xref: /dragonfly/contrib/gdb-7/gdb/ax-gdb.c (revision e0ecab34)
1 /* GDB-specific functions for operating on agent expressions.
2 
3    Copyright (C) 1998, 1999, 2000, 2001, 2003, 2007, 2008, 2009
4    Free Software Foundation, Inc.
5 
6    This file is part of GDB.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20 
21 #include "defs.h"
22 #include "symtab.h"
23 #include "symfile.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "expression.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "frame.h"
30 #include "target.h"
31 #include "ax.h"
32 #include "ax-gdb.h"
33 #include "gdb_string.h"
34 #include "block.h"
35 #include "regcache.h"
36 #include "user-regs.h"
37 #include "language.h"
38 
39 /* To make sense of this file, you should read doc/agentexpr.texi.
40    Then look at the types and enums in ax-gdb.h.  For the code itself,
41    look at gen_expr, towards the bottom; that's the main function that
42    looks at the GDB expressions and calls everything else to generate
43    code.
44 
45    I'm beginning to wonder whether it wouldn't be nicer to internally
46    generate trees, with types, and then spit out the bytecode in
47    linear form afterwards; we could generate fewer `swap', `ext', and
48    `zero_ext' bytecodes that way; it would make good constant folding
49    easier, too.  But at the moment, I think we should be willing to
50    pay for the simplicity of this code with less-than-optimal bytecode
51    strings.
52 
53    Remember, "GBD" stands for "Great Britain, Dammit!"  So be careful.  */
54 
55 
56 
57 /* Prototypes for local functions. */
58 
59 /* There's a standard order to the arguments of these functions:
60    union exp_element ** --- pointer into expression
61    struct agent_expr * --- agent expression buffer to generate code into
62    struct axs_value * --- describes value left on top of stack  */
63 
64 static struct value *const_var_ref (struct symbol *var);
65 static struct value *const_expr (union exp_element **pc);
66 static struct value *maybe_const_expr (union exp_element **pc);
67 
68 static void gen_traced_pop (struct agent_expr *, struct axs_value *);
69 
70 static void gen_sign_extend (struct agent_expr *, struct type *);
71 static void gen_extend (struct agent_expr *, struct type *);
72 static void gen_fetch (struct agent_expr *, struct type *);
73 static void gen_left_shift (struct agent_expr *, int);
74 
75 
76 static void gen_frame_args_address (struct gdbarch *, struct agent_expr *);
77 static void gen_frame_locals_address (struct gdbarch *, struct agent_expr *);
78 static void gen_offset (struct agent_expr *ax, int offset);
79 static void gen_sym_offset (struct agent_expr *, struct symbol *);
80 static void gen_var_ref (struct gdbarch *, struct agent_expr *ax,
81 			 struct axs_value *value, struct symbol *var);
82 
83 
84 static void gen_int_literal (struct agent_expr *ax,
85 			     struct axs_value *value,
86 			     LONGEST k, struct type *type);
87 
88 
89 static void require_rvalue (struct agent_expr *ax, struct axs_value *value);
90 static void gen_usual_unary (struct expression *exp, struct agent_expr *ax,
91 			     struct axs_value *value);
92 static int type_wider_than (struct type *type1, struct type *type2);
93 static struct type *max_type (struct type *type1, struct type *type2);
94 static void gen_conversion (struct agent_expr *ax,
95 			    struct type *from, struct type *to);
96 static int is_nontrivial_conversion (struct type *from, struct type *to);
97 static void gen_usual_arithmetic (struct expression *exp,
98 				  struct agent_expr *ax,
99 				  struct axs_value *value1,
100 				  struct axs_value *value2);
101 static void gen_integral_promotions (struct expression *exp,
102 				     struct agent_expr *ax,
103 				     struct axs_value *value);
104 static void gen_cast (struct agent_expr *ax,
105 		      struct axs_value *value, struct type *type);
106 static void gen_scale (struct agent_expr *ax,
107 		       enum agent_op op, struct type *type);
108 static void gen_ptradd (struct agent_expr *ax, struct axs_value *value,
109 			struct axs_value *value1, struct axs_value *value2);
110 static void gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
111 			struct axs_value *value1, struct axs_value *value2);
112 static void gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
113 			 struct axs_value *value1, struct axs_value *value2,
114 			 struct type *result_type);
115 static void gen_binop (struct agent_expr *ax,
116 		       struct axs_value *value,
117 		       struct axs_value *value1,
118 		       struct axs_value *value2,
119 		       enum agent_op op,
120 		       enum agent_op op_unsigned, int may_carry, char *name);
121 static void gen_logical_not (struct agent_expr *ax, struct axs_value *value,
122 			     struct type *result_type);
123 static void gen_complement (struct agent_expr *ax, struct axs_value *value);
124 static void gen_deref (struct agent_expr *, struct axs_value *);
125 static void gen_address_of (struct agent_expr *, struct axs_value *);
126 static int find_field (struct type *type, char *name);
127 static void gen_bitfield_ref (struct expression *exp, struct agent_expr *ax,
128 			      struct axs_value *value,
129 			      struct type *type, int start, int end);
130 static void gen_struct_ref (struct expression *exp, struct agent_expr *ax,
131 			    struct axs_value *value,
132 			    char *field,
133 			    char *operator_name, char *operand_name);
134 static void gen_repeat (struct expression *exp, union exp_element **pc,
135 			struct agent_expr *ax, struct axs_value *value);
136 static void gen_sizeof (struct expression *exp, union exp_element **pc,
137 			struct agent_expr *ax, struct axs_value *value,
138 			struct type *size_type);
139 static void gen_expr (struct expression *exp, union exp_element **pc,
140 		      struct agent_expr *ax, struct axs_value *value);
141 
142 static void agent_command (char *exp, int from_tty);
143 
144 
145 /* Detecting constant expressions.  */
146 
147 /* If the variable reference at *PC is a constant, return its value.
148    Otherwise, return zero.
149 
150    Hey, Wally!  How can a variable reference be a constant?
151 
152    Well, Beav, this function really handles the OP_VAR_VALUE operator,
153    not specifically variable references.  GDB uses OP_VAR_VALUE to
154    refer to any kind of symbolic reference: function names, enum
155    elements, and goto labels are all handled through the OP_VAR_VALUE
156    operator, even though they're constants.  It makes sense given the
157    situation.
158 
159    Gee, Wally, don'cha wonder sometimes if data representations that
160    subvert commonly accepted definitions of terms in favor of heavily
161    context-specific interpretations are really just a tool of the
162    programming hegemony to preserve their power and exclude the
163    proletariat?  */
164 
165 static struct value *
166 const_var_ref (struct symbol *var)
167 {
168   struct type *type = SYMBOL_TYPE (var);
169 
170   switch (SYMBOL_CLASS (var))
171     {
172     case LOC_CONST:
173       return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var));
174 
175     case LOC_LABEL:
176       return value_from_pointer (type, (CORE_ADDR) SYMBOL_VALUE_ADDRESS (var));
177 
178     default:
179       return 0;
180     }
181 }
182 
183 
184 /* If the expression starting at *PC has a constant value, return it.
185    Otherwise, return zero.  If we return a value, then *PC will be
186    advanced to the end of it.  If we return zero, *PC could be
187    anywhere.  */
188 static struct value *
189 const_expr (union exp_element **pc)
190 {
191   enum exp_opcode op = (*pc)->opcode;
192   struct value *v1;
193 
194   switch (op)
195     {
196     case OP_LONG:
197       {
198 	struct type *type = (*pc)[1].type;
199 	LONGEST k = (*pc)[2].longconst;
200 	(*pc) += 4;
201 	return value_from_longest (type, k);
202       }
203 
204     case OP_VAR_VALUE:
205       {
206 	struct value *v = const_var_ref ((*pc)[2].symbol);
207 	(*pc) += 4;
208 	return v;
209       }
210 
211       /* We could add more operators in here.  */
212 
213     case UNOP_NEG:
214       (*pc)++;
215       v1 = const_expr (pc);
216       if (v1)
217 	return value_neg (v1);
218       else
219 	return 0;
220 
221     default:
222       return 0;
223     }
224 }
225 
226 
227 /* Like const_expr, but guarantee also that *PC is undisturbed if the
228    expression is not constant.  */
229 static struct value *
230 maybe_const_expr (union exp_element **pc)
231 {
232   union exp_element *tentative_pc = *pc;
233   struct value *v = const_expr (&tentative_pc);
234 
235   /* If we got a value, then update the real PC.  */
236   if (v)
237     *pc = tentative_pc;
238 
239   return v;
240 }
241 
242 
243 /* Generating bytecode from GDB expressions: general assumptions */
244 
245 /* Here are a few general assumptions made throughout the code; if you
246    want to make a change that contradicts one of these, then you'd
247    better scan things pretty thoroughly.
248 
249    - We assume that all values occupy one stack element.  For example,
250    sometimes we'll swap to get at the left argument to a binary
251    operator.  If we decide that void values should occupy no stack
252    elements, or that synthetic arrays (whose size is determined at
253    run time, created by the `@' operator) should occupy two stack
254    elements (address and length), then this will cause trouble.
255 
256    - We assume the stack elements are infinitely wide, and that we
257    don't have to worry what happens if the user requests an
258    operation that is wider than the actual interpreter's stack.
259    That is, it's up to the interpreter to handle directly all the
260    integer widths the user has access to.  (Woe betide the language
261    with bignums!)
262 
263    - We don't support side effects.  Thus, we don't have to worry about
264    GCC's generalized lvalues, function calls, etc.
265 
266    - We don't support floating point.  Many places where we switch on
267    some type don't bother to include cases for floating point; there
268    may be even more subtle ways this assumption exists.  For
269    example, the arguments to % must be integers.
270 
271    - We assume all subexpressions have a static, unchanging type.  If
272    we tried to support convenience variables, this would be a
273    problem.
274 
275    - All values on the stack should always be fully zero- or
276    sign-extended.
277 
278    (I wasn't sure whether to choose this or its opposite --- that
279    only addresses are assumed extended --- but it turns out that
280    neither convention completely eliminates spurious extend
281    operations (if everything is always extended, then you have to
282    extend after add, because it could overflow; if nothing is
283    extended, then you end up producing extends whenever you change
284    sizes), and this is simpler.)  */
285 
286 
287 /* Generating bytecode from GDB expressions: the `trace' kludge  */
288 
289 /* The compiler in this file is a general-purpose mechanism for
290    translating GDB expressions into bytecode.  One ought to be able to
291    find a million and one uses for it.
292 
293    However, at the moment it is HOPELESSLY BRAIN-DAMAGED for the sake
294    of expediency.  Let he who is without sin cast the first stone.
295 
296    For the data tracing facility, we need to insert `trace' bytecodes
297    before each data fetch; this records all the memory that the
298    expression touches in the course of evaluation, so that memory will
299    be available when the user later tries to evaluate the expression
300    in GDB.
301 
302    This should be done (I think) in a post-processing pass, that walks
303    an arbitrary agent expression and inserts `trace' operations at the
304    appropriate points.  But it's much faster to just hack them
305    directly into the code.  And since we're in a crunch, that's what
306    I've done.
307 
308    Setting the flag trace_kludge to non-zero enables the code that
309    emits the trace bytecodes at the appropriate points.  */
310 static int trace_kludge;
311 
312 /* Trace the lvalue on the stack, if it needs it.  In either case, pop
313    the value.  Useful on the left side of a comma, and at the end of
314    an expression being used for tracing.  */
315 static void
316 gen_traced_pop (struct agent_expr *ax, struct axs_value *value)
317 {
318   if (trace_kludge)
319     switch (value->kind)
320       {
321       case axs_rvalue:
322 	/* We don't trace rvalues, just the lvalues necessary to
323 	   produce them.  So just dispose of this value.  */
324 	ax_simple (ax, aop_pop);
325 	break;
326 
327       case axs_lvalue_memory:
328 	{
329 	  int length = TYPE_LENGTH (check_typedef (value->type));
330 
331 	  /* There's no point in trying to use a trace_quick bytecode
332 	     here, since "trace_quick SIZE pop" is three bytes, whereas
333 	     "const8 SIZE trace" is also three bytes, does the same
334 	     thing, and the simplest code which generates that will also
335 	     work correctly for objects with large sizes.  */
336 	  ax_const_l (ax, length);
337 	  ax_simple (ax, aop_trace);
338 	}
339 	break;
340 
341       case axs_lvalue_register:
342 	/* We need to mention the register somewhere in the bytecode,
343 	   so ax_reqs will pick it up and add it to the mask of
344 	   registers used.  */
345 	ax_reg (ax, value->u.reg);
346 	ax_simple (ax, aop_pop);
347 	break;
348       }
349   else
350     /* If we're not tracing, just pop the value.  */
351     ax_simple (ax, aop_pop);
352 }
353 
354 
355 
356 /* Generating bytecode from GDB expressions: helper functions */
357 
358 /* Assume that the lower bits of the top of the stack is a value of
359    type TYPE, and the upper bits are zero.  Sign-extend if necessary.  */
360 static void
361 gen_sign_extend (struct agent_expr *ax, struct type *type)
362 {
363   /* Do we need to sign-extend this?  */
364   if (!TYPE_UNSIGNED (type))
365     ax_ext (ax, TYPE_LENGTH (type) * TARGET_CHAR_BIT);
366 }
367 
368 
369 /* Assume the lower bits of the top of the stack hold a value of type
370    TYPE, and the upper bits are garbage.  Sign-extend or truncate as
371    needed.  */
372 static void
373 gen_extend (struct agent_expr *ax, struct type *type)
374 {
375   int bits = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
376   /* I just had to.  */
377   ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits));
378 }
379 
380 
381 /* Assume that the top of the stack contains a value of type "pointer
382    to TYPE"; generate code to fetch its value.  Note that TYPE is the
383    target type, not the pointer type.  */
384 static void
385 gen_fetch (struct agent_expr *ax, struct type *type)
386 {
387   if (trace_kludge)
388     {
389       /* Record the area of memory we're about to fetch.  */
390       ax_trace_quick (ax, TYPE_LENGTH (type));
391     }
392 
393   switch (TYPE_CODE (type))
394     {
395     case TYPE_CODE_PTR:
396     case TYPE_CODE_ENUM:
397     case TYPE_CODE_INT:
398     case TYPE_CODE_CHAR:
399       /* It's a scalar value, so we know how to dereference it.  How
400          many bytes long is it?  */
401       switch (TYPE_LENGTH (type))
402 	{
403 	case 8 / TARGET_CHAR_BIT:
404 	  ax_simple (ax, aop_ref8);
405 	  break;
406 	case 16 / TARGET_CHAR_BIT:
407 	  ax_simple (ax, aop_ref16);
408 	  break;
409 	case 32 / TARGET_CHAR_BIT:
410 	  ax_simple (ax, aop_ref32);
411 	  break;
412 	case 64 / TARGET_CHAR_BIT:
413 	  ax_simple (ax, aop_ref64);
414 	  break;
415 
416 	  /* Either our caller shouldn't have asked us to dereference
417 	     that pointer (other code's fault), or we're not
418 	     implementing something we should be (this code's fault).
419 	     In any case, it's a bug the user shouldn't see.  */
420 	default:
421 	  internal_error (__FILE__, __LINE__,
422 			  _("gen_fetch: strange size"));
423 	}
424 
425       gen_sign_extend (ax, type);
426       break;
427 
428     default:
429       /* Either our caller shouldn't have asked us to dereference that
430          pointer (other code's fault), or we're not implementing
431          something we should be (this code's fault).  In any case,
432          it's a bug the user shouldn't see.  */
433       internal_error (__FILE__, __LINE__,
434 		      _("gen_fetch: bad type code"));
435     }
436 }
437 
438 
439 /* Generate code to left shift the top of the stack by DISTANCE bits, or
440    right shift it by -DISTANCE bits if DISTANCE < 0.  This generates
441    unsigned (logical) right shifts.  */
442 static void
443 gen_left_shift (struct agent_expr *ax, int distance)
444 {
445   if (distance > 0)
446     {
447       ax_const_l (ax, distance);
448       ax_simple (ax, aop_lsh);
449     }
450   else if (distance < 0)
451     {
452       ax_const_l (ax, -distance);
453       ax_simple (ax, aop_rsh_unsigned);
454     }
455 }
456 
457 
458 
459 /* Generating bytecode from GDB expressions: symbol references */
460 
461 /* Generate code to push the base address of the argument portion of
462    the top stack frame.  */
463 static void
464 gen_frame_args_address (struct gdbarch *gdbarch, struct agent_expr *ax)
465 {
466   int frame_reg;
467   LONGEST frame_offset;
468 
469   gdbarch_virtual_frame_pointer (gdbarch,
470 				 ax->scope, &frame_reg, &frame_offset);
471   ax_reg (ax, frame_reg);
472   gen_offset (ax, frame_offset);
473 }
474 
475 
476 /* Generate code to push the base address of the locals portion of the
477    top stack frame.  */
478 static void
479 gen_frame_locals_address (struct gdbarch *gdbarch, struct agent_expr *ax)
480 {
481   int frame_reg;
482   LONGEST frame_offset;
483 
484   gdbarch_virtual_frame_pointer (gdbarch,
485 				 ax->scope, &frame_reg, &frame_offset);
486   ax_reg (ax, frame_reg);
487   gen_offset (ax, frame_offset);
488 }
489 
490 
491 /* Generate code to add OFFSET to the top of the stack.  Try to
492    generate short and readable code.  We use this for getting to
493    variables on the stack, and structure members.  If we were
494    programming in ML, it would be clearer why these are the same
495    thing.  */
496 static void
497 gen_offset (struct agent_expr *ax, int offset)
498 {
499   /* It would suffice to simply push the offset and add it, but this
500      makes it easier to read positive and negative offsets in the
501      bytecode.  */
502   if (offset > 0)
503     {
504       ax_const_l (ax, offset);
505       ax_simple (ax, aop_add);
506     }
507   else if (offset < 0)
508     {
509       ax_const_l (ax, -offset);
510       ax_simple (ax, aop_sub);
511     }
512 }
513 
514 
515 /* In many cases, a symbol's value is the offset from some other
516    address (stack frame, base register, etc.)  Generate code to add
517    VAR's value to the top of the stack.  */
518 static void
519 gen_sym_offset (struct agent_expr *ax, struct symbol *var)
520 {
521   gen_offset (ax, SYMBOL_VALUE (var));
522 }
523 
524 
525 /* Generate code for a variable reference to AX.  The variable is the
526    symbol VAR.  Set VALUE to describe the result.  */
527 
528 static void
529 gen_var_ref (struct gdbarch *gdbarch, struct agent_expr *ax,
530 	     struct axs_value *value, struct symbol *var)
531 {
532   /* Dereference any typedefs. */
533   value->type = check_typedef (SYMBOL_TYPE (var));
534 
535   /* I'm imitating the code in read_var_value.  */
536   switch (SYMBOL_CLASS (var))
537     {
538     case LOC_CONST:		/* A constant, like an enum value.  */
539       ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var));
540       value->kind = axs_rvalue;
541       break;
542 
543     case LOC_LABEL:		/* A goto label, being used as a value.  */
544       ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
545       value->kind = axs_rvalue;
546       break;
547 
548     case LOC_CONST_BYTES:
549       internal_error (__FILE__, __LINE__,
550 		      _("gen_var_ref: LOC_CONST_BYTES symbols are not supported"));
551 
552       /* Variable at a fixed location in memory.  Easy.  */
553     case LOC_STATIC:
554       /* Push the address of the variable.  */
555       ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var));
556       value->kind = axs_lvalue_memory;
557       break;
558 
559     case LOC_ARG:		/* var lives in argument area of frame */
560       gen_frame_args_address (gdbarch, ax);
561       gen_sym_offset (ax, var);
562       value->kind = axs_lvalue_memory;
563       break;
564 
565     case LOC_REF_ARG:		/* As above, but the frame slot really
566 				   holds the address of the variable.  */
567       gen_frame_args_address (gdbarch, ax);
568       gen_sym_offset (ax, var);
569       /* Don't assume any particular pointer size.  */
570       gen_fetch (ax, builtin_type (gdbarch)->builtin_data_ptr);
571       value->kind = axs_lvalue_memory;
572       break;
573 
574     case LOC_LOCAL:		/* var lives in locals area of frame */
575       gen_frame_locals_address (gdbarch, ax);
576       gen_sym_offset (ax, var);
577       value->kind = axs_lvalue_memory;
578       break;
579 
580     case LOC_TYPEDEF:
581       error (_("Cannot compute value of typedef `%s'."),
582 	     SYMBOL_PRINT_NAME (var));
583       break;
584 
585     case LOC_BLOCK:
586       ax_const_l (ax, BLOCK_START (SYMBOL_BLOCK_VALUE (var)));
587       value->kind = axs_rvalue;
588       break;
589 
590     case LOC_REGISTER:
591       /* Don't generate any code at all; in the process of treating
592          this as an lvalue or rvalue, the caller will generate the
593          right code.  */
594       value->kind = axs_lvalue_register;
595       value->u.reg = SYMBOL_REGISTER_OPS (var)->register_number (var, gdbarch);
596       break;
597 
598       /* A lot like LOC_REF_ARG, but the pointer lives directly in a
599          register, not on the stack.  Simpler than LOC_REGISTER
600          because it's just like any other case where the thing
601 	 has a real address.  */
602     case LOC_REGPARM_ADDR:
603       ax_reg (ax, SYMBOL_REGISTER_OPS (var)->register_number (var, gdbarch));
604       value->kind = axs_lvalue_memory;
605       break;
606 
607     case LOC_UNRESOLVED:
608       {
609 	struct minimal_symbol *msym
610 	  = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (var), NULL, NULL);
611 	if (!msym)
612 	  error (_("Couldn't resolve symbol `%s'."), SYMBOL_PRINT_NAME (var));
613 
614 	/* Push the address of the variable.  */
615 	ax_const_l (ax, SYMBOL_VALUE_ADDRESS (msym));
616 	value->kind = axs_lvalue_memory;
617       }
618       break;
619 
620     case LOC_COMPUTED:
621       /* FIXME: cagney/2004-01-26: It should be possible to
622 	 unconditionally call the SYMBOL_COMPUTED_OPS method when available.
623 	 Unfortunately DWARF 2 stores the frame-base (instead of the
624 	 function) location in a function's symbol.  Oops!  For the
625 	 moment enable this when/where applicable.  */
626       SYMBOL_COMPUTED_OPS (var)->tracepoint_var_ref (var, gdbarch, ax, value);
627       break;
628 
629     case LOC_OPTIMIZED_OUT:
630       error (_("The variable `%s' has been optimized out."),
631 	     SYMBOL_PRINT_NAME (var));
632       break;
633 
634     default:
635       error (_("Cannot find value of botched symbol `%s'."),
636 	     SYMBOL_PRINT_NAME (var));
637       break;
638     }
639 }
640 
641 
642 
643 /* Generating bytecode from GDB expressions: literals */
644 
645 static void
646 gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k,
647 		 struct type *type)
648 {
649   ax_const_l (ax, k);
650   value->kind = axs_rvalue;
651   value->type = check_typedef (type);
652 }
653 
654 
655 
656 /* Generating bytecode from GDB expressions: unary conversions, casts */
657 
658 /* Take what's on the top of the stack (as described by VALUE), and
659    try to make an rvalue out of it.  Signal an error if we can't do
660    that.  */
661 static void
662 require_rvalue (struct agent_expr *ax, struct axs_value *value)
663 {
664   switch (value->kind)
665     {
666     case axs_rvalue:
667       /* It's already an rvalue.  */
668       break;
669 
670     case axs_lvalue_memory:
671       /* The top of stack is the address of the object.  Dereference.  */
672       gen_fetch (ax, value->type);
673       break;
674 
675     case axs_lvalue_register:
676       /* There's nothing on the stack, but value->u.reg is the
677          register number containing the value.
678 
679          When we add floating-point support, this is going to have to
680          change.  What about SPARC register pairs, for example?  */
681       ax_reg (ax, value->u.reg);
682       gen_extend (ax, value->type);
683       break;
684     }
685 
686   value->kind = axs_rvalue;
687 }
688 
689 
690 /* Assume the top of the stack is described by VALUE, and perform the
691    usual unary conversions.  This is motivated by ANSI 6.2.2, but of
692    course GDB expressions are not ANSI; they're the mishmash union of
693    a bunch of languages.  Rah.
694 
695    NOTE!  This function promises to produce an rvalue only when the
696    incoming value is of an appropriate type.  In other words, the
697    consumer of the value this function produces may assume the value
698    is an rvalue only after checking its type.
699 
700    The immediate issue is that if the user tries to use a structure or
701    union as an operand of, say, the `+' operator, we don't want to try
702    to convert that structure to an rvalue; require_rvalue will bomb on
703    structs and unions.  Rather, we want to simply pass the struct
704    lvalue through unchanged, and let `+' raise an error.  */
705 
706 static void
707 gen_usual_unary (struct expression *exp, struct agent_expr *ax,
708 		 struct axs_value *value)
709 {
710   /* We don't have to generate any code for the usual integral
711      conversions, since values are always represented as full-width on
712      the stack.  Should we tweak the type?  */
713 
714   /* Some types require special handling.  */
715   switch (TYPE_CODE (value->type))
716     {
717       /* Functions get converted to a pointer to the function.  */
718     case TYPE_CODE_FUNC:
719       value->type = lookup_pointer_type (value->type);
720       value->kind = axs_rvalue;	/* Should always be true, but just in case.  */
721       break;
722 
723       /* Arrays get converted to a pointer to their first element, and
724          are no longer an lvalue.  */
725     case TYPE_CODE_ARRAY:
726       {
727 	struct type *elements = TYPE_TARGET_TYPE (value->type);
728 	value->type = lookup_pointer_type (elements);
729 	value->kind = axs_rvalue;
730 	/* We don't need to generate any code; the address of the array
731 	   is also the address of its first element.  */
732       }
733       break;
734 
735       /* Don't try to convert structures and unions to rvalues.  Let the
736          consumer signal an error.  */
737     case TYPE_CODE_STRUCT:
738     case TYPE_CODE_UNION:
739       return;
740 
741       /* If the value is an enum, call it an integer.  */
742     case TYPE_CODE_ENUM:
743       value->type = builtin_type (exp->gdbarch)->builtin_int;
744       break;
745     }
746 
747   /* If the value is an lvalue, dereference it.  */
748   require_rvalue (ax, value);
749 }
750 
751 
752 /* Return non-zero iff the type TYPE1 is considered "wider" than the
753    type TYPE2, according to the rules described in gen_usual_arithmetic.  */
754 static int
755 type_wider_than (struct type *type1, struct type *type2)
756 {
757   return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)
758 	  || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
759 	      && TYPE_UNSIGNED (type1)
760 	      && !TYPE_UNSIGNED (type2)));
761 }
762 
763 
764 /* Return the "wider" of the two types TYPE1 and TYPE2.  */
765 static struct type *
766 max_type (struct type *type1, struct type *type2)
767 {
768   return type_wider_than (type1, type2) ? type1 : type2;
769 }
770 
771 
772 /* Generate code to convert a scalar value of type FROM to type TO.  */
773 static void
774 gen_conversion (struct agent_expr *ax, struct type *from, struct type *to)
775 {
776   /* Perhaps there is a more graceful way to state these rules.  */
777 
778   /* If we're converting to a narrower type, then we need to clear out
779      the upper bits.  */
780   if (TYPE_LENGTH (to) < TYPE_LENGTH (from))
781     gen_extend (ax, from);
782 
783   /* If the two values have equal width, but different signednesses,
784      then we need to extend.  */
785   else if (TYPE_LENGTH (to) == TYPE_LENGTH (from))
786     {
787       if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to))
788 	gen_extend (ax, to);
789     }
790 
791   /* If we're converting to a wider type, and becoming unsigned, then
792      we need to zero out any possible sign bits.  */
793   else if (TYPE_LENGTH (to) > TYPE_LENGTH (from))
794     {
795       if (TYPE_UNSIGNED (to))
796 	gen_extend (ax, to);
797     }
798 }
799 
800 
801 /* Return non-zero iff the type FROM will require any bytecodes to be
802    emitted to be converted to the type TO.  */
803 static int
804 is_nontrivial_conversion (struct type *from, struct type *to)
805 {
806   struct agent_expr *ax = new_agent_expr (0);
807   int nontrivial;
808 
809   /* Actually generate the code, and see if anything came out.  At the
810      moment, it would be trivial to replicate the code in
811      gen_conversion here, but in the future, when we're supporting
812      floating point and the like, it may not be.  Doing things this
813      way allows this function to be independent of the logic in
814      gen_conversion.  */
815   gen_conversion (ax, from, to);
816   nontrivial = ax->len > 0;
817   free_agent_expr (ax);
818   return nontrivial;
819 }
820 
821 
822 /* Generate code to perform the "usual arithmetic conversions" (ANSI C
823    6.2.1.5) for the two operands of an arithmetic operator.  This
824    effectively finds a "least upper bound" type for the two arguments,
825    and promotes each argument to that type.  *VALUE1 and *VALUE2
826    describe the values as they are passed in, and as they are left.  */
827 static void
828 gen_usual_arithmetic (struct expression *exp, struct agent_expr *ax,
829 		      struct axs_value *value1, struct axs_value *value2)
830 {
831   /* Do the usual binary conversions.  */
832   if (TYPE_CODE (value1->type) == TYPE_CODE_INT
833       && TYPE_CODE (value2->type) == TYPE_CODE_INT)
834     {
835       /* The ANSI integral promotions seem to work this way: Order the
836          integer types by size, and then by signedness: an n-bit
837          unsigned type is considered "wider" than an n-bit signed
838          type.  Promote to the "wider" of the two types, and always
839          promote at least to int.  */
840       struct type *target = max_type (builtin_type (exp->gdbarch)->builtin_int,
841 				      max_type (value1->type, value2->type));
842 
843       /* Deal with value2, on the top of the stack.  */
844       gen_conversion (ax, value2->type, target);
845 
846       /* Deal with value1, not on the top of the stack.  Don't
847          generate the `swap' instructions if we're not actually going
848          to do anything.  */
849       if (is_nontrivial_conversion (value1->type, target))
850 	{
851 	  ax_simple (ax, aop_swap);
852 	  gen_conversion (ax, value1->type, target);
853 	  ax_simple (ax, aop_swap);
854 	}
855 
856       value1->type = value2->type = check_typedef (target);
857     }
858 }
859 
860 
861 /* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
862    the value on the top of the stack, as described by VALUE.  Assume
863    the value has integral type.  */
864 static void
865 gen_integral_promotions (struct expression *exp, struct agent_expr *ax,
866 			 struct axs_value *value)
867 {
868   const struct builtin_type *builtin = builtin_type (exp->gdbarch);
869 
870   if (!type_wider_than (value->type, builtin->builtin_int))
871     {
872       gen_conversion (ax, value->type, builtin->builtin_int);
873       value->type = builtin->builtin_int;
874     }
875   else if (!type_wider_than (value->type, builtin->builtin_unsigned_int))
876     {
877       gen_conversion (ax, value->type, builtin->builtin_unsigned_int);
878       value->type = builtin->builtin_unsigned_int;
879     }
880 }
881 
882 
883 /* Generate code for a cast to TYPE.  */
884 static void
885 gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type)
886 {
887   /* GCC does allow casts to yield lvalues, so this should be fixed
888      before merging these changes into the trunk.  */
889   require_rvalue (ax, value);
890   /* Dereference typedefs. */
891   type = check_typedef (type);
892 
893   switch (TYPE_CODE (type))
894     {
895     case TYPE_CODE_PTR:
896       /* It's implementation-defined, and I'll bet this is what GCC
897          does.  */
898       break;
899 
900     case TYPE_CODE_ARRAY:
901     case TYPE_CODE_STRUCT:
902     case TYPE_CODE_UNION:
903     case TYPE_CODE_FUNC:
904       error (_("Invalid type cast: intended type must be scalar."));
905 
906     case TYPE_CODE_ENUM:
907       /* We don't have to worry about the size of the value, because
908          all our integral values are fully sign-extended, and when
909          casting pointers we can do anything we like.  Is there any
910          way for us to know what GCC actually does with a cast like
911          this?  */
912       break;
913 
914     case TYPE_CODE_INT:
915       gen_conversion (ax, value->type, type);
916       break;
917 
918     case TYPE_CODE_VOID:
919       /* We could pop the value, and rely on everyone else to check
920          the type and notice that this value doesn't occupy a stack
921          slot.  But for now, leave the value on the stack, and
922          preserve the "value == stack element" assumption.  */
923       break;
924 
925     default:
926       error (_("Casts to requested type are not yet implemented."));
927     }
928 
929   value->type = type;
930 }
931 
932 
933 
934 /* Generating bytecode from GDB expressions: arithmetic */
935 
936 /* Scale the integer on the top of the stack by the size of the target
937    of the pointer type TYPE.  */
938 static void
939 gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type)
940 {
941   struct type *element = TYPE_TARGET_TYPE (type);
942 
943   if (TYPE_LENGTH (element) != 1)
944     {
945       ax_const_l (ax, TYPE_LENGTH (element));
946       ax_simple (ax, op);
947     }
948 }
949 
950 
951 /* Generate code for pointer arithmetic PTR + INT.  */
952 static void
953 gen_ptradd (struct agent_expr *ax, struct axs_value *value,
954 	    struct axs_value *value1, struct axs_value *value2)
955 {
956   gdb_assert (TYPE_CODE (value1->type) == TYPE_CODE_PTR);
957   gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT);
958 
959   gen_scale (ax, aop_mul, value1->type);
960   ax_simple (ax, aop_add);
961   gen_extend (ax, value1->type);	/* Catch overflow.  */
962   value->type = value1->type;
963   value->kind = axs_rvalue;
964 }
965 
966 
967 /* Generate code for pointer arithmetic PTR - INT.  */
968 static void
969 gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
970 	    struct axs_value *value1, struct axs_value *value2)
971 {
972   gdb_assert (TYPE_CODE (value1->type) == TYPE_CODE_PTR);
973   gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT);
974 
975   gen_scale (ax, aop_mul, value1->type);
976   ax_simple (ax, aop_sub);
977   gen_extend (ax, value1->type);	/* Catch overflow.  */
978   value->type = value1->type;
979   value->kind = axs_rvalue;
980 }
981 
982 
983 /* Generate code for pointer arithmetic PTR - PTR.  */
984 static void
985 gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
986 	     struct axs_value *value1, struct axs_value *value2,
987 	     struct type *result_type)
988 {
989   gdb_assert (TYPE_CODE (value1->type) == TYPE_CODE_PTR);
990   gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_PTR);
991 
992   if (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
993       != TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type)))
994     error (_("\
995 First argument of `-' is a pointer, but second argument is neither\n\
996 an integer nor a pointer of the same type."));
997 
998   ax_simple (ax, aop_sub);
999   gen_scale (ax, aop_div_unsigned, value1->type);
1000   value->type = result_type;
1001   value->kind = axs_rvalue;
1002 }
1003 
1004 
1005 /* Generate code for a binary operator that doesn't do pointer magic.
1006    We set VALUE to describe the result value; we assume VALUE1 and
1007    VALUE2 describe the two operands, and that they've undergone the
1008    usual binary conversions.  MAY_CARRY should be non-zero iff the
1009    result needs to be extended.  NAME is the English name of the
1010    operator, used in error messages */
1011 static void
1012 gen_binop (struct agent_expr *ax, struct axs_value *value,
1013 	   struct axs_value *value1, struct axs_value *value2, enum agent_op op,
1014 	   enum agent_op op_unsigned, int may_carry, char *name)
1015 {
1016   /* We only handle INT op INT.  */
1017   if ((TYPE_CODE (value1->type) != TYPE_CODE_INT)
1018       || (TYPE_CODE (value2->type) != TYPE_CODE_INT))
1019     error (_("Invalid combination of types in %s."), name);
1020 
1021   ax_simple (ax,
1022 	     TYPE_UNSIGNED (value1->type) ? op_unsigned : op);
1023   if (may_carry)
1024     gen_extend (ax, value1->type);	/* catch overflow */
1025   value->type = value1->type;
1026   value->kind = axs_rvalue;
1027 }
1028 
1029 
1030 static void
1031 gen_logical_not (struct agent_expr *ax, struct axs_value *value,
1032 		 struct type *result_type)
1033 {
1034   if (TYPE_CODE (value->type) != TYPE_CODE_INT
1035       && TYPE_CODE (value->type) != TYPE_CODE_PTR)
1036     error (_("Invalid type of operand to `!'."));
1037 
1038   ax_simple (ax, aop_log_not);
1039   value->type = result_type;
1040 }
1041 
1042 
1043 static void
1044 gen_complement (struct agent_expr *ax, struct axs_value *value)
1045 {
1046   if (TYPE_CODE (value->type) != TYPE_CODE_INT)
1047     error (_("Invalid type of operand to `~'."));
1048 
1049   ax_simple (ax, aop_bit_not);
1050   gen_extend (ax, value->type);
1051 }
1052 
1053 
1054 
1055 /* Generating bytecode from GDB expressions: * & . -> @ sizeof */
1056 
1057 /* Dereference the value on the top of the stack.  */
1058 static void
1059 gen_deref (struct agent_expr *ax, struct axs_value *value)
1060 {
1061   /* The caller should check the type, because several operators use
1062      this, and we don't know what error message to generate.  */
1063   if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1064     internal_error (__FILE__, __LINE__,
1065 		    _("gen_deref: expected a pointer"));
1066 
1067   /* We've got an rvalue now, which is a pointer.  We want to yield an
1068      lvalue, whose address is exactly that pointer.  So we don't
1069      actually emit any code; we just change the type from "Pointer to
1070      T" to "T", and mark the value as an lvalue in memory.  Leave it
1071      to the consumer to actually dereference it.  */
1072   value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
1073   value->kind = ((TYPE_CODE (value->type) == TYPE_CODE_FUNC)
1074 		 ? axs_rvalue : axs_lvalue_memory);
1075 }
1076 
1077 
1078 /* Produce the address of the lvalue on the top of the stack.  */
1079 static void
1080 gen_address_of (struct agent_expr *ax, struct axs_value *value)
1081 {
1082   /* Special case for taking the address of a function.  The ANSI
1083      standard describes this as a special case, too, so this
1084      arrangement is not without motivation.  */
1085   if (TYPE_CODE (value->type) == TYPE_CODE_FUNC)
1086     /* The value's already an rvalue on the stack, so we just need to
1087        change the type.  */
1088     value->type = lookup_pointer_type (value->type);
1089   else
1090     switch (value->kind)
1091       {
1092       case axs_rvalue:
1093 	error (_("Operand of `&' is an rvalue, which has no address."));
1094 
1095       case axs_lvalue_register:
1096 	error (_("Operand of `&' is in a register, and has no address."));
1097 
1098       case axs_lvalue_memory:
1099 	value->kind = axs_rvalue;
1100 	value->type = lookup_pointer_type (value->type);
1101 	break;
1102       }
1103 }
1104 
1105 
1106 /* A lot of this stuff will have to change to support C++.  But we're
1107    not going to deal with that at the moment.  */
1108 
1109 /* Find the field in the structure type TYPE named NAME, and return
1110    its index in TYPE's field array.  */
1111 static int
1112 find_field (struct type *type, char *name)
1113 {
1114   int i;
1115 
1116   CHECK_TYPEDEF (type);
1117 
1118   /* Make sure this isn't C++.  */
1119   if (TYPE_N_BASECLASSES (type) != 0)
1120     internal_error (__FILE__, __LINE__,
1121 		    _("find_field: derived classes supported"));
1122 
1123   for (i = 0; i < TYPE_NFIELDS (type); i++)
1124     {
1125       char *this_name = TYPE_FIELD_NAME (type, i);
1126 
1127       if (this_name)
1128 	{
1129 	  if (strcmp (name, this_name) == 0)
1130 	    return i;
1131 
1132 	  if (this_name[0] == '\0')
1133 	    internal_error (__FILE__, __LINE__,
1134 			    _("find_field: anonymous unions not supported"));
1135 	}
1136     }
1137 
1138   error (_("Couldn't find member named `%s' in struct/union `%s'"),
1139 	 name, TYPE_TAG_NAME (type));
1140 
1141   return 0;
1142 }
1143 
1144 
1145 /* Generate code to push the value of a bitfield of a structure whose
1146    address is on the top of the stack.  START and END give the
1147    starting and one-past-ending *bit* numbers of the field within the
1148    structure.  */
1149 static void
1150 gen_bitfield_ref (struct expression *exp, struct agent_expr *ax,
1151 		  struct axs_value *value, struct type *type,
1152 		  int start, int end)
1153 {
1154   /* Note that ops[i] fetches 8 << i bits.  */
1155   static enum agent_op ops[]
1156   =
1157   {aop_ref8, aop_ref16, aop_ref32, aop_ref64};
1158   static int num_ops = (sizeof (ops) / sizeof (ops[0]));
1159 
1160   /* We don't want to touch any byte that the bitfield doesn't
1161      actually occupy; we shouldn't make any accesses we're not
1162      explicitly permitted to.  We rely here on the fact that the
1163      bytecode `ref' operators work on unaligned addresses.
1164 
1165      It takes some fancy footwork to get the stack to work the way
1166      we'd like.  Say we're retrieving a bitfield that requires three
1167      fetches.  Initially, the stack just contains the address:
1168      addr
1169      For the first fetch, we duplicate the address
1170      addr addr
1171      then add the byte offset, do the fetch, and shift and mask as
1172      needed, yielding a fragment of the value, properly aligned for
1173      the final bitwise or:
1174      addr frag1
1175      then we swap, and repeat the process:
1176      frag1 addr                    --- address on top
1177      frag1 addr addr               --- duplicate it
1178      frag1 addr frag2              --- get second fragment
1179      frag1 frag2 addr              --- swap again
1180      frag1 frag2 frag3             --- get third fragment
1181      Notice that, since the third fragment is the last one, we don't
1182      bother duplicating the address this time.  Now we have all the
1183      fragments on the stack, and we can simply `or' them together,
1184      yielding the final value of the bitfield.  */
1185 
1186   /* The first and one-after-last bits in the field, but rounded down
1187      and up to byte boundaries.  */
1188   int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT;
1189   int bound_end = (((end + TARGET_CHAR_BIT - 1)
1190 		    / TARGET_CHAR_BIT)
1191 		   * TARGET_CHAR_BIT);
1192 
1193   /* current bit offset within the structure */
1194   int offset;
1195 
1196   /* The index in ops of the opcode we're considering.  */
1197   int op;
1198 
1199   /* The number of fragments we generated in the process.  Probably
1200      equal to the number of `one' bits in bytesize, but who cares?  */
1201   int fragment_count;
1202 
1203   /* Dereference any typedefs. */
1204   type = check_typedef (type);
1205 
1206   /* Can we fetch the number of bits requested at all?  */
1207   if ((end - start) > ((1 << num_ops) * 8))
1208     internal_error (__FILE__, __LINE__,
1209 		    _("gen_bitfield_ref: bitfield too wide"));
1210 
1211   /* Note that we know here that we only need to try each opcode once.
1212      That may not be true on machines with weird byte sizes.  */
1213   offset = bound_start;
1214   fragment_count = 0;
1215   for (op = num_ops - 1; op >= 0; op--)
1216     {
1217       /* number of bits that ops[op] would fetch */
1218       int op_size = 8 << op;
1219 
1220       /* The stack at this point, from bottom to top, contains zero or
1221          more fragments, then the address.  */
1222 
1223       /* Does this fetch fit within the bitfield?  */
1224       if (offset + op_size <= bound_end)
1225 	{
1226 	  /* Is this the last fragment?  */
1227 	  int last_frag = (offset + op_size == bound_end);
1228 
1229 	  if (!last_frag)
1230 	    ax_simple (ax, aop_dup);	/* keep a copy of the address */
1231 
1232 	  /* Add the offset.  */
1233 	  gen_offset (ax, offset / TARGET_CHAR_BIT);
1234 
1235 	  if (trace_kludge)
1236 	    {
1237 	      /* Record the area of memory we're about to fetch.  */
1238 	      ax_trace_quick (ax, op_size / TARGET_CHAR_BIT);
1239 	    }
1240 
1241 	  /* Perform the fetch.  */
1242 	  ax_simple (ax, ops[op]);
1243 
1244 	  /* Shift the bits we have to their proper position.
1245 	     gen_left_shift will generate right shifts when the operand
1246 	     is negative.
1247 
1248 	     A big-endian field diagram to ponder:
1249 	     byte 0  byte 1  byte 2  byte 3  byte 4  byte 5  byte 6  byte 7
1250 	     +------++------++------++------++------++------++------++------+
1251 	     xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
1252 	     ^               ^               ^    ^
1253 	     bit number      16              32              48   53
1254 	     These are bit numbers as supplied by GDB.  Note that the
1255 	     bit numbers run from right to left once you've fetched the
1256 	     value!
1257 
1258 	     A little-endian field diagram to ponder:
1259 	     byte 7  byte 6  byte 5  byte 4  byte 3  byte 2  byte 1  byte 0
1260 	     +------++------++------++------++------++------++------++------+
1261 	     xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
1262 	     ^               ^               ^           ^   ^
1263 	     bit number     48              32              16          4   0
1264 
1265 	     In both cases, the most significant end is on the left
1266 	     (i.e. normal numeric writing order), which means that you
1267 	     don't go crazy thinking about `left' and `right' shifts.
1268 
1269 	     We don't have to worry about masking yet:
1270 	     - If they contain garbage off the least significant end, then we
1271 	     must be looking at the low end of the field, and the right
1272 	     shift will wipe them out.
1273 	     - If they contain garbage off the most significant end, then we
1274 	     must be looking at the most significant end of the word, and
1275 	     the sign/zero extension will wipe them out.
1276 	     - If we're in the interior of the word, then there is no garbage
1277 	     on either end, because the ref operators zero-extend.  */
1278 	  if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
1279 	    gen_left_shift (ax, end - (offset + op_size));
1280 	  else
1281 	    gen_left_shift (ax, offset - start);
1282 
1283 	  if (!last_frag)
1284 	    /* Bring the copy of the address up to the top.  */
1285 	    ax_simple (ax, aop_swap);
1286 
1287 	  offset += op_size;
1288 	  fragment_count++;
1289 	}
1290     }
1291 
1292   /* Generate enough bitwise `or' operations to combine all the
1293      fragments we left on the stack.  */
1294   while (fragment_count-- > 1)
1295     ax_simple (ax, aop_bit_or);
1296 
1297   /* Sign- or zero-extend the value as appropriate.  */
1298   ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start));
1299 
1300   /* This is *not* an lvalue.  Ugh.  */
1301   value->kind = axs_rvalue;
1302   value->type = type;
1303 }
1304 
1305 
1306 /* Generate code to reference the member named FIELD of a structure or
1307    union.  The top of the stack, as described by VALUE, should have
1308    type (pointer to a)* struct/union.  OPERATOR_NAME is the name of
1309    the operator being compiled, and OPERAND_NAME is the kind of thing
1310    it operates on; we use them in error messages.  */
1311 static void
1312 gen_struct_ref (struct expression *exp, struct agent_expr *ax,
1313 		struct axs_value *value, char *field,
1314 		char *operator_name, char *operand_name)
1315 {
1316   struct type *type;
1317   int i;
1318 
1319   /* Follow pointers until we reach a non-pointer.  These aren't the C
1320      semantics, but they're what the normal GDB evaluator does, so we
1321      should at least be consistent.  */
1322   while (TYPE_CODE (value->type) == TYPE_CODE_PTR)
1323     {
1324       require_rvalue (ax, value);
1325       gen_deref (ax, value);
1326     }
1327   type = check_typedef (value->type);
1328 
1329   /* This must yield a structure or a union.  */
1330   if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1331       && TYPE_CODE (type) != TYPE_CODE_UNION)
1332     error (_("The left operand of `%s' is not a %s."),
1333 	   operator_name, operand_name);
1334 
1335   /* And it must be in memory; we don't deal with structure rvalues,
1336      or structures living in registers.  */
1337   if (value->kind != axs_lvalue_memory)
1338     error (_("Structure does not live in memory."));
1339 
1340   i = find_field (type, field);
1341 
1342   /* Is this a bitfield?  */
1343   if (TYPE_FIELD_PACKED (type, i))
1344     gen_bitfield_ref (exp, ax, value, TYPE_FIELD_TYPE (type, i),
1345 		      TYPE_FIELD_BITPOS (type, i),
1346 		      (TYPE_FIELD_BITPOS (type, i)
1347 		       + TYPE_FIELD_BITSIZE (type, i)));
1348   else
1349     {
1350       gen_offset (ax, TYPE_FIELD_BITPOS (type, i) / TARGET_CHAR_BIT);
1351       value->kind = axs_lvalue_memory;
1352       value->type = TYPE_FIELD_TYPE (type, i);
1353     }
1354 }
1355 
1356 
1357 /* Generate code for GDB's magical `repeat' operator.
1358    LVALUE @ INT creates an array INT elements long, and whose elements
1359    have the same type as LVALUE, located in memory so that LVALUE is
1360    its first element.  For example, argv[0]@argc gives you the array
1361    of command-line arguments.
1362 
1363    Unfortunately, because we have to know the types before we actually
1364    have a value for the expression, we can't implement this perfectly
1365    without changing the type system, having values that occupy two
1366    stack slots, doing weird things with sizeof, etc.  So we require
1367    the right operand to be a constant expression.  */
1368 static void
1369 gen_repeat (struct expression *exp, union exp_element **pc,
1370 	    struct agent_expr *ax, struct axs_value *value)
1371 {
1372   struct axs_value value1;
1373   /* We don't want to turn this into an rvalue, so no conversions
1374      here.  */
1375   gen_expr (exp, pc, ax, &value1);
1376   if (value1.kind != axs_lvalue_memory)
1377     error (_("Left operand of `@' must be an object in memory."));
1378 
1379   /* Evaluate the length; it had better be a constant.  */
1380   {
1381     struct value *v = const_expr (pc);
1382     int length;
1383 
1384     if (!v)
1385       error (_("Right operand of `@' must be a constant, in agent expressions."));
1386     if (TYPE_CODE (value_type (v)) != TYPE_CODE_INT)
1387       error (_("Right operand of `@' must be an integer."));
1388     length = value_as_long (v);
1389     if (length <= 0)
1390       error (_("Right operand of `@' must be positive."));
1391 
1392     /* The top of the stack is already the address of the object, so
1393        all we need to do is frob the type of the lvalue.  */
1394     {
1395       /* FIXME-type-allocation: need a way to free this type when we are
1396          done with it.  */
1397       struct type *array
1398 	= lookup_array_range_type (value1.type, 0, length - 1);
1399 
1400       value->kind = axs_lvalue_memory;
1401       value->type = array;
1402     }
1403   }
1404 }
1405 
1406 
1407 /* Emit code for the `sizeof' operator.
1408    *PC should point at the start of the operand expression; we advance it
1409    to the first instruction after the operand.  */
1410 static void
1411 gen_sizeof (struct expression *exp, union exp_element **pc,
1412 	    struct agent_expr *ax, struct axs_value *value,
1413 	    struct type *size_type)
1414 {
1415   /* We don't care about the value of the operand expression; we only
1416      care about its type.  However, in the current arrangement, the
1417      only way to find an expression's type is to generate code for it.
1418      So we generate code for the operand, and then throw it away,
1419      replacing it with code that simply pushes its size.  */
1420   int start = ax->len;
1421   gen_expr (exp, pc, ax, value);
1422 
1423   /* Throw away the code we just generated.  */
1424   ax->len = start;
1425 
1426   ax_const_l (ax, TYPE_LENGTH (value->type));
1427   value->kind = axs_rvalue;
1428   value->type = size_type;
1429 }
1430 
1431 
1432 /* Generating bytecode from GDB expressions: general recursive thingy  */
1433 
1434 /* XXX: i18n */
1435 /* A gen_expr function written by a Gen-X'er guy.
1436    Append code for the subexpression of EXPR starting at *POS_P to AX.  */
1437 static void
1438 gen_expr (struct expression *exp, union exp_element **pc,
1439 	  struct agent_expr *ax, struct axs_value *value)
1440 {
1441   /* Used to hold the descriptions of operand expressions.  */
1442   struct axs_value value1, value2;
1443   enum exp_opcode op = (*pc)[0].opcode;
1444 
1445   /* If we're looking at a constant expression, just push its value.  */
1446   {
1447     struct value *v = maybe_const_expr (pc);
1448 
1449     if (v)
1450       {
1451 	ax_const_l (ax, value_as_long (v));
1452 	value->kind = axs_rvalue;
1453 	value->type = check_typedef (value_type (v));
1454 	return;
1455       }
1456   }
1457 
1458   /* Otherwise, go ahead and generate code for it.  */
1459   switch (op)
1460     {
1461       /* Binary arithmetic operators.  */
1462     case BINOP_ADD:
1463     case BINOP_SUB:
1464     case BINOP_MUL:
1465     case BINOP_DIV:
1466     case BINOP_REM:
1467     case BINOP_SUBSCRIPT:
1468     case BINOP_BITWISE_AND:
1469     case BINOP_BITWISE_IOR:
1470     case BINOP_BITWISE_XOR:
1471     case BINOP_EQUAL:
1472     case BINOP_NOTEQUAL:
1473     case BINOP_LESS:
1474     case BINOP_GTR:
1475     case BINOP_LEQ:
1476     case BINOP_GEQ:
1477       (*pc)++;
1478       gen_expr (exp, pc, ax, &value1);
1479       gen_usual_unary (exp, ax, &value1);
1480       gen_expr (exp, pc, ax, &value2);
1481       gen_usual_unary (exp, ax, &value2);
1482       gen_usual_arithmetic (exp, ax, &value1, &value2);
1483       switch (op)
1484 	{
1485 	case BINOP_ADD:
1486 	  if (TYPE_CODE (value1.type) == TYPE_CODE_INT
1487 	      && TYPE_CODE (value2.type) == TYPE_CODE_PTR)
1488 	    {
1489 	      /* Swap the values and proceed normally.  */
1490 	      ax_simple (ax, aop_swap);
1491 	      gen_ptradd (ax, value, &value2, &value1);
1492 	    }
1493 	  else if (TYPE_CODE (value1.type) == TYPE_CODE_PTR
1494 		   && TYPE_CODE (value2.type) == TYPE_CODE_INT)
1495 	    gen_ptradd (ax, value, &value1, &value2);
1496 	  else
1497 	    gen_binop (ax, value, &value1, &value2,
1498 		       aop_add, aop_add, 1, "addition");
1499 	  break;
1500 	case BINOP_SUB:
1501 	  if (TYPE_CODE (value1.type) == TYPE_CODE_PTR
1502 	      && TYPE_CODE (value2.type) == TYPE_CODE_INT)
1503 	    gen_ptrsub (ax,value, &value1, &value2);
1504 	  else if (TYPE_CODE (value1.type) == TYPE_CODE_PTR
1505 		   && TYPE_CODE (value2.type) == TYPE_CODE_PTR)
1506 	    /* FIXME --- result type should be ptrdiff_t */
1507 	    gen_ptrdiff (ax, value, &value1, &value2,
1508 		         builtin_type (exp->gdbarch)->builtin_long);
1509 	  else
1510 	    gen_binop (ax, value, &value1, &value2,
1511 		       aop_sub, aop_sub, 1, "subtraction");
1512 	  break;
1513 	case BINOP_MUL:
1514 	  gen_binop (ax, value, &value1, &value2,
1515 		     aop_mul, aop_mul, 1, "multiplication");
1516 	  break;
1517 	case BINOP_DIV:
1518 	  gen_binop (ax, value, &value1, &value2,
1519 		     aop_div_signed, aop_div_unsigned, 1, "division");
1520 	  break;
1521 	case BINOP_REM:
1522 	  gen_binop (ax, value, &value1, &value2,
1523 		     aop_rem_signed, aop_rem_unsigned, 1, "remainder");
1524 	  break;
1525 	case BINOP_SUBSCRIPT:
1526 	  gen_ptradd (ax, value, &value1, &value2);
1527 	  if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1528 	    error (_("Invalid combination of types in array subscripting."));
1529 	  gen_deref (ax, value);
1530 	  break;
1531 	case BINOP_BITWISE_AND:
1532 	  gen_binop (ax, value, &value1, &value2,
1533 		     aop_bit_and, aop_bit_and, 0, "bitwise and");
1534 	  break;
1535 
1536 	case BINOP_BITWISE_IOR:
1537 	  gen_binop (ax, value, &value1, &value2,
1538 		     aop_bit_or, aop_bit_or, 0, "bitwise or");
1539 	  break;
1540 
1541 	case BINOP_BITWISE_XOR:
1542 	  gen_binop (ax, value, &value1, &value2,
1543 		     aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
1544 	  break;
1545 
1546 	case BINOP_EQUAL:
1547 	  gen_binop (ax, value, &value1, &value2,
1548 		     aop_equal, aop_equal, 0, "equal");
1549 	  break;
1550 
1551 	case BINOP_NOTEQUAL:
1552 	  gen_binop (ax, value, &value1, &value2,
1553 		     aop_equal, aop_equal, 0, "equal");
1554 	  gen_logical_not (ax, value,
1555 			   language_bool_type (exp->language_defn,
1556 					       exp->gdbarch));
1557 	  break;
1558 
1559 	case BINOP_LESS:
1560 	  gen_binop (ax, value, &value1, &value2,
1561 		     aop_less_signed, aop_less_unsigned, 0, "less than");
1562 	  break;
1563 
1564 	case BINOP_GTR:
1565 	  ax_simple (ax, aop_swap);
1566 	  gen_binop (ax, value, &value1, &value2,
1567 		     aop_less_signed, aop_less_unsigned, 0, "less than");
1568 	  break;
1569 
1570 	case BINOP_LEQ:
1571 	  ax_simple (ax, aop_swap);
1572 	  gen_binop (ax, value, &value1, &value2,
1573 		     aop_less_signed, aop_less_unsigned, 0, "less than");
1574 	  gen_logical_not (ax, value,
1575 			   language_bool_type (exp->language_defn,
1576 					       exp->gdbarch));
1577 	  break;
1578 
1579 	case BINOP_GEQ:
1580 	  gen_binop (ax, value, &value1, &value2,
1581 		     aop_less_signed, aop_less_unsigned, 0, "less than");
1582 	  gen_logical_not (ax, value,
1583 			   language_bool_type (exp->language_defn,
1584 					       exp->gdbarch));
1585 	  break;
1586 
1587 	default:
1588 	  /* We should only list operators in the outer case statement
1589 	     that we actually handle in the inner case statement.  */
1590 	  internal_error (__FILE__, __LINE__,
1591 			  _("gen_expr: op case sets don't match"));
1592 	}
1593       break;
1594 
1595       /* Note that we need to be a little subtle about generating code
1596          for comma.  In C, we can do some optimizations here because
1597          we know the left operand is only being evaluated for effect.
1598          However, if the tracing kludge is in effect, then we always
1599          need to evaluate the left hand side fully, so that all the
1600          variables it mentions get traced.  */
1601     case BINOP_COMMA:
1602       (*pc)++;
1603       gen_expr (exp, pc, ax, &value1);
1604       /* Don't just dispose of the left operand.  We might be tracing,
1605          in which case we want to emit code to trace it if it's an
1606          lvalue.  */
1607       gen_traced_pop (ax, &value1);
1608       gen_expr (exp, pc, ax, value);
1609       /* It's the consumer's responsibility to trace the right operand.  */
1610       break;
1611 
1612     case OP_LONG:		/* some integer constant */
1613       {
1614 	struct type *type = (*pc)[1].type;
1615 	LONGEST k = (*pc)[2].longconst;
1616 	(*pc) += 4;
1617 	gen_int_literal (ax, value, k, type);
1618       }
1619       break;
1620 
1621     case OP_VAR_VALUE:
1622       gen_var_ref (exp->gdbarch, ax, value, (*pc)[2].symbol);
1623       (*pc) += 4;
1624       break;
1625 
1626     case OP_REGISTER:
1627       {
1628 	const char *name = &(*pc)[2].string;
1629 	int reg;
1630 	(*pc) += 4 + BYTES_TO_EXP_ELEM ((*pc)[1].longconst + 1);
1631 	reg = user_reg_map_name_to_regnum (exp->gdbarch, name, strlen (name));
1632 	if (reg == -1)
1633 	  internal_error (__FILE__, __LINE__,
1634 			  _("Register $%s not available"), name);
1635 	if (reg >= gdbarch_num_regs (exp->gdbarch))
1636 	  error (_("'%s' is a pseudo-register; "
1637 		   "GDB cannot yet trace pseudoregister contents."),
1638 		 name);
1639 	value->kind = axs_lvalue_register;
1640 	value->u.reg = reg;
1641 	value->type = register_type (exp->gdbarch, reg);
1642       }
1643       break;
1644 
1645     case OP_INTERNALVAR:
1646       error (_("GDB agent expressions cannot use convenience variables."));
1647 
1648       /* Weirdo operator: see comments for gen_repeat for details.  */
1649     case BINOP_REPEAT:
1650       /* Note that gen_repeat handles its own argument evaluation.  */
1651       (*pc)++;
1652       gen_repeat (exp, pc, ax, value);
1653       break;
1654 
1655     case UNOP_CAST:
1656       {
1657 	struct type *type = (*pc)[1].type;
1658 	(*pc) += 3;
1659 	gen_expr (exp, pc, ax, value);
1660 	gen_cast (ax, value, type);
1661       }
1662       break;
1663 
1664     case UNOP_MEMVAL:
1665       {
1666 	struct type *type = check_typedef ((*pc)[1].type);
1667 	(*pc) += 3;
1668 	gen_expr (exp, pc, ax, value);
1669 	/* I'm not sure I understand UNOP_MEMVAL entirely.  I think
1670 	   it's just a hack for dealing with minsyms; you take some
1671 	   integer constant, pretend it's the address of an lvalue of
1672 	   the given type, and dereference it.  */
1673 	if (value->kind != axs_rvalue)
1674 	  /* This would be weird.  */
1675 	  internal_error (__FILE__, __LINE__,
1676 			  _("gen_expr: OP_MEMVAL operand isn't an rvalue???"));
1677 	value->type = type;
1678 	value->kind = axs_lvalue_memory;
1679       }
1680       break;
1681 
1682     case UNOP_PLUS:
1683       (*pc)++;
1684       /* + FOO is equivalent to 0 + FOO, which can be optimized. */
1685       gen_expr (exp, pc, ax, value);
1686       gen_usual_unary (exp, ax, value);
1687       break;
1688 
1689     case UNOP_NEG:
1690       (*pc)++;
1691       /* -FOO is equivalent to 0 - FOO.  */
1692       gen_int_literal (ax, &value1, 0,
1693 		       builtin_type (exp->gdbarch)->builtin_int);
1694       gen_usual_unary (exp, ax, &value1);	/* shouldn't do much */
1695       gen_expr (exp, pc, ax, &value2);
1696       gen_usual_unary (exp, ax, &value2);
1697       gen_usual_arithmetic (exp, ax, &value1, &value2);
1698       gen_binop (ax, value, &value1, &value2, aop_sub, aop_sub, 1, "negation");
1699       break;
1700 
1701     case UNOP_LOGICAL_NOT:
1702       (*pc)++;
1703       gen_expr (exp, pc, ax, value);
1704       gen_usual_unary (exp, ax, value);
1705       gen_logical_not (ax, value,
1706 		       language_bool_type (exp->language_defn, exp->gdbarch));
1707       break;
1708 
1709     case UNOP_COMPLEMENT:
1710       (*pc)++;
1711       gen_expr (exp, pc, ax, value);
1712       gen_usual_unary (exp, ax, value);
1713       gen_integral_promotions (exp, ax, value);
1714       gen_complement (ax, value);
1715       break;
1716 
1717     case UNOP_IND:
1718       (*pc)++;
1719       gen_expr (exp, pc, ax, value);
1720       gen_usual_unary (exp, ax, value);
1721       if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1722 	error (_("Argument of unary `*' is not a pointer."));
1723       gen_deref (ax, value);
1724       break;
1725 
1726     case UNOP_ADDR:
1727       (*pc)++;
1728       gen_expr (exp, pc, ax, value);
1729       gen_address_of (ax, value);
1730       break;
1731 
1732     case UNOP_SIZEOF:
1733       (*pc)++;
1734       /* Notice that gen_sizeof handles its own operand, unlike most
1735          of the other unary operator functions.  This is because we
1736          have to throw away the code we generate.  */
1737       gen_sizeof (exp, pc, ax, value,
1738 		  builtin_type (exp->gdbarch)->builtin_int);
1739       break;
1740 
1741     case STRUCTOP_STRUCT:
1742     case STRUCTOP_PTR:
1743       {
1744 	int length = (*pc)[1].longconst;
1745 	char *name = &(*pc)[2].string;
1746 
1747 	(*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1);
1748 	gen_expr (exp, pc, ax, value);
1749 	if (op == STRUCTOP_STRUCT)
1750 	  gen_struct_ref (exp, ax, value, name, ".", "structure or union");
1751 	else if (op == STRUCTOP_PTR)
1752 	  gen_struct_ref (exp, ax, value, name, "->",
1753 			  "pointer to a structure or union");
1754 	else
1755 	  /* If this `if' chain doesn't handle it, then the case list
1756 	     shouldn't mention it, and we shouldn't be here.  */
1757 	  internal_error (__FILE__, __LINE__,
1758 			  _("gen_expr: unhandled struct case"));
1759       }
1760       break;
1761 
1762     case OP_TYPE:
1763       error (_("Attempt to use a type name as an expression."));
1764 
1765     default:
1766       error (_("Unsupported operator in expression."));
1767     }
1768 }
1769 
1770 
1771 
1772 /* Generating bytecode from GDB expressions: driver */
1773 
1774 /* Given a GDB expression EXPR, return bytecode to trace its value.
1775    The result will use the `trace' and `trace_quick' bytecodes to
1776    record the value of all memory touched by the expression.  The
1777    caller can then use the ax_reqs function to discover which
1778    registers it relies upon.  */
1779 struct agent_expr *
1780 gen_trace_for_expr (CORE_ADDR scope, struct expression *expr)
1781 {
1782   struct cleanup *old_chain = 0;
1783   struct agent_expr *ax = new_agent_expr (scope);
1784   union exp_element *pc;
1785   struct axs_value value;
1786 
1787   old_chain = make_cleanup_free_agent_expr (ax);
1788 
1789   pc = expr->elts;
1790   trace_kludge = 1;
1791   gen_expr (expr, &pc, ax, &value);
1792 
1793   /* Make sure we record the final object, and get rid of it.  */
1794   gen_traced_pop (ax, &value);
1795 
1796   /* Oh, and terminate.  */
1797   ax_simple (ax, aop_end);
1798 
1799   /* We have successfully built the agent expr, so cancel the cleanup
1800      request.  If we add more cleanups that we always want done, this
1801      will have to get more complicated.  */
1802   discard_cleanups (old_chain);
1803   return ax;
1804 }
1805 
1806 /* Given a GDB expression EXPR, return a bytecode sequence that will
1807    evaluate and return a result.  The bytecodes will do a direct
1808    evaluation, using the current data on the target, rather than
1809    recording blocks of memory and registers for later use, as
1810    gen_trace_for_expr does.  The generated bytecode sequence leaves
1811    the result of expression evaluation on the top of the stack.  */
1812 
1813 struct agent_expr *
1814 gen_eval_for_expr (CORE_ADDR scope, struct expression *expr)
1815 {
1816   struct cleanup *old_chain = 0;
1817   struct agent_expr *ax = new_agent_expr (scope);
1818   union exp_element *pc;
1819   struct axs_value value;
1820 
1821   old_chain = make_cleanup_free_agent_expr (ax);
1822 
1823   pc = expr->elts;
1824   trace_kludge = 0;
1825   gen_expr (expr, &pc, ax, &value);
1826 
1827   /* Oh, and terminate.  */
1828   ax_simple (ax, aop_end);
1829 
1830   /* We have successfully built the agent expr, so cancel the cleanup
1831      request.  If we add more cleanups that we always want done, this
1832      will have to get more complicated.  */
1833   discard_cleanups (old_chain);
1834   return ax;
1835 }
1836 
1837 static void
1838 agent_command (char *exp, int from_tty)
1839 {
1840   struct cleanup *old_chain = 0;
1841   struct expression *expr;
1842   struct agent_expr *agent;
1843   struct frame_info *fi = get_current_frame ();	/* need current scope */
1844 
1845   /* We don't deal with overlay debugging at the moment.  We need to
1846      think more carefully about this.  If you copy this code into
1847      another command, change the error message; the user shouldn't
1848      have to know anything about agent expressions.  */
1849   if (overlay_debugging)
1850     error (_("GDB can't do agent expression translation with overlays."));
1851 
1852   if (exp == 0)
1853     error_no_arg (_("expression to translate"));
1854 
1855   expr = parse_expression (exp);
1856   old_chain = make_cleanup (free_current_contents, &expr);
1857   agent = gen_trace_for_expr (get_frame_pc (fi), expr);
1858   make_cleanup_free_agent_expr (agent);
1859   ax_print (gdb_stdout, agent);
1860 
1861   /* It would be nice to call ax_reqs here to gather some general info
1862      about the expression, and then print out the result.  */
1863 
1864   do_cleanups (old_chain);
1865   dont_repeat ();
1866 }
1867 
1868 /* Parse the given expression, compile it into an agent expression
1869    that does direct evaluation, and display the resulting
1870    expression.  */
1871 
1872 static void
1873 agent_eval_command (char *exp, int from_tty)
1874 {
1875   struct cleanup *old_chain = 0;
1876   struct expression *expr;
1877   struct agent_expr *agent;
1878   struct frame_info *fi = get_current_frame ();	/* need current scope */
1879 
1880   /* We don't deal with overlay debugging at the moment.  We need to
1881      think more carefully about this.  If you copy this code into
1882      another command, change the error message; the user shouldn't
1883      have to know anything about agent expressions.  */
1884   if (overlay_debugging)
1885     error (_("GDB can't do agent expression translation with overlays."));
1886 
1887   if (exp == 0)
1888     error_no_arg (_("expression to translate"));
1889 
1890   expr = parse_expression (exp);
1891   old_chain = make_cleanup (free_current_contents, &expr);
1892   agent = gen_eval_for_expr (get_frame_pc (fi), expr);
1893   make_cleanup_free_agent_expr (agent);
1894   ax_print (gdb_stdout, agent);
1895 
1896   /* It would be nice to call ax_reqs here to gather some general info
1897      about the expression, and then print out the result.  */
1898 
1899   do_cleanups (old_chain);
1900   dont_repeat ();
1901 }
1902 
1903 
1904 /* Initialization code.  */
1905 
1906 void _initialize_ax_gdb (void);
1907 void
1908 _initialize_ax_gdb (void)
1909 {
1910   add_cmd ("agent", class_maintenance, agent_command,
1911 	   _("Translate an expression into remote agent bytecode for tracing."),
1912 	   &maintenancelist);
1913 
1914   add_cmd ("agent-eval", class_maintenance, agent_eval_command,
1915 	   _("Translate an expression into remote agent bytecode for evaluation."),
1916 	   &maintenancelist);
1917 }
1918