xref: /dragonfly/contrib/gdb-7/bfd/hash.c (revision abf903a5)
1 /* hash.c -- hash table routines for BFD
2    Copyright 1993, 1994, 1995, 1997, 1999, 2001, 2002, 2003, 2004, 2005,
3    2006, 2007, 2009, 2010, 2011, 2012   Free Software Foundation, Inc.
4    Written by Steve Chamberlain <sac@cygnus.com>
5 
6    This file is part of BFD, the Binary File Descriptor library.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, write to the Free Software
20    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21    MA 02110-1301, USA.  */
22 
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "libbfd.h"
26 #include "objalloc.h"
27 #include "libiberty.h"
28 
29 /*
30 SECTION
31 	Hash Tables
32 
33 @cindex Hash tables
34 	BFD provides a simple set of hash table functions.  Routines
35 	are provided to initialize a hash table, to free a hash table,
36 	to look up a string in a hash table and optionally create an
37 	entry for it, and to traverse a hash table.  There is
38 	currently no routine to delete an string from a hash table.
39 
40 	The basic hash table does not permit any data to be stored
41 	with a string.  However, a hash table is designed to present a
42 	base class from which other types of hash tables may be
43 	derived.  These derived types may store additional information
44 	with the string.  Hash tables were implemented in this way,
45 	rather than simply providing a data pointer in a hash table
46 	entry, because they were designed for use by the linker back
47 	ends.  The linker may create thousands of hash table entries,
48 	and the overhead of allocating private data and storing and
49 	following pointers becomes noticeable.
50 
51 	The basic hash table code is in <<hash.c>>.
52 
53 @menu
54 @* Creating and Freeing a Hash Table::
55 @* Looking Up or Entering a String::
56 @* Traversing a Hash Table::
57 @* Deriving a New Hash Table Type::
58 @end menu
59 
60 INODE
61 Creating and Freeing a Hash Table, Looking Up or Entering a String, Hash Tables, Hash Tables
62 SUBSECTION
63 	Creating and freeing a hash table
64 
65 @findex bfd_hash_table_init
66 @findex bfd_hash_table_init_n
67 	To create a hash table, create an instance of a <<struct
68 	bfd_hash_table>> (defined in <<bfd.h>>) and call
69 	<<bfd_hash_table_init>> (if you know approximately how many
70 	entries you will need, the function <<bfd_hash_table_init_n>>,
71 	which takes a @var{size} argument, may be used).
72 	<<bfd_hash_table_init>> returns <<FALSE>> if some sort of
73 	error occurs.
74 
75 @findex bfd_hash_newfunc
76 	The function <<bfd_hash_table_init>> take as an argument a
77 	function to use to create new entries.  For a basic hash
78 	table, use the function <<bfd_hash_newfunc>>.  @xref{Deriving
79 	a New Hash Table Type}, for why you would want to use a
80 	different value for this argument.
81 
82 @findex bfd_hash_allocate
83 	<<bfd_hash_table_init>> will create an objalloc which will be
84 	used to allocate new entries.  You may allocate memory on this
85 	objalloc using <<bfd_hash_allocate>>.
86 
87 @findex bfd_hash_table_free
88 	Use <<bfd_hash_table_free>> to free up all the memory that has
89 	been allocated for a hash table.  This will not free up the
90 	<<struct bfd_hash_table>> itself, which you must provide.
91 
92 @findex bfd_hash_set_default_size
93 	Use <<bfd_hash_set_default_size>> to set the default size of
94 	hash table to use.
95 
96 INODE
97 Looking Up or Entering a String, Traversing a Hash Table, Creating and Freeing a Hash Table, Hash Tables
98 SUBSECTION
99 	Looking up or entering a string
100 
101 @findex bfd_hash_lookup
102 	The function <<bfd_hash_lookup>> is used both to look up a
103 	string in the hash table and to create a new entry.
104 
105 	If the @var{create} argument is <<FALSE>>, <<bfd_hash_lookup>>
106 	will look up a string.  If the string is found, it will
107 	returns a pointer to a <<struct bfd_hash_entry>>.  If the
108 	string is not found in the table <<bfd_hash_lookup>> will
109 	return <<NULL>>.  You should not modify any of the fields in
110 	the returns <<struct bfd_hash_entry>>.
111 
112 	If the @var{create} argument is <<TRUE>>, the string will be
113 	entered into the hash table if it is not already there.
114 	Either way a pointer to a <<struct bfd_hash_entry>> will be
115 	returned, either to the existing structure or to a newly
116 	created one.  In this case, a <<NULL>> return means that an
117 	error occurred.
118 
119 	If the @var{create} argument is <<TRUE>>, and a new entry is
120 	created, the @var{copy} argument is used to decide whether to
121 	copy the string onto the hash table objalloc or not.  If
122 	@var{copy} is passed as <<FALSE>>, you must be careful not to
123 	deallocate or modify the string as long as the hash table
124 	exists.
125 
126 INODE
127 Traversing a Hash Table, Deriving a New Hash Table Type, Looking Up or Entering a String, Hash Tables
128 SUBSECTION
129 	Traversing a hash table
130 
131 @findex bfd_hash_traverse
132 	The function <<bfd_hash_traverse>> may be used to traverse a
133 	hash table, calling a function on each element.  The traversal
134 	is done in a random order.
135 
136 	<<bfd_hash_traverse>> takes as arguments a function and a
137 	generic <<void *>> pointer.  The function is called with a
138 	hash table entry (a <<struct bfd_hash_entry *>>) and the
139 	generic pointer passed to <<bfd_hash_traverse>>.  The function
140 	must return a <<boolean>> value, which indicates whether to
141 	continue traversing the hash table.  If the function returns
142 	<<FALSE>>, <<bfd_hash_traverse>> will stop the traversal and
143 	return immediately.
144 
145 INODE
146 Deriving a New Hash Table Type, , Traversing a Hash Table, Hash Tables
147 SUBSECTION
148 	Deriving a new hash table type
149 
150 	Many uses of hash tables want to store additional information
151 	which each entry in the hash table.  Some also find it
152 	convenient to store additional information with the hash table
153 	itself.  This may be done using a derived hash table.
154 
155 	Since C is not an object oriented language, creating a derived
156 	hash table requires sticking together some boilerplate
157 	routines with a few differences specific to the type of hash
158 	table you want to create.
159 
160 	An example of a derived hash table is the linker hash table.
161 	The structures for this are defined in <<bfdlink.h>>.  The
162 	functions are in <<linker.c>>.
163 
164 	You may also derive a hash table from an already derived hash
165 	table.  For example, the a.out linker backend code uses a hash
166 	table derived from the linker hash table.
167 
168 @menu
169 @* Define the Derived Structures::
170 @* Write the Derived Creation Routine::
171 @* Write Other Derived Routines::
172 @end menu
173 
174 INODE
175 Define the Derived Structures, Write the Derived Creation Routine, Deriving a New Hash Table Type, Deriving a New Hash Table Type
176 SUBSUBSECTION
177 	Define the derived structures
178 
179 	You must define a structure for an entry in the hash table,
180 	and a structure for the hash table itself.
181 
182 	The first field in the structure for an entry in the hash
183 	table must be of the type used for an entry in the hash table
184 	you are deriving from.  If you are deriving from a basic hash
185 	table this is <<struct bfd_hash_entry>>, which is defined in
186 	<<bfd.h>>.  The first field in the structure for the hash
187 	table itself must be of the type of the hash table you are
188 	deriving from itself.  If you are deriving from a basic hash
189 	table, this is <<struct bfd_hash_table>>.
190 
191 	For example, the linker hash table defines <<struct
192 	bfd_link_hash_entry>> (in <<bfdlink.h>>).  The first field,
193 	<<root>>, is of type <<struct bfd_hash_entry>>.  Similarly,
194 	the first field in <<struct bfd_link_hash_table>>, <<table>>,
195 	is of type <<struct bfd_hash_table>>.
196 
197 INODE
198 Write the Derived Creation Routine, Write Other Derived Routines, Define the Derived Structures, Deriving a New Hash Table Type
199 SUBSUBSECTION
200 	Write the derived creation routine
201 
202 	You must write a routine which will create and initialize an
203 	entry in the hash table.  This routine is passed as the
204 	function argument to <<bfd_hash_table_init>>.
205 
206 	In order to permit other hash tables to be derived from the
207 	hash table you are creating, this routine must be written in a
208 	standard way.
209 
210 	The first argument to the creation routine is a pointer to a
211 	hash table entry.  This may be <<NULL>>, in which case the
212 	routine should allocate the right amount of space.  Otherwise
213 	the space has already been allocated by a hash table type
214 	derived from this one.
215 
216 	After allocating space, the creation routine must call the
217 	creation routine of the hash table type it is derived from,
218 	passing in a pointer to the space it just allocated.  This
219 	will initialize any fields used by the base hash table.
220 
221 	Finally the creation routine must initialize any local fields
222 	for the new hash table type.
223 
224 	Here is a boilerplate example of a creation routine.
225 	@var{function_name} is the name of the routine.
226 	@var{entry_type} is the type of an entry in the hash table you
227 	are creating.  @var{base_newfunc} is the name of the creation
228 	routine of the hash table type your hash table is derived
229 	from.
230 
231 EXAMPLE
232 
233 .struct bfd_hash_entry *
234 .@var{function_name} (struct bfd_hash_entry *entry,
235 .                     struct bfd_hash_table *table,
236 .                     const char *string)
237 .{
238 .  struct @var{entry_type} *ret = (@var{entry_type} *) entry;
239 .
240 . {* Allocate the structure if it has not already been allocated by a
241 .    derived class.  *}
242 .  if (ret == NULL)
243 .    {
244 .      ret = bfd_hash_allocate (table, sizeof (* ret));
245 .      if (ret == NULL)
246 .        return NULL;
247 .    }
248 .
249 . {* Call the allocation method of the base class.  *}
250 .  ret = ((@var{entry_type} *)
251 .	 @var{base_newfunc} ((struct bfd_hash_entry *) ret, table, string));
252 .
253 . {* Initialize the local fields here.  *}
254 .
255 .  return (struct bfd_hash_entry *) ret;
256 .}
257 
258 DESCRIPTION
259 	The creation routine for the linker hash table, which is in
260 	<<linker.c>>, looks just like this example.
261 	@var{function_name} is <<_bfd_link_hash_newfunc>>.
262 	@var{entry_type} is <<struct bfd_link_hash_entry>>.
263 	@var{base_newfunc} is <<bfd_hash_newfunc>>, the creation
264 	routine for a basic hash table.
265 
266 	<<_bfd_link_hash_newfunc>> also initializes the local fields
267 	in a linker hash table entry: <<type>>, <<written>> and
268 	<<next>>.
269 
270 INODE
271 Write Other Derived Routines, , Write the Derived Creation Routine, Deriving a New Hash Table Type
272 SUBSUBSECTION
273 	Write other derived routines
274 
275 	You will want to write other routines for your new hash table,
276 	as well.
277 
278 	You will want an initialization routine which calls the
279 	initialization routine of the hash table you are deriving from
280 	and initializes any other local fields.  For the linker hash
281 	table, this is <<_bfd_link_hash_table_init>> in <<linker.c>>.
282 
283 	You will want a lookup routine which calls the lookup routine
284 	of the hash table you are deriving from and casts the result.
285 	The linker hash table uses <<bfd_link_hash_lookup>> in
286 	<<linker.c>> (this actually takes an additional argument which
287 	it uses to decide how to return the looked up value).
288 
289 	You may want a traversal routine.  This should just call the
290 	traversal routine of the hash table you are deriving from with
291 	appropriate casts.  The linker hash table uses
292 	<<bfd_link_hash_traverse>> in <<linker.c>>.
293 
294 	These routines may simply be defined as macros.  For example,
295 	the a.out backend linker hash table, which is derived from the
296 	linker hash table, uses macros for the lookup and traversal
297 	routines.  These are <<aout_link_hash_lookup>> and
298 	<<aout_link_hash_traverse>> in aoutx.h.
299 */
300 
301 /* The default number of entries to use when creating a hash table.  */
302 #define DEFAULT_SIZE 4051
303 
304 /* The following function returns a nearest prime number which is
305    greater than N, and near a power of two.  Copied from libiberty.
306    Returns zero for ridiculously large N to signify an error.  */
307 
308 static unsigned long
309 higher_prime_number (unsigned long n)
310 {
311   /* These are primes that are near, but slightly smaller than, a
312      power of two.  */
313   static const unsigned long primes[] =
314     {
315       (unsigned long) 31,
316       (unsigned long) 61,
317       (unsigned long) 127,
318       (unsigned long) 251,
319       (unsigned long) 509,
320       (unsigned long) 1021,
321       (unsigned long) 2039,
322       (unsigned long) 4093,
323       (unsigned long) 8191,
324       (unsigned long) 16381,
325       (unsigned long) 32749,
326       (unsigned long) 65521,
327       (unsigned long) 131071,
328       (unsigned long) 262139,
329       (unsigned long) 524287,
330       (unsigned long) 1048573,
331       (unsigned long) 2097143,
332       (unsigned long) 4194301,
333       (unsigned long) 8388593,
334       (unsigned long) 16777213,
335       (unsigned long) 33554393,
336       (unsigned long) 67108859,
337       (unsigned long) 134217689,
338       (unsigned long) 268435399,
339       (unsigned long) 536870909,
340       (unsigned long) 1073741789,
341       (unsigned long) 2147483647,
342 					/* 4294967291L */
343       ((unsigned long) 2147483647) + ((unsigned long) 2147483644),
344   };
345 
346   const unsigned long *low = &primes[0];
347   const unsigned long *high = &primes[sizeof (primes) / sizeof (primes[0])];
348 
349   while (low != high)
350     {
351       const unsigned long *mid = low + (high - low) / 2;
352       if (n >= *mid)
353 	low = mid + 1;
354       else
355 	high = mid;
356     }
357 
358   if (n >= *low)
359     return 0;
360 
361   return *low;
362 }
363 
364 static unsigned long bfd_default_hash_table_size = DEFAULT_SIZE;
365 
366 /* Create a new hash table, given a number of entries.  */
367 
368 bfd_boolean
369 bfd_hash_table_init_n (struct bfd_hash_table *table,
370 		       struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
371 							  struct bfd_hash_table *,
372 							  const char *),
373 		       unsigned int entsize,
374 		       unsigned int size)
375 {
376   unsigned long alloc;
377 
378   alloc = size;
379   alloc *= sizeof (struct bfd_hash_entry *);
380   if (alloc / sizeof (struct bfd_hash_entry *) != size)
381     {
382       bfd_set_error (bfd_error_no_memory);
383       return FALSE;
384     }
385 
386   table->memory = (void *) objalloc_create ();
387   if (table->memory == NULL)
388     {
389       bfd_set_error (bfd_error_no_memory);
390       return FALSE;
391     }
392   table->table = (struct bfd_hash_entry **)
393       objalloc_alloc ((struct objalloc *) table->memory, alloc);
394   if (table->table == NULL)
395     {
396       bfd_set_error (bfd_error_no_memory);
397       return FALSE;
398     }
399   memset ((void *) table->table, 0, alloc);
400   table->size = size;
401   table->entsize = entsize;
402   table->count = 0;
403   table->frozen = 0;
404   table->newfunc = newfunc;
405   return TRUE;
406 }
407 
408 /* Create a new hash table with the default number of entries.  */
409 
410 bfd_boolean
411 bfd_hash_table_init (struct bfd_hash_table *table,
412 		     struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
413 							struct bfd_hash_table *,
414 							const char *),
415 		     unsigned int entsize)
416 {
417   return bfd_hash_table_init_n (table, newfunc, entsize,
418 				bfd_default_hash_table_size);
419 }
420 
421 /* Free a hash table.  */
422 
423 void
424 bfd_hash_table_free (struct bfd_hash_table *table)
425 {
426   objalloc_free ((struct objalloc *) table->memory);
427   table->memory = NULL;
428 }
429 
430 static inline unsigned long
431 bfd_hash_hash (const char *string, unsigned int *lenp)
432 {
433   const unsigned char *s;
434   unsigned long hash;
435   unsigned int len;
436   unsigned int c;
437 
438   hash = 0;
439   len = 0;
440   s = (const unsigned char *) string;
441   while ((c = *s++) != '\0')
442     {
443       hash += c + (c << 17);
444       hash ^= hash >> 2;
445     }
446   len = (s - (const unsigned char *) string) - 1;
447   hash += len + (len << 17);
448   hash ^= hash >> 2;
449   if (lenp != NULL)
450     *lenp = len;
451   return hash;
452 }
453 
454 /* Look up a string in a hash table.  */
455 
456 struct bfd_hash_entry *
457 bfd_hash_lookup (struct bfd_hash_table *table,
458 		 const char *string,
459 		 bfd_boolean create,
460 		 bfd_boolean copy)
461 {
462   unsigned long hash;
463   struct bfd_hash_entry *hashp;
464   unsigned int len;
465   unsigned int _index;
466 
467   hash = bfd_hash_hash (string, &len);
468   _index = hash % table->size;
469   for (hashp = table->table[_index];
470        hashp != NULL;
471        hashp = hashp->next)
472     {
473       if (hashp->hash == hash
474 	  && strcmp (hashp->string, string) == 0)
475 	return hashp;
476     }
477 
478   if (! create)
479     return NULL;
480 
481   if (copy)
482     {
483       char *new_string;
484 
485       new_string = (char *) objalloc_alloc ((struct objalloc *) table->memory,
486                                             len + 1);
487       if (!new_string)
488 	{
489 	  bfd_set_error (bfd_error_no_memory);
490 	  return NULL;
491 	}
492       memcpy (new_string, string, len + 1);
493       string = new_string;
494     }
495 
496   return bfd_hash_insert (table, string, hash);
497 }
498 
499 /* Insert an entry in a hash table.  */
500 
501 struct bfd_hash_entry *
502 bfd_hash_insert (struct bfd_hash_table *table,
503 		 const char *string,
504 		 unsigned long hash)
505 {
506   struct bfd_hash_entry *hashp;
507   unsigned int _index;
508 
509   hashp = (*table->newfunc) (NULL, table, string);
510   if (hashp == NULL)
511     return NULL;
512   hashp->string = string;
513   hashp->hash = hash;
514   _index = hash % table->size;
515   hashp->next = table->table[_index];
516   table->table[_index] = hashp;
517   table->count++;
518 
519   if (!table->frozen && table->count > table->size * 3 / 4)
520     {
521       unsigned long newsize = higher_prime_number (table->size);
522       struct bfd_hash_entry **newtable;
523       unsigned int hi;
524       unsigned long alloc = newsize * sizeof (struct bfd_hash_entry *);
525 
526       /* If we can't find a higher prime, or we can't possibly alloc
527 	 that much memory, don't try to grow the table.  */
528       if (newsize == 0 || alloc / sizeof (struct bfd_hash_entry *) != newsize)
529 	{
530 	  table->frozen = 1;
531 	  return hashp;
532 	}
533 
534       newtable = ((struct bfd_hash_entry **)
535 		  objalloc_alloc ((struct objalloc *) table->memory, alloc));
536       if (newtable == NULL)
537 	{
538 	  table->frozen = 1;
539 	  return hashp;
540 	}
541       memset (newtable, 0, alloc);
542 
543       for (hi = 0; hi < table->size; hi ++)
544 	while (table->table[hi])
545 	  {
546 	    struct bfd_hash_entry *chain = table->table[hi];
547 	    struct bfd_hash_entry *chain_end = chain;
548 
549 	    while (chain_end->next && chain_end->next->hash == chain->hash)
550 	      chain_end = chain_end->next;
551 
552 	    table->table[hi] = chain_end->next;
553 	    _index = chain->hash % newsize;
554 	    chain_end->next = newtable[_index];
555 	    newtable[_index] = chain;
556 	  }
557       table->table = newtable;
558       table->size = newsize;
559     }
560 
561   return hashp;
562 }
563 
564 /* Rename an entry in a hash table.  */
565 
566 void
567 bfd_hash_rename (struct bfd_hash_table *table,
568 		 const char *string,
569 		 struct bfd_hash_entry *ent)
570 {
571   unsigned int _index;
572   struct bfd_hash_entry **pph;
573 
574   _index = ent->hash % table->size;
575   for (pph = &table->table[_index]; *pph != NULL; pph = &(*pph)->next)
576     if (*pph == ent)
577       break;
578   if (*pph == NULL)
579     abort ();
580 
581   *pph = ent->next;
582   ent->string = string;
583   ent->hash = bfd_hash_hash (string, NULL);
584   _index = ent->hash % table->size;
585   ent->next = table->table[_index];
586   table->table[_index] = ent;
587 }
588 
589 /* Replace an entry in a hash table.  */
590 
591 void
592 bfd_hash_replace (struct bfd_hash_table *table,
593 		  struct bfd_hash_entry *old,
594 		  struct bfd_hash_entry *nw)
595 {
596   unsigned int _index;
597   struct bfd_hash_entry **pph;
598 
599   _index = old->hash % table->size;
600   for (pph = &table->table[_index];
601        (*pph) != NULL;
602        pph = &(*pph)->next)
603     {
604       if (*pph == old)
605 	{
606 	  *pph = nw;
607 	  return;
608 	}
609     }
610 
611   abort ();
612 }
613 
614 /* Allocate space in a hash table.  */
615 
616 void *
617 bfd_hash_allocate (struct bfd_hash_table *table,
618 		   unsigned int size)
619 {
620   void * ret;
621 
622   ret = objalloc_alloc ((struct objalloc *) table->memory, size);
623   if (ret == NULL && size != 0)
624     bfd_set_error (bfd_error_no_memory);
625   return ret;
626 }
627 
628 /* Base method for creating a new hash table entry.  */
629 
630 struct bfd_hash_entry *
631 bfd_hash_newfunc (struct bfd_hash_entry *entry,
632 		  struct bfd_hash_table *table,
633 		  const char *string ATTRIBUTE_UNUSED)
634 {
635   if (entry == NULL)
636     entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
637                                                          sizeof (* entry));
638   return entry;
639 }
640 
641 /* Traverse a hash table.  */
642 
643 void
644 bfd_hash_traverse (struct bfd_hash_table *table,
645 		   bfd_boolean (*func) (struct bfd_hash_entry *, void *),
646 		   void * info)
647 {
648   unsigned int i;
649 
650   table->frozen = 1;
651   for (i = 0; i < table->size; i++)
652     {
653       struct bfd_hash_entry *p;
654 
655       for (p = table->table[i]; p != NULL; p = p->next)
656 	if (! (*func) (p, info))
657 	  goto out;
658     }
659  out:
660   table->frozen = 0;
661 }
662 
663 unsigned long
664 bfd_hash_set_default_size (unsigned long hash_size)
665 {
666   /* Extend this prime list if you want more granularity of hash table size.  */
667   static const unsigned long hash_size_primes[] =
668     {
669       31, 61, 127, 251, 509, 1021, 2039, 4091, 8191, 16381, 32749, 65537
670     };
671   unsigned int _index;
672 
673   /* Work out best prime number near the hash_size.  */
674   for (_index = 0; _index < ARRAY_SIZE (hash_size_primes) - 1; ++_index)
675     if (hash_size <= hash_size_primes[_index])
676       break;
677 
678   bfd_default_hash_table_size = hash_size_primes[_index];
679   return bfd_default_hash_table_size;
680 }
681 
682 /* A few different object file formats (a.out, COFF, ELF) use a string
683    table.  These functions support adding strings to a string table,
684    returning the byte offset, and writing out the table.
685 
686    Possible improvements:
687    + look for strings matching trailing substrings of other strings
688    + better data structures?  balanced trees?
689    + look at reducing memory use elsewhere -- maybe if we didn't have
690      to construct the entire symbol table at once, we could get by
691      with smaller amounts of VM?  (What effect does that have on the
692      string table reductions?)  */
693 
694 /* An entry in the strtab hash table.  */
695 
696 struct strtab_hash_entry
697 {
698   struct bfd_hash_entry root;
699   /* Index in string table.  */
700   bfd_size_type index;
701   /* Next string in strtab.  */
702   struct strtab_hash_entry *next;
703 };
704 
705 /* The strtab hash table.  */
706 
707 struct bfd_strtab_hash
708 {
709   struct bfd_hash_table table;
710   /* Size of strtab--also next available index.  */
711   bfd_size_type size;
712   /* First string in strtab.  */
713   struct strtab_hash_entry *first;
714   /* Last string in strtab.  */
715   struct strtab_hash_entry *last;
716   /* Whether to precede strings with a two byte length, as in the
717      XCOFF .debug section.  */
718   bfd_boolean xcoff;
719 };
720 
721 /* Routine to create an entry in a strtab.  */
722 
723 static struct bfd_hash_entry *
724 strtab_hash_newfunc (struct bfd_hash_entry *entry,
725 		     struct bfd_hash_table *table,
726 		     const char *string)
727 {
728   struct strtab_hash_entry *ret = (struct strtab_hash_entry *) entry;
729 
730   /* Allocate the structure if it has not already been allocated by a
731      subclass.  */
732   if (ret == NULL)
733     ret = (struct strtab_hash_entry *) bfd_hash_allocate (table,
734                                                           sizeof (* ret));
735   if (ret == NULL)
736     return NULL;
737 
738   /* Call the allocation method of the superclass.  */
739   ret = (struct strtab_hash_entry *)
740 	 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string);
741 
742   if (ret)
743     {
744       /* Initialize the local fields.  */
745       ret->index = (bfd_size_type) -1;
746       ret->next = NULL;
747     }
748 
749   return (struct bfd_hash_entry *) ret;
750 }
751 
752 /* Look up an entry in an strtab.  */
753 
754 #define strtab_hash_lookup(t, string, create, copy) \
755   ((struct strtab_hash_entry *) \
756    bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
757 
758 /* Create a new strtab.  */
759 
760 struct bfd_strtab_hash *
761 _bfd_stringtab_init (void)
762 {
763   struct bfd_strtab_hash *table;
764   bfd_size_type amt = sizeof (* table);
765 
766   table = (struct bfd_strtab_hash *) bfd_malloc (amt);
767   if (table == NULL)
768     return NULL;
769 
770   if (!bfd_hash_table_init (&table->table, strtab_hash_newfunc,
771 			    sizeof (struct strtab_hash_entry)))
772     {
773       free (table);
774       return NULL;
775     }
776 
777   table->size = 0;
778   table->first = NULL;
779   table->last = NULL;
780   table->xcoff = FALSE;
781 
782   return table;
783 }
784 
785 /* Create a new strtab in which the strings are output in the format
786    used in the XCOFF .debug section: a two byte length precedes each
787    string.  */
788 
789 struct bfd_strtab_hash *
790 _bfd_xcoff_stringtab_init (void)
791 {
792   struct bfd_strtab_hash *ret;
793 
794   ret = _bfd_stringtab_init ();
795   if (ret != NULL)
796     ret->xcoff = TRUE;
797   return ret;
798 }
799 
800 /* Free a strtab.  */
801 
802 void
803 _bfd_stringtab_free (struct bfd_strtab_hash *table)
804 {
805   bfd_hash_table_free (&table->table);
806   free (table);
807 }
808 
809 /* Get the index of a string in a strtab, adding it if it is not
810    already present.  If HASH is FALSE, we don't really use the hash
811    table, and we don't eliminate duplicate strings.  */
812 
813 bfd_size_type
814 _bfd_stringtab_add (struct bfd_strtab_hash *tab,
815 		    const char *str,
816 		    bfd_boolean hash,
817 		    bfd_boolean copy)
818 {
819   struct strtab_hash_entry *entry;
820 
821   if (hash)
822     {
823       entry = strtab_hash_lookup (tab, str, TRUE, copy);
824       if (entry == NULL)
825 	return (bfd_size_type) -1;
826     }
827   else
828     {
829       entry = (struct strtab_hash_entry *) bfd_hash_allocate (&tab->table,
830                                                               sizeof (* entry));
831       if (entry == NULL)
832 	return (bfd_size_type) -1;
833       if (! copy)
834 	entry->root.string = str;
835       else
836 	{
837 	  char *n;
838 
839 	  n = (char *) bfd_hash_allocate (&tab->table, strlen (str) + 1);
840 	  if (n == NULL)
841 	    return (bfd_size_type) -1;
842 	  entry->root.string = n;
843 	}
844       entry->index = (bfd_size_type) -1;
845       entry->next = NULL;
846     }
847 
848   if (entry->index == (bfd_size_type) -1)
849     {
850       entry->index = tab->size;
851       tab->size += strlen (str) + 1;
852       if (tab->xcoff)
853 	{
854 	  entry->index += 2;
855 	  tab->size += 2;
856 	}
857       if (tab->first == NULL)
858 	tab->first = entry;
859       else
860 	tab->last->next = entry;
861       tab->last = entry;
862     }
863 
864   return entry->index;
865 }
866 
867 /* Get the number of bytes in a strtab.  */
868 
869 bfd_size_type
870 _bfd_stringtab_size (struct bfd_strtab_hash *tab)
871 {
872   return tab->size;
873 }
874 
875 /* Write out a strtab.  ABFD must already be at the right location in
876    the file.  */
877 
878 bfd_boolean
879 _bfd_stringtab_emit (bfd *abfd, struct bfd_strtab_hash *tab)
880 {
881   bfd_boolean xcoff;
882   struct strtab_hash_entry *entry;
883 
884   xcoff = tab->xcoff;
885 
886   for (entry = tab->first; entry != NULL; entry = entry->next)
887     {
888       const char *str;
889       size_t len;
890 
891       str = entry->root.string;
892       len = strlen (str) + 1;
893 
894       if (xcoff)
895 	{
896 	  bfd_byte buf[2];
897 
898 	  /* The output length includes the null byte.  */
899 	  bfd_put_16 (abfd, (bfd_vma) len, buf);
900 	  if (bfd_bwrite ((void *) buf, (bfd_size_type) 2, abfd) != 2)
901 	    return FALSE;
902 	}
903 
904       if (bfd_bwrite ((void *) str, (bfd_size_type) len, abfd) != len)
905 	return FALSE;
906     }
907 
908   return TRUE;
909 }
910