xref: /dragonfly/contrib/gdb-7/bfd/linker.c (revision e7d467f4)
1 /* linker.c -- BFD linker routines
2    Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3    2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4    Free Software Foundation, Inc.
5    Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
6 
7    This file is part of BFD, the Binary File Descriptor library.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; if not, write to the Free Software
21    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22    MA 02110-1301, USA.  */
23 
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "libbfd.h"
27 #include "bfdlink.h"
28 #include "genlink.h"
29 
30 /*
31 SECTION
32 	Linker Functions
33 
34 @cindex Linker
35 	The linker uses three special entry points in the BFD target
36 	vector.  It is not necessary to write special routines for
37 	these entry points when creating a new BFD back end, since
38 	generic versions are provided.  However, writing them can
39 	speed up linking and make it use significantly less runtime
40 	memory.
41 
42 	The first routine creates a hash table used by the other
43 	routines.  The second routine adds the symbols from an object
44 	file to the hash table.  The third routine takes all the
45 	object files and links them together to create the output
46 	file.  These routines are designed so that the linker proper
47 	does not need to know anything about the symbols in the object
48 	files that it is linking.  The linker merely arranges the
49 	sections as directed by the linker script and lets BFD handle
50 	the details of symbols and relocs.
51 
52 	The second routine and third routines are passed a pointer to
53 	a <<struct bfd_link_info>> structure (defined in
54 	<<bfdlink.h>>) which holds information relevant to the link,
55 	including the linker hash table (which was created by the
56 	first routine) and a set of callback functions to the linker
57 	proper.
58 
59 	The generic linker routines are in <<linker.c>>, and use the
60 	header file <<genlink.h>>.  As of this writing, the only back
61 	ends which have implemented versions of these routines are
62 	a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>).  The a.out
63 	routines are used as examples throughout this section.
64 
65 @menu
66 @* Creating a Linker Hash Table::
67 @* Adding Symbols to the Hash Table::
68 @* Performing the Final Link::
69 @end menu
70 
71 INODE
72 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
73 SUBSECTION
74 	Creating a linker hash table
75 
76 @cindex _bfd_link_hash_table_create in target vector
77 @cindex target vector (_bfd_link_hash_table_create)
78 	The linker routines must create a hash table, which must be
79 	derived from <<struct bfd_link_hash_table>> described in
80 	<<bfdlink.c>>.  @xref{Hash Tables}, for information on how to
81 	create a derived hash table.  This entry point is called using
82 	the target vector of the linker output file.
83 
84 	The <<_bfd_link_hash_table_create>> entry point must allocate
85 	and initialize an instance of the desired hash table.  If the
86 	back end does not require any additional information to be
87 	stored with the entries in the hash table, the entry point may
88 	simply create a <<struct bfd_link_hash_table>>.  Most likely,
89 	however, some additional information will be needed.
90 
91 	For example, with each entry in the hash table the a.out
92 	linker keeps the index the symbol has in the final output file
93 	(this index number is used so that when doing a relocatable
94 	link the symbol index used in the output file can be quickly
95 	filled in when copying over a reloc).  The a.out linker code
96 	defines the required structures and functions for a hash table
97 	derived from <<struct bfd_link_hash_table>>.  The a.out linker
98 	hash table is created by the function
99 	<<NAME(aout,link_hash_table_create)>>; it simply allocates
100 	space for the hash table, initializes it, and returns a
101 	pointer to it.
102 
103 	When writing the linker routines for a new back end, you will
104 	generally not know exactly which fields will be required until
105 	you have finished.  You should simply create a new hash table
106 	which defines no additional fields, and then simply add fields
107 	as they become necessary.
108 
109 INODE
110 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
111 SUBSECTION
112 	Adding symbols to the hash table
113 
114 @cindex _bfd_link_add_symbols in target vector
115 @cindex target vector (_bfd_link_add_symbols)
116 	The linker proper will call the <<_bfd_link_add_symbols>>
117 	entry point for each object file or archive which is to be
118 	linked (typically these are the files named on the command
119 	line, but some may also come from the linker script).  The
120 	entry point is responsible for examining the file.  For an
121 	object file, BFD must add any relevant symbol information to
122 	the hash table.  For an archive, BFD must determine which
123 	elements of the archive should be used and adding them to the
124 	link.
125 
126 	The a.out version of this entry point is
127 	<<NAME(aout,link_add_symbols)>>.
128 
129 @menu
130 @* Differing file formats::
131 @* Adding symbols from an object file::
132 @* Adding symbols from an archive::
133 @end menu
134 
135 INODE
136 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
137 SUBSUBSECTION
138 	Differing file formats
139 
140 	Normally all the files involved in a link will be of the same
141 	format, but it is also possible to link together different
142 	format object files, and the back end must support that.  The
143 	<<_bfd_link_add_symbols>> entry point is called via the target
144 	vector of the file to be added.  This has an important
145 	consequence: the function may not assume that the hash table
146 	is the type created by the corresponding
147 	<<_bfd_link_hash_table_create>> vector.  All the
148 	<<_bfd_link_add_symbols>> function can assume about the hash
149 	table is that it is derived from <<struct
150 	bfd_link_hash_table>>.
151 
152 	Sometimes the <<_bfd_link_add_symbols>> function must store
153 	some information in the hash table entry to be used by the
154 	<<_bfd_final_link>> function.  In such a case the output bfd
155 	xvec must be checked to make sure that the hash table was
156 	created by an object file of the same format.
157 
158 	The <<_bfd_final_link>> routine must be prepared to handle a
159 	hash entry without any extra information added by the
160 	<<_bfd_link_add_symbols>> function.  A hash entry without
161 	extra information will also occur when the linker script
162 	directs the linker to create a symbol.  Note that, regardless
163 	of how a hash table entry is added, all the fields will be
164 	initialized to some sort of null value by the hash table entry
165 	initialization function.
166 
167 	See <<ecoff_link_add_externals>> for an example of how to
168 	check the output bfd before saving information (in this
169 	case, the ECOFF external symbol debugging information) in a
170 	hash table entry.
171 
172 INODE
173 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
174 SUBSUBSECTION
175 	Adding symbols from an object file
176 
177 	When the <<_bfd_link_add_symbols>> routine is passed an object
178 	file, it must add all externally visible symbols in that
179 	object file to the hash table.  The actual work of adding the
180 	symbol to the hash table is normally handled by the function
181 	<<_bfd_generic_link_add_one_symbol>>.  The
182 	<<_bfd_link_add_symbols>> routine is responsible for reading
183 	all the symbols from the object file and passing the correct
184 	information to <<_bfd_generic_link_add_one_symbol>>.
185 
186 	The <<_bfd_link_add_symbols>> routine should not use
187 	<<bfd_canonicalize_symtab>> to read the symbols.  The point of
188 	providing this routine is to avoid the overhead of converting
189 	the symbols into generic <<asymbol>> structures.
190 
191 @findex _bfd_generic_link_add_one_symbol
192 	<<_bfd_generic_link_add_one_symbol>> handles the details of
193 	combining common symbols, warning about multiple definitions,
194 	and so forth.  It takes arguments which describe the symbol to
195 	add, notably symbol flags, a section, and an offset.  The
196 	symbol flags include such things as <<BSF_WEAK>> or
197 	<<BSF_INDIRECT>>.  The section is a section in the object
198 	file, or something like <<bfd_und_section_ptr>> for an undefined
199 	symbol or <<bfd_com_section_ptr>> for a common symbol.
200 
201 	If the <<_bfd_final_link>> routine is also going to need to
202 	read the symbol information, the <<_bfd_link_add_symbols>>
203 	routine should save it somewhere attached to the object file
204 	BFD.  However, the information should only be saved if the
205 	<<keep_memory>> field of the <<info>> argument is TRUE, so
206 	that the <<-no-keep-memory>> linker switch is effective.
207 
208 	The a.out function which adds symbols from an object file is
209 	<<aout_link_add_object_symbols>>, and most of the interesting
210 	work is in <<aout_link_add_symbols>>.  The latter saves
211 	pointers to the hash tables entries created by
212 	<<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
213 	so that the <<_bfd_final_link>> routine does not have to call
214 	the hash table lookup routine to locate the entry.
215 
216 INODE
217 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
218 SUBSUBSECTION
219 	Adding symbols from an archive
220 
221 	When the <<_bfd_link_add_symbols>> routine is passed an
222 	archive, it must look through the symbols defined by the
223 	archive and decide which elements of the archive should be
224 	included in the link.  For each such element it must call the
225 	<<add_archive_element>> linker callback, and it must add the
226 	symbols from the object file to the linker hash table.  (The
227 	callback may in fact indicate that a replacement BFD should be
228 	used, in which case the symbols from that BFD should be added
229 	to the linker hash table instead.)
230 
231 @findex _bfd_generic_link_add_archive_symbols
232 	In most cases the work of looking through the symbols in the
233 	archive should be done by the
234 	<<_bfd_generic_link_add_archive_symbols>> function.  This
235 	function builds a hash table from the archive symbol table and
236 	looks through the list of undefined symbols to see which
237 	elements should be included.
238 	<<_bfd_generic_link_add_archive_symbols>> is passed a function
239 	to call to make the final decision about adding an archive
240 	element to the link and to do the actual work of adding the
241 	symbols to the linker hash table.
242 
243 	The function passed to
244 	<<_bfd_generic_link_add_archive_symbols>> must read the
245 	symbols of the archive element and decide whether the archive
246 	element should be included in the link.  If the element is to
247 	be included, the <<add_archive_element>> linker callback
248 	routine must be called with the element as an argument, and
249 	the element's symbols must be added to the linker hash table
250 	just as though the element had itself been passed to the
251 	<<_bfd_link_add_symbols>> function.  The <<add_archive_element>>
252 	callback has the option to indicate that it would like to
253 	replace the element archive with a substitute BFD, in which
254 	case it is the symbols of that substitute BFD that must be
255 	added to the linker hash table instead.
256 
257 	When the a.out <<_bfd_link_add_symbols>> function receives an
258 	archive, it calls <<_bfd_generic_link_add_archive_symbols>>
259 	passing <<aout_link_check_archive_element>> as the function
260 	argument. <<aout_link_check_archive_element>> calls
261 	<<aout_link_check_ar_symbols>>.  If the latter decides to add
262 	the element (an element is only added if it provides a real,
263 	non-common, definition for a previously undefined or common
264 	symbol) it calls the <<add_archive_element>> callback and then
265 	<<aout_link_check_archive_element>> calls
266 	<<aout_link_add_symbols>> to actually add the symbols to the
267 	linker hash table - possibly those of a substitute BFD, if the
268 	<<add_archive_element>> callback avails itself of that option.
269 
270 	The ECOFF back end is unusual in that it does not normally
271 	call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
272 	archives already contain a hash table of symbols.  The ECOFF
273 	back end searches the archive itself to avoid the overhead of
274 	creating a new hash table.
275 
276 INODE
277 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
278 SUBSECTION
279 	Performing the final link
280 
281 @cindex _bfd_link_final_link in target vector
282 @cindex target vector (_bfd_final_link)
283 	When all the input files have been processed, the linker calls
284 	the <<_bfd_final_link>> entry point of the output BFD.  This
285 	routine is responsible for producing the final output file,
286 	which has several aspects.  It must relocate the contents of
287 	the input sections and copy the data into the output sections.
288 	It must build an output symbol table including any local
289 	symbols from the input files and the global symbols from the
290 	hash table.  When producing relocatable output, it must
291 	modify the input relocs and write them into the output file.
292 	There may also be object format dependent work to be done.
293 
294 	The linker will also call the <<write_object_contents>> entry
295 	point when the BFD is closed.  The two entry points must work
296 	together in order to produce the correct output file.
297 
298 	The details of how this works are inevitably dependent upon
299 	the specific object file format.  The a.out
300 	<<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
301 
302 @menu
303 @* Information provided by the linker::
304 @* Relocating the section contents::
305 @* Writing the symbol table::
306 @end menu
307 
308 INODE
309 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
310 SUBSUBSECTION
311 	Information provided by the linker
312 
313 	Before the linker calls the <<_bfd_final_link>> entry point,
314 	it sets up some data structures for the function to use.
315 
316 	The <<input_bfds>> field of the <<bfd_link_info>> structure
317 	will point to a list of all the input files included in the
318 	link.  These files are linked through the <<link_next>> field
319 	of the <<bfd>> structure.
320 
321 	Each section in the output file will have a list of
322 	<<link_order>> structures attached to the <<map_head.link_order>>
323 	field (the <<link_order>> structure is defined in
324 	<<bfdlink.h>>).  These structures describe how to create the
325 	contents of the output section in terms of the contents of
326 	various input sections, fill constants, and, eventually, other
327 	types of information.  They also describe relocs that must be
328 	created by the BFD backend, but do not correspond to any input
329 	file; this is used to support -Ur, which builds constructors
330 	while generating a relocatable object file.
331 
332 INODE
333 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
334 SUBSUBSECTION
335 	Relocating the section contents
336 
337 	The <<_bfd_final_link>> function should look through the
338 	<<link_order>> structures attached to each section of the
339 	output file.  Each <<link_order>> structure should either be
340 	handled specially, or it should be passed to the function
341 	<<_bfd_default_link_order>> which will do the right thing
342 	(<<_bfd_default_link_order>> is defined in <<linker.c>>).
343 
344 	For efficiency, a <<link_order>> of type
345 	<<bfd_indirect_link_order>> whose associated section belongs
346 	to a BFD of the same format as the output BFD must be handled
347 	specially.  This type of <<link_order>> describes part of an
348 	output section in terms of a section belonging to one of the
349 	input files.  The <<_bfd_final_link>> function should read the
350 	contents of the section and any associated relocs, apply the
351 	relocs to the section contents, and write out the modified
352 	section contents.  If performing a relocatable link, the
353 	relocs themselves must also be modified and written out.
354 
355 @findex _bfd_relocate_contents
356 @findex _bfd_final_link_relocate
357 	The functions <<_bfd_relocate_contents>> and
358 	<<_bfd_final_link_relocate>> provide some general support for
359 	performing the actual relocations, notably overflow checking.
360 	Their arguments include information about the symbol the
361 	relocation is against and a <<reloc_howto_type>> argument
362 	which describes the relocation to perform.  These functions
363 	are defined in <<reloc.c>>.
364 
365 	The a.out function which handles reading, relocating, and
366 	writing section contents is <<aout_link_input_section>>.  The
367 	actual relocation is done in <<aout_link_input_section_std>>
368 	and <<aout_link_input_section_ext>>.
369 
370 INODE
371 Writing the symbol table, , Relocating the section contents, Performing the Final Link
372 SUBSUBSECTION
373 	Writing the symbol table
374 
375 	The <<_bfd_final_link>> function must gather all the symbols
376 	in the input files and write them out.  It must also write out
377 	all the symbols in the global hash table.  This must be
378 	controlled by the <<strip>> and <<discard>> fields of the
379 	<<bfd_link_info>> structure.
380 
381 	The local symbols of the input files will not have been
382 	entered into the linker hash table.  The <<_bfd_final_link>>
383 	routine must consider each input file and include the symbols
384 	in the output file.  It may be convenient to do this when
385 	looking through the <<link_order>> structures, or it may be
386 	done by stepping through the <<input_bfds>> list.
387 
388 	The <<_bfd_final_link>> routine must also traverse the global
389 	hash table to gather all the externally visible symbols.  It
390 	is possible that most of the externally visible symbols may be
391 	written out when considering the symbols of each input file,
392 	but it is still necessary to traverse the hash table since the
393 	linker script may have defined some symbols that are not in
394 	any of the input files.
395 
396 	The <<strip>> field of the <<bfd_link_info>> structure
397 	controls which symbols are written out.  The possible values
398 	are listed in <<bfdlink.h>>.  If the value is <<strip_some>>,
399 	then the <<keep_hash>> field of the <<bfd_link_info>>
400 	structure is a hash table of symbols to keep; each symbol
401 	should be looked up in this hash table, and only symbols which
402 	are present should be included in the output file.
403 
404 	If the <<strip>> field of the <<bfd_link_info>> structure
405 	permits local symbols to be written out, the <<discard>> field
406 	is used to further controls which local symbols are included
407 	in the output file.  If the value is <<discard_l>>, then all
408 	local symbols which begin with a certain prefix are discarded;
409 	this is controlled by the <<bfd_is_local_label_name>> entry point.
410 
411 	The a.out backend handles symbols by calling
412 	<<aout_link_write_symbols>> on each input BFD and then
413 	traversing the global hash table with the function
414 	<<aout_link_write_other_symbol>>.  It builds a string table
415 	while writing out the symbols, which is written to the output
416 	file at the end of <<NAME(aout,final_link)>>.
417 */
418 
419 static bfd_boolean generic_link_add_object_symbols
420   (bfd *, struct bfd_link_info *, bfd_boolean collect);
421 static bfd_boolean generic_link_add_symbols
422   (bfd *, struct bfd_link_info *, bfd_boolean);
423 static bfd_boolean generic_link_check_archive_element_no_collect
424   (bfd *, struct bfd_link_info *, bfd_boolean *);
425 static bfd_boolean generic_link_check_archive_element_collect
426   (bfd *, struct bfd_link_info *, bfd_boolean *);
427 static bfd_boolean generic_link_check_archive_element
428   (bfd *, struct bfd_link_info *, bfd_boolean *, bfd_boolean);
429 static bfd_boolean generic_link_add_symbol_list
430   (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
431    bfd_boolean);
432 static bfd_boolean generic_add_output_symbol
433   (bfd *, size_t *psymalloc, asymbol *);
434 static bfd_boolean default_data_link_order
435   (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
436 static bfd_boolean default_indirect_link_order
437   (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
438    bfd_boolean);
439 
440 /* The link hash table structure is defined in bfdlink.h.  It provides
441    a base hash table which the backend specific hash tables are built
442    upon.  */
443 
444 /* Routine to create an entry in the link hash table.  */
445 
446 struct bfd_hash_entry *
447 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
448 			struct bfd_hash_table *table,
449 			const char *string)
450 {
451   /* Allocate the structure if it has not already been allocated by a
452      subclass.  */
453   if (entry == NULL)
454     {
455       entry = (struct bfd_hash_entry *)
456           bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
457       if (entry == NULL)
458 	return entry;
459     }
460 
461   /* Call the allocation method of the superclass.  */
462   entry = bfd_hash_newfunc (entry, table, string);
463   if (entry)
464     {
465       struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
466 
467       /* Initialize the local fields.  */
468       memset ((char *) &h->root + sizeof (h->root), 0,
469 	      sizeof (*h) - sizeof (h->root));
470     }
471 
472   return entry;
473 }
474 
475 /* Initialize a link hash table.  The BFD argument is the one
476    responsible for creating this table.  */
477 
478 bfd_boolean
479 _bfd_link_hash_table_init
480   (struct bfd_link_hash_table *table,
481    bfd *abfd ATTRIBUTE_UNUSED,
482    struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
483 				      struct bfd_hash_table *,
484 				      const char *),
485    unsigned int entsize)
486 {
487   table->undefs = NULL;
488   table->undefs_tail = NULL;
489   table->type = bfd_link_generic_hash_table;
490 
491   return bfd_hash_table_init (&table->table, newfunc, entsize);
492 }
493 
494 /* Look up a symbol in a link hash table.  If follow is TRUE, we
495    follow bfd_link_hash_indirect and bfd_link_hash_warning links to
496    the real symbol.  */
497 
498 struct bfd_link_hash_entry *
499 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
500 		      const char *string,
501 		      bfd_boolean create,
502 		      bfd_boolean copy,
503 		      bfd_boolean follow)
504 {
505   struct bfd_link_hash_entry *ret;
506 
507   ret = ((struct bfd_link_hash_entry *)
508 	 bfd_hash_lookup (&table->table, string, create, copy));
509 
510   if (follow && ret != NULL)
511     {
512       while (ret->type == bfd_link_hash_indirect
513 	     || ret->type == bfd_link_hash_warning)
514 	ret = ret->u.i.link;
515     }
516 
517   return ret;
518 }
519 
520 /* Look up a symbol in the main linker hash table if the symbol might
521    be wrapped.  This should only be used for references to an
522    undefined symbol, not for definitions of a symbol.  */
523 
524 struct bfd_link_hash_entry *
525 bfd_wrapped_link_hash_lookup (bfd *abfd,
526 			      struct bfd_link_info *info,
527 			      const char *string,
528 			      bfd_boolean create,
529 			      bfd_boolean copy,
530 			      bfd_boolean follow)
531 {
532   bfd_size_type amt;
533 
534   if (info->wrap_hash != NULL)
535     {
536       const char *l;
537       char prefix = '\0';
538 
539       l = string;
540       if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
541 	{
542 	  prefix = *l;
543 	  ++l;
544 	}
545 
546 #undef WRAP
547 #define WRAP "__wrap_"
548 
549       if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
550 	{
551 	  char *n;
552 	  struct bfd_link_hash_entry *h;
553 
554 	  /* This symbol is being wrapped.  We want to replace all
555              references to SYM with references to __wrap_SYM.  */
556 
557 	  amt = strlen (l) + sizeof WRAP + 1;
558 	  n = (char *) bfd_malloc (amt);
559 	  if (n == NULL)
560 	    return NULL;
561 
562 	  n[0] = prefix;
563 	  n[1] = '\0';
564 	  strcat (n, WRAP);
565 	  strcat (n, l);
566 	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
567 	  free (n);
568 	  return h;
569 	}
570 
571 #undef WRAP
572 
573 #undef  REAL
574 #define REAL "__real_"
575 
576       if (*l == '_'
577 	  && CONST_STRNEQ (l, REAL)
578 	  && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
579 			      FALSE, FALSE) != NULL)
580 	{
581 	  char *n;
582 	  struct bfd_link_hash_entry *h;
583 
584 	  /* This is a reference to __real_SYM, where SYM is being
585              wrapped.  We want to replace all references to __real_SYM
586              with references to SYM.  */
587 
588 	  amt = strlen (l + sizeof REAL - 1) + 2;
589 	  n = (char *) bfd_malloc (amt);
590 	  if (n == NULL)
591 	    return NULL;
592 
593 	  n[0] = prefix;
594 	  n[1] = '\0';
595 	  strcat (n, l + sizeof REAL - 1);
596 	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
597 	  free (n);
598 	  return h;
599 	}
600 
601 #undef REAL
602     }
603 
604   return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
605 }
606 
607 /* Traverse a generic link hash table.  Differs from bfd_hash_traverse
608    in the treatment of warning symbols.  When warning symbols are
609    created they replace the real symbol, so you don't get to see the
610    real symbol in a bfd_hash_travere.  This traversal calls func with
611    the real symbol.  */
612 
613 void
614 bfd_link_hash_traverse
615   (struct bfd_link_hash_table *htab,
616    bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
617    void *info)
618 {
619   unsigned int i;
620 
621   htab->table.frozen = 1;
622   for (i = 0; i < htab->table.size; i++)
623     {
624       struct bfd_link_hash_entry *p;
625 
626       p = (struct bfd_link_hash_entry *) htab->table.table[i];
627       for (; p != NULL; p = (struct bfd_link_hash_entry *) p->root.next)
628 	if (!(*func) (p->type == bfd_link_hash_warning ? p->u.i.link : p, info))
629 	  goto out;
630     }
631  out:
632   htab->table.frozen = 0;
633 }
634 
635 /* Add a symbol to the linker hash table undefs list.  */
636 
637 void
638 bfd_link_add_undef (struct bfd_link_hash_table *table,
639 		    struct bfd_link_hash_entry *h)
640 {
641   BFD_ASSERT (h->u.undef.next == NULL);
642   if (table->undefs_tail != NULL)
643     table->undefs_tail->u.undef.next = h;
644   if (table->undefs == NULL)
645     table->undefs = h;
646   table->undefs_tail = h;
647 }
648 
649 /* The undefs list was designed so that in normal use we don't need to
650    remove entries.  However, if symbols on the list are changed from
651    bfd_link_hash_undefined to either bfd_link_hash_undefweak or
652    bfd_link_hash_new for some reason, then they must be removed from the
653    list.  Failure to do so might result in the linker attempting to add
654    the symbol to the list again at a later stage.  */
655 
656 void
657 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
658 {
659   struct bfd_link_hash_entry **pun;
660 
661   pun = &table->undefs;
662   while (*pun != NULL)
663     {
664       struct bfd_link_hash_entry *h = *pun;
665 
666       if (h->type == bfd_link_hash_new
667 	  || h->type == bfd_link_hash_undefweak)
668 	{
669 	  *pun = h->u.undef.next;
670 	  h->u.undef.next = NULL;
671 	  if (h == table->undefs_tail)
672 	    {
673 	      if (pun == &table->undefs)
674 		table->undefs_tail = NULL;
675 	      else
676 		/* pun points at an u.undef.next field.  Go back to
677 		   the start of the link_hash_entry.  */
678 		table->undefs_tail = (struct bfd_link_hash_entry *)
679 		  ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
680 	      break;
681 	    }
682 	}
683       else
684 	pun = &h->u.undef.next;
685     }
686 }
687 
688 /* Routine to create an entry in a generic link hash table.  */
689 
690 struct bfd_hash_entry *
691 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
692 				struct bfd_hash_table *table,
693 				const char *string)
694 {
695   /* Allocate the structure if it has not already been allocated by a
696      subclass.  */
697   if (entry == NULL)
698     {
699       entry = (struct bfd_hash_entry *)
700 	bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
701       if (entry == NULL)
702 	return entry;
703     }
704 
705   /* Call the allocation method of the superclass.  */
706   entry = _bfd_link_hash_newfunc (entry, table, string);
707   if (entry)
708     {
709       struct generic_link_hash_entry *ret;
710 
711       /* Set local fields.  */
712       ret = (struct generic_link_hash_entry *) entry;
713       ret->written = FALSE;
714       ret->sym = NULL;
715     }
716 
717   return entry;
718 }
719 
720 /* Create a generic link hash table.  */
721 
722 struct bfd_link_hash_table *
723 _bfd_generic_link_hash_table_create (bfd *abfd)
724 {
725   struct generic_link_hash_table *ret;
726   bfd_size_type amt = sizeof (struct generic_link_hash_table);
727 
728   ret = (struct generic_link_hash_table *) bfd_malloc (amt);
729   if (ret == NULL)
730     return NULL;
731   if (! _bfd_link_hash_table_init (&ret->root, abfd,
732 				   _bfd_generic_link_hash_newfunc,
733 				   sizeof (struct generic_link_hash_entry)))
734     {
735       free (ret);
736       return NULL;
737     }
738   return &ret->root;
739 }
740 
741 void
742 _bfd_generic_link_hash_table_free (struct bfd_link_hash_table *hash)
743 {
744   struct generic_link_hash_table *ret
745     = (struct generic_link_hash_table *) hash;
746 
747   bfd_hash_table_free (&ret->root.table);
748   free (ret);
749 }
750 
751 /* Grab the symbols for an object file when doing a generic link.  We
752    store the symbols in the outsymbols field.  We need to keep them
753    around for the entire link to ensure that we only read them once.
754    If we read them multiple times, we might wind up with relocs and
755    the hash table pointing to different instances of the symbol
756    structure.  */
757 
758 bfd_boolean
759 bfd_generic_link_read_symbols (bfd *abfd)
760 {
761   if (bfd_get_outsymbols (abfd) == NULL)
762     {
763       long symsize;
764       long symcount;
765 
766       symsize = bfd_get_symtab_upper_bound (abfd);
767       if (symsize < 0)
768 	return FALSE;
769       bfd_get_outsymbols (abfd) = (struct bfd_symbol **) bfd_alloc (abfd,
770                                                                     symsize);
771       if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
772 	return FALSE;
773       symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
774       if (symcount < 0)
775 	return FALSE;
776       bfd_get_symcount (abfd) = symcount;
777     }
778 
779   return TRUE;
780 }
781 
782 /* Generic function to add symbols to from an object file to the
783    global hash table.  This version does not automatically collect
784    constructors by name.  */
785 
786 bfd_boolean
787 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
788 {
789   return generic_link_add_symbols (abfd, info, FALSE);
790 }
791 
792 /* Generic function to add symbols from an object file to the global
793    hash table.  This version automatically collects constructors by
794    name, as the collect2 program does.  It should be used for any
795    target which does not provide some other mechanism for setting up
796    constructors and destructors; these are approximately those targets
797    for which gcc uses collect2 and do not support stabs.  */
798 
799 bfd_boolean
800 _bfd_generic_link_add_symbols_collect (bfd *abfd, struct bfd_link_info *info)
801 {
802   return generic_link_add_symbols (abfd, info, TRUE);
803 }
804 
805 /* Indicate that we are only retrieving symbol values from this
806    section.  We want the symbols to act as though the values in the
807    file are absolute.  */
808 
809 void
810 _bfd_generic_link_just_syms (asection *sec,
811 			     struct bfd_link_info *info ATTRIBUTE_UNUSED)
812 {
813   sec->output_section = bfd_abs_section_ptr;
814   sec->output_offset = sec->vma;
815 }
816 
817 /* Copy the type of a symbol assiciated with a linker hast table entry.
818    Override this so that symbols created in linker scripts get their
819    type from the RHS of the assignment.
820    The default implementation does nothing.  */
821 void
822 _bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
823     struct bfd_link_hash_entry * hdest ATTRIBUTE_UNUSED,
824     struct bfd_link_hash_entry * hsrc ATTRIBUTE_UNUSED)
825 {
826 }
827 
828 /* Add symbols from an object file to the global hash table.  */
829 
830 static bfd_boolean
831 generic_link_add_symbols (bfd *abfd,
832 			  struct bfd_link_info *info,
833 			  bfd_boolean collect)
834 {
835   bfd_boolean ret;
836 
837   switch (bfd_get_format (abfd))
838     {
839     case bfd_object:
840       ret = generic_link_add_object_symbols (abfd, info, collect);
841       break;
842     case bfd_archive:
843       ret = (_bfd_generic_link_add_archive_symbols
844 	     (abfd, info,
845 	      (collect
846 	       ? generic_link_check_archive_element_collect
847 	       : generic_link_check_archive_element_no_collect)));
848       break;
849     default:
850       bfd_set_error (bfd_error_wrong_format);
851       ret = FALSE;
852     }
853 
854   return ret;
855 }
856 
857 /* Add symbols from an object file to the global hash table.  */
858 
859 static bfd_boolean
860 generic_link_add_object_symbols (bfd *abfd,
861 				 struct bfd_link_info *info,
862 				 bfd_boolean collect)
863 {
864   bfd_size_type symcount;
865   struct bfd_symbol **outsyms;
866 
867   if (!bfd_generic_link_read_symbols (abfd))
868     return FALSE;
869   symcount = _bfd_generic_link_get_symcount (abfd);
870   outsyms = _bfd_generic_link_get_symbols (abfd);
871   return generic_link_add_symbol_list (abfd, info, symcount, outsyms, collect);
872 }
873 
874 /* We build a hash table of all symbols defined in an archive.  */
875 
876 /* An archive symbol may be defined by multiple archive elements.
877    This linked list is used to hold the elements.  */
878 
879 struct archive_list
880 {
881   struct archive_list *next;
882   unsigned int indx;
883 };
884 
885 /* An entry in an archive hash table.  */
886 
887 struct archive_hash_entry
888 {
889   struct bfd_hash_entry root;
890   /* Where the symbol is defined.  */
891   struct archive_list *defs;
892 };
893 
894 /* An archive hash table itself.  */
895 
896 struct archive_hash_table
897 {
898   struct bfd_hash_table table;
899 };
900 
901 /* Create a new entry for an archive hash table.  */
902 
903 static struct bfd_hash_entry *
904 archive_hash_newfunc (struct bfd_hash_entry *entry,
905 		      struct bfd_hash_table *table,
906 		      const char *string)
907 {
908   struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
909 
910   /* Allocate the structure if it has not already been allocated by a
911      subclass.  */
912   if (ret == NULL)
913     ret = (struct archive_hash_entry *)
914         bfd_hash_allocate (table, sizeof (struct archive_hash_entry));
915   if (ret == NULL)
916     return NULL;
917 
918   /* Call the allocation method of the superclass.  */
919   ret = ((struct archive_hash_entry *)
920 	 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
921 
922   if (ret)
923     {
924       /* Initialize the local fields.  */
925       ret->defs = NULL;
926     }
927 
928   return &ret->root;
929 }
930 
931 /* Initialize an archive hash table.  */
932 
933 static bfd_boolean
934 archive_hash_table_init
935   (struct archive_hash_table *table,
936    struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
937 				      struct bfd_hash_table *,
938 				      const char *),
939    unsigned int entsize)
940 {
941   return bfd_hash_table_init (&table->table, newfunc, entsize);
942 }
943 
944 /* Look up an entry in an archive hash table.  */
945 
946 #define archive_hash_lookup(t, string, create, copy) \
947   ((struct archive_hash_entry *) \
948    bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
949 
950 /* Allocate space in an archive hash table.  */
951 
952 #define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
953 
954 /* Free an archive hash table.  */
955 
956 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
957 
958 /* Generic function to add symbols from an archive file to the global
959    hash file.  This function presumes that the archive symbol table
960    has already been read in (this is normally done by the
961    bfd_check_format entry point).  It looks through the undefined and
962    common symbols and searches the archive symbol table for them.  If
963    it finds an entry, it includes the associated object file in the
964    link.
965 
966    The old linker looked through the archive symbol table for
967    undefined symbols.  We do it the other way around, looking through
968    undefined symbols for symbols defined in the archive.  The
969    advantage of the newer scheme is that we only have to look through
970    the list of undefined symbols once, whereas the old method had to
971    re-search the symbol table each time a new object file was added.
972 
973    The CHECKFN argument is used to see if an object file should be
974    included.  CHECKFN should set *PNEEDED to TRUE if the object file
975    should be included, and must also call the bfd_link_info
976    add_archive_element callback function and handle adding the symbols
977    to the global hash table.  CHECKFN must notice if the callback
978    indicates a substitute BFD, and arrange to add those symbols instead
979    if it does so.  CHECKFN should only return FALSE if some sort of
980    error occurs.
981 
982    For some formats, such as a.out, it is possible to look through an
983    object file but not actually include it in the link.  The
984    archive_pass field in a BFD is used to avoid checking the symbols
985    of an object files too many times.  When an object is included in
986    the link, archive_pass is set to -1.  If an object is scanned but
987    not included, archive_pass is set to the pass number.  The pass
988    number is incremented each time a new object file is included.  The
989    pass number is used because when a new object file is included it
990    may create new undefined symbols which cause a previously examined
991    object file to be included.  */
992 
993 bfd_boolean
994 _bfd_generic_link_add_archive_symbols
995   (bfd *abfd,
996    struct bfd_link_info *info,
997    bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *, bfd_boolean *))
998 {
999   carsym *arsyms;
1000   carsym *arsym_end;
1001   register carsym *arsym;
1002   int pass;
1003   struct archive_hash_table arsym_hash;
1004   unsigned int indx;
1005   struct bfd_link_hash_entry **pundef;
1006 
1007   if (! bfd_has_map (abfd))
1008     {
1009       /* An empty archive is a special case.  */
1010       if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
1011 	return TRUE;
1012       bfd_set_error (bfd_error_no_armap);
1013       return FALSE;
1014     }
1015 
1016   arsyms = bfd_ardata (abfd)->symdefs;
1017   arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
1018 
1019   /* In order to quickly determine whether an symbol is defined in
1020      this archive, we build a hash table of the symbols.  */
1021   if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc,
1022 				 sizeof (struct archive_hash_entry)))
1023     return FALSE;
1024   for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
1025     {
1026       struct archive_hash_entry *arh;
1027       struct archive_list *l, **pp;
1028 
1029       arh = archive_hash_lookup (&arsym_hash, arsym->name, TRUE, FALSE);
1030       if (arh == NULL)
1031 	goto error_return;
1032       l = ((struct archive_list *)
1033 	   archive_hash_allocate (&arsym_hash, sizeof (struct archive_list)));
1034       if (l == NULL)
1035 	goto error_return;
1036       l->indx = indx;
1037       for (pp = &arh->defs; *pp != NULL; pp = &(*pp)->next)
1038 	;
1039       *pp = l;
1040       l->next = NULL;
1041     }
1042 
1043   /* The archive_pass field in the archive itself is used to
1044      initialize PASS, sine we may search the same archive multiple
1045      times.  */
1046   pass = abfd->archive_pass + 1;
1047 
1048   /* New undefined symbols are added to the end of the list, so we
1049      only need to look through it once.  */
1050   pundef = &info->hash->undefs;
1051   while (*pundef != NULL)
1052     {
1053       struct bfd_link_hash_entry *h;
1054       struct archive_hash_entry *arh;
1055       struct archive_list *l;
1056 
1057       h = *pundef;
1058 
1059       /* When a symbol is defined, it is not necessarily removed from
1060 	 the list.  */
1061       if (h->type != bfd_link_hash_undefined
1062 	  && h->type != bfd_link_hash_common)
1063 	{
1064 	  /* Remove this entry from the list, for general cleanliness
1065 	     and because we are going to look through the list again
1066 	     if we search any more libraries.  We can't remove the
1067 	     entry if it is the tail, because that would lose any
1068 	     entries we add to the list later on (it would also cause
1069 	     us to lose track of whether the symbol has been
1070 	     referenced).  */
1071 	  if (*pundef != info->hash->undefs_tail)
1072 	    *pundef = (*pundef)->u.undef.next;
1073 	  else
1074 	    pundef = &(*pundef)->u.undef.next;
1075 	  continue;
1076 	}
1077 
1078       /* Look for this symbol in the archive symbol map.  */
1079       arh = archive_hash_lookup (&arsym_hash, h->root.string, FALSE, FALSE);
1080       if (arh == NULL)
1081 	{
1082 	  /* If we haven't found the exact symbol we're looking for,
1083 	     let's look for its import thunk */
1084 	  if (info->pei386_auto_import)
1085 	    {
1086 	      bfd_size_type amt = strlen (h->root.string) + 10;
1087 	      char *buf = (char *) bfd_malloc (amt);
1088 	      if (buf == NULL)
1089 		return FALSE;
1090 
1091 	      sprintf (buf, "__imp_%s", h->root.string);
1092 	      arh = archive_hash_lookup (&arsym_hash, buf, FALSE, FALSE);
1093 	      free(buf);
1094 	    }
1095 	  if (arh == NULL)
1096 	    {
1097 	      pundef = &(*pundef)->u.undef.next;
1098 	      continue;
1099 	    }
1100 	}
1101       /* Look at all the objects which define this symbol.  */
1102       for (l = arh->defs; l != NULL; l = l->next)
1103 	{
1104 	  bfd *element;
1105 	  bfd_boolean needed;
1106 
1107 	  /* If the symbol has gotten defined along the way, quit.  */
1108 	  if (h->type != bfd_link_hash_undefined
1109 	      && h->type != bfd_link_hash_common)
1110 	    break;
1111 
1112 	  element = bfd_get_elt_at_index (abfd, l->indx);
1113 	  if (element == NULL)
1114 	    goto error_return;
1115 
1116 	  /* If we've already included this element, or if we've
1117 	     already checked it on this pass, continue.  */
1118 	  if (element->archive_pass == -1
1119 	      || element->archive_pass == pass)
1120 	    continue;
1121 
1122 	  /* If we can't figure this element out, just ignore it.  */
1123 	  if (! bfd_check_format (element, bfd_object))
1124 	    {
1125 	      element->archive_pass = -1;
1126 	      continue;
1127 	    }
1128 
1129 	  /* CHECKFN will see if this element should be included, and
1130 	     go ahead and include it if appropriate.  */
1131 	  if (! (*checkfn) (element, info, &needed))
1132 	    goto error_return;
1133 
1134 	  if (! needed)
1135 	    element->archive_pass = pass;
1136 	  else
1137 	    {
1138 	      element->archive_pass = -1;
1139 
1140 	      /* Increment the pass count to show that we may need to
1141 		 recheck object files which were already checked.  */
1142 	      ++pass;
1143 	    }
1144 	}
1145 
1146       pundef = &(*pundef)->u.undef.next;
1147     }
1148 
1149   archive_hash_table_free (&arsym_hash);
1150 
1151   /* Save PASS in case we are called again.  */
1152   abfd->archive_pass = pass;
1153 
1154   return TRUE;
1155 
1156  error_return:
1157   archive_hash_table_free (&arsym_hash);
1158   return FALSE;
1159 }
1160 
1161 /* See if we should include an archive element.  This version is used
1162    when we do not want to automatically collect constructors based on
1163    the symbol name, presumably because we have some other mechanism
1164    for finding them.  */
1165 
1166 static bfd_boolean
1167 generic_link_check_archive_element_no_collect (
1168 					       bfd *abfd,
1169 					       struct bfd_link_info *info,
1170 					       bfd_boolean *pneeded)
1171 {
1172   return generic_link_check_archive_element (abfd, info, pneeded, FALSE);
1173 }
1174 
1175 /* See if we should include an archive element.  This version is used
1176    when we want to automatically collect constructors based on the
1177    symbol name, as collect2 does.  */
1178 
1179 static bfd_boolean
1180 generic_link_check_archive_element_collect (bfd *abfd,
1181 					    struct bfd_link_info *info,
1182 					    bfd_boolean *pneeded)
1183 {
1184   return generic_link_check_archive_element (abfd, info, pneeded, TRUE);
1185 }
1186 
1187 /* See if we should include an archive element.  Optionally collect
1188    constructors.  */
1189 
1190 static bfd_boolean
1191 generic_link_check_archive_element (bfd *abfd,
1192 				    struct bfd_link_info *info,
1193 				    bfd_boolean *pneeded,
1194 				    bfd_boolean collect)
1195 {
1196   asymbol **pp, **ppend;
1197 
1198   *pneeded = FALSE;
1199 
1200   if (!bfd_generic_link_read_symbols (abfd))
1201     return FALSE;
1202 
1203   pp = _bfd_generic_link_get_symbols (abfd);
1204   ppend = pp + _bfd_generic_link_get_symcount (abfd);
1205   for (; pp < ppend; pp++)
1206     {
1207       asymbol *p;
1208       struct bfd_link_hash_entry *h;
1209 
1210       p = *pp;
1211 
1212       /* We are only interested in globally visible symbols.  */
1213       if (! bfd_is_com_section (p->section)
1214 	  && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1215 	continue;
1216 
1217       /* We are only interested if we know something about this
1218 	 symbol, and it is undefined or common.  An undefined weak
1219 	 symbol (type bfd_link_hash_undefweak) is not considered to be
1220 	 a reference when pulling files out of an archive.  See the
1221 	 SVR4 ABI, p. 4-27.  */
1222       h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1223 				FALSE, TRUE);
1224       if (h == NULL
1225 	  || (h->type != bfd_link_hash_undefined
1226 	      && h->type != bfd_link_hash_common))
1227 	continue;
1228 
1229       /* P is a symbol we are looking for.  */
1230 
1231       if (! bfd_is_com_section (p->section))
1232 	{
1233 	  bfd_size_type symcount;
1234 	  asymbol **symbols;
1235 	  bfd *oldbfd = abfd;
1236 
1237 	  /* This object file defines this symbol, so pull it in.  */
1238 	  if (!(*info->callbacks
1239 		->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1240 					&abfd))
1241 	    return FALSE;
1242 	  /* Potentially, the add_archive_element hook may have set a
1243 	     substitute BFD for us.  */
1244 	  if (abfd != oldbfd
1245 	      && !bfd_generic_link_read_symbols (abfd))
1246 	    return FALSE;
1247 	  symcount = _bfd_generic_link_get_symcount (abfd);
1248 	  symbols = _bfd_generic_link_get_symbols (abfd);
1249 	  if (! generic_link_add_symbol_list (abfd, info, symcount,
1250 					      symbols, collect))
1251 	    return FALSE;
1252 	  *pneeded = TRUE;
1253 	  return TRUE;
1254 	}
1255 
1256       /* P is a common symbol.  */
1257 
1258       if (h->type == bfd_link_hash_undefined)
1259 	{
1260 	  bfd *symbfd;
1261 	  bfd_vma size;
1262 	  unsigned int power;
1263 
1264 	  symbfd = h->u.undef.abfd;
1265 	  if (symbfd == NULL)
1266 	    {
1267 	      /* This symbol was created as undefined from outside
1268 		 BFD.  We assume that we should link in the object
1269 		 file.  This is for the -u option in the linker.  */
1270 	      if (!(*info->callbacks
1271 		    ->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1272 					    &abfd))
1273 		return FALSE;
1274 	      /* Potentially, the add_archive_element hook may have set a
1275 		 substitute BFD for us.  But no symbols are going to get
1276 		 registered by anything we're returning to from here.  */
1277 	      *pneeded = TRUE;
1278 	      return TRUE;
1279 	    }
1280 
1281 	  /* Turn the symbol into a common symbol but do not link in
1282 	     the object file.  This is how a.out works.  Object
1283 	     formats that require different semantics must implement
1284 	     this function differently.  This symbol is already on the
1285 	     undefs list.  We add the section to a common section
1286 	     attached to symbfd to ensure that it is in a BFD which
1287 	     will be linked in.  */
1288 	  h->type = bfd_link_hash_common;
1289 	  h->u.c.p = (struct bfd_link_hash_common_entry *)
1290 	    bfd_hash_allocate (&info->hash->table,
1291 			       sizeof (struct bfd_link_hash_common_entry));
1292 	  if (h->u.c.p == NULL)
1293 	    return FALSE;
1294 
1295 	  size = bfd_asymbol_value (p);
1296 	  h->u.c.size = size;
1297 
1298 	  power = bfd_log2 (size);
1299 	  if (power > 4)
1300 	    power = 4;
1301 	  h->u.c.p->alignment_power = power;
1302 
1303 	  if (p->section == bfd_com_section_ptr)
1304 	    h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1305 	  else
1306 	    h->u.c.p->section = bfd_make_section_old_way (symbfd,
1307 							  p->section->name);
1308 	  h->u.c.p->section->flags |= SEC_ALLOC;
1309 	}
1310       else
1311 	{
1312 	  /* Adjust the size of the common symbol if necessary.  This
1313 	     is how a.out works.  Object formats that require
1314 	     different semantics must implement this function
1315 	     differently.  */
1316 	  if (bfd_asymbol_value (p) > h->u.c.size)
1317 	    h->u.c.size = bfd_asymbol_value (p);
1318 	}
1319     }
1320 
1321   /* This archive element is not needed.  */
1322   return TRUE;
1323 }
1324 
1325 /* Add the symbols from an object file to the global hash table.  ABFD
1326    is the object file.  INFO is the linker information.  SYMBOL_COUNT
1327    is the number of symbols.  SYMBOLS is the list of symbols.  COLLECT
1328    is TRUE if constructors should be automatically collected by name
1329    as is done by collect2.  */
1330 
1331 static bfd_boolean
1332 generic_link_add_symbol_list (bfd *abfd,
1333 			      struct bfd_link_info *info,
1334 			      bfd_size_type symbol_count,
1335 			      asymbol **symbols,
1336 			      bfd_boolean collect)
1337 {
1338   asymbol **pp, **ppend;
1339 
1340   pp = symbols;
1341   ppend = symbols + symbol_count;
1342   for (; pp < ppend; pp++)
1343     {
1344       asymbol *p;
1345 
1346       p = *pp;
1347 
1348       if ((p->flags & (BSF_INDIRECT
1349 		       | BSF_WARNING
1350 		       | BSF_GLOBAL
1351 		       | BSF_CONSTRUCTOR
1352 		       | BSF_WEAK)) != 0
1353 	  || bfd_is_und_section (bfd_get_section (p))
1354 	  || bfd_is_com_section (bfd_get_section (p))
1355 	  || bfd_is_ind_section (bfd_get_section (p)))
1356 	{
1357 	  const char *name;
1358 	  const char *string;
1359 	  struct generic_link_hash_entry *h;
1360 	  struct bfd_link_hash_entry *bh;
1361 
1362 	  string = name = bfd_asymbol_name (p);
1363 	  if (((p->flags & BSF_INDIRECT) != 0
1364 	       || bfd_is_ind_section (p->section))
1365 	      && pp + 1 < ppend)
1366 	    {
1367 	      pp++;
1368 	      string = bfd_asymbol_name (*pp);
1369 	    }
1370 	  else if ((p->flags & BSF_WARNING) != 0
1371 		   && pp + 1 < ppend)
1372 	    {
1373 	      /* The name of P is actually the warning string, and the
1374 		 next symbol is the one to warn about.  */
1375 	      pp++;
1376 	      name = bfd_asymbol_name (*pp);
1377 	    }
1378 
1379 	  bh = NULL;
1380 	  if (! (_bfd_generic_link_add_one_symbol
1381 		 (info, abfd, name, p->flags, bfd_get_section (p),
1382 		  p->value, string, FALSE, collect, &bh)))
1383 	    return FALSE;
1384 	  h = (struct generic_link_hash_entry *) bh;
1385 
1386 	  /* If this is a constructor symbol, and the linker didn't do
1387              anything with it, then we want to just pass the symbol
1388              through to the output file.  This will happen when
1389              linking with -r.  */
1390 	  if ((p->flags & BSF_CONSTRUCTOR) != 0
1391 	      && (h == NULL || h->root.type == bfd_link_hash_new))
1392 	    {
1393 	      p->udata.p = NULL;
1394 	      continue;
1395 	    }
1396 
1397 	  /* Save the BFD symbol so that we don't lose any backend
1398 	     specific information that may be attached to it.  We only
1399 	     want this one if it gives more information than the
1400 	     existing one; we don't want to replace a defined symbol
1401 	     with an undefined one.  This routine may be called with a
1402 	     hash table other than the generic hash table, so we only
1403 	     do this if we are certain that the hash table is a
1404 	     generic one.  */
1405 	  if (info->output_bfd->xvec == abfd->xvec)
1406 	    {
1407 	      if (h->sym == NULL
1408 		  || (! bfd_is_und_section (bfd_get_section (p))
1409 		      && (! bfd_is_com_section (bfd_get_section (p))
1410 			  || bfd_is_und_section (bfd_get_section (h->sym)))))
1411 		{
1412 		  h->sym = p;
1413 		  /* BSF_OLD_COMMON is a hack to support COFF reloc
1414 		     reading, and it should go away when the COFF
1415 		     linker is switched to the new version.  */
1416 		  if (bfd_is_com_section (bfd_get_section (p)))
1417 		    p->flags |= BSF_OLD_COMMON;
1418 		}
1419 	    }
1420 
1421 	  /* Store a back pointer from the symbol to the hash
1422 	     table entry for the benefit of relaxation code until
1423 	     it gets rewritten to not use asymbol structures.
1424 	     Setting this is also used to check whether these
1425 	     symbols were set up by the generic linker.  */
1426 	  p->udata.p = h;
1427 	}
1428     }
1429 
1430   return TRUE;
1431 }
1432 
1433 /* We use a state table to deal with adding symbols from an object
1434    file.  The first index into the state table describes the symbol
1435    from the object file.  The second index into the state table is the
1436    type of the symbol in the hash table.  */
1437 
1438 /* The symbol from the object file is turned into one of these row
1439    values.  */
1440 
1441 enum link_row
1442 {
1443   UNDEF_ROW,		/* Undefined.  */
1444   UNDEFW_ROW,		/* Weak undefined.  */
1445   DEF_ROW,		/* Defined.  */
1446   DEFW_ROW,		/* Weak defined.  */
1447   COMMON_ROW,		/* Common.  */
1448   INDR_ROW,		/* Indirect.  */
1449   WARN_ROW,		/* Warning.  */
1450   SET_ROW		/* Member of set.  */
1451 };
1452 
1453 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1454 #undef FAIL
1455 
1456 /* The actions to take in the state table.  */
1457 
1458 enum link_action
1459 {
1460   FAIL,		/* Abort.  */
1461   UND,		/* Mark symbol undefined.  */
1462   WEAK,		/* Mark symbol weak undefined.  */
1463   DEF,		/* Mark symbol defined.  */
1464   DEFW,		/* Mark symbol weak defined.  */
1465   COM,		/* Mark symbol common.  */
1466   REF,		/* Mark defined symbol referenced.  */
1467   CREF,		/* Possibly warn about common reference to defined symbol.  */
1468   CDEF,		/* Define existing common symbol.  */
1469   NOACT,	/* No action.  */
1470   BIG,		/* Mark symbol common using largest size.  */
1471   MDEF,		/* Multiple definition error.  */
1472   MIND,		/* Multiple indirect symbols.  */
1473   IND,		/* Make indirect symbol.  */
1474   CIND,		/* Make indirect symbol from existing common symbol.  */
1475   SET,		/* Add value to set.  */
1476   MWARN,	/* Make warning symbol.  */
1477   WARN,		/* Issue warning.  */
1478   CWARN,	/* Warn if referenced, else MWARN.  */
1479   CYCLE,	/* Repeat with symbol pointed to.  */
1480   REFC,		/* Mark indirect symbol referenced and then CYCLE.  */
1481   WARNC		/* Issue warning and then CYCLE.  */
1482 };
1483 
1484 /* The state table itself.  The first index is a link_row and the
1485    second index is a bfd_link_hash_type.  */
1486 
1487 static const enum link_action link_action[8][8] =
1488 {
1489   /* current\prev    new    undef  undefw def    defw   com    indr   warn  */
1490   /* UNDEF_ROW 	*/  {UND,   NOACT, UND,   REF,   REF,   NOACT, REFC,  WARNC },
1491   /* UNDEFW_ROW	*/  {WEAK,  NOACT, NOACT, REF,   REF,   NOACT, REFC,  WARNC },
1492   /* DEF_ROW 	*/  {DEF,   DEF,   DEF,   MDEF,  DEF,   CDEF,  MDEF,  CYCLE },
1493   /* DEFW_ROW 	*/  {DEFW,  DEFW,  DEFW,  NOACT, NOACT, NOACT, NOACT, CYCLE },
1494   /* COMMON_ROW	*/  {COM,   COM,   COM,   CREF,  COM,   BIG,   REFC,  WARNC },
1495   /* INDR_ROW	*/  {IND,   IND,   IND,   MDEF,  IND,   CIND,  MIND,  CYCLE },
1496   /* WARN_ROW   */  {MWARN, WARN,  WARN,  CWARN, CWARN, WARN,  CWARN, NOACT },
1497   /* SET_ROW	*/  {SET,   SET,   SET,   SET,   SET,   SET,   CYCLE, CYCLE }
1498 };
1499 
1500 /* Most of the entries in the LINK_ACTION table are straightforward,
1501    but a few are somewhat subtle.
1502 
1503    A reference to an indirect symbol (UNDEF_ROW/indr or
1504    UNDEFW_ROW/indr) is counted as a reference both to the indirect
1505    symbol and to the symbol the indirect symbol points to.
1506 
1507    A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1508    causes the warning to be issued.
1509 
1510    A common definition of an indirect symbol (COMMON_ROW/indr) is
1511    treated as a multiple definition error.  Likewise for an indirect
1512    definition of a common symbol (INDR_ROW/com).
1513 
1514    An indirect definition of a warning (INDR_ROW/warn) does not cause
1515    the warning to be issued.
1516 
1517    If a warning is created for an indirect symbol (WARN_ROW/indr) no
1518    warning is created for the symbol the indirect symbol points to.
1519 
1520    Adding an entry to a set does not count as a reference to a set,
1521    and no warning is issued (SET_ROW/warn).  */
1522 
1523 /* Return the BFD in which a hash entry has been defined, if known.  */
1524 
1525 static bfd *
1526 hash_entry_bfd (struct bfd_link_hash_entry *h)
1527 {
1528   while (h->type == bfd_link_hash_warning)
1529     h = h->u.i.link;
1530   switch (h->type)
1531     {
1532     default:
1533       return NULL;
1534     case bfd_link_hash_undefined:
1535     case bfd_link_hash_undefweak:
1536       return h->u.undef.abfd;
1537     case bfd_link_hash_defined:
1538     case bfd_link_hash_defweak:
1539       return h->u.def.section->owner;
1540     case bfd_link_hash_common:
1541       return h->u.c.p->section->owner;
1542     }
1543   /*NOTREACHED*/
1544 }
1545 
1546 /* Add a symbol to the global hash table.
1547    ABFD is the BFD the symbol comes from.
1548    NAME is the name of the symbol.
1549    FLAGS is the BSF_* bits associated with the symbol.
1550    SECTION is the section in which the symbol is defined; this may be
1551      bfd_und_section_ptr or bfd_com_section_ptr.
1552    VALUE is the value of the symbol, relative to the section.
1553    STRING is used for either an indirect symbol, in which case it is
1554      the name of the symbol to indirect to, or a warning symbol, in
1555      which case it is the warning string.
1556    COPY is TRUE if NAME or STRING must be copied into locally
1557      allocated memory if they need to be saved.
1558    COLLECT is TRUE if we should automatically collect gcc constructor
1559      or destructor names as collect2 does.
1560    HASHP, if not NULL, is a place to store the created hash table
1561      entry; if *HASHP is not NULL, the caller has already looked up
1562      the hash table entry, and stored it in *HASHP.  */
1563 
1564 bfd_boolean
1565 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1566 				  bfd *abfd,
1567 				  const char *name,
1568 				  flagword flags,
1569 				  asection *section,
1570 				  bfd_vma value,
1571 				  const char *string,
1572 				  bfd_boolean copy,
1573 				  bfd_boolean collect,
1574 				  struct bfd_link_hash_entry **hashp)
1575 {
1576   enum link_row row;
1577   struct bfd_link_hash_entry *h;
1578   bfd_boolean cycle;
1579 
1580   BFD_ASSERT (section != NULL);
1581 
1582   if (bfd_is_ind_section (section)
1583       || (flags & BSF_INDIRECT) != 0)
1584     row = INDR_ROW;
1585   else if ((flags & BSF_WARNING) != 0)
1586     row = WARN_ROW;
1587   else if ((flags & BSF_CONSTRUCTOR) != 0)
1588     row = SET_ROW;
1589   else if (bfd_is_und_section (section))
1590     {
1591       if ((flags & BSF_WEAK) != 0)
1592 	row = UNDEFW_ROW;
1593       else
1594 	row = UNDEF_ROW;
1595     }
1596   else if ((flags & BSF_WEAK) != 0)
1597     row = DEFW_ROW;
1598   else if (bfd_is_com_section (section))
1599     row = COMMON_ROW;
1600   else
1601     row = DEF_ROW;
1602 
1603   if (hashp != NULL && *hashp != NULL)
1604     h = *hashp;
1605   else
1606     {
1607       if (row == UNDEF_ROW || row == UNDEFW_ROW)
1608 	h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1609       else
1610 	h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1611       if (h == NULL)
1612 	{
1613 	  if (hashp != NULL)
1614 	    *hashp = NULL;
1615 	  return FALSE;
1616 	}
1617     }
1618 
1619   if (info->notice_all
1620       || (info->notice_hash != NULL
1621 	  && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1622     {
1623       if (! (*info->callbacks->notice) (info, h,
1624 					abfd, section, value, flags, string))
1625 	return FALSE;
1626     }
1627 
1628   if (hashp != NULL)
1629     *hashp = h;
1630 
1631   do
1632     {
1633       enum link_action action;
1634 
1635       cycle = FALSE;
1636       action = link_action[(int) row][(int) h->type];
1637       switch (action)
1638 	{
1639 	case FAIL:
1640 	  abort ();
1641 
1642 	case NOACT:
1643 	  /* Do nothing.  */
1644 	  break;
1645 
1646 	case UND:
1647 	  /* Make a new undefined symbol.  */
1648 	  h->type = bfd_link_hash_undefined;
1649 	  h->u.undef.abfd = abfd;
1650 	  bfd_link_add_undef (info->hash, h);
1651 	  break;
1652 
1653 	case WEAK:
1654 	  /* Make a new weak undefined symbol.  */
1655 	  h->type = bfd_link_hash_undefweak;
1656 	  h->u.undef.abfd = abfd;
1657 	  break;
1658 
1659 	case CDEF:
1660 	  /* We have found a definition for a symbol which was
1661 	     previously common.  */
1662 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1663 	  if (! ((*info->callbacks->multiple_common)
1664 		 (info, h, abfd, bfd_link_hash_defined, 0)))
1665 	    return FALSE;
1666 	  /* Fall through.  */
1667 	case DEF:
1668 	case DEFW:
1669 	  {
1670 	    enum bfd_link_hash_type oldtype;
1671 
1672 	    /* Define a symbol.  */
1673 	    oldtype = h->type;
1674 	    if (action == DEFW)
1675 	      h->type = bfd_link_hash_defweak;
1676 	    else
1677 	      h->type = bfd_link_hash_defined;
1678 	    h->u.def.section = section;
1679 	    h->u.def.value = value;
1680 
1681 	    /* If we have been asked to, we act like collect2 and
1682 	       identify all functions that might be global
1683 	       constructors and destructors and pass them up in a
1684 	       callback.  We only do this for certain object file
1685 	       types, since many object file types can handle this
1686 	       automatically.  */
1687 	    if (collect && name[0] == '_')
1688 	      {
1689 		const char *s;
1690 
1691 		/* A constructor or destructor name starts like this:
1692 		   _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1693 		   the second are the same character (we accept any
1694 		   character there, in case a new object file format
1695 		   comes along with even worse naming restrictions).  */
1696 
1697 #define CONS_PREFIX "GLOBAL_"
1698 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1699 
1700 		s = name + 1;
1701 		while (*s == '_')
1702 		  ++s;
1703 		if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX))
1704 		  {
1705 		    char c;
1706 
1707 		    c = s[CONS_PREFIX_LEN + 1];
1708 		    if ((c == 'I' || c == 'D')
1709 			&& s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1710 		      {
1711 			/* If this is a definition of a symbol which
1712                            was previously weakly defined, we are in
1713                            trouble.  We have already added a
1714                            constructor entry for the weak defined
1715                            symbol, and now we are trying to add one
1716                            for the new symbol.  Fortunately, this case
1717                            should never arise in practice.  */
1718 			if (oldtype == bfd_link_hash_defweak)
1719 			  abort ();
1720 
1721 			if (! ((*info->callbacks->constructor)
1722 			       (info, c == 'I',
1723 				h->root.string, abfd, section, value)))
1724 			  return FALSE;
1725 		      }
1726 		  }
1727 	      }
1728 	  }
1729 
1730 	  break;
1731 
1732 	case COM:
1733 	  /* We have found a common definition for a symbol.  */
1734 	  if (h->type == bfd_link_hash_new)
1735 	    bfd_link_add_undef (info->hash, h);
1736 	  h->type = bfd_link_hash_common;
1737 	  h->u.c.p = (struct bfd_link_hash_common_entry *)
1738 	    bfd_hash_allocate (&info->hash->table,
1739 			       sizeof (struct bfd_link_hash_common_entry));
1740 	  if (h->u.c.p == NULL)
1741 	    return FALSE;
1742 
1743 	  h->u.c.size = value;
1744 
1745 	  /* Select a default alignment based on the size.  This may
1746              be overridden by the caller.  */
1747 	  {
1748 	    unsigned int power;
1749 
1750 	    power = bfd_log2 (value);
1751 	    if (power > 4)
1752 	      power = 4;
1753 	    h->u.c.p->alignment_power = power;
1754 	  }
1755 
1756 	  /* The section of a common symbol is only used if the common
1757              symbol is actually allocated.  It basically provides a
1758              hook for the linker script to decide which output section
1759              the common symbols should be put in.  In most cases, the
1760              section of a common symbol will be bfd_com_section_ptr,
1761              the code here will choose a common symbol section named
1762              "COMMON", and the linker script will contain *(COMMON) in
1763              the appropriate place.  A few targets use separate common
1764              sections for small symbols, and they require special
1765              handling.  */
1766 	  if (section == bfd_com_section_ptr)
1767 	    {
1768 	      h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1769 	      h->u.c.p->section->flags |= SEC_ALLOC;
1770 	    }
1771 	  else if (section->owner != abfd)
1772 	    {
1773 	      h->u.c.p->section = bfd_make_section_old_way (abfd,
1774 							    section->name);
1775 	      h->u.c.p->section->flags |= SEC_ALLOC;
1776 	    }
1777 	  else
1778 	    h->u.c.p->section = section;
1779 	  break;
1780 
1781 	case REF:
1782 	  /* A reference to a defined symbol.  */
1783 	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1784 	    h->u.undef.next = h;
1785 	  break;
1786 
1787 	case BIG:
1788 	  /* We have found a common definition for a symbol which
1789 	     already had a common definition.  Use the maximum of the
1790 	     two sizes, and use the section required by the larger symbol.  */
1791 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1792 	  if (! ((*info->callbacks->multiple_common)
1793 		 (info, h, abfd, bfd_link_hash_common, value)))
1794 	    return FALSE;
1795 	  if (value > h->u.c.size)
1796 	    {
1797 	      unsigned int power;
1798 
1799 	      h->u.c.size = value;
1800 
1801 	      /* Select a default alignment based on the size.  This may
1802 		 be overridden by the caller.  */
1803 	      power = bfd_log2 (value);
1804 	      if (power > 4)
1805 		power = 4;
1806 	      h->u.c.p->alignment_power = power;
1807 
1808 	      /* Some systems have special treatment for small commons,
1809 		 hence we want to select the section used by the larger
1810 		 symbol.  This makes sure the symbol does not go in a
1811 		 small common section if it is now too large.  */
1812 	      if (section == bfd_com_section_ptr)
1813 		{
1814 		  h->u.c.p->section
1815 		    = bfd_make_section_old_way (abfd, "COMMON");
1816 		  h->u.c.p->section->flags |= SEC_ALLOC;
1817 		}
1818 	      else if (section->owner != abfd)
1819 		{
1820 		  h->u.c.p->section
1821 		    = bfd_make_section_old_way (abfd, section->name);
1822 		  h->u.c.p->section->flags |= SEC_ALLOC;
1823 		}
1824 	      else
1825 		h->u.c.p->section = section;
1826 	    }
1827 	  break;
1828 
1829 	case CREF:
1830 	  /* We have found a common definition for a symbol which
1831 	     was already defined.  */
1832 	  if (! ((*info->callbacks->multiple_common)
1833 		 (info, h, abfd, bfd_link_hash_common, value)))
1834 	    return FALSE;
1835 	  break;
1836 
1837 	case MIND:
1838 	  /* Multiple indirect symbols.  This is OK if they both point
1839 	     to the same symbol.  */
1840 	  if (strcmp (h->u.i.link->root.string, string) == 0)
1841 	    break;
1842 	  /* Fall through.  */
1843 	case MDEF:
1844 	  /* Handle a multiple definition.  */
1845 	  if (! ((*info->callbacks->multiple_definition)
1846 		 (info, h, abfd, section, value)))
1847 	    return FALSE;
1848 	  break;
1849 
1850 	case CIND:
1851 	  /* Create an indirect symbol from an existing common symbol.  */
1852 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1853 	  if (! ((*info->callbacks->multiple_common)
1854 		 (info, h, abfd, bfd_link_hash_indirect, 0)))
1855 	    return FALSE;
1856 	  /* Fall through.  */
1857 	case IND:
1858 	  /* Create an indirect symbol.  */
1859 	  {
1860 	    struct bfd_link_hash_entry *inh;
1861 
1862 	    /* STRING is the name of the symbol we want to indirect
1863 	       to.  */
1864 	    inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1865 						copy, FALSE);
1866 	    if (inh == NULL)
1867 	      return FALSE;
1868 	    if (inh->type == bfd_link_hash_indirect
1869 		&& inh->u.i.link == h)
1870 	      {
1871 		(*_bfd_error_handler)
1872 		  (_("%B: indirect symbol `%s' to `%s' is a loop"),
1873 		   abfd, name, string);
1874 		bfd_set_error (bfd_error_invalid_operation);
1875 		return FALSE;
1876 	      }
1877 	    if (inh->type == bfd_link_hash_new)
1878 	      {
1879 		inh->type = bfd_link_hash_undefined;
1880 		inh->u.undef.abfd = abfd;
1881 		bfd_link_add_undef (info->hash, inh);
1882 	      }
1883 
1884 	    /* If the indirect symbol has been referenced, we need to
1885 	       push the reference down to the symbol we are
1886 	       referencing.  */
1887 	    if (h->type != bfd_link_hash_new)
1888 	      {
1889 		row = UNDEF_ROW;
1890 		cycle = TRUE;
1891 	      }
1892 
1893 	    h->type = bfd_link_hash_indirect;
1894 	    h->u.i.link = inh;
1895 	  }
1896 	  break;
1897 
1898 	case SET:
1899 	  /* Add an entry to a set.  */
1900 	  if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1901 						abfd, section, value))
1902 	    return FALSE;
1903 	  break;
1904 
1905 	case WARNC:
1906 	  /* Issue a warning and cycle.  */
1907 	  if (h->u.i.warning != NULL)
1908 	    {
1909 	      if (! (*info->callbacks->warning) (info, h->u.i.warning,
1910 						 h->root.string, abfd,
1911 						 NULL, 0))
1912 		return FALSE;
1913 	      /* Only issue a warning once.  */
1914 	      h->u.i.warning = NULL;
1915 	    }
1916 	  /* Fall through.  */
1917 	case CYCLE:
1918 	  /* Try again with the referenced symbol.  */
1919 	  h = h->u.i.link;
1920 	  cycle = TRUE;
1921 	  break;
1922 
1923 	case REFC:
1924 	  /* A reference to an indirect symbol.  */
1925 	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1926 	    h->u.undef.next = h;
1927 	  h = h->u.i.link;
1928 	  cycle = TRUE;
1929 	  break;
1930 
1931 	case WARN:
1932 	  /* Issue a warning.  */
1933 	  if (! (*info->callbacks->warning) (info, string, h->root.string,
1934 					     hash_entry_bfd (h), NULL, 0))
1935 	    return FALSE;
1936 	  break;
1937 
1938 	case CWARN:
1939 	  /* Warn if this symbol has been referenced already,
1940 	     otherwise add a warning.  A symbol has been referenced if
1941 	     the u.undef.next field is not NULL, or it is the tail of the
1942 	     undefined symbol list.  The REF case above helps to
1943 	     ensure this.  */
1944 	  if (h->u.undef.next != NULL || info->hash->undefs_tail == h)
1945 	    {
1946 	      if (! (*info->callbacks->warning) (info, string, h->root.string,
1947 						 hash_entry_bfd (h), NULL, 0))
1948 		return FALSE;
1949 	      break;
1950 	    }
1951 	  /* Fall through.  */
1952 	case MWARN:
1953 	  /* Make a warning symbol.  */
1954 	  {
1955 	    struct bfd_link_hash_entry *sub;
1956 
1957 	    /* STRING is the warning to give.  */
1958 	    sub = ((struct bfd_link_hash_entry *)
1959 		   ((*info->hash->table.newfunc)
1960 		    (NULL, &info->hash->table, h->root.string)));
1961 	    if (sub == NULL)
1962 	      return FALSE;
1963 	    *sub = *h;
1964 	    sub->type = bfd_link_hash_warning;
1965 	    sub->u.i.link = h;
1966 	    if (! copy)
1967 	      sub->u.i.warning = string;
1968 	    else
1969 	      {
1970 		char *w;
1971 		size_t len = strlen (string) + 1;
1972 
1973 		w = (char *) bfd_hash_allocate (&info->hash->table, len);
1974 		if (w == NULL)
1975 		  return FALSE;
1976 		memcpy (w, string, len);
1977 		sub->u.i.warning = w;
1978 	      }
1979 
1980 	    bfd_hash_replace (&info->hash->table,
1981 			      (struct bfd_hash_entry *) h,
1982 			      (struct bfd_hash_entry *) sub);
1983 	    if (hashp != NULL)
1984 	      *hashp = sub;
1985 	  }
1986 	  break;
1987 	}
1988     }
1989   while (cycle);
1990 
1991   return TRUE;
1992 }
1993 
1994 /* Generic final link routine.  */
1995 
1996 bfd_boolean
1997 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
1998 {
1999   bfd *sub;
2000   asection *o;
2001   struct bfd_link_order *p;
2002   size_t outsymalloc;
2003   struct generic_write_global_symbol_info wginfo;
2004 
2005   bfd_get_outsymbols (abfd) = NULL;
2006   bfd_get_symcount (abfd) = 0;
2007   outsymalloc = 0;
2008 
2009   /* Mark all sections which will be included in the output file.  */
2010   for (o = abfd->sections; o != NULL; o = o->next)
2011     for (p = o->map_head.link_order; p != NULL; p = p->next)
2012       if (p->type == bfd_indirect_link_order)
2013 	p->u.indirect.section->linker_mark = TRUE;
2014 
2015   /* Build the output symbol table.  */
2016   for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
2017     if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
2018       return FALSE;
2019 
2020   /* Accumulate the global symbols.  */
2021   wginfo.info = info;
2022   wginfo.output_bfd = abfd;
2023   wginfo.psymalloc = &outsymalloc;
2024   _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
2025 				   _bfd_generic_link_write_global_symbol,
2026 				   &wginfo);
2027 
2028   /* Make sure we have a trailing NULL pointer on OUTSYMBOLS.  We
2029      shouldn't really need one, since we have SYMCOUNT, but some old
2030      code still expects one.  */
2031   if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
2032     return FALSE;
2033 
2034   if (info->relocatable)
2035     {
2036       /* Allocate space for the output relocs for each section.  */
2037       for (o = abfd->sections; o != NULL; o = o->next)
2038 	{
2039 	  o->reloc_count = 0;
2040 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
2041 	    {
2042 	      if (p->type == bfd_section_reloc_link_order
2043 		  || p->type == bfd_symbol_reloc_link_order)
2044 		++o->reloc_count;
2045 	      else if (p->type == bfd_indirect_link_order)
2046 		{
2047 		  asection *input_section;
2048 		  bfd *input_bfd;
2049 		  long relsize;
2050 		  arelent **relocs;
2051 		  asymbol **symbols;
2052 		  long reloc_count;
2053 
2054 		  input_section = p->u.indirect.section;
2055 		  input_bfd = input_section->owner;
2056 		  relsize = bfd_get_reloc_upper_bound (input_bfd,
2057 						       input_section);
2058 		  if (relsize < 0)
2059 		    return FALSE;
2060 		  relocs = (arelent **) bfd_malloc (relsize);
2061 		  if (!relocs && relsize != 0)
2062 		    return FALSE;
2063 		  symbols = _bfd_generic_link_get_symbols (input_bfd);
2064 		  reloc_count = bfd_canonicalize_reloc (input_bfd,
2065 							input_section,
2066 							relocs,
2067 							symbols);
2068 		  free (relocs);
2069 		  if (reloc_count < 0)
2070 		    return FALSE;
2071 		  BFD_ASSERT ((unsigned long) reloc_count
2072 			      == input_section->reloc_count);
2073 		  o->reloc_count += reloc_count;
2074 		}
2075 	    }
2076 	  if (o->reloc_count > 0)
2077 	    {
2078 	      bfd_size_type amt;
2079 
2080 	      amt = o->reloc_count;
2081 	      amt *= sizeof (arelent *);
2082 	      o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt);
2083 	      if (!o->orelocation)
2084 		return FALSE;
2085 	      o->flags |= SEC_RELOC;
2086 	      /* Reset the count so that it can be used as an index
2087 		 when putting in the output relocs.  */
2088 	      o->reloc_count = 0;
2089 	    }
2090 	}
2091     }
2092 
2093   /* Handle all the link order information for the sections.  */
2094   for (o = abfd->sections; o != NULL; o = o->next)
2095     {
2096       for (p = o->map_head.link_order; p != NULL; p = p->next)
2097 	{
2098 	  switch (p->type)
2099 	    {
2100 	    case bfd_section_reloc_link_order:
2101 	    case bfd_symbol_reloc_link_order:
2102 	      if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
2103 		return FALSE;
2104 	      break;
2105 	    case bfd_indirect_link_order:
2106 	      if (! default_indirect_link_order (abfd, info, o, p, TRUE))
2107 		return FALSE;
2108 	      break;
2109 	    default:
2110 	      if (! _bfd_default_link_order (abfd, info, o, p))
2111 		return FALSE;
2112 	      break;
2113 	    }
2114 	}
2115     }
2116 
2117   return TRUE;
2118 }
2119 
2120 /* Add an output symbol to the output BFD.  */
2121 
2122 static bfd_boolean
2123 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
2124 {
2125   if (bfd_get_symcount (output_bfd) >= *psymalloc)
2126     {
2127       asymbol **newsyms;
2128       bfd_size_type amt;
2129 
2130       if (*psymalloc == 0)
2131 	*psymalloc = 124;
2132       else
2133 	*psymalloc *= 2;
2134       amt = *psymalloc;
2135       amt *= sizeof (asymbol *);
2136       newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
2137       if (newsyms == NULL)
2138 	return FALSE;
2139       bfd_get_outsymbols (output_bfd) = newsyms;
2140     }
2141 
2142   bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2143   if (sym != NULL)
2144     ++ bfd_get_symcount (output_bfd);
2145 
2146   return TRUE;
2147 }
2148 
2149 /* Handle the symbols for an input BFD.  */
2150 
2151 bfd_boolean
2152 _bfd_generic_link_output_symbols (bfd *output_bfd,
2153 				  bfd *input_bfd,
2154 				  struct bfd_link_info *info,
2155 				  size_t *psymalloc)
2156 {
2157   asymbol **sym_ptr;
2158   asymbol **sym_end;
2159 
2160   if (!bfd_generic_link_read_symbols (input_bfd))
2161     return FALSE;
2162 
2163   /* Create a filename symbol if we are supposed to.  */
2164   if (info->create_object_symbols_section != NULL)
2165     {
2166       asection *sec;
2167 
2168       for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
2169 	{
2170 	  if (sec->output_section == info->create_object_symbols_section)
2171 	    {
2172 	      asymbol *newsym;
2173 
2174 	      newsym = bfd_make_empty_symbol (input_bfd);
2175 	      if (!newsym)
2176 		return FALSE;
2177 	      newsym->name = input_bfd->filename;
2178 	      newsym->value = 0;
2179 	      newsym->flags = BSF_LOCAL | BSF_FILE;
2180 	      newsym->section = sec;
2181 
2182 	      if (! generic_add_output_symbol (output_bfd, psymalloc,
2183 					       newsym))
2184 		return FALSE;
2185 
2186 	      break;
2187 	    }
2188 	}
2189     }
2190 
2191   /* Adjust the values of the globally visible symbols, and write out
2192      local symbols.  */
2193   sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2194   sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2195   for (; sym_ptr < sym_end; sym_ptr++)
2196     {
2197       asymbol *sym;
2198       struct generic_link_hash_entry *h;
2199       bfd_boolean output;
2200 
2201       h = NULL;
2202       sym = *sym_ptr;
2203       if ((sym->flags & (BSF_INDIRECT
2204 			 | BSF_WARNING
2205 			 | BSF_GLOBAL
2206 			 | BSF_CONSTRUCTOR
2207 			 | BSF_WEAK)) != 0
2208 	  || bfd_is_und_section (bfd_get_section (sym))
2209 	  || bfd_is_com_section (bfd_get_section (sym))
2210 	  || bfd_is_ind_section (bfd_get_section (sym)))
2211 	{
2212 	  if (sym->udata.p != NULL)
2213 	    h = (struct generic_link_hash_entry *) sym->udata.p;
2214 	  else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2215 	    {
2216 	      /* This case normally means that the main linker code
2217                  deliberately ignored this constructor symbol.  We
2218                  should just pass it through.  This will screw up if
2219                  the constructor symbol is from a different,
2220                  non-generic, object file format, but the case will
2221                  only arise when linking with -r, which will probably
2222                  fail anyhow, since there will be no way to represent
2223                  the relocs in the output format being used.  */
2224 	      h = NULL;
2225 	    }
2226 	  else if (bfd_is_und_section (bfd_get_section (sym)))
2227 	    h = ((struct generic_link_hash_entry *)
2228 		 bfd_wrapped_link_hash_lookup (output_bfd, info,
2229 					       bfd_asymbol_name (sym),
2230 					       FALSE, FALSE, TRUE));
2231 	  else
2232 	    h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2233 					       bfd_asymbol_name (sym),
2234 					       FALSE, FALSE, TRUE);
2235 
2236 	  if (h != NULL)
2237 	    {
2238 	      /* Force all references to this symbol to point to
2239 		 the same area in memory.  It is possible that
2240 		 this routine will be called with a hash table
2241 		 other than a generic hash table, so we double
2242 		 check that.  */
2243 	      if (info->output_bfd->xvec == input_bfd->xvec)
2244 		{
2245 		  if (h->sym != NULL)
2246 		    *sym_ptr = sym = h->sym;
2247 		}
2248 
2249 	      switch (h->root.type)
2250 		{
2251 		default:
2252 		case bfd_link_hash_new:
2253 		  abort ();
2254 		case bfd_link_hash_undefined:
2255 		  break;
2256 		case bfd_link_hash_undefweak:
2257 		  sym->flags |= BSF_WEAK;
2258 		  break;
2259 		case bfd_link_hash_indirect:
2260 		  h = (struct generic_link_hash_entry *) h->root.u.i.link;
2261 		  /* fall through */
2262 		case bfd_link_hash_defined:
2263 		  sym->flags |= BSF_GLOBAL;
2264 		  sym->flags &=~ BSF_CONSTRUCTOR;
2265 		  sym->value = h->root.u.def.value;
2266 		  sym->section = h->root.u.def.section;
2267 		  break;
2268 		case bfd_link_hash_defweak:
2269 		  sym->flags |= BSF_WEAK;
2270 		  sym->flags &=~ BSF_CONSTRUCTOR;
2271 		  sym->value = h->root.u.def.value;
2272 		  sym->section = h->root.u.def.section;
2273 		  break;
2274 		case bfd_link_hash_common:
2275 		  sym->value = h->root.u.c.size;
2276 		  sym->flags |= BSF_GLOBAL;
2277 		  if (! bfd_is_com_section (sym->section))
2278 		    {
2279 		      BFD_ASSERT (bfd_is_und_section (sym->section));
2280 		      sym->section = bfd_com_section_ptr;
2281 		    }
2282 		  /* We do not set the section of the symbol to
2283 		     h->root.u.c.p->section.  That value was saved so
2284 		     that we would know where to allocate the symbol
2285 		     if it was defined.  In this case the type is
2286 		     still bfd_link_hash_common, so we did not define
2287 		     it, so we do not want to use that section.  */
2288 		  break;
2289 		}
2290 	    }
2291 	}
2292 
2293       /* This switch is straight from the old code in
2294 	 write_file_locals in ldsym.c.  */
2295       if (info->strip == strip_all
2296 	  || (info->strip == strip_some
2297 	      && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2298 				  FALSE, FALSE) == NULL))
2299 	output = FALSE;
2300       else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2301 	{
2302 	  /* If this symbol is marked as occurring now, rather
2303 	     than at the end, output it now.  This is used for
2304 	     COFF C_EXT FCN symbols.  FIXME: There must be a
2305 	     better way.  */
2306 	  if (bfd_asymbol_bfd (sym) == input_bfd
2307 	      && (sym->flags & BSF_NOT_AT_END) != 0)
2308 	    output = TRUE;
2309 	  else
2310 	    output = FALSE;
2311 	}
2312       else if (bfd_is_ind_section (sym->section))
2313 	output = FALSE;
2314       else if ((sym->flags & BSF_DEBUGGING) != 0)
2315 	{
2316 	  if (info->strip == strip_none)
2317 	    output = TRUE;
2318 	  else
2319 	    output = FALSE;
2320 	}
2321       else if (bfd_is_und_section (sym->section)
2322 	       || bfd_is_com_section (sym->section))
2323 	output = FALSE;
2324       else if ((sym->flags & BSF_LOCAL) != 0)
2325 	{
2326 	  if ((sym->flags & BSF_WARNING) != 0)
2327 	    output = FALSE;
2328 	  else
2329 	    {
2330 	      switch (info->discard)
2331 		{
2332 		default:
2333 		case discard_all:
2334 		  output = FALSE;
2335 		  break;
2336 		case discard_sec_merge:
2337 		  output = TRUE;
2338 		  if (info->relocatable
2339 		      || ! (sym->section->flags & SEC_MERGE))
2340 		    break;
2341 		  /* FALLTHROUGH */
2342 		case discard_l:
2343 		  if (bfd_is_local_label (input_bfd, sym))
2344 		    output = FALSE;
2345 		  else
2346 		    output = TRUE;
2347 		  break;
2348 		case discard_none:
2349 		  output = TRUE;
2350 		  break;
2351 		}
2352 	    }
2353 	}
2354       else if ((sym->flags & BSF_CONSTRUCTOR))
2355 	{
2356 	  if (info->strip != strip_all)
2357 	    output = TRUE;
2358 	  else
2359 	    output = FALSE;
2360 	}
2361       else
2362 	abort ();
2363 
2364       /* If this symbol is in a section which is not being included
2365 	 in the output file, then we don't want to output the
2366 	 symbol.  */
2367       if (!bfd_is_abs_section (sym->section)
2368 	  && bfd_section_removed_from_list (output_bfd,
2369 					    sym->section->output_section))
2370 	output = FALSE;
2371 
2372       if (output)
2373 	{
2374 	  if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2375 	    return FALSE;
2376 	  if (h != NULL)
2377 	    h->written = TRUE;
2378 	}
2379     }
2380 
2381   return TRUE;
2382 }
2383 
2384 /* Set the section and value of a generic BFD symbol based on a linker
2385    hash table entry.  */
2386 
2387 static void
2388 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2389 {
2390   switch (h->type)
2391     {
2392     default:
2393       abort ();
2394       break;
2395     case bfd_link_hash_new:
2396       /* This can happen when a constructor symbol is seen but we are
2397          not building constructors.  */
2398       if (sym->section != NULL)
2399 	{
2400 	  BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2401 	}
2402       else
2403 	{
2404 	  sym->flags |= BSF_CONSTRUCTOR;
2405 	  sym->section = bfd_abs_section_ptr;
2406 	  sym->value = 0;
2407 	}
2408       break;
2409     case bfd_link_hash_undefined:
2410       sym->section = bfd_und_section_ptr;
2411       sym->value = 0;
2412       break;
2413     case bfd_link_hash_undefweak:
2414       sym->section = bfd_und_section_ptr;
2415       sym->value = 0;
2416       sym->flags |= BSF_WEAK;
2417       break;
2418     case bfd_link_hash_defined:
2419       sym->section = h->u.def.section;
2420       sym->value = h->u.def.value;
2421       break;
2422     case bfd_link_hash_defweak:
2423       sym->flags |= BSF_WEAK;
2424       sym->section = h->u.def.section;
2425       sym->value = h->u.def.value;
2426       break;
2427     case bfd_link_hash_common:
2428       sym->value = h->u.c.size;
2429       if (sym->section == NULL)
2430 	sym->section = bfd_com_section_ptr;
2431       else if (! bfd_is_com_section (sym->section))
2432 	{
2433 	  BFD_ASSERT (bfd_is_und_section (sym->section));
2434 	  sym->section = bfd_com_section_ptr;
2435 	}
2436       /* Do not set the section; see _bfd_generic_link_output_symbols.  */
2437       break;
2438     case bfd_link_hash_indirect:
2439     case bfd_link_hash_warning:
2440       /* FIXME: What should we do here?  */
2441       break;
2442     }
2443 }
2444 
2445 /* Write out a global symbol, if it hasn't already been written out.
2446    This is called for each symbol in the hash table.  */
2447 
2448 bfd_boolean
2449 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2450 				       void *data)
2451 {
2452   struct generic_write_global_symbol_info *wginfo =
2453       (struct generic_write_global_symbol_info *) data;
2454   asymbol *sym;
2455 
2456   if (h->written)
2457     return TRUE;
2458 
2459   h->written = TRUE;
2460 
2461   if (wginfo->info->strip == strip_all
2462       || (wginfo->info->strip == strip_some
2463 	  && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2464 			      FALSE, FALSE) == NULL))
2465     return TRUE;
2466 
2467   if (h->sym != NULL)
2468     sym = h->sym;
2469   else
2470     {
2471       sym = bfd_make_empty_symbol (wginfo->output_bfd);
2472       if (!sym)
2473 	return FALSE;
2474       sym->name = h->root.root.string;
2475       sym->flags = 0;
2476     }
2477 
2478   set_symbol_from_hash (sym, &h->root);
2479 
2480   sym->flags |= BSF_GLOBAL;
2481 
2482   if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2483 				   sym))
2484     {
2485       /* FIXME: No way to return failure.  */
2486       abort ();
2487     }
2488 
2489   return TRUE;
2490 }
2491 
2492 /* Create a relocation.  */
2493 
2494 bfd_boolean
2495 _bfd_generic_reloc_link_order (bfd *abfd,
2496 			       struct bfd_link_info *info,
2497 			       asection *sec,
2498 			       struct bfd_link_order *link_order)
2499 {
2500   arelent *r;
2501 
2502   if (! info->relocatable)
2503     abort ();
2504   if (sec->orelocation == NULL)
2505     abort ();
2506 
2507   r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2508   if (r == NULL)
2509     return FALSE;
2510 
2511   r->address = link_order->offset;
2512   r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2513   if (r->howto == 0)
2514     {
2515       bfd_set_error (bfd_error_bad_value);
2516       return FALSE;
2517     }
2518 
2519   /* Get the symbol to use for the relocation.  */
2520   if (link_order->type == bfd_section_reloc_link_order)
2521     r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2522   else
2523     {
2524       struct generic_link_hash_entry *h;
2525 
2526       h = ((struct generic_link_hash_entry *)
2527 	   bfd_wrapped_link_hash_lookup (abfd, info,
2528 					 link_order->u.reloc.p->u.name,
2529 					 FALSE, FALSE, TRUE));
2530       if (h == NULL
2531 	  || ! h->written)
2532 	{
2533 	  if (! ((*info->callbacks->unattached_reloc)
2534 		 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
2535 	    return FALSE;
2536 	  bfd_set_error (bfd_error_bad_value);
2537 	  return FALSE;
2538 	}
2539       r->sym_ptr_ptr = &h->sym;
2540     }
2541 
2542   /* If this is an inplace reloc, write the addend to the object file.
2543      Otherwise, store it in the reloc addend.  */
2544   if (! r->howto->partial_inplace)
2545     r->addend = link_order->u.reloc.p->addend;
2546   else
2547     {
2548       bfd_size_type size;
2549       bfd_reloc_status_type rstat;
2550       bfd_byte *buf;
2551       bfd_boolean ok;
2552       file_ptr loc;
2553 
2554       size = bfd_get_reloc_size (r->howto);
2555       buf = (bfd_byte *) bfd_zmalloc (size);
2556       if (buf == NULL)
2557 	return FALSE;
2558       rstat = _bfd_relocate_contents (r->howto, abfd,
2559 				      (bfd_vma) link_order->u.reloc.p->addend,
2560 				      buf);
2561       switch (rstat)
2562 	{
2563 	case bfd_reloc_ok:
2564 	  break;
2565 	default:
2566 	case bfd_reloc_outofrange:
2567 	  abort ();
2568 	case bfd_reloc_overflow:
2569 	  if (! ((*info->callbacks->reloc_overflow)
2570 		 (info, NULL,
2571 		  (link_order->type == bfd_section_reloc_link_order
2572 		   ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2573 		   : link_order->u.reloc.p->u.name),
2574 		  r->howto->name, link_order->u.reloc.p->addend,
2575 		  NULL, NULL, 0)))
2576 	    {
2577 	      free (buf);
2578 	      return FALSE;
2579 	    }
2580 	  break;
2581 	}
2582       loc = link_order->offset * bfd_octets_per_byte (abfd);
2583       ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2584       free (buf);
2585       if (! ok)
2586 	return FALSE;
2587 
2588       r->addend = 0;
2589     }
2590 
2591   sec->orelocation[sec->reloc_count] = r;
2592   ++sec->reloc_count;
2593 
2594   return TRUE;
2595 }
2596 
2597 /* Allocate a new link_order for a section.  */
2598 
2599 struct bfd_link_order *
2600 bfd_new_link_order (bfd *abfd, asection *section)
2601 {
2602   bfd_size_type amt = sizeof (struct bfd_link_order);
2603   struct bfd_link_order *new_lo;
2604 
2605   new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
2606   if (!new_lo)
2607     return NULL;
2608 
2609   new_lo->type = bfd_undefined_link_order;
2610 
2611   if (section->map_tail.link_order != NULL)
2612     section->map_tail.link_order->next = new_lo;
2613   else
2614     section->map_head.link_order = new_lo;
2615   section->map_tail.link_order = new_lo;
2616 
2617   return new_lo;
2618 }
2619 
2620 /* Default link order processing routine.  Note that we can not handle
2621    the reloc_link_order types here, since they depend upon the details
2622    of how the particular backends generates relocs.  */
2623 
2624 bfd_boolean
2625 _bfd_default_link_order (bfd *abfd,
2626 			 struct bfd_link_info *info,
2627 			 asection *sec,
2628 			 struct bfd_link_order *link_order)
2629 {
2630   switch (link_order->type)
2631     {
2632     case bfd_undefined_link_order:
2633     case bfd_section_reloc_link_order:
2634     case bfd_symbol_reloc_link_order:
2635     default:
2636       abort ();
2637     case bfd_indirect_link_order:
2638       return default_indirect_link_order (abfd, info, sec, link_order,
2639 					  FALSE);
2640     case bfd_data_link_order:
2641       return default_data_link_order (abfd, info, sec, link_order);
2642     }
2643 }
2644 
2645 /* Default routine to handle a bfd_data_link_order.  */
2646 
2647 static bfd_boolean
2648 default_data_link_order (bfd *abfd,
2649 			 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2650 			 asection *sec,
2651 			 struct bfd_link_order *link_order)
2652 {
2653   bfd_size_type size;
2654   size_t fill_size;
2655   bfd_byte *fill;
2656   file_ptr loc;
2657   bfd_boolean result;
2658 
2659   BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2660 
2661   size = link_order->size;
2662   if (size == 0)
2663     return TRUE;
2664 
2665   fill = link_order->u.data.contents;
2666   fill_size = link_order->u.data.size;
2667   if (fill_size != 0 && fill_size < size)
2668     {
2669       bfd_byte *p;
2670       fill = (bfd_byte *) bfd_malloc (size);
2671       if (fill == NULL)
2672 	return FALSE;
2673       p = fill;
2674       if (fill_size == 1)
2675 	memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2676       else
2677 	{
2678 	  do
2679 	    {
2680 	      memcpy (p, link_order->u.data.contents, fill_size);
2681 	      p += fill_size;
2682 	      size -= fill_size;
2683 	    }
2684 	  while (size >= fill_size);
2685 	  if (size != 0)
2686 	    memcpy (p, link_order->u.data.contents, (size_t) size);
2687 	  size = link_order->size;
2688 	}
2689     }
2690 
2691   loc = link_order->offset * bfd_octets_per_byte (abfd);
2692   result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2693 
2694   if (fill != link_order->u.data.contents)
2695     free (fill);
2696   return result;
2697 }
2698 
2699 /* Default routine to handle a bfd_indirect_link_order.  */
2700 
2701 static bfd_boolean
2702 default_indirect_link_order (bfd *output_bfd,
2703 			     struct bfd_link_info *info,
2704 			     asection *output_section,
2705 			     struct bfd_link_order *link_order,
2706 			     bfd_boolean generic_linker)
2707 {
2708   asection *input_section;
2709   bfd *input_bfd;
2710   bfd_byte *contents = NULL;
2711   bfd_byte *new_contents;
2712   bfd_size_type sec_size;
2713   file_ptr loc;
2714 
2715   BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2716 
2717   input_section = link_order->u.indirect.section;
2718   input_bfd = input_section->owner;
2719   if (input_section->size == 0)
2720     return TRUE;
2721 
2722   BFD_ASSERT (input_section->output_section == output_section);
2723   BFD_ASSERT (input_section->output_offset == link_order->offset);
2724   BFD_ASSERT (input_section->size == link_order->size);
2725 
2726   if (info->relocatable
2727       && input_section->reloc_count > 0
2728       && output_section->orelocation == NULL)
2729     {
2730       /* Space has not been allocated for the output relocations.
2731 	 This can happen when we are called by a specific backend
2732 	 because somebody is attempting to link together different
2733 	 types of object files.  Handling this case correctly is
2734 	 difficult, and sometimes impossible.  */
2735       (*_bfd_error_handler)
2736 	(_("Attempt to do relocatable link with %s input and %s output"),
2737 	 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2738       bfd_set_error (bfd_error_wrong_format);
2739       return FALSE;
2740     }
2741 
2742   if (! generic_linker)
2743     {
2744       asymbol **sympp;
2745       asymbol **symppend;
2746 
2747       /* Get the canonical symbols.  The generic linker will always
2748 	 have retrieved them by this point, but we are being called by
2749 	 a specific linker, presumably because we are linking
2750 	 different types of object files together.  */
2751       if (!bfd_generic_link_read_symbols (input_bfd))
2752 	return FALSE;
2753 
2754       /* Since we have been called by a specific linker, rather than
2755 	 the generic linker, the values of the symbols will not be
2756 	 right.  They will be the values as seen in the input file,
2757 	 not the values of the final link.  We need to fix them up
2758 	 before we can relocate the section.  */
2759       sympp = _bfd_generic_link_get_symbols (input_bfd);
2760       symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2761       for (; sympp < symppend; sympp++)
2762 	{
2763 	  asymbol *sym;
2764 	  struct bfd_link_hash_entry *h;
2765 
2766 	  sym = *sympp;
2767 
2768 	  if ((sym->flags & (BSF_INDIRECT
2769 			     | BSF_WARNING
2770 			     | BSF_GLOBAL
2771 			     | BSF_CONSTRUCTOR
2772 			     | BSF_WEAK)) != 0
2773 	      || bfd_is_und_section (bfd_get_section (sym))
2774 	      || bfd_is_com_section (bfd_get_section (sym))
2775 	      || bfd_is_ind_section (bfd_get_section (sym)))
2776 	    {
2777 	      /* sym->udata may have been set by
2778 		 generic_link_add_symbol_list.  */
2779 	      if (sym->udata.p != NULL)
2780 		h = (struct bfd_link_hash_entry *) sym->udata.p;
2781 	      else if (bfd_is_und_section (bfd_get_section (sym)))
2782 		h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2783 						  bfd_asymbol_name (sym),
2784 						  FALSE, FALSE, TRUE);
2785 	      else
2786 		h = bfd_link_hash_lookup (info->hash,
2787 					  bfd_asymbol_name (sym),
2788 					  FALSE, FALSE, TRUE);
2789 	      if (h != NULL)
2790 		set_symbol_from_hash (sym, h);
2791 	    }
2792 	}
2793     }
2794 
2795   if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
2796       && input_section->size != 0)
2797     {
2798       /* Group section contents are set by bfd_elf_set_group_contents.  */
2799       if (!output_bfd->output_has_begun)
2800 	{
2801 	  /* FIXME: This hack ensures bfd_elf_set_group_contents is called.  */
2802 	  if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
2803 	    goto error_return;
2804 	}
2805       new_contents = output_section->contents;
2806       BFD_ASSERT (new_contents != NULL);
2807       BFD_ASSERT (input_section->output_offset == 0);
2808     }
2809   else
2810     {
2811       /* Get and relocate the section contents.  */
2812       sec_size = (input_section->rawsize > input_section->size
2813 		  ? input_section->rawsize
2814 		  : input_section->size);
2815       contents = (bfd_byte *) bfd_malloc (sec_size);
2816       if (contents == NULL && sec_size != 0)
2817 	goto error_return;
2818       new_contents = (bfd_get_relocated_section_contents
2819 		      (output_bfd, info, link_order, contents,
2820 		       info->relocatable,
2821 		       _bfd_generic_link_get_symbols (input_bfd)));
2822       if (!new_contents)
2823 	goto error_return;
2824     }
2825 
2826   /* Output the section contents.  */
2827   loc = input_section->output_offset * bfd_octets_per_byte (output_bfd);
2828   if (! bfd_set_section_contents (output_bfd, output_section,
2829 				  new_contents, loc, input_section->size))
2830     goto error_return;
2831 
2832   if (contents != NULL)
2833     free (contents);
2834   return TRUE;
2835 
2836  error_return:
2837   if (contents != NULL)
2838     free (contents);
2839   return FALSE;
2840 }
2841 
2842 /* A little routine to count the number of relocs in a link_order
2843    list.  */
2844 
2845 unsigned int
2846 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2847 {
2848   register unsigned int c;
2849   register struct bfd_link_order *l;
2850 
2851   c = 0;
2852   for (l = link_order; l != NULL; l = l->next)
2853     {
2854       if (l->type == bfd_section_reloc_link_order
2855 	  || l->type == bfd_symbol_reloc_link_order)
2856 	++c;
2857     }
2858 
2859   return c;
2860 }
2861 
2862 /*
2863 FUNCTION
2864 	bfd_link_split_section
2865 
2866 SYNOPSIS
2867         bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2868 
2869 DESCRIPTION
2870 	Return nonzero if @var{sec} should be split during a
2871 	reloceatable or final link.
2872 
2873 .#define bfd_link_split_section(abfd, sec) \
2874 .       BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2875 .
2876 
2877 */
2878 
2879 bfd_boolean
2880 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2881 				 asection *sec ATTRIBUTE_UNUSED)
2882 {
2883   return FALSE;
2884 }
2885 
2886 /*
2887 FUNCTION
2888 	bfd_section_already_linked
2889 
2890 SYNOPSIS
2891         bfd_boolean bfd_section_already_linked (bfd *abfd,
2892 						asection *sec,
2893 						struct bfd_link_info *info);
2894 
2895 DESCRIPTION
2896 	Check if @var{data} has been already linked during a reloceatable
2897 	or final link.  Return TRUE if it has.
2898 
2899 .#define bfd_section_already_linked(abfd, sec, info) \
2900 .       BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2901 .
2902 
2903 */
2904 
2905 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2906    once into the output.  This routine checks each section, and
2907    arrange to discard it if a section of the same name has already
2908    been linked.  This code assumes that all relevant sections have the
2909    SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2910    section name.  bfd_section_already_linked is called via
2911    bfd_map_over_sections.  */
2912 
2913 /* The hash table.  */
2914 
2915 static struct bfd_hash_table _bfd_section_already_linked_table;
2916 
2917 /* Support routines for the hash table used by section_already_linked,
2918    initialize the table, traverse, lookup, fill in an entry and remove
2919    the table.  */
2920 
2921 void
2922 bfd_section_already_linked_table_traverse
2923   (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2924 			void *), void *info)
2925 {
2926   bfd_hash_traverse (&_bfd_section_already_linked_table,
2927 		     (bfd_boolean (*) (struct bfd_hash_entry *,
2928 				       void *)) func,
2929 		     info);
2930 }
2931 
2932 struct bfd_section_already_linked_hash_entry *
2933 bfd_section_already_linked_table_lookup (const char *name)
2934 {
2935   return ((struct bfd_section_already_linked_hash_entry *)
2936 	  bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2937 			   TRUE, FALSE));
2938 }
2939 
2940 bfd_boolean
2941 bfd_section_already_linked_table_insert
2942   (struct bfd_section_already_linked_hash_entry *already_linked_list,
2943    asection *sec)
2944 {
2945   struct bfd_section_already_linked *l;
2946 
2947   /* Allocate the memory from the same obstack as the hash table is
2948      kept in.  */
2949   l = (struct bfd_section_already_linked *)
2950       bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2951   if (l == NULL)
2952     return FALSE;
2953   l->sec = sec;
2954   l->next = already_linked_list->entry;
2955   already_linked_list->entry = l;
2956   return TRUE;
2957 }
2958 
2959 static struct bfd_hash_entry *
2960 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2961 			struct bfd_hash_table *table,
2962 			const char *string ATTRIBUTE_UNUSED)
2963 {
2964   struct bfd_section_already_linked_hash_entry *ret =
2965     (struct bfd_section_already_linked_hash_entry *)
2966       bfd_hash_allocate (table, sizeof *ret);
2967 
2968   if (ret == NULL)
2969     return NULL;
2970 
2971   ret->entry = NULL;
2972 
2973   return &ret->root;
2974 }
2975 
2976 bfd_boolean
2977 bfd_section_already_linked_table_init (void)
2978 {
2979   return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2980 				already_linked_newfunc,
2981 				sizeof (struct bfd_section_already_linked_hash_entry),
2982 				42);
2983 }
2984 
2985 void
2986 bfd_section_already_linked_table_free (void)
2987 {
2988   bfd_hash_table_free (&_bfd_section_already_linked_table);
2989 }
2990 
2991 /* Report warnings as appropriate for duplicate section SEC.
2992    Return FALSE if we decide to keep SEC after all.  */
2993 
2994 bfd_boolean
2995 _bfd_handle_already_linked (asection *sec,
2996 			    struct bfd_section_already_linked *l,
2997 			    struct bfd_link_info *info)
2998 {
2999   switch (sec->flags & SEC_LINK_DUPLICATES)
3000     {
3001     default:
3002       abort ();
3003 
3004     case SEC_LINK_DUPLICATES_DISCARD:
3005       /* If we found an LTO IR match for this comdat group on
3006 	 the first pass, replace it with the LTO output on the
3007 	 second pass.  We can't simply choose real object
3008 	 files over IR because the first pass may contain a
3009 	 mix of LTO and normal objects and we must keep the
3010 	 first match, be it IR or real.  */
3011       if (info->loading_lto_outputs
3012 	  && (l->sec->owner->flags & BFD_PLUGIN) != 0)
3013 	{
3014 	  l->sec = sec;
3015 	  return FALSE;
3016 	}
3017       break;
3018 
3019     case SEC_LINK_DUPLICATES_ONE_ONLY:
3020       info->callbacks->einfo
3021 	(_("%B: ignoring duplicate section `%A'\n"),
3022 	 sec->owner, sec);
3023       break;
3024 
3025     case SEC_LINK_DUPLICATES_SAME_SIZE:
3026       if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
3027 	;
3028       else if (sec->size != l->sec->size)
3029 	info->callbacks->einfo
3030 	  (_("%B: duplicate section `%A' has different size\n"),
3031 	   sec->owner, sec);
3032       break;
3033 
3034     case SEC_LINK_DUPLICATES_SAME_CONTENTS:
3035       if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
3036 	;
3037       else if (sec->size != l->sec->size)
3038 	info->callbacks->einfo
3039 	  (_("%B: duplicate section `%A' has different size\n"),
3040 	   sec->owner, sec);
3041       else if (sec->size != 0)
3042 	{
3043 	  bfd_byte *sec_contents, *l_sec_contents = NULL;
3044 
3045 	  if (!bfd_malloc_and_get_section (sec->owner, sec, &sec_contents))
3046 	    info->callbacks->einfo
3047 	      (_("%B: could not read contents of section `%A'\n"),
3048 	       sec->owner, sec);
3049 	  else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
3050 						&l_sec_contents))
3051 	    info->callbacks->einfo
3052 	      (_("%B: could not read contents of section `%A'\n"),
3053 	       l->sec->owner, l->sec);
3054 	  else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
3055 	    info->callbacks->einfo
3056 	      (_("%B: duplicate section `%A' has different contents\n"),
3057 	       sec->owner, sec);
3058 
3059 	  if (sec_contents)
3060 	    free (sec_contents);
3061 	  if (l_sec_contents)
3062 	    free (l_sec_contents);
3063 	}
3064       break;
3065     }
3066 
3067   /* Set the output_section field so that lang_add_section
3068      does not create a lang_input_section structure for this
3069      section.  Since there might be a symbol in the section
3070      being discarded, we must retain a pointer to the section
3071      which we are really going to use.  */
3072   sec->output_section = bfd_abs_section_ptr;
3073   sec->kept_section = l->sec;
3074   return TRUE;
3075 }
3076 
3077 /* This is used on non-ELF inputs.  */
3078 
3079 bfd_boolean
3080 _bfd_generic_section_already_linked (bfd *abfd ATTRIBUTE_UNUSED,
3081 				     asection *sec,
3082 				     struct bfd_link_info *info)
3083 {
3084   const char *name;
3085   struct bfd_section_already_linked *l;
3086   struct bfd_section_already_linked_hash_entry *already_linked_list;
3087 
3088   if ((sec->flags & SEC_LINK_ONCE) == 0)
3089     return FALSE;
3090 
3091   /* The generic linker doesn't handle section groups.  */
3092   if ((sec->flags & SEC_GROUP) != 0)
3093     return FALSE;
3094 
3095   /* FIXME: When doing a relocatable link, we may have trouble
3096      copying relocations in other sections that refer to local symbols
3097      in the section being discarded.  Those relocations will have to
3098      be converted somehow; as of this writing I'm not sure that any of
3099      the backends handle that correctly.
3100 
3101      It is tempting to instead not discard link once sections when
3102      doing a relocatable link (technically, they should be discarded
3103      whenever we are building constructors).  However, that fails,
3104      because the linker winds up combining all the link once sections
3105      into a single large link once section, which defeats the purpose
3106      of having link once sections in the first place.  */
3107 
3108   name = bfd_get_section_name (abfd, sec);
3109 
3110   already_linked_list = bfd_section_already_linked_table_lookup (name);
3111 
3112   l = already_linked_list->entry;
3113   if (l != NULL)
3114     {
3115       /* The section has already been linked.  See if we should
3116 	 issue a warning.  */
3117       return _bfd_handle_already_linked (sec, l, info);
3118     }
3119 
3120   /* This is the first section with this name.  Record it.  */
3121   if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
3122     info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
3123   return FALSE;
3124 }
3125 
3126 /* Convert symbols in excluded output sections to use a kept section.  */
3127 
3128 static bfd_boolean
3129 fix_syms (struct bfd_link_hash_entry *h, void *data)
3130 {
3131   bfd *obfd = (bfd *) data;
3132 
3133   if (h->type == bfd_link_hash_defined
3134       || h->type == bfd_link_hash_defweak)
3135     {
3136       asection *s = h->u.def.section;
3137       if (s != NULL
3138 	  && s->output_section != NULL
3139 	  && (s->output_section->flags & SEC_EXCLUDE) != 0
3140 	  && bfd_section_removed_from_list (obfd, s->output_section))
3141 	{
3142 	  asection *op, *op1;
3143 
3144 	  h->u.def.value += s->output_offset + s->output_section->vma;
3145 
3146 	  /* Find preceding kept section.  */
3147 	  for (op1 = s->output_section->prev; op1 != NULL; op1 = op1->prev)
3148 	    if ((op1->flags & SEC_EXCLUDE) == 0
3149 		&& !bfd_section_removed_from_list (obfd, op1))
3150 	      break;
3151 
3152 	  /* Find following kept section.  Start at prev->next because
3153 	     other sections may have been added after S was removed.  */
3154 	  if (s->output_section->prev != NULL)
3155 	    op = s->output_section->prev->next;
3156 	  else
3157 	    op = s->output_section->owner->sections;
3158 	  for (; op != NULL; op = op->next)
3159 	    if ((op->flags & SEC_EXCLUDE) == 0
3160 		&& !bfd_section_removed_from_list (obfd, op))
3161 	      break;
3162 
3163 	  /* Choose better of two sections, based on flags.  The idea
3164 	     is to choose a section that will be in the same segment
3165 	     as S would have been if it was kept.  */
3166 	  if (op1 == NULL)
3167 	    {
3168 	      if (op == NULL)
3169 		op = bfd_abs_section_ptr;
3170 	    }
3171 	  else if (op == NULL)
3172 	    op = op1;
3173 	  else if (((op1->flags ^ op->flags)
3174 		    & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0)
3175 	    {
3176 	      if (((op->flags ^ s->flags)
3177 		   & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0
3178 		  /* We prefer to choose a loaded section.  Section S
3179 		     doesn't have SEC_LOAD set (it being excluded, that
3180 		     part of the flag processing didn't happen) so we
3181 		     can't compare that flag to those of OP and OP1.  */
3182 		  || ((op1->flags & SEC_LOAD) != 0
3183 		      && (op->flags & SEC_LOAD) == 0))
3184 		op = op1;
3185 	    }
3186 	  else if (((op1->flags ^ op->flags) & SEC_READONLY) != 0)
3187 	    {
3188 	      if (((op->flags ^ s->flags) & SEC_READONLY) != 0)
3189 		op = op1;
3190 	    }
3191 	  else if (((op1->flags ^ op->flags) & SEC_CODE) != 0)
3192 	    {
3193 	      if (((op->flags ^ s->flags) & SEC_CODE) != 0)
3194 		op = op1;
3195 	    }
3196 	  else
3197 	    {
3198 	      /* Flags we care about are the same.  Prefer the following
3199 		 section if that will result in a positive valued sym.  */
3200 	      if (h->u.def.value < op->vma)
3201 		op = op1;
3202 	    }
3203 
3204 	  h->u.def.value -= op->vma;
3205 	  h->u.def.section = op;
3206 	}
3207     }
3208 
3209   return TRUE;
3210 }
3211 
3212 void
3213 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3214 {
3215   bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3216 }
3217 
3218 /*
3219 FUNCTION
3220 	bfd_generic_define_common_symbol
3221 
3222 SYNOPSIS
3223 	bfd_boolean bfd_generic_define_common_symbol
3224 	  (bfd *output_bfd, struct bfd_link_info *info,
3225 	   struct bfd_link_hash_entry *h);
3226 
3227 DESCRIPTION
3228 	Convert common symbol @var{h} into a defined symbol.
3229 	Return TRUE on success and FALSE on failure.
3230 
3231 .#define bfd_define_common_symbol(output_bfd, info, h) \
3232 .       BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3233 .
3234 */
3235 
3236 bfd_boolean
3237 bfd_generic_define_common_symbol (bfd *output_bfd,
3238 				  struct bfd_link_info *info ATTRIBUTE_UNUSED,
3239 				  struct bfd_link_hash_entry *h)
3240 {
3241   unsigned int power_of_two;
3242   bfd_vma alignment, size;
3243   asection *section;
3244 
3245   BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common);
3246 
3247   size = h->u.c.size;
3248   power_of_two = h->u.c.p->alignment_power;
3249   section = h->u.c.p->section;
3250 
3251   /* Increase the size of the section to align the common symbol.
3252      The alignment must be a power of two.  */
3253   alignment = bfd_octets_per_byte (output_bfd) << power_of_two;
3254   BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment);
3255   section->size += alignment - 1;
3256   section->size &= -alignment;
3257 
3258   /* Adjust the section's overall alignment if necessary.  */
3259   if (power_of_two > section->alignment_power)
3260     section->alignment_power = power_of_two;
3261 
3262   /* Change the symbol from common to defined.  */
3263   h->type = bfd_link_hash_defined;
3264   h->u.def.section = section;
3265   h->u.def.value = section->size;
3266 
3267   /* Increase the size of the section.  */
3268   section->size += size;
3269 
3270   /* Make sure the section is allocated in memory, and make sure that
3271      it is no longer a common section.  */
3272   section->flags |= SEC_ALLOC;
3273   section->flags &= ~SEC_IS_COMMON;
3274   return TRUE;
3275 }
3276 
3277 /*
3278 FUNCTION
3279 	bfd_find_version_for_sym
3280 
3281 SYNOPSIS
3282 	struct bfd_elf_version_tree * bfd_find_version_for_sym
3283 	  (struct bfd_elf_version_tree *verdefs,
3284 	   const char *sym_name, bfd_boolean *hide);
3285 
3286 DESCRIPTION
3287 	Search an elf version script tree for symbol versioning
3288 	info and export / don't-export status for a given symbol.
3289 	Return non-NULL on success and NULL on failure; also sets
3290 	the output @samp{hide} boolean parameter.
3291 
3292 */
3293 
3294 struct bfd_elf_version_tree *
3295 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs,
3296 			  const char *sym_name,
3297 			  bfd_boolean *hide)
3298 {
3299   struct bfd_elf_version_tree *t;
3300   struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
3301   struct bfd_elf_version_tree *star_local_ver, *star_global_ver;
3302 
3303   local_ver = NULL;
3304   global_ver = NULL;
3305   star_local_ver = NULL;
3306   star_global_ver = NULL;
3307   exist_ver = NULL;
3308   for (t = verdefs; t != NULL; t = t->next)
3309     {
3310       if (t->globals.list != NULL)
3311 	{
3312 	  struct bfd_elf_version_expr *d = NULL;
3313 
3314 	  while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
3315 	    {
3316 	      if (d->literal || strcmp (d->pattern, "*") != 0)
3317 		global_ver = t;
3318 	      else
3319 		star_global_ver = t;
3320 	      if (d->symver)
3321 		exist_ver = t;
3322 	      d->script = 1;
3323 	      /* If the match is a wildcard pattern, keep looking for
3324 		 a more explicit, perhaps even local, match.  */
3325 	      if (d->literal)
3326 		break;
3327 	    }
3328 
3329 	  if (d != NULL)
3330 	    break;
3331 	}
3332 
3333       if (t->locals.list != NULL)
3334 	{
3335 	  struct bfd_elf_version_expr *d = NULL;
3336 
3337 	  while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
3338 	    {
3339 	      if (d->literal || strcmp (d->pattern, "*") != 0)
3340 		local_ver = t;
3341 	      else
3342 		star_local_ver = t;
3343 	      /* If the match is a wildcard pattern, keep looking for
3344 		 a more explicit, perhaps even global, match.  */
3345 	      if (d->literal)
3346 		{
3347 		  /* An exact match overrides a global wildcard.  */
3348 		  global_ver = NULL;
3349 		  star_global_ver = NULL;
3350 		  break;
3351 		}
3352 	    }
3353 
3354 	  if (d != NULL)
3355 	    break;
3356 	}
3357     }
3358 
3359   if (global_ver == NULL && local_ver == NULL)
3360     global_ver = star_global_ver;
3361 
3362   if (global_ver != NULL)
3363     {
3364       /* If we already have a versioned symbol that matches the
3365 	 node for this symbol, then we don't want to create a
3366 	 duplicate from the unversioned symbol.  Instead hide the
3367 	 unversioned symbol.  */
3368       *hide = exist_ver == global_ver;
3369       return global_ver;
3370     }
3371 
3372   if (local_ver == NULL)
3373     local_ver = star_local_ver;
3374 
3375   if (local_ver != NULL)
3376     {
3377       *hide = TRUE;
3378       return local_ver;
3379     }
3380 
3381   return NULL;
3382 }
3383 
3384 /*
3385 FUNCTION
3386 	bfd_hide_sym_by_version
3387 
3388 SYNOPSIS
3389 	bfd_boolean bfd_hide_sym_by_version
3390 	  (struct bfd_elf_version_tree *verdefs, const char *sym_name);
3391 
3392 DESCRIPTION
3393 	Search an elf version script tree for symbol versioning
3394 	info for a given symbol.  Return TRUE if the symbol is hidden.
3395 
3396 */
3397 
3398 bfd_boolean
3399 bfd_hide_sym_by_version (struct bfd_elf_version_tree *verdefs,
3400 			 const char *sym_name)
3401 {
3402   bfd_boolean hidden = FALSE;
3403   bfd_find_version_for_sym (verdefs, sym_name, &hidden);
3404   return hidden;
3405 }
3406