xref: /dragonfly/contrib/gdb-7/bfd/section.c (revision ad9f8794)
1 /* Object file "section" support for the BFD library.
2    Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3    2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4    Free Software Foundation, Inc.
5    Written by Cygnus Support.
6 
7    This file is part of BFD, the Binary File Descriptor library.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; if not, write to the Free Software
21    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22    MA 02110-1301, USA.  */
23 
24 /*
25 SECTION
26 	Sections
27 
28 	The raw data contained within a BFD is maintained through the
29 	section abstraction.  A single BFD may have any number of
30 	sections.  It keeps hold of them by pointing to the first;
31 	each one points to the next in the list.
32 
33 	Sections are supported in BFD in <<section.c>>.
34 
35 @menu
36 @* Section Input::
37 @* Section Output::
38 @* typedef asection::
39 @* section prototypes::
40 @end menu
41 
42 INODE
43 Section Input, Section Output, Sections, Sections
44 SUBSECTION
45 	Section input
46 
47 	When a BFD is opened for reading, the section structures are
48 	created and attached to the BFD.
49 
50 	Each section has a name which describes the section in the
51 	outside world---for example, <<a.out>> would contain at least
52 	three sections, called <<.text>>, <<.data>> and <<.bss>>.
53 
54 	Names need not be unique; for example a COFF file may have several
55 	sections named <<.data>>.
56 
57 	Sometimes a BFD will contain more than the ``natural'' number of
58 	sections. A back end may attach other sections containing
59 	constructor data, or an application may add a section (using
60 	<<bfd_make_section>>) to the sections attached to an already open
61 	BFD. For example, the linker creates an extra section
62 	<<COMMON>> for each input file's BFD to hold information about
63 	common storage.
64 
65 	The raw data is not necessarily read in when
66 	the section descriptor is created. Some targets may leave the
67 	data in place until a <<bfd_get_section_contents>> call is
68 	made. Other back ends may read in all the data at once.  For
69 	example, an S-record file has to be read once to determine the
70 	size of the data. An IEEE-695 file doesn't contain raw data in
71 	sections, but data and relocation expressions intermixed, so
72 	the data area has to be parsed to get out the data and
73 	relocations.
74 
75 INODE
76 Section Output, typedef asection, Section Input, Sections
77 
78 SUBSECTION
79 	Section output
80 
81 	To write a new object style BFD, the various sections to be
82 	written have to be created. They are attached to the BFD in
83 	the same way as input sections; data is written to the
84 	sections using <<bfd_set_section_contents>>.
85 
86 	Any program that creates or combines sections (e.g., the assembler
87 	and linker) must use the <<asection>> fields <<output_section>> and
88 	<<output_offset>> to indicate the file sections to which each
89 	section must be written.  (If the section is being created from
90 	scratch, <<output_section>> should probably point to the section
91 	itself and <<output_offset>> should probably be zero.)
92 
93 	The data to be written comes from input sections attached
94 	(via <<output_section>> pointers) to
95 	the output sections.  The output section structure can be
96 	considered a filter for the input section: the output section
97 	determines the vma of the output data and the name, but the
98 	input section determines the offset into the output section of
99 	the data to be written.
100 
101 	E.g., to create a section "O", starting at 0x100, 0x123 long,
102 	containing two subsections, "A" at offset 0x0 (i.e., at vma
103 	0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
104 	structures would look like:
105 
106 |   section name          "A"
107 |     output_offset   0x00
108 |     size            0x20
109 |     output_section ----------->  section name    "O"
110 |                             |    vma             0x100
111 |   section name          "B" |    size            0x123
112 |     output_offset   0x20    |
113 |     size            0x103   |
114 |     output_section  --------|
115 
116 SUBSECTION
117 	Link orders
118 
119 	The data within a section is stored in a @dfn{link_order}.
120 	These are much like the fixups in <<gas>>.  The link_order
121 	abstraction allows a section to grow and shrink within itself.
122 
123 	A link_order knows how big it is, and which is the next
124 	link_order and where the raw data for it is; it also points to
125 	a list of relocations which apply to it.
126 
127 	The link_order is used by the linker to perform relaxing on
128 	final code.  The compiler creates code which is as big as
129 	necessary to make it work without relaxing, and the user can
130 	select whether to relax.  Sometimes relaxing takes a lot of
131 	time.  The linker runs around the relocations to see if any
132 	are attached to data which can be shrunk, if so it does it on
133 	a link_order by link_order basis.
134 
135 */
136 
137 #include "sysdep.h"
138 #include "bfd.h"
139 #include "libbfd.h"
140 #include "bfdlink.h"
141 
142 /*
143 DOCDD
144 INODE
145 typedef asection, section prototypes, Section Output, Sections
146 SUBSECTION
147 	typedef asection
148 
149 	Here is the section structure:
150 
151 CODE_FRAGMENT
152 .
153 .typedef struct bfd_section
154 .{
155 .  {* The name of the section; the name isn't a copy, the pointer is
156 .     the same as that passed to bfd_make_section.  *}
157 .  const char *name;
158 .
159 .  {* A unique sequence number.  *}
160 .  int id;
161 .
162 .  {* Which section in the bfd; 0..n-1 as sections are created in a bfd.  *}
163 .  int index;
164 .
165 .  {* The next section in the list belonging to the BFD, or NULL.  *}
166 .  struct bfd_section *next;
167 .
168 .  {* The previous section in the list belonging to the BFD, or NULL.  *}
169 .  struct bfd_section *prev;
170 .
171 .  {* The field flags contains attributes of the section. Some
172 .     flags are read in from the object file, and some are
173 .     synthesized from other information.  *}
174 .  flagword flags;
175 .
176 .#define SEC_NO_FLAGS   0x000
177 .
178 .  {* Tells the OS to allocate space for this section when loading.
179 .     This is clear for a section containing debug information only.  *}
180 .#define SEC_ALLOC      0x001
181 .
182 .  {* Tells the OS to load the section from the file when loading.
183 .     This is clear for a .bss section.  *}
184 .#define SEC_LOAD       0x002
185 .
186 .  {* The section contains data still to be relocated, so there is
187 .     some relocation information too.  *}
188 .#define SEC_RELOC      0x004
189 .
190 .  {* A signal to the OS that the section contains read only data.  *}
191 .#define SEC_READONLY   0x008
192 .
193 .  {* The section contains code only.  *}
194 .#define SEC_CODE       0x010
195 .
196 .  {* The section contains data only.  *}
197 .#define SEC_DATA       0x020
198 .
199 .  {* The section will reside in ROM.  *}
200 .#define SEC_ROM        0x040
201 .
202 .  {* The section contains constructor information. This section
203 .     type is used by the linker to create lists of constructors and
204 .     destructors used by <<g++>>. When a back end sees a symbol
205 .     which should be used in a constructor list, it creates a new
206 .     section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
207 .     the symbol to it, and builds a relocation. To build the lists
208 .     of constructors, all the linker has to do is catenate all the
209 .     sections called <<__CTOR_LIST__>> and relocate the data
210 .     contained within - exactly the operations it would peform on
211 .     standard data.  *}
212 .#define SEC_CONSTRUCTOR 0x080
213 .
214 .  {* The section has contents - a data section could be
215 .     <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
216 .     <<SEC_HAS_CONTENTS>>  *}
217 .#define SEC_HAS_CONTENTS 0x100
218 .
219 .  {* An instruction to the linker to not output the section
220 .     even if it has information which would normally be written.  *}
221 .#define SEC_NEVER_LOAD 0x200
222 .
223 .  {* The section contains thread local data.  *}
224 .#define SEC_THREAD_LOCAL 0x400
225 .
226 .  {* The section has GOT references.  This flag is only for the
227 .     linker, and is currently only used by the elf32-hppa back end.
228 .     It will be set if global offset table references were detected
229 .     in this section, which indicate to the linker that the section
230 .     contains PIC code, and must be handled specially when doing a
231 .     static link.  *}
232 .#define SEC_HAS_GOT_REF 0x800
233 .
234 .  {* The section contains common symbols (symbols may be defined
235 .     multiple times, the value of a symbol is the amount of
236 .     space it requires, and the largest symbol value is the one
237 .     used).  Most targets have exactly one of these (which we
238 .     translate to bfd_com_section_ptr), but ECOFF has two.  *}
239 .#define SEC_IS_COMMON 0x1000
240 .
241 .  {* The section contains only debugging information.  For
242 .     example, this is set for ELF .debug and .stab sections.
243 .     strip tests this flag to see if a section can be
244 .     discarded.  *}
245 .#define SEC_DEBUGGING 0x2000
246 .
247 .  {* The contents of this section are held in memory pointed to
248 .     by the contents field.  This is checked by bfd_get_section_contents,
249 .     and the data is retrieved from memory if appropriate.  *}
250 .#define SEC_IN_MEMORY 0x4000
251 .
252 .  {* The contents of this section are to be excluded by the
253 .     linker for executable and shared objects unless those
254 .     objects are to be further relocated.  *}
255 .#define SEC_EXCLUDE 0x8000
256 .
257 .  {* The contents of this section are to be sorted based on the sum of
258 .     the symbol and addend values specified by the associated relocation
259 .     entries.  Entries without associated relocation entries will be
260 .     appended to the end of the section in an unspecified order.  *}
261 .#define SEC_SORT_ENTRIES 0x10000
262 .
263 .  {* When linking, duplicate sections of the same name should be
264 .     discarded, rather than being combined into a single section as
265 .     is usually done.  This is similar to how common symbols are
266 .     handled.  See SEC_LINK_DUPLICATES below.  *}
267 .#define SEC_LINK_ONCE 0x20000
268 .
269 .  {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
270 .     should handle duplicate sections.  *}
271 .#define SEC_LINK_DUPLICATES 0xc0000
272 .
273 .  {* This value for SEC_LINK_DUPLICATES means that duplicate
274 .     sections with the same name should simply be discarded.  *}
275 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
276 .
277 .  {* This value for SEC_LINK_DUPLICATES means that the linker
278 .     should warn if there are any duplicate sections, although
279 .     it should still only link one copy.  *}
280 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
281 .
282 .  {* This value for SEC_LINK_DUPLICATES means that the linker
283 .     should warn if any duplicate sections are a different size.  *}
284 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
285 .
286 .  {* This value for SEC_LINK_DUPLICATES means that the linker
287 .     should warn if any duplicate sections contain different
288 .     contents.  *}
289 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
290 .  (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
291 .
292 .  {* This section was created by the linker as part of dynamic
293 .     relocation or other arcane processing.  It is skipped when
294 .     going through the first-pass output, trusting that someone
295 .     else up the line will take care of it later.  *}
296 .#define SEC_LINKER_CREATED 0x100000
297 .
298 .  {* This section should not be subject to garbage collection.
299 .     Also set to inform the linker that this section should not be
300 .     listed in the link map as discarded.  *}
301 .#define SEC_KEEP 0x200000
302 .
303 .  {* This section contains "short" data, and should be placed
304 .     "near" the GP.  *}
305 .#define SEC_SMALL_DATA 0x400000
306 .
307 .  {* Attempt to merge identical entities in the section.
308 .     Entity size is given in the entsize field.  *}
309 .#define SEC_MERGE 0x800000
310 .
311 .  {* If given with SEC_MERGE, entities to merge are zero terminated
312 .     strings where entsize specifies character size instead of fixed
313 .     size entries.  *}
314 .#define SEC_STRINGS 0x1000000
315 .
316 .  {* This section contains data about section groups.  *}
317 .#define SEC_GROUP 0x2000000
318 .
319 .  {* The section is a COFF shared library section.  This flag is
320 .     only for the linker.  If this type of section appears in
321 .     the input file, the linker must copy it to the output file
322 .     without changing the vma or size.  FIXME: Although this
323 .     was originally intended to be general, it really is COFF
324 .     specific (and the flag was renamed to indicate this).  It
325 .     might be cleaner to have some more general mechanism to
326 .     allow the back end to control what the linker does with
327 .     sections.  *}
328 .#define SEC_COFF_SHARED_LIBRARY 0x4000000
329 .
330 .  {* This section contains data which may be shared with other
331 .     executables or shared objects. This is for COFF only.  *}
332 .#define SEC_COFF_SHARED 0x8000000
333 .
334 .  {* When a section with this flag is being linked, then if the size of
335 .     the input section is less than a page, it should not cross a page
336 .     boundary.  If the size of the input section is one page or more,
337 .     it should be aligned on a page boundary.  This is for TI
338 .     TMS320C54X only.  *}
339 .#define SEC_TIC54X_BLOCK 0x10000000
340 .
341 .  {* Conditionally link this section; do not link if there are no
342 .     references found to any symbol in the section.  This is for TI
343 .     TMS320C54X only.  *}
344 .#define SEC_TIC54X_CLINK 0x20000000
345 .
346 .  {* Indicate that section has the no read flag set. This happens
347 .     when memory read flag isn't set. *}
348 .#define SEC_COFF_NOREAD 0x40000000
349 .
350 .  {*  End of section flags.  *}
351 .
352 .  {* Some internal packed boolean fields.  *}
353 .
354 .  {* See the vma field.  *}
355 .  unsigned int user_set_vma : 1;
356 .
357 .  {* A mark flag used by some of the linker backends.  *}
358 .  unsigned int linker_mark : 1;
359 .
360 .  {* Another mark flag used by some of the linker backends.  Set for
361 .     output sections that have an input section.  *}
362 .  unsigned int linker_has_input : 1;
363 .
364 .  {* Mark flag used by some linker backends for garbage collection.  *}
365 .  unsigned int gc_mark : 1;
366 .
367 .  {* The following flags are used by the ELF linker. *}
368 .
369 .  {* Mark sections which have been allocated to segments.  *}
370 .  unsigned int segment_mark : 1;
371 .
372 .  {* Type of sec_info information.  *}
373 .  unsigned int sec_info_type:3;
374 .#define ELF_INFO_TYPE_NONE      0
375 .#define ELF_INFO_TYPE_STABS     1
376 .#define ELF_INFO_TYPE_MERGE     2
377 .#define ELF_INFO_TYPE_EH_FRAME  3
378 .#define ELF_INFO_TYPE_JUST_SYMS 4
379 .
380 .  {* Nonzero if this section uses RELA relocations, rather than REL.  *}
381 .  unsigned int use_rela_p:1;
382 .
383 .  {* Bits used by various backends.  The generic code doesn't touch
384 .     these fields.  *}
385 .
386 .  unsigned int sec_flg0:1;
387 .  unsigned int sec_flg1:1;
388 .  unsigned int sec_flg2:1;
389 .  unsigned int sec_flg3:1;
390 .  unsigned int sec_flg4:1;
391 .  unsigned int sec_flg5:1;
392 .
393 .  {* End of internal packed boolean fields.  *}
394 .
395 .  {*  The virtual memory address of the section - where it will be
396 .      at run time.  The symbols are relocated against this.  The
397 .      user_set_vma flag is maintained by bfd; if it's not set, the
398 .      backend can assign addresses (for example, in <<a.out>>, where
399 .      the default address for <<.data>> is dependent on the specific
400 .      target and various flags).  *}
401 .  bfd_vma vma;
402 .
403 .  {*  The load address of the section - where it would be in a
404 .      rom image; really only used for writing section header
405 .      information.  *}
406 .  bfd_vma lma;
407 .
408 .  {* The size of the section in octets, as it will be output.
409 .     Contains a value even if the section has no contents (e.g., the
410 .     size of <<.bss>>).  *}
411 .  bfd_size_type size;
412 .
413 .  {* For input sections, the original size on disk of the section, in
414 .     octets.  This field should be set for any section whose size is
415 .     changed by linker relaxation.  It is required for sections where
416 .     the linker relaxation scheme doesn't cache altered section and
417 .     reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
418 .     targets), and thus the original size needs to be kept to read the
419 .     section multiple times.  For output sections, rawsize holds the
420 .     section size calculated on a previous linker relaxation pass.  *}
421 .  bfd_size_type rawsize;
422 .
423 .  {* Relaxation table. *}
424 .  struct relax_table *relax;
425 .
426 .  {* Count of used relaxation table entries. *}
427 .  int relax_count;
428 .
429 .
430 .  {* If this section is going to be output, then this value is the
431 .     offset in *bytes* into the output section of the first byte in the
432 .     input section (byte ==> smallest addressable unit on the
433 .     target).  In most cases, if this was going to start at the
434 .     100th octet (8-bit quantity) in the output section, this value
435 .     would be 100.  However, if the target byte size is 16 bits
436 .     (bfd_octets_per_byte is "2"), this value would be 50.  *}
437 .  bfd_vma output_offset;
438 .
439 .  {* The output section through which to map on output.  *}
440 .  struct bfd_section *output_section;
441 .
442 .  {* The alignment requirement of the section, as an exponent of 2 -
443 .     e.g., 3 aligns to 2^3 (or 8).  *}
444 .  unsigned int alignment_power;
445 .
446 .  {* If an input section, a pointer to a vector of relocation
447 .     records for the data in this section.  *}
448 .  struct reloc_cache_entry *relocation;
449 .
450 .  {* If an output section, a pointer to a vector of pointers to
451 .     relocation records for the data in this section.  *}
452 .  struct reloc_cache_entry **orelocation;
453 .
454 .  {* The number of relocation records in one of the above.  *}
455 .  unsigned reloc_count;
456 .
457 .  {* Information below is back end specific - and not always used
458 .     or updated.  *}
459 .
460 .  {* File position of section data.  *}
461 .  file_ptr filepos;
462 .
463 .  {* File position of relocation info.  *}
464 .  file_ptr rel_filepos;
465 .
466 .  {* File position of line data.  *}
467 .  file_ptr line_filepos;
468 .
469 .  {* Pointer to data for applications.  *}
470 .  void *userdata;
471 .
472 .  {* If the SEC_IN_MEMORY flag is set, this points to the actual
473 .     contents.  *}
474 .  unsigned char *contents;
475 .
476 .  {* Attached line number information.  *}
477 .  alent *lineno;
478 .
479 .  {* Number of line number records.  *}
480 .  unsigned int lineno_count;
481 .
482 .  {* Entity size for merging purposes.  *}
483 .  unsigned int entsize;
484 .
485 .  {* Points to the kept section if this section is a link-once section,
486 .     and is discarded.  *}
487 .  struct bfd_section *kept_section;
488 .
489 .  {* When a section is being output, this value changes as more
490 .     linenumbers are written out.  *}
491 .  file_ptr moving_line_filepos;
492 .
493 .  {* What the section number is in the target world.  *}
494 .  int target_index;
495 .
496 .  void *used_by_bfd;
497 .
498 .  {* If this is a constructor section then here is a list of the
499 .     relocations created to relocate items within it.  *}
500 .  struct relent_chain *constructor_chain;
501 .
502 .  {* The BFD which owns the section.  *}
503 .  bfd *owner;
504 .
505 .  {* A symbol which points at this section only.  *}
506 .  struct bfd_symbol *symbol;
507 .  struct bfd_symbol **symbol_ptr_ptr;
508 .
509 .  {* Early in the link process, map_head and map_tail are used to build
510 .     a list of input sections attached to an output section.  Later,
511 .     output sections use these fields for a list of bfd_link_order
512 .     structs.  *}
513 .  union {
514 .    struct bfd_link_order *link_order;
515 .    struct bfd_section *s;
516 .  } map_head, map_tail;
517 .} asection;
518 .
519 .{* Relax table contains information about instructions which can
520 .   be removed by relaxation -- replacing a long address with a
521 .   short address.  *}
522 .struct relax_table {
523 .  {* Address where bytes may be deleted. *}
524 .  bfd_vma addr;
525 .
526 .  {* Number of bytes to be deleted.  *}
527 .  int size;
528 .};
529 .
530 .{* These sections are global, and are managed by BFD.  The application
531 .   and target back end are not permitted to change the values in
532 .   these sections.  New code should use the section_ptr macros rather
533 .   than referring directly to the const sections.  The const sections
534 .   may eventually vanish.  *}
535 .#define BFD_ABS_SECTION_NAME "*ABS*"
536 .#define BFD_UND_SECTION_NAME "*UND*"
537 .#define BFD_COM_SECTION_NAME "*COM*"
538 .#define BFD_IND_SECTION_NAME "*IND*"
539 .
540 .{* The absolute section.  *}
541 .extern asection bfd_abs_section;
542 .#define bfd_abs_section_ptr ((asection *) &bfd_abs_section)
543 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
544 .{* Pointer to the undefined section.  *}
545 .extern asection bfd_und_section;
546 .#define bfd_und_section_ptr ((asection *) &bfd_und_section)
547 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
548 .{* Pointer to the common section.  *}
549 .extern asection bfd_com_section;
550 .#define bfd_com_section_ptr ((asection *) &bfd_com_section)
551 .{* Pointer to the indirect section.  *}
552 .extern asection bfd_ind_section;
553 .#define bfd_ind_section_ptr ((asection *) &bfd_ind_section)
554 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
555 .
556 .#define bfd_is_const_section(SEC)		\
557 . (   ((SEC) == bfd_abs_section_ptr)		\
558 .  || ((SEC) == bfd_und_section_ptr)		\
559 .  || ((SEC) == bfd_com_section_ptr)		\
560 .  || ((SEC) == bfd_ind_section_ptr))
561 .
562 .{* Macros to handle insertion and deletion of a bfd's sections.  These
563 .   only handle the list pointers, ie. do not adjust section_count,
564 .   target_index etc.  *}
565 .#define bfd_section_list_remove(ABFD, S) \
566 .  do							\
567 .    {							\
568 .      asection *_s = S;				\
569 .      asection *_next = _s->next;			\
570 .      asection *_prev = _s->prev;			\
571 .      if (_prev)					\
572 .        _prev->next = _next;				\
573 .      else						\
574 .        (ABFD)->sections = _next;			\
575 .      if (_next)					\
576 .        _next->prev = _prev;				\
577 .      else						\
578 .        (ABFD)->section_last = _prev;			\
579 .    }							\
580 .  while (0)
581 .#define bfd_section_list_append(ABFD, S) \
582 .  do							\
583 .    {							\
584 .      asection *_s = S;				\
585 .      bfd *_abfd = ABFD;				\
586 .      _s->next = NULL;					\
587 .      if (_abfd->section_last)				\
588 .        {						\
589 .          _s->prev = _abfd->section_last;		\
590 .          _abfd->section_last->next = _s;		\
591 .        }						\
592 .      else						\
593 .        {						\
594 .          _s->prev = NULL;				\
595 .          _abfd->sections = _s;			\
596 .        }						\
597 .      _abfd->section_last = _s;			\
598 .    }							\
599 .  while (0)
600 .#define bfd_section_list_prepend(ABFD, S) \
601 .  do							\
602 .    {							\
603 .      asection *_s = S;				\
604 .      bfd *_abfd = ABFD;				\
605 .      _s->prev = NULL;					\
606 .      if (_abfd->sections)				\
607 .        {						\
608 .          _s->next = _abfd->sections;			\
609 .          _abfd->sections->prev = _s;			\
610 .        }						\
611 .      else						\
612 .        {						\
613 .          _s->next = NULL;				\
614 .          _abfd->section_last = _s;			\
615 .        }						\
616 .      _abfd->sections = _s;				\
617 .    }							\
618 .  while (0)
619 .#define bfd_section_list_insert_after(ABFD, A, S) \
620 .  do							\
621 .    {							\
622 .      asection *_a = A;				\
623 .      asection *_s = S;				\
624 .      asection *_next = _a->next;			\
625 .      _s->next = _next;				\
626 .      _s->prev = _a;					\
627 .      _a->next = _s;					\
628 .      if (_next)					\
629 .        _next->prev = _s;				\
630 .      else						\
631 .        (ABFD)->section_last = _s;			\
632 .    }							\
633 .  while (0)
634 .#define bfd_section_list_insert_before(ABFD, B, S) \
635 .  do							\
636 .    {							\
637 .      asection *_b = B;				\
638 .      asection *_s = S;				\
639 .      asection *_prev = _b->prev;			\
640 .      _s->prev = _prev;				\
641 .      _s->next = _b;					\
642 .      _b->prev = _s;					\
643 .      if (_prev)					\
644 .        _prev->next = _s;				\
645 .      else						\
646 .        (ABFD)->sections = _s;				\
647 .    }							\
648 .  while (0)
649 .#define bfd_section_removed_from_list(ABFD, S) \
650 .  ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
651 .
652 .#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX)			\
653 .  {* name, id,  index, next, prev, flags, user_set_vma,            *}	\
654 .  { NAME,  IDX, 0,     NULL, NULL, FLAGS, 0,				\
655 .									\
656 .  {* linker_mark, linker_has_input, gc_mark, segment_mark,         *}	\
657 .     0,           0,                1,       0,			\
658 .									\
659 .  {* sec_info_type, use_rela_p,                                    *}	\
660 .     0,             0,							\
661 .									\
662 .  {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5,   *}	\
663 .     0,        0,        0,        0,        0,        0,		\
664 .									\
665 .  {* vma, lma, size, rawsize, relax, relax_count,                  *}	\
666 .     0,   0,   0,    0,       0,     0,				\
667 .									\
668 .  {* output_offset, output_section,              alignment_power,  *}	\
669 .     0,             (struct bfd_section *) &SEC, 0,			\
670 .									\
671 .  {* relocation, orelocation, reloc_count, filepos, rel_filepos,   *}	\
672 .     NULL,       NULL,        0,           0,       0,			\
673 .									\
674 .  {* line_filepos, userdata, contents, lineno, lineno_count,       *}	\
675 .     0,            NULL,     NULL,     NULL,   0,			\
676 .									\
677 .  {* entsize, kept_section, moving_line_filepos,		     *}	\
678 .     0,       NULL,	      0,					\
679 .									\
680 .  {* target_index, used_by_bfd, constructor_chain, owner,          *}	\
681 .     0,            NULL,        NULL,              NULL,		\
682 .									\
683 .  {* symbol,                    symbol_ptr_ptr,                    *}	\
684 .     (struct bfd_symbol *) SYM, &SEC.symbol,				\
685 .									\
686 .  {* map_head, map_tail                                            *}	\
687 .     { NULL }, { NULL }						\
688 .    }
689 .
690 */
691 
692 /* We use a macro to initialize the static asymbol structures because
693    traditional C does not permit us to initialize a union member while
694    gcc warns if we don't initialize it.  */
695  /* the_bfd, name, value, attr, section [, udata] */
696 #ifdef __STDC__
697 #define GLOBAL_SYM_INIT(NAME, SECTION) \
698   { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION, { 0 }}
699 #else
700 #define GLOBAL_SYM_INIT(NAME, SECTION) \
701   { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION }
702 #endif
703 
704 /* These symbols are global, not specific to any BFD.  Therefore, anything
705    that tries to change them is broken, and should be repaired.  */
706 
707 static const asymbol global_syms[] =
708 {
709   GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, &bfd_com_section),
710   GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, &bfd_und_section),
711   GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, &bfd_abs_section),
712   GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, &bfd_ind_section)
713 };
714 
715 #define STD_SECTION(SEC, FLAGS, NAME, IDX)				\
716   asection SEC = BFD_FAKE_SECTION(SEC, FLAGS, &global_syms[IDX],	\
717 				  NAME, IDX)
718 
719 STD_SECTION (bfd_com_section, SEC_IS_COMMON, BFD_COM_SECTION_NAME, 0);
720 STD_SECTION (bfd_und_section, 0, BFD_UND_SECTION_NAME, 1);
721 STD_SECTION (bfd_abs_section, 0, BFD_ABS_SECTION_NAME, 2);
722 STD_SECTION (bfd_ind_section, 0, BFD_IND_SECTION_NAME, 3);
723 #undef STD_SECTION
724 
725 /* Initialize an entry in the section hash table.  */
726 
727 struct bfd_hash_entry *
728 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
729 			  struct bfd_hash_table *table,
730 			  const char *string)
731 {
732   /* Allocate the structure if it has not already been allocated by a
733      subclass.  */
734   if (entry == NULL)
735     {
736       entry = (struct bfd_hash_entry *)
737 	bfd_hash_allocate (table, sizeof (struct section_hash_entry));
738       if (entry == NULL)
739 	return entry;
740     }
741 
742   /* Call the allocation method of the superclass.  */
743   entry = bfd_hash_newfunc (entry, table, string);
744   if (entry != NULL)
745     memset (&((struct section_hash_entry *) entry)->section, 0,
746 	    sizeof (asection));
747 
748   return entry;
749 }
750 
751 #define section_hash_lookup(table, string, create, copy) \
752   ((struct section_hash_entry *) \
753    bfd_hash_lookup ((table), (string), (create), (copy)))
754 
755 /* Create a symbol whose only job is to point to this section.  This
756    is useful for things like relocs which are relative to the base
757    of a section.  */
758 
759 bfd_boolean
760 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
761 {
762   newsect->symbol = bfd_make_empty_symbol (abfd);
763   if (newsect->symbol == NULL)
764     return FALSE;
765 
766   newsect->symbol->name = newsect->name;
767   newsect->symbol->value = 0;
768   newsect->symbol->section = newsect;
769   newsect->symbol->flags = BSF_SECTION_SYM;
770 
771   newsect->symbol_ptr_ptr = &newsect->symbol;
772   return TRUE;
773 }
774 
775 /* Initializes a new section.  NEWSECT->NAME is already set.  */
776 
777 static asection *
778 bfd_section_init (bfd *abfd, asection *newsect)
779 {
780   static int section_id = 0x10;  /* id 0 to 3 used by STD_SECTION.  */
781 
782   newsect->id = section_id;
783   newsect->index = abfd->section_count;
784   newsect->owner = abfd;
785 
786   if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
787     return NULL;
788 
789   section_id++;
790   abfd->section_count++;
791   bfd_section_list_append (abfd, newsect);
792   return newsect;
793 }
794 
795 /*
796 DOCDD
797 INODE
798 section prototypes,  , typedef asection, Sections
799 SUBSECTION
800 	Section prototypes
801 
802 These are the functions exported by the section handling part of BFD.
803 */
804 
805 /*
806 FUNCTION
807 	bfd_section_list_clear
808 
809 SYNOPSIS
810 	void bfd_section_list_clear (bfd *);
811 
812 DESCRIPTION
813 	Clears the section list, and also resets the section count and
814 	hash table entries.
815 */
816 
817 void
818 bfd_section_list_clear (bfd *abfd)
819 {
820   abfd->sections = NULL;
821   abfd->section_last = NULL;
822   abfd->section_count = 0;
823   memset (abfd->section_htab.table, 0,
824 	  abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
825 }
826 
827 /*
828 FUNCTION
829 	bfd_get_section_by_name
830 
831 SYNOPSIS
832 	asection *bfd_get_section_by_name (bfd *abfd, const char *name);
833 
834 DESCRIPTION
835 	Run through @var{abfd} and return the one of the
836 	<<asection>>s whose name matches @var{name}, otherwise <<NULL>>.
837 	@xref{Sections}, for more information.
838 
839 	This should only be used in special cases; the normal way to process
840 	all sections of a given name is to use <<bfd_map_over_sections>> and
841 	<<strcmp>> on the name (or better yet, base it on the section flags
842 	or something else) for each section.
843 */
844 
845 asection *
846 bfd_get_section_by_name (bfd *abfd, const char *name)
847 {
848   struct section_hash_entry *sh;
849 
850   sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
851   if (sh != NULL)
852     return &sh->section;
853 
854   return NULL;
855 }
856 
857 /*
858 FUNCTION
859 	bfd_get_section_by_name_if
860 
861 SYNOPSIS
862 	asection *bfd_get_section_by_name_if
863 	  (bfd *abfd,
864 	   const char *name,
865 	   bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
866 	   void *obj);
867 
868 DESCRIPTION
869 	Call the provided function @var{func} for each section
870 	attached to the BFD @var{abfd} whose name matches @var{name},
871 	passing @var{obj} as an argument. The function will be called
872 	as if by
873 
874 |	func (abfd, the_section, obj);
875 
876 	It returns the first section for which @var{func} returns true,
877 	otherwise <<NULL>>.
878 
879 */
880 
881 asection *
882 bfd_get_section_by_name_if (bfd *abfd, const char *name,
883 			    bfd_boolean (*operation) (bfd *,
884 						      asection *,
885 						      void *),
886 			    void *user_storage)
887 {
888   struct section_hash_entry *sh;
889   unsigned long hash;
890 
891   sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
892   if (sh == NULL)
893     return NULL;
894 
895   hash = sh->root.hash;
896   do
897     {
898       if ((*operation) (abfd, &sh->section, user_storage))
899 	return &sh->section;
900       sh = (struct section_hash_entry *) sh->root.next;
901     }
902   while (sh != NULL && sh->root.hash == hash
903 	 && strcmp (sh->root.string, name) == 0);
904 
905   return NULL;
906 }
907 
908 /*
909 FUNCTION
910 	bfd_get_unique_section_name
911 
912 SYNOPSIS
913 	char *bfd_get_unique_section_name
914 	  (bfd *abfd, const char *templat, int *count);
915 
916 DESCRIPTION
917 	Invent a section name that is unique in @var{abfd} by tacking
918 	a dot and a digit suffix onto the original @var{templat}.  If
919 	@var{count} is non-NULL, then it specifies the first number
920 	tried as a suffix to generate a unique name.  The value
921 	pointed to by @var{count} will be incremented in this case.
922 */
923 
924 char *
925 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
926 {
927   int num;
928   unsigned int len;
929   char *sname;
930 
931   len = strlen (templat);
932   sname = (char *) bfd_malloc (len + 8);
933   if (sname == NULL)
934     return NULL;
935   memcpy (sname, templat, len);
936   num = 1;
937   if (count != NULL)
938     num = *count;
939 
940   do
941     {
942       /* If we have a million sections, something is badly wrong.  */
943       if (num > 999999)
944 	abort ();
945       sprintf (sname + len, ".%d", num++);
946     }
947   while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
948 
949   if (count != NULL)
950     *count = num;
951   return sname;
952 }
953 
954 /*
955 FUNCTION
956 	bfd_make_section_old_way
957 
958 SYNOPSIS
959 	asection *bfd_make_section_old_way (bfd *abfd, const char *name);
960 
961 DESCRIPTION
962 	Create a new empty section called @var{name}
963 	and attach it to the end of the chain of sections for the
964 	BFD @var{abfd}. An attempt to create a section with a name which
965 	is already in use returns its pointer without changing the
966 	section chain.
967 
968 	It has the funny name since this is the way it used to be
969 	before it was rewritten....
970 
971 	Possible errors are:
972 	o <<bfd_error_invalid_operation>> -
973 	If output has already started for this BFD.
974 	o <<bfd_error_no_memory>> -
975 	If memory allocation fails.
976 
977 */
978 
979 asection *
980 bfd_make_section_old_way (bfd *abfd, const char *name)
981 {
982   asection *newsect;
983 
984   if (abfd->output_has_begun)
985     {
986       bfd_set_error (bfd_error_invalid_operation);
987       return NULL;
988     }
989 
990   if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
991     newsect = bfd_abs_section_ptr;
992   else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
993     newsect = bfd_com_section_ptr;
994   else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
995     newsect = bfd_und_section_ptr;
996   else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
997     newsect = bfd_ind_section_ptr;
998   else
999     {
1000       struct section_hash_entry *sh;
1001 
1002       sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1003       if (sh == NULL)
1004 	return NULL;
1005 
1006       newsect = &sh->section;
1007       if (newsect->name != NULL)
1008 	{
1009 	  /* Section already exists.  */
1010 	  return newsect;
1011 	}
1012 
1013       newsect->name = name;
1014       return bfd_section_init (abfd, newsect);
1015     }
1016 
1017   /* Call new_section_hook when "creating" the standard abs, com, und
1018      and ind sections to tack on format specific section data.
1019      Also, create a proper section symbol.  */
1020   if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1021     return NULL;
1022   return newsect;
1023 }
1024 
1025 /*
1026 FUNCTION
1027 	bfd_make_section_anyway_with_flags
1028 
1029 SYNOPSIS
1030 	asection *bfd_make_section_anyway_with_flags
1031 	  (bfd *abfd, const char *name, flagword flags);
1032 
1033 DESCRIPTION
1034    Create a new empty section called @var{name} and attach it to the end of
1035    the chain of sections for @var{abfd}.  Create a new section even if there
1036    is already a section with that name.  Also set the attributes of the
1037    new section to the value @var{flags}.
1038 
1039    Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1040    o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1041    o <<bfd_error_no_memory>> - If memory allocation fails.
1042 */
1043 
1044 sec_ptr
1045 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1046 				    flagword flags)
1047 {
1048   struct section_hash_entry *sh;
1049   asection *newsect;
1050 
1051   if (abfd->output_has_begun)
1052     {
1053       bfd_set_error (bfd_error_invalid_operation);
1054       return NULL;
1055     }
1056 
1057   sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1058   if (sh == NULL)
1059     return NULL;
1060 
1061   newsect = &sh->section;
1062   if (newsect->name != NULL)
1063     {
1064       /* We are making a section of the same name.  Put it in the
1065 	 section hash table.  Even though we can't find it directly by a
1066 	 hash lookup, we'll be able to find the section by traversing
1067 	 sh->root.next quicker than looking at all the bfd sections.  */
1068       struct section_hash_entry *new_sh;
1069       new_sh = (struct section_hash_entry *)
1070 	bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1071       if (new_sh == NULL)
1072 	return NULL;
1073 
1074       new_sh->root = sh->root;
1075       sh->root.next = &new_sh->root;
1076       newsect = &new_sh->section;
1077     }
1078 
1079   newsect->flags = flags;
1080   newsect->name = name;
1081   return bfd_section_init (abfd, newsect);
1082 }
1083 
1084 /*
1085 FUNCTION
1086 	bfd_make_section_anyway
1087 
1088 SYNOPSIS
1089 	asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1090 
1091 DESCRIPTION
1092    Create a new empty section called @var{name} and attach it to the end of
1093    the chain of sections for @var{abfd}.  Create a new section even if there
1094    is already a section with that name.
1095 
1096    Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1097    o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1098    o <<bfd_error_no_memory>> - If memory allocation fails.
1099 */
1100 
1101 sec_ptr
1102 bfd_make_section_anyway (bfd *abfd, const char *name)
1103 {
1104   return bfd_make_section_anyway_with_flags (abfd, name, 0);
1105 }
1106 
1107 /*
1108 FUNCTION
1109 	bfd_make_section_with_flags
1110 
1111 SYNOPSIS
1112 	asection *bfd_make_section_with_flags
1113 	  (bfd *, const char *name, flagword flags);
1114 
1115 DESCRIPTION
1116    Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1117    bfd_set_error ()) without changing the section chain if there is already a
1118    section named @var{name}.  Also set the attributes of the new section to
1119    the value @var{flags}.  If there is an error, return <<NULL>> and set
1120    <<bfd_error>>.
1121 */
1122 
1123 asection *
1124 bfd_make_section_with_flags (bfd *abfd, const char *name,
1125 			     flagword flags)
1126 {
1127   struct section_hash_entry *sh;
1128   asection *newsect;
1129 
1130   if (abfd->output_has_begun)
1131     {
1132       bfd_set_error (bfd_error_invalid_operation);
1133       return NULL;
1134     }
1135 
1136   if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1137       || strcmp (name, BFD_COM_SECTION_NAME) == 0
1138       || strcmp (name, BFD_UND_SECTION_NAME) == 0
1139       || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1140     return NULL;
1141 
1142   sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1143   if (sh == NULL)
1144     return NULL;
1145 
1146   newsect = &sh->section;
1147   if (newsect->name != NULL)
1148     {
1149       /* Section already exists.  */
1150       return NULL;
1151     }
1152 
1153   newsect->name = name;
1154   newsect->flags = flags;
1155   return bfd_section_init (abfd, newsect);
1156 }
1157 
1158 /*
1159 FUNCTION
1160 	bfd_make_section
1161 
1162 SYNOPSIS
1163 	asection *bfd_make_section (bfd *, const char *name);
1164 
1165 DESCRIPTION
1166    Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1167    bfd_set_error ()) without changing the section chain if there is already a
1168    section named @var{name}.  If there is an error, return <<NULL>> and set
1169    <<bfd_error>>.
1170 */
1171 
1172 asection *
1173 bfd_make_section (bfd *abfd, const char *name)
1174 {
1175   return bfd_make_section_with_flags (abfd, name, 0);
1176 }
1177 
1178 /*
1179 FUNCTION
1180 	bfd_set_section_flags
1181 
1182 SYNOPSIS
1183 	bfd_boolean bfd_set_section_flags
1184 	  (bfd *abfd, asection *sec, flagword flags);
1185 
1186 DESCRIPTION
1187 	Set the attributes of the section @var{sec} in the BFD
1188 	@var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1189 	<<FALSE>> on error. Possible error returns are:
1190 
1191 	o <<bfd_error_invalid_operation>> -
1192 	The section cannot have one or more of the attributes
1193 	requested. For example, a .bss section in <<a.out>> may not
1194 	have the <<SEC_HAS_CONTENTS>> field set.
1195 
1196 */
1197 
1198 bfd_boolean
1199 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1200 		       sec_ptr section,
1201 		       flagword flags)
1202 {
1203   section->flags = flags;
1204   return TRUE;
1205 }
1206 
1207 /*
1208 FUNCTION
1209 	bfd_map_over_sections
1210 
1211 SYNOPSIS
1212 	void bfd_map_over_sections
1213 	  (bfd *abfd,
1214 	   void (*func) (bfd *abfd, asection *sect, void *obj),
1215 	   void *obj);
1216 
1217 DESCRIPTION
1218 	Call the provided function @var{func} for each section
1219 	attached to the BFD @var{abfd}, passing @var{obj} as an
1220 	argument. The function will be called as if by
1221 
1222 |	func (abfd, the_section, obj);
1223 
1224 	This is the preferred method for iterating over sections; an
1225 	alternative would be to use a loop:
1226 
1227 |	   section *p;
1228 |	   for (p = abfd->sections; p != NULL; p = p->next)
1229 |	      func (abfd, p, ...)
1230 
1231 */
1232 
1233 void
1234 bfd_map_over_sections (bfd *abfd,
1235 		       void (*operation) (bfd *, asection *, void *),
1236 		       void *user_storage)
1237 {
1238   asection *sect;
1239   unsigned int i = 0;
1240 
1241   for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1242     (*operation) (abfd, sect, user_storage);
1243 
1244   if (i != abfd->section_count)	/* Debugging */
1245     abort ();
1246 }
1247 
1248 /*
1249 FUNCTION
1250 	bfd_sections_find_if
1251 
1252 SYNOPSIS
1253 	asection *bfd_sections_find_if
1254 	  (bfd *abfd,
1255 	   bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1256 	   void *obj);
1257 
1258 DESCRIPTION
1259 	Call the provided function @var{operation} for each section
1260 	attached to the BFD @var{abfd}, passing @var{obj} as an
1261 	argument. The function will be called as if by
1262 
1263 |	operation (abfd, the_section, obj);
1264 
1265 	It returns the first section for which @var{operation} returns true.
1266 
1267 */
1268 
1269 asection *
1270 bfd_sections_find_if (bfd *abfd,
1271 		      bfd_boolean (*operation) (bfd *, asection *, void *),
1272 		      void *user_storage)
1273 {
1274   asection *sect;
1275 
1276   for (sect = abfd->sections; sect != NULL; sect = sect->next)
1277     if ((*operation) (abfd, sect, user_storage))
1278       break;
1279 
1280   return sect;
1281 }
1282 
1283 /*
1284 FUNCTION
1285 	bfd_set_section_size
1286 
1287 SYNOPSIS
1288 	bfd_boolean bfd_set_section_size
1289 	  (bfd *abfd, asection *sec, bfd_size_type val);
1290 
1291 DESCRIPTION
1292 	Set @var{sec} to the size @var{val}. If the operation is
1293 	ok, then <<TRUE>> is returned, else <<FALSE>>.
1294 
1295 	Possible error returns:
1296 	o <<bfd_error_invalid_operation>> -
1297 	Writing has started to the BFD, so setting the size is invalid.
1298 
1299 */
1300 
1301 bfd_boolean
1302 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1303 {
1304   /* Once you've started writing to any section you cannot create or change
1305      the size of any others.  */
1306 
1307   if (abfd->output_has_begun)
1308     {
1309       bfd_set_error (bfd_error_invalid_operation);
1310       return FALSE;
1311     }
1312 
1313   ptr->size = val;
1314   return TRUE;
1315 }
1316 
1317 /*
1318 FUNCTION
1319 	bfd_set_section_contents
1320 
1321 SYNOPSIS
1322 	bfd_boolean bfd_set_section_contents
1323 	  (bfd *abfd, asection *section, const void *data,
1324 	   file_ptr offset, bfd_size_type count);
1325 
1326 DESCRIPTION
1327 	Sets the contents of the section @var{section} in BFD
1328 	@var{abfd} to the data starting in memory at @var{data}. The
1329 	data is written to the output section starting at offset
1330 	@var{offset} for @var{count} octets.
1331 
1332 	Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1333 	returns are:
1334 	o <<bfd_error_no_contents>> -
1335 	The output section does not have the <<SEC_HAS_CONTENTS>>
1336 	attribute, so nothing can be written to it.
1337 	o and some more too
1338 
1339 	This routine is front end to the back end function
1340 	<<_bfd_set_section_contents>>.
1341 
1342 */
1343 
1344 bfd_boolean
1345 bfd_set_section_contents (bfd *abfd,
1346 			  sec_ptr section,
1347 			  const void *location,
1348 			  file_ptr offset,
1349 			  bfd_size_type count)
1350 {
1351   bfd_size_type sz;
1352 
1353   if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1354     {
1355       bfd_set_error (bfd_error_no_contents);
1356       return FALSE;
1357     }
1358 
1359   sz = section->size;
1360   if ((bfd_size_type) offset > sz
1361       || count > sz
1362       || offset + count > sz
1363       || count != (size_t) count)
1364     {
1365       bfd_set_error (bfd_error_bad_value);
1366       return FALSE;
1367     }
1368 
1369   if (!bfd_write_p (abfd))
1370     {
1371       bfd_set_error (bfd_error_invalid_operation);
1372       return FALSE;
1373     }
1374 
1375   /* Record a copy of the data in memory if desired.  */
1376   if (section->contents
1377       && location != section->contents + offset)
1378     memcpy (section->contents + offset, location, (size_t) count);
1379 
1380   if (BFD_SEND (abfd, _bfd_set_section_contents,
1381 		(abfd, section, location, offset, count)))
1382     {
1383       abfd->output_has_begun = TRUE;
1384       return TRUE;
1385     }
1386 
1387   return FALSE;
1388 }
1389 
1390 /*
1391 FUNCTION
1392 	bfd_get_section_contents
1393 
1394 SYNOPSIS
1395 	bfd_boolean bfd_get_section_contents
1396 	  (bfd *abfd, asection *section, void *location, file_ptr offset,
1397 	   bfd_size_type count);
1398 
1399 DESCRIPTION
1400 	Read data from @var{section} in BFD @var{abfd}
1401 	into memory starting at @var{location}. The data is read at an
1402 	offset of @var{offset} from the start of the input section,
1403 	and is read for @var{count} bytes.
1404 
1405 	If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1406 	flag set are requested or if the section does not have the
1407 	<<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1408 	with zeroes. If no errors occur, <<TRUE>> is returned, else
1409 	<<FALSE>>.
1410 
1411 */
1412 bfd_boolean
1413 bfd_get_section_contents (bfd *abfd,
1414 			  sec_ptr section,
1415 			  void *location,
1416 			  file_ptr offset,
1417 			  bfd_size_type count)
1418 {
1419   bfd_size_type sz;
1420 
1421   if (section->flags & SEC_CONSTRUCTOR)
1422     {
1423       memset (location, 0, (size_t) count);
1424       return TRUE;
1425     }
1426 
1427   sz = section->rawsize ? section->rawsize : section->size;
1428   if ((bfd_size_type) offset > sz
1429       || count > sz
1430       || offset + count > sz
1431       || count != (size_t) count)
1432     {
1433       bfd_set_error (bfd_error_bad_value);
1434       return FALSE;
1435     }
1436 
1437   if (count == 0)
1438     /* Don't bother.  */
1439     return TRUE;
1440 
1441   if ((section->flags & SEC_HAS_CONTENTS) == 0)
1442     {
1443       memset (location, 0, (size_t) count);
1444       return TRUE;
1445     }
1446 
1447   if ((section->flags & SEC_IN_MEMORY) != 0)
1448     {
1449       if (section->contents == NULL)
1450 	{
1451 	  /* This can happen because of errors earlier on in the linking process.
1452 	     We do not want to seg-fault here, so clear the flag and return an
1453 	     error code.  */
1454 	  section->flags &= ~ SEC_IN_MEMORY;
1455 	  bfd_set_error (bfd_error_invalid_operation);
1456 	  return FALSE;
1457 	}
1458 
1459       memcpy (location, section->contents + offset, (size_t) count);
1460       return TRUE;
1461     }
1462 
1463   return BFD_SEND (abfd, _bfd_get_section_contents,
1464 		   (abfd, section, location, offset, count));
1465 }
1466 
1467 /*
1468 FUNCTION
1469 	bfd_malloc_and_get_section
1470 
1471 SYNOPSIS
1472 	bfd_boolean bfd_malloc_and_get_section
1473 	  (bfd *abfd, asection *section, bfd_byte **buf);
1474 
1475 DESCRIPTION
1476 	Read all data from @var{section} in BFD @var{abfd}
1477 	into a buffer, *@var{buf}, malloc'd by this function.
1478 */
1479 
1480 bfd_boolean
1481 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1482 {
1483   bfd_size_type sz = sec->rawsize ? sec->rawsize : sec->size;
1484   bfd_byte *p = NULL;
1485 
1486   *buf = p;
1487   if (sz == 0)
1488     return TRUE;
1489 
1490   p = (bfd_byte *)
1491       bfd_malloc (sec->rawsize > sec->size ? sec->rawsize : sec->size);
1492   if (p == NULL)
1493     return FALSE;
1494   *buf = p;
1495 
1496   return bfd_get_section_contents (abfd, sec, p, 0, sz);
1497 }
1498 /*
1499 FUNCTION
1500 	bfd_copy_private_section_data
1501 
1502 SYNOPSIS
1503 	bfd_boolean bfd_copy_private_section_data
1504 	  (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1505 
1506 DESCRIPTION
1507 	Copy private section information from @var{isec} in the BFD
1508 	@var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1509 	Return <<TRUE>> on success, <<FALSE>> on error.  Possible error
1510 	returns are:
1511 
1512 	o <<bfd_error_no_memory>> -
1513 	Not enough memory exists to create private data for @var{osec}.
1514 
1515 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1516 .     BFD_SEND (obfd, _bfd_copy_private_section_data, \
1517 .		(ibfd, isection, obfd, osection))
1518 */
1519 
1520 /*
1521 FUNCTION
1522 	bfd_generic_is_group_section
1523 
1524 SYNOPSIS
1525 	bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1526 
1527 DESCRIPTION
1528 	Returns TRUE if @var{sec} is a member of a group.
1529 */
1530 
1531 bfd_boolean
1532 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1533 			      const asection *sec ATTRIBUTE_UNUSED)
1534 {
1535   return FALSE;
1536 }
1537 
1538 /*
1539 FUNCTION
1540 	bfd_generic_discard_group
1541 
1542 SYNOPSIS
1543 	bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1544 
1545 DESCRIPTION
1546 	Remove all members of @var{group} from the output.
1547 */
1548 
1549 bfd_boolean
1550 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1551 			   asection *group ATTRIBUTE_UNUSED)
1552 {
1553   return TRUE;
1554 }
1555