xref: /dragonfly/contrib/gdb-7/bfd/syms.c (revision d4ef6694)
1 /* Generic symbol-table support for the BFD library.
2    Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3    2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2012
4    Free Software Foundation, Inc.
5    Written by Cygnus Support.
6 
7    This file is part of BFD, the Binary File Descriptor library.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; if not, write to the Free Software
21    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22    MA 02110-1301, USA.  */
23 
24 /*
25 SECTION
26 	Symbols
27 
28 	BFD tries to maintain as much symbol information as it can when
29 	it moves information from file to file. BFD passes information
30 	to applications though the <<asymbol>> structure. When the
31 	application requests the symbol table, BFD reads the table in
32 	the native form and translates parts of it into the internal
33 	format. To maintain more than the information passed to
34 	applications, some targets keep some information ``behind the
35 	scenes'' in a structure only the particular back end knows
36 	about. For example, the coff back end keeps the original
37 	symbol table structure as well as the canonical structure when
38 	a BFD is read in. On output, the coff back end can reconstruct
39 	the output symbol table so that no information is lost, even
40 	information unique to coff which BFD doesn't know or
41 	understand. If a coff symbol table were read, but were written
42 	through an a.out back end, all the coff specific information
43 	would be lost. The symbol table of a BFD
44 	is not necessarily read in until a canonicalize request is
45 	made. Then the BFD back end fills in a table provided by the
46 	application with pointers to the canonical information.  To
47 	output symbols, the application provides BFD with a table of
48 	pointers to pointers to <<asymbol>>s. This allows applications
49 	like the linker to output a symbol as it was read, since the ``behind
50 	the scenes'' information will be still available.
51 @menu
52 @* Reading Symbols::
53 @* Writing Symbols::
54 @* Mini Symbols::
55 @* typedef asymbol::
56 @* symbol handling functions::
57 @end menu
58 
59 INODE
60 Reading Symbols, Writing Symbols, Symbols, Symbols
61 SUBSECTION
62 	Reading symbols
63 
64 	There are two stages to reading a symbol table from a BFD:
65 	allocating storage, and the actual reading process. This is an
66 	excerpt from an application which reads the symbol table:
67 
68 |	  long storage_needed;
69 |	  asymbol **symbol_table;
70 |	  long number_of_symbols;
71 |	  long i;
72 |
73 |	  storage_needed = bfd_get_symtab_upper_bound (abfd);
74 |
75 |         if (storage_needed < 0)
76 |           FAIL
77 |
78 |	  if (storage_needed == 0)
79 |	    return;
80 |
81 |	  symbol_table = xmalloc (storage_needed);
82 |	    ...
83 |	  number_of_symbols =
84 |	     bfd_canonicalize_symtab (abfd, symbol_table);
85 |
86 |         if (number_of_symbols < 0)
87 |           FAIL
88 |
89 |	  for (i = 0; i < number_of_symbols; i++)
90 |	    process_symbol (symbol_table[i]);
91 
92 	All storage for the symbols themselves is in an objalloc
93 	connected to the BFD; it is freed when the BFD is closed.
94 
95 INODE
96 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
97 SUBSECTION
98 	Writing symbols
99 
100 	Writing of a symbol table is automatic when a BFD open for
101 	writing is closed. The application attaches a vector of
102 	pointers to pointers to symbols to the BFD being written, and
103 	fills in the symbol count. The close and cleanup code reads
104 	through the table provided and performs all the necessary
105 	operations. The BFD output code must always be provided with an
106 	``owned'' symbol: one which has come from another BFD, or one
107 	which has been created using <<bfd_make_empty_symbol>>.  Here is an
108 	example showing the creation of a symbol table with only one element:
109 
110 |	#include "sysdep.h"
111 |	#include "bfd.h"
112 |	int main (void)
113 |	{
114 |	  bfd *abfd;
115 |	  asymbol *ptrs[2];
116 |	  asymbol *new;
117 |
118 |	  abfd = bfd_openw ("foo","a.out-sunos-big");
119 |	  bfd_set_format (abfd, bfd_object);
120 |	  new = bfd_make_empty_symbol (abfd);
121 |	  new->name = "dummy_symbol";
122 |	  new->section = bfd_make_section_old_way (abfd, ".text");
123 |	  new->flags = BSF_GLOBAL;
124 |	  new->value = 0x12345;
125 |
126 |	  ptrs[0] = new;
127 |	  ptrs[1] = 0;
128 |
129 |	  bfd_set_symtab (abfd, ptrs, 1);
130 |	  bfd_close (abfd);
131 |	  return 0;
132 |	}
133 |
134 |	./makesym
135 |	nm foo
136 |	00012345 A dummy_symbol
137 
138 	Many formats cannot represent arbitrary symbol information; for
139  	instance, the <<a.out>> object format does not allow an
140 	arbitrary number of sections. A symbol pointing to a section
141 	which is not one  of <<.text>>, <<.data>> or <<.bss>> cannot
142 	be described.
143 
144 INODE
145 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
146 SUBSECTION
147 	Mini Symbols
148 
149 	Mini symbols provide read-only access to the symbol table.
150 	They use less memory space, but require more time to access.
151 	They can be useful for tools like nm or objdump, which may
152 	have to handle symbol tables of extremely large executables.
153 
154 	The <<bfd_read_minisymbols>> function will read the symbols
155 	into memory in an internal form.  It will return a <<void *>>
156 	pointer to a block of memory, a symbol count, and the size of
157 	each symbol.  The pointer is allocated using <<malloc>>, and
158 	should be freed by the caller when it is no longer needed.
159 
160 	The function <<bfd_minisymbol_to_symbol>> will take a pointer
161 	to a minisymbol, and a pointer to a structure returned by
162 	<<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
163 	The return value may or may not be the same as the value from
164 	<<bfd_make_empty_symbol>> which was passed in.
165 
166 */
167 
168 /*
169 DOCDD
170 INODE
171 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
172 
173 */
174 /*
175 SUBSECTION
176 	typedef asymbol
177 
178 	An <<asymbol>> has the form:
179 
180 */
181 
182 /*
183 CODE_FRAGMENT
184 
185 .
186 .typedef struct bfd_symbol
187 .{
188 .  {* A pointer to the BFD which owns the symbol. This information
189 .     is necessary so that a back end can work out what additional
190 .     information (invisible to the application writer) is carried
191 .     with the symbol.
192 .
193 .     This field is *almost* redundant, since you can use section->owner
194 .     instead, except that some symbols point to the global sections
195 .     bfd_{abs,com,und}_section.  This could be fixed by making
196 .     these globals be per-bfd (or per-target-flavor).  FIXME.  *}
197 .  struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field.  *}
198 .
199 .  {* The text of the symbol. The name is left alone, and not copied; the
200 .     application may not alter it.  *}
201 .  const char *name;
202 .
203 .  {* The value of the symbol.  This really should be a union of a
204 .     numeric value with a pointer, since some flags indicate that
205 .     a pointer to another symbol is stored here.  *}
206 .  symvalue value;
207 .
208 .  {* Attributes of a symbol.  *}
209 .#define BSF_NO_FLAGS    	0x00
210 .
211 .  {* The symbol has local scope; <<static>> in <<C>>. The value
212 .     is the offset into the section of the data.  *}
213 .#define BSF_LOCAL		(1 << 0)
214 .
215 .  {* The symbol has global scope; initialized data in <<C>>. The
216 .     value is the offset into the section of the data.  *}
217 .#define BSF_GLOBAL		(1 << 1)
218 .
219 .  {* The symbol has global scope and is exported. The value is
220 .     the offset into the section of the data.  *}
221 .#define BSF_EXPORT	BSF_GLOBAL {* No real difference.  *}
222 .
223 .  {* A normal C symbol would be one of:
224 .     <<BSF_LOCAL>>, <<BSF_COMMON>>,  <<BSF_UNDEFINED>> or
225 .     <<BSF_GLOBAL>>.  *}
226 .
227 .  {* The symbol is a debugging record. The value has an arbitrary
228 .     meaning, unless BSF_DEBUGGING_RELOC is also set.  *}
229 .#define BSF_DEBUGGING		(1 << 2)
230 .
231 .  {* The symbol denotes a function entry point.  Used in ELF,
232 .     perhaps others someday.  *}
233 .#define BSF_FUNCTION		(1 << 3)
234 .
235 .  {* Used by the linker.  *}
236 .#define BSF_KEEP		(1 << 5)
237 .#define BSF_KEEP_G		(1 << 6)
238 .
239 .  {* A weak global symbol, overridable without warnings by
240 .     a regular global symbol of the same name.  *}
241 .#define BSF_WEAK		(1 << 7)
242 .
243 .  {* This symbol was created to point to a section, e.g. ELF's
244 .     STT_SECTION symbols.  *}
245 .#define BSF_SECTION_SYM	(1 << 8)
246 .
247 .  {* The symbol used to be a common symbol, but now it is
248 .     allocated.  *}
249 .#define BSF_OLD_COMMON		(1 << 9)
250 .
251 .  {* In some files the type of a symbol sometimes alters its
252 .     location in an output file - ie in coff a <<ISFCN>> symbol
253 .     which is also <<C_EXT>> symbol appears where it was
254 .     declared and not at the end of a section.  This bit is set
255 .     by the target BFD part to convey this information.  *}
256 .#define BSF_NOT_AT_END		(1 << 10)
257 .
258 .  {* Signal that the symbol is the label of constructor section.  *}
259 .#define BSF_CONSTRUCTOR	(1 << 11)
260 .
261 .  {* Signal that the symbol is a warning symbol.  The name is a
262 .     warning.  The name of the next symbol is the one to warn about;
263 .     if a reference is made to a symbol with the same name as the next
264 .     symbol, a warning is issued by the linker.  *}
265 .#define BSF_WARNING		(1 << 12)
266 .
267 .  {* Signal that the symbol is indirect.  This symbol is an indirect
268 .     pointer to the symbol with the same name as the next symbol.  *}
269 .#define BSF_INDIRECT		(1 << 13)
270 .
271 .  {* BSF_FILE marks symbols that contain a file name.  This is used
272 .     for ELF STT_FILE symbols.  *}
273 .#define BSF_FILE		(1 << 14)
274 .
275 .  {* Symbol is from dynamic linking information.  *}
276 .#define BSF_DYNAMIC		(1 << 15)
277 .
278 .  {* The symbol denotes a data object.  Used in ELF, and perhaps
279 .     others someday.  *}
280 .#define BSF_OBJECT		(1 << 16)
281 .
282 .  {* This symbol is a debugging symbol.  The value is the offset
283 .     into the section of the data.  BSF_DEBUGGING should be set
284 .     as well.  *}
285 .#define BSF_DEBUGGING_RELOC	(1 << 17)
286 .
287 .  {* This symbol is thread local.  Used in ELF.  *}
288 .#define BSF_THREAD_LOCAL	(1 << 18)
289 .
290 .  {* This symbol represents a complex relocation expression,
291 .     with the expression tree serialized in the symbol name.  *}
292 .#define BSF_RELC		(1 << 19)
293 .
294 .  {* This symbol represents a signed complex relocation expression,
295 .     with the expression tree serialized in the symbol name.  *}
296 .#define BSF_SRELC		(1 << 20)
297 .
298 .  {* This symbol was created by bfd_get_synthetic_symtab.  *}
299 .#define BSF_SYNTHETIC		(1 << 21)
300 .
301 .  {* This symbol is an indirect code object.  Unrelated to BSF_INDIRECT.
302 .     The dynamic linker will compute the value of this symbol by
303 .     calling the function that it points to.  BSF_FUNCTION must
304 .     also be also set.  *}
305 .#define BSF_GNU_INDIRECT_FUNCTION (1 << 22)
306 .  {* This symbol is a globally unique data object.  The dynamic linker
307 .     will make sure that in the entire process there is just one symbol
308 .     with this name and type in use.  BSF_OBJECT must also be set.  *}
309 .#define BSF_GNU_UNIQUE		(1 << 23)
310 .
311 .  flagword flags;
312 .
313 .  {* A pointer to the section to which this symbol is
314 .     relative.  This will always be non NULL, there are special
315 .     sections for undefined and absolute symbols.  *}
316 .  struct bfd_section *section;
317 .
318 .  {* Back end special data.  *}
319 .  union
320 .    {
321 .      void *p;
322 .      bfd_vma i;
323 .    }
324 .  udata;
325 .}
326 .asymbol;
327 .
328 */
329 
330 #include "sysdep.h"
331 #include "bfd.h"
332 #include "libbfd.h"
333 #include "safe-ctype.h"
334 #include "bfdlink.h"
335 #include "aout/stab_gnu.h"
336 
337 /*
338 DOCDD
339 INODE
340 symbol handling functions,  , typedef asymbol, Symbols
341 SUBSECTION
342 	Symbol handling functions
343 */
344 
345 /*
346 FUNCTION
347 	bfd_get_symtab_upper_bound
348 
349 DESCRIPTION
350 	Return the number of bytes required to store a vector of pointers
351 	to <<asymbols>> for all the symbols in the BFD @var{abfd},
352 	including a terminal NULL pointer. If there are no symbols in
353 	the BFD, then return 0.  If an error occurs, return -1.
354 
355 .#define bfd_get_symtab_upper_bound(abfd) \
356 .     BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
357 .
358 */
359 
360 /*
361 FUNCTION
362 	bfd_is_local_label
363 
364 SYNOPSIS
365         bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
366 
367 DESCRIPTION
368 	Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
369 	a compiler generated local label, else return FALSE.
370 */
371 
372 bfd_boolean
373 bfd_is_local_label (bfd *abfd, asymbol *sym)
374 {
375   /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
376      starts with '.' is local.  This would accidentally catch section names
377      if we didn't reject them here.  */
378   if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_FILE | BSF_SECTION_SYM)) != 0)
379     return FALSE;
380   if (sym->name == NULL)
381     return FALSE;
382   return bfd_is_local_label_name (abfd, sym->name);
383 }
384 
385 /*
386 FUNCTION
387 	bfd_is_local_label_name
388 
389 SYNOPSIS
390         bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
391 
392 DESCRIPTION
393 	Return TRUE if a symbol with the name @var{name} in the BFD
394 	@var{abfd} is a compiler generated local label, else return
395 	FALSE.  This just checks whether the name has the form of a
396 	local label.
397 
398 .#define bfd_is_local_label_name(abfd, name) \
399 .  BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
400 .
401 */
402 
403 /*
404 FUNCTION
405 	bfd_is_target_special_symbol
406 
407 SYNOPSIS
408         bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
409 
410 DESCRIPTION
411 	Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something
412 	special to the particular target represented by the BFD.  Such symbols
413 	should normally not be mentioned to the user.
414 
415 .#define bfd_is_target_special_symbol(abfd, sym) \
416 .  BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
417 .
418 */
419 
420 /*
421 FUNCTION
422 	bfd_canonicalize_symtab
423 
424 DESCRIPTION
425 	Read the symbols from the BFD @var{abfd}, and fills in
426 	the vector @var{location} with pointers to the symbols and
427 	a trailing NULL.
428 	Return the actual number of symbol pointers, not
429 	including the NULL.
430 
431 .#define bfd_canonicalize_symtab(abfd, location) \
432 .  BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
433 .
434 */
435 
436 /*
437 FUNCTION
438 	bfd_set_symtab
439 
440 SYNOPSIS
441 	bfd_boolean bfd_set_symtab
442 	  (bfd *abfd, asymbol **location, unsigned int count);
443 
444 DESCRIPTION
445 	Arrange that when the output BFD @var{abfd} is closed,
446 	the table @var{location} of @var{count} pointers to symbols
447 	will be written.
448 */
449 
450 bfd_boolean
451 bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int symcount)
452 {
453   if (abfd->format != bfd_object || bfd_read_p (abfd))
454     {
455       bfd_set_error (bfd_error_invalid_operation);
456       return FALSE;
457     }
458 
459   bfd_get_outsymbols (abfd) = location;
460   bfd_get_symcount (abfd) = symcount;
461   return TRUE;
462 }
463 
464 /*
465 FUNCTION
466 	bfd_print_symbol_vandf
467 
468 SYNOPSIS
469 	void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
470 
471 DESCRIPTION
472 	Print the value and flags of the @var{symbol} supplied to the
473 	stream @var{file}.
474 */
475 void
476 bfd_print_symbol_vandf (bfd *abfd, void *arg, asymbol *symbol)
477 {
478   FILE *file = (FILE *) arg;
479 
480   flagword type = symbol->flags;
481 
482   if (symbol->section != NULL)
483     bfd_fprintf_vma (abfd, file, symbol->value + symbol->section->vma);
484   else
485     bfd_fprintf_vma (abfd, file, symbol->value);
486 
487   /* This presumes that a symbol can not be both BSF_DEBUGGING and
488      BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
489      BSF_OBJECT.  */
490   fprintf (file, " %c%c%c%c%c%c%c",
491 	   ((type & BSF_LOCAL)
492 	    ? (type & BSF_GLOBAL) ? '!' : 'l'
493 	    : (type & BSF_GLOBAL) ? 'g'
494 	    : (type & BSF_GNU_UNIQUE) ? 'u' : ' '),
495 	   (type & BSF_WEAK) ? 'w' : ' ',
496 	   (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
497 	   (type & BSF_WARNING) ? 'W' : ' ',
498 	   (type & BSF_INDIRECT) ? 'I' : (type & BSF_GNU_INDIRECT_FUNCTION) ? 'i' : ' ',
499 	   (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
500 	   ((type & BSF_FUNCTION)
501 	    ? 'F'
502 	    : ((type & BSF_FILE)
503 	       ? 'f'
504 	       : ((type & BSF_OBJECT) ? 'O' : ' '))));
505 }
506 
507 /*
508 FUNCTION
509 	bfd_make_empty_symbol
510 
511 DESCRIPTION
512 	Create a new <<asymbol>> structure for the BFD @var{abfd}
513 	and return a pointer to it.
514 
515 	This routine is necessary because each back end has private
516 	information surrounding the <<asymbol>>. Building your own
517 	<<asymbol>> and pointing to it will not create the private
518 	information, and will cause problems later on.
519 
520 .#define bfd_make_empty_symbol(abfd) \
521 .  BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
522 .
523 */
524 
525 /*
526 FUNCTION
527 	_bfd_generic_make_empty_symbol
528 
529 SYNOPSIS
530 	asymbol *_bfd_generic_make_empty_symbol (bfd *);
531 
532 DESCRIPTION
533 	Create a new <<asymbol>> structure for the BFD @var{abfd}
534 	and return a pointer to it.  Used by core file routines,
535 	binary back-end and anywhere else where no private info
536 	is needed.
537 */
538 
539 asymbol *
540 _bfd_generic_make_empty_symbol (bfd *abfd)
541 {
542   bfd_size_type amt = sizeof (asymbol);
543   asymbol *new_symbol = (asymbol *) bfd_zalloc (abfd, amt);
544   if (new_symbol)
545     new_symbol->the_bfd = abfd;
546   return new_symbol;
547 }
548 
549 /*
550 FUNCTION
551 	bfd_make_debug_symbol
552 
553 DESCRIPTION
554 	Create a new <<asymbol>> structure for the BFD @var{abfd},
555 	to be used as a debugging symbol.  Further details of its use have
556 	yet to be worked out.
557 
558 .#define bfd_make_debug_symbol(abfd,ptr,size) \
559 .  BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
560 .
561 */
562 
563 struct section_to_type
564 {
565   const char *section;
566   char type;
567 };
568 
569 /* Map section names to POSIX/BSD single-character symbol types.
570    This table is probably incomplete.  It is sorted for convenience of
571    adding entries.  Since it is so short, a linear search is used.  */
572 static const struct section_to_type stt[] =
573 {
574   {".bss", 'b'},
575   {"code", 't'},		/* MRI .text */
576   {".data", 'd'},
577   {"*DEBUG*", 'N'},
578   {".debug", 'N'},              /* MSVC's .debug (non-standard debug syms) */
579   {".drectve", 'i'},            /* MSVC's .drective section */
580   {".edata", 'e'},              /* MSVC's .edata (export) section */
581   {".fini", 't'},		/* ELF fini section */
582   {".idata", 'i'},              /* MSVC's .idata (import) section */
583   {".init", 't'},		/* ELF init section */
584   {".pdata", 'p'},              /* MSVC's .pdata (stack unwind) section */
585   {".rdata", 'r'},		/* Read only data.  */
586   {".rodata", 'r'},		/* Read only data.  */
587   {".sbss", 's'},		/* Small BSS (uninitialized data).  */
588   {".scommon", 'c'},		/* Small common.  */
589   {".sdata", 'g'},		/* Small initialized data.  */
590   {".text", 't'},
591   {"vars", 'd'},		/* MRI .data */
592   {"zerovars", 'b'},		/* MRI .bss */
593   {0, 0}
594 };
595 
596 /* Return the single-character symbol type corresponding to
597    section S, or '?' for an unknown COFF section.
598 
599    Check for any leading string which matches, so .text5 returns
600    't' as well as .text */
601 
602 static char
603 coff_section_type (const char *s)
604 {
605   const struct section_to_type *t;
606 
607   for (t = &stt[0]; t->section; t++)
608     if (!strncmp (s, t->section, strlen (t->section)))
609       return t->type;
610 
611   return '?';
612 }
613 
614 /* Return the single-character symbol type corresponding to section
615    SECTION, or '?' for an unknown section.  This uses section flags to
616    identify sections.
617 
618    FIXME These types are unhandled: c, i, e, p.  If we handled these also,
619    we could perhaps obsolete coff_section_type.  */
620 
621 static char
622 decode_section_type (const struct bfd_section *section)
623 {
624   if (section->flags & SEC_CODE)
625     return 't';
626   if (section->flags & SEC_DATA)
627     {
628       if (section->flags & SEC_READONLY)
629 	return 'r';
630       else if (section->flags & SEC_SMALL_DATA)
631 	return 'g';
632       else
633 	return 'd';
634     }
635   if ((section->flags & SEC_HAS_CONTENTS) == 0)
636     {
637       if (section->flags & SEC_SMALL_DATA)
638 	return 's';
639       else
640 	return 'b';
641     }
642   if (section->flags & SEC_DEBUGGING)
643     return 'N';
644   if ((section->flags & SEC_HAS_CONTENTS) && (section->flags & SEC_READONLY))
645     return 'n';
646 
647   return '?';
648 }
649 
650 /*
651 FUNCTION
652 	bfd_decode_symclass
653 
654 DESCRIPTION
655 	Return a character corresponding to the symbol
656 	class of @var{symbol}, or '?' for an unknown class.
657 
658 SYNOPSIS
659 	int bfd_decode_symclass (asymbol *symbol);
660 */
661 int
662 bfd_decode_symclass (asymbol *symbol)
663 {
664   char c;
665 
666   if (symbol->section && bfd_is_com_section (symbol->section))
667     return 'C';
668   if (bfd_is_und_section (symbol->section))
669     {
670       if (symbol->flags & BSF_WEAK)
671 	{
672 	  /* If weak, determine if it's specifically an object
673 	     or non-object weak.  */
674 	  if (symbol->flags & BSF_OBJECT)
675 	    return 'v';
676 	  else
677 	    return 'w';
678 	}
679       else
680 	return 'U';
681     }
682   if (bfd_is_ind_section (symbol->section))
683     return 'I';
684   if (symbol->flags & BSF_GNU_INDIRECT_FUNCTION)
685     return 'i';
686   if (symbol->flags & BSF_WEAK)
687     {
688       /* If weak, determine if it's specifically an object
689 	 or non-object weak.  */
690       if (symbol->flags & BSF_OBJECT)
691 	return 'V';
692       else
693 	return 'W';
694     }
695   if (symbol->flags & BSF_GNU_UNIQUE)
696     return 'u';
697   if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
698     return '?';
699 
700   if (bfd_is_abs_section (symbol->section))
701     c = 'a';
702   else if (symbol->section)
703     {
704       c = coff_section_type (symbol->section->name);
705       if (c == '?')
706 	c = decode_section_type (symbol->section);
707     }
708   else
709     return '?';
710   if (symbol->flags & BSF_GLOBAL)
711     c = TOUPPER (c);
712   return c;
713 
714   /* We don't have to handle these cases just yet, but we will soon:
715      N_SETV: 'v';
716      N_SETA: 'l';
717      N_SETT: 'x';
718      N_SETD: 'z';
719      N_SETB: 's';
720      N_INDR: 'i';
721      */
722 }
723 
724 /*
725 FUNCTION
726 	bfd_is_undefined_symclass
727 
728 DESCRIPTION
729 	Returns non-zero if the class symbol returned by
730 	bfd_decode_symclass represents an undefined symbol.
731 	Returns zero otherwise.
732 
733 SYNOPSIS
734 	bfd_boolean bfd_is_undefined_symclass (int symclass);
735 */
736 
737 bfd_boolean
738 bfd_is_undefined_symclass (int symclass)
739 {
740   return symclass == 'U' || symclass == 'w' || symclass == 'v';
741 }
742 
743 /*
744 FUNCTION
745 	bfd_symbol_info
746 
747 DESCRIPTION
748 	Fill in the basic info about symbol that nm needs.
749 	Additional info may be added by the back-ends after
750 	calling this function.
751 
752 SYNOPSIS
753 	void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
754 */
755 
756 void
757 bfd_symbol_info (asymbol *symbol, symbol_info *ret)
758 {
759   ret->type = bfd_decode_symclass (symbol);
760 
761   if (bfd_is_undefined_symclass (ret->type))
762     ret->value = 0;
763   else
764     ret->value = symbol->value + symbol->section->vma;
765 
766   ret->name = symbol->name;
767 }
768 
769 /*
770 FUNCTION
771 	bfd_copy_private_symbol_data
772 
773 SYNOPSIS
774 	bfd_boolean bfd_copy_private_symbol_data
775 	  (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
776 
777 DESCRIPTION
778 	Copy private symbol information from @var{isym} in the BFD
779 	@var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
780 	Return <<TRUE>> on success, <<FALSE>> on error.  Possible error
781 	returns are:
782 
783 	o <<bfd_error_no_memory>> -
784 	Not enough memory exists to create private data for @var{osec}.
785 
786 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
787 .  BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
788 .            (ibfd, isymbol, obfd, osymbol))
789 .
790 */
791 
792 /* The generic version of the function which returns mini symbols.
793    This is used when the backend does not provide a more efficient
794    version.  It just uses BFD asymbol structures as mini symbols.  */
795 
796 long
797 _bfd_generic_read_minisymbols (bfd *abfd,
798 			       bfd_boolean dynamic,
799 			       void **minisymsp,
800 			       unsigned int *sizep)
801 {
802   long storage;
803   asymbol **syms = NULL;
804   long symcount;
805 
806   if (dynamic)
807     storage = bfd_get_dynamic_symtab_upper_bound (abfd);
808   else
809     storage = bfd_get_symtab_upper_bound (abfd);
810   if (storage < 0)
811     goto error_return;
812   if (storage == 0)
813     return 0;
814 
815   syms = (asymbol **) bfd_malloc (storage);
816   if (syms == NULL)
817     goto error_return;
818 
819   if (dynamic)
820     symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
821   else
822     symcount = bfd_canonicalize_symtab (abfd, syms);
823   if (symcount < 0)
824     goto error_return;
825 
826   *minisymsp = syms;
827   *sizep = sizeof (asymbol *);
828   return symcount;
829 
830  error_return:
831   bfd_set_error (bfd_error_no_symbols);
832   if (syms != NULL)
833     free (syms);
834   return -1;
835 }
836 
837 /* The generic version of the function which converts a minisymbol to
838    an asymbol.  We don't worry about the sym argument we are passed;
839    we just return the asymbol the minisymbol points to.  */
840 
841 asymbol *
842 _bfd_generic_minisymbol_to_symbol (bfd *abfd ATTRIBUTE_UNUSED,
843 				   bfd_boolean dynamic ATTRIBUTE_UNUSED,
844 				   const void *minisym,
845 				   asymbol *sym ATTRIBUTE_UNUSED)
846 {
847   return *(asymbol **) minisym;
848 }
849 
850 /* Look through stabs debugging information in .stab and .stabstr
851    sections to find the source file and line closest to a desired
852    location.  This is used by COFF and ELF targets.  It sets *pfound
853    to TRUE if it finds some information.  The *pinfo field is used to
854    pass cached information in and out of this routine; this first time
855    the routine is called for a BFD, *pinfo should be NULL.  The value
856    placed in *pinfo should be saved with the BFD, and passed back each
857    time this function is called.  */
858 
859 /* We use a cache by default.  */
860 
861 #define ENABLE_CACHING
862 
863 /* We keep an array of indexentry structures to record where in the
864    stabs section we should look to find line number information for a
865    particular address.  */
866 
867 struct indexentry
868 {
869   bfd_vma val;
870   bfd_byte *stab;
871   bfd_byte *str;
872   char *directory_name;
873   char *file_name;
874   char *function_name;
875 };
876 
877 /* Compare two indexentry structures.  This is called via qsort.  */
878 
879 static int
880 cmpindexentry (const void *a, const void *b)
881 {
882   const struct indexentry *contestantA = (const struct indexentry *) a;
883   const struct indexentry *contestantB = (const struct indexentry *) b;
884 
885   if (contestantA->val < contestantB->val)
886     return -1;
887   else if (contestantA->val > contestantB->val)
888     return 1;
889   else
890     return 0;
891 }
892 
893 /* A pointer to this structure is stored in *pinfo.  */
894 
895 struct stab_find_info
896 {
897   /* The .stab section.  */
898   asection *stabsec;
899   /* The .stabstr section.  */
900   asection *strsec;
901   /* The contents of the .stab section.  */
902   bfd_byte *stabs;
903   /* The contents of the .stabstr section.  */
904   bfd_byte *strs;
905 
906   /* A table that indexes stabs by memory address.  */
907   struct indexentry *indextable;
908   /* The number of entries in indextable.  */
909   int indextablesize;
910 
911 #ifdef ENABLE_CACHING
912   /* Cached values to restart quickly.  */
913   struct indexentry *cached_indexentry;
914   bfd_vma cached_offset;
915   bfd_byte *cached_stab;
916   char *cached_file_name;
917 #endif
918 
919   /* Saved ptr to malloc'ed filename.  */
920   char *filename;
921 };
922 
923 bfd_boolean
924 _bfd_stab_section_find_nearest_line (bfd *abfd,
925 				     asymbol **symbols,
926 				     asection *section,
927 				     bfd_vma offset,
928 				     bfd_boolean *pfound,
929 				     const char **pfilename,
930 				     const char **pfnname,
931 				     unsigned int *pline,
932 				     void **pinfo)
933 {
934   struct stab_find_info *info;
935   bfd_size_type stabsize, strsize;
936   bfd_byte *stab, *str;
937   bfd_byte *last_stab = NULL;
938   bfd_size_type stroff;
939   struct indexentry *indexentry;
940   char *file_name;
941   char *directory_name;
942   int saw_fun;
943   bfd_boolean saw_line, saw_func;
944 
945   *pfound = FALSE;
946   *pfilename = bfd_get_filename (abfd);
947   *pfnname = NULL;
948   *pline = 0;
949 
950   /* Stabs entries use a 12 byte format:
951        4 byte string table index
952        1 byte stab type
953        1 byte stab other field
954        2 byte stab desc field
955        4 byte stab value
956      FIXME: This will have to change for a 64 bit object format.
957 
958      The stabs symbols are divided into compilation units.  For the
959      first entry in each unit, the type of 0, the value is the length
960      of the string table for this unit, and the desc field is the
961      number of stabs symbols for this unit.  */
962 
963 #define STRDXOFF (0)
964 #define TYPEOFF (4)
965 #define OTHEROFF (5)
966 #define DESCOFF (6)
967 #define VALOFF (8)
968 #define STABSIZE (12)
969 
970   info = (struct stab_find_info *) *pinfo;
971   if (info != NULL)
972     {
973       if (info->stabsec == NULL || info->strsec == NULL)
974 	{
975 	  /* No stabs debugging information.  */
976 	  return TRUE;
977 	}
978 
979       stabsize = (info->stabsec->rawsize
980 		  ? info->stabsec->rawsize
981 		  : info->stabsec->size);
982       strsize = (info->strsec->rawsize
983 		 ? info->strsec->rawsize
984 		 : info->strsec->size);
985     }
986   else
987     {
988       long reloc_size, reloc_count;
989       arelent **reloc_vector;
990       int i;
991       char *name;
992       char *function_name;
993       bfd_size_type amt = sizeof *info;
994 
995       info = (struct stab_find_info *) bfd_zalloc (abfd, amt);
996       if (info == NULL)
997 	return FALSE;
998 
999       /* FIXME: When using the linker --split-by-file or
1000 	 --split-by-reloc options, it is possible for the .stab and
1001 	 .stabstr sections to be split.  We should handle that.  */
1002 
1003       info->stabsec = bfd_get_section_by_name (abfd, ".stab");
1004       info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
1005 
1006       if (info->stabsec == NULL || info->strsec == NULL)
1007 	{
1008 	  /* Try SOM section names.  */
1009 	  info->stabsec = bfd_get_section_by_name (abfd, "$GDB_SYMBOLS$");
1010 	  info->strsec  = bfd_get_section_by_name (abfd, "$GDB_STRINGS$");
1011 
1012 	  if (info->stabsec == NULL || info->strsec == NULL)
1013 	    {
1014 	      /* No stabs debugging information.  Set *pinfo so that we
1015 		 can return quickly in the info != NULL case above.  */
1016 	      *pinfo = info;
1017 	      return TRUE;
1018 	    }
1019 	}
1020 
1021       stabsize = (info->stabsec->rawsize
1022 		  ? info->stabsec->rawsize
1023 		  : info->stabsec->size);
1024       strsize = (info->strsec->rawsize
1025 		 ? info->strsec->rawsize
1026 		 : info->strsec->size);
1027 
1028       info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
1029       info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
1030       if (info->stabs == NULL || info->strs == NULL)
1031 	return FALSE;
1032 
1033       if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
1034 				      0, stabsize)
1035 	  || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
1036 					 0, strsize))
1037 	return FALSE;
1038 
1039       /* If this is a relocatable object file, we have to relocate
1040 	 the entries in .stab.  This should always be simple 32 bit
1041 	 relocations against symbols defined in this object file, so
1042 	 this should be no big deal.  */
1043       reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
1044       if (reloc_size < 0)
1045 	return FALSE;
1046       reloc_vector = (arelent **) bfd_malloc (reloc_size);
1047       if (reloc_vector == NULL && reloc_size != 0)
1048 	return FALSE;
1049       reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
1050 					    symbols);
1051       if (reloc_count < 0)
1052 	{
1053 	  if (reloc_vector != NULL)
1054 	    free (reloc_vector);
1055 	  return FALSE;
1056 	}
1057       if (reloc_count > 0)
1058 	{
1059 	  arelent **pr;
1060 
1061 	  for (pr = reloc_vector; *pr != NULL; pr++)
1062 	    {
1063 	      arelent *r;
1064 	      unsigned long val;
1065 	      asymbol *sym;
1066 
1067 	      r = *pr;
1068 	      /* Ignore R_*_NONE relocs.  */
1069 	      if (r->howto->dst_mask == 0)
1070 		continue;
1071 
1072 	      if (r->howto->rightshift != 0
1073 		  || r->howto->size != 2
1074 		  || r->howto->bitsize != 32
1075 		  || r->howto->pc_relative
1076 		  || r->howto->bitpos != 0
1077 		  || r->howto->dst_mask != 0xffffffff)
1078 		{
1079 		  (*_bfd_error_handler)
1080 		    (_("Unsupported .stab relocation"));
1081 		  bfd_set_error (bfd_error_invalid_operation);
1082 		  if (reloc_vector != NULL)
1083 		    free (reloc_vector);
1084 		  return FALSE;
1085 		}
1086 
1087 	      val = bfd_get_32 (abfd, info->stabs + r->address);
1088 	      val &= r->howto->src_mask;
1089 	      sym = *r->sym_ptr_ptr;
1090 	      val += sym->value + sym->section->vma + r->addend;
1091 	      bfd_put_32 (abfd, (bfd_vma) val, info->stabs + r->address);
1092 	    }
1093 	}
1094 
1095       if (reloc_vector != NULL)
1096 	free (reloc_vector);
1097 
1098       /* First time through this function, build a table matching
1099 	 function VM addresses to stabs, then sort based on starting
1100 	 VM address.  Do this in two passes: once to count how many
1101 	 table entries we'll need, and a second to actually build the
1102 	 table.  */
1103 
1104       info->indextablesize = 0;
1105       saw_fun = 1;
1106       for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1107 	{
1108 	  if (stab[TYPEOFF] == (bfd_byte) N_SO)
1109 	    {
1110 	      /* N_SO with null name indicates EOF */
1111 	      if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1112 		continue;
1113 
1114 	      /* if we did not see a function def, leave space for one.  */
1115 	      if (saw_fun == 0)
1116 		++info->indextablesize;
1117 
1118 	      saw_fun = 0;
1119 
1120 	      /* two N_SO's in a row is a filename and directory. Skip */
1121 	      if (stab + STABSIZE < info->stabs + stabsize
1122 		  && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1123 		{
1124 		  stab += STABSIZE;
1125 		}
1126 	    }
1127 	  else if (stab[TYPEOFF] == (bfd_byte) N_FUN)
1128 	    {
1129 	      saw_fun = 1;
1130 	      ++info->indextablesize;
1131 	    }
1132 	}
1133 
1134       if (saw_fun == 0)
1135 	++info->indextablesize;
1136 
1137       if (info->indextablesize == 0)
1138 	return TRUE;
1139       ++info->indextablesize;
1140 
1141       amt = info->indextablesize;
1142       amt *= sizeof (struct indexentry);
1143       info->indextable = (struct indexentry *) bfd_alloc (abfd, amt);
1144       if (info->indextable == NULL)
1145 	return FALSE;
1146 
1147       file_name = NULL;
1148       directory_name = NULL;
1149       saw_fun = 1;
1150 
1151       for (i = 0, stroff = 0, stab = info->stabs, str = info->strs;
1152 	   i < info->indextablesize && stab < info->stabs + stabsize;
1153 	   stab += STABSIZE)
1154 	{
1155 	  switch (stab[TYPEOFF])
1156 	    {
1157 	    case 0:
1158 	      /* This is the first entry in a compilation unit.  */
1159 	      if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1160 		break;
1161 	      str += stroff;
1162 	      stroff = bfd_get_32 (abfd, stab + VALOFF);
1163 	      break;
1164 
1165 	    case N_SO:
1166 	      /* The main file name.  */
1167 
1168 	      /* The following code creates a new indextable entry with
1169 	         a NULL function name if there were no N_FUNs in a file.
1170 	         Note that a N_SO without a file name is an EOF and
1171 	         there could be 2 N_SO following it with the new filename
1172 	         and directory.  */
1173 	      if (saw_fun == 0)
1174 		{
1175 		  info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1176 		  info->indextable[i].stab = last_stab;
1177 		  info->indextable[i].str = str;
1178 		  info->indextable[i].directory_name = directory_name;
1179 		  info->indextable[i].file_name = file_name;
1180 		  info->indextable[i].function_name = NULL;
1181 		  ++i;
1182 		}
1183 	      saw_fun = 0;
1184 
1185 	      file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1186 	      if (*file_name == '\0')
1187 		{
1188 		  directory_name = NULL;
1189 		  file_name = NULL;
1190 		  saw_fun = 1;
1191 		}
1192 	      else
1193 		{
1194 		  last_stab = stab;
1195 		  if (stab + STABSIZE >= info->stabs + stabsize
1196 		      || *(stab + STABSIZE + TYPEOFF) != (bfd_byte) N_SO)
1197 		    {
1198 		      directory_name = NULL;
1199 		    }
1200 		  else
1201 		    {
1202 		      /* Two consecutive N_SOs are a directory and a
1203 			 file name.  */
1204 		      stab += STABSIZE;
1205 		      directory_name = file_name;
1206 		      file_name = ((char *) str
1207 				   + bfd_get_32 (abfd, stab + STRDXOFF));
1208 		    }
1209 		}
1210 	      break;
1211 
1212 	    case N_SOL:
1213 	      /* The name of an include file.  */
1214 	      file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1215 	      break;
1216 
1217 	    case N_FUN:
1218 	      /* A function name.  */
1219 	      saw_fun = 1;
1220 	      name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1221 
1222 	      if (*name == '\0')
1223 		name = NULL;
1224 
1225 	      function_name = name;
1226 
1227 	      if (name == NULL)
1228 		continue;
1229 
1230 	      info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1231 	      info->indextable[i].stab = stab;
1232 	      info->indextable[i].str = str;
1233 	      info->indextable[i].directory_name = directory_name;
1234 	      info->indextable[i].file_name = file_name;
1235 	      info->indextable[i].function_name = function_name;
1236 	      ++i;
1237 	      break;
1238 	    }
1239 	}
1240 
1241       if (saw_fun == 0)
1242 	{
1243 	  info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1244 	  info->indextable[i].stab = last_stab;
1245 	  info->indextable[i].str = str;
1246 	  info->indextable[i].directory_name = directory_name;
1247 	  info->indextable[i].file_name = file_name;
1248 	  info->indextable[i].function_name = NULL;
1249 	  ++i;
1250 	}
1251 
1252       info->indextable[i].val = (bfd_vma) -1;
1253       info->indextable[i].stab = info->stabs + stabsize;
1254       info->indextable[i].str = str;
1255       info->indextable[i].directory_name = NULL;
1256       info->indextable[i].file_name = NULL;
1257       info->indextable[i].function_name = NULL;
1258       ++i;
1259 
1260       info->indextablesize = i;
1261       qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1262 	     cmpindexentry);
1263 
1264       *pinfo = info;
1265     }
1266 
1267   /* We are passed a section relative offset.  The offsets in the
1268      stabs information are absolute.  */
1269   offset += bfd_get_section_vma (abfd, section);
1270 
1271 #ifdef ENABLE_CACHING
1272   if (info->cached_indexentry != NULL
1273       && offset >= info->cached_offset
1274       && offset < (info->cached_indexentry + 1)->val)
1275     {
1276       stab = info->cached_stab;
1277       indexentry = info->cached_indexentry;
1278       file_name = info->cached_file_name;
1279     }
1280   else
1281 #endif
1282     {
1283       long low, high;
1284       long mid = -1;
1285 
1286       /* Cache non-existent or invalid.  Do binary search on
1287          indextable.  */
1288       indexentry = NULL;
1289 
1290       low = 0;
1291       high = info->indextablesize - 1;
1292       while (low != high)
1293 	{
1294 	  mid = (high + low) / 2;
1295 	  if (offset >= info->indextable[mid].val
1296 	      && offset < info->indextable[mid + 1].val)
1297 	    {
1298 	      indexentry = &info->indextable[mid];
1299 	      break;
1300 	    }
1301 
1302 	  if (info->indextable[mid].val > offset)
1303 	    high = mid;
1304 	  else
1305 	    low = mid + 1;
1306 	}
1307 
1308       if (indexentry == NULL)
1309 	return TRUE;
1310 
1311       stab = indexentry->stab + STABSIZE;
1312       file_name = indexentry->file_name;
1313     }
1314 
1315   directory_name = indexentry->directory_name;
1316   str = indexentry->str;
1317 
1318   saw_line = FALSE;
1319   saw_func = FALSE;
1320   for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1321     {
1322       bfd_boolean done;
1323       bfd_vma val;
1324 
1325       done = FALSE;
1326 
1327       switch (stab[TYPEOFF])
1328 	{
1329 	case N_SOL:
1330 	  /* The name of an include file.  */
1331 	  val = bfd_get_32 (abfd, stab + VALOFF);
1332 	  if (val <= offset)
1333 	    {
1334 	      file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1335 	      *pline = 0;
1336 	    }
1337 	  break;
1338 
1339 	case N_SLINE:
1340 	case N_DSLINE:
1341 	case N_BSLINE:
1342 	  /* A line number.  If the function was specified, then the value
1343 	     is relative to the start of the function.  Otherwise, the
1344 	     value is an absolute address.  */
1345 	  val = ((indexentry->function_name ? indexentry->val : 0)
1346 		 + bfd_get_32 (abfd, stab + VALOFF));
1347 	  /* If this line starts before our desired offset, or if it's
1348 	     the first line we've been able to find, use it.  The
1349 	     !saw_line check works around a bug in GCC 2.95.3, which emits
1350 	     the first N_SLINE late.  */
1351 	  if (!saw_line || val <= offset)
1352 	    {
1353 	      *pline = bfd_get_16 (abfd, stab + DESCOFF);
1354 
1355 #ifdef ENABLE_CACHING
1356 	      info->cached_stab = stab;
1357 	      info->cached_offset = val;
1358 	      info->cached_file_name = file_name;
1359 	      info->cached_indexentry = indexentry;
1360 #endif
1361 	    }
1362 	  if (val > offset)
1363 	    done = TRUE;
1364 	  saw_line = TRUE;
1365 	  break;
1366 
1367 	case N_FUN:
1368 	case N_SO:
1369 	  if (saw_func || saw_line)
1370 	    done = TRUE;
1371 	  saw_func = TRUE;
1372 	  break;
1373 	}
1374 
1375       if (done)
1376 	break;
1377     }
1378 
1379   *pfound = TRUE;
1380 
1381   if (file_name == NULL || IS_ABSOLUTE_PATH (file_name)
1382       || directory_name == NULL)
1383     *pfilename = file_name;
1384   else
1385     {
1386       size_t dirlen;
1387 
1388       dirlen = strlen (directory_name);
1389       if (info->filename == NULL
1390 	  || filename_ncmp (info->filename, directory_name, dirlen) != 0
1391 	  || filename_cmp (info->filename + dirlen, file_name) != 0)
1392 	{
1393 	  size_t len;
1394 
1395 	  /* Don't free info->filename here.  objdump and other
1396 	     apps keep a copy of a previously returned file name
1397 	     pointer.  */
1398 	  len = strlen (file_name) + 1;
1399 	  info->filename = (char *) bfd_alloc (abfd, dirlen + len);
1400 	  if (info->filename == NULL)
1401 	    return FALSE;
1402 	  memcpy (info->filename, directory_name, dirlen);
1403 	  memcpy (info->filename + dirlen, file_name, len);
1404 	}
1405 
1406       *pfilename = info->filename;
1407     }
1408 
1409   if (indexentry->function_name != NULL)
1410     {
1411       char *s;
1412 
1413       /* This will typically be something like main:F(0,1), so we want
1414          to clobber the colon.  It's OK to change the name, since the
1415          string is in our own local storage anyhow.  */
1416       s = strchr (indexentry->function_name, ':');
1417       if (s != NULL)
1418 	*s = '\0';
1419 
1420       *pfnname = indexentry->function_name;
1421     }
1422 
1423   return TRUE;
1424 }
1425