xref: /dragonfly/contrib/gdb-7/bfd/syms.c (revision 36a3d1d6)
1 /* Generic symbol-table support for the BFD library.
2    Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3    2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
4    Free Software Foundation, Inc.
5    Written by Cygnus Support.
6 
7    This file is part of BFD, the Binary File Descriptor library.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; if not, write to the Free Software
21    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22    MA 02110-1301, USA.  */
23 
24 /*
25 SECTION
26 	Symbols
27 
28 	BFD tries to maintain as much symbol information as it can when
29 	it moves information from file to file. BFD passes information
30 	to applications though the <<asymbol>> structure. When the
31 	application requests the symbol table, BFD reads the table in
32 	the native form and translates parts of it into the internal
33 	format. To maintain more than the information passed to
34 	applications, some targets keep some information ``behind the
35 	scenes'' in a structure only the particular back end knows
36 	about. For example, the coff back end keeps the original
37 	symbol table structure as well as the canonical structure when
38 	a BFD is read in. On output, the coff back end can reconstruct
39 	the output symbol table so that no information is lost, even
40 	information unique to coff which BFD doesn't know or
41 	understand. If a coff symbol table were read, but were written
42 	through an a.out back end, all the coff specific information
43 	would be lost. The symbol table of a BFD
44 	is not necessarily read in until a canonicalize request is
45 	made. Then the BFD back end fills in a table provided by the
46 	application with pointers to the canonical information.  To
47 	output symbols, the application provides BFD with a table of
48 	pointers to pointers to <<asymbol>>s. This allows applications
49 	like the linker to output a symbol as it was read, since the ``behind
50 	the scenes'' information will be still available.
51 @menu
52 @* Reading Symbols::
53 @* Writing Symbols::
54 @* Mini Symbols::
55 @* typedef asymbol::
56 @* symbol handling functions::
57 @end menu
58 
59 INODE
60 Reading Symbols, Writing Symbols, Symbols, Symbols
61 SUBSECTION
62 	Reading symbols
63 
64 	There are two stages to reading a symbol table from a BFD:
65 	allocating storage, and the actual reading process. This is an
66 	excerpt from an application which reads the symbol table:
67 
68 |	  long storage_needed;
69 |	  asymbol **symbol_table;
70 |	  long number_of_symbols;
71 |	  long i;
72 |
73 |	  storage_needed = bfd_get_symtab_upper_bound (abfd);
74 |
75 |         if (storage_needed < 0)
76 |           FAIL
77 |
78 |	  if (storage_needed == 0)
79 |	    return;
80 |
81 |	  symbol_table = xmalloc (storage_needed);
82 |	    ...
83 |	  number_of_symbols =
84 |	     bfd_canonicalize_symtab (abfd, symbol_table);
85 |
86 |         if (number_of_symbols < 0)
87 |           FAIL
88 |
89 |	  for (i = 0; i < number_of_symbols; i++)
90 |	    process_symbol (symbol_table[i]);
91 
92 	All storage for the symbols themselves is in an objalloc
93 	connected to the BFD; it is freed when the BFD is closed.
94 
95 INODE
96 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
97 SUBSECTION
98 	Writing symbols
99 
100 	Writing of a symbol table is automatic when a BFD open for
101 	writing is closed. The application attaches a vector of
102 	pointers to pointers to symbols to the BFD being written, and
103 	fills in the symbol count. The close and cleanup code reads
104 	through the table provided and performs all the necessary
105 	operations. The BFD output code must always be provided with an
106 	``owned'' symbol: one which has come from another BFD, or one
107 	which has been created using <<bfd_make_empty_symbol>>.  Here is an
108 	example showing the creation of a symbol table with only one element:
109 
110 |	#include "bfd.h"
111 |	int main (void)
112 |	{
113 |	  bfd *abfd;
114 |	  asymbol *ptrs[2];
115 |	  asymbol *new;
116 |
117 |	  abfd = bfd_openw ("foo","a.out-sunos-big");
118 |	  bfd_set_format (abfd, bfd_object);
119 |	  new = bfd_make_empty_symbol (abfd);
120 |	  new->name = "dummy_symbol";
121 |	  new->section = bfd_make_section_old_way (abfd, ".text");
122 |	  new->flags = BSF_GLOBAL;
123 |	  new->value = 0x12345;
124 |
125 |	  ptrs[0] = new;
126 |	  ptrs[1] = 0;
127 |
128 |	  bfd_set_symtab (abfd, ptrs, 1);
129 |	  bfd_close (abfd);
130 |	  return 0;
131 |	}
132 |
133 |	./makesym
134 |	nm foo
135 |	00012345 A dummy_symbol
136 
137 	Many formats cannot represent arbitrary symbol information; for
138  	instance, the <<a.out>> object format does not allow an
139 	arbitrary number of sections. A symbol pointing to a section
140 	which is not one  of <<.text>>, <<.data>> or <<.bss>> cannot
141 	be described.
142 
143 INODE
144 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
145 SUBSECTION
146 	Mini Symbols
147 
148 	Mini symbols provide read-only access to the symbol table.
149 	They use less memory space, but require more time to access.
150 	They can be useful for tools like nm or objdump, which may
151 	have to handle symbol tables of extremely large executables.
152 
153 	The <<bfd_read_minisymbols>> function will read the symbols
154 	into memory in an internal form.  It will return a <<void *>>
155 	pointer to a block of memory, a symbol count, and the size of
156 	each symbol.  The pointer is allocated using <<malloc>>, and
157 	should be freed by the caller when it is no longer needed.
158 
159 	The function <<bfd_minisymbol_to_symbol>> will take a pointer
160 	to a minisymbol, and a pointer to a structure returned by
161 	<<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
162 	The return value may or may not be the same as the value from
163 	<<bfd_make_empty_symbol>> which was passed in.
164 
165 */
166 
167 /*
168 DOCDD
169 INODE
170 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
171 
172 */
173 /*
174 SUBSECTION
175 	typedef asymbol
176 
177 	An <<asymbol>> has the form:
178 
179 */
180 
181 /*
182 CODE_FRAGMENT
183 
184 .
185 .typedef struct bfd_symbol
186 .{
187 .  {* A pointer to the BFD which owns the symbol. This information
188 .     is necessary so that a back end can work out what additional
189 .     information (invisible to the application writer) is carried
190 .     with the symbol.
191 .
192 .     This field is *almost* redundant, since you can use section->owner
193 .     instead, except that some symbols point to the global sections
194 .     bfd_{abs,com,und}_section.  This could be fixed by making
195 .     these globals be per-bfd (or per-target-flavor).  FIXME.  *}
196 .  struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field.  *}
197 .
198 .  {* The text of the symbol. The name is left alone, and not copied; the
199 .     application may not alter it.  *}
200 .  const char *name;
201 .
202 .  {* The value of the symbol.  This really should be a union of a
203 .     numeric value with a pointer, since some flags indicate that
204 .     a pointer to another symbol is stored here.  *}
205 .  symvalue value;
206 .
207 .  {* Attributes of a symbol.  *}
208 .#define BSF_NO_FLAGS    	0x00
209 .
210 .  {* The symbol has local scope; <<static>> in <<C>>. The value
211 .     is the offset into the section of the data.  *}
212 .#define BSF_LOCAL		(1 << 0)
213 .
214 .  {* The symbol has global scope; initialized data in <<C>>. The
215 .     value is the offset into the section of the data.  *}
216 .#define BSF_GLOBAL		(1 << 1)
217 .
218 .  {* The symbol has global scope and is exported. The value is
219 .     the offset into the section of the data.  *}
220 .#define BSF_EXPORT	BSF_GLOBAL {* No real difference.  *}
221 .
222 .  {* A normal C symbol would be one of:
223 .     <<BSF_LOCAL>>, <<BSF_COMMON>>,  <<BSF_UNDEFINED>> or
224 .     <<BSF_GLOBAL>>.  *}
225 .
226 .  {* The symbol is a debugging record. The value has an arbitrary
227 .     meaning, unless BSF_DEBUGGING_RELOC is also set.  *}
228 .#define BSF_DEBUGGING		(1 << 2)
229 .
230 .  {* The symbol denotes a function entry point.  Used in ELF,
231 .     perhaps others someday.  *}
232 .#define BSF_FUNCTION		(1 << 3)
233 .
234 .  {* Used by the linker.  *}
235 .#define BSF_KEEP		(1 << 5)
236 .#define BSF_KEEP_G		(1 << 6)
237 .
238 .  {* A weak global symbol, overridable without warnings by
239 .     a regular global symbol of the same name.  *}
240 .#define BSF_WEAK		(1 << 7)
241 .
242 .  {* This symbol was created to point to a section, e.g. ELF's
243 .     STT_SECTION symbols.  *}
244 .#define BSF_SECTION_SYM	(1 << 8)
245 .
246 .  {* The symbol used to be a common symbol, but now it is
247 .     allocated.  *}
248 .#define BSF_OLD_COMMON		(1 << 9)
249 .
250 .  {* In some files the type of a symbol sometimes alters its
251 .     location in an output file - ie in coff a <<ISFCN>> symbol
252 .     which is also <<C_EXT>> symbol appears where it was
253 .     declared and not at the end of a section.  This bit is set
254 .     by the target BFD part to convey this information.  *}
255 .#define BSF_NOT_AT_END		(1 << 10)
256 .
257 .  {* Signal that the symbol is the label of constructor section.  *}
258 .#define BSF_CONSTRUCTOR	(1 << 11)
259 .
260 .  {* Signal that the symbol is a warning symbol.  The name is a
261 .     warning.  The name of the next symbol is the one to warn about;
262 .     if a reference is made to a symbol with the same name as the next
263 .     symbol, a warning is issued by the linker.  *}
264 .#define BSF_WARNING		(1 << 12)
265 .
266 .  {* Signal that the symbol is indirect.  This symbol is an indirect
267 .     pointer to the symbol with the same name as the next symbol.  *}
268 .#define BSF_INDIRECT		(1 << 13)
269 .
270 .  {* BSF_FILE marks symbols that contain a file name.  This is used
271 .     for ELF STT_FILE symbols.  *}
272 .#define BSF_FILE		(1 << 14)
273 .
274 .  {* Symbol is from dynamic linking information.  *}
275 .#define BSF_DYNAMIC		(1 << 15)
276 .
277 .  {* The symbol denotes a data object.  Used in ELF, and perhaps
278 .     others someday.  *}
279 .#define BSF_OBJECT		(1 << 16)
280 .
281 .  {* This symbol is a debugging symbol.  The value is the offset
282 .     into the section of the data.  BSF_DEBUGGING should be set
283 .     as well.  *}
284 .#define BSF_DEBUGGING_RELOC	(1 << 17)
285 .
286 .  {* This symbol is thread local.  Used in ELF.  *}
287 .#define BSF_THREAD_LOCAL	(1 << 18)
288 .
289 .  {* This symbol represents a complex relocation expression,
290 .     with the expression tree serialized in the symbol name.  *}
291 .#define BSF_RELC		(1 << 19)
292 .
293 .  {* This symbol represents a signed complex relocation expression,
294 .     with the expression tree serialized in the symbol name.  *}
295 .#define BSF_SRELC		(1 << 20)
296 .
297 .  {* This symbol was created by bfd_get_synthetic_symtab.  *}
298 .#define BSF_SYNTHETIC		(1 << 21)
299 .
300 .  {* This symbol is an indirect code object.  Unrelated to BSF_INDIRECT.
301 .     The dynamic linker will compute the value of this symbol by
302 .     calling the function that it points to.  BSF_FUNCTION must
303 .     also be also set.  *}
304 .#define BSF_GNU_INDIRECT_FUNCTION (1 << 22)
305 .  {* This symbol is a globally unique data object.  The dynamic linker
306 .     will make sure that in the entire process there is just one symbol
307 .     with this name and type in use.  BSF_OBJECT must also be set.  *}
308 .#define BSF_GNU_UNIQUE		(1 << 23)
309 .
310 .  flagword flags;
311 .
312 .  {* A pointer to the section to which this symbol is
313 .     relative.  This will always be non NULL, there are special
314 .     sections for undefined and absolute symbols.  *}
315 .  struct bfd_section *section;
316 .
317 .  {* Back end special data.  *}
318 .  union
319 .    {
320 .      void *p;
321 .      bfd_vma i;
322 .    }
323 .  udata;
324 .}
325 .asymbol;
326 .
327 */
328 
329 #include "sysdep.h"
330 #include "bfd.h"
331 #include "libbfd.h"
332 #include "safe-ctype.h"
333 #include "bfdlink.h"
334 #include "aout/stab_gnu.h"
335 
336 /*
337 DOCDD
338 INODE
339 symbol handling functions,  , typedef asymbol, Symbols
340 SUBSECTION
341 	Symbol handling functions
342 */
343 
344 /*
345 FUNCTION
346 	bfd_get_symtab_upper_bound
347 
348 DESCRIPTION
349 	Return the number of bytes required to store a vector of pointers
350 	to <<asymbols>> for all the symbols in the BFD @var{abfd},
351 	including a terminal NULL pointer. If there are no symbols in
352 	the BFD, then return 0.  If an error occurs, return -1.
353 
354 .#define bfd_get_symtab_upper_bound(abfd) \
355 .     BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
356 .
357 */
358 
359 /*
360 FUNCTION
361 	bfd_is_local_label
362 
363 SYNOPSIS
364         bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
365 
366 DESCRIPTION
367 	Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
368 	a compiler generated local label, else return FALSE.
369 */
370 
371 bfd_boolean
372 bfd_is_local_label (bfd *abfd, asymbol *sym)
373 {
374   /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
375      starts with '.' is local.  This would accidentally catch section names
376      if we didn't reject them here.  */
377   if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_FILE | BSF_SECTION_SYM)) != 0)
378     return FALSE;
379   if (sym->name == NULL)
380     return FALSE;
381   return bfd_is_local_label_name (abfd, sym->name);
382 }
383 
384 /*
385 FUNCTION
386 	bfd_is_local_label_name
387 
388 SYNOPSIS
389         bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
390 
391 DESCRIPTION
392 	Return TRUE if a symbol with the name @var{name} in the BFD
393 	@var{abfd} is a compiler generated local label, else return
394 	FALSE.  This just checks whether the name has the form of a
395 	local label.
396 
397 .#define bfd_is_local_label_name(abfd, name) \
398 .  BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
399 .
400 */
401 
402 /*
403 FUNCTION
404 	bfd_is_target_special_symbol
405 
406 SYNOPSIS
407         bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
408 
409 DESCRIPTION
410 	Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something
411 	special to the particular target represented by the BFD.  Such symbols
412 	should normally not be mentioned to the user.
413 
414 .#define bfd_is_target_special_symbol(abfd, sym) \
415 .  BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
416 .
417 */
418 
419 /*
420 FUNCTION
421 	bfd_canonicalize_symtab
422 
423 DESCRIPTION
424 	Read the symbols from the BFD @var{abfd}, and fills in
425 	the vector @var{location} with pointers to the symbols and
426 	a trailing NULL.
427 	Return the actual number of symbol pointers, not
428 	including the NULL.
429 
430 .#define bfd_canonicalize_symtab(abfd, location) \
431 .  BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
432 .
433 */
434 
435 /*
436 FUNCTION
437 	bfd_set_symtab
438 
439 SYNOPSIS
440 	bfd_boolean bfd_set_symtab
441 	  (bfd *abfd, asymbol **location, unsigned int count);
442 
443 DESCRIPTION
444 	Arrange that when the output BFD @var{abfd} is closed,
445 	the table @var{location} of @var{count} pointers to symbols
446 	will be written.
447 */
448 
449 bfd_boolean
450 bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int symcount)
451 {
452   if (abfd->format != bfd_object || bfd_read_p (abfd))
453     {
454       bfd_set_error (bfd_error_invalid_operation);
455       return FALSE;
456     }
457 
458   bfd_get_outsymbols (abfd) = location;
459   bfd_get_symcount (abfd) = symcount;
460   return TRUE;
461 }
462 
463 /*
464 FUNCTION
465 	bfd_print_symbol_vandf
466 
467 SYNOPSIS
468 	void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
469 
470 DESCRIPTION
471 	Print the value and flags of the @var{symbol} supplied to the
472 	stream @var{file}.
473 */
474 void
475 bfd_print_symbol_vandf (bfd *abfd, void *arg, asymbol *symbol)
476 {
477   FILE *file = (FILE *) arg;
478 
479   flagword type = symbol->flags;
480 
481   if (symbol->section != NULL)
482     bfd_fprintf_vma (abfd, file, symbol->value + symbol->section->vma);
483   else
484     bfd_fprintf_vma (abfd, file, symbol->value);
485 
486   /* This presumes that a symbol can not be both BSF_DEBUGGING and
487      BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
488      BSF_OBJECT.  */
489   fprintf (file, " %c%c%c%c%c%c%c",
490 	   ((type & BSF_LOCAL)
491 	    ? (type & BSF_GLOBAL) ? '!' : 'l'
492 	    : (type & BSF_GLOBAL) ? 'g'
493 	    : (type & BSF_GNU_UNIQUE) ? 'u' : ' '),
494 	   (type & BSF_WEAK) ? 'w' : ' ',
495 	   (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
496 	   (type & BSF_WARNING) ? 'W' : ' ',
497 	   (type & BSF_INDIRECT) ? 'I' : (type & BSF_GNU_INDIRECT_FUNCTION) ? 'i' : ' ',
498 	   (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
499 	   ((type & BSF_FUNCTION)
500 	    ? 'F'
501 	    : ((type & BSF_FILE)
502 	       ? 'f'
503 	       : ((type & BSF_OBJECT) ? 'O' : ' '))));
504 }
505 
506 /*
507 FUNCTION
508 	bfd_make_empty_symbol
509 
510 DESCRIPTION
511 	Create a new <<asymbol>> structure for the BFD @var{abfd}
512 	and return a pointer to it.
513 
514 	This routine is necessary because each back end has private
515 	information surrounding the <<asymbol>>. Building your own
516 	<<asymbol>> and pointing to it will not create the private
517 	information, and will cause problems later on.
518 
519 .#define bfd_make_empty_symbol(abfd) \
520 .  BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
521 .
522 */
523 
524 /*
525 FUNCTION
526 	_bfd_generic_make_empty_symbol
527 
528 SYNOPSIS
529 	asymbol *_bfd_generic_make_empty_symbol (bfd *);
530 
531 DESCRIPTION
532 	Create a new <<asymbol>> structure for the BFD @var{abfd}
533 	and return a pointer to it.  Used by core file routines,
534 	binary back-end and anywhere else where no private info
535 	is needed.
536 */
537 
538 asymbol *
539 _bfd_generic_make_empty_symbol (bfd *abfd)
540 {
541   bfd_size_type amt = sizeof (asymbol);
542   asymbol *new_symbol = (asymbol *) bfd_zalloc (abfd, amt);
543   if (new_symbol)
544     new_symbol->the_bfd = abfd;
545   return new_symbol;
546 }
547 
548 /*
549 FUNCTION
550 	bfd_make_debug_symbol
551 
552 DESCRIPTION
553 	Create a new <<asymbol>> structure for the BFD @var{abfd},
554 	to be used as a debugging symbol.  Further details of its use have
555 	yet to be worked out.
556 
557 .#define bfd_make_debug_symbol(abfd,ptr,size) \
558 .  BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
559 .
560 */
561 
562 struct section_to_type
563 {
564   const char *section;
565   char type;
566 };
567 
568 /* Map section names to POSIX/BSD single-character symbol types.
569    This table is probably incomplete.  It is sorted for convenience of
570    adding entries.  Since it is so short, a linear search is used.  */
571 static const struct section_to_type stt[] =
572 {
573   {".bss", 'b'},
574   {"code", 't'},		/* MRI .text */
575   {".data", 'd'},
576   {"*DEBUG*", 'N'},
577   {".debug", 'N'},              /* MSVC's .debug (non-standard debug syms) */
578   {".drectve", 'i'},            /* MSVC's .drective section */
579   {".edata", 'e'},              /* MSVC's .edata (export) section */
580   {".fini", 't'},		/* ELF fini section */
581   {".idata", 'i'},              /* MSVC's .idata (import) section */
582   {".init", 't'},		/* ELF init section */
583   {".pdata", 'p'},              /* MSVC's .pdata (stack unwind) section */
584   {".rdata", 'r'},		/* Read only data.  */
585   {".rodata", 'r'},		/* Read only data.  */
586   {".sbss", 's'},		/* Small BSS (uninitialized data).  */
587   {".scommon", 'c'},		/* Small common.  */
588   {".sdata", 'g'},		/* Small initialized data.  */
589   {".text", 't'},
590   {"vars", 'd'},		/* MRI .data */
591   {"zerovars", 'b'},		/* MRI .bss */
592   {0, 0}
593 };
594 
595 /* Return the single-character symbol type corresponding to
596    section S, or '?' for an unknown COFF section.
597 
598    Check for any leading string which matches, so .text5 returns
599    't' as well as .text */
600 
601 static char
602 coff_section_type (const char *s)
603 {
604   const struct section_to_type *t;
605 
606   for (t = &stt[0]; t->section; t++)
607     if (!strncmp (s, t->section, strlen (t->section)))
608       return t->type;
609 
610   return '?';
611 }
612 
613 /* Return the single-character symbol type corresponding to section
614    SECTION, or '?' for an unknown section.  This uses section flags to
615    identify sections.
616 
617    FIXME These types are unhandled: c, i, e, p.  If we handled these also,
618    we could perhaps obsolete coff_section_type.  */
619 
620 static char
621 decode_section_type (const struct bfd_section *section)
622 {
623   if (section->flags & SEC_CODE)
624     return 't';
625   if (section->flags & SEC_DATA)
626     {
627       if (section->flags & SEC_READONLY)
628 	return 'r';
629       else if (section->flags & SEC_SMALL_DATA)
630 	return 'g';
631       else
632 	return 'd';
633     }
634   if ((section->flags & SEC_HAS_CONTENTS) == 0)
635     {
636       if (section->flags & SEC_SMALL_DATA)
637 	return 's';
638       else
639 	return 'b';
640     }
641   if (section->flags & SEC_DEBUGGING)
642     return 'N';
643   if ((section->flags & SEC_HAS_CONTENTS) && (section->flags & SEC_READONLY))
644     return 'n';
645 
646   return '?';
647 }
648 
649 /*
650 FUNCTION
651 	bfd_decode_symclass
652 
653 DESCRIPTION
654 	Return a character corresponding to the symbol
655 	class of @var{symbol}, or '?' for an unknown class.
656 
657 SYNOPSIS
658 	int bfd_decode_symclass (asymbol *symbol);
659 */
660 int
661 bfd_decode_symclass (asymbol *symbol)
662 {
663   char c;
664 
665   if (symbol->section && bfd_is_com_section (symbol->section))
666     return 'C';
667   if (bfd_is_und_section (symbol->section))
668     {
669       if (symbol->flags & BSF_WEAK)
670 	{
671 	  /* If weak, determine if it's specifically an object
672 	     or non-object weak.  */
673 	  if (symbol->flags & BSF_OBJECT)
674 	    return 'v';
675 	  else
676 	    return 'w';
677 	}
678       else
679 	return 'U';
680     }
681   if (bfd_is_ind_section (symbol->section))
682     return 'I';
683   if (symbol->flags & BSF_GNU_INDIRECT_FUNCTION)
684     return 'i';
685   if (symbol->flags & BSF_WEAK)
686     {
687       /* If weak, determine if it's specifically an object
688 	 or non-object weak.  */
689       if (symbol->flags & BSF_OBJECT)
690 	return 'V';
691       else
692 	return 'W';
693     }
694   if (symbol->flags & BSF_GNU_UNIQUE)
695     return 'u';
696   if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
697     return '?';
698 
699   if (bfd_is_abs_section (symbol->section))
700     c = 'a';
701   else if (symbol->section)
702     {
703       c = coff_section_type (symbol->section->name);
704       if (c == '?')
705 	c = decode_section_type (symbol->section);
706     }
707   else
708     return '?';
709   if (symbol->flags & BSF_GLOBAL)
710     c = TOUPPER (c);
711   return c;
712 
713   /* We don't have to handle these cases just yet, but we will soon:
714      N_SETV: 'v';
715      N_SETA: 'l';
716      N_SETT: 'x';
717      N_SETD: 'z';
718      N_SETB: 's';
719      N_INDR: 'i';
720      */
721 }
722 
723 /*
724 FUNCTION
725 	bfd_is_undefined_symclass
726 
727 DESCRIPTION
728 	Returns non-zero if the class symbol returned by
729 	bfd_decode_symclass represents an undefined symbol.
730 	Returns zero otherwise.
731 
732 SYNOPSIS
733 	bfd_boolean bfd_is_undefined_symclass (int symclass);
734 */
735 
736 bfd_boolean
737 bfd_is_undefined_symclass (int symclass)
738 {
739   return symclass == 'U' || symclass == 'w' || symclass == 'v';
740 }
741 
742 /*
743 FUNCTION
744 	bfd_symbol_info
745 
746 DESCRIPTION
747 	Fill in the basic info about symbol that nm needs.
748 	Additional info may be added by the back-ends after
749 	calling this function.
750 
751 SYNOPSIS
752 	void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
753 */
754 
755 void
756 bfd_symbol_info (asymbol *symbol, symbol_info *ret)
757 {
758   ret->type = bfd_decode_symclass (symbol);
759 
760   if (bfd_is_undefined_symclass (ret->type))
761     ret->value = 0;
762   else
763     ret->value = symbol->value + symbol->section->vma;
764 
765   ret->name = symbol->name;
766 }
767 
768 /*
769 FUNCTION
770 	bfd_copy_private_symbol_data
771 
772 SYNOPSIS
773 	bfd_boolean bfd_copy_private_symbol_data
774 	  (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
775 
776 DESCRIPTION
777 	Copy private symbol information from @var{isym} in the BFD
778 	@var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
779 	Return <<TRUE>> on success, <<FALSE>> on error.  Possible error
780 	returns are:
781 
782 	o <<bfd_error_no_memory>> -
783 	Not enough memory exists to create private data for @var{osec}.
784 
785 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
786 .  BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
787 .            (ibfd, isymbol, obfd, osymbol))
788 .
789 */
790 
791 /* The generic version of the function which returns mini symbols.
792    This is used when the backend does not provide a more efficient
793    version.  It just uses BFD asymbol structures as mini symbols.  */
794 
795 long
796 _bfd_generic_read_minisymbols (bfd *abfd,
797 			       bfd_boolean dynamic,
798 			       void **minisymsp,
799 			       unsigned int *sizep)
800 {
801   long storage;
802   asymbol **syms = NULL;
803   long symcount;
804 
805   if (dynamic)
806     storage = bfd_get_dynamic_symtab_upper_bound (abfd);
807   else
808     storage = bfd_get_symtab_upper_bound (abfd);
809   if (storage < 0)
810     goto error_return;
811   if (storage == 0)
812     return 0;
813 
814   syms = (asymbol **) bfd_malloc (storage);
815   if (syms == NULL)
816     goto error_return;
817 
818   if (dynamic)
819     symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
820   else
821     symcount = bfd_canonicalize_symtab (abfd, syms);
822   if (symcount < 0)
823     goto error_return;
824 
825   *minisymsp = syms;
826   *sizep = sizeof (asymbol *);
827   return symcount;
828 
829  error_return:
830   bfd_set_error (bfd_error_no_symbols);
831   if (syms != NULL)
832     free (syms);
833   return -1;
834 }
835 
836 /* The generic version of the function which converts a minisymbol to
837    an asymbol.  We don't worry about the sym argument we are passed;
838    we just return the asymbol the minisymbol points to.  */
839 
840 asymbol *
841 _bfd_generic_minisymbol_to_symbol (bfd *abfd ATTRIBUTE_UNUSED,
842 				   bfd_boolean dynamic ATTRIBUTE_UNUSED,
843 				   const void *minisym,
844 				   asymbol *sym ATTRIBUTE_UNUSED)
845 {
846   return *(asymbol **) minisym;
847 }
848 
849 /* Look through stabs debugging information in .stab and .stabstr
850    sections to find the source file and line closest to a desired
851    location.  This is used by COFF and ELF targets.  It sets *pfound
852    to TRUE if it finds some information.  The *pinfo field is used to
853    pass cached information in and out of this routine; this first time
854    the routine is called for a BFD, *pinfo should be NULL.  The value
855    placed in *pinfo should be saved with the BFD, and passed back each
856    time this function is called.  */
857 
858 /* We use a cache by default.  */
859 
860 #define ENABLE_CACHING
861 
862 /* We keep an array of indexentry structures to record where in the
863    stabs section we should look to find line number information for a
864    particular address.  */
865 
866 struct indexentry
867 {
868   bfd_vma val;
869   bfd_byte *stab;
870   bfd_byte *str;
871   char *directory_name;
872   char *file_name;
873   char *function_name;
874 };
875 
876 /* Compare two indexentry structures.  This is called via qsort.  */
877 
878 static int
879 cmpindexentry (const void *a, const void *b)
880 {
881   const struct indexentry *contestantA = (const struct indexentry *) a;
882   const struct indexentry *contestantB = (const struct indexentry *) b;
883 
884   if (contestantA->val < contestantB->val)
885     return -1;
886   else if (contestantA->val > contestantB->val)
887     return 1;
888   else
889     return 0;
890 }
891 
892 /* A pointer to this structure is stored in *pinfo.  */
893 
894 struct stab_find_info
895 {
896   /* The .stab section.  */
897   asection *stabsec;
898   /* The .stabstr section.  */
899   asection *strsec;
900   /* The contents of the .stab section.  */
901   bfd_byte *stabs;
902   /* The contents of the .stabstr section.  */
903   bfd_byte *strs;
904 
905   /* A table that indexes stabs by memory address.  */
906   struct indexentry *indextable;
907   /* The number of entries in indextable.  */
908   int indextablesize;
909 
910 #ifdef ENABLE_CACHING
911   /* Cached values to restart quickly.  */
912   struct indexentry *cached_indexentry;
913   bfd_vma cached_offset;
914   bfd_byte *cached_stab;
915   char *cached_file_name;
916 #endif
917 
918   /* Saved ptr to malloc'ed filename.  */
919   char *filename;
920 };
921 
922 bfd_boolean
923 _bfd_stab_section_find_nearest_line (bfd *abfd,
924 				     asymbol **symbols,
925 				     asection *section,
926 				     bfd_vma offset,
927 				     bfd_boolean *pfound,
928 				     const char **pfilename,
929 				     const char **pfnname,
930 				     unsigned int *pline,
931 				     void **pinfo)
932 {
933   struct stab_find_info *info;
934   bfd_size_type stabsize, strsize;
935   bfd_byte *stab, *str;
936   bfd_byte *last_stab = NULL;
937   bfd_size_type stroff;
938   struct indexentry *indexentry;
939   char *file_name;
940   char *directory_name;
941   int saw_fun;
942   bfd_boolean saw_line, saw_func;
943 
944   *pfound = FALSE;
945   *pfilename = bfd_get_filename (abfd);
946   *pfnname = NULL;
947   *pline = 0;
948 
949   /* Stabs entries use a 12 byte format:
950        4 byte string table index
951        1 byte stab type
952        1 byte stab other field
953        2 byte stab desc field
954        4 byte stab value
955      FIXME: This will have to change for a 64 bit object format.
956 
957      The stabs symbols are divided into compilation units.  For the
958      first entry in each unit, the type of 0, the value is the length
959      of the string table for this unit, and the desc field is the
960      number of stabs symbols for this unit.  */
961 
962 #define STRDXOFF (0)
963 #define TYPEOFF (4)
964 #define OTHEROFF (5)
965 #define DESCOFF (6)
966 #define VALOFF (8)
967 #define STABSIZE (12)
968 
969   info = (struct stab_find_info *) *pinfo;
970   if (info != NULL)
971     {
972       if (info->stabsec == NULL || info->strsec == NULL)
973 	{
974 	  /* No stabs debugging information.  */
975 	  return TRUE;
976 	}
977 
978       stabsize = (info->stabsec->rawsize
979 		  ? info->stabsec->rawsize
980 		  : info->stabsec->size);
981       strsize = (info->strsec->rawsize
982 		 ? info->strsec->rawsize
983 		 : info->strsec->size);
984     }
985   else
986     {
987       long reloc_size, reloc_count;
988       arelent **reloc_vector;
989       int i;
990       char *name;
991       char *function_name;
992       bfd_size_type amt = sizeof *info;
993 
994       info = (struct stab_find_info *) bfd_zalloc (abfd, amt);
995       if (info == NULL)
996 	return FALSE;
997 
998       /* FIXME: When using the linker --split-by-file or
999 	 --split-by-reloc options, it is possible for the .stab and
1000 	 .stabstr sections to be split.  We should handle that.  */
1001 
1002       info->stabsec = bfd_get_section_by_name (abfd, ".stab");
1003       info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
1004 
1005       if (info->stabsec == NULL || info->strsec == NULL)
1006 	{
1007 	  /* Try SOM section names.  */
1008 	  info->stabsec = bfd_get_section_by_name (abfd, "$GDB_SYMBOLS$");
1009 	  info->strsec  = bfd_get_section_by_name (abfd, "$GDB_STRINGS$");
1010 
1011 	  if (info->stabsec == NULL || info->strsec == NULL)
1012 	    {
1013 	      /* No stabs debugging information.  Set *pinfo so that we
1014 		 can return quickly in the info != NULL case above.  */
1015 	      *pinfo = info;
1016 	      return TRUE;
1017 	    }
1018 	}
1019 
1020       stabsize = (info->stabsec->rawsize
1021 		  ? info->stabsec->rawsize
1022 		  : info->stabsec->size);
1023       strsize = (info->strsec->rawsize
1024 		 ? info->strsec->rawsize
1025 		 : info->strsec->size);
1026 
1027       info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
1028       info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
1029       if (info->stabs == NULL || info->strs == NULL)
1030 	return FALSE;
1031 
1032       if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
1033 				      0, stabsize)
1034 	  || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
1035 					 0, strsize))
1036 	return FALSE;
1037 
1038       /* If this is a relocatable object file, we have to relocate
1039 	 the entries in .stab.  This should always be simple 32 bit
1040 	 relocations against symbols defined in this object file, so
1041 	 this should be no big deal.  */
1042       reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
1043       if (reloc_size < 0)
1044 	return FALSE;
1045       reloc_vector = (arelent **) bfd_malloc (reloc_size);
1046       if (reloc_vector == NULL && reloc_size != 0)
1047 	return FALSE;
1048       reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
1049 					    symbols);
1050       if (reloc_count < 0)
1051 	{
1052 	  if (reloc_vector != NULL)
1053 	    free (reloc_vector);
1054 	  return FALSE;
1055 	}
1056       if (reloc_count > 0)
1057 	{
1058 	  arelent **pr;
1059 
1060 	  for (pr = reloc_vector; *pr != NULL; pr++)
1061 	    {
1062 	      arelent *r;
1063 	      unsigned long val;
1064 	      asymbol *sym;
1065 
1066 	      r = *pr;
1067 	      /* Ignore R_*_NONE relocs.  */
1068 	      if (r->howto->dst_mask == 0)
1069 		continue;
1070 
1071 	      if (r->howto->rightshift != 0
1072 		  || r->howto->size != 2
1073 		  || r->howto->bitsize != 32
1074 		  || r->howto->pc_relative
1075 		  || r->howto->bitpos != 0
1076 		  || r->howto->dst_mask != 0xffffffff)
1077 		{
1078 		  (*_bfd_error_handler)
1079 		    (_("Unsupported .stab relocation"));
1080 		  bfd_set_error (bfd_error_invalid_operation);
1081 		  if (reloc_vector != NULL)
1082 		    free (reloc_vector);
1083 		  return FALSE;
1084 		}
1085 
1086 	      val = bfd_get_32 (abfd, info->stabs + r->address);
1087 	      val &= r->howto->src_mask;
1088 	      sym = *r->sym_ptr_ptr;
1089 	      val += sym->value + sym->section->vma + r->addend;
1090 	      bfd_put_32 (abfd, (bfd_vma) val, info->stabs + r->address);
1091 	    }
1092 	}
1093 
1094       if (reloc_vector != NULL)
1095 	free (reloc_vector);
1096 
1097       /* First time through this function, build a table matching
1098 	 function VM addresses to stabs, then sort based on starting
1099 	 VM address.  Do this in two passes: once to count how many
1100 	 table entries we'll need, and a second to actually build the
1101 	 table.  */
1102 
1103       info->indextablesize = 0;
1104       saw_fun = 1;
1105       for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1106 	{
1107 	  if (stab[TYPEOFF] == (bfd_byte) N_SO)
1108 	    {
1109 	      /* N_SO with null name indicates EOF */
1110 	      if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1111 		continue;
1112 
1113 	      /* if we did not see a function def, leave space for one.  */
1114 	      if (saw_fun == 0)
1115 		++info->indextablesize;
1116 
1117 	      saw_fun = 0;
1118 
1119 	      /* two N_SO's in a row is a filename and directory. Skip */
1120 	      if (stab + STABSIZE < info->stabs + stabsize
1121 		  && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1122 		{
1123 		  stab += STABSIZE;
1124 		}
1125 	    }
1126 	  else if (stab[TYPEOFF] == (bfd_byte) N_FUN)
1127 	    {
1128 	      saw_fun = 1;
1129 	      ++info->indextablesize;
1130 	    }
1131 	}
1132 
1133       if (saw_fun == 0)
1134 	++info->indextablesize;
1135 
1136       if (info->indextablesize == 0)
1137 	return TRUE;
1138       ++info->indextablesize;
1139 
1140       amt = info->indextablesize;
1141       amt *= sizeof (struct indexentry);
1142       info->indextable = (struct indexentry *) bfd_alloc (abfd, amt);
1143       if (info->indextable == NULL)
1144 	return FALSE;
1145 
1146       file_name = NULL;
1147       directory_name = NULL;
1148       saw_fun = 1;
1149 
1150       for (i = 0, stroff = 0, stab = info->stabs, str = info->strs;
1151 	   i < info->indextablesize && stab < info->stabs + stabsize;
1152 	   stab += STABSIZE)
1153 	{
1154 	  switch (stab[TYPEOFF])
1155 	    {
1156 	    case 0:
1157 	      /* This is the first entry in a compilation unit.  */
1158 	      if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1159 		break;
1160 	      str += stroff;
1161 	      stroff = bfd_get_32 (abfd, stab + VALOFF);
1162 	      break;
1163 
1164 	    case N_SO:
1165 	      /* The main file name.  */
1166 
1167 	      /* The following code creates a new indextable entry with
1168 	         a NULL function name if there were no N_FUNs in a file.
1169 	         Note that a N_SO without a file name is an EOF and
1170 	         there could be 2 N_SO following it with the new filename
1171 	         and directory.  */
1172 	      if (saw_fun == 0)
1173 		{
1174 		  info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1175 		  info->indextable[i].stab = last_stab;
1176 		  info->indextable[i].str = str;
1177 		  info->indextable[i].directory_name = directory_name;
1178 		  info->indextable[i].file_name = file_name;
1179 		  info->indextable[i].function_name = NULL;
1180 		  ++i;
1181 		}
1182 	      saw_fun = 0;
1183 
1184 	      file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1185 	      if (*file_name == '\0')
1186 		{
1187 		  directory_name = NULL;
1188 		  file_name = NULL;
1189 		  saw_fun = 1;
1190 		}
1191 	      else
1192 		{
1193 		  last_stab = stab;
1194 		  if (stab + STABSIZE >= info->stabs + stabsize
1195 		      || *(stab + STABSIZE + TYPEOFF) != (bfd_byte) N_SO)
1196 		    {
1197 		      directory_name = NULL;
1198 		    }
1199 		  else
1200 		    {
1201 		      /* Two consecutive N_SOs are a directory and a
1202 			 file name.  */
1203 		      stab += STABSIZE;
1204 		      directory_name = file_name;
1205 		      file_name = ((char *) str
1206 				   + bfd_get_32 (abfd, stab + STRDXOFF));
1207 		    }
1208 		}
1209 	      break;
1210 
1211 	    case N_SOL:
1212 	      /* The name of an include file.  */
1213 	      file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1214 	      break;
1215 
1216 	    case N_FUN:
1217 	      /* A function name.  */
1218 	      saw_fun = 1;
1219 	      name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1220 
1221 	      if (*name == '\0')
1222 		name = NULL;
1223 
1224 	      function_name = name;
1225 
1226 	      if (name == NULL)
1227 		continue;
1228 
1229 	      info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1230 	      info->indextable[i].stab = stab;
1231 	      info->indextable[i].str = str;
1232 	      info->indextable[i].directory_name = directory_name;
1233 	      info->indextable[i].file_name = file_name;
1234 	      info->indextable[i].function_name = function_name;
1235 	      ++i;
1236 	      break;
1237 	    }
1238 	}
1239 
1240       if (saw_fun == 0)
1241 	{
1242 	  info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1243 	  info->indextable[i].stab = last_stab;
1244 	  info->indextable[i].str = str;
1245 	  info->indextable[i].directory_name = directory_name;
1246 	  info->indextable[i].file_name = file_name;
1247 	  info->indextable[i].function_name = NULL;
1248 	  ++i;
1249 	}
1250 
1251       info->indextable[i].val = (bfd_vma) -1;
1252       info->indextable[i].stab = info->stabs + stabsize;
1253       info->indextable[i].str = str;
1254       info->indextable[i].directory_name = NULL;
1255       info->indextable[i].file_name = NULL;
1256       info->indextable[i].function_name = NULL;
1257       ++i;
1258 
1259       info->indextablesize = i;
1260       qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1261 	     cmpindexentry);
1262 
1263       *pinfo = info;
1264     }
1265 
1266   /* We are passed a section relative offset.  The offsets in the
1267      stabs information are absolute.  */
1268   offset += bfd_get_section_vma (abfd, section);
1269 
1270 #ifdef ENABLE_CACHING
1271   if (info->cached_indexentry != NULL
1272       && offset >= info->cached_offset
1273       && offset < (info->cached_indexentry + 1)->val)
1274     {
1275       stab = info->cached_stab;
1276       indexentry = info->cached_indexentry;
1277       file_name = info->cached_file_name;
1278     }
1279   else
1280 #endif
1281     {
1282       long low, high;
1283       long mid = -1;
1284 
1285       /* Cache non-existent or invalid.  Do binary search on
1286          indextable.  */
1287       indexentry = NULL;
1288 
1289       low = 0;
1290       high = info->indextablesize - 1;
1291       while (low != high)
1292 	{
1293 	  mid = (high + low) / 2;
1294 	  if (offset >= info->indextable[mid].val
1295 	      && offset < info->indextable[mid + 1].val)
1296 	    {
1297 	      indexentry = &info->indextable[mid];
1298 	      break;
1299 	    }
1300 
1301 	  if (info->indextable[mid].val > offset)
1302 	    high = mid;
1303 	  else
1304 	    low = mid + 1;
1305 	}
1306 
1307       if (indexentry == NULL)
1308 	return TRUE;
1309 
1310       stab = indexentry->stab + STABSIZE;
1311       file_name = indexentry->file_name;
1312     }
1313 
1314   directory_name = indexentry->directory_name;
1315   str = indexentry->str;
1316 
1317   saw_line = FALSE;
1318   saw_func = FALSE;
1319   for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1320     {
1321       bfd_boolean done;
1322       bfd_vma val;
1323 
1324       done = FALSE;
1325 
1326       switch (stab[TYPEOFF])
1327 	{
1328 	case N_SOL:
1329 	  /* The name of an include file.  */
1330 	  val = bfd_get_32 (abfd, stab + VALOFF);
1331 	  if (val <= offset)
1332 	    {
1333 	      file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1334 	      *pline = 0;
1335 	    }
1336 	  break;
1337 
1338 	case N_SLINE:
1339 	case N_DSLINE:
1340 	case N_BSLINE:
1341 	  /* A line number.  If the function was specified, then the value
1342 	     is relative to the start of the function.  Otherwise, the
1343 	     value is an absolute address.  */
1344 	  val = ((indexentry->function_name ? indexentry->val : 0)
1345 		 + bfd_get_32 (abfd, stab + VALOFF));
1346 	  /* If this line starts before our desired offset, or if it's
1347 	     the first line we've been able to find, use it.  The
1348 	     !saw_line check works around a bug in GCC 2.95.3, which emits
1349 	     the first N_SLINE late.  */
1350 	  if (!saw_line || val <= offset)
1351 	    {
1352 	      *pline = bfd_get_16 (abfd, stab + DESCOFF);
1353 
1354 #ifdef ENABLE_CACHING
1355 	      info->cached_stab = stab;
1356 	      info->cached_offset = val;
1357 	      info->cached_file_name = file_name;
1358 	      info->cached_indexentry = indexentry;
1359 #endif
1360 	    }
1361 	  if (val > offset)
1362 	    done = TRUE;
1363 	  saw_line = TRUE;
1364 	  break;
1365 
1366 	case N_FUN:
1367 	case N_SO:
1368 	  if (saw_func || saw_line)
1369 	    done = TRUE;
1370 	  saw_func = TRUE;
1371 	  break;
1372 	}
1373 
1374       if (done)
1375 	break;
1376     }
1377 
1378   *pfound = TRUE;
1379 
1380   if (file_name == NULL || IS_ABSOLUTE_PATH (file_name)
1381       || directory_name == NULL)
1382     *pfilename = file_name;
1383   else
1384     {
1385       size_t dirlen;
1386 
1387       dirlen = strlen (directory_name);
1388       if (info->filename == NULL
1389 	  || strncmp (info->filename, directory_name, dirlen) != 0
1390 	  || strcmp (info->filename + dirlen, file_name) != 0)
1391 	{
1392 	  size_t len;
1393 
1394 	  /* Don't free info->filename here.  objdump and other
1395 	     apps keep a copy of a previously returned file name
1396 	     pointer.  */
1397 	  len = strlen (file_name) + 1;
1398 	  info->filename = (char *) bfd_alloc (abfd, dirlen + len);
1399 	  if (info->filename == NULL)
1400 	    return FALSE;
1401 	  memcpy (info->filename, directory_name, dirlen);
1402 	  memcpy (info->filename + dirlen, file_name, len);
1403 	}
1404 
1405       *pfilename = info->filename;
1406     }
1407 
1408   if (indexentry->function_name != NULL)
1409     {
1410       char *s;
1411 
1412       /* This will typically be something like main:F(0,1), so we want
1413          to clobber the colon.  It's OK to change the name, since the
1414          string is in our own local storage anyhow.  */
1415       s = strchr (indexentry->function_name, ':');
1416       if (s != NULL)
1417 	*s = '\0';
1418 
1419       *pfnname = indexentry->function_name;
1420     }
1421 
1422   return TRUE;
1423 }
1424