928       return s->output_section->vma + s->output_offset;
9929     }
9930 }
9931 
9932 
9933 /* Compare two sections based on the locations of the sections they are
9934    linked to.  Used by elf_fixup_link_order.  */
9935 
9936 static int
9937 compare_link_order (const void * a, const void * b)
9938 {
9939   bfd_vma apos;
9940   bfd_vma bpos;
9941 
9942   apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
9943   bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
9944   if (apos < bpos)
9945     return -1;
9946   return apos > bpos;
9947 }
9948 
9949 
9950 /* Looks for sections with SHF_LINK_ORDER set.  Rearranges them into the same
9951    order as their linked sections.  Returns false if this could not be done
9952    because an output section includes both ordered and unordered
9953    sections.  Ideally we'd do this in the linker proper.  */
9954 
9955 static bfd_boolean
9956 elf_fixup_link_order (bfd *abfd, asection *o)
9957 {
9958   int seen_linkorder;
9959   int seen_other;
9960   int n;
9961   struct bfd_link_order *p;
9962   bfd *sub;
9963   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9964   unsigned elfsec;
9965   struct bfd_link_order **sections;
9966   asection *s, *other_sec, *linkorder_sec;
9967   bfd_vma offset;
9968 
9969   other_sec = NULL;
9970   linkorder_sec = NULL;
9971   seen_other = 0;
9972   seen_linkorder = 0;
9973   for (p = o->map_head.link_order; p != NULL; p = p->next)
9974     {
9975       if (p->type == bfd_indirect_link_order)
9976 	{
9977 	  s = p->u.indirect.section;
9978 	  sub = s->owner;
9979 	  if (bfd_get_flavour (sub) == bfd_target_elf_flavour
9980 	      && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
9981 	      && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
9982 	      && elfsec < elf_numsections (sub)
9983 	      && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
9984 	      && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
9985 	    {
9986 	      seen_linkorder++;
9987 	      linkorder_sec = s;
9988 	    }
9989 	  else
9990 	    {
9991 	      seen_other++;
9992 	      other_sec = s;
9993 	    }
9994 	}
9995       else
9996 	seen_other++;
9997 
9998       if (seen_other && seen_linkorder)
9999 	{
10000 	  if (other_sec && linkorder_sec)
10001 	    (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10002 				   o, linkorder_sec,
10003 				   linkorder_sec->owner, other_sec,
10004 				   other_sec->owner);
10005 	  else
10006 	    (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10007 				   o);
10008 	  bfd_set_error (bfd_error_bad_value);
10009 	  return FALSE;
10010 	}
10011     }
10012 
10013   if (!seen_linkorder)
10014     return TRUE;
10015 
10016   sections = (struct bfd_link_order **)
10017     bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10018   if (sections == NULL)
10019     return FALSE;
10020   seen_linkorder = 0;
10021 
10022   for (p = o->map_head.link_order; p != NULL; p = p->next)
10023     {
10024       sections[seen_linkorder++] = p;
10025     }
10026   /* Sort the input sections in the order of their linked section.  */
10027   qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10028 	 compare_link_order);
10029 
10030   /* Change the offsets of the sections.  */
10031   offset = 0;
10032   for (n = 0; n < seen_linkorder; n++)
10033     {
10034       s = sections[n]->u.indirect.section;
10035       offset &= ~(bfd_vma) 0 << s->alignment_power;
10036       s->output_offset = offset;
10037       sections[n]->offset = offset;
10038       /* FIXME: octets_per_byte.  */
10039       offset += sections[n]->size;
10040     }
10041 
10042   free (sections);
10043   return TRUE;
10044 }
10045 
10046 
10047 /* Do the final step of an ELF link.  */
10048 
10049 bfd_boolean
10050 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10051 {
10052   bfd_boolean dynamic;
10053   bfd_boolean emit_relocs;
10054   bfd *dynobj;
10055   struct elf_final_link_info finfo;
10056   register asection *o;
10057   register struct bfd_link_order *p;
10058   register bfd *sub;
10059   bfd_size_type max_contents_size;
10060   bfd_size_type max_external_reloc_size;
10061   bfd_size_type max_internal_reloc_count;
10062   bfd_size_type max_sym_count;
10063   bfd_size_type max_sym_shndx_count;
10064   file_ptr off;
10065   Elf_Internal_Sym elfsym;
10066   unsigned int i;
10067   Elf_Internal_Shdr *symtab_hdr;
10068   Elf_Internal_Shdr *symtab_shndx_hdr;
10069   Elf_Internal_Shdr *symstrtab_hdr;
10070   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10071   struct elf_outext_info eoinfo;
10072   bfd_boolean merged;
10073   size_t relativecount = 0;
10074   asection *reldyn = 0;
10075   bfd_size_type amt;
10076   asection *attr_section = NULL;
10077   bfd_vma attr_size = 0;
10078   const char *std_attrs_section;
10079 
10080   if (! is_elf_hash_table (info->hash))
10081     return FALSE;
10082 
10083   if (info->shared)
10084     abfd->flags |= DYNAMIC;
10085 
10086   dynamic = elf_hash_table (info)->dynamic_sections_created;
10087   dynobj = elf_hash_table (info)->dynobj;
10088 
10089   emit_relocs = (info->relocatable
10090 		 || info->emitrelocations);
10091 
10092   finfo.info = info;
10093   finfo.output_bfd = abfd;
10094   finfo.symstrtab = _bfd_elf_stringtab_init ();
10095   if (finfo.symstrtab == NULL)
10096     return FALSE;
10097 
10098   if (! dynamic)
10099     {
10100       finfo.dynsym_sec = NULL;
10101       finfo.hash_sec = NULL;
10102       finfo.symver_sec = NULL;
10103     }
10104   else
10105     {
10106       finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10107       finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10108       BFD_ASSERT (finfo.dynsym_sec != NULL);
10109       finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10110       /* Note that it is OK if symver_sec is NULL.  */
10111     }
10112 
10113   finfo.contents = NULL;
10114   finfo.external_relocs = NULL;
10115   finfo.internal_relocs = NULL;
10116   finfo.external_syms = NULL;
10117   finfo.locsym_shndx = NULL;
10118   finfo.internal_syms = NULL;
10119   finfo.indices = NULL;
10120   finfo.sections = NULL;
10121   finfo.symbuf = NULL;
10122   finfo.symshndxbuf = NULL;
10123   finfo.symbuf_count = 0;
10124   finfo.shndxbuf_size = 0;
10125 
10126   /* The object attributes have been merged.  Remove the input
10127      sections from the link, and set the contents of the output
10128      secton.  */
10129   std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10130   for (o = abfd->sections; o != NULL; o = o->next)
10131     {
10132       if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10133 	  || strcmp (o->name, ".gnu.attributes") == 0)
10134 	{
10135 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
10136 	    {
10137 	      asection *input_section;
10138 
10139 	      if (p->type != bfd_indirect_link_order)
10140 		continue;
10141 	      input_section = p->u.indirect.section;
10142 	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
10143 		 elf_link_input_bfd ignores this section.  */
10144 	      input_section->flags &= ~SEC_HAS_CONTENTS;
10145 	    }
10146 
10147 	  attr_size = bfd_elf_obj_attr_size (abfd);
10148 	  if (attr_size)
10149 	    {
10150 	      bfd_set_section_size (abfd, o, attr_size);
10151 	      attr_section = o;
10152 	      /* Skip this section later on.  */
10153 	      o->map_head.link_order = NULL;
10154 	    }
10155 	  else
10156 	    o->flags |= SEC_EXCLUDE;
10157 	}
10158     }
10159 
10160   /* Count up the number of relocations we will output for each output
10161      section, so that we know the sizes of the reloc sections.  We
10162      also figure out some maximum sizes.  */
10163   max_contents_size = 0;
10164   max_external_reloc_size = 0;
10165   max_internal_reloc_count = 0;
10166   max_sym_count = 0;
10167   max_sym_shndx_count = 0;
10168   merged = FALSE;
10169   for (o = abfd->sections; o != NULL; o = o->next)
10170     {
10171       struct bfd_elf_section_data *esdo = elf_section_data (o);
10172       o->reloc_count = 0;
10173 
10174       for (p = o->map_head.link_order; p != NULL; p = p->next)
10175 	{
10176 	  unsigned int reloc_count = 0;
10177 	  struct bfd_elf_section_data *esdi = NULL;
10178 	  unsigned int *rel_count1;
10179 
10180 	  if (p->type == bfd_section_reloc_link_order
10181 	      || p->type == bfd_symbol_reloc_link_order)
10182 	    reloc_count = 1;
10183 	  else if (p->type == bfd_indirect_link_order)
10184 	    {
10185 	      asection *sec;
10186 
10187 	      sec = p->u.indirect.section;
10188 	      esdi = elf_section_data (sec);
10189 
10190 	      /* Mark all sections which are to be included in the
10191 		 link.  This will normally be every section.  We need
10192 		 to do this so that we can identify any sections which
10193 		 the linker has decided to not include.  */
10194 	      sec->linker_mark = TRUE;
10195 
10196 	      if (sec->flags & SEC_MERGE)
10197 		merged = TRUE;
10198 
10199 	      if (info->relocatable || info->emitrelocations)
10200 		reloc_count = sec->reloc_count;
10201 	      else if (bed->elf_backend_count_relocs)
10202 		reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10203 
10204 	      if (sec->rawsize > max_contents_size)
10205 		max_contents_size = sec->rawsize;
10206 	      if (sec->size > max_contents_size)
10207 		max_contents_size = sec->size;
10208 
10209 	      /* We are interested in just local symbols, not all
10210 		 symbols.  */
10211 	      if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10212 		  && (sec->owner->flags & DYNAMIC) == 0)
10213 		{
10214 		  size_t sym_count;
10215 
10216 		  if (elf_bad_symtab (sec->owner))
10217 		    sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10218 				 / bed->s->sizeof_sym);
10219 		  else
10220 		    sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10221 
10222 		  if (sym_count > max_sym_count)
10223 		    max_sym_count = sym_count;
10224 
10225 		  if (sym_count > max_sym_shndx_count
10226 		      && elf_symtab_shndx (sec->owner) != 0)
10227 		    max_sym_shndx_count = sym_count;
10228 
10229 		  if ((sec->flags & SEC_RELOC) != 0)
10230 		    {
10231 		      size_t ext_size;
10232 
10233 		      ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10234 		      if (ext_size > max_external_reloc_size)
10235 			max_external_reloc_size = ext_size;
10236 		      if (sec->reloc_count > max_internal_reloc_count)
10237 			max_internal_reloc_count = sec->reloc_count;
10238 		    }
10239 		}
10240 	    }
10241 
10242 	  if (reloc_count == 0)
10243 	    continue;
10244 
10245 	  o->reloc_count += reloc_count;
10246 
10247 	  /* MIPS may have a mix of REL and RELA relocs on sections.
10248 	     To support this curious ABI we keep reloc counts in
10249 	     elf_section_data too.  We must be careful to add the
10250 	     relocations from the input section to the right output
10251 	     count.  FIXME: Get rid of one count.  We have
10252 	     o->reloc_count == esdo->rel_count + esdo->rel_count2.  */
10253 	  rel_count1 = &esdo->rel_count;
10254 	  if (esdi != NULL)
10255 	    {
10256 	      bfd_boolean same_size;
10257 	      bfd_size_type entsize1;
10258 
10259 	      entsize1 = esdi->rel_hdr.sh_entsize;
10260 	      /* PR 9827: If the header size has not been set yet then
10261 		 assume that it will match the output section's reloc type.  */
10262 	      if (entsize1 == 0)
10263 		entsize1 = o->use_rela_p ? bed->s->sizeof_rela : bed->s->sizeof_rel;
10264 	      else
10265 		BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10266 			    || entsize1 == bed->s->sizeof_rela);
10267 	      same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10268 
10269 	      if (!same_size)
10270 		rel_count1 = &esdo->rel_count2;
10271 
10272 	      if (esdi->rel_hdr2 != NULL)
10273 		{
10274 		  bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10275 		  unsigned int alt_count;
10276 		  unsigned int *rel_count2;
10277 
10278 		  BFD_ASSERT (entsize2 != entsize1
10279 			      && (entsize2 == bed->s->sizeof_rel
10280 				  || entsize2 == bed->s->sizeof_rela));
10281 
10282 		  rel_count2 = &esdo->rel_count2;
10283 		  if (!same_size)
10284 		    rel_count2 = &esdo->rel_count;
10285 
10286 		  /* The following is probably too simplistic if the
10287 		     backend counts output relocs unusually.  */
10288 		  BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10289 		  alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10290 		  *rel_count2 += alt_count;
10291 		  reloc_count -= alt_count;
10292 		}
10293 	    }
10294 	  *rel_count1 += reloc_count;
10295 	}
10296 
10297       if (o->reloc_count > 0)
10298 	o->flags |= SEC_RELOC;
10299       else
10300 	{
10301 	  /* Explicitly clear the SEC_RELOC flag.  The linker tends to
10302 	     set it (this is probably a bug) and if it is set
10303 	     assign_section_numbers will create a reloc section.  */
10304 	  o->flags &=~ SEC_RELOC;
10305 	}
10306 
10307       /* If the SEC_ALLOC flag is not set, force the section VMA to
10308 	 zero.  This is done in elf_fake_sections as well, but forcing
10309 	 the VMA to 0 here will ensure that relocs against these
10310 	 sections are handled correctly.  */
10311       if ((o->flags & SEC_ALLOC) == 0
10312 	  && ! o->user_set_vma)
10313 	o->vma = 0;
10314     }
10315 
10316   if (! info->relocatable && merged)
10317     elf_link_hash_traverse (elf_hash_table (info),
10318 			    _bfd_elf_link_sec_merge_syms, abfd);
10319 
10320   /* Figure out the file positions for everything but the symbol table
10321      and the relocs.  We set symcount to force assign_section_numbers
10322      to create a symbol table.  */
10323   bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10324   BFD_ASSERT (! abfd->output_has_begun);
10325   if (! _bfd_elf_compute_section_file_positions (abfd, info))
10326     goto error_return;
10327 
10328   /* Set sizes, and assign file positions for reloc sections.  */
10329   for (o = abfd->sections; o != NULL; o = o->next)
10330     {
10331       if ((o->flags & SEC_RELOC) != 0)
10332 	{
10333 	  if (!(_bfd_elf_link_size_reloc_section
10334 		(abfd, &elf_section_data (o)->rel_hdr, o)))
10335 	    goto error_return;
10336 
10337 	  if (elf_section_data (o)->rel_hdr2
10338 	      && !(_bfd_elf_link_size_reloc_section
10339 		   (abfd, elf_section_data (o)->rel_hdr2, o)))
10340 	    goto error_return;
10341 	}
10342 
10343       /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10344 	 to count upwards while actually outputting the relocations.  */
10345       elf_section_data (o)->rel_count = 0;
10346       elf_section_data (o)->rel_count2 = 0;
10347     }
10348 
10349   _bfd_elf_assign_file_positions_for_relocs (abfd);
10350 
10351   /* We have now assigned file positions for all the sections except
10352      .symtab and .strtab.  We start the .symtab section at the current
10353      file position, and write directly to it.  We build the .strtab
10354      section in memory.  */
10355   bfd_get_symcount (abfd) = 0;
10356   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10357   /* sh_name is set in prep_headers.  */
10358   symtab_hdr->sh_type = SHT_SYMTAB;
10359   /* sh_flags, sh_addr and sh_size all start off zero.  */
10360   symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10361   /* sh_link is set in assign_section_numbers.  */
10362   /* sh_info is set below.  */
10363   /* sh_offset is set just below.  */
10364   symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10365 
10366   off = elf_tdata (abfd)->next_file_pos;
10367   off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10368 
10369   /* Note that at this point elf_tdata (abfd)->next_file_pos is
10370      incorrect.  We do not yet know the size of the .symtab section.
10371      We correct next_file_pos below, after we do know the size.  */
10372 
10373   /* Allocate a buffer to hold swapped out symbols.  This is to avoid
10374      continuously seeking to the right position in the file.  */
10375   if (! info->keep_memory || max_sym_count < 20)
10376     finfo.symbuf_size = 20;
10377   else
10378     finfo.symbuf_size = max_sym_count;
10379   amt = finfo.symbuf_size;
10380   amt *= bed->s->sizeof_sym;
10381   finfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10382   if (finfo.symbuf == NULL)
10383     goto error_return;
10384   if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10385     {
10386       /* Wild guess at number of output symbols.  realloc'd as needed.  */
10387       amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10388       finfo.shndxbuf_size = amt;
10389       amt *= sizeof (Elf_External_Sym_Shndx);
10390       finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10391       if (finfo.symshndxbuf == NULL)
10392 	goto error_return;
10393     }
10394 
10395   /* Start writing out the symbol table.  The first symbol is always a
10396      dummy symbol.  */
10397   if (info->strip != strip_all
10398       || emit_relocs)
10399     {
10400       elfsym.st_value = 0;
10401       elfsym.st_size = 0;
10402       elfsym.st_info = 0;
10403       elfsym.st_other = 0;
10404       elfsym.st_shndx = SHN_UNDEF;
10405       if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10406 			       NULL) != 1)
10407 	goto error_return;
10408     }
10409 
10410   /* Output a symbol for each section.  We output these even if we are
10411      discarding local symbols, since they are used for relocs.  These
10412      symbols have no names.  We store the index of each one in the
10413      index field of the section, so that we can find it again when
10414      outputting relocs.  */
10415   if (info->strip != strip_all
10416       || emit_relocs)
10417     {
10418       elfsym.st_size = 0;
10419       elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10420       elfsym.st_other = 0;
10421       elfsym.st_value = 0;
10422       for (i = 1; i < elf_numsections (abfd); i++)
10423 	{
10424 	  o = bfd_section_from_elf_index (abfd, i);
10425 	  if (o != NULL)
10426 	    {
10427 	      o->target_index = bfd_get_symcount (abfd);
10428 	      elfsym.st_shndx = i;
10429 	      if (!info->relocatable)
10430 		elfsym.st_value = o->vma;
10431 	      if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10432 		goto error_return;
10433 	    }
10434 	}
10435     }
10436 
10437   /* Allocate some memory to hold information read in from the input
10438      files.  */
10439   if (max_contents_size != 0)
10440     {
10441       finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10442       if (finfo.contents == NULL)
10443 	goto error_return;
10444     }
10445 
10446   if (max_external_reloc_size != 0)
10447     {
10448       finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10449       if (finfo.external_relocs == NULL)
10450 	goto error_return;
10451     }
10452 
10453   if (max_internal_reloc_count != 0)
10454     {
10455       amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10456       amt *= sizeof (Elf_Internal_Rela);
10457       finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10458       if (finfo.internal_relocs == NULL)
10459 	goto error_return;
10460     }
10461 
10462   if (max_sym_count != 0)
10463     {
10464       amt = max_sym_count * bed->s->sizeof_sym;
10465       finfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10466       if (finfo.external_syms == NULL)
10467 	goto error_return;
10468 
10469       amt = max_sym_count * sizeof (Elf_Internal_Sym);
10470       finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10471       if (finfo.internal_syms == NULL)
10472 	goto error_return;
10473 
10474       amt = max_sym_count * sizeof (long);
10475       finfo.indices = (long int *) bfd_malloc (amt);
10476       if (finfo.indices == NULL)
10477 	goto error_return;
10478 
10479       amt = max_sym_count * sizeof (asection *);
10480       finfo.sections = (asection **) bfd_malloc (amt);
10481       if (finfo.sections == NULL)
10482 	goto error_return;
10483     }
10484 
10485   if (max_sym_shndx_count != 0)
10486     {
10487       amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10488       finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10489       if (finfo.locsym_shndx == NULL)
10490 	goto error_return;
10491     }
10492 
10493   if (elf_hash_table (info)->tls_sec)
10494     {
10495       bfd_vma base, end = 0;
10496       asection *sec;
10497 
10498       for (sec = elf_hash_table (info)->tls_sec;
10499 	   sec && (sec->flags & SEC_THREAD_LOCAL);
10500 	   sec = sec->next)
10501 	{
10502 	  bfd_size_type size = sec->size;
10503 
10504 	  if (size == 0
10505 	      && (sec->flags & SEC_HAS_CONTENTS) == 0)
10506 	    {
10507 	      struct bfd_link_order *o = sec->map_tail.link_order;
10508 	      if (o != NULL)
10509 		size = o->offset + o->size;
10510 	    }
10511 	  end = sec->vma + size;
10512 	}
10513       base = elf_hash_table (info)->tls_sec->vma;
10514       end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10515       elf_hash_table (info)->tls_size = end - base;
10516     }
10517 
10518   /* Reorder SHF_LINK_ORDER sections.  */
10519   for (o = abfd->sections; o != NULL; o = o->next)
10520     {
10521       if (!elf_fixup_link_order (abfd, o))
10522 	return FALSE;
10523     }
10524 
10525   /* Since ELF permits relocations to be against local symbols, we
10526      must have the local symbols available when we do the relocations.
10527      Since we would rather only read the local symbols once, and we
10528      would rather not keep them in memory, we handle all the
10529      relocations for a single input file at the same time.
10530 
10531      Unfortunately, there is no way to know the total number of local
10532      symbols until we have seen all of them, and the local symbol
10533      indices precede the global symbol indices.  This means that when
10534      we are generating relocatable output, and we see a reloc against
10535      a global symbol, we can not know the symbol index until we have
10536      finished examining all the local symbols to see which ones we are
10537      going to output.  To deal with this, we keep the relocations in
10538      memory, and don't output them until the end of the link.  This is
10539      an unfortunate waste of memory, but I don't see a good way around
10540      it.  Fortunately, it only happens when performing a relocatable
10541      link, which is not the common case.  FIXME: If keep_memory is set
10542      we could write the relocs out and then read them again; I don't
10543      know how bad the memory loss will be.  */
10544 
10545   for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10546     sub->output_has_begun = FALSE;
10547   for (o = abfd->sections; o != NULL; o = o->next)
10548     {
10549       for (p = o->map_head.link_order; p != NULL; p = p->next)
10550 	{
10551 	  if (p->type == bfd_indirect_link_order
10552 	      && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10553 		  == bfd_target_elf_flavour)
10554 	      && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10555 	    {
10556 	      if (! sub->output_has_begun)
10557 		{
10558 		  if (! elf_link_input_bfd (&finfo, sub))
10559 		    goto error_return;
10560 		  sub->output_has_begun = TRUE;
10561 		}
10562 	    }
10563 	  else if (p->type == bfd_section_reloc_link_order
10564 		   || p->type == bfd_symbol_reloc_link_order)
10565 	    {
10566 	      if (! elf_reloc_link_order (abfd, info, o, p))
10567 		goto error_return;
10568 	    }
10569 	  else
10570 	    {
10571 	      if (! _bfd_default_link_order (abfd, info, o, p))
10572 		goto error_return;
10573 	    }
10574 	}
10575     }
10576 
10577   /* Free symbol buffer if needed.  */
10578   if (!info->reduce_memory_overheads)
10579     {
10580       for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10581 	if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10582 	    && elf_tdata (sub)->symbuf)
10583 	  {
10584 	    free (elf_tdata (sub)->symbuf);
10585 	    elf_tdata (sub)->symbuf = NULL;
10586 	  }
10587     }
10588 
10589   /* Output any global symbols that got converted to local in a
10590      version script or due to symbol visibility.  We do this in a
10591      separate step since ELF requires all local symbols to appear
10592      prior to any global symbols.  FIXME: We should only do this if
10593      some global symbols were, in fact, converted to become local.
10594      FIXME: Will this work correctly with the Irix 5 linker?  */
10595   eoinfo.failed = FALSE;
10596   eoinfo.finfo = &finfo;
10597   eoinfo.localsyms = TRUE;
10598   elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10599 			  &eoinfo);
10600   if (eoinfo.failed)
10601     return FALSE;
10602 
10603   /* If backend needs to output some local symbols not present in the hash
10604      table, do it now.  */
10605   if (bed->elf_backend_output_arch_local_syms)
10606     {
10607       typedef int (*out_sym_func)
10608 	(void *, const char *, Elf_Internal_Sym *, asection *,
10609 	 struct elf_link_hash_entry *);
10610 
10611       if (! ((*bed->elf_backend_output_arch_local_syms)
10612 	     (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10613 	return FALSE;
10614     }
10615 
10616   /* That wrote out all the local symbols.  Finish up the symbol table
10617      with the global symbols. Even if we want to strip everything we
10618      can, we still need to deal with those global symbols that got
10619      converted to local in a version script.  */
10620 
10621   /* The sh_info field records the index of the first non local symbol.  */
10622   symtab_hdr->sh_info = bfd_get_symcount (abfd);
10623 
10624   if (dynamic
10625       && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10626     {
10627       Elf_Internal_Sym sym;
10628       bfd_byte *dynsym = finfo.dynsym_sec->contents;
10629       long last_local = 0;
10630 
10631       /* Write out the section symbols for the output sections.  */
10632       if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10633 	{
10634 	  asection *s;
10635 
10636 	  sym.st_size = 0;
10637 	  sym.st_name = 0;
10638 	  sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10639 	  sym.st_other = 0;
10640 
10641 	  for (s = abfd->sections; s != NULL; s = s->next)
10642 	    {
10643 	      int indx;
10644 	      bfd_byte *dest;
10645 	      long dynindx;
10646 
10647 	      dynindx = elf_section_data (s)->dynindx;
10648 	      if (dynindx <= 0)
10649 		continue;
10650 	      indx = elf_section_data (s)->this_idx;
10651 	      BFD_ASSERT (indx > 0);
10652 	      sym.st_shndx = indx;
10653 	      if (! check_dynsym (abfd, &sym))
10654 		return FALSE;
10655 	      sym.st_value = s->vma;
10656 	      dest = dynsym + dynindx * bed->s->sizeof_sym;
10657 	      if (last_local < dynindx)
10658 		last_local = dynindx;
10659 	      bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10660 	    }
10661 	}
10662 
10663       /* Write out the local dynsyms.  */
10664       if (elf_hash_table (info)->dynlocal)
10665 	{
10666 	  struct elf_link_local_dynamic_entry *e;
10667 	  for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10668 	    {
10669 	      asection *s;
10670 	      bfd_byte *dest;
10671 
10672 	      sym.st_size = e->isym.st_size;
10673 	      sym.st_other = e->isym.st_other;
10674 
10675 	      /* Copy the internal symbol as is.
10676 		 Note that we saved a word of storage and overwrote
10677 		 the original st_name with the dynstr_index.  */
10678 	      sym = e->isym;
10679 
10680 	      s = bfd_section_from_elf_index (e->input_bfd,
10681 					      e->isym.st_shndx);
10682 	      if (s != NULL)
10683 		{
10684 		  sym.st_shndx =
10685 		    elf_section_data (s->output_section)->this_idx;
10686 		  if (! check_dynsym (abfd, &sym))
10687 		    return FALSE;
10688 		  sym.st_value = (s->output_section->vma
10689 				  + s->output_offset
10690 				  + e->isym.st_value);
10691 		}
10692 
10693 	      if (last_local < e->dynindx)
10694 		last_local = e->dynindx;
10695 
10696 	      dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10697 	      bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10698 	    }
10699 	}
10700 
10701       elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10702 	last_local + 1;
10703     }
10704 
10705   /* We get the global symbols from the hash table.  */
10706   eoinfo.failed = FALSE;
10707   eoinfo.localsyms = FALSE;
10708   eoinfo.finfo = &finfo;
10709   elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10710 			  &eoinfo);
10711   if (eoinfo.failed)
10712     return FALSE;
10713 
10714   /* If backend needs to output some symbols not present in the hash
10715      table, do it now.  */
10716   if (bed->elf_backend_output_arch_syms)
10717     {
10718       typedef int (*out_sym_func)
10719 	(void *, const char *, Elf_Internal_Sym *, asection *,
10720 	 struct elf_link_hash_entry *);
10721 
10722       if (! ((*bed->elf_backend_output_arch_syms)
10723 	     (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10724 	return FALSE;
10725     }
10726 
10727   /* Flush all symbols to the file.  */
10728   if (! elf_link_flush_output_syms (&finfo, bed))
10729     return FALSE;
10730 
10731   /* Now we know the size of the symtab section.  */
10732   off += symtab_hdr->sh_size;
10733 
10734   symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10735   if (symtab_shndx_hdr->sh_name != 0)
10736     {
10737       symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10738       symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10739       symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10740       amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10741       symtab_shndx_hdr->sh_size = amt;
10742 
10743       off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10744 						       off, TRUE);
10745 
10746       if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10747 	  || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10748 	return FALSE;
10749     }
10750 
10751 
10752   /* Finish up and write out the symbol string table (.strtab)
10753      section.  */
10754   symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10755   /* sh_name was set in prep_headers.  */
10756   symstrtab_hdr->sh_type = SHT_STRTAB;
10757   symstrtab_hdr->sh_flags = 0;
10758   symstrtab_hdr->sh_addr = 0;
10759   symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10760   symstrtab_hdr->sh_entsize = 0;
10761   symstrtab_hdr->sh_link = 0;
10762   symstrtab_hdr->sh_info = 0;
10763   /* sh_offset is set just below.  */
10764   symstrtab_hdr->sh_addralign = 1;
10765 
10766   off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10767   elf_tdata (abfd)->next_file_pos = off;
10768 
10769   if (bfd_get_symcount (abfd) > 0)
10770     {
10771       if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10772 	  || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10773 	return FALSE;
10774     }
10775 
10776   /* Adjust the relocs to have the correct symbol indices.  */
10777   for (o = abfd->sections; o != NULL; o = o->next)
10778     {
10779       if ((o->flags & SEC_RELOC) == 0)
10780 	continue;
10781 
10782       elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10783 			      elf_section_data (o)->rel_count,
10784 			      elf_section_data (o)->rel_hashes);
10785       if (elf_section_data (o)->rel_hdr2 != NULL)
10786 	elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10787 				elf_section_data (o)->rel_count2,
10788 				(elf_section_data (o)->rel_hashes
10789 				 + elf_section_data (o)->rel_count));
10790 
10791       /* Set the reloc_count field to 0 to prevent write_relocs from
10792 	 trying to swap the relocs out itself.  */
10793       o->reloc_count = 0;
10794     }
10795 
10796   if (dynamic && info->combreloc && dynobj != NULL)
10797     relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10798 
10799   /* If we are linking against a dynamic object, or generating a
10800      shared library, finish up the dynamic linking information.  */
10801   if (dynamic)
10802     {
10803       bfd_byte *dyncon, *dynconend;
10804 
10805       /* Fix up .dynamic entries.  */
10806       o = bfd_get_section_by_name (dynobj, ".dynamic");
10807       BFD_ASSERT (o != NULL);
10808 
10809       dyncon = o->contents;
10810       dynconend = o->contents + o->size;
10811       for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10812 	{
10813 	  Elf_Internal_Dyn dyn;
10814 	  const char *name;
10815 	  unsigned int type;
10816 
10817 	  bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10818 
10819 	  switch (dyn.d_tag)
10820 	    {
10821 	    default:
10822 	      continue;
10823 	    case DT_NULL:
10824 	      if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10825 		{
10826 		  switch (elf_section_data (reldyn)->this_hdr.sh_type)
10827 		    {
10828 		    case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10829 		    case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10830 		    default: continue;
10831 		    }
10832 		  dyn.d_un.d_val = relativecount;
10833 		  relativecount = 0;
10834 		  break;
10835 		}
10836 	      continue;
10837 
10838 	    case DT_INIT:
10839 	      name = info->init_function;
10840 	      goto get_sym;
10841 	    case DT_FINI:
10842 	      name = info->fini_function;
10843 	    get_sym:
10844 	      {
10845 		struct elf_link_hash_entry *h;
10846 
10847 		h = elf_link_hash_lookup (elf_hash_table (info), name,
10848 					  FALSE, FALSE, TRUE);
10849 		if (h != NULL
10850 		    && (h->root.type == bfd_link_hash_defined
10851 			|| h->root.type == bfd_link_hash_defweak))
10852 		  {
10853 		    dyn.d_un.d_ptr = h->root.u.def.value;
10854 		    o = h->root.u.def.section;
10855 		    if (o->output_section != NULL)
10856 		      dyn.d_un.d_ptr += (o->output_section->vma
10857 					 + o->output_offset);
10858 		    else
10859 		      {
10860 			/* The symbol is imported from another shared
10861 			   library and does not apply to this one.  */
10862 			dyn.d_un.d_ptr = 0;
10863 		      }
10864 		    break;
10865 		  }
10866 	      }
10867 	      continue;
10868 
10869 	    case DT_PREINIT_ARRAYSZ:
10870 	      name = ".preinit_array";
10871 	      goto get_size;
10872 	    case DT_INIT_ARRAYSZ:
10873 	      name = ".init_array";
10874 	      goto get_size;
10875 	    case DT_FINI_ARRAYSZ:
10876 	      name = ".fini_array";
10877 	    get_size:
10878 	      o = bfd_get_section_by_name (abfd, name);
10879 	      if (o == NULL)
10880 		{
10881 		  (*_bfd_error_handler)
10882 		    (_("%B: could not find output section %s"), abfd, name);
10883 		  goto error_return;
10884 		}
10885 	      if (o->size == 0)
10886 		(*_bfd_error_handler)
10887 		  (_("warning: %s section has zero size"), name);
10888 	      dyn.d_un.d_val = o->size;
10889 	      break;
10890 
10891 	    case DT_PREINIT_ARRAY:
10892 	      name = ".preinit_array";
10893 	      goto get_vma;
10894 	    case DT_INIT_ARRAY:
10895 	      name = ".init_array";
10896 	      goto get_vma;
10897 	    case DT_FINI_ARRAY:
10898 	      name = ".fini_array";
10899 	      goto get_vma;
10900 
10901 	    case DT_HASH:
10902 	      name = ".hash";
10903 	      goto get_vma;
10904 	    case DT_GNU_HASH:
10905 	      name = ".gnu.hash";
10906 	      goto get_vma;
10907 	    case DT_STRTAB:
10908 	      name = ".dynstr";
10909 	      goto get_vma;
10910 	    case DT_SYMTAB:
10911 	      name = ".dynsym";
10912 	      goto get_vma;
10913 	    case DT_VERDEF:
10914 	      name = ".gnu.version_d";
10915 	      goto get_vma;
10916 	    case DT_VERNEED:
10917 	      name = ".gnu.version_r";
10918 	      goto get_vma;
10919 	    case DT_VERSYM:
10920 	      name = ".gnu.version";
10921 	    get_vma:
10922 	      o = bfd_get_section_by_name (abfd, name);
10923 	      if (o == NULL)
10924 		{
10925 		  (*_bfd_error_handler)
10926 		    (_("%B: could not find output section %s"), abfd, name);
10927 		  goto error_return;
10928 		}
10929 	      dyn.d_un.d_ptr = o->vma;
10930 	      break;
10931 
10932 	    case DT_REL:
10933 	    case DT_RELA:
10934 	    case DT_RELSZ:
10935 	    case DT_RELASZ:
10936 	      if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10937 		type = SHT_REL;
10938 	      else
10939 		type = SHT_RELA;
10940 	      dyn.d_un.d_val = 0;
10941 	      dyn.d_un.d_ptr = 0;
10942 	      for (i = 1; i < elf_numsections (abfd); i++)
10943 		{
10944 		  Elf_Internal_Shdr *hdr;
10945 
10946 		  hdr = elf_elfsections (abfd)[i];
10947 		  if (hdr->sh_type == type
10948 		      && (hdr->sh_flags & SHF_ALLOC) != 0)
10949 		    {
10950 		      if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
10951 			dyn.d_un.d_val += hdr->sh_size;
10952 		      else
10953 			{
10954 			  if (dyn.d_un.d_ptr == 0
10955 			      || hdr->sh_addr < dyn.d_un.d_ptr)
10956 			    dyn.d_un.d_ptr = hdr->sh_addr;
10957 			}
10958 		    }
10959 		}
10960 	      break;
10961 	    }
10962 	  bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
10963 	}
10964     }
10965 
10966   /* If we have created any dynamic sections, then output them.  */
10967   if (dynobj != NULL)
10968     {
10969       if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
10970 	goto error_return;
10971 
10972       /* Check for DT_TEXTREL (late, in case the backend removes it).  */
10973       if (info->warn_shared_textrel && info->shared)
10974 	{
10975 	  bfd_byte *dyncon, *dynconend;
10976 
10977 	  /* Fix up .dynamic entries.  */
10978 	  o = bfd_get_section_by_name (dynobj, ".dynamic");
10979 	  BFD_ASSERT (o != NULL);
10980 
10981 	  dyncon = o->contents;
10982 	  dynconend = o->contents + o->size;
10983 	  for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10984 	    {
10985 	      Elf_Internal_Dyn dyn;
10986 
10987 	      bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10988 
10989 	      if (dyn.d_tag == DT_TEXTREL)
10990 		{
10991 		 info->callbacks->einfo
10992 		    (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
10993 		  break;
10994 		}
10995 	    }
10996 	}
10997 
10998       for (o = dynobj->sections; o != NULL; o = o->next)
10999 	{
11000 	  if ((o->flags & SEC_HAS_CONTENTS) == 0
11001 	      || o->size == 0
11002 	      || o->output_section == bfd_abs_section_ptr)
11003 	    continue;
11004 	  if ((o->flags & SEC_LINKER_CREATED) == 0)
11005 	    {
11006 	      /* At this point, we are only interested in sections
11007 		 created by _bfd_elf_link_create_dynamic_sections.  */
11008 	      continue;
11009 	    }
11010 	  if (elf_hash_table (info)->stab_info.stabstr == o)
11011 	    continue;
11012 	  if (elf_hash_table (info)->eh_info.hdr_sec == o)
11013 	    continue;
11014 	  if ((elf_section_data (o->output_section)->this_hdr.sh_type
11015 	       != SHT_STRTAB)
11016 	      || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
11017 	    {
11018 	      /* FIXME: octets_per_byte.  */
11019 	      if (! bfd_set_section_contents (abfd, o->output_section,
11020 					      o->contents,
11021 					      (file_ptr) o->output_offset,
11022 					      o->size))
11023 		goto error_return;
11024 	    }
11025 	  else
11026 	    {
11027 	      /* The contents of the .dynstr section are actually in a
11028 		 stringtab.  */
11029 	      off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11030 	      if (bfd_seek (abfd, off, SEEK_SET) != 0
11031 		  || ! _bfd_elf_strtab_emit (abfd,
11032 					     elf_hash_table (info)->dynstr))
11033 		goto error_return;
11034 	    }
11035 	}
11036     }
11037 
11038   if (info->relocatable)
11039     {
11040       bfd_boolean failed = FALSE;
11041 
11042       bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11043       if (failed)
11044 	goto error_return;
11045     }
11046 
11047   /* If we have optimized stabs strings, output them.  */
11048   if (elf_hash_table (info)->stab_info.stabstr != NULL)
11049     {
11050       if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11051 	goto error_return;
11052     }
11053 
11054   if (info->eh_frame_hdr)
11055     {
11056       if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11057 	goto error_return;
11058     }
11059 
11060   if (finfo.symstrtab != NULL)
11061     _bfd_stringtab_free (finfo.symstrtab);
11062   if (finfo.contents != NULL)
11063     free (finfo.contents);
11064   if (finfo.external_relocs != NULL)
11065     free (finfo.external_relocs);
11066   if (finfo.internal_relocs != NULL)
11067     free (finfo.internal_relocs);
11068   if (finfo.external_syms != NULL)
11069     free (finfo.external_syms);
11070   if (finfo.locsym_shndx != NULL)
11071     free (finfo.locsym_shndx);
11072   if (finfo.internal_syms != NULL)
11073     free (finfo.internal_syms);
11074   if (finfo.indices != NULL)
11075     free (finfo.indices);
11076   if (finfo.sections != NULL)
11077     free (finfo.sections);
11078   if (finfo.symbuf != NULL)
11079     free (finfo.symbuf);
11080   if (finfo.symshndxbuf != NULL)
11081     free (finfo.symshndxbuf);
11082   for (o = abfd->sections; o != NULL; o = o->next)
11083     {
11084       if ((o->flags & SEC_RELOC) != 0
11085 	  && elf_section_data (o)->rel_hashes != NULL)
11086 	free (elf_section_data (o)->rel_hashes);
11087     }
11088 
11089   elf_tdata (abfd)->linker = TRUE;
11090 
11091   if (attr_section)
11092     {
11093       bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11094       if (contents == NULL)
11095 	return FALSE;	/* Bail out and fail.  */
11096       bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11097       bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11098       free (contents);
11099     }
11100 
11101   return TRUE;
11102 
11103  error_return:
11104   if (finfo.symstrtab != NULL)
11105     _bfd_stringtab_free (finfo.symstrtab);
11106   if (finfo.contents != NULL)
11107     free (finfo.contents);
11108   if (finfo.external_relocs != NULL)
11109     free (finfo.external_relocs);
11110   if (finfo.internal_relocs != NULL)
11111     free (finfo.internal_relocs);
11112   if (finfo.external_syms != NULL)
11113     free (finfo.external_syms);
11114   if (finfo.locsym_shndx != NULL)
11115     free (finfo.locsym_shndx);
11116   if (finfo.internal_syms != NULL)
11117     free (finfo.internal_syms);
11118   if (finfo.indices != NULL)
11119     free (finfo.indices);
11120   if (finfo.sections != NULL)
11121     free (finfo.sections);
11122   if (finfo.symbuf != NULL)
11123     free (finfo.symbuf);
11124   if (finfo.symshndxbuf != NULL)
11125     free (finfo.symshndxbuf);
11126   for (o = abfd->sections; o != NULL; o = o->next)
11127     {
11128       if ((o->flags & SEC_RELOC) != 0
11129 	  && elf_section_data (o)->rel_hashes != NULL)
11130 	free (elf_section_data (o)->rel_hashes);
11131     }
11132 
11133   return FALSE;
11134 }
11135 
11136 /* Initialize COOKIE for input bfd ABFD.  */
11137 
11138 static bfd_boolean
11139 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11140 		   struct bfd_link_info *info, bfd *abfd)
11141 {
11142   Elf_Internal_Shdr *symtab_hdr;
11143   const struct elf_backend_data *bed;
11144 
11145   bed = get_elf_backend_data (abfd);
11146   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11147 
11148   cookie->abfd = abfd;
11149   cookie->sym_hashes = elf_sym_hashes (abfd);
11150   cookie->bad_symtab = elf_bad_symtab (abfd);
11151   if (cookie->bad_symtab)
11152     {
11153       cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11154       cookie->extsymoff = 0;
11155     }
11156   else
11157     {
11158       cookie->locsymcount = symtab_hdr->sh_info;
11159       cookie->extsymoff = symtab_hdr->sh_info;
11160     }
11161 
11162   if (bed->s->arch_size == 32)
11163     cookie->r_sym_shift = 8;
11164   else
11165     cookie->r_sym_shift = 32;
11166 
11167   cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11168   if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11169     {
11170       cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11171 					      cookie->locsymcount, 0,
11172 					      NULL, NULL, NULL);
11173       if (cookie->locsyms == NULL)
11174 	{
11175 	  info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11176 	  return FALSE;
11177 	}
11178       if (info->keep_memory)
11179 	symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11180     }
11181   return TRUE;
11182 }
11183 
11184 /* Free the memory allocated by init_reloc_cookie, if appropriate.  */
11185 
11186 static void
11187 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11188 {
11189   Elf_Internal_Shdr *symtab_hdr;
11190 
11191   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11192   if (cookie->locsyms != NULL
11193       && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11194     free (cookie->locsyms);
11195 }
11196 
11197 /* Initialize the relocation information in COOKIE for input section SEC
11198    of input bfd ABFD.  */
11199 
11200 static bfd_boolean
11201 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11202 			struct bfd_link_info *info, bfd *abfd,
11203 			asection *sec)
11204 {
11205   const struct elf_backend_data *bed;
11206 
11207   if (sec->reloc_count == 0)
11208     {
11209       cookie->rels = NULL;
11210       cookie->relend = NULL;
11211     }
11212   else
11213     {
11214       bed = get_elf_backend_data (abfd);
11215 
11216       cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11217 						info->keep_memory);
11218       if (cookie->rels == NULL)
11219 	return FALSE;
11220       cookie->rel = cookie->rels;
11221       cookie->relend = (cookie->rels
11222 			+ sec->reloc_count * bed->s->int_rels_per_ext_rel);
11223     }
11224   cookie->rel = cookie->rels;
11225   return TRUE;
11226 }
11227 
11228 /* Free the memory allocated by init_reloc_cookie_rels,
11229    if appropriate.  */
11230 
11231 static void
11232 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11233 			asection *sec)
11234 {
11235   if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11236     free (cookie->rels);
11237 }
11238 
11239 /* Initialize the whole of COOKIE for input section SEC.  */
11240 
11241 static bfd_boolean
11242 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11243 			       struct bfd_link_info *info,
11244 			       asection *sec)
11245 {
11246   if (!init_reloc_cookie (cookie, info, sec->owner))
11247     goto error1;
11248   if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11249     goto error2;
11250   return TRUE;
11251 
11252  error2:
11253   fini_reloc_cookie (cookie, sec->owner);
11254  error1:
11255   return FALSE;
11256 }
11257 
11258 /* Free the memory allocated by init_reloc_cookie_for_section,
11259    if appropriate.  */
11260 
11261 static void
11262 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11263 			       asection *sec)
11264 {
11265   fini_reloc_cookie_rels (cookie, sec);
11266   fini_reloc_cookie (cookie, sec->owner);
11267 }
11268 
11269 /* Garbage collect unused sections.  */
11270 
11271 /* Default gc_mark_hook.  */
11272 
11273 asection *
11274 _bfd_elf_gc_mark_hook (asection *sec,
11275 		       struct bfd_link_info *info ATTRIBUTE_UNUSED,
11276 		       Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11277 		       struct elf_link_hash_entry *h,
11278 		       Elf_Internal_Sym *sym)
11279 {
11280   if (h != NULL)
11281     {
11282       switch (h->root.type)
11283 	{
11284 	case bfd_link_hash_defined:
11285 	case bfd_link_hash_defweak:
11286 	  return h->root.u.def.section;
11287 
11288 	case bfd_link_hash_common:
11289 	  return h->root.u.c.p->section;
11290 
11291 	default:
11292 	  break;
11293 	}
11294     }
11295   else
11296     return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11297 
11298   return NULL;
11299 }
11300 
11301 /* COOKIE->rel describes a relocation against section SEC, which is
11302    a section we've decided to keep.  Return the section that contains
11303    the relocation symbol, or NULL if no section contains it.  */
11304 
11305 asection *
11306 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11307 		       elf_gc_mark_hook_fn gc_mark_hook,
11308 		       struct elf_reloc_cookie *cookie)
11309 {
11310   unsigned long r_symndx;
11311   struct elf_link_hash_entry *h;
11312 
11313   r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11314   if (r_symndx == 0)
11315     return NULL;
11316 
11317   if (r_symndx >= cookie->locsymcount
11318       || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11319     {
11320       h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11321       while (h->root.type == bfd_link_hash_indirect
11322 	     || h->root.type == bfd_link_hash_warning)
11323 	h = (struct elf_link_hash_entry *) h->root.u.i.link;
11324       return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11325     }
11326 
11327   return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11328 			  &cookie->locsyms[r_symndx]);
11329 }
11330 
11331 /* COOKIE->rel describes a relocation against section SEC, which is
11332    a section we've decided to keep.  Mark the section that contains
11333    the relocation symbol.  */
11334 
11335 bfd_boolean
11336 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11337 			asection *sec,
11338 			elf_gc_mark_hook_fn gc_mark_hook,
11339 			struct elf_reloc_cookie *cookie)
11340 {
11341   asection *rsec;
11342 
11343   rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11344   if (rsec && !rsec->gc_mark)
11345     {
11346       if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11347 	rsec->gc_mark = 1;
11348       else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11349 	return FALSE;
11350     }
11351   return TRUE;
11352 }
11353 
11354 /* The mark phase of garbage collection.  For a given section, mark
11355    it and any sections in this section's group, and all the sections
11356    which define symbols to which it refers.  */
11357 
11358 bfd_boolean
11359 _bfd_elf_gc_mark (struct bfd_link_info *info,
11360 		  asection *sec,
11361 		  elf_gc_mark_hook_fn gc_mark_hook)
11362 {
11363   bfd_boolean ret;
11364   asection *group_sec, *eh_frame;
11365 
11366   sec->gc_mark = 1;
11367 
11368   /* Mark all the sections in the group.  */
11369   group_sec = elf_section_data (sec)->next_in_group;
11370   if (group_sec && !group_sec->gc_mark)
11371     if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11372       return FALSE;
11373 
11374   /* Look through the section relocs.  */
11375   ret = TRUE;
11376   eh_frame = elf_eh_frame_section (sec->owner);
11377   if ((sec->flags & SEC_RELOC) != 0
11378       && sec->reloc_count > 0
11379       && sec != eh_frame)
11380     {
11381       struct elf_reloc_cookie cookie;
11382 
11383       if (!init_reloc_cookie_for_section (&cookie, info, sec))
11384 	ret = FALSE;
11385       else
11386 	{
11387 	  for (; cookie.rel < cookie.relend; cookie.rel++)
11388 	    if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11389 	      {
11390 		ret = FALSE;
11391 		break;
11392 	      }
11393 	  fini_reloc_cookie_for_section (&cookie, sec);
11394 	}
11395     }
11396 
11397   if (ret && eh_frame && elf_fde_list (sec))
11398     {
11399       struct elf_reloc_cookie cookie;
11400 
11401       if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11402 	ret = FALSE;
11403       else
11404 	{
11405 	  if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11406 				      gc_mark_hook, &cookie))
11407 	    ret = FALSE;
11408 	  fini_reloc_cookie_for_section (&cookie, eh_frame);
11409 	}
11410     }
11411 
11412   return ret;
11413 }
11414 
11415 /* Sweep symbols in swept sections.  Called via elf_link_hash_traverse.  */
11416 
11417 struct elf_gc_sweep_symbol_info
11418 {
11419   struct bfd_link_info *info;
11420   void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11421 		       bfd_boolean);
11422 };
11423 
11424 static bfd_boolean
11425 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11426 {
11427   if (h->root.type == bfd_link_hash_warning)
11428     h = (struct elf_link_hash_entry *) h->root.u.i.link;
11429 
11430   if ((h->root.type == bfd_link_hash_defined
11431        || h->root.type == bfd_link_hash_defweak)
11432       && !h->root.u.def.section->gc_mark
11433       && !(h->root.u.def.section->owner->flags & DYNAMIC))
11434     {
11435       struct elf_gc_sweep_symbol_info *inf =
11436           (struct elf_gc_sweep_symbol_info *) data;
11437       (*inf->hide_symbol) (inf->info, h, TRUE);
11438     }
11439 
11440   return TRUE;
11441 }
11442 
11443 /* The sweep phase of garbage collection.  Remove all garbage sections.  */
11444 
11445 typedef bfd_boolean (*gc_sweep_hook_fn)
11446   (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11447 
11448 static bfd_boolean
11449 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11450 {
11451   bfd *sub;
11452   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11453   gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11454   unsigned long section_sym_count;
11455   struct elf_gc_sweep_symbol_info sweep_info;
11456 
11457   for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11458     {
11459       asection *o;
11460 
11461       if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11462 	continue;
11463 
11464       for (o = sub->sections; o != NULL; o = o->next)
11465 	{
11466 	  /* When any section in a section group is kept, we keep all
11467 	     sections in the section group.  If the first member of
11468 	     the section group is excluded, we will also exclude the
11469 	     group section.  */
11470 	  if (o->flags & SEC_GROUP)
11471 	    {
11472 	      asection *first = elf_next_in_group (o);
11473 	      o->gc_mark = first->gc_mark;
11474 	    }
11475 	  else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11476 		   || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
11477 	    {
11478 	      /* Keep debug and special sections.  */
11479 	      o->gc_mark = 1;
11480 	    }
11481 
11482 	  if (o->gc_mark)
11483 	    continue;
11484 
11485 	  /* Skip sweeping sections already excluded.  */
11486 	  if (o->flags & SEC_EXCLUDE)
11487 	    continue;
11488 
11489 	  /* Since this is early in the link process, it is simple
11490 	     to remove a section from the output.  */
11491 	  o->flags |= SEC_EXCLUDE;
11492 
11493 	  if (info->print_gc_sections && o->size != 0)
11494 	    _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11495 
11496 	  /* But we also have to update some of the relocation
11497 	     info we collected before.  */
11498 	  if (gc_sweep_hook
11499 	      && (o->flags & SEC_RELOC) != 0
11500 	      && o->reloc_count > 0
11501 	      && !bfd_is_abs_section (o->output_section))
11502 	    {
11503 	      Elf_Internal_Rela *internal_relocs;
11504 	      bfd_boolean r;
11505 
11506 	      internal_relocs
11507 		= _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11508 					     info->keep_memory);
11509 	      if (internal_relocs == NULL)
11510 		return FALSE;
11511 
11512 	      r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11513 
11514 	      if (elf_section_data (o)->relocs != internal_relocs)
11515 		free (internal_relocs);
11516 
11517 	      if (!r)
11518 		return FALSE;
11519 	    }
11520 	}
11521     }
11522 
11523   /* Remove the symbols that were in the swept sections from the dynamic
11524      symbol table.  GCFIXME: Anyone know how to get them out of the
11525      static symbol table as well?  */
11526   sweep_info.info = info;
11527   sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11528   elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11529 			  &sweep_info);
11530 
11531   _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11532   return TRUE;
11533 }
11534 
11535 /* Propagate collected vtable information.  This is called through
11536    elf_link_hash_traverse.  */
11537 
11538 static bfd_boolean
11539 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11540 {
11541   if (h->root.type == bfd_link_hash_warning)
11542     h = (struct elf_link_hash_entry *) h->root.u.i.link;
11543 
11544   /* Those that are not vtables.  */
11545   if (h->vtable == NULL || h->vtable->parent == NULL)
11546     return TRUE;
11547 
11548   /* Those vtables that do not have parents, we cannot merge.  */
11549   if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11550     return TRUE;
11551 
11552   /* If we've already been done, exit.  */
11553   if (h->vtable->used && h->vtable->used[-1])
11554     return TRUE;
11555 
11556   /* Make sure the parent's table is up to date.  */
11557   elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11558 
11559   if (h->vtable->used == NULL)
11560     {
11561       /* None of this table's entries were referenced.  Re-use the
11562 	 parent's table.  */
11563       h->vtable->used = h->vtable->parent->vtable->used;
11564       h->vtable->size = h->vtable->parent->vtable->size;
11565     }
11566   else
11567     {
11568       size_t n;
11569       bfd_boolean *cu, *pu;
11570 
11571       /* Or the parent's entries into ours.  */
11572       cu = h->vtable->used;
11573       cu[-1] = TRUE;
11574       pu = h->vtable->parent->vtable->used;
11575       if (pu != NULL)
11576 	{
11577 	  const struct elf_backend_data *bed;
11578 	  unsigned int log_file_align;
11579 
11580 	  bed = get_elf_backend_data (h->root.u.def.section->owner);
11581 	  log_file_align = bed->s->log_file_align;
11582 	  n = h->vtable->parent->vtable->size >> log_file_align;
11583 	  while (n--)
11584 	    {
11585 	      if (*pu)
11586 		*cu = TRUE;
11587 	      pu++;
11588 	      cu++;
11589 	    }
11590 	}
11591     }
11592 
11593   return TRUE;
11594 }
11595 
11596 static bfd_boolean
11597 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11598 {
11599   asection *sec;
11600   bfd_vma hstart, hend;
11601   Elf_Internal_Rela *relstart, *relend, *rel;
11602   const struct elf_backend_data *bed;
11603   unsigned int log_file_align;
11604 
11605   if (h->root.type == bfd_link_hash_warning)
11606     h = (struct elf_link_hash_entry *) h->root.u.i.link;
11607 
11608   /* Take care of both those symbols that do not describe vtables as
11609      well as those that are not loaded.  */
11610   if (h->vtable == NULL || h->vtable->parent == NULL)
11611     return TRUE;
11612 
11613   BFD_ASSERT (h->root.type == bfd_link_hash_defined
11614 	      || h->root.type == bfd_link_hash_defweak);
11615 
11616   sec = h->root.u.def.section;
11617   hstart = h->root.u.def.value;
11618   hend = hstart + h->size;
11619 
11620   relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11621   if (!relstart)
11622     return *(bfd_boolean *) okp = FALSE;
11623   bed = get_elf_backend_data (sec->owner);
11624   log_file_align = bed->s->log_file_align;
11625 
11626   relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11627 
11628   for (rel = relstart; rel < relend; ++rel)
11629     if (rel->r_offset >= hstart && rel->r_offset < hend)
11630       {
11631 	/* If the entry is in use, do nothing.  */
11632 	if (h->vtable->used
11633 	    && (rel->r_offset - hstart) < h->vtable->size)
11634 	  {
11635 	    bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11636 	    if (h->vtable->used[entry])
11637 	      continue;
11638 	  }
11639 	/* Otherwise, kill it.  */
11640 	rel->r_offset = rel->r_info = rel->r_addend = 0;
11641       }
11642 
11643   return TRUE;
11644 }
11645 
11646 /* Mark sections containing dynamically referenced symbols.  When
11647    building shared libraries, we must assume that any visible symbol is
11648    referenced.  */
11649 
11650 bfd_boolean
11651 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11652 {
11653   struct bfd_link_info *info = (struct bfd_link_info *) inf;
11654 
11655   if (h->root.type == bfd_link_hash_warning)
11656     h = (struct elf_link_hash_entry *) h->root.u.i.link;
11657 
11658   if ((h->root.type == bfd_link_hash_defined
11659        || h->root.type == bfd_link_hash_defweak)
11660       && (h->ref_dynamic
11661 	  || (!info->executable
11662 	      && h->def_regular
11663 	      && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11664 	      && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11665     h->root.u.def.section->flags |= SEC_KEEP;
11666 
11667   return TRUE;
11668 }
11669 
11670 /* Keep all sections containing symbols undefined on the command-line,
11671    and the section containing the entry symbol.  */
11672 
11673 void
11674 _bfd_elf_gc_keep (struct bfd_link_info *info)
11675 {
11676   struct bfd_sym_chain *sym;
11677 
11678   for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11679     {
11680       struct elf_link_hash_entry *h;
11681 
11682       h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11683 				FALSE, FALSE, FALSE);
11684 
11685       if (h != NULL
11686 	  && (h->root.type == bfd_link_hash_defined
11687 	      || h->root.type == bfd_link_hash_defweak)
11688 	  && !bfd_is_abs_section (h->root.u.def.section))
11689 	h->root.u.def.section->flags |= SEC_KEEP;
11690     }
11691 }
11692 
11693 /* Do mark and sweep of unused sections.  */
11694 
11695 bfd_boolean
11696 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11697 {
11698   bfd_boolean ok = TRUE;
11699   bfd *sub;
11700   elf_gc_mark_hook_fn gc_mark_hook;
11701   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11702 
11703   if (!bed->can_gc_sections
11704       || !is_elf_hash_table (info->hash))
11705     {
11706       (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11707       return TRUE;
11708     }
11709 
11710   bed->gc_keep (info);
11711 
11712   /* Try to parse each bfd's .eh_frame section.  Point elf_eh_frame_section
11713      at the .eh_frame section if we can mark the FDEs individually.  */
11714   _bfd_elf_begin_eh_frame_parsing (info);
11715   for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11716     {
11717       asection *sec;
11718       struct elf_reloc_cookie cookie;
11719 
11720       sec = bfd_get_section_by_name (sub, ".eh_frame");
11721       if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11722 	{
11723 	  _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11724 	  if (elf_section_data (sec)->sec_info)
11725 	    elf_eh_frame_section (sub) = sec;
11726 	  fini_reloc_cookie_for_section (&cookie, sec);
11727 	}
11728     }
11729   _bfd_elf_end_eh_frame_parsing (info);
11730 
11731   /* Apply transitive closure to the vtable entry usage info.  */
11732   elf_link_hash_traverse (elf_hash_table (info),
11733 			  elf_gc_propagate_vtable_entries_used,
11734 			  &ok);
11735   if (!ok)
11736     return FALSE;
11737 
11738   /* Kill the vtable relocations that were not used.  */
11739   elf_link_hash_traverse (elf_hash_table (info),
11740 			  elf_gc_smash_unused_vtentry_relocs,
11741 			  &ok);
11742   if (!ok)
11743     return FALSE;
11744 
11745   /* Mark dynamically referenced symbols.  */
11746   if (elf_hash_table (info)->dynamic_sections_created)
11747     elf_link_hash_traverse (elf_hash_table (info),
11748 			    bed->gc_mark_dynamic_ref,
11749 			    info);
11750 
11751   /* Grovel through relocs to find out who stays ...  */
11752   gc_mark_hook = bed->gc_mark_hook;
11753   for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11754     {
11755       asection *o;
11756 
11757       if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11758 	continue;
11759 
11760       for (o = sub->sections; o != NULL; o = o->next)
11761 	if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11762 	  if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11763 	    return FALSE;
11764     }
11765 
11766   /* Allow the backend to mark additional target specific sections.  */
11767   if (bed->gc_mark_extra_sections)
11768     bed->gc_mark_extra_sections (info, gc_mark_hook);
11769 
11770   /* ... and mark SEC_EXCLUDE for those that go.  */
11771   return elf_gc_sweep (abfd, info);
11772 }
11773 
11774 /* Called from check_relocs to record the existence of a VTINHERIT reloc.  */
11775 
11776 bfd_boolean
11777 bfd_elf_gc_record_vtinherit (bfd *abfd,
11778 			     asection *sec,
11779 			     struct elf_link_hash_entry *h,
11780 			     bfd_vma offset)
11781 {
11782   struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11783   struct elf_link_hash_entry **search, *child;
11784   bfd_size_type extsymcount;
11785   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11786 
11787   /* The sh_info field of the symtab header tells us where the
11788      external symbols start.  We don't care about the local symbols at
11789      this point.  */
11790   extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11791   if (!elf_bad_symtab (abfd))
11792     extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11793 
11794   sym_hashes = elf_sym_hashes (abfd);
11795   sym_hashes_end = sym_hashes + extsymcount;
11796 
11797   /* Hunt down the child symbol, which is in this section at the same
11798      offset as the relocation.  */
11799   for (search = sym_hashes; search != sym_hashes_end; ++search)
11800     {
11801       if ((child = *search) != NULL
11802 	  && (child->root.type == bfd_link_hash_defined
11803 	      || child->root.type == bfd_link_hash_defweak)
11804 	  && child->root.u.def.section == sec
11805 	  && child->root.u.def.value == offset)
11806 	goto win;
11807     }
11808 
11809   (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11810 			 abfd, sec, (unsigned long) offset);
11811   bfd_set_error (bfd_error_invalid_operation);
11812   return FALSE;
11813 
11814  win:
11815   if (!child->vtable)
11816     {
11817       child->vtable = (struct elf_link_virtual_table_entry *)
11818           bfd_zalloc (abfd, sizeof (*child->vtable));
11819       if (!child->vtable)
11820 	return FALSE;
11821     }
11822   if (!h)
11823     {
11824       /* This *should* only be the absolute section.  It could potentially
11825 	 be that someone has defined a non-global vtable though, which
11826 	 would be bad.  It isn't worth paging in the local symbols to be
11827 	 sure though; that case should simply be handled by the assembler.  */
11828 
11829       child->vtable->parent = (struct elf_link_hash_entry *) -1;
11830     }
11831   else
11832     child->vtable->parent = h;
11833 
11834   return TRUE;
11835 }
11836 
11837 /* Called from check_relocs to record the existence of a VTENTRY reloc.  */
11838 
11839 bfd_boolean
11840 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11841 			   asection *sec ATTRIBUTE_UNUSED,
11842 			   struct elf_link_hash_entry *h,
11843 			   bfd_vma addend)
11844 {
11845   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11846   unsigned int log_file_align = bed->s->log_file_align;
11847 
11848   if (!h->vtable)
11849     {
11850       h->vtable = (struct elf_link_virtual_table_entry *)
11851           bfd_zalloc (abfd, sizeof (*h->vtable));
11852       if (!h->vtable)
11853 	return FALSE;
11854     }
11855 
11856   if (addend >= h->vtable->size)
11857     {
11858       size_t size, bytes, file_align;
11859       bfd_boolean *ptr = h->vtable->used;
11860 
11861       /* While the symbol is undefined, we have to be prepared to handle
11862 	 a zero size.  */
11863       file_align = 1 << log_file_align;
11864       if (h->root.type == bfd_link_hash_undefined)
11865 	size = addend + file_align;
11866       else
11867 	{
11868 	  size = h->size;
11869 	  if (addend >= size)
11870 	    {
11871 	      /* Oops!  We've got a reference past the defined end of
11872 		 the table.  This is probably a bug -- shall we warn?  */
11873 	      size = addend + file_align;
11874 	    }
11875 	}
11876       size = (size + file_align - 1) & -file_align;
11877 
11878       /* Allocate one extra entry for use as a "done" flag for the
11879 	 consolidation pass.  */
11880       bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
11881 
11882       if (ptr)
11883 	{
11884 	  ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
11885 
11886 	  if (ptr != NULL)
11887 	    {
11888 	      size_t oldbytes;
11889 
11890 	      oldbytes = (((h->vtable->size >> log_file_align) + 1)
11891 			  * sizeof (bfd_boolean));
11892 	      memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
11893 	    }
11894 	}
11895       else
11896 	ptr = (bfd_boolean *) bfd_zmalloc (bytes);
11897 
11898       if (ptr == NULL)
11899 	return FALSE;
11900 
11901       /* And arrange for that done flag to be at index -1.  */
11902       h->vtable->used = ptr + 1;
11903       h->vtable->size = size;
11904     }
11905 
11906   h->vtable->used[addend >> log_file_align] = TRUE;
11907 
11908   return TRUE;
11909 }
11910 
11911 struct alloc_got_off_arg {
11912   bfd_vma gotoff;
11913   struct bfd_link_info *info;
11914 };
11915 
11916 /* We need a special top-level link routine to convert got reference counts
11917    to real got offsets.  */
11918 
11919 static bfd_boolean
11920 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
11921 {
11922   struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
11923   bfd *obfd = gofarg->info->output_bfd;
11924   const struct elf_backend_data *bed = get_elf_backend_data (obfd);
11925 
11926   if (h->root.type == bfd_link_hash_warning)
11927     h = (struct elf_link_hash_entry *) h->root.u.i.link;
11928 
11929   if (h->got.refcount > 0)
11930     {
11931       h->got.offset = gofarg->gotoff;
11932       gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
11933     }
11934   else
11935     h->got.offset = (bfd_vma) -1;
11936 
11937   return TRUE;
11938 }
11939 
11940 /* And an accompanying bit to work out final got entry offsets once
11941    we're done.  Should be called from final_link.  */
11942 
11943 bfd_boolean
11944 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
11945 					struct bfd_link_info *info)
11946 {
11947   bfd *i;
11948   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11949   bfd_vma gotoff;
11950   struct alloc_got_off_arg gofarg;
11951 
11952   BFD_ASSERT (abfd == info->output_bfd);
11953 
11954   if (! is_elf_hash_table (info->hash))
11955     return FALSE;
11956 
11957   /* The GOT offset is relative to the .got section, but the GOT header is
11958      put into the .got.plt section, if the backend uses it.  */
11959   if (bed->want_got_plt)
11960     gotoff = 0;
11961   else
11962     gotoff = bed->got_header_size;
11963 
11964   /* Do the local .got entries first.  */
11965   for (i = info->input_bfds; i; i = i->link_next)
11966     {
11967       bfd_signed_vma *local_got;
11968       bfd_size_type j, locsymcount;
11969       Elf_Internal_Shdr *symtab_hdr;
11970 
11971       if (bfd_get_flavour (i) != bfd_target_elf_flavour)
11972 	continue;
11973 
11974       local_got = elf_local_got_refcounts (i);
11975       if (!local_got)
11976 	continue;
11977 
11978       symtab_hdr = &elf_tdata (i)->symtab_hdr;
11979       if (elf_bad_symtab (i))
11980 	locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11981       else
11982 	locsymcount = symtab_hdr->sh_info;
11983 
11984       for (j = 0; j < locsymcount; ++j)
11985 	{
11986 	  if (local_got[j] > 0)
11987 	    {
11988 	      local_got[j] = gotoff;
11989 	      gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
11990 	    }
11991 	  else
11992 	    local_got[j] = (bfd_vma) -1;
11993 	}
11994     }
11995 
11996   /* Then the global .got entries.  .plt refcounts are handled by
11997      adjust_dynamic_symbol  */
11998   gofarg.gotoff = gotoff;
11999   gofarg.info = info;
12000   elf_link_hash_traverse (elf_hash_table (info),
12001 			  elf_gc_allocate_got_offsets,
12002 			  &gofarg);
12003   return TRUE;
12004 }
12005 
12006 /* Many folk need no more in the way of final link than this, once
12007    got entry reference counting is enabled.  */
12008 
12009 bfd_boolean
12010 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12011 {
12012   if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12013     return FALSE;
12014 
12015   /* Invoke the regular ELF backend linker to do all the work.  */
12016   return bfd_elf_final_link (abfd, info);
12017 }
12018 
12019 bfd_boolean
12020 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12021 {
12022   struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12023 
12024   if (rcookie->bad_symtab)
12025     rcookie->rel = rcookie->rels;
12026 
12027   for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12028     {
12029       unsigned long r_symndx;
12030 
12031       if (! rcookie->bad_symtab)
12032 	if (rcookie->rel->r_offset > offset)
12033 	  return FALSE;
12034       if (rcookie->rel->r_offset != offset)
12035 	continue;
12036 
12037       r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12038       if (r_symndx == SHN_UNDEF)
12039 	return TRUE;
12040 
12041       if (r_symndx >= rcookie->locsymcount
12042 	  || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12043 	{
12044 	  struct elf_link_hash_entry *h;
12045 
12046 	  h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12047 
12048 	  while (h->root.type == bfd_link_hash_indirect
12049 		 || h->root.type == bfd_link_hash_warning)
12050 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
12051 
12052 	  if ((h->root.type == bfd_link_hash_defined
12053 	       || h->root.type == bfd_link_hash_defweak)
12054 	      && elf_discarded_section (h->root.u.def.section))
12055 	    return TRUE;
12056 	  else
12057 	    return FALSE;
12058 	}
12059       else
12060 	{
12061 	  /* It's not a relocation against a global symbol,
12062 	     but it could be a relocation against a local
12063 	     symbol for a discarded section.  */
12064 	  asection *isec;
12065 	  Elf_Internal_Sym *isym;
12066 
12067 	  /* Need to: get the symbol; get the section.  */
12068 	  isym = &rcookie->locsyms[r_symndx];
12069 	  isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12070 	  if (isec != NULL && elf_discarded_section (isec))
12071 	    return TRUE;
12072 	}
12073       return FALSE;
12074     }
12075   return FALSE;
12076 }
12077 
12078 /* Discard unneeded references to discarded sections.
12079    Returns TRUE if any section's size was changed.  */
12080 /* This function assumes that the relocations are in sorted order,
12081    which is true for all known assemblers.  */
12082 
12083 bfd_boolean
12084 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12085 {
12086   struct elf_reloc_cookie cookie;
12087   asection *stab, *eh;
12088   const struct elf_backend_data *bed;
12089   bfd *abfd;
12090   bfd_boolean ret = FALSE;
12091 
12092   if (info->traditional_format
12093       || !is_elf_hash_table (info->hash))
12094     return FALSE;
12095 
12096   _bfd_elf_begin_eh_frame_parsing (info);
12097   for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12098     {
12099       if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12100 	continue;
12101 
12102       bed = get_elf_backend_data (abfd);
12103 
12104       if ((abfd->flags & DYNAMIC) != 0)
12105 	continue;
12106 
12107       eh = NULL;
12108       if (!info->relocatable)
12109 	{
12110 	  eh = bfd_get_section_by_name (abfd, ".eh_frame");
12111 	  if (eh != NULL
12112 	      && (eh->size == 0
12113 		  || bfd_is_abs_section (eh->output_section)))
12114 	    eh = NULL;
12115 	}
12116 
12117       stab = bfd_get_section_by_name (abfd, ".stab");
12118       if (stab != NULL
12119 	  && (stab->size == 0
12120 	      || bfd_is_abs_section (stab->output_section)
12121 	      || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12122 	stab = NULL;
12123 
12124       if (stab == NULL
12125 	  && eh == NULL
12126 	  && bed->elf_backend_discard_info == NULL)
12127 	continue;
12128 
12129       if (!init_reloc_cookie (&cookie, info, abfd))
12130 	return FALSE;
12131 
12132       if (stab != NULL
12133 	  && stab->reloc_count > 0
12134 	  && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12135 	{
12136 	  if (_bfd_discard_section_stabs (abfd, stab,
12137 					  elf_section_data (stab)->sec_info,
12138 					  bfd_elf_reloc_symbol_deleted_p,
12139 					  &cookie))
12140 	    ret = TRUE;
12141 	  fini_reloc_cookie_rels (&cookie, stab);
12142 	}
12143 
12144       if (eh != NULL
12145 	  && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12146 	{
12147 	  _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12148 	  if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12149 						 bfd_elf_reloc_symbol_deleted_p,
12150 						 &cookie))
12151 	    ret = TRUE;
12152 	  fini_reloc_cookie_rels (&cookie, eh);
12153 	}
12154 
12155       if (bed->elf_backend_discard_info != NULL
12156 	  && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12157 	ret = TRUE;
12158 
12159       fini_reloc_cookie (&cookie, abfd);
12160     }
12161   _bfd_elf_end_eh_frame_parsing (info);
12162 
12163   if (info->eh_frame_hdr
12164       && !info->relocatable
12165       && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12166     ret = TRUE;
12167 
12168   return ret;
12169 }
12170 
12171 /* For a SHT_GROUP section, return the group signature.  For other
12172    sections, return the normal section name.  */
12173 
12174 static const char *
12175 section_signature (asection *sec)
12176 {
12177   if ((sec->flags & SEC_GROUP) != 0
12178       && elf_next_in_group (sec) != NULL
12179       && elf_group_name (elf_next_in_group (sec)) != NULL)
12180     return elf_group_name (elf_next_in_group (sec));
12181   return sec->name;
12182 }
12183 
12184 void
12185 _bfd_elf_section_already_linked (bfd *abfd, asection *sec,
12186 				 struct bfd_link_info *info)
12187 {
12188   flagword flags;
12189   const char *name, *p;
12190   struct bfd_section_already_linked *l;
12191   struct bfd_section_already_linked_hash_entry *already_linked_list;
12192 
12193   if (sec->output_section == bfd_abs_section_ptr)
12194     return;
12195 
12196   flags = sec->flags;
12197 
12198   /* Return if it isn't a linkonce section.  A comdat group section
12199      also has SEC_LINK_ONCE set.  */
12200   if ((flags & SEC_LINK_ONCE) == 0)
12201     return;
12202 
12203   /* Don't put group member sections on our list of already linked
12204      sections.  They are handled as a group via their group section.  */
12205   if (elf_sec_group (sec) != NULL)
12206     return;
12207 
12208   /* FIXME: When doing a relocatable link, we may have trouble
12209      copying relocations in other sections that refer to local symbols
12210      in the section being discarded.  Those relocations will have to
12211      be converted somehow; as of this writing I'm not sure that any of
12212      the backends handle that correctly.
12213 
12214      It is tempting to instead not discard link once sections when
12215      doing a relocatable link (technically, they should be discarded
12216      whenever we are building constructors).  However, that fails,
12217      because the linker winds up combining all the link once sections
12218      into a single large link once section, which defeats the purpose
12219      of having link once sections in the first place.
12220 
12221      Also, not merging link once sections in a relocatable link
12222      causes trouble for MIPS ELF, which relies on link once semantics
12223      to handle the .reginfo section correctly.  */
12224 
12225   name = section_signature (sec);
12226 
12227   if (CONST_STRNEQ (name, ".gnu.linkonce.")
12228       && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12229     p++;
12230   else
12231     p = name;
12232 
12233   already_linked_list = bfd_section_already_linked_table_lookup (p);
12234 
12235   for (l = already_linked_list->entry; l != NULL; l = l->next)
12236     {
12237       /* We may have 2 different types of sections on the list: group
12238 	 sections and linkonce sections.  Match like sections.  */
12239       if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12240 	  && strcmp (name, section_signature (l->sec)) == 0
12241 	  && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12242 	{
12243 	  /* The section has already been linked.  See if we should
12244 	     issue a warning.  */
12245 	  switch (flags & SEC_LINK_DUPLICATES)
12246 	    {
12247 	    default:
12248 	      abort ();
12249 
12250 	    case SEC_LINK_DUPLICATES_DISCARD:
12251 	      break;
12252 
12253 	    case SEC_LINK_DUPLICATES_ONE_ONLY:
12254 	      (*_bfd_error_handler)
12255 		(_("%B: ignoring duplicate section `%A'"),
12256 		 abfd, sec);
12257 	      break;
12258 
12259 	    case SEC_LINK_DUPLICATES_SAME_SIZE:
12260 	      if (sec->size != l->sec->size)
12261 		(*_bfd_error_handler)
12262 		  (_("%B: duplicate section `%A' has different size"),
12263 		   abfd, sec);
12264 	      break;
12265 
12266 	    case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12267 	      if (sec->size != l->sec->size)
12268 		(*_bfd_error_handler)
12269 		  (_("%B: duplicate section `%A' has different size"),
12270 		   abfd, sec);
12271 	      else if (sec->size != 0)
12272 		{
12273 		  bfd_byte *sec_contents, *l_sec_contents;
12274 
12275 		  if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12276 		    (*_bfd_error_handler)
12277 		      (_("%B: warning: could not read contents of section `%A'"),
12278 		       abfd, sec);
12279 		  else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12280 							&l_sec_contents))
12281 		    (*_bfd_error_handler)
12282 		      (_("%B: warning: could not read contents of section `%A'"),
12283 		       l->sec->owner, l->sec);
12284 		  else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12285 		    (*_bfd_error_handler)
12286 		      (_("%B: warning: duplicate section `%A' has different contents"),
12287 		       abfd, sec);
12288 
12289 		  if (sec_contents)
12290 		    free (sec_contents);
12291 		  if (l_sec_contents)
12292 		    free (l_sec_contents);
12293 		}
12294 	      break;
12295 	    }
12296 
12297 	  /* Set the output_section field so that lang_add_section
12298 	     does not create a lang_input_section structure for this
12299 	     section.  Since there might be a symbol in the section
12300 	     being discarded, we must retain a pointer to the section
12301 	     which we are really going to use.  */
12302 	  sec->output_section = bfd_abs_section_ptr;
12303 	  sec->kept_section = l->sec;
12304 
12305 	  if (flags & SEC_GROUP)
12306 	    {
12307 	      asection *first = elf_next_in_group (sec);
12308 	      asection *s = first;
12309 
12310 	      while (s != NULL)
12311 		{
12312 		  s->output_section = bfd_abs_section_ptr;
12313 		  /* Record which group discards it.  */
12314 		  s->kept_section = l->sec;
12315 		  s = elf_next_in_group (s);
12316 		  /* These lists are circular.  */
12317 		  if (s == first)
12318 		    break;
12319 		}
12320 	    }
12321 
12322 	  return;
12323 	}
12324     }
12325 
12326   /* A single member comdat group section may be discarded by a
12327      linkonce section and vice versa.  */
12328 
12329   if ((flags & SEC_GROUP) != 0)
12330     {
12331       asection *first = elf_next_in_group (sec);
12332 
12333       if (first != NULL && elf_next_in_group (first) == first)
12334 	/* Check this single member group against linkonce sections.  */
12335 	for (l = already_linked_list->entry; l != NULL; l = l->next)
12336 	  if ((l->sec->flags & SEC_GROUP) == 0
12337 	      && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12338 	      && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12339 	    {
12340 	      first->output_section = bfd_abs_section_ptr;
12341 	      first->kept_section = l->sec;
12342 	      sec->output_section = bfd_abs_section_ptr;
12343 	      break;
12344 	    }
12345     }
12346   else
12347     /* Check this linkonce section against single member groups.  */
12348     for (l = already_linked_list->entry; l != NULL; l = l->next)
12349       if (l->sec->flags & SEC_GROUP)
12350 	{
12351 	  asection *first = elf_next_in_group (l->sec);
12352 
12353 	  if (first != NULL
12354 	      && elf_next_in_group (first) == first
12355 	      && bfd_elf_match_symbols_in_sections (first, sec, info))
12356 	    {
12357 	      sec->output_section = bfd_abs_section_ptr;
12358 	      sec->kept_section = first;
12359 	      break;
12360 	    }
12361 	}
12362 
12363   /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12364      referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12365      specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12366      prefix) instead.  `.gnu.linkonce.r.*' were the `.rodata' part of its
12367      matching `.gnu.linkonce.t.*'.  If `.gnu.linkonce.r.F' is not discarded
12368      but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12369      `.gnu.linkonce.t.F' section from a different bfd not requiring any
12370      `.gnu.linkonce.r.F'.  Thus `.gnu.linkonce.r.F' should be discarded.
12371      The reverse order cannot happen as there is never a bfd with only the
12372      `.gnu.linkonce.r.F' section.  The order of sections in a bfd does not
12373      matter as here were are looking only for cross-bfd sections.  */
12374 
12375   if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12376     for (l = already_linked_list->entry; l != NULL; l = l->next)
12377       if ((l->sec->flags & SEC_GROUP) == 0
12378 	  && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12379 	{
12380 	  if (abfd != l->sec->owner)
12381 	    sec->output_section = bfd_abs_section_ptr;
12382 	  break;
12383 	}
12384 
12385   /* This is the first section with this name.  Record it.  */
12386   if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12387     info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12388 }
12389 
12390 bfd_boolean
12391 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12392 {
12393   return sym->st_shndx == SHN_COMMON;
12394 }
12395 
12396 unsigned int
12397 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12398 {
12399   return SHN_COMMON;
12400 }
12401 
12402 asection *
12403 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12404 {
12405   return bfd_com_section_ptr;
12406 }
12407 
12408 bfd_vma
12409 _bfd_elf_default_got_elt_size (bfd *abfd,
12410 			       struct bfd_link_info *info ATTRIBUTE_UNUSED,
12411 			       struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12412 			       bfd *ibfd ATTRIBUTE_UNUSED,
12413 			       unsigned long symndx ATTRIBUTE_UNUSED)
12414 {
12415   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12416   return bed->s->arch_size / 8;
12417 }
12418 
12419 /* Routines to support the creation of dynamic relocs.  */
12420 
12421 /* Return true if NAME is a name of a relocation
12422    section associated with section S.  */
12423 
12424 static bfd_boolean
12425 is_reloc_section (bfd_boolean rela, const char * name, asection * s)
12426 {
12427   if (rela)
12428     return CONST_STRNEQ (name, ".rela")
12429       && strcmp (bfd_get_section_name (NULL, s), name + 5) == 0;
12430 
12431   return CONST_STRNEQ (name, ".rel")
12432     && strcmp (bfd_get_section_name (NULL, s), name + 4) == 0;
12433 }
12434 
12435 /* Returns the name of the dynamic reloc section associated with SEC.  */
12436 
12437 static const char *
12438 get_dynamic_reloc_section_name (bfd *       abfd,
12439 				asection *  sec,
12440 				bfd_boolean is_rela)
12441 {
12442   const char * name;
12443   unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
12444   unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name;
12445 
12446   name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
12447   if (name == NULL)
12448     return NULL;
12449 
12450   if (! is_reloc_section (is_rela, name, sec))
12451     {
12452       static bfd_boolean complained = FALSE;
12453 
12454       if (! complained)
12455 	{
12456 	  (*_bfd_error_handler)
12457 	    (_("%B: bad relocation section name `%s\'"),  abfd, name);
12458 	  complained = TRUE;
12459 	}
12460       name = NULL;
12461     }
12462 
12463   return name;
12464 }
12465 
12466 /* Returns the dynamic reloc section associated with SEC.
12467    If necessary compute the name of the dynamic reloc section based
12468    on SEC's name (looked up in ABFD's string table) and the setting
12469    of IS_RELA.  */
12470 
12471 asection *
12472 _bfd_elf_get_dynamic_reloc_section (bfd *       abfd,
12473 				    asection *  sec,
12474 				    bfd_boolean is_rela)
12475 {
12476   asection * reloc_sec = elf_section_data (sec)->sreloc;
12477 
12478   if (reloc_sec == NULL)
12479     {
12480       const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12481 
12482       if (name != NULL)
12483 	{
12484 	  reloc_sec = bfd_get_section_by_name (abfd, name);
12485 
12486 	  if (reloc_sec != NULL)
12487 	    elf_section_data (sec)->sreloc = reloc_sec;
12488 	}
12489     }
12490 
12491   return reloc_sec;
12492 }
12493 
12494 /* Returns the dynamic reloc section associated with SEC.  If the
12495    section does not exist it is created and attached to the DYNOBJ
12496    bfd and stored in the SRELOC field of SEC's elf_section_data
12497    structure.
12498 
12499    ALIGNMENT is the alignment for the newly created section and
12500    IS_RELA defines whether the name should be .rela.<SEC's name>
12501    or .rel.<SEC's name>.  The section name is looked up in the
12502    string table associated with ABFD.  */
12503 
12504 asection *
12505 _bfd_elf_make_dynamic_reloc_section (asection *         sec,
12506 				     bfd *		dynobj,
12507 				     unsigned int	alignment,
12508 				     bfd *              abfd,
12509 				     bfd_boolean        is_rela)
12510 {
12511   asection * reloc_sec = elf_section_data (sec)->sreloc;
12512 
12513   if (reloc_sec == NULL)
12514     {
12515       const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12516 
12517       if (name == NULL)
12518 	return NULL;
12519 
12520       reloc_sec = bfd_get_section_by_name (dynobj, name);
12521 
12522       if (reloc_sec == NULL)
12523 	{
12524 	  flagword flags;
12525 
12526 	  flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12527 	  if ((sec->flags & SEC_ALLOC) != 0)
12528 	    flags |= SEC_ALLOC | SEC_LOAD;
12529 
12530 	  reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12531 	  if (reloc_sec != NULL)
12532 	    {
12533 	      if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12534 		reloc_sec = NULL;
12535 	    }
12536 	}
12537 
12538       elf_section_data (sec)->sreloc = reloc_sec;
12539     }
12540 
12541   return reloc_sec;
12542 }
12543