xref: /dragonfly/contrib/gdb-7/bfd/hash.c (revision 6e278935)
1 /* hash.c -- hash table routines for BFD
2    Copyright 1993, 1994, 1995, 1997, 1999, 2001, 2002, 2003, 2004, 2005,
3    2006, 2007, 2009, 2010 Free Software Foundation, Inc.
4    Written by Steve Chamberlain <sac@cygnus.com>
5 
6    This file is part of BFD, the Binary File Descriptor library.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, write to the Free Software
20    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21    MA 02110-1301, USA.  */
22 
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "libbfd.h"
26 #include "objalloc.h"
27 #include "libiberty.h"
28 
29 /*
30 SECTION
31 	Hash Tables
32 
33 @cindex Hash tables
34 	BFD provides a simple set of hash table functions.  Routines
35 	are provided to initialize a hash table, to free a hash table,
36 	to look up a string in a hash table and optionally create an
37 	entry for it, and to traverse a hash table.  There is
38 	currently no routine to delete an string from a hash table.
39 
40 	The basic hash table does not permit any data to be stored
41 	with a string.  However, a hash table is designed to present a
42 	base class from which other types of hash tables may be
43 	derived.  These derived types may store additional information
44 	with the string.  Hash tables were implemented in this way,
45 	rather than simply providing a data pointer in a hash table
46 	entry, because they were designed for use by the linker back
47 	ends.  The linker may create thousands of hash table entries,
48 	and the overhead of allocating private data and storing and
49 	following pointers becomes noticeable.
50 
51 	The basic hash table code is in <<hash.c>>.
52 
53 @menu
54 @* Creating and Freeing a Hash Table::
55 @* Looking Up or Entering a String::
56 @* Traversing a Hash Table::
57 @* Deriving a New Hash Table Type::
58 @end menu
59 
60 INODE
61 Creating and Freeing a Hash Table, Looking Up or Entering a String, Hash Tables, Hash Tables
62 SUBSECTION
63 	Creating and freeing a hash table
64 
65 @findex bfd_hash_table_init
66 @findex bfd_hash_table_init_n
67 	To create a hash table, create an instance of a <<struct
68 	bfd_hash_table>> (defined in <<bfd.h>>) and call
69 	<<bfd_hash_table_init>> (if you know approximately how many
70 	entries you will need, the function <<bfd_hash_table_init_n>>,
71 	which takes a @var{size} argument, may be used).
72 	<<bfd_hash_table_init>> returns <<FALSE>> if some sort of
73 	error occurs.
74 
75 @findex bfd_hash_newfunc
76 	The function <<bfd_hash_table_init>> take as an argument a
77 	function to use to create new entries.  For a basic hash
78 	table, use the function <<bfd_hash_newfunc>>.  @xref{Deriving
79 	a New Hash Table Type}, for why you would want to use a
80 	different value for this argument.
81 
82 @findex bfd_hash_allocate
83 	<<bfd_hash_table_init>> will create an objalloc which will be
84 	used to allocate new entries.  You may allocate memory on this
85 	objalloc using <<bfd_hash_allocate>>.
86 
87 @findex bfd_hash_table_free
88 	Use <<bfd_hash_table_free>> to free up all the memory that has
89 	been allocated for a hash table.  This will not free up the
90 	<<struct bfd_hash_table>> itself, which you must provide.
91 
92 @findex bfd_hash_set_default_size
93 	Use <<bfd_hash_set_default_size>> to set the default size of
94 	hash table to use.
95 
96 INODE
97 Looking Up or Entering a String, Traversing a Hash Table, Creating and Freeing a Hash Table, Hash Tables
98 SUBSECTION
99 	Looking up or entering a string
100 
101 @findex bfd_hash_lookup
102 	The function <<bfd_hash_lookup>> is used both to look up a
103 	string in the hash table and to create a new entry.
104 
105 	If the @var{create} argument is <<FALSE>>, <<bfd_hash_lookup>>
106 	will look up a string.  If the string is found, it will
107 	returns a pointer to a <<struct bfd_hash_entry>>.  If the
108 	string is not found in the table <<bfd_hash_lookup>> will
109 	return <<NULL>>.  You should not modify any of the fields in
110 	the returns <<struct bfd_hash_entry>>.
111 
112 	If the @var{create} argument is <<TRUE>>, the string will be
113 	entered into the hash table if it is not already there.
114 	Either way a pointer to a <<struct bfd_hash_entry>> will be
115 	returned, either to the existing structure or to a newly
116 	created one.  In this case, a <<NULL>> return means that an
117 	error occurred.
118 
119 	If the @var{create} argument is <<TRUE>>, and a new entry is
120 	created, the @var{copy} argument is used to decide whether to
121 	copy the string onto the hash table objalloc or not.  If
122 	@var{copy} is passed as <<FALSE>>, you must be careful not to
123 	deallocate or modify the string as long as the hash table
124 	exists.
125 
126 INODE
127 Traversing a Hash Table, Deriving a New Hash Table Type, Looking Up or Entering a String, Hash Tables
128 SUBSECTION
129 	Traversing a hash table
130 
131 @findex bfd_hash_traverse
132 	The function <<bfd_hash_traverse>> may be used to traverse a
133 	hash table, calling a function on each element.  The traversal
134 	is done in a random order.
135 
136 	<<bfd_hash_traverse>> takes as arguments a function and a
137 	generic <<void *>> pointer.  The function is called with a
138 	hash table entry (a <<struct bfd_hash_entry *>>) and the
139 	generic pointer passed to <<bfd_hash_traverse>>.  The function
140 	must return a <<boolean>> value, which indicates whether to
141 	continue traversing the hash table.  If the function returns
142 	<<FALSE>>, <<bfd_hash_traverse>> will stop the traversal and
143 	return immediately.
144 
145 INODE
146 Deriving a New Hash Table Type, , Traversing a Hash Table, Hash Tables
147 SUBSECTION
148 	Deriving a new hash table type
149 
150 	Many uses of hash tables want to store additional information
151 	which each entry in the hash table.  Some also find it
152 	convenient to store additional information with the hash table
153 	itself.  This may be done using a derived hash table.
154 
155 	Since C is not an object oriented language, creating a derived
156 	hash table requires sticking together some boilerplate
157 	routines with a few differences specific to the type of hash
158 	table you want to create.
159 
160 	An example of a derived hash table is the linker hash table.
161 	The structures for this are defined in <<bfdlink.h>>.  The
162 	functions are in <<linker.c>>.
163 
164 	You may also derive a hash table from an already derived hash
165 	table.  For example, the a.out linker backend code uses a hash
166 	table derived from the linker hash table.
167 
168 @menu
169 @* Define the Derived Structures::
170 @* Write the Derived Creation Routine::
171 @* Write Other Derived Routines::
172 @end menu
173 
174 INODE
175 Define the Derived Structures, Write the Derived Creation Routine, Deriving a New Hash Table Type, Deriving a New Hash Table Type
176 SUBSUBSECTION
177 	Define the derived structures
178 
179 	You must define a structure for an entry in the hash table,
180 	and a structure for the hash table itself.
181 
182 	The first field in the structure for an entry in the hash
183 	table must be of the type used for an entry in the hash table
184 	you are deriving from.  If you are deriving from a basic hash
185 	table this is <<struct bfd_hash_entry>>, which is defined in
186 	<<bfd.h>>.  The first field in the structure for the hash
187 	table itself must be of the type of the hash table you are
188 	deriving from itself.  If you are deriving from a basic hash
189 	table, this is <<struct bfd_hash_table>>.
190 
191 	For example, the linker hash table defines <<struct
192 	bfd_link_hash_entry>> (in <<bfdlink.h>>).  The first field,
193 	<<root>>, is of type <<struct bfd_hash_entry>>.  Similarly,
194 	the first field in <<struct bfd_link_hash_table>>, <<table>>,
195 	is of type <<struct bfd_hash_table>>.
196 
197 INODE
198 Write the Derived Creation Routine, Write Other Derived Routines, Define the Derived Structures, Deriving a New Hash Table Type
199 SUBSUBSECTION
200 	Write the derived creation routine
201 
202 	You must write a routine which will create and initialize an
203 	entry in the hash table.  This routine is passed as the
204 	function argument to <<bfd_hash_table_init>>.
205 
206 	In order to permit other hash tables to be derived from the
207 	hash table you are creating, this routine must be written in a
208 	standard way.
209 
210 	The first argument to the creation routine is a pointer to a
211 	hash table entry.  This may be <<NULL>>, in which case the
212 	routine should allocate the right amount of space.  Otherwise
213 	the space has already been allocated by a hash table type
214 	derived from this one.
215 
216 	After allocating space, the creation routine must call the
217 	creation routine of the hash table type it is derived from,
218 	passing in a pointer to the space it just allocated.  This
219 	will initialize any fields used by the base hash table.
220 
221 	Finally the creation routine must initialize any local fields
222 	for the new hash table type.
223 
224 	Here is a boilerplate example of a creation routine.
225 	@var{function_name} is the name of the routine.
226 	@var{entry_type} is the type of an entry in the hash table you
227 	are creating.  @var{base_newfunc} is the name of the creation
228 	routine of the hash table type your hash table is derived
229 	from.
230 
231 EXAMPLE
232 
233 .struct bfd_hash_entry *
234 .@var{function_name} (struct bfd_hash_entry *entry,
235 .                     struct bfd_hash_table *table,
236 .                     const char *string)
237 .{
238 .  struct @var{entry_type} *ret = (@var{entry_type} *) entry;
239 .
240 . {* Allocate the structure if it has not already been allocated by a
241 .    derived class.  *}
242 .  if (ret == NULL)
243 .    {
244 .      ret = bfd_hash_allocate (table, sizeof (* ret));
245 .      if (ret == NULL)
246 .        return NULL;
247 .    }
248 .
249 . {* Call the allocation method of the base class.  *}
250 .  ret = ((@var{entry_type} *)
251 .	 @var{base_newfunc} ((struct bfd_hash_entry *) ret, table, string));
252 .
253 . {* Initialize the local fields here.  *}
254 .
255 .  return (struct bfd_hash_entry *) ret;
256 .}
257 
258 DESCRIPTION
259 	The creation routine for the linker hash table, which is in
260 	<<linker.c>>, looks just like this example.
261 	@var{function_name} is <<_bfd_link_hash_newfunc>>.
262 	@var{entry_type} is <<struct bfd_link_hash_entry>>.
263 	@var{base_newfunc} is <<bfd_hash_newfunc>>, the creation
264 	routine for a basic hash table.
265 
266 	<<_bfd_link_hash_newfunc>> also initializes the local fields
267 	in a linker hash table entry: <<type>>, <<written>> and
268 	<<next>>.
269 
270 INODE
271 Write Other Derived Routines, , Write the Derived Creation Routine, Deriving a New Hash Table Type
272 SUBSUBSECTION
273 	Write other derived routines
274 
275 	You will want to write other routines for your new hash table,
276 	as well.
277 
278 	You will want an initialization routine which calls the
279 	initialization routine of the hash table you are deriving from
280 	and initializes any other local fields.  For the linker hash
281 	table, this is <<_bfd_link_hash_table_init>> in <<linker.c>>.
282 
283 	You will want a lookup routine which calls the lookup routine
284 	of the hash table you are deriving from and casts the result.
285 	The linker hash table uses <<bfd_link_hash_lookup>> in
286 	<<linker.c>> (this actually takes an additional argument which
287 	it uses to decide how to return the looked up value).
288 
289 	You may want a traversal routine.  This should just call the
290 	traversal routine of the hash table you are deriving from with
291 	appropriate casts.  The linker hash table uses
292 	<<bfd_link_hash_traverse>> in <<linker.c>>.
293 
294 	These routines may simply be defined as macros.  For example,
295 	the a.out backend linker hash table, which is derived from the
296 	linker hash table, uses macros for the lookup and traversal
297 	routines.  These are <<aout_link_hash_lookup>> and
298 	<<aout_link_hash_traverse>> in aoutx.h.
299 */
300 
301 /* The default number of entries to use when creating a hash table.  */
302 #define DEFAULT_SIZE 4051
303 
304 /* The following function returns a nearest prime number which is
305    greater than N, and near a power of two.  Copied from libiberty.
306    Returns zero for ridiculously large N to signify an error.  */
307 
308 static unsigned long
309 higher_prime_number (unsigned long n)
310 {
311   /* These are primes that are near, but slightly smaller than, a
312      power of two.  */
313   static const unsigned long primes[] = {
314     (unsigned long) 127,
315     (unsigned long) 2039,
316     (unsigned long) 32749,
317     (unsigned long) 65521,
318     (unsigned long) 131071,
319     (unsigned long) 262139,
320     (unsigned long) 524287,
321     (unsigned long) 1048573,
322     (unsigned long) 2097143,
323     (unsigned long) 4194301,
324     (unsigned long) 8388593,
325     (unsigned long) 16777213,
326     (unsigned long) 33554393,
327     (unsigned long) 67108859,
328     (unsigned long) 134217689,
329     (unsigned long) 268435399,
330     (unsigned long) 536870909,
331     (unsigned long) 1073741789,
332     (unsigned long) 2147483647,
333 					/* 4294967291L */
334     ((unsigned long) 2147483647) + ((unsigned long) 2147483644),
335   };
336 
337   const unsigned long *low = &primes[0];
338   const unsigned long *high = &primes[sizeof (primes) / sizeof (primes[0])];
339 
340   while (low != high)
341     {
342       const unsigned long *mid = low + (high - low) / 2;
343       if (n >= *mid)
344 	low = mid + 1;
345       else
346 	high = mid;
347     }
348 
349   if (n >= *low)
350     return 0;
351 
352   return *low;
353 }
354 
355 static size_t bfd_default_hash_table_size = DEFAULT_SIZE;
356 
357 /* Create a new hash table, given a number of entries.  */
358 
359 bfd_boolean
360 bfd_hash_table_init_n (struct bfd_hash_table *table,
361 		       struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
362 							  struct bfd_hash_table *,
363 							  const char *),
364 		       unsigned int entsize,
365 		       unsigned int size)
366 {
367   unsigned int alloc;
368 
369   alloc = size * sizeof (struct bfd_hash_entry *);
370 
371   table->memory = (void *) objalloc_create ();
372   if (table->memory == NULL)
373     {
374       bfd_set_error (bfd_error_no_memory);
375       return FALSE;
376     }
377   table->table = (struct bfd_hash_entry **)
378       objalloc_alloc ((struct objalloc *) table->memory, alloc);
379   if (table->table == NULL)
380     {
381       bfd_set_error (bfd_error_no_memory);
382       return FALSE;
383     }
384   memset ((void *) table->table, 0, alloc);
385   table->size = size;
386   table->entsize = entsize;
387   table->count = 0;
388   table->frozen = 0;
389   table->newfunc = newfunc;
390   return TRUE;
391 }
392 
393 /* Create a new hash table with the default number of entries.  */
394 
395 bfd_boolean
396 bfd_hash_table_init (struct bfd_hash_table *table,
397 		     struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
398 							struct bfd_hash_table *,
399 							const char *),
400 		     unsigned int entsize)
401 {
402   return bfd_hash_table_init_n (table, newfunc, entsize,
403 				bfd_default_hash_table_size);
404 }
405 
406 /* Free a hash table.  */
407 
408 void
409 bfd_hash_table_free (struct bfd_hash_table *table)
410 {
411   objalloc_free ((struct objalloc *) table->memory);
412   table->memory = NULL;
413 }
414 
415 static inline unsigned long
416 bfd_hash_hash (const char *string, unsigned int *lenp)
417 {
418   const unsigned char *s;
419   unsigned long hash;
420   unsigned int len;
421   unsigned int c;
422 
423   hash = 0;
424   len = 0;
425   s = (const unsigned char *) string;
426   while ((c = *s++) != '\0')
427     {
428       hash += c + (c << 17);
429       hash ^= hash >> 2;
430     }
431   len = (s - (const unsigned char *) string) - 1;
432   hash += len + (len << 17);
433   hash ^= hash >> 2;
434   if (lenp != NULL)
435     *lenp = len;
436   return hash;
437 }
438 
439 /* Look up a string in a hash table.  */
440 
441 struct bfd_hash_entry *
442 bfd_hash_lookup (struct bfd_hash_table *table,
443 		 const char *string,
444 		 bfd_boolean create,
445 		 bfd_boolean copy)
446 {
447   unsigned long hash;
448   struct bfd_hash_entry *hashp;
449   unsigned int len;
450   unsigned int _index;
451 
452   hash = bfd_hash_hash (string, &len);
453   _index = hash % table->size;
454   for (hashp = table->table[_index];
455        hashp != NULL;
456        hashp = hashp->next)
457     {
458       if (hashp->hash == hash
459 	  && strcmp (hashp->string, string) == 0)
460 	return hashp;
461     }
462 
463   if (! create)
464     return NULL;
465 
466   if (copy)
467     {
468       char *new_string;
469 
470       new_string = (char *) objalloc_alloc ((struct objalloc *) table->memory,
471                                             len + 1);
472       if (!new_string)
473 	{
474 	  bfd_set_error (bfd_error_no_memory);
475 	  return NULL;
476 	}
477       memcpy (new_string, string, len + 1);
478       string = new_string;
479     }
480 
481   return bfd_hash_insert (table, string, hash);
482 }
483 
484 /* Insert an entry in a hash table.  */
485 
486 struct bfd_hash_entry *
487 bfd_hash_insert (struct bfd_hash_table *table,
488 		 const char *string,
489 		 unsigned long hash)
490 {
491   struct bfd_hash_entry *hashp;
492   unsigned int _index;
493 
494   hashp = (*table->newfunc) (NULL, table, string);
495   if (hashp == NULL)
496     return NULL;
497   hashp->string = string;
498   hashp->hash = hash;
499   _index = hash % table->size;
500   hashp->next = table->table[_index];
501   table->table[_index] = hashp;
502   table->count++;
503 
504   if (!table->frozen && table->count > table->size * 3 / 4)
505     {
506       unsigned long newsize = higher_prime_number (table->size);
507       struct bfd_hash_entry **newtable;
508       unsigned int hi;
509       unsigned long alloc = newsize * sizeof (struct bfd_hash_entry *);
510 
511       /* If we can't find a higher prime, or we can't possibly alloc
512 	 that much memory, don't try to grow the table.  */
513       if (newsize == 0 || alloc / sizeof (struct bfd_hash_entry *) != newsize)
514 	{
515 	  table->frozen = 1;
516 	  return hashp;
517 	}
518 
519       newtable = ((struct bfd_hash_entry **)
520 		  objalloc_alloc ((struct objalloc *) table->memory, alloc));
521       if (newtable == NULL)
522 	{
523 	  table->frozen = 1;
524 	  return hashp;
525 	}
526       memset ((PTR) newtable, 0, alloc);
527 
528       for (hi = 0; hi < table->size; hi ++)
529 	while (table->table[hi])
530 	  {
531 	    struct bfd_hash_entry *chain = table->table[hi];
532 	    struct bfd_hash_entry *chain_end = chain;
533 
534 	    while (chain_end->next && chain_end->next->hash == chain->hash)
535 	      chain_end = chain_end->next;
536 
537 	    table->table[hi] = chain_end->next;
538 	    _index = chain->hash % newsize;
539 	    chain_end->next = newtable[_index];
540 	    newtable[_index] = chain;
541 	  }
542       table->table = newtable;
543       table->size = newsize;
544     }
545 
546   return hashp;
547 }
548 
549 /* Rename an entry in a hash table.  */
550 
551 void
552 bfd_hash_rename (struct bfd_hash_table *table,
553 		 const char *string,
554 		 struct bfd_hash_entry *ent)
555 {
556   unsigned int _index;
557   struct bfd_hash_entry **pph;
558 
559   _index = ent->hash % table->size;
560   for (pph = &table->table[_index]; *pph != NULL; pph = &(*pph)->next)
561     if (*pph == ent)
562       break;
563   if (*pph == NULL)
564     abort ();
565 
566   *pph = ent->next;
567   ent->string = string;
568   ent->hash = bfd_hash_hash (string, NULL);
569   _index = ent->hash % table->size;
570   ent->next = table->table[_index];
571   table->table[_index] = ent;
572 }
573 
574 /* Replace an entry in a hash table.  */
575 
576 void
577 bfd_hash_replace (struct bfd_hash_table *table,
578 		  struct bfd_hash_entry *old,
579 		  struct bfd_hash_entry *nw)
580 {
581   unsigned int _index;
582   struct bfd_hash_entry **pph;
583 
584   _index = old->hash % table->size;
585   for (pph = &table->table[_index];
586        (*pph) != NULL;
587        pph = &(*pph)->next)
588     {
589       if (*pph == old)
590 	{
591 	  *pph = nw;
592 	  return;
593 	}
594     }
595 
596   abort ();
597 }
598 
599 /* Allocate space in a hash table.  */
600 
601 void *
602 bfd_hash_allocate (struct bfd_hash_table *table,
603 		   unsigned int size)
604 {
605   void * ret;
606 
607   ret = objalloc_alloc ((struct objalloc *) table->memory, size);
608   if (ret == NULL && size != 0)
609     bfd_set_error (bfd_error_no_memory);
610   return ret;
611 }
612 
613 /* Base method for creating a new hash table entry.  */
614 
615 struct bfd_hash_entry *
616 bfd_hash_newfunc (struct bfd_hash_entry *entry,
617 		  struct bfd_hash_table *table,
618 		  const char *string ATTRIBUTE_UNUSED)
619 {
620   if (entry == NULL)
621     entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
622                                                          sizeof (* entry));
623   return entry;
624 }
625 
626 /* Traverse a hash table.  */
627 
628 void
629 bfd_hash_traverse (struct bfd_hash_table *table,
630 		   bfd_boolean (*func) (struct bfd_hash_entry *, void *),
631 		   void * info)
632 {
633   unsigned int i;
634 
635   table->frozen = 1;
636   for (i = 0; i < table->size; i++)
637     {
638       struct bfd_hash_entry *p;
639 
640       for (p = table->table[i]; p != NULL; p = p->next)
641 	if (! (*func) (p, info))
642 	  goto out;
643     }
644  out:
645   table->frozen = 0;
646 }
647 
648 void
649 bfd_hash_set_default_size (bfd_size_type hash_size)
650 {
651   /* Extend this prime list if you want more granularity of hash table size.  */
652   static const bfd_size_type hash_size_primes[] =
653     {
654       251, 509, 1021, 2039, 4051, 8599, 16699, 32749
655     };
656   size_t _index;
657 
658   /* Work out best prime number near the hash_size.  */
659   for (_index = 0; _index < ARRAY_SIZE (hash_size_primes) - 1; ++_index)
660     if (hash_size <= hash_size_primes[_index])
661       break;
662 
663   bfd_default_hash_table_size = hash_size_primes[_index];
664 }
665 
666 /* A few different object file formats (a.out, COFF, ELF) use a string
667    table.  These functions support adding strings to a string table,
668    returning the byte offset, and writing out the table.
669 
670    Possible improvements:
671    + look for strings matching trailing substrings of other strings
672    + better data structures?  balanced trees?
673    + look at reducing memory use elsewhere -- maybe if we didn't have
674      to construct the entire symbol table at once, we could get by
675      with smaller amounts of VM?  (What effect does that have on the
676      string table reductions?)  */
677 
678 /* An entry in the strtab hash table.  */
679 
680 struct strtab_hash_entry
681 {
682   struct bfd_hash_entry root;
683   /* Index in string table.  */
684   bfd_size_type index;
685   /* Next string in strtab.  */
686   struct strtab_hash_entry *next;
687 };
688 
689 /* The strtab hash table.  */
690 
691 struct bfd_strtab_hash
692 {
693   struct bfd_hash_table table;
694   /* Size of strtab--also next available index.  */
695   bfd_size_type size;
696   /* First string in strtab.  */
697   struct strtab_hash_entry *first;
698   /* Last string in strtab.  */
699   struct strtab_hash_entry *last;
700   /* Whether to precede strings with a two byte length, as in the
701      XCOFF .debug section.  */
702   bfd_boolean xcoff;
703 };
704 
705 /* Routine to create an entry in a strtab.  */
706 
707 static struct bfd_hash_entry *
708 strtab_hash_newfunc (struct bfd_hash_entry *entry,
709 		     struct bfd_hash_table *table,
710 		     const char *string)
711 {
712   struct strtab_hash_entry *ret = (struct strtab_hash_entry *) entry;
713 
714   /* Allocate the structure if it has not already been allocated by a
715      subclass.  */
716   if (ret == NULL)
717     ret = (struct strtab_hash_entry *) bfd_hash_allocate (table,
718                                                           sizeof (* ret));
719   if (ret == NULL)
720     return NULL;
721 
722   /* Call the allocation method of the superclass.  */
723   ret = (struct strtab_hash_entry *)
724 	 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string);
725 
726   if (ret)
727     {
728       /* Initialize the local fields.  */
729       ret->index = (bfd_size_type) -1;
730       ret->next = NULL;
731     }
732 
733   return (struct bfd_hash_entry *) ret;
734 }
735 
736 /* Look up an entry in an strtab.  */
737 
738 #define strtab_hash_lookup(t, string, create, copy) \
739   ((struct strtab_hash_entry *) \
740    bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
741 
742 /* Create a new strtab.  */
743 
744 struct bfd_strtab_hash *
745 _bfd_stringtab_init (void)
746 {
747   struct bfd_strtab_hash *table;
748   bfd_size_type amt = sizeof (* table);
749 
750   table = (struct bfd_strtab_hash *) bfd_malloc (amt);
751   if (table == NULL)
752     return NULL;
753 
754   if (!bfd_hash_table_init (&table->table, strtab_hash_newfunc,
755 			    sizeof (struct strtab_hash_entry)))
756     {
757       free (table);
758       return NULL;
759     }
760 
761   table->size = 0;
762   table->first = NULL;
763   table->last = NULL;
764   table->xcoff = FALSE;
765 
766   return table;
767 }
768 
769 /* Create a new strtab in which the strings are output in the format
770    used in the XCOFF .debug section: a two byte length precedes each
771    string.  */
772 
773 struct bfd_strtab_hash *
774 _bfd_xcoff_stringtab_init (void)
775 {
776   struct bfd_strtab_hash *ret;
777 
778   ret = _bfd_stringtab_init ();
779   if (ret != NULL)
780     ret->xcoff = TRUE;
781   return ret;
782 }
783 
784 /* Free a strtab.  */
785 
786 void
787 _bfd_stringtab_free (struct bfd_strtab_hash *table)
788 {
789   bfd_hash_table_free (&table->table);
790   free (table);
791 }
792 
793 /* Get the index of a string in a strtab, adding it if it is not
794    already present.  If HASH is FALSE, we don't really use the hash
795    table, and we don't eliminate duplicate strings.  */
796 
797 bfd_size_type
798 _bfd_stringtab_add (struct bfd_strtab_hash *tab,
799 		    const char *str,
800 		    bfd_boolean hash,
801 		    bfd_boolean copy)
802 {
803   struct strtab_hash_entry *entry;
804 
805   if (hash)
806     {
807       entry = strtab_hash_lookup (tab, str, TRUE, copy);
808       if (entry == NULL)
809 	return (bfd_size_type) -1;
810     }
811   else
812     {
813       entry = (struct strtab_hash_entry *) bfd_hash_allocate (&tab->table,
814                                                               sizeof (* entry));
815       if (entry == NULL)
816 	return (bfd_size_type) -1;
817       if (! copy)
818 	entry->root.string = str;
819       else
820 	{
821 	  char *n;
822 
823 	  n = (char *) bfd_hash_allocate (&tab->table, strlen (str) + 1);
824 	  if (n == NULL)
825 	    return (bfd_size_type) -1;
826 	  entry->root.string = n;
827 	}
828       entry->index = (bfd_size_type) -1;
829       entry->next = NULL;
830     }
831 
832   if (entry->index == (bfd_size_type) -1)
833     {
834       entry->index = tab->size;
835       tab->size += strlen (str) + 1;
836       if (tab->xcoff)
837 	{
838 	  entry->index += 2;
839 	  tab->size += 2;
840 	}
841       if (tab->first == NULL)
842 	tab->first = entry;
843       else
844 	tab->last->next = entry;
845       tab->last = entry;
846     }
847 
848   return entry->index;
849 }
850 
851 /* Get the number of bytes in a strtab.  */
852 
853 bfd_size_type
854 _bfd_stringtab_size (struct bfd_strtab_hash *tab)
855 {
856   return tab->size;
857 }
858 
859 /* Write out a strtab.  ABFD must already be at the right location in
860    the file.  */
861 
862 bfd_boolean
863 _bfd_stringtab_emit (bfd *abfd, struct bfd_strtab_hash *tab)
864 {
865   bfd_boolean xcoff;
866   struct strtab_hash_entry *entry;
867 
868   xcoff = tab->xcoff;
869 
870   for (entry = tab->first; entry != NULL; entry = entry->next)
871     {
872       const char *str;
873       size_t len;
874 
875       str = entry->root.string;
876       len = strlen (str) + 1;
877 
878       if (xcoff)
879 	{
880 	  bfd_byte buf[2];
881 
882 	  /* The output length includes the null byte.  */
883 	  bfd_put_16 (abfd, (bfd_vma) len, buf);
884 	  if (bfd_bwrite ((void *) buf, (bfd_size_type) 2, abfd) != 2)
885 	    return FALSE;
886 	}
887 
888       if (bfd_bwrite ((void *) str, (bfd_size_type) len, abfd) != len)
889 	return FALSE;
890     }
891 
892   return TRUE;
893 }
894