xref: /dragonfly/contrib/gdb-7/gdb/ax-general.c (revision 52f9f0d9)
1 /* Functions for manipulating expressions designed to be executed on the agent
2    Copyright (C) 1998-2000, 2007-2012 Free Software Foundation, Inc.
3 
4    This file is part of GDB.
5 
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3 of the License, or
9    (at your option) any later version.
10 
11    This program is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
18 
19 /* Despite what the above comment says about this file being part of
20    GDB, we would like to keep these functions free of GDB
21    dependencies, since we want to be able to use them in contexts
22    outside of GDB (test suites, the stub, etc.)  */
23 
24 #include "defs.h"
25 #include "ax.h"
26 
27 #include "value.h"
28 #include "gdb_string.h"
29 
30 #include "user-regs.h"
31 
32 static void grow_expr (struct agent_expr *x, int n);
33 
34 static void append_const (struct agent_expr *x, LONGEST val, int n);
35 
36 static LONGEST read_const (struct agent_expr *x, int o, int n);
37 
38 static void generic_ext (struct agent_expr *x, enum agent_op op, int n);
39 
40 /* Functions for building expressions.  */
41 
42 /* Allocate a new, empty agent expression.  */
43 struct agent_expr *
44 new_agent_expr (struct gdbarch *gdbarch, CORE_ADDR scope)
45 {
46   struct agent_expr *x = xmalloc (sizeof (*x));
47 
48   x->len = 0;
49   x->size = 1;			/* Change this to a larger value once
50 				   reallocation code is tested.  */
51   x->buf = xmalloc (x->size);
52 
53   x->gdbarch = gdbarch;
54   x->scope = scope;
55 
56   /* Bit vector for registers used.  */
57   x->reg_mask_len = 1;
58   x->reg_mask = xmalloc (x->reg_mask_len * sizeof (x->reg_mask[0]));
59   memset (x->reg_mask, 0, x->reg_mask_len * sizeof (x->reg_mask[0]));
60 
61   return x;
62 }
63 
64 /* Free a agent expression.  */
65 void
66 free_agent_expr (struct agent_expr *x)
67 {
68   xfree (x->buf);
69   xfree (x->reg_mask);
70   xfree (x);
71 }
72 
73 static void
74 do_free_agent_expr_cleanup (void *x)
75 {
76   free_agent_expr (x);
77 }
78 
79 struct cleanup *
80 make_cleanup_free_agent_expr (struct agent_expr *x)
81 {
82   return make_cleanup (do_free_agent_expr_cleanup, x);
83 }
84 
85 
86 /* Make sure that X has room for at least N more bytes.  This doesn't
87    affect the length, just the allocated size.  */
88 static void
89 grow_expr (struct agent_expr *x, int n)
90 {
91   if (x->len + n > x->size)
92     {
93       x->size *= 2;
94       if (x->size < x->len + n)
95 	x->size = x->len + n + 10;
96       x->buf = xrealloc (x->buf, x->size);
97     }
98 }
99 
100 
101 /* Append the low N bytes of VAL as an N-byte integer to the
102    expression X, in big-endian order.  */
103 static void
104 append_const (struct agent_expr *x, LONGEST val, int n)
105 {
106   int i;
107 
108   grow_expr (x, n);
109   for (i = n - 1; i >= 0; i--)
110     {
111       x->buf[x->len + i] = val & 0xff;
112       val >>= 8;
113     }
114   x->len += n;
115 }
116 
117 
118 /* Extract an N-byte big-endian unsigned integer from expression X at
119    offset O.  */
120 static LONGEST
121 read_const (struct agent_expr *x, int o, int n)
122 {
123   int i;
124   LONGEST accum = 0;
125 
126   /* Make sure we're not reading off the end of the expression.  */
127   if (o + n > x->len)
128     error (_("GDB bug: ax-general.c (read_const): incomplete constant"));
129 
130   for (i = 0; i < n; i++)
131     accum = (accum << 8) | x->buf[o + i];
132 
133   return accum;
134 }
135 
136 
137 /* Append a simple operator OP to EXPR.  */
138 void
139 ax_simple (struct agent_expr *x, enum agent_op op)
140 {
141   grow_expr (x, 1);
142   x->buf[x->len++] = op;
143 }
144 
145 /* Append a pick operator to EXPR.  DEPTH is the stack item to pick,
146    with 0 being top of stack.  */
147 
148 void
149 ax_pick (struct agent_expr *x, int depth)
150 {
151   if (depth < 0 || depth > 255)
152     error (_("GDB bug: ax-general.c (ax_pick): stack depth out of range"));
153   ax_simple (x, aop_pick);
154   append_const (x, 1, depth);
155 }
156 
157 
158 /* Append a sign-extension or zero-extension instruction to EXPR, to
159    extend an N-bit value.  */
160 static void
161 generic_ext (struct agent_expr *x, enum agent_op op, int n)
162 {
163   /* N must fit in a byte.  */
164   if (n < 0 || n > 255)
165     error (_("GDB bug: ax-general.c (generic_ext): bit count out of range"));
166   /* That had better be enough range.  */
167   if (sizeof (LONGEST) * 8 > 255)
168     error (_("GDB bug: ax-general.c (generic_ext): "
169 	     "opcode has inadequate range"));
170 
171   grow_expr (x, 2);
172   x->buf[x->len++] = op;
173   x->buf[x->len++] = n;
174 }
175 
176 
177 /* Append a sign-extension instruction to EXPR, to extend an N-bit value.  */
178 void
179 ax_ext (struct agent_expr *x, int n)
180 {
181   generic_ext (x, aop_ext, n);
182 }
183 
184 
185 /* Append a zero-extension instruction to EXPR, to extend an N-bit value.  */
186 void
187 ax_zero_ext (struct agent_expr *x, int n)
188 {
189   generic_ext (x, aop_zero_ext, n);
190 }
191 
192 
193 /* Append a trace_quick instruction to EXPR, to record N bytes.  */
194 void
195 ax_trace_quick (struct agent_expr *x, int n)
196 {
197   /* N must fit in a byte.  */
198   if (n < 0 || n > 255)
199     error (_("GDB bug: ax-general.c (ax_trace_quick): "
200 	     "size out of range for trace_quick"));
201 
202   grow_expr (x, 2);
203   x->buf[x->len++] = aop_trace_quick;
204   x->buf[x->len++] = n;
205 }
206 
207 
208 /* Append a goto op to EXPR.  OP is the actual op (must be aop_goto or
209    aop_if_goto).  We assume we don't know the target offset yet,
210    because it's probably a forward branch, so we leave space in EXPR
211    for the target, and return the offset in EXPR of that space, so we
212    can backpatch it once we do know the target offset.  Use ax_label
213    to do the backpatching.  */
214 int
215 ax_goto (struct agent_expr *x, enum agent_op op)
216 {
217   grow_expr (x, 3);
218   x->buf[x->len + 0] = op;
219   x->buf[x->len + 1] = 0xff;
220   x->buf[x->len + 2] = 0xff;
221   x->len += 3;
222   return x->len - 2;
223 }
224 
225 /* Suppose a given call to ax_goto returns some value PATCH.  When you
226    know the offset TARGET that goto should jump to, call
227    ax_label (EXPR, PATCH, TARGET)
228    to patch TARGET into the ax_goto instruction.  */
229 void
230 ax_label (struct agent_expr *x, int patch, int target)
231 {
232   /* Make sure the value is in range.  Don't accept 0xffff as an
233      offset; that's our magic sentinel value for unpatched branches.  */
234   if (target < 0 || target >= 0xffff)
235     error (_("GDB bug: ax-general.c (ax_label): label target out of range"));
236 
237   x->buf[patch] = (target >> 8) & 0xff;
238   x->buf[patch + 1] = target & 0xff;
239 }
240 
241 
242 /* Assemble code to push a constant on the stack.  */
243 void
244 ax_const_l (struct agent_expr *x, LONGEST l)
245 {
246   static enum agent_op ops[]
247   =
248   {aop_const8, aop_const16, aop_const32, aop_const64};
249   int size;
250   int op;
251 
252   /* How big is the number?  'op' keeps track of which opcode to use.
253      Notice that we don't really care whether the original number was
254      signed or unsigned; we always reproduce the value exactly, and
255      use the shortest representation.  */
256   for (op = 0, size = 8; size < 64; size *= 2, op++)
257     {
258       LONGEST lim = ((LONGEST) 1) << (size - 1);
259 
260       if (-lim <= l && l <= lim - 1)
261         break;
262     }
263 
264   /* Emit the right opcode...  */
265   ax_simple (x, ops[op]);
266 
267   /* Emit the low SIZE bytes as an unsigned number.  We know that
268      sign-extending this will yield l.  */
269   append_const (x, l, size / 8);
270 
271   /* Now, if it was negative, and not full-sized, sign-extend it.  */
272   if (l < 0 && size < 64)
273     ax_ext (x, size);
274 }
275 
276 
277 void
278 ax_const_d (struct agent_expr *x, LONGEST d)
279 {
280   /* FIXME: floating-point support not present yet.  */
281   error (_("GDB bug: ax-general.c (ax_const_d): "
282 	   "floating point not supported yet"));
283 }
284 
285 
286 /* Assemble code to push the value of register number REG on the
287    stack.  */
288 void
289 ax_reg (struct agent_expr *x, int reg)
290 {
291   if (reg >= gdbarch_num_regs (x->gdbarch))
292     {
293       /* This is a pseudo-register.  */
294       if (!gdbarch_ax_pseudo_register_push_stack_p (x->gdbarch))
295 	error (_("'%s' is a pseudo-register; "
296 		 "GDB cannot yet trace its contents."),
297 	       user_reg_map_regnum_to_name (x->gdbarch, reg));
298       if (gdbarch_ax_pseudo_register_push_stack (x->gdbarch, x, reg))
299 	error (_("Trace '%s' failed."),
300 	       user_reg_map_regnum_to_name (x->gdbarch, reg));
301     }
302   else
303     {
304       /* Make sure the register number is in range.  */
305       if (reg < 0 || reg > 0xffff)
306         error (_("GDB bug: ax-general.c (ax_reg): "
307 		 "register number out of range"));
308       grow_expr (x, 3);
309       x->buf[x->len] = aop_reg;
310       x->buf[x->len + 1] = (reg >> 8) & 0xff;
311       x->buf[x->len + 2] = (reg) & 0xff;
312       x->len += 3;
313     }
314 }
315 
316 /* Assemble code to operate on a trace state variable.  */
317 
318 void
319 ax_tsv (struct agent_expr *x, enum agent_op op, int num)
320 {
321   /* Make sure the tsv number is in range.  */
322   if (num < 0 || num > 0xffff)
323     internal_error (__FILE__, __LINE__,
324 		    _("ax-general.c (ax_tsv): variable "
325 		      "number is %d, out of range"), num);
326 
327   grow_expr (x, 3);
328   x->buf[x->len] = op;
329   x->buf[x->len + 1] = (num >> 8) & 0xff;
330   x->buf[x->len + 2] = (num) & 0xff;
331   x->len += 3;
332 }
333 
334 
335 
336 /* Functions for disassembling agent expressions, and otherwise
337    debugging the expression compiler.  */
338 
339 struct aop_map aop_map[] =
340 {
341   {0, 0, 0, 0, 0}
342 #define DEFOP(NAME, SIZE, DATA_SIZE, CONSUMED, PRODUCED, VALUE) \
343   , { # NAME, SIZE, DATA_SIZE, CONSUMED, PRODUCED }
344 #include "ax.def"
345 #undef DEFOP
346 };
347 
348 
349 /* Disassemble the expression EXPR, writing to F.  */
350 void
351 ax_print (struct ui_file *f, struct agent_expr *x)
352 {
353   int i;
354   int is_float = 0;
355 
356   fprintf_filtered (f, _("Scope: %s\n"), paddress (x->gdbarch, x->scope));
357   fprintf_filtered (f, _("Reg mask:"));
358   for (i = 0; i < x->reg_mask_len; ++i)
359     fprintf_filtered (f, _(" %02x"), x->reg_mask[i]);
360   fprintf_filtered (f, _("\n"));
361 
362   /* Check the size of the name array against the number of entries in
363      the enum, to catch additions that people didn't sync.  */
364   if ((sizeof (aop_map) / sizeof (aop_map[0]))
365       != aop_last)
366     error (_("GDB bug: ax-general.c (ax_print): opcode map out of sync"));
367 
368   for (i = 0; i < x->len;)
369     {
370       enum agent_op op = x->buf[i];
371 
372       if (op >= (sizeof (aop_map) / sizeof (aop_map[0]))
373 	  || !aop_map[op].name)
374 	{
375 	  fprintf_filtered (f, _("%3d  <bad opcode %02x>\n"), i, op);
376 	  i++;
377 	  continue;
378 	}
379       if (i + 1 + aop_map[op].op_size > x->len)
380 	{
381 	  fprintf_filtered (f, _("%3d  <incomplete opcode %s>\n"),
382 			    i, aop_map[op].name);
383 	  break;
384 	}
385 
386       fprintf_filtered (f, "%3d  %s", i, aop_map[op].name);
387       if (aop_map[op].op_size > 0)
388 	{
389 	  fputs_filtered (" ", f);
390 
391 	  print_longest (f, 'd', 0,
392 			 read_const (x, i + 1, aop_map[op].op_size));
393 	}
394       fprintf_filtered (f, "\n");
395       i += 1 + aop_map[op].op_size;
396 
397       is_float = (op == aop_float);
398     }
399 }
400 
401 /* Add register REG to the register mask for expression AX.  */
402 void
403 ax_reg_mask (struct agent_expr *ax, int reg)
404 {
405   if (reg >= gdbarch_num_regs (ax->gdbarch))
406     {
407       /* This is a pseudo-register.  */
408       if (!gdbarch_ax_pseudo_register_collect_p (ax->gdbarch))
409 	error (_("'%s' is a pseudo-register; "
410 		 "GDB cannot yet trace its contents."),
411 	       user_reg_map_regnum_to_name (ax->gdbarch, reg));
412       if (gdbarch_ax_pseudo_register_collect (ax->gdbarch, ax, reg))
413 	error (_("Trace '%s' failed."),
414 	       user_reg_map_regnum_to_name (ax->gdbarch, reg));
415     }
416   else
417     {
418       int byte = reg / 8;
419 
420       /* Grow the bit mask if necessary.  */
421       if (byte >= ax->reg_mask_len)
422         {
423           /* It's not appropriate to double here.  This isn't a
424 	     string buffer.  */
425           int new_len = byte + 1;
426           unsigned char *new_reg_mask = xrealloc (ax->reg_mask,
427 					          new_len
428 					          * sizeof (ax->reg_mask[0]));
429           memset (new_reg_mask + ax->reg_mask_len, 0,
430 	          (new_len - ax->reg_mask_len) * sizeof (ax->reg_mask[0]));
431           ax->reg_mask_len = new_len;
432           ax->reg_mask = new_reg_mask;
433         }
434 
435       ax->reg_mask[byte] |= 1 << (reg % 8);
436     }
437 }
438 
439 /* Given an agent expression AX, fill in requirements and other descriptive
440    bits.  */
441 void
442 ax_reqs (struct agent_expr *ax)
443 {
444   int i;
445   int height;
446 
447   /* Jump target table.  targets[i] is non-zero iff we have found a
448      jump to offset i.  */
449   char *targets = (char *) alloca (ax->len * sizeof (targets[0]));
450 
451   /* Instruction boundary table.  boundary[i] is non-zero iff our scan
452      has reached an instruction starting at offset i.  */
453   char *boundary = (char *) alloca (ax->len * sizeof (boundary[0]));
454 
455   /* Stack height record.  If either targets[i] or boundary[i] is
456      non-zero, heights[i] is the height the stack should have before
457      executing the bytecode at that point.  */
458   int *heights = (int *) alloca (ax->len * sizeof (heights[0]));
459 
460   /* Pointer to a description of the present op.  */
461   struct aop_map *op;
462 
463   memset (targets, 0, ax->len * sizeof (targets[0]));
464   memset (boundary, 0, ax->len * sizeof (boundary[0]));
465 
466   ax->max_height = ax->min_height = height = 0;
467   ax->flaw = agent_flaw_none;
468   ax->max_data_size = 0;
469 
470   for (i = 0; i < ax->len; i += 1 + op->op_size)
471     {
472       if (ax->buf[i] > (sizeof (aop_map) / sizeof (aop_map[0])))
473 	{
474 	  ax->flaw = agent_flaw_bad_instruction;
475 	  return;
476 	}
477 
478       op = &aop_map[ax->buf[i]];
479 
480       if (!op->name)
481 	{
482 	  ax->flaw = agent_flaw_bad_instruction;
483 	  return;
484 	}
485 
486       if (i + 1 + op->op_size > ax->len)
487 	{
488 	  ax->flaw = agent_flaw_incomplete_instruction;
489 	  return;
490 	}
491 
492       /* If this instruction is a forward jump target, does the
493          current stack height match the stack height at the jump
494          source?  */
495       if (targets[i] && (heights[i] != height))
496 	{
497 	  ax->flaw = agent_flaw_height_mismatch;
498 	  return;
499 	}
500 
501       boundary[i] = 1;
502       heights[i] = height;
503 
504       height -= op->consumed;
505       if (height < ax->min_height)
506 	ax->min_height = height;
507       height += op->produced;
508       if (height > ax->max_height)
509 	ax->max_height = height;
510 
511       if (op->data_size > ax->max_data_size)
512 	ax->max_data_size = op->data_size;
513 
514       /* For jump instructions, check that the target is a valid
515          offset.  If it is, record the fact that that location is a
516          jump target, and record the height we expect there.  */
517       if (aop_goto == op - aop_map
518 	  || aop_if_goto == op - aop_map)
519 	{
520 	  int target = read_const (ax, i + 1, 2);
521 	  if (target < 0 || target >= ax->len)
522 	    {
523 	      ax->flaw = agent_flaw_bad_jump;
524 	      return;
525 	    }
526 
527 	  /* Do we have any information about what the stack height
528              should be at the target?  */
529 	  if (targets[target] || boundary[target])
530 	    {
531 	      if (heights[target] != height)
532 		{
533 		  ax->flaw = agent_flaw_height_mismatch;
534 		  return;
535 		}
536 	    }
537 
538           /* Record the target, along with the stack height we expect.  */
539           targets[target] = 1;
540           heights[target] = height;
541 	}
542 
543       /* For unconditional jumps with a successor, check that the
544          successor is a target, and pick up its stack height.  */
545       if (aop_goto == op - aop_map
546 	  && i + 3 < ax->len)
547 	{
548 	  if (!targets[i + 3])
549 	    {
550 	      ax->flaw = agent_flaw_hole;
551 	      return;
552 	    }
553 
554 	  height = heights[i + 3];
555 	}
556 
557       /* For reg instructions, record the register in the bit mask.  */
558       if (aop_reg == op - aop_map)
559 	{
560 	  int reg = read_const (ax, i + 1, 2);
561 
562 	  ax_reg_mask (ax, reg);
563 	}
564     }
565 
566   /* Check that all the targets are on boundaries.  */
567   for (i = 0; i < ax->len; i++)
568     if (targets[i] && !boundary[i])
569       {
570 	ax->flaw = agent_flaw_bad_jump;
571 	return;
572       }
573 
574   ax->final_height = height;
575 }
576