xref: /dragonfly/contrib/gdb-7/bfd/linker.c (revision 0fe46dc6)
1 /* linker.c -- BFD linker routines
2    Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3    2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4    Free Software Foundation, Inc.
5    Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
6 
7    This file is part of BFD, the Binary File Descriptor library.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; if not, write to the Free Software
21    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22    MA 02110-1301, USA.  */
23 
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "libbfd.h"
27 #include "bfdlink.h"
28 #include "genlink.h"
29 
30 /*
31 SECTION
32 	Linker Functions
33 
34 @cindex Linker
35 	The linker uses three special entry points in the BFD target
36 	vector.  It is not necessary to write special routines for
37 	these entry points when creating a new BFD back end, since
38 	generic versions are provided.  However, writing them can
39 	speed up linking and make it use significantly less runtime
40 	memory.
41 
42 	The first routine creates a hash table used by the other
43 	routines.  The second routine adds the symbols from an object
44 	file to the hash table.  The third routine takes all the
45 	object files and links them together to create the output
46 	file.  These routines are designed so that the linker proper
47 	does not need to know anything about the symbols in the object
48 	files that it is linking.  The linker merely arranges the
49 	sections as directed by the linker script and lets BFD handle
50 	the details of symbols and relocs.
51 
52 	The second routine and third routines are passed a pointer to
53 	a <<struct bfd_link_info>> structure (defined in
54 	<<bfdlink.h>>) which holds information relevant to the link,
55 	including the linker hash table (which was created by the
56 	first routine) and a set of callback functions to the linker
57 	proper.
58 
59 	The generic linker routines are in <<linker.c>>, and use the
60 	header file <<genlink.h>>.  As of this writing, the only back
61 	ends which have implemented versions of these routines are
62 	a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>).  The a.out
63 	routines are used as examples throughout this section.
64 
65 @menu
66 @* Creating a Linker Hash Table::
67 @* Adding Symbols to the Hash Table::
68 @* Performing the Final Link::
69 @end menu
70 
71 INODE
72 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
73 SUBSECTION
74 	Creating a linker hash table
75 
76 @cindex _bfd_link_hash_table_create in target vector
77 @cindex target vector (_bfd_link_hash_table_create)
78 	The linker routines must create a hash table, which must be
79 	derived from <<struct bfd_link_hash_table>> described in
80 	<<bfdlink.c>>.  @xref{Hash Tables}, for information on how to
81 	create a derived hash table.  This entry point is called using
82 	the target vector of the linker output file.
83 
84 	The <<_bfd_link_hash_table_create>> entry point must allocate
85 	and initialize an instance of the desired hash table.  If the
86 	back end does not require any additional information to be
87 	stored with the entries in the hash table, the entry point may
88 	simply create a <<struct bfd_link_hash_table>>.  Most likely,
89 	however, some additional information will be needed.
90 
91 	For example, with each entry in the hash table the a.out
92 	linker keeps the index the symbol has in the final output file
93 	(this index number is used so that when doing a relocatable
94 	link the symbol index used in the output file can be quickly
95 	filled in when copying over a reloc).  The a.out linker code
96 	defines the required structures and functions for a hash table
97 	derived from <<struct bfd_link_hash_table>>.  The a.out linker
98 	hash table is created by the function
99 	<<NAME(aout,link_hash_table_create)>>; it simply allocates
100 	space for the hash table, initializes it, and returns a
101 	pointer to it.
102 
103 	When writing the linker routines for a new back end, you will
104 	generally not know exactly which fields will be required until
105 	you have finished.  You should simply create a new hash table
106 	which defines no additional fields, and then simply add fields
107 	as they become necessary.
108 
109 INODE
110 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
111 SUBSECTION
112 	Adding symbols to the hash table
113 
114 @cindex _bfd_link_add_symbols in target vector
115 @cindex target vector (_bfd_link_add_symbols)
116 	The linker proper will call the <<_bfd_link_add_symbols>>
117 	entry point for each object file or archive which is to be
118 	linked (typically these are the files named on the command
119 	line, but some may also come from the linker script).  The
120 	entry point is responsible for examining the file.  For an
121 	object file, BFD must add any relevant symbol information to
122 	the hash table.  For an archive, BFD must determine which
123 	elements of the archive should be used and adding them to the
124 	link.
125 
126 	The a.out version of this entry point is
127 	<<NAME(aout,link_add_symbols)>>.
128 
129 @menu
130 @* Differing file formats::
131 @* Adding symbols from an object file::
132 @* Adding symbols from an archive::
133 @end menu
134 
135 INODE
136 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
137 SUBSUBSECTION
138 	Differing file formats
139 
140 	Normally all the files involved in a link will be of the same
141 	format, but it is also possible to link together different
142 	format object files, and the back end must support that.  The
143 	<<_bfd_link_add_symbols>> entry point is called via the target
144 	vector of the file to be added.  This has an important
145 	consequence: the function may not assume that the hash table
146 	is the type created by the corresponding
147 	<<_bfd_link_hash_table_create>> vector.  All the
148 	<<_bfd_link_add_symbols>> function can assume about the hash
149 	table is that it is derived from <<struct
150 	bfd_link_hash_table>>.
151 
152 	Sometimes the <<_bfd_link_add_symbols>> function must store
153 	some information in the hash table entry to be used by the
154 	<<_bfd_final_link>> function.  In such a case the output bfd
155 	xvec must be checked to make sure that the hash table was
156 	created by an object file of the same format.
157 
158 	The <<_bfd_final_link>> routine must be prepared to handle a
159 	hash entry without any extra information added by the
160 	<<_bfd_link_add_symbols>> function.  A hash entry without
161 	extra information will also occur when the linker script
162 	directs the linker to create a symbol.  Note that, regardless
163 	of how a hash table entry is added, all the fields will be
164 	initialized to some sort of null value by the hash table entry
165 	initialization function.
166 
167 	See <<ecoff_link_add_externals>> for an example of how to
168 	check the output bfd before saving information (in this
169 	case, the ECOFF external symbol debugging information) in a
170 	hash table entry.
171 
172 INODE
173 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
174 SUBSUBSECTION
175 	Adding symbols from an object file
176 
177 	When the <<_bfd_link_add_symbols>> routine is passed an object
178 	file, it must add all externally visible symbols in that
179 	object file to the hash table.  The actual work of adding the
180 	symbol to the hash table is normally handled by the function
181 	<<_bfd_generic_link_add_one_symbol>>.  The
182 	<<_bfd_link_add_symbols>> routine is responsible for reading
183 	all the symbols from the object file and passing the correct
184 	information to <<_bfd_generic_link_add_one_symbol>>.
185 
186 	The <<_bfd_link_add_symbols>> routine should not use
187 	<<bfd_canonicalize_symtab>> to read the symbols.  The point of
188 	providing this routine is to avoid the overhead of converting
189 	the symbols into generic <<asymbol>> structures.
190 
191 @findex _bfd_generic_link_add_one_symbol
192 	<<_bfd_generic_link_add_one_symbol>> handles the details of
193 	combining common symbols, warning about multiple definitions,
194 	and so forth.  It takes arguments which describe the symbol to
195 	add, notably symbol flags, a section, and an offset.  The
196 	symbol flags include such things as <<BSF_WEAK>> or
197 	<<BSF_INDIRECT>>.  The section is a section in the object
198 	file, or something like <<bfd_und_section_ptr>> for an undefined
199 	symbol or <<bfd_com_section_ptr>> for a common symbol.
200 
201 	If the <<_bfd_final_link>> routine is also going to need to
202 	read the symbol information, the <<_bfd_link_add_symbols>>
203 	routine should save it somewhere attached to the object file
204 	BFD.  However, the information should only be saved if the
205 	<<keep_memory>> field of the <<info>> argument is TRUE, so
206 	that the <<-no-keep-memory>> linker switch is effective.
207 
208 	The a.out function which adds symbols from an object file is
209 	<<aout_link_add_object_symbols>>, and most of the interesting
210 	work is in <<aout_link_add_symbols>>.  The latter saves
211 	pointers to the hash tables entries created by
212 	<<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
213 	so that the <<_bfd_final_link>> routine does not have to call
214 	the hash table lookup routine to locate the entry.
215 
216 INODE
217 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
218 SUBSUBSECTION
219 	Adding symbols from an archive
220 
221 	When the <<_bfd_link_add_symbols>> routine is passed an
222 	archive, it must look through the symbols defined by the
223 	archive and decide which elements of the archive should be
224 	included in the link.  For each such element it must call the
225 	<<add_archive_element>> linker callback, and it must add the
226 	symbols from the object file to the linker hash table.  (The
227 	callback may in fact indicate that a replacement BFD should be
228 	used, in which case the symbols from that BFD should be added
229 	to the linker hash table instead.)
230 
231 @findex _bfd_generic_link_add_archive_symbols
232 	In most cases the work of looking through the symbols in the
233 	archive should be done by the
234 	<<_bfd_generic_link_add_archive_symbols>> function.  This
235 	function builds a hash table from the archive symbol table and
236 	looks through the list of undefined symbols to see which
237 	elements should be included.
238 	<<_bfd_generic_link_add_archive_symbols>> is passed a function
239 	to call to make the final decision about adding an archive
240 	element to the link and to do the actual work of adding the
241 	symbols to the linker hash table.
242 
243 	The function passed to
244 	<<_bfd_generic_link_add_archive_symbols>> must read the
245 	symbols of the archive element and decide whether the archive
246 	element should be included in the link.  If the element is to
247 	be included, the <<add_archive_element>> linker callback
248 	routine must be called with the element as an argument, and
249 	the element's symbols must be added to the linker hash table
250 	just as though the element had itself been passed to the
251 	<<_bfd_link_add_symbols>> function.  The <<add_archive_element>>
252 	callback has the option to indicate that it would like to
253 	replace the element archive with a substitute BFD, in which
254 	case it is the symbols of that substitute BFD that must be
255 	added to the linker hash table instead.
256 
257 	When the a.out <<_bfd_link_add_symbols>> function receives an
258 	archive, it calls <<_bfd_generic_link_add_archive_symbols>>
259 	passing <<aout_link_check_archive_element>> as the function
260 	argument. <<aout_link_check_archive_element>> calls
261 	<<aout_link_check_ar_symbols>>.  If the latter decides to add
262 	the element (an element is only added if it provides a real,
263 	non-common, definition for a previously undefined or common
264 	symbol) it calls the <<add_archive_element>> callback and then
265 	<<aout_link_check_archive_element>> calls
266 	<<aout_link_add_symbols>> to actually add the symbols to the
267 	linker hash table - possibly those of a substitute BFD, if the
268 	<<add_archive_element>> callback avails itself of that option.
269 
270 	The ECOFF back end is unusual in that it does not normally
271 	call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
272 	archives already contain a hash table of symbols.  The ECOFF
273 	back end searches the archive itself to avoid the overhead of
274 	creating a new hash table.
275 
276 INODE
277 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
278 SUBSECTION
279 	Performing the final link
280 
281 @cindex _bfd_link_final_link in target vector
282 @cindex target vector (_bfd_final_link)
283 	When all the input files have been processed, the linker calls
284 	the <<_bfd_final_link>> entry point of the output BFD.  This
285 	routine is responsible for producing the final output file,
286 	which has several aspects.  It must relocate the contents of
287 	the input sections and copy the data into the output sections.
288 	It must build an output symbol table including any local
289 	symbols from the input files and the global symbols from the
290 	hash table.  When producing relocatable output, it must
291 	modify the input relocs and write them into the output file.
292 	There may also be object format dependent work to be done.
293 
294 	The linker will also call the <<write_object_contents>> entry
295 	point when the BFD is closed.  The two entry points must work
296 	together in order to produce the correct output file.
297 
298 	The details of how this works are inevitably dependent upon
299 	the specific object file format.  The a.out
300 	<<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
301 
302 @menu
303 @* Information provided by the linker::
304 @* Relocating the section contents::
305 @* Writing the symbol table::
306 @end menu
307 
308 INODE
309 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
310 SUBSUBSECTION
311 	Information provided by the linker
312 
313 	Before the linker calls the <<_bfd_final_link>> entry point,
314 	it sets up some data structures for the function to use.
315 
316 	The <<input_bfds>> field of the <<bfd_link_info>> structure
317 	will point to a list of all the input files included in the
318 	link.  These files are linked through the <<link_next>> field
319 	of the <<bfd>> structure.
320 
321 	Each section in the output file will have a list of
322 	<<link_order>> structures attached to the <<map_head.link_order>>
323 	field (the <<link_order>> structure is defined in
324 	<<bfdlink.h>>).  These structures describe how to create the
325 	contents of the output section in terms of the contents of
326 	various input sections, fill constants, and, eventually, other
327 	types of information.  They also describe relocs that must be
328 	created by the BFD backend, but do not correspond to any input
329 	file; this is used to support -Ur, which builds constructors
330 	while generating a relocatable object file.
331 
332 INODE
333 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
334 SUBSUBSECTION
335 	Relocating the section contents
336 
337 	The <<_bfd_final_link>> function should look through the
338 	<<link_order>> structures attached to each section of the
339 	output file.  Each <<link_order>> structure should either be
340 	handled specially, or it should be passed to the function
341 	<<_bfd_default_link_order>> which will do the right thing
342 	(<<_bfd_default_link_order>> is defined in <<linker.c>>).
343 
344 	For efficiency, a <<link_order>> of type
345 	<<bfd_indirect_link_order>> whose associated section belongs
346 	to a BFD of the same format as the output BFD must be handled
347 	specially.  This type of <<link_order>> describes part of an
348 	output section in terms of a section belonging to one of the
349 	input files.  The <<_bfd_final_link>> function should read the
350 	contents of the section and any associated relocs, apply the
351 	relocs to the section contents, and write out the modified
352 	section contents.  If performing a relocatable link, the
353 	relocs themselves must also be modified and written out.
354 
355 @findex _bfd_relocate_contents
356 @findex _bfd_final_link_relocate
357 	The functions <<_bfd_relocate_contents>> and
358 	<<_bfd_final_link_relocate>> provide some general support for
359 	performing the actual relocations, notably overflow checking.
360 	Their arguments include information about the symbol the
361 	relocation is against and a <<reloc_howto_type>> argument
362 	which describes the relocation to perform.  These functions
363 	are defined in <<reloc.c>>.
364 
365 	The a.out function which handles reading, relocating, and
366 	writing section contents is <<aout_link_input_section>>.  The
367 	actual relocation is done in <<aout_link_input_section_std>>
368 	and <<aout_link_input_section_ext>>.
369 
370 INODE
371 Writing the symbol table, , Relocating the section contents, Performing the Final Link
372 SUBSUBSECTION
373 	Writing the symbol table
374 
375 	The <<_bfd_final_link>> function must gather all the symbols
376 	in the input files and write them out.  It must also write out
377 	all the symbols in the global hash table.  This must be
378 	controlled by the <<strip>> and <<discard>> fields of the
379 	<<bfd_link_info>> structure.
380 
381 	The local symbols of the input files will not have been
382 	entered into the linker hash table.  The <<_bfd_final_link>>
383 	routine must consider each input file and include the symbols
384 	in the output file.  It may be convenient to do this when
385 	looking through the <<link_order>> structures, or it may be
386 	done by stepping through the <<input_bfds>> list.
387 
388 	The <<_bfd_final_link>> routine must also traverse the global
389 	hash table to gather all the externally visible symbols.  It
390 	is possible that most of the externally visible symbols may be
391 	written out when considering the symbols of each input file,
392 	but it is still necessary to traverse the hash table since the
393 	linker script may have defined some symbols that are not in
394 	any of the input files.
395 
396 	The <<strip>> field of the <<bfd_link_info>> structure
397 	controls which symbols are written out.  The possible values
398 	are listed in <<bfdlink.h>>.  If the value is <<strip_some>>,
399 	then the <<keep_hash>> field of the <<bfd_link_info>>
400 	structure is a hash table of symbols to keep; each symbol
401 	should be looked up in this hash table, and only symbols which
402 	are present should be included in the output file.
403 
404 	If the <<strip>> field of the <<bfd_link_info>> structure
405 	permits local symbols to be written out, the <<discard>> field
406 	is used to further controls which local symbols are included
407 	in the output file.  If the value is <<discard_l>>, then all
408 	local symbols which begin with a certain prefix are discarded;
409 	this is controlled by the <<bfd_is_local_label_name>> entry point.
410 
411 	The a.out backend handles symbols by calling
412 	<<aout_link_write_symbols>> on each input BFD and then
413 	traversing the global hash table with the function
414 	<<aout_link_write_other_symbol>>.  It builds a string table
415 	while writing out the symbols, which is written to the output
416 	file at the end of <<NAME(aout,final_link)>>.
417 */
418 
419 static bfd_boolean generic_link_add_object_symbols
420   (bfd *, struct bfd_link_info *, bfd_boolean collect);
421 static bfd_boolean generic_link_add_symbols
422   (bfd *, struct bfd_link_info *, bfd_boolean);
423 static bfd_boolean generic_link_check_archive_element_no_collect
424   (bfd *, struct bfd_link_info *, bfd_boolean *);
425 static bfd_boolean generic_link_check_archive_element_collect
426   (bfd *, struct bfd_link_info *, bfd_boolean *);
427 static bfd_boolean generic_link_check_archive_element
428   (bfd *, struct bfd_link_info *, bfd_boolean *, bfd_boolean);
429 static bfd_boolean generic_link_add_symbol_list
430   (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
431    bfd_boolean);
432 static bfd_boolean generic_add_output_symbol
433   (bfd *, size_t *psymalloc, asymbol *);
434 static bfd_boolean default_data_link_order
435   (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
436 static bfd_boolean default_indirect_link_order
437   (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
438    bfd_boolean);
439 
440 /* The link hash table structure is defined in bfdlink.h.  It provides
441    a base hash table which the backend specific hash tables are built
442    upon.  */
443 
444 /* Routine to create an entry in the link hash table.  */
445 
446 struct bfd_hash_entry *
447 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
448 			struct bfd_hash_table *table,
449 			const char *string)
450 {
451   /* Allocate the structure if it has not already been allocated by a
452      subclass.  */
453   if (entry == NULL)
454     {
455       entry = (struct bfd_hash_entry *)
456           bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
457       if (entry == NULL)
458 	return entry;
459     }
460 
461   /* Call the allocation method of the superclass.  */
462   entry = bfd_hash_newfunc (entry, table, string);
463   if (entry)
464     {
465       struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
466 
467       /* Initialize the local fields.  */
468       memset ((char *) &h->root + sizeof (h->root), 0,
469 	      sizeof (*h) - sizeof (h->root));
470     }
471 
472   return entry;
473 }
474 
475 /* Initialize a link hash table.  The BFD argument is the one
476    responsible for creating this table.  */
477 
478 bfd_boolean
479 _bfd_link_hash_table_init
480   (struct bfd_link_hash_table *table,
481    bfd *abfd ATTRIBUTE_UNUSED,
482    struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
483 				      struct bfd_hash_table *,
484 				      const char *),
485    unsigned int entsize)
486 {
487   table->undefs = NULL;
488   table->undefs_tail = NULL;
489   table->type = bfd_link_generic_hash_table;
490 
491   return bfd_hash_table_init (&table->table, newfunc, entsize);
492 }
493 
494 /* Look up a symbol in a link hash table.  If follow is TRUE, we
495    follow bfd_link_hash_indirect and bfd_link_hash_warning links to
496    the real symbol.  */
497 
498 struct bfd_link_hash_entry *
499 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
500 		      const char *string,
501 		      bfd_boolean create,
502 		      bfd_boolean copy,
503 		      bfd_boolean follow)
504 {
505   struct bfd_link_hash_entry *ret;
506 
507   ret = ((struct bfd_link_hash_entry *)
508 	 bfd_hash_lookup (&table->table, string, create, copy));
509 
510   if (follow && ret != NULL)
511     {
512       while (ret->type == bfd_link_hash_indirect
513 	     || ret->type == bfd_link_hash_warning)
514 	ret = ret->u.i.link;
515     }
516 
517   return ret;
518 }
519 
520 /* Look up a symbol in the main linker hash table if the symbol might
521    be wrapped.  This should only be used for references to an
522    undefined symbol, not for definitions of a symbol.  */
523 
524 struct bfd_link_hash_entry *
525 bfd_wrapped_link_hash_lookup (bfd *abfd,
526 			      struct bfd_link_info *info,
527 			      const char *string,
528 			      bfd_boolean create,
529 			      bfd_boolean copy,
530 			      bfd_boolean follow)
531 {
532   bfd_size_type amt;
533 
534   if (info->wrap_hash != NULL)
535     {
536       const char *l;
537       char prefix = '\0';
538 
539       l = string;
540       if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
541 	{
542 	  prefix = *l;
543 	  ++l;
544 	}
545 
546 #undef WRAP
547 #define WRAP "__wrap_"
548 
549       if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
550 	{
551 	  char *n;
552 	  struct bfd_link_hash_entry *h;
553 
554 	  /* This symbol is being wrapped.  We want to replace all
555              references to SYM with references to __wrap_SYM.  */
556 
557 	  amt = strlen (l) + sizeof WRAP + 1;
558 	  n = (char *) bfd_malloc (amt);
559 	  if (n == NULL)
560 	    return NULL;
561 
562 	  n[0] = prefix;
563 	  n[1] = '\0';
564 	  strcat (n, WRAP);
565 	  strcat (n, l);
566 	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
567 	  free (n);
568 	  return h;
569 	}
570 
571 #undef WRAP
572 
573 #undef  REAL
574 #define REAL "__real_"
575 
576       if (*l == '_'
577 	  && CONST_STRNEQ (l, REAL)
578 	  && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
579 			      FALSE, FALSE) != NULL)
580 	{
581 	  char *n;
582 	  struct bfd_link_hash_entry *h;
583 
584 	  /* This is a reference to __real_SYM, where SYM is being
585              wrapped.  We want to replace all references to __real_SYM
586              with references to SYM.  */
587 
588 	  amt = strlen (l + sizeof REAL - 1) + 2;
589 	  n = (char *) bfd_malloc (amt);
590 	  if (n == NULL)
591 	    return NULL;
592 
593 	  n[0] = prefix;
594 	  n[1] = '\0';
595 	  strcat (n, l + sizeof REAL - 1);
596 	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
597 	  free (n);
598 	  return h;
599 	}
600 
601 #undef REAL
602     }
603 
604   return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
605 }
606 
607 /* Traverse a generic link hash table.  Differs from bfd_hash_traverse
608    in the treatment of warning symbols.  When warning symbols are
609    created they replace the real symbol, so you don't get to see the
610    real symbol in a bfd_hash_travere.  This traversal calls func with
611    the real symbol.  */
612 
613 void
614 bfd_link_hash_traverse
615   (struct bfd_link_hash_table *htab,
616    bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
617    void *info)
618 {
619   unsigned int i;
620 
621   htab->table.frozen = 1;
622   for (i = 0; i < htab->table.size; i++)
623     {
624       struct bfd_link_hash_entry *p;
625 
626       p = (struct bfd_link_hash_entry *) htab->table.table[i];
627       for (; p != NULL; p = (struct bfd_link_hash_entry *) p->root.next)
628 	if (!(*func) (p->type == bfd_link_hash_warning ? p->u.i.link : p, info))
629 	  goto out;
630     }
631  out:
632   htab->table.frozen = 0;
633 }
634 
635 /* Add a symbol to the linker hash table undefs list.  */
636 
637 void
638 bfd_link_add_undef (struct bfd_link_hash_table *table,
639 		    struct bfd_link_hash_entry *h)
640 {
641   BFD_ASSERT (h->u.undef.next == NULL);
642   if (table->undefs_tail != NULL)
643     table->undefs_tail->u.undef.next = h;
644   if (table->undefs == NULL)
645     table->undefs = h;
646   table->undefs_tail = h;
647 }
648 
649 /* The undefs list was designed so that in normal use we don't need to
650    remove entries.  However, if symbols on the list are changed from
651    bfd_link_hash_undefined to either bfd_link_hash_undefweak or
652    bfd_link_hash_new for some reason, then they must be removed from the
653    list.  Failure to do so might result in the linker attempting to add
654    the symbol to the list again at a later stage.  */
655 
656 void
657 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
658 {
659   struct bfd_link_hash_entry **pun;
660 
661   pun = &table->undefs;
662   while (*pun != NULL)
663     {
664       struct bfd_link_hash_entry *h = *pun;
665 
666       if (h->type == bfd_link_hash_new
667 	  || h->type == bfd_link_hash_undefweak)
668 	{
669 	  *pun = h->u.undef.next;
670 	  h->u.undef.next = NULL;
671 	  if (h == table->undefs_tail)
672 	    {
673 	      if (pun == &table->undefs)
674 		table->undefs_tail = NULL;
675 	      else
676 		/* pun points at an u.undef.next field.  Go back to
677 		   the start of the link_hash_entry.  */
678 		table->undefs_tail = (struct bfd_link_hash_entry *)
679 		  ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
680 	      break;
681 	    }
682 	}
683       else
684 	pun = &h->u.undef.next;
685     }
686 }
687 
688 /* Routine to create an entry in a generic link hash table.  */
689 
690 struct bfd_hash_entry *
691 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
692 				struct bfd_hash_table *table,
693 				const char *string)
694 {
695   /* Allocate the structure if it has not already been allocated by a
696      subclass.  */
697   if (entry == NULL)
698     {
699       entry = (struct bfd_hash_entry *)
700 	bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
701       if (entry == NULL)
702 	return entry;
703     }
704 
705   /* Call the allocation method of the superclass.  */
706   entry = _bfd_link_hash_newfunc (entry, table, string);
707   if (entry)
708     {
709       struct generic_link_hash_entry *ret;
710 
711       /* Set local fields.  */
712       ret = (struct generic_link_hash_entry *) entry;
713       ret->written = FALSE;
714       ret->sym = NULL;
715     }
716 
717   return entry;
718 }
719 
720 /* Create a generic link hash table.  */
721 
722 struct bfd_link_hash_table *
723 _bfd_generic_link_hash_table_create (bfd *abfd)
724 {
725   struct generic_link_hash_table *ret;
726   bfd_size_type amt = sizeof (struct generic_link_hash_table);
727 
728   ret = (struct generic_link_hash_table *) bfd_malloc (amt);
729   if (ret == NULL)
730     return NULL;
731   if (! _bfd_link_hash_table_init (&ret->root, abfd,
732 				   _bfd_generic_link_hash_newfunc,
733 				   sizeof (struct generic_link_hash_entry)))
734     {
735       free (ret);
736       return NULL;
737     }
738   return &ret->root;
739 }
740 
741 void
742 _bfd_generic_link_hash_table_free (struct bfd_link_hash_table *hash)
743 {
744   struct generic_link_hash_table *ret
745     = (struct generic_link_hash_table *) hash;
746 
747   bfd_hash_table_free (&ret->root.table);
748   free (ret);
749 }
750 
751 /* Grab the symbols for an object file when doing a generic link.  We
752    store the symbols in the outsymbols field.  We need to keep them
753    around for the entire link to ensure that we only read them once.
754    If we read them multiple times, we might wind up with relocs and
755    the hash table pointing to different instances of the symbol
756    structure.  */
757 
758 bfd_boolean
759 bfd_generic_link_read_symbols (bfd *abfd)
760 {
761   if (bfd_get_outsymbols (abfd) == NULL)
762     {
763       long symsize;
764       long symcount;
765 
766       symsize = bfd_get_symtab_upper_bound (abfd);
767       if (symsize < 0)
768 	return FALSE;
769       bfd_get_outsymbols (abfd) = (struct bfd_symbol **) bfd_alloc (abfd,
770                                                                     symsize);
771       if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
772 	return FALSE;
773       symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
774       if (symcount < 0)
775 	return FALSE;
776       bfd_get_symcount (abfd) = symcount;
777     }
778 
779   return TRUE;
780 }
781 
782 /* Generic function to add symbols to from an object file to the
783    global hash table.  This version does not automatically collect
784    constructors by name.  */
785 
786 bfd_boolean
787 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
788 {
789   return generic_link_add_symbols (abfd, info, FALSE);
790 }
791 
792 /* Generic function to add symbols from an object file to the global
793    hash table.  This version automatically collects constructors by
794    name, as the collect2 program does.  It should be used for any
795    target which does not provide some other mechanism for setting up
796    constructors and destructors; these are approximately those targets
797    for which gcc uses collect2 and do not support stabs.  */
798 
799 bfd_boolean
800 _bfd_generic_link_add_symbols_collect (bfd *abfd, struct bfd_link_info *info)
801 {
802   return generic_link_add_symbols (abfd, info, TRUE);
803 }
804 
805 /* Indicate that we are only retrieving symbol values from this
806    section.  We want the symbols to act as though the values in the
807    file are absolute.  */
808 
809 void
810 _bfd_generic_link_just_syms (asection *sec,
811 			     struct bfd_link_info *info ATTRIBUTE_UNUSED)
812 {
813   sec->sec_info_type = SEC_INFO_TYPE_JUST_SYMS;
814   sec->output_section = bfd_abs_section_ptr;
815   sec->output_offset = sec->vma;
816 }
817 
818 /* Copy the type of a symbol assiciated with a linker hast table entry.
819    Override this so that symbols created in linker scripts get their
820    type from the RHS of the assignment.
821    The default implementation does nothing.  */
822 void
823 _bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
824     struct bfd_link_hash_entry * hdest ATTRIBUTE_UNUSED,
825     struct bfd_link_hash_entry * hsrc ATTRIBUTE_UNUSED)
826 {
827 }
828 
829 /* Add symbols from an object file to the global hash table.  */
830 
831 static bfd_boolean
832 generic_link_add_symbols (bfd *abfd,
833 			  struct bfd_link_info *info,
834 			  bfd_boolean collect)
835 {
836   bfd_boolean ret;
837 
838   switch (bfd_get_format (abfd))
839     {
840     case bfd_object:
841       ret = generic_link_add_object_symbols (abfd, info, collect);
842       break;
843     case bfd_archive:
844       ret = (_bfd_generic_link_add_archive_symbols
845 	     (abfd, info,
846 	      (collect
847 	       ? generic_link_check_archive_element_collect
848 	       : generic_link_check_archive_element_no_collect)));
849       break;
850     default:
851       bfd_set_error (bfd_error_wrong_format);
852       ret = FALSE;
853     }
854 
855   return ret;
856 }
857 
858 /* Add symbols from an object file to the global hash table.  */
859 
860 static bfd_boolean
861 generic_link_add_object_symbols (bfd *abfd,
862 				 struct bfd_link_info *info,
863 				 bfd_boolean collect)
864 {
865   bfd_size_type symcount;
866   struct bfd_symbol **outsyms;
867 
868   if (!bfd_generic_link_read_symbols (abfd))
869     return FALSE;
870   symcount = _bfd_generic_link_get_symcount (abfd);
871   outsyms = _bfd_generic_link_get_symbols (abfd);
872   return generic_link_add_symbol_list (abfd, info, symcount, outsyms, collect);
873 }
874 
875 /* We build a hash table of all symbols defined in an archive.  */
876 
877 /* An archive symbol may be defined by multiple archive elements.
878    This linked list is used to hold the elements.  */
879 
880 struct archive_list
881 {
882   struct archive_list *next;
883   unsigned int indx;
884 };
885 
886 /* An entry in an archive hash table.  */
887 
888 struct archive_hash_entry
889 {
890   struct bfd_hash_entry root;
891   /* Where the symbol is defined.  */
892   struct archive_list *defs;
893 };
894 
895 /* An archive hash table itself.  */
896 
897 struct archive_hash_table
898 {
899   struct bfd_hash_table table;
900 };
901 
902 /* Create a new entry for an archive hash table.  */
903 
904 static struct bfd_hash_entry *
905 archive_hash_newfunc (struct bfd_hash_entry *entry,
906 		      struct bfd_hash_table *table,
907 		      const char *string)
908 {
909   struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
910 
911   /* Allocate the structure if it has not already been allocated by a
912      subclass.  */
913   if (ret == NULL)
914     ret = (struct archive_hash_entry *)
915         bfd_hash_allocate (table, sizeof (struct archive_hash_entry));
916   if (ret == NULL)
917     return NULL;
918 
919   /* Call the allocation method of the superclass.  */
920   ret = ((struct archive_hash_entry *)
921 	 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
922 
923   if (ret)
924     {
925       /* Initialize the local fields.  */
926       ret->defs = NULL;
927     }
928 
929   return &ret->root;
930 }
931 
932 /* Initialize an archive hash table.  */
933 
934 static bfd_boolean
935 archive_hash_table_init
936   (struct archive_hash_table *table,
937    struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
938 				      struct bfd_hash_table *,
939 				      const char *),
940    unsigned int entsize)
941 {
942   return bfd_hash_table_init (&table->table, newfunc, entsize);
943 }
944 
945 /* Look up an entry in an archive hash table.  */
946 
947 #define archive_hash_lookup(t, string, create, copy) \
948   ((struct archive_hash_entry *) \
949    bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
950 
951 /* Allocate space in an archive hash table.  */
952 
953 #define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
954 
955 /* Free an archive hash table.  */
956 
957 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
958 
959 /* Generic function to add symbols from an archive file to the global
960    hash file.  This function presumes that the archive symbol table
961    has already been read in (this is normally done by the
962    bfd_check_format entry point).  It looks through the undefined and
963    common symbols and searches the archive symbol table for them.  If
964    it finds an entry, it includes the associated object file in the
965    link.
966 
967    The old linker looked through the archive symbol table for
968    undefined symbols.  We do it the other way around, looking through
969    undefined symbols for symbols defined in the archive.  The
970    advantage of the newer scheme is that we only have to look through
971    the list of undefined symbols once, whereas the old method had to
972    re-search the symbol table each time a new object file was added.
973 
974    The CHECKFN argument is used to see if an object file should be
975    included.  CHECKFN should set *PNEEDED to TRUE if the object file
976    should be included, and must also call the bfd_link_info
977    add_archive_element callback function and handle adding the symbols
978    to the global hash table.  CHECKFN must notice if the callback
979    indicates a substitute BFD, and arrange to add those symbols instead
980    if it does so.  CHECKFN should only return FALSE if some sort of
981    error occurs.
982 
983    For some formats, such as a.out, it is possible to look through an
984    object file but not actually include it in the link.  The
985    archive_pass field in a BFD is used to avoid checking the symbols
986    of an object files too many times.  When an object is included in
987    the link, archive_pass is set to -1.  If an object is scanned but
988    not included, archive_pass is set to the pass number.  The pass
989    number is incremented each time a new object file is included.  The
990    pass number is used because when a new object file is included it
991    may create new undefined symbols which cause a previously examined
992    object file to be included.  */
993 
994 bfd_boolean
995 _bfd_generic_link_add_archive_symbols
996   (bfd *abfd,
997    struct bfd_link_info *info,
998    bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *, bfd_boolean *))
999 {
1000   carsym *arsyms;
1001   carsym *arsym_end;
1002   register carsym *arsym;
1003   int pass;
1004   struct archive_hash_table arsym_hash;
1005   unsigned int indx;
1006   struct bfd_link_hash_entry **pundef;
1007 
1008   if (! bfd_has_map (abfd))
1009     {
1010       /* An empty archive is a special case.  */
1011       if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
1012 	return TRUE;
1013       bfd_set_error (bfd_error_no_armap);
1014       return FALSE;
1015     }
1016 
1017   arsyms = bfd_ardata (abfd)->symdefs;
1018   arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
1019 
1020   /* In order to quickly determine whether an symbol is defined in
1021      this archive, we build a hash table of the symbols.  */
1022   if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc,
1023 				 sizeof (struct archive_hash_entry)))
1024     return FALSE;
1025   for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
1026     {
1027       struct archive_hash_entry *arh;
1028       struct archive_list *l, **pp;
1029 
1030       arh = archive_hash_lookup (&arsym_hash, arsym->name, TRUE, FALSE);
1031       if (arh == NULL)
1032 	goto error_return;
1033       l = ((struct archive_list *)
1034 	   archive_hash_allocate (&arsym_hash, sizeof (struct archive_list)));
1035       if (l == NULL)
1036 	goto error_return;
1037       l->indx = indx;
1038       for (pp = &arh->defs; *pp != NULL; pp = &(*pp)->next)
1039 	;
1040       *pp = l;
1041       l->next = NULL;
1042     }
1043 
1044   /* The archive_pass field in the archive itself is used to
1045      initialize PASS, sine we may search the same archive multiple
1046      times.  */
1047   pass = abfd->archive_pass + 1;
1048 
1049   /* New undefined symbols are added to the end of the list, so we
1050      only need to look through it once.  */
1051   pundef = &info->hash->undefs;
1052   while (*pundef != NULL)
1053     {
1054       struct bfd_link_hash_entry *h;
1055       struct archive_hash_entry *arh;
1056       struct archive_list *l;
1057 
1058       h = *pundef;
1059 
1060       /* When a symbol is defined, it is not necessarily removed from
1061 	 the list.  */
1062       if (h->type != bfd_link_hash_undefined
1063 	  && h->type != bfd_link_hash_common)
1064 	{
1065 	  /* Remove this entry from the list, for general cleanliness
1066 	     and because we are going to look through the list again
1067 	     if we search any more libraries.  We can't remove the
1068 	     entry if it is the tail, because that would lose any
1069 	     entries we add to the list later on (it would also cause
1070 	     us to lose track of whether the symbol has been
1071 	     referenced).  */
1072 	  if (*pundef != info->hash->undefs_tail)
1073 	    *pundef = (*pundef)->u.undef.next;
1074 	  else
1075 	    pundef = &(*pundef)->u.undef.next;
1076 	  continue;
1077 	}
1078 
1079       /* Look for this symbol in the archive symbol map.  */
1080       arh = archive_hash_lookup (&arsym_hash, h->root.string, FALSE, FALSE);
1081       if (arh == NULL)
1082 	{
1083 	  /* If we haven't found the exact symbol we're looking for,
1084 	     let's look for its import thunk */
1085 	  if (info->pei386_auto_import)
1086 	    {
1087 	      bfd_size_type amt = strlen (h->root.string) + 10;
1088 	      char *buf = (char *) bfd_malloc (amt);
1089 	      if (buf == NULL)
1090 		return FALSE;
1091 
1092 	      sprintf (buf, "__imp_%s", h->root.string);
1093 	      arh = archive_hash_lookup (&arsym_hash, buf, FALSE, FALSE);
1094 	      free(buf);
1095 	    }
1096 	  if (arh == NULL)
1097 	    {
1098 	      pundef = &(*pundef)->u.undef.next;
1099 	      continue;
1100 	    }
1101 	}
1102       /* Look at all the objects which define this symbol.  */
1103       for (l = arh->defs; l != NULL; l = l->next)
1104 	{
1105 	  bfd *element;
1106 	  bfd_boolean needed;
1107 
1108 	  /* If the symbol has gotten defined along the way, quit.  */
1109 	  if (h->type != bfd_link_hash_undefined
1110 	      && h->type != bfd_link_hash_common)
1111 	    break;
1112 
1113 	  element = bfd_get_elt_at_index (abfd, l->indx);
1114 	  if (element == NULL)
1115 	    goto error_return;
1116 
1117 	  /* If we've already included this element, or if we've
1118 	     already checked it on this pass, continue.  */
1119 	  if (element->archive_pass == -1
1120 	      || element->archive_pass == pass)
1121 	    continue;
1122 
1123 	  /* If we can't figure this element out, just ignore it.  */
1124 	  if (! bfd_check_format (element, bfd_object))
1125 	    {
1126 	      element->archive_pass = -1;
1127 	      continue;
1128 	    }
1129 
1130 	  /* CHECKFN will see if this element should be included, and
1131 	     go ahead and include it if appropriate.  */
1132 	  if (! (*checkfn) (element, info, &needed))
1133 	    goto error_return;
1134 
1135 	  if (! needed)
1136 	    element->archive_pass = pass;
1137 	  else
1138 	    {
1139 	      element->archive_pass = -1;
1140 
1141 	      /* Increment the pass count to show that we may need to
1142 		 recheck object files which were already checked.  */
1143 	      ++pass;
1144 	    }
1145 	}
1146 
1147       pundef = &(*pundef)->u.undef.next;
1148     }
1149 
1150   archive_hash_table_free (&arsym_hash);
1151 
1152   /* Save PASS in case we are called again.  */
1153   abfd->archive_pass = pass;
1154 
1155   return TRUE;
1156 
1157  error_return:
1158   archive_hash_table_free (&arsym_hash);
1159   return FALSE;
1160 }
1161 
1162 /* See if we should include an archive element.  This version is used
1163    when we do not want to automatically collect constructors based on
1164    the symbol name, presumably because we have some other mechanism
1165    for finding them.  */
1166 
1167 static bfd_boolean
1168 generic_link_check_archive_element_no_collect (
1169 					       bfd *abfd,
1170 					       struct bfd_link_info *info,
1171 					       bfd_boolean *pneeded)
1172 {
1173   return generic_link_check_archive_element (abfd, info, pneeded, FALSE);
1174 }
1175 
1176 /* See if we should include an archive element.  This version is used
1177    when we want to automatically collect constructors based on the
1178    symbol name, as collect2 does.  */
1179 
1180 static bfd_boolean
1181 generic_link_check_archive_element_collect (bfd *abfd,
1182 					    struct bfd_link_info *info,
1183 					    bfd_boolean *pneeded)
1184 {
1185   return generic_link_check_archive_element (abfd, info, pneeded, TRUE);
1186 }
1187 
1188 /* See if we should include an archive element.  Optionally collect
1189    constructors.  */
1190 
1191 static bfd_boolean
1192 generic_link_check_archive_element (bfd *abfd,
1193 				    struct bfd_link_info *info,
1194 				    bfd_boolean *pneeded,
1195 				    bfd_boolean collect)
1196 {
1197   asymbol **pp, **ppend;
1198 
1199   *pneeded = FALSE;
1200 
1201   if (!bfd_generic_link_read_symbols (abfd))
1202     return FALSE;
1203 
1204   pp = _bfd_generic_link_get_symbols (abfd);
1205   ppend = pp + _bfd_generic_link_get_symcount (abfd);
1206   for (; pp < ppend; pp++)
1207     {
1208       asymbol *p;
1209       struct bfd_link_hash_entry *h;
1210 
1211       p = *pp;
1212 
1213       /* We are only interested in globally visible symbols.  */
1214       if (! bfd_is_com_section (p->section)
1215 	  && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1216 	continue;
1217 
1218       /* We are only interested if we know something about this
1219 	 symbol, and it is undefined or common.  An undefined weak
1220 	 symbol (type bfd_link_hash_undefweak) is not considered to be
1221 	 a reference when pulling files out of an archive.  See the
1222 	 SVR4 ABI, p. 4-27.  */
1223       h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1224 				FALSE, TRUE);
1225       if (h == NULL
1226 	  || (h->type != bfd_link_hash_undefined
1227 	      && h->type != bfd_link_hash_common))
1228 	continue;
1229 
1230       /* P is a symbol we are looking for.  */
1231 
1232       if (! bfd_is_com_section (p->section))
1233 	{
1234 	  bfd_size_type symcount;
1235 	  asymbol **symbols;
1236 	  bfd *oldbfd = abfd;
1237 
1238 	  /* This object file defines this symbol, so pull it in.  */
1239 	  if (!(*info->callbacks
1240 		->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1241 					&abfd))
1242 	    return FALSE;
1243 	  /* Potentially, the add_archive_element hook may have set a
1244 	     substitute BFD for us.  */
1245 	  if (abfd != oldbfd
1246 	      && !bfd_generic_link_read_symbols (abfd))
1247 	    return FALSE;
1248 	  symcount = _bfd_generic_link_get_symcount (abfd);
1249 	  symbols = _bfd_generic_link_get_symbols (abfd);
1250 	  if (! generic_link_add_symbol_list (abfd, info, symcount,
1251 					      symbols, collect))
1252 	    return FALSE;
1253 	  *pneeded = TRUE;
1254 	  return TRUE;
1255 	}
1256 
1257       /* P is a common symbol.  */
1258 
1259       if (h->type == bfd_link_hash_undefined)
1260 	{
1261 	  bfd *symbfd;
1262 	  bfd_vma size;
1263 	  unsigned int power;
1264 
1265 	  symbfd = h->u.undef.abfd;
1266 	  if (symbfd == NULL)
1267 	    {
1268 	      /* This symbol was created as undefined from outside
1269 		 BFD.  We assume that we should link in the object
1270 		 file.  This is for the -u option in the linker.  */
1271 	      if (!(*info->callbacks
1272 		    ->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1273 					    &abfd))
1274 		return FALSE;
1275 	      /* Potentially, the add_archive_element hook may have set a
1276 		 substitute BFD for us.  But no symbols are going to get
1277 		 registered by anything we're returning to from here.  */
1278 	      *pneeded = TRUE;
1279 	      return TRUE;
1280 	    }
1281 
1282 	  /* Turn the symbol into a common symbol but do not link in
1283 	     the object file.  This is how a.out works.  Object
1284 	     formats that require different semantics must implement
1285 	     this function differently.  This symbol is already on the
1286 	     undefs list.  We add the section to a common section
1287 	     attached to symbfd to ensure that it is in a BFD which
1288 	     will be linked in.  */
1289 	  h->type = bfd_link_hash_common;
1290 	  h->u.c.p = (struct bfd_link_hash_common_entry *)
1291 	    bfd_hash_allocate (&info->hash->table,
1292 			       sizeof (struct bfd_link_hash_common_entry));
1293 	  if (h->u.c.p == NULL)
1294 	    return FALSE;
1295 
1296 	  size = bfd_asymbol_value (p);
1297 	  h->u.c.size = size;
1298 
1299 	  power = bfd_log2 (size);
1300 	  if (power > 4)
1301 	    power = 4;
1302 	  h->u.c.p->alignment_power = power;
1303 
1304 	  if (p->section == bfd_com_section_ptr)
1305 	    h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1306 	  else
1307 	    h->u.c.p->section = bfd_make_section_old_way (symbfd,
1308 							  p->section->name);
1309 	  h->u.c.p->section->flags |= SEC_ALLOC;
1310 	}
1311       else
1312 	{
1313 	  /* Adjust the size of the common symbol if necessary.  This
1314 	     is how a.out works.  Object formats that require
1315 	     different semantics must implement this function
1316 	     differently.  */
1317 	  if (bfd_asymbol_value (p) > h->u.c.size)
1318 	    h->u.c.size = bfd_asymbol_value (p);
1319 	}
1320     }
1321 
1322   /* This archive element is not needed.  */
1323   return TRUE;
1324 }
1325 
1326 /* Add the symbols from an object file to the global hash table.  ABFD
1327    is the object file.  INFO is the linker information.  SYMBOL_COUNT
1328    is the number of symbols.  SYMBOLS is the list of symbols.  COLLECT
1329    is TRUE if constructors should be automatically collected by name
1330    as is done by collect2.  */
1331 
1332 static bfd_boolean
1333 generic_link_add_symbol_list (bfd *abfd,
1334 			      struct bfd_link_info *info,
1335 			      bfd_size_type symbol_count,
1336 			      asymbol **symbols,
1337 			      bfd_boolean collect)
1338 {
1339   asymbol **pp, **ppend;
1340 
1341   pp = symbols;
1342   ppend = symbols + symbol_count;
1343   for (; pp < ppend; pp++)
1344     {
1345       asymbol *p;
1346 
1347       p = *pp;
1348 
1349       if ((p->flags & (BSF_INDIRECT
1350 		       | BSF_WARNING
1351 		       | BSF_GLOBAL
1352 		       | BSF_CONSTRUCTOR
1353 		       | BSF_WEAK)) != 0
1354 	  || bfd_is_und_section (bfd_get_section (p))
1355 	  || bfd_is_com_section (bfd_get_section (p))
1356 	  || bfd_is_ind_section (bfd_get_section (p)))
1357 	{
1358 	  const char *name;
1359 	  const char *string;
1360 	  struct generic_link_hash_entry *h;
1361 	  struct bfd_link_hash_entry *bh;
1362 
1363 	  string = name = bfd_asymbol_name (p);
1364 	  if (((p->flags & BSF_INDIRECT) != 0
1365 	       || bfd_is_ind_section (p->section))
1366 	      && pp + 1 < ppend)
1367 	    {
1368 	      pp++;
1369 	      string = bfd_asymbol_name (*pp);
1370 	    }
1371 	  else if ((p->flags & BSF_WARNING) != 0
1372 		   && pp + 1 < ppend)
1373 	    {
1374 	      /* The name of P is actually the warning string, and the
1375 		 next symbol is the one to warn about.  */
1376 	      pp++;
1377 	      name = bfd_asymbol_name (*pp);
1378 	    }
1379 
1380 	  bh = NULL;
1381 	  if (! (_bfd_generic_link_add_one_symbol
1382 		 (info, abfd, name, p->flags, bfd_get_section (p),
1383 		  p->value, string, FALSE, collect, &bh)))
1384 	    return FALSE;
1385 	  h = (struct generic_link_hash_entry *) bh;
1386 
1387 	  /* If this is a constructor symbol, and the linker didn't do
1388              anything with it, then we want to just pass the symbol
1389              through to the output file.  This will happen when
1390              linking with -r.  */
1391 	  if ((p->flags & BSF_CONSTRUCTOR) != 0
1392 	      && (h == NULL || h->root.type == bfd_link_hash_new))
1393 	    {
1394 	      p->udata.p = NULL;
1395 	      continue;
1396 	    }
1397 
1398 	  /* Save the BFD symbol so that we don't lose any backend
1399 	     specific information that may be attached to it.  We only
1400 	     want this one if it gives more information than the
1401 	     existing one; we don't want to replace a defined symbol
1402 	     with an undefined one.  This routine may be called with a
1403 	     hash table other than the generic hash table, so we only
1404 	     do this if we are certain that the hash table is a
1405 	     generic one.  */
1406 	  if (info->output_bfd->xvec == abfd->xvec)
1407 	    {
1408 	      if (h->sym == NULL
1409 		  || (! bfd_is_und_section (bfd_get_section (p))
1410 		      && (! bfd_is_com_section (bfd_get_section (p))
1411 			  || bfd_is_und_section (bfd_get_section (h->sym)))))
1412 		{
1413 		  h->sym = p;
1414 		  /* BSF_OLD_COMMON is a hack to support COFF reloc
1415 		     reading, and it should go away when the COFF
1416 		     linker is switched to the new version.  */
1417 		  if (bfd_is_com_section (bfd_get_section (p)))
1418 		    p->flags |= BSF_OLD_COMMON;
1419 		}
1420 	    }
1421 
1422 	  /* Store a back pointer from the symbol to the hash
1423 	     table entry for the benefit of relaxation code until
1424 	     it gets rewritten to not use asymbol structures.
1425 	     Setting this is also used to check whether these
1426 	     symbols were set up by the generic linker.  */
1427 	  p->udata.p = h;
1428 	}
1429     }
1430 
1431   return TRUE;
1432 }
1433 
1434 /* We use a state table to deal with adding symbols from an object
1435    file.  The first index into the state table describes the symbol
1436    from the object file.  The second index into the state table is the
1437    type of the symbol in the hash table.  */
1438 
1439 /* The symbol from the object file is turned into one of these row
1440    values.  */
1441 
1442 enum link_row
1443 {
1444   UNDEF_ROW,		/* Undefined.  */
1445   UNDEFW_ROW,		/* Weak undefined.  */
1446   DEF_ROW,		/* Defined.  */
1447   DEFW_ROW,		/* Weak defined.  */
1448   COMMON_ROW,		/* Common.  */
1449   INDR_ROW,		/* Indirect.  */
1450   WARN_ROW,		/* Warning.  */
1451   SET_ROW		/* Member of set.  */
1452 };
1453 
1454 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1455 #undef FAIL
1456 
1457 /* The actions to take in the state table.  */
1458 
1459 enum link_action
1460 {
1461   FAIL,		/* Abort.  */
1462   UND,		/* Mark symbol undefined.  */
1463   WEAK,		/* Mark symbol weak undefined.  */
1464   DEF,		/* Mark symbol defined.  */
1465   DEFW,		/* Mark symbol weak defined.  */
1466   COM,		/* Mark symbol common.  */
1467   REF,		/* Mark defined symbol referenced.  */
1468   CREF,		/* Possibly warn about common reference to defined symbol.  */
1469   CDEF,		/* Define existing common symbol.  */
1470   NOACT,	/* No action.  */
1471   BIG,		/* Mark symbol common using largest size.  */
1472   MDEF,		/* Multiple definition error.  */
1473   MIND,		/* Multiple indirect symbols.  */
1474   IND,		/* Make indirect symbol.  */
1475   CIND,		/* Make indirect symbol from existing common symbol.  */
1476   SET,		/* Add value to set.  */
1477   MWARN,	/* Make warning symbol.  */
1478   WARN,		/* Issue warning.  */
1479   CWARN,	/* Warn if referenced, else MWARN.  */
1480   CYCLE,	/* Repeat with symbol pointed to.  */
1481   REFC,		/* Mark indirect symbol referenced and then CYCLE.  */
1482   WARNC		/* Issue warning and then CYCLE.  */
1483 };
1484 
1485 /* The state table itself.  The first index is a link_row and the
1486    second index is a bfd_link_hash_type.  */
1487 
1488 static const enum link_action link_action[8][8] =
1489 {
1490   /* current\prev    new    undef  undefw def    defw   com    indr   warn  */
1491   /* UNDEF_ROW 	*/  {UND,   NOACT, UND,   REF,   REF,   NOACT, REFC,  WARNC },
1492   /* UNDEFW_ROW	*/  {WEAK,  NOACT, NOACT, REF,   REF,   NOACT, REFC,  WARNC },
1493   /* DEF_ROW 	*/  {DEF,   DEF,   DEF,   MDEF,  DEF,   CDEF,  MDEF,  CYCLE },
1494   /* DEFW_ROW 	*/  {DEFW,  DEFW,  DEFW,  NOACT, NOACT, NOACT, NOACT, CYCLE },
1495   /* COMMON_ROW	*/  {COM,   COM,   COM,   CREF,  COM,   BIG,   REFC,  WARNC },
1496   /* INDR_ROW	*/  {IND,   IND,   IND,   MDEF,  IND,   CIND,  MIND,  CYCLE },
1497   /* WARN_ROW   */  {MWARN, WARN,  WARN,  CWARN, CWARN, WARN,  CWARN, NOACT },
1498   /* SET_ROW	*/  {SET,   SET,   SET,   SET,   SET,   SET,   CYCLE, CYCLE }
1499 };
1500 
1501 /* Most of the entries in the LINK_ACTION table are straightforward,
1502    but a few are somewhat subtle.
1503 
1504    A reference to an indirect symbol (UNDEF_ROW/indr or
1505    UNDEFW_ROW/indr) is counted as a reference both to the indirect
1506    symbol and to the symbol the indirect symbol points to.
1507 
1508    A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1509    causes the warning to be issued.
1510 
1511    A common definition of an indirect symbol (COMMON_ROW/indr) is
1512    treated as a multiple definition error.  Likewise for an indirect
1513    definition of a common symbol (INDR_ROW/com).
1514 
1515    An indirect definition of a warning (INDR_ROW/warn) does not cause
1516    the warning to be issued.
1517 
1518    If a warning is created for an indirect symbol (WARN_ROW/indr) no
1519    warning is created for the symbol the indirect symbol points to.
1520 
1521    Adding an entry to a set does not count as a reference to a set,
1522    and no warning is issued (SET_ROW/warn).  */
1523 
1524 /* Return the BFD in which a hash entry has been defined, if known.  */
1525 
1526 static bfd *
1527 hash_entry_bfd (struct bfd_link_hash_entry *h)
1528 {
1529   while (h->type == bfd_link_hash_warning)
1530     h = h->u.i.link;
1531   switch (h->type)
1532     {
1533     default:
1534       return NULL;
1535     case bfd_link_hash_undefined:
1536     case bfd_link_hash_undefweak:
1537       return h->u.undef.abfd;
1538     case bfd_link_hash_defined:
1539     case bfd_link_hash_defweak:
1540       return h->u.def.section->owner;
1541     case bfd_link_hash_common:
1542       return h->u.c.p->section->owner;
1543     }
1544   /*NOTREACHED*/
1545 }
1546 
1547 /* Add a symbol to the global hash table.
1548    ABFD is the BFD the symbol comes from.
1549    NAME is the name of the symbol.
1550    FLAGS is the BSF_* bits associated with the symbol.
1551    SECTION is the section in which the symbol is defined; this may be
1552      bfd_und_section_ptr or bfd_com_section_ptr.
1553    VALUE is the value of the symbol, relative to the section.
1554    STRING is used for either an indirect symbol, in which case it is
1555      the name of the symbol to indirect to, or a warning symbol, in
1556      which case it is the warning string.
1557    COPY is TRUE if NAME or STRING must be copied into locally
1558      allocated memory if they need to be saved.
1559    COLLECT is TRUE if we should automatically collect gcc constructor
1560      or destructor names as collect2 does.
1561    HASHP, if not NULL, is a place to store the created hash table
1562      entry; if *HASHP is not NULL, the caller has already looked up
1563      the hash table entry, and stored it in *HASHP.  */
1564 
1565 bfd_boolean
1566 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1567 				  bfd *abfd,
1568 				  const char *name,
1569 				  flagword flags,
1570 				  asection *section,
1571 				  bfd_vma value,
1572 				  const char *string,
1573 				  bfd_boolean copy,
1574 				  bfd_boolean collect,
1575 				  struct bfd_link_hash_entry **hashp)
1576 {
1577   enum link_row row;
1578   struct bfd_link_hash_entry *h;
1579   bfd_boolean cycle;
1580 
1581   BFD_ASSERT (section != NULL);
1582 
1583   if (bfd_is_ind_section (section)
1584       || (flags & BSF_INDIRECT) != 0)
1585     row = INDR_ROW;
1586   else if ((flags & BSF_WARNING) != 0)
1587     row = WARN_ROW;
1588   else if ((flags & BSF_CONSTRUCTOR) != 0)
1589     row = SET_ROW;
1590   else if (bfd_is_und_section (section))
1591     {
1592       if ((flags & BSF_WEAK) != 0)
1593 	row = UNDEFW_ROW;
1594       else
1595 	row = UNDEF_ROW;
1596     }
1597   else if ((flags & BSF_WEAK) != 0)
1598     row = DEFW_ROW;
1599   else if (bfd_is_com_section (section))
1600     row = COMMON_ROW;
1601   else
1602     row = DEF_ROW;
1603 
1604   if (hashp != NULL && *hashp != NULL)
1605     h = *hashp;
1606   else
1607     {
1608       if (row == UNDEF_ROW || row == UNDEFW_ROW)
1609 	h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1610       else
1611 	h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1612       if (h == NULL)
1613 	{
1614 	  if (hashp != NULL)
1615 	    *hashp = NULL;
1616 	  return FALSE;
1617 	}
1618     }
1619 
1620   if (info->notice_all
1621       || (info->notice_hash != NULL
1622 	  && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1623     {
1624       if (! (*info->callbacks->notice) (info, h,
1625 					abfd, section, value, flags, string))
1626 	return FALSE;
1627     }
1628 
1629   if (hashp != NULL)
1630     *hashp = h;
1631 
1632   do
1633     {
1634       enum link_action action;
1635 
1636       cycle = FALSE;
1637       action = link_action[(int) row][(int) h->type];
1638       switch (action)
1639 	{
1640 	case FAIL:
1641 	  abort ();
1642 
1643 	case NOACT:
1644 	  /* Do nothing.  */
1645 	  break;
1646 
1647 	case UND:
1648 	  /* Make a new undefined symbol.  */
1649 	  h->type = bfd_link_hash_undefined;
1650 	  h->u.undef.abfd = abfd;
1651 	  bfd_link_add_undef (info->hash, h);
1652 	  break;
1653 
1654 	case WEAK:
1655 	  /* Make a new weak undefined symbol.  */
1656 	  h->type = bfd_link_hash_undefweak;
1657 	  h->u.undef.abfd = abfd;
1658 	  break;
1659 
1660 	case CDEF:
1661 	  /* We have found a definition for a symbol which was
1662 	     previously common.  */
1663 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1664 	  if (! ((*info->callbacks->multiple_common)
1665 		 (info, h, abfd, bfd_link_hash_defined, 0)))
1666 	    return FALSE;
1667 	  /* Fall through.  */
1668 	case DEF:
1669 	case DEFW:
1670 	  {
1671 	    enum bfd_link_hash_type oldtype;
1672 
1673 	    /* Define a symbol.  */
1674 	    oldtype = h->type;
1675 	    if (action == DEFW)
1676 	      h->type = bfd_link_hash_defweak;
1677 	    else
1678 	      h->type = bfd_link_hash_defined;
1679 	    h->u.def.section = section;
1680 	    h->u.def.value = value;
1681 
1682 	    /* If we have been asked to, we act like collect2 and
1683 	       identify all functions that might be global
1684 	       constructors and destructors and pass them up in a
1685 	       callback.  We only do this for certain object file
1686 	       types, since many object file types can handle this
1687 	       automatically.  */
1688 	    if (collect && name[0] == '_')
1689 	      {
1690 		const char *s;
1691 
1692 		/* A constructor or destructor name starts like this:
1693 		   _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1694 		   the second are the same character (we accept any
1695 		   character there, in case a new object file format
1696 		   comes along with even worse naming restrictions).  */
1697 
1698 #define CONS_PREFIX "GLOBAL_"
1699 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1700 
1701 		s = name + 1;
1702 		while (*s == '_')
1703 		  ++s;
1704 		if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX))
1705 		  {
1706 		    char c;
1707 
1708 		    c = s[CONS_PREFIX_LEN + 1];
1709 		    if ((c == 'I' || c == 'D')
1710 			&& s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1711 		      {
1712 			/* If this is a definition of a symbol which
1713                            was previously weakly defined, we are in
1714                            trouble.  We have already added a
1715                            constructor entry for the weak defined
1716                            symbol, and now we are trying to add one
1717                            for the new symbol.  Fortunately, this case
1718                            should never arise in practice.  */
1719 			if (oldtype == bfd_link_hash_defweak)
1720 			  abort ();
1721 
1722 			if (! ((*info->callbacks->constructor)
1723 			       (info, c == 'I',
1724 				h->root.string, abfd, section, value)))
1725 			  return FALSE;
1726 		      }
1727 		  }
1728 	      }
1729 	  }
1730 
1731 	  break;
1732 
1733 	case COM:
1734 	  /* We have found a common definition for a symbol.  */
1735 	  if (h->type == bfd_link_hash_new)
1736 	    bfd_link_add_undef (info->hash, h);
1737 	  h->type = bfd_link_hash_common;
1738 	  h->u.c.p = (struct bfd_link_hash_common_entry *)
1739 	    bfd_hash_allocate (&info->hash->table,
1740 			       sizeof (struct bfd_link_hash_common_entry));
1741 	  if (h->u.c.p == NULL)
1742 	    return FALSE;
1743 
1744 	  h->u.c.size = value;
1745 
1746 	  /* Select a default alignment based on the size.  This may
1747              be overridden by the caller.  */
1748 	  {
1749 	    unsigned int power;
1750 
1751 	    power = bfd_log2 (value);
1752 	    if (power > 4)
1753 	      power = 4;
1754 	    h->u.c.p->alignment_power = power;
1755 	  }
1756 
1757 	  /* The section of a common symbol is only used if the common
1758              symbol is actually allocated.  It basically provides a
1759              hook for the linker script to decide which output section
1760              the common symbols should be put in.  In most cases, the
1761              section of a common symbol will be bfd_com_section_ptr,
1762              the code here will choose a common symbol section named
1763              "COMMON", and the linker script will contain *(COMMON) in
1764              the appropriate place.  A few targets use separate common
1765              sections for small symbols, and they require special
1766              handling.  */
1767 	  if (section == bfd_com_section_ptr)
1768 	    {
1769 	      h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1770 	      h->u.c.p->section->flags |= SEC_ALLOC;
1771 	    }
1772 	  else if (section->owner != abfd)
1773 	    {
1774 	      h->u.c.p->section = bfd_make_section_old_way (abfd,
1775 							    section->name);
1776 	      h->u.c.p->section->flags |= SEC_ALLOC;
1777 	    }
1778 	  else
1779 	    h->u.c.p->section = section;
1780 	  break;
1781 
1782 	case REF:
1783 	  /* A reference to a defined symbol.  */
1784 	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1785 	    h->u.undef.next = h;
1786 	  break;
1787 
1788 	case BIG:
1789 	  /* We have found a common definition for a symbol which
1790 	     already had a common definition.  Use the maximum of the
1791 	     two sizes, and use the section required by the larger symbol.  */
1792 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1793 	  if (! ((*info->callbacks->multiple_common)
1794 		 (info, h, abfd, bfd_link_hash_common, value)))
1795 	    return FALSE;
1796 	  if (value > h->u.c.size)
1797 	    {
1798 	      unsigned int power;
1799 
1800 	      h->u.c.size = value;
1801 
1802 	      /* Select a default alignment based on the size.  This may
1803 		 be overridden by the caller.  */
1804 	      power = bfd_log2 (value);
1805 	      if (power > 4)
1806 		power = 4;
1807 	      h->u.c.p->alignment_power = power;
1808 
1809 	      /* Some systems have special treatment for small commons,
1810 		 hence we want to select the section used by the larger
1811 		 symbol.  This makes sure the symbol does not go in a
1812 		 small common section if it is now too large.  */
1813 	      if (section == bfd_com_section_ptr)
1814 		{
1815 		  h->u.c.p->section
1816 		    = bfd_make_section_old_way (abfd, "COMMON");
1817 		  h->u.c.p->section->flags |= SEC_ALLOC;
1818 		}
1819 	      else if (section->owner != abfd)
1820 		{
1821 		  h->u.c.p->section
1822 		    = bfd_make_section_old_way (abfd, section->name);
1823 		  h->u.c.p->section->flags |= SEC_ALLOC;
1824 		}
1825 	      else
1826 		h->u.c.p->section = section;
1827 	    }
1828 	  break;
1829 
1830 	case CREF:
1831 	  /* We have found a common definition for a symbol which
1832 	     was already defined.  */
1833 	  if (! ((*info->callbacks->multiple_common)
1834 		 (info, h, abfd, bfd_link_hash_common, value)))
1835 	    return FALSE;
1836 	  break;
1837 
1838 	case MIND:
1839 	  /* Multiple indirect symbols.  This is OK if they both point
1840 	     to the same symbol.  */
1841 	  if (strcmp (h->u.i.link->root.string, string) == 0)
1842 	    break;
1843 	  /* Fall through.  */
1844 	case MDEF:
1845 	  /* Handle a multiple definition.  */
1846 	  if (! ((*info->callbacks->multiple_definition)
1847 		 (info, h, abfd, section, value)))
1848 	    return FALSE;
1849 	  break;
1850 
1851 	case CIND:
1852 	  /* Create an indirect symbol from an existing common symbol.  */
1853 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1854 	  if (! ((*info->callbacks->multiple_common)
1855 		 (info, h, abfd, bfd_link_hash_indirect, 0)))
1856 	    return FALSE;
1857 	  /* Fall through.  */
1858 	case IND:
1859 	  /* Create an indirect symbol.  */
1860 	  {
1861 	    struct bfd_link_hash_entry *inh;
1862 
1863 	    /* STRING is the name of the symbol we want to indirect
1864 	       to.  */
1865 	    inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1866 						copy, FALSE);
1867 	    if (inh == NULL)
1868 	      return FALSE;
1869 	    if (inh->type == bfd_link_hash_indirect
1870 		&& inh->u.i.link == h)
1871 	      {
1872 		(*_bfd_error_handler)
1873 		  (_("%B: indirect symbol `%s' to `%s' is a loop"),
1874 		   abfd, name, string);
1875 		bfd_set_error (bfd_error_invalid_operation);
1876 		return FALSE;
1877 	      }
1878 	    if (inh->type == bfd_link_hash_new)
1879 	      {
1880 		inh->type = bfd_link_hash_undefined;
1881 		inh->u.undef.abfd = abfd;
1882 		bfd_link_add_undef (info->hash, inh);
1883 	      }
1884 
1885 	    /* If the indirect symbol has been referenced, we need to
1886 	       push the reference down to the symbol we are
1887 	       referencing.  */
1888 	    if (h->type != bfd_link_hash_new)
1889 	      {
1890 		row = UNDEF_ROW;
1891 		cycle = TRUE;
1892 	      }
1893 
1894 	    h->type = bfd_link_hash_indirect;
1895 	    h->u.i.link = inh;
1896 	  }
1897 	  break;
1898 
1899 	case SET:
1900 	  /* Add an entry to a set.  */
1901 	  if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1902 						abfd, section, value))
1903 	    return FALSE;
1904 	  break;
1905 
1906 	case WARNC:
1907 	  /* Issue a warning and cycle.  */
1908 	  if (h->u.i.warning != NULL)
1909 	    {
1910 	      if (! (*info->callbacks->warning) (info, h->u.i.warning,
1911 						 h->root.string, abfd,
1912 						 NULL, 0))
1913 		return FALSE;
1914 	      /* Only issue a warning once.  */
1915 	      h->u.i.warning = NULL;
1916 	    }
1917 	  /* Fall through.  */
1918 	case CYCLE:
1919 	  /* Try again with the referenced symbol.  */
1920 	  h = h->u.i.link;
1921 	  cycle = TRUE;
1922 	  break;
1923 
1924 	case REFC:
1925 	  /* A reference to an indirect symbol.  */
1926 	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1927 	    h->u.undef.next = h;
1928 	  h = h->u.i.link;
1929 	  cycle = TRUE;
1930 	  break;
1931 
1932 	case WARN:
1933 	  /* Issue a warning.  */
1934 	  if (! (*info->callbacks->warning) (info, string, h->root.string,
1935 					     hash_entry_bfd (h), NULL, 0))
1936 	    return FALSE;
1937 	  break;
1938 
1939 	case CWARN:
1940 	  /* Warn if this symbol has been referenced already,
1941 	     otherwise add a warning.  A symbol has been referenced if
1942 	     the u.undef.next field is not NULL, or it is the tail of the
1943 	     undefined symbol list.  The REF case above helps to
1944 	     ensure this.  */
1945 	  if (h->u.undef.next != NULL || info->hash->undefs_tail == h)
1946 	    {
1947 	      if (! (*info->callbacks->warning) (info, string, h->root.string,
1948 						 hash_entry_bfd (h), NULL, 0))
1949 		return FALSE;
1950 	      break;
1951 	    }
1952 	  /* Fall through.  */
1953 	case MWARN:
1954 	  /* Make a warning symbol.  */
1955 	  {
1956 	    struct bfd_link_hash_entry *sub;
1957 
1958 	    /* STRING is the warning to give.  */
1959 	    sub = ((struct bfd_link_hash_entry *)
1960 		   ((*info->hash->table.newfunc)
1961 		    (NULL, &info->hash->table, h->root.string)));
1962 	    if (sub == NULL)
1963 	      return FALSE;
1964 	    *sub = *h;
1965 	    sub->type = bfd_link_hash_warning;
1966 	    sub->u.i.link = h;
1967 	    if (! copy)
1968 	      sub->u.i.warning = string;
1969 	    else
1970 	      {
1971 		char *w;
1972 		size_t len = strlen (string) + 1;
1973 
1974 		w = (char *) bfd_hash_allocate (&info->hash->table, len);
1975 		if (w == NULL)
1976 		  return FALSE;
1977 		memcpy (w, string, len);
1978 		sub->u.i.warning = w;
1979 	      }
1980 
1981 	    bfd_hash_replace (&info->hash->table,
1982 			      (struct bfd_hash_entry *) h,
1983 			      (struct bfd_hash_entry *) sub);
1984 	    if (hashp != NULL)
1985 	      *hashp = sub;
1986 	  }
1987 	  break;
1988 	}
1989     }
1990   while (cycle);
1991 
1992   return TRUE;
1993 }
1994 
1995 /* Generic final link routine.  */
1996 
1997 bfd_boolean
1998 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
1999 {
2000   bfd *sub;
2001   asection *o;
2002   struct bfd_link_order *p;
2003   size_t outsymalloc;
2004   struct generic_write_global_symbol_info wginfo;
2005 
2006   bfd_get_outsymbols (abfd) = NULL;
2007   bfd_get_symcount (abfd) = 0;
2008   outsymalloc = 0;
2009 
2010   /* Mark all sections which will be included in the output file.  */
2011   for (o = abfd->sections; o != NULL; o = o->next)
2012     for (p = o->map_head.link_order; p != NULL; p = p->next)
2013       if (p->type == bfd_indirect_link_order)
2014 	p->u.indirect.section->linker_mark = TRUE;
2015 
2016   /* Build the output symbol table.  */
2017   for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
2018     if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
2019       return FALSE;
2020 
2021   /* Accumulate the global symbols.  */
2022   wginfo.info = info;
2023   wginfo.output_bfd = abfd;
2024   wginfo.psymalloc = &outsymalloc;
2025   _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
2026 				   _bfd_generic_link_write_global_symbol,
2027 				   &wginfo);
2028 
2029   /* Make sure we have a trailing NULL pointer on OUTSYMBOLS.  We
2030      shouldn't really need one, since we have SYMCOUNT, but some old
2031      code still expects one.  */
2032   if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
2033     return FALSE;
2034 
2035   if (info->relocatable)
2036     {
2037       /* Allocate space for the output relocs for each section.  */
2038       for (o = abfd->sections; o != NULL; o = o->next)
2039 	{
2040 	  o->reloc_count = 0;
2041 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
2042 	    {
2043 	      if (p->type == bfd_section_reloc_link_order
2044 		  || p->type == bfd_symbol_reloc_link_order)
2045 		++o->reloc_count;
2046 	      else if (p->type == bfd_indirect_link_order)
2047 		{
2048 		  asection *input_section;
2049 		  bfd *input_bfd;
2050 		  long relsize;
2051 		  arelent **relocs;
2052 		  asymbol **symbols;
2053 		  long reloc_count;
2054 
2055 		  input_section = p->u.indirect.section;
2056 		  input_bfd = input_section->owner;
2057 		  relsize = bfd_get_reloc_upper_bound (input_bfd,
2058 						       input_section);
2059 		  if (relsize < 0)
2060 		    return FALSE;
2061 		  relocs = (arelent **) bfd_malloc (relsize);
2062 		  if (!relocs && relsize != 0)
2063 		    return FALSE;
2064 		  symbols = _bfd_generic_link_get_symbols (input_bfd);
2065 		  reloc_count = bfd_canonicalize_reloc (input_bfd,
2066 							input_section,
2067 							relocs,
2068 							symbols);
2069 		  free (relocs);
2070 		  if (reloc_count < 0)
2071 		    return FALSE;
2072 		  BFD_ASSERT ((unsigned long) reloc_count
2073 			      == input_section->reloc_count);
2074 		  o->reloc_count += reloc_count;
2075 		}
2076 	    }
2077 	  if (o->reloc_count > 0)
2078 	    {
2079 	      bfd_size_type amt;
2080 
2081 	      amt = o->reloc_count;
2082 	      amt *= sizeof (arelent *);
2083 	      o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt);
2084 	      if (!o->orelocation)
2085 		return FALSE;
2086 	      o->flags |= SEC_RELOC;
2087 	      /* Reset the count so that it can be used as an index
2088 		 when putting in the output relocs.  */
2089 	      o->reloc_count = 0;
2090 	    }
2091 	}
2092     }
2093 
2094   /* Handle all the link order information for the sections.  */
2095   for (o = abfd->sections; o != NULL; o = o->next)
2096     {
2097       for (p = o->map_head.link_order; p != NULL; p = p->next)
2098 	{
2099 	  switch (p->type)
2100 	    {
2101 	    case bfd_section_reloc_link_order:
2102 	    case bfd_symbol_reloc_link_order:
2103 	      if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
2104 		return FALSE;
2105 	      break;
2106 	    case bfd_indirect_link_order:
2107 	      if (! default_indirect_link_order (abfd, info, o, p, TRUE))
2108 		return FALSE;
2109 	      break;
2110 	    default:
2111 	      if (! _bfd_default_link_order (abfd, info, o, p))
2112 		return FALSE;
2113 	      break;
2114 	    }
2115 	}
2116     }
2117 
2118   return TRUE;
2119 }
2120 
2121 /* Add an output symbol to the output BFD.  */
2122 
2123 static bfd_boolean
2124 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
2125 {
2126   if (bfd_get_symcount (output_bfd) >= *psymalloc)
2127     {
2128       asymbol **newsyms;
2129       bfd_size_type amt;
2130 
2131       if (*psymalloc == 0)
2132 	*psymalloc = 124;
2133       else
2134 	*psymalloc *= 2;
2135       amt = *psymalloc;
2136       amt *= sizeof (asymbol *);
2137       newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
2138       if (newsyms == NULL)
2139 	return FALSE;
2140       bfd_get_outsymbols (output_bfd) = newsyms;
2141     }
2142 
2143   bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2144   if (sym != NULL)
2145     ++ bfd_get_symcount (output_bfd);
2146 
2147   return TRUE;
2148 }
2149 
2150 /* Handle the symbols for an input BFD.  */
2151 
2152 bfd_boolean
2153 _bfd_generic_link_output_symbols (bfd *output_bfd,
2154 				  bfd *input_bfd,
2155 				  struct bfd_link_info *info,
2156 				  size_t *psymalloc)
2157 {
2158   asymbol **sym_ptr;
2159   asymbol **sym_end;
2160 
2161   if (!bfd_generic_link_read_symbols (input_bfd))
2162     return FALSE;
2163 
2164   /* Create a filename symbol if we are supposed to.  */
2165   if (info->create_object_symbols_section != NULL)
2166     {
2167       asection *sec;
2168 
2169       for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
2170 	{
2171 	  if (sec->output_section == info->create_object_symbols_section)
2172 	    {
2173 	      asymbol *newsym;
2174 
2175 	      newsym = bfd_make_empty_symbol (input_bfd);
2176 	      if (!newsym)
2177 		return FALSE;
2178 	      newsym->name = input_bfd->filename;
2179 	      newsym->value = 0;
2180 	      newsym->flags = BSF_LOCAL | BSF_FILE;
2181 	      newsym->section = sec;
2182 
2183 	      if (! generic_add_output_symbol (output_bfd, psymalloc,
2184 					       newsym))
2185 		return FALSE;
2186 
2187 	      break;
2188 	    }
2189 	}
2190     }
2191 
2192   /* Adjust the values of the globally visible symbols, and write out
2193      local symbols.  */
2194   sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2195   sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2196   for (; sym_ptr < sym_end; sym_ptr++)
2197     {
2198       asymbol *sym;
2199       struct generic_link_hash_entry *h;
2200       bfd_boolean output;
2201 
2202       h = NULL;
2203       sym = *sym_ptr;
2204       if ((sym->flags & (BSF_INDIRECT
2205 			 | BSF_WARNING
2206 			 | BSF_GLOBAL
2207 			 | BSF_CONSTRUCTOR
2208 			 | BSF_WEAK)) != 0
2209 	  || bfd_is_und_section (bfd_get_section (sym))
2210 	  || bfd_is_com_section (bfd_get_section (sym))
2211 	  || bfd_is_ind_section (bfd_get_section (sym)))
2212 	{
2213 	  if (sym->udata.p != NULL)
2214 	    h = (struct generic_link_hash_entry *) sym->udata.p;
2215 	  else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2216 	    {
2217 	      /* This case normally means that the main linker code
2218                  deliberately ignored this constructor symbol.  We
2219                  should just pass it through.  This will screw up if
2220                  the constructor symbol is from a different,
2221                  non-generic, object file format, but the case will
2222                  only arise when linking with -r, which will probably
2223                  fail anyhow, since there will be no way to represent
2224                  the relocs in the output format being used.  */
2225 	      h = NULL;
2226 	    }
2227 	  else if (bfd_is_und_section (bfd_get_section (sym)))
2228 	    h = ((struct generic_link_hash_entry *)
2229 		 bfd_wrapped_link_hash_lookup (output_bfd, info,
2230 					       bfd_asymbol_name (sym),
2231 					       FALSE, FALSE, TRUE));
2232 	  else
2233 	    h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2234 					       bfd_asymbol_name (sym),
2235 					       FALSE, FALSE, TRUE);
2236 
2237 	  if (h != NULL)
2238 	    {
2239 	      /* Force all references to this symbol to point to
2240 		 the same area in memory.  It is possible that
2241 		 this routine will be called with a hash table
2242 		 other than a generic hash table, so we double
2243 		 check that.  */
2244 	      if (info->output_bfd->xvec == input_bfd->xvec)
2245 		{
2246 		  if (h->sym != NULL)
2247 		    *sym_ptr = sym = h->sym;
2248 		}
2249 
2250 	      switch (h->root.type)
2251 		{
2252 		default:
2253 		case bfd_link_hash_new:
2254 		  abort ();
2255 		case bfd_link_hash_undefined:
2256 		  break;
2257 		case bfd_link_hash_undefweak:
2258 		  sym->flags |= BSF_WEAK;
2259 		  break;
2260 		case bfd_link_hash_indirect:
2261 		  h = (struct generic_link_hash_entry *) h->root.u.i.link;
2262 		  /* fall through */
2263 		case bfd_link_hash_defined:
2264 		  sym->flags |= BSF_GLOBAL;
2265 		  sym->flags &=~ BSF_CONSTRUCTOR;
2266 		  sym->value = h->root.u.def.value;
2267 		  sym->section = h->root.u.def.section;
2268 		  break;
2269 		case bfd_link_hash_defweak:
2270 		  sym->flags |= BSF_WEAK;
2271 		  sym->flags &=~ BSF_CONSTRUCTOR;
2272 		  sym->value = h->root.u.def.value;
2273 		  sym->section = h->root.u.def.section;
2274 		  break;
2275 		case bfd_link_hash_common:
2276 		  sym->value = h->root.u.c.size;
2277 		  sym->flags |= BSF_GLOBAL;
2278 		  if (! bfd_is_com_section (sym->section))
2279 		    {
2280 		      BFD_ASSERT (bfd_is_und_section (sym->section));
2281 		      sym->section = bfd_com_section_ptr;
2282 		    }
2283 		  /* We do not set the section of the symbol to
2284 		     h->root.u.c.p->section.  That value was saved so
2285 		     that we would know where to allocate the symbol
2286 		     if it was defined.  In this case the type is
2287 		     still bfd_link_hash_common, so we did not define
2288 		     it, so we do not want to use that section.  */
2289 		  break;
2290 		}
2291 	    }
2292 	}
2293 
2294       /* This switch is straight from the old code in
2295 	 write_file_locals in ldsym.c.  */
2296       if (info->strip == strip_all
2297 	  || (info->strip == strip_some
2298 	      && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2299 				  FALSE, FALSE) == NULL))
2300 	output = FALSE;
2301       else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2302 	{
2303 	  /* If this symbol is marked as occurring now, rather
2304 	     than at the end, output it now.  This is used for
2305 	     COFF C_EXT FCN symbols.  FIXME: There must be a
2306 	     better way.  */
2307 	  if (bfd_asymbol_bfd (sym) == input_bfd
2308 	      && (sym->flags & BSF_NOT_AT_END) != 0)
2309 	    output = TRUE;
2310 	  else
2311 	    output = FALSE;
2312 	}
2313       else if (bfd_is_ind_section (sym->section))
2314 	output = FALSE;
2315       else if ((sym->flags & BSF_DEBUGGING) != 0)
2316 	{
2317 	  if (info->strip == strip_none)
2318 	    output = TRUE;
2319 	  else
2320 	    output = FALSE;
2321 	}
2322       else if (bfd_is_und_section (sym->section)
2323 	       || bfd_is_com_section (sym->section))
2324 	output = FALSE;
2325       else if ((sym->flags & BSF_LOCAL) != 0)
2326 	{
2327 	  if ((sym->flags & BSF_WARNING) != 0)
2328 	    output = FALSE;
2329 	  else
2330 	    {
2331 	      switch (info->discard)
2332 		{
2333 		default:
2334 		case discard_all:
2335 		  output = FALSE;
2336 		  break;
2337 		case discard_sec_merge:
2338 		  output = TRUE;
2339 		  if (info->relocatable
2340 		      || ! (sym->section->flags & SEC_MERGE))
2341 		    break;
2342 		  /* FALLTHROUGH */
2343 		case discard_l:
2344 		  if (bfd_is_local_label (input_bfd, sym))
2345 		    output = FALSE;
2346 		  else
2347 		    output = TRUE;
2348 		  break;
2349 		case discard_none:
2350 		  output = TRUE;
2351 		  break;
2352 		}
2353 	    }
2354 	}
2355       else if ((sym->flags & BSF_CONSTRUCTOR))
2356 	{
2357 	  if (info->strip != strip_all)
2358 	    output = TRUE;
2359 	  else
2360 	    output = FALSE;
2361 	}
2362       else if (sym->flags == 0
2363 	       && (sym->section->owner->flags & BFD_PLUGIN) != 0)
2364 	/* LTO doesn't set symbol information.  We get here with the
2365 	   generic linker for a symbol that was "common" but no longer
2366 	   needs to be global.  */
2367 	output = FALSE;
2368       else
2369 	abort ();
2370 
2371       /* If this symbol is in a section which is not being included
2372 	 in the output file, then we don't want to output the
2373 	 symbol.  */
2374       if (!bfd_is_abs_section (sym->section)
2375 	  && bfd_section_removed_from_list (output_bfd,
2376 					    sym->section->output_section))
2377 	output = FALSE;
2378 
2379       if (output)
2380 	{
2381 	  if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2382 	    return FALSE;
2383 	  if (h != NULL)
2384 	    h->written = TRUE;
2385 	}
2386     }
2387 
2388   return TRUE;
2389 }
2390 
2391 /* Set the section and value of a generic BFD symbol based on a linker
2392    hash table entry.  */
2393 
2394 static void
2395 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2396 {
2397   switch (h->type)
2398     {
2399     default:
2400       abort ();
2401       break;
2402     case bfd_link_hash_new:
2403       /* This can happen when a constructor symbol is seen but we are
2404          not building constructors.  */
2405       if (sym->section != NULL)
2406 	{
2407 	  BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2408 	}
2409       else
2410 	{
2411 	  sym->flags |= BSF_CONSTRUCTOR;
2412 	  sym->section = bfd_abs_section_ptr;
2413 	  sym->value = 0;
2414 	}
2415       break;
2416     case bfd_link_hash_undefined:
2417       sym->section = bfd_und_section_ptr;
2418       sym->value = 0;
2419       break;
2420     case bfd_link_hash_undefweak:
2421       sym->section = bfd_und_section_ptr;
2422       sym->value = 0;
2423       sym->flags |= BSF_WEAK;
2424       break;
2425     case bfd_link_hash_defined:
2426       sym->section = h->u.def.section;
2427       sym->value = h->u.def.value;
2428       break;
2429     case bfd_link_hash_defweak:
2430       sym->flags |= BSF_WEAK;
2431       sym->section = h->u.def.section;
2432       sym->value = h->u.def.value;
2433       break;
2434     case bfd_link_hash_common:
2435       sym->value = h->u.c.size;
2436       if (sym->section == NULL)
2437 	sym->section = bfd_com_section_ptr;
2438       else if (! bfd_is_com_section (sym->section))
2439 	{
2440 	  BFD_ASSERT (bfd_is_und_section (sym->section));
2441 	  sym->section = bfd_com_section_ptr;
2442 	}
2443       /* Do not set the section; see _bfd_generic_link_output_symbols.  */
2444       break;
2445     case bfd_link_hash_indirect:
2446     case bfd_link_hash_warning:
2447       /* FIXME: What should we do here?  */
2448       break;
2449     }
2450 }
2451 
2452 /* Write out a global symbol, if it hasn't already been written out.
2453    This is called for each symbol in the hash table.  */
2454 
2455 bfd_boolean
2456 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2457 				       void *data)
2458 {
2459   struct generic_write_global_symbol_info *wginfo =
2460       (struct generic_write_global_symbol_info *) data;
2461   asymbol *sym;
2462 
2463   if (h->written)
2464     return TRUE;
2465 
2466   h->written = TRUE;
2467 
2468   if (wginfo->info->strip == strip_all
2469       || (wginfo->info->strip == strip_some
2470 	  && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2471 			      FALSE, FALSE) == NULL))
2472     return TRUE;
2473 
2474   if (h->sym != NULL)
2475     sym = h->sym;
2476   else
2477     {
2478       sym = bfd_make_empty_symbol (wginfo->output_bfd);
2479       if (!sym)
2480 	return FALSE;
2481       sym->name = h->root.root.string;
2482       sym->flags = 0;
2483     }
2484 
2485   set_symbol_from_hash (sym, &h->root);
2486 
2487   sym->flags |= BSF_GLOBAL;
2488 
2489   if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2490 				   sym))
2491     {
2492       /* FIXME: No way to return failure.  */
2493       abort ();
2494     }
2495 
2496   return TRUE;
2497 }
2498 
2499 /* Create a relocation.  */
2500 
2501 bfd_boolean
2502 _bfd_generic_reloc_link_order (bfd *abfd,
2503 			       struct bfd_link_info *info,
2504 			       asection *sec,
2505 			       struct bfd_link_order *link_order)
2506 {
2507   arelent *r;
2508 
2509   if (! info->relocatable)
2510     abort ();
2511   if (sec->orelocation == NULL)
2512     abort ();
2513 
2514   r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2515   if (r == NULL)
2516     return FALSE;
2517 
2518   r->address = link_order->offset;
2519   r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2520   if (r->howto == 0)
2521     {
2522       bfd_set_error (bfd_error_bad_value);
2523       return FALSE;
2524     }
2525 
2526   /* Get the symbol to use for the relocation.  */
2527   if (link_order->type == bfd_section_reloc_link_order)
2528     r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2529   else
2530     {
2531       struct generic_link_hash_entry *h;
2532 
2533       h = ((struct generic_link_hash_entry *)
2534 	   bfd_wrapped_link_hash_lookup (abfd, info,
2535 					 link_order->u.reloc.p->u.name,
2536 					 FALSE, FALSE, TRUE));
2537       if (h == NULL
2538 	  || ! h->written)
2539 	{
2540 	  if (! ((*info->callbacks->unattached_reloc)
2541 		 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
2542 	    return FALSE;
2543 	  bfd_set_error (bfd_error_bad_value);
2544 	  return FALSE;
2545 	}
2546       r->sym_ptr_ptr = &h->sym;
2547     }
2548 
2549   /* If this is an inplace reloc, write the addend to the object file.
2550      Otherwise, store it in the reloc addend.  */
2551   if (! r->howto->partial_inplace)
2552     r->addend = link_order->u.reloc.p->addend;
2553   else
2554     {
2555       bfd_size_type size;
2556       bfd_reloc_status_type rstat;
2557       bfd_byte *buf;
2558       bfd_boolean ok;
2559       file_ptr loc;
2560 
2561       size = bfd_get_reloc_size (r->howto);
2562       buf = (bfd_byte *) bfd_zmalloc (size);
2563       if (buf == NULL)
2564 	return FALSE;
2565       rstat = _bfd_relocate_contents (r->howto, abfd,
2566 				      (bfd_vma) link_order->u.reloc.p->addend,
2567 				      buf);
2568       switch (rstat)
2569 	{
2570 	case bfd_reloc_ok:
2571 	  break;
2572 	default:
2573 	case bfd_reloc_outofrange:
2574 	  abort ();
2575 	case bfd_reloc_overflow:
2576 	  if (! ((*info->callbacks->reloc_overflow)
2577 		 (info, NULL,
2578 		  (link_order->type == bfd_section_reloc_link_order
2579 		   ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2580 		   : link_order->u.reloc.p->u.name),
2581 		  r->howto->name, link_order->u.reloc.p->addend,
2582 		  NULL, NULL, 0)))
2583 	    {
2584 	      free (buf);
2585 	      return FALSE;
2586 	    }
2587 	  break;
2588 	}
2589       loc = link_order->offset * bfd_octets_per_byte (abfd);
2590       ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2591       free (buf);
2592       if (! ok)
2593 	return FALSE;
2594 
2595       r->addend = 0;
2596     }
2597 
2598   sec->orelocation[sec->reloc_count] = r;
2599   ++sec->reloc_count;
2600 
2601   return TRUE;
2602 }
2603 
2604 /* Allocate a new link_order for a section.  */
2605 
2606 struct bfd_link_order *
2607 bfd_new_link_order (bfd *abfd, asection *section)
2608 {
2609   bfd_size_type amt = sizeof (struct bfd_link_order);
2610   struct bfd_link_order *new_lo;
2611 
2612   new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
2613   if (!new_lo)
2614     return NULL;
2615 
2616   new_lo->type = bfd_undefined_link_order;
2617 
2618   if (section->map_tail.link_order != NULL)
2619     section->map_tail.link_order->next = new_lo;
2620   else
2621     section->map_head.link_order = new_lo;
2622   section->map_tail.link_order = new_lo;
2623 
2624   return new_lo;
2625 }
2626 
2627 /* Default link order processing routine.  Note that we can not handle
2628    the reloc_link_order types here, since they depend upon the details
2629    of how the particular backends generates relocs.  */
2630 
2631 bfd_boolean
2632 _bfd_default_link_order (bfd *abfd,
2633 			 struct bfd_link_info *info,
2634 			 asection *sec,
2635 			 struct bfd_link_order *link_order)
2636 {
2637   switch (link_order->type)
2638     {
2639     case bfd_undefined_link_order:
2640     case bfd_section_reloc_link_order:
2641     case bfd_symbol_reloc_link_order:
2642     default:
2643       abort ();
2644     case bfd_indirect_link_order:
2645       return default_indirect_link_order (abfd, info, sec, link_order,
2646 					  FALSE);
2647     case bfd_data_link_order:
2648       return default_data_link_order (abfd, info, sec, link_order);
2649     }
2650 }
2651 
2652 /* Default routine to handle a bfd_data_link_order.  */
2653 
2654 static bfd_boolean
2655 default_data_link_order (bfd *abfd,
2656 			 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2657 			 asection *sec,
2658 			 struct bfd_link_order *link_order)
2659 {
2660   bfd_size_type size;
2661   size_t fill_size;
2662   bfd_byte *fill;
2663   file_ptr loc;
2664   bfd_boolean result;
2665 
2666   BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2667 
2668   size = link_order->size;
2669   if (size == 0)
2670     return TRUE;
2671 
2672   fill = link_order->u.data.contents;
2673   fill_size = link_order->u.data.size;
2674   if (fill_size == 0)
2675     {
2676       fill = abfd->arch_info->fill (size, bfd_big_endian (abfd),
2677 				    (sec->flags & SEC_CODE) != 0);
2678       if (fill == NULL)
2679 	return FALSE;
2680     }
2681   else if (fill_size < size)
2682     {
2683       bfd_byte *p;
2684       fill = (bfd_byte *) bfd_malloc (size);
2685       if (fill == NULL)
2686 	return FALSE;
2687       p = fill;
2688       if (fill_size == 1)
2689 	memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2690       else
2691 	{
2692 	  do
2693 	    {
2694 	      memcpy (p, link_order->u.data.contents, fill_size);
2695 	      p += fill_size;
2696 	      size -= fill_size;
2697 	    }
2698 	  while (size >= fill_size);
2699 	  if (size != 0)
2700 	    memcpy (p, link_order->u.data.contents, (size_t) size);
2701 	  size = link_order->size;
2702 	}
2703     }
2704 
2705   loc = link_order->offset * bfd_octets_per_byte (abfd);
2706   result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2707 
2708   if (fill != link_order->u.data.contents)
2709     free (fill);
2710   return result;
2711 }
2712 
2713 /* Default routine to handle a bfd_indirect_link_order.  */
2714 
2715 static bfd_boolean
2716 default_indirect_link_order (bfd *output_bfd,
2717 			     struct bfd_link_info *info,
2718 			     asection *output_section,
2719 			     struct bfd_link_order *link_order,
2720 			     bfd_boolean generic_linker)
2721 {
2722   asection *input_section;
2723   bfd *input_bfd;
2724   bfd_byte *contents = NULL;
2725   bfd_byte *new_contents;
2726   bfd_size_type sec_size;
2727   file_ptr loc;
2728 
2729   BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2730 
2731   input_section = link_order->u.indirect.section;
2732   input_bfd = input_section->owner;
2733   if (input_section->size == 0)
2734     return TRUE;
2735 
2736   BFD_ASSERT (input_section->output_section == output_section);
2737   BFD_ASSERT (input_section->output_offset == link_order->offset);
2738   BFD_ASSERT (input_section->size == link_order->size);
2739 
2740   if (info->relocatable
2741       && input_section->reloc_count > 0
2742       && output_section->orelocation == NULL)
2743     {
2744       /* Space has not been allocated for the output relocations.
2745 	 This can happen when we are called by a specific backend
2746 	 because somebody is attempting to link together different
2747 	 types of object files.  Handling this case correctly is
2748 	 difficult, and sometimes impossible.  */
2749       (*_bfd_error_handler)
2750 	(_("Attempt to do relocatable link with %s input and %s output"),
2751 	 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2752       bfd_set_error (bfd_error_wrong_format);
2753       return FALSE;
2754     }
2755 
2756   if (! generic_linker)
2757     {
2758       asymbol **sympp;
2759       asymbol **symppend;
2760 
2761       /* Get the canonical symbols.  The generic linker will always
2762 	 have retrieved them by this point, but we are being called by
2763 	 a specific linker, presumably because we are linking
2764 	 different types of object files together.  */
2765       if (!bfd_generic_link_read_symbols (input_bfd))
2766 	return FALSE;
2767 
2768       /* Since we have been called by a specific linker, rather than
2769 	 the generic linker, the values of the symbols will not be
2770 	 right.  They will be the values as seen in the input file,
2771 	 not the values of the final link.  We need to fix them up
2772 	 before we can relocate the section.  */
2773       sympp = _bfd_generic_link_get_symbols (input_bfd);
2774       symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2775       for (; sympp < symppend; sympp++)
2776 	{
2777 	  asymbol *sym;
2778 	  struct bfd_link_hash_entry *h;
2779 
2780 	  sym = *sympp;
2781 
2782 	  if ((sym->flags & (BSF_INDIRECT
2783 			     | BSF_WARNING
2784 			     | BSF_GLOBAL
2785 			     | BSF_CONSTRUCTOR
2786 			     | BSF_WEAK)) != 0
2787 	      || bfd_is_und_section (bfd_get_section (sym))
2788 	      || bfd_is_com_section (bfd_get_section (sym))
2789 	      || bfd_is_ind_section (bfd_get_section (sym)))
2790 	    {
2791 	      /* sym->udata may have been set by
2792 		 generic_link_add_symbol_list.  */
2793 	      if (sym->udata.p != NULL)
2794 		h = (struct bfd_link_hash_entry *) sym->udata.p;
2795 	      else if (bfd_is_und_section (bfd_get_section (sym)))
2796 		h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2797 						  bfd_asymbol_name (sym),
2798 						  FALSE, FALSE, TRUE);
2799 	      else
2800 		h = bfd_link_hash_lookup (info->hash,
2801 					  bfd_asymbol_name (sym),
2802 					  FALSE, FALSE, TRUE);
2803 	      if (h != NULL)
2804 		set_symbol_from_hash (sym, h);
2805 	    }
2806 	}
2807     }
2808 
2809   if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
2810       && input_section->size != 0)
2811     {
2812       /* Group section contents are set by bfd_elf_set_group_contents.  */
2813       if (!output_bfd->output_has_begun)
2814 	{
2815 	  /* FIXME: This hack ensures bfd_elf_set_group_contents is called.  */
2816 	  if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
2817 	    goto error_return;
2818 	}
2819       new_contents = output_section->contents;
2820       BFD_ASSERT (new_contents != NULL);
2821       BFD_ASSERT (input_section->output_offset == 0);
2822     }
2823   else
2824     {
2825       /* Get and relocate the section contents.  */
2826       sec_size = (input_section->rawsize > input_section->size
2827 		  ? input_section->rawsize
2828 		  : input_section->size);
2829       contents = (bfd_byte *) bfd_malloc (sec_size);
2830       if (contents == NULL && sec_size != 0)
2831 	goto error_return;
2832       new_contents = (bfd_get_relocated_section_contents
2833 		      (output_bfd, info, link_order, contents,
2834 		       info->relocatable,
2835 		       _bfd_generic_link_get_symbols (input_bfd)));
2836       if (!new_contents)
2837 	goto error_return;
2838     }
2839 
2840   /* Output the section contents.  */
2841   loc = input_section->output_offset * bfd_octets_per_byte (output_bfd);
2842   if (! bfd_set_section_contents (output_bfd, output_section,
2843 				  new_contents, loc, input_section->size))
2844     goto error_return;
2845 
2846   if (contents != NULL)
2847     free (contents);
2848   return TRUE;
2849 
2850  error_return:
2851   if (contents != NULL)
2852     free (contents);
2853   return FALSE;
2854 }
2855 
2856 /* A little routine to count the number of relocs in a link_order
2857    list.  */
2858 
2859 unsigned int
2860 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2861 {
2862   register unsigned int c;
2863   register struct bfd_link_order *l;
2864 
2865   c = 0;
2866   for (l = link_order; l != NULL; l = l->next)
2867     {
2868       if (l->type == bfd_section_reloc_link_order
2869 	  || l->type == bfd_symbol_reloc_link_order)
2870 	++c;
2871     }
2872 
2873   return c;
2874 }
2875 
2876 /*
2877 FUNCTION
2878 	bfd_link_split_section
2879 
2880 SYNOPSIS
2881         bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2882 
2883 DESCRIPTION
2884 	Return nonzero if @var{sec} should be split during a
2885 	reloceatable or final link.
2886 
2887 .#define bfd_link_split_section(abfd, sec) \
2888 .       BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2889 .
2890 
2891 */
2892 
2893 bfd_boolean
2894 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2895 				 asection *sec ATTRIBUTE_UNUSED)
2896 {
2897   return FALSE;
2898 }
2899 
2900 /*
2901 FUNCTION
2902 	bfd_section_already_linked
2903 
2904 SYNOPSIS
2905         bfd_boolean bfd_section_already_linked (bfd *abfd,
2906 						asection *sec,
2907 						struct bfd_link_info *info);
2908 
2909 DESCRIPTION
2910 	Check if @var{data} has been already linked during a reloceatable
2911 	or final link.  Return TRUE if it has.
2912 
2913 .#define bfd_section_already_linked(abfd, sec, info) \
2914 .       BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2915 .
2916 
2917 */
2918 
2919 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2920    once into the output.  This routine checks each section, and
2921    arrange to discard it if a section of the same name has already
2922    been linked.  This code assumes that all relevant sections have the
2923    SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2924    section name.  bfd_section_already_linked is called via
2925    bfd_map_over_sections.  */
2926 
2927 /* The hash table.  */
2928 
2929 static struct bfd_hash_table _bfd_section_already_linked_table;
2930 
2931 /* Support routines for the hash table used by section_already_linked,
2932    initialize the table, traverse, lookup, fill in an entry and remove
2933    the table.  */
2934 
2935 void
2936 bfd_section_already_linked_table_traverse
2937   (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2938 			void *), void *info)
2939 {
2940   bfd_hash_traverse (&_bfd_section_already_linked_table,
2941 		     (bfd_boolean (*) (struct bfd_hash_entry *,
2942 				       void *)) func,
2943 		     info);
2944 }
2945 
2946 struct bfd_section_already_linked_hash_entry *
2947 bfd_section_already_linked_table_lookup (const char *name)
2948 {
2949   return ((struct bfd_section_already_linked_hash_entry *)
2950 	  bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2951 			   TRUE, FALSE));
2952 }
2953 
2954 bfd_boolean
2955 bfd_section_already_linked_table_insert
2956   (struct bfd_section_already_linked_hash_entry *already_linked_list,
2957    asection *sec)
2958 {
2959   struct bfd_section_already_linked *l;
2960 
2961   /* Allocate the memory from the same obstack as the hash table is
2962      kept in.  */
2963   l = (struct bfd_section_already_linked *)
2964       bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2965   if (l == NULL)
2966     return FALSE;
2967   l->sec = sec;
2968   l->next = already_linked_list->entry;
2969   already_linked_list->entry = l;
2970   return TRUE;
2971 }
2972 
2973 static struct bfd_hash_entry *
2974 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2975 			struct bfd_hash_table *table,
2976 			const char *string ATTRIBUTE_UNUSED)
2977 {
2978   struct bfd_section_already_linked_hash_entry *ret =
2979     (struct bfd_section_already_linked_hash_entry *)
2980       bfd_hash_allocate (table, sizeof *ret);
2981 
2982   if (ret == NULL)
2983     return NULL;
2984 
2985   ret->entry = NULL;
2986 
2987   return &ret->root;
2988 }
2989 
2990 bfd_boolean
2991 bfd_section_already_linked_table_init (void)
2992 {
2993   return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2994 				already_linked_newfunc,
2995 				sizeof (struct bfd_section_already_linked_hash_entry),
2996 				42);
2997 }
2998 
2999 void
3000 bfd_section_already_linked_table_free (void)
3001 {
3002   bfd_hash_table_free (&_bfd_section_already_linked_table);
3003 }
3004 
3005 /* Report warnings as appropriate for duplicate section SEC.
3006    Return FALSE if we decide to keep SEC after all.  */
3007 
3008 bfd_boolean
3009 _bfd_handle_already_linked (asection *sec,
3010 			    struct bfd_section_already_linked *l,
3011 			    struct bfd_link_info *info)
3012 {
3013   switch (sec->flags & SEC_LINK_DUPLICATES)
3014     {
3015     default:
3016       abort ();
3017 
3018     case SEC_LINK_DUPLICATES_DISCARD:
3019       /* If we found an LTO IR match for this comdat group on
3020 	 the first pass, replace it with the LTO output on the
3021 	 second pass.  We can't simply choose real object
3022 	 files over IR because the first pass may contain a
3023 	 mix of LTO and normal objects and we must keep the
3024 	 first match, be it IR or real.  */
3025       if (info->loading_lto_outputs
3026 	  && (l->sec->owner->flags & BFD_PLUGIN) != 0)
3027 	{
3028 	  l->sec = sec;
3029 	  return FALSE;
3030 	}
3031       break;
3032 
3033     case SEC_LINK_DUPLICATES_ONE_ONLY:
3034       info->callbacks->einfo
3035 	(_("%B: ignoring duplicate section `%A'\n"),
3036 	 sec->owner, sec);
3037       break;
3038 
3039     case SEC_LINK_DUPLICATES_SAME_SIZE:
3040       if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
3041 	;
3042       else if (sec->size != l->sec->size)
3043 	info->callbacks->einfo
3044 	  (_("%B: duplicate section `%A' has different size\n"),
3045 	   sec->owner, sec);
3046       break;
3047 
3048     case SEC_LINK_DUPLICATES_SAME_CONTENTS:
3049       if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
3050 	;
3051       else if (sec->size != l->sec->size)
3052 	info->callbacks->einfo
3053 	  (_("%B: duplicate section `%A' has different size\n"),
3054 	   sec->owner, sec);
3055       else if (sec->size != 0)
3056 	{
3057 	  bfd_byte *sec_contents, *l_sec_contents = NULL;
3058 
3059 	  if (!bfd_malloc_and_get_section (sec->owner, sec, &sec_contents))
3060 	    info->callbacks->einfo
3061 	      (_("%B: could not read contents of section `%A'\n"),
3062 	       sec->owner, sec);
3063 	  else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
3064 						&l_sec_contents))
3065 	    info->callbacks->einfo
3066 	      (_("%B: could not read contents of section `%A'\n"),
3067 	       l->sec->owner, l->sec);
3068 	  else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
3069 	    info->callbacks->einfo
3070 	      (_("%B: duplicate section `%A' has different contents\n"),
3071 	       sec->owner, sec);
3072 
3073 	  if (sec_contents)
3074 	    free (sec_contents);
3075 	  if (l_sec_contents)
3076 	    free (l_sec_contents);
3077 	}
3078       break;
3079     }
3080 
3081   /* Set the output_section field so that lang_add_section
3082      does not create a lang_input_section structure for this
3083      section.  Since there might be a symbol in the section
3084      being discarded, we must retain a pointer to the section
3085      which we are really going to use.  */
3086   sec->output_section = bfd_abs_section_ptr;
3087   sec->kept_section = l->sec;
3088   return TRUE;
3089 }
3090 
3091 /* This is used on non-ELF inputs.  */
3092 
3093 bfd_boolean
3094 _bfd_generic_section_already_linked (bfd *abfd ATTRIBUTE_UNUSED,
3095 				     asection *sec,
3096 				     struct bfd_link_info *info)
3097 {
3098   const char *name;
3099   struct bfd_section_already_linked *l;
3100   struct bfd_section_already_linked_hash_entry *already_linked_list;
3101 
3102   if ((sec->flags & SEC_LINK_ONCE) == 0)
3103     return FALSE;
3104 
3105   /* The generic linker doesn't handle section groups.  */
3106   if ((sec->flags & SEC_GROUP) != 0)
3107     return FALSE;
3108 
3109   /* FIXME: When doing a relocatable link, we may have trouble
3110      copying relocations in other sections that refer to local symbols
3111      in the section being discarded.  Those relocations will have to
3112      be converted somehow; as of this writing I'm not sure that any of
3113      the backends handle that correctly.
3114 
3115      It is tempting to instead not discard link once sections when
3116      doing a relocatable link (technically, they should be discarded
3117      whenever we are building constructors).  However, that fails,
3118      because the linker winds up combining all the link once sections
3119      into a single large link once section, which defeats the purpose
3120      of having link once sections in the first place.  */
3121 
3122   name = bfd_get_section_name (abfd, sec);
3123 
3124   already_linked_list = bfd_section_already_linked_table_lookup (name);
3125 
3126   l = already_linked_list->entry;
3127   if (l != NULL)
3128     {
3129       /* The section has already been linked.  See if we should
3130 	 issue a warning.  */
3131       return _bfd_handle_already_linked (sec, l, info);
3132     }
3133 
3134   /* This is the first section with this name.  Record it.  */
3135   if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
3136     info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
3137   return FALSE;
3138 }
3139 
3140 /* Choose a neighbouring section to S in OBFD that will be output, or
3141    the absolute section if ADDR is out of bounds of the neighbours.  */
3142 
3143 asection *
3144 _bfd_nearby_section (bfd *obfd, asection *s, bfd_vma addr)
3145 {
3146   asection *next, *prev, *best;
3147 
3148   /* Find preceding kept section.  */
3149   for (prev = s->prev; prev != NULL; prev = prev->prev)
3150     if ((prev->flags & SEC_EXCLUDE) == 0
3151 	&& !bfd_section_removed_from_list (obfd, prev))
3152       break;
3153 
3154   /* Find following kept section.  Start at prev->next because
3155      other sections may have been added after S was removed.  */
3156   if (s->prev != NULL)
3157     next = s->prev->next;
3158   else
3159     next = s->owner->sections;
3160   for (; next != NULL; next = next->next)
3161     if ((next->flags & SEC_EXCLUDE) == 0
3162 	&& !bfd_section_removed_from_list (obfd, next))
3163       break;
3164 
3165   /* Choose better of two sections, based on flags.  The idea
3166      is to choose a section that will be in the same segment
3167      as S would have been if it was kept.  */
3168   best = next;
3169   if (prev == NULL)
3170     {
3171       if (next == NULL)
3172 	best = bfd_abs_section_ptr;
3173     }
3174   else if (next == NULL)
3175     best = prev;
3176   else if (((prev->flags ^ next->flags)
3177 	    & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0)
3178     {
3179       if (((next->flags ^ s->flags)
3180 	   & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0
3181 	  /* We prefer to choose a loaded section.  Section S
3182 	     doesn't have SEC_LOAD set (it being excluded, that
3183 	     part of the flag processing didn't happen) so we
3184 	     can't compare that flag to those of NEXT and PREV.  */
3185 	  || ((prev->flags & SEC_LOAD) != 0
3186 	      && (next->flags & SEC_LOAD) == 0))
3187 	best = prev;
3188     }
3189   else if (((prev->flags ^ next->flags) & SEC_READONLY) != 0)
3190     {
3191       if (((next->flags ^ s->flags) & SEC_READONLY) != 0)
3192 	best = prev;
3193     }
3194   else if (((prev->flags ^ next->flags) & SEC_CODE) != 0)
3195     {
3196       if (((next->flags ^ s->flags) & SEC_CODE) != 0)
3197 	best = prev;
3198     }
3199   else
3200     {
3201       /* Flags we care about are the same.  Prefer the following
3202 	 section if that will result in a positive valued sym.  */
3203       if (addr < next->vma)
3204 	best = prev;
3205     }
3206 
3207   return best;
3208 }
3209 
3210 /* Convert symbols in excluded output sections to use a kept section.  */
3211 
3212 static bfd_boolean
3213 fix_syms (struct bfd_link_hash_entry *h, void *data)
3214 {
3215   bfd *obfd = (bfd *) data;
3216 
3217   if (h->type == bfd_link_hash_defined
3218       || h->type == bfd_link_hash_defweak)
3219     {
3220       asection *s = h->u.def.section;
3221       if (s != NULL
3222 	  && s->output_section != NULL
3223 	  && (s->output_section->flags & SEC_EXCLUDE) != 0
3224 	  && bfd_section_removed_from_list (obfd, s->output_section))
3225 	{
3226 	  asection *op;
3227 
3228 	  h->u.def.value += s->output_offset + s->output_section->vma;
3229 	  op = _bfd_nearby_section (obfd, s->output_section, h->u.def.value);
3230 	  h->u.def.value -= op->vma;
3231 	  h->u.def.section = op;
3232 	}
3233     }
3234 
3235   return TRUE;
3236 }
3237 
3238 void
3239 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3240 {
3241   bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3242 }
3243 
3244 /*
3245 FUNCTION
3246 	bfd_generic_define_common_symbol
3247 
3248 SYNOPSIS
3249 	bfd_boolean bfd_generic_define_common_symbol
3250 	  (bfd *output_bfd, struct bfd_link_info *info,
3251 	   struct bfd_link_hash_entry *h);
3252 
3253 DESCRIPTION
3254 	Convert common symbol @var{h} into a defined symbol.
3255 	Return TRUE on success and FALSE on failure.
3256 
3257 .#define bfd_define_common_symbol(output_bfd, info, h) \
3258 .       BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3259 .
3260 */
3261 
3262 bfd_boolean
3263 bfd_generic_define_common_symbol (bfd *output_bfd,
3264 				  struct bfd_link_info *info ATTRIBUTE_UNUSED,
3265 				  struct bfd_link_hash_entry *h)
3266 {
3267   unsigned int power_of_two;
3268   bfd_vma alignment, size;
3269   asection *section;
3270 
3271   BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common);
3272 
3273   size = h->u.c.size;
3274   power_of_two = h->u.c.p->alignment_power;
3275   section = h->u.c.p->section;
3276 
3277   /* Increase the size of the section to align the common symbol.
3278      The alignment must be a power of two.  */
3279   alignment = bfd_octets_per_byte (output_bfd) << power_of_two;
3280   BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment);
3281   section->size += alignment - 1;
3282   section->size &= -alignment;
3283 
3284   /* Adjust the section's overall alignment if necessary.  */
3285   if (power_of_two > section->alignment_power)
3286     section->alignment_power = power_of_two;
3287 
3288   /* Change the symbol from common to defined.  */
3289   h->type = bfd_link_hash_defined;
3290   h->u.def.section = section;
3291   h->u.def.value = section->size;
3292 
3293   /* Increase the size of the section.  */
3294   section->size += size;
3295 
3296   /* Make sure the section is allocated in memory, and make sure that
3297      it is no longer a common section.  */
3298   section->flags |= SEC_ALLOC;
3299   section->flags &= ~SEC_IS_COMMON;
3300   return TRUE;
3301 }
3302 
3303 /*
3304 FUNCTION
3305 	bfd_find_version_for_sym
3306 
3307 SYNOPSIS
3308 	struct bfd_elf_version_tree * bfd_find_version_for_sym
3309 	  (struct bfd_elf_version_tree *verdefs,
3310 	   const char *sym_name, bfd_boolean *hide);
3311 
3312 DESCRIPTION
3313 	Search an elf version script tree for symbol versioning
3314 	info and export / don't-export status for a given symbol.
3315 	Return non-NULL on success and NULL on failure; also sets
3316 	the output @samp{hide} boolean parameter.
3317 
3318 */
3319 
3320 struct bfd_elf_version_tree *
3321 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs,
3322 			  const char *sym_name,
3323 			  bfd_boolean *hide)
3324 {
3325   struct bfd_elf_version_tree *t;
3326   struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
3327   struct bfd_elf_version_tree *star_local_ver, *star_global_ver;
3328 
3329   local_ver = NULL;
3330   global_ver = NULL;
3331   star_local_ver = NULL;
3332   star_global_ver = NULL;
3333   exist_ver = NULL;
3334   for (t = verdefs; t != NULL; t = t->next)
3335     {
3336       if (t->globals.list != NULL)
3337 	{
3338 	  struct bfd_elf_version_expr *d = NULL;
3339 
3340 	  while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
3341 	    {
3342 	      if (d->literal || strcmp (d->pattern, "*") != 0)
3343 		global_ver = t;
3344 	      else
3345 		star_global_ver = t;
3346 	      if (d->symver)
3347 		exist_ver = t;
3348 	      d->script = 1;
3349 	      /* If the match is a wildcard pattern, keep looking for
3350 		 a more explicit, perhaps even local, match.  */
3351 	      if (d->literal)
3352 		break;
3353 	    }
3354 
3355 	  if (d != NULL)
3356 	    break;
3357 	}
3358 
3359       if (t->locals.list != NULL)
3360 	{
3361 	  struct bfd_elf_version_expr *d = NULL;
3362 
3363 	  while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
3364 	    {
3365 	      if (d->literal || strcmp (d->pattern, "*") != 0)
3366 		local_ver = t;
3367 	      else
3368 		star_local_ver = t;
3369 	      /* If the match is a wildcard pattern, keep looking for
3370 		 a more explicit, perhaps even global, match.  */
3371 	      if (d->literal)
3372 		{
3373 		  /* An exact match overrides a global wildcard.  */
3374 		  global_ver = NULL;
3375 		  star_global_ver = NULL;
3376 		  break;
3377 		}
3378 	    }
3379 
3380 	  if (d != NULL)
3381 	    break;
3382 	}
3383     }
3384 
3385   if (global_ver == NULL && local_ver == NULL)
3386     global_ver = star_global_ver;
3387 
3388   if (global_ver != NULL)
3389     {
3390       /* If we already have a versioned symbol that matches the
3391 	 node for this symbol, then we don't want to create a
3392 	 duplicate from the unversioned symbol.  Instead hide the
3393 	 unversioned symbol.  */
3394       *hide = exist_ver == global_ver;
3395       return global_ver;
3396     }
3397 
3398   if (local_ver == NULL)
3399     local_ver = star_local_ver;
3400 
3401   if (local_ver != NULL)
3402     {
3403       *hide = TRUE;
3404       return local_ver;
3405     }
3406 
3407   return NULL;
3408 }
3409 
3410 /*
3411 FUNCTION
3412 	bfd_hide_sym_by_version
3413 
3414 SYNOPSIS
3415 	bfd_boolean bfd_hide_sym_by_version
3416 	  (struct bfd_elf_version_tree *verdefs, const char *sym_name);
3417 
3418 DESCRIPTION
3419 	Search an elf version script tree for symbol versioning
3420 	info for a given symbol.  Return TRUE if the symbol is hidden.
3421 
3422 */
3423 
3424 bfd_boolean
3425 bfd_hide_sym_by_version (struct bfd_elf_version_tree *verdefs,
3426 			 const char *sym_name)
3427 {
3428   bfd_boolean hidden = FALSE;
3429   bfd_find_version_for_sym (verdefs, sym_name, &hidden);
3430   return hidden;
3431 }
3432