xref: /dragonfly/contrib/gdb-7/gdb/ax-general.c (revision d22a69a4)
1 /* Functions for manipulating expressions designed to be executed on the agent
2    Copyright (C) 1998, 1999, 2000, 2007, 2008, 2009, 2010, 2011
3    Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 /* Despite what the above comment says about this file being part of
21    GDB, we would like to keep these functions free of GDB
22    dependencies, since we want to be able to use them in contexts
23    outside of GDB (test suites, the stub, etc.)  */
24 
25 #include "defs.h"
26 #include "ax.h"
27 
28 #include "value.h"
29 #include "gdb_string.h"
30 
31 #include "user-regs.h"
32 
33 static void grow_expr (struct agent_expr *x, int n);
34 
35 static void append_const (struct agent_expr *x, LONGEST val, int n);
36 
37 static LONGEST read_const (struct agent_expr *x, int o, int n);
38 
39 static void generic_ext (struct agent_expr *x, enum agent_op op, int n);
40 
41 /* Functions for building expressions.  */
42 
43 /* Allocate a new, empty agent expression.  */
44 struct agent_expr *
45 new_agent_expr (struct gdbarch *gdbarch, CORE_ADDR scope)
46 {
47   struct agent_expr *x = xmalloc (sizeof (*x));
48 
49   x->len = 0;
50   x->size = 1;			/* Change this to a larger value once
51 				   reallocation code is tested.  */
52   x->buf = xmalloc (x->size);
53 
54   x->gdbarch = gdbarch;
55   x->scope = scope;
56 
57   /* Bit vector for registers used.  */
58   x->reg_mask_len = 1;
59   x->reg_mask = xmalloc (x->reg_mask_len * sizeof (x->reg_mask[0]));
60   memset (x->reg_mask, 0, x->reg_mask_len * sizeof (x->reg_mask[0]));
61 
62   return x;
63 }
64 
65 /* Free a agent expression.  */
66 void
67 free_agent_expr (struct agent_expr *x)
68 {
69   xfree (x->buf);
70   xfree (x->reg_mask);
71   xfree (x);
72 }
73 
74 static void
75 do_free_agent_expr_cleanup (void *x)
76 {
77   free_agent_expr (x);
78 }
79 
80 struct cleanup *
81 make_cleanup_free_agent_expr (struct agent_expr *x)
82 {
83   return make_cleanup (do_free_agent_expr_cleanup, x);
84 }
85 
86 
87 /* Make sure that X has room for at least N more bytes.  This doesn't
88    affect the length, just the allocated size.  */
89 static void
90 grow_expr (struct agent_expr *x, int n)
91 {
92   if (x->len + n > x->size)
93     {
94       x->size *= 2;
95       if (x->size < x->len + n)
96 	x->size = x->len + n + 10;
97       x->buf = xrealloc (x->buf, x->size);
98     }
99 }
100 
101 
102 /* Append the low N bytes of VAL as an N-byte integer to the
103    expression X, in big-endian order.  */
104 static void
105 append_const (struct agent_expr *x, LONGEST val, int n)
106 {
107   int i;
108 
109   grow_expr (x, n);
110   for (i = n - 1; i >= 0; i--)
111     {
112       x->buf[x->len + i] = val & 0xff;
113       val >>= 8;
114     }
115   x->len += n;
116 }
117 
118 
119 /* Extract an N-byte big-endian unsigned integer from expression X at
120    offset O.  */
121 static LONGEST
122 read_const (struct agent_expr *x, int o, int n)
123 {
124   int i;
125   LONGEST accum = 0;
126 
127   /* Make sure we're not reading off the end of the expression.  */
128   if (o + n > x->len)
129     error (_("GDB bug: ax-general.c (read_const): incomplete constant"));
130 
131   for (i = 0; i < n; i++)
132     accum = (accum << 8) | x->buf[o + i];
133 
134   return accum;
135 }
136 
137 
138 /* Append a simple operator OP to EXPR.  */
139 void
140 ax_simple (struct agent_expr *x, enum agent_op op)
141 {
142   grow_expr (x, 1);
143   x->buf[x->len++] = op;
144 }
145 
146 /* Append a pick operator to EXPR.  DEPTH is the stack item to pick,
147    with 0 being top of stack.  */
148 
149 void
150 ax_pick (struct agent_expr *x, int depth)
151 {
152   if (depth < 0 || depth > 255)
153     error (_("GDB bug: ax-general.c (ax_pick): stack depth out of range"));
154   ax_simple (x, aop_pick);
155   append_const (x, 1, depth);
156 }
157 
158 
159 /* Append a sign-extension or zero-extension instruction to EXPR, to
160    extend an N-bit value.  */
161 static void
162 generic_ext (struct agent_expr *x, enum agent_op op, int n)
163 {
164   /* N must fit in a byte.  */
165   if (n < 0 || n > 255)
166     error (_("GDB bug: ax-general.c (generic_ext): bit count out of range"));
167   /* That had better be enough range.  */
168   if (sizeof (LONGEST) * 8 > 255)
169     error (_("GDB bug: ax-general.c (generic_ext): "
170 	     "opcode has inadequate range"));
171 
172   grow_expr (x, 2);
173   x->buf[x->len++] = op;
174   x->buf[x->len++] = n;
175 }
176 
177 
178 /* Append a sign-extension instruction to EXPR, to extend an N-bit value.  */
179 void
180 ax_ext (struct agent_expr *x, int n)
181 {
182   generic_ext (x, aop_ext, n);
183 }
184 
185 
186 /* Append a zero-extension instruction to EXPR, to extend an N-bit value.  */
187 void
188 ax_zero_ext (struct agent_expr *x, int n)
189 {
190   generic_ext (x, aop_zero_ext, n);
191 }
192 
193 
194 /* Append a trace_quick instruction to EXPR, to record N bytes.  */
195 void
196 ax_trace_quick (struct agent_expr *x, int n)
197 {
198   /* N must fit in a byte.  */
199   if (n < 0 || n > 255)
200     error (_("GDB bug: ax-general.c (ax_trace_quick): "
201 	     "size out of range for trace_quick"));
202 
203   grow_expr (x, 2);
204   x->buf[x->len++] = aop_trace_quick;
205   x->buf[x->len++] = n;
206 }
207 
208 
209 /* Append a goto op to EXPR.  OP is the actual op (must be aop_goto or
210    aop_if_goto).  We assume we don't know the target offset yet,
211    because it's probably a forward branch, so we leave space in EXPR
212    for the target, and return the offset in EXPR of that space, so we
213    can backpatch it once we do know the target offset.  Use ax_label
214    to do the backpatching.  */
215 int
216 ax_goto (struct agent_expr *x, enum agent_op op)
217 {
218   grow_expr (x, 3);
219   x->buf[x->len + 0] = op;
220   x->buf[x->len + 1] = 0xff;
221   x->buf[x->len + 2] = 0xff;
222   x->len += 3;
223   return x->len - 2;
224 }
225 
226 /* Suppose a given call to ax_goto returns some value PATCH.  When you
227    know the offset TARGET that goto should jump to, call
228    ax_label (EXPR, PATCH, TARGET)
229    to patch TARGET into the ax_goto instruction.  */
230 void
231 ax_label (struct agent_expr *x, int patch, int target)
232 {
233   /* Make sure the value is in range.  Don't accept 0xffff as an
234      offset; that's our magic sentinel value for unpatched branches.  */
235   if (target < 0 || target >= 0xffff)
236     error (_("GDB bug: ax-general.c (ax_label): label target out of range"));
237 
238   x->buf[patch] = (target >> 8) & 0xff;
239   x->buf[patch + 1] = target & 0xff;
240 }
241 
242 
243 /* Assemble code to push a constant on the stack.  */
244 void
245 ax_const_l (struct agent_expr *x, LONGEST l)
246 {
247   static enum agent_op ops[]
248   =
249   {aop_const8, aop_const16, aop_const32, aop_const64};
250   int size;
251   int op;
252 
253   /* How big is the number?  'op' keeps track of which opcode to use.
254      Notice that we don't really care whether the original number was
255      signed or unsigned; we always reproduce the value exactly, and
256      use the shortest representation.  */
257   for (op = 0, size = 8; size < 64; size *= 2, op++)
258     {
259       LONGEST lim = ((LONGEST) 1) << (size - 1);
260 
261       if (-lim <= l && l <= lim - 1)
262         break;
263     }
264 
265   /* Emit the right opcode...  */
266   ax_simple (x, ops[op]);
267 
268   /* Emit the low SIZE bytes as an unsigned number.  We know that
269      sign-extending this will yield l.  */
270   append_const (x, l, size / 8);
271 
272   /* Now, if it was negative, and not full-sized, sign-extend it.  */
273   if (l < 0 && size < 64)
274     ax_ext (x, size);
275 }
276 
277 
278 void
279 ax_const_d (struct agent_expr *x, LONGEST d)
280 {
281   /* FIXME: floating-point support not present yet.  */
282   error (_("GDB bug: ax-general.c (ax_const_d): "
283 	   "floating point not supported yet"));
284 }
285 
286 
287 /* Assemble code to push the value of register number REG on the
288    stack.  */
289 void
290 ax_reg (struct agent_expr *x, int reg)
291 {
292   if (reg >= gdbarch_num_regs (x->gdbarch))
293     {
294       /* This is a pseudo-register.  */
295       if (!gdbarch_ax_pseudo_register_push_stack_p (x->gdbarch))
296 	error (_("'%s' is a pseudo-register; "
297 		 "GDB cannot yet trace its contents."),
298 	       user_reg_map_regnum_to_name (x->gdbarch, reg));
299       if (gdbarch_ax_pseudo_register_push_stack (x->gdbarch, x, reg))
300 	error (_("Trace '%s' failed."),
301 	       user_reg_map_regnum_to_name (x->gdbarch, reg));
302     }
303   else
304     {
305       /* Make sure the register number is in range.  */
306       if (reg < 0 || reg > 0xffff)
307         error (_("GDB bug: ax-general.c (ax_reg): "
308 		 "register number out of range"));
309       grow_expr (x, 3);
310       x->buf[x->len] = aop_reg;
311       x->buf[x->len + 1] = (reg >> 8) & 0xff;
312       x->buf[x->len + 2] = (reg) & 0xff;
313       x->len += 3;
314     }
315 }
316 
317 /* Assemble code to operate on a trace state variable.  */
318 
319 void
320 ax_tsv (struct agent_expr *x, enum agent_op op, int num)
321 {
322   /* Make sure the tsv number is in range.  */
323   if (num < 0 || num > 0xffff)
324     internal_error (__FILE__, __LINE__,
325 		    _("ax-general.c (ax_tsv): variable "
326 		      "number is %d, out of range"), num);
327 
328   grow_expr (x, 3);
329   x->buf[x->len] = op;
330   x->buf[x->len + 1] = (num >> 8) & 0xff;
331   x->buf[x->len + 2] = (num) & 0xff;
332   x->len += 3;
333 }
334 
335 
336 
337 /* Functions for disassembling agent expressions, and otherwise
338    debugging the expression compiler.  */
339 
340 struct aop_map aop_map[] =
341 {
342   {0, 0, 0, 0, 0}
343 #define DEFOP(NAME, SIZE, DATA_SIZE, CONSUMED, PRODUCED, VALUE) \
344   , { # NAME, SIZE, DATA_SIZE, CONSUMED, PRODUCED }
345 #include "ax.def"
346 #undef DEFOP
347 };
348 
349 
350 /* Disassemble the expression EXPR, writing to F.  */
351 void
352 ax_print (struct ui_file *f, struct agent_expr *x)
353 {
354   int i;
355   int is_float = 0;
356 
357   fprintf_filtered (f, _("Scope: %s\n"), paddress (x->gdbarch, x->scope));
358   fprintf_filtered (f, _("Reg mask:"));
359   for (i = 0; i < x->reg_mask_len; ++i)
360     fprintf_filtered (f, _(" %02x"), x->reg_mask[i]);
361   fprintf_filtered (f, _("\n"));
362 
363   /* Check the size of the name array against the number of entries in
364      the enum, to catch additions that people didn't sync.  */
365   if ((sizeof (aop_map) / sizeof (aop_map[0]))
366       != aop_last)
367     error (_("GDB bug: ax-general.c (ax_print): opcode map out of sync"));
368 
369   for (i = 0; i < x->len;)
370     {
371       enum agent_op op = x->buf[i];
372 
373       if (op >= (sizeof (aop_map) / sizeof (aop_map[0]))
374 	  || !aop_map[op].name)
375 	{
376 	  fprintf_filtered (f, _("%3d  <bad opcode %02x>\n"), i, op);
377 	  i++;
378 	  continue;
379 	}
380       if (i + 1 + aop_map[op].op_size > x->len)
381 	{
382 	  fprintf_filtered (f, _("%3d  <incomplete opcode %s>\n"),
383 			    i, aop_map[op].name);
384 	  break;
385 	}
386 
387       fprintf_filtered (f, "%3d  %s", i, aop_map[op].name);
388       if (aop_map[op].op_size > 0)
389 	{
390 	  fputs_filtered (" ", f);
391 
392 	  print_longest (f, 'd', 0,
393 			 read_const (x, i + 1, aop_map[op].op_size));
394 	}
395       fprintf_filtered (f, "\n");
396       i += 1 + aop_map[op].op_size;
397 
398       is_float = (op == aop_float);
399     }
400 }
401 
402 /* Add register REG to the register mask for expression AX.  */
403 void
404 ax_reg_mask (struct agent_expr *ax, int reg)
405 {
406   if (reg >= gdbarch_num_regs (ax->gdbarch))
407     {
408       /* This is a pseudo-register.  */
409       if (!gdbarch_ax_pseudo_register_collect_p (ax->gdbarch))
410 	error (_("'%s' is a pseudo-register; "
411 		 "GDB cannot yet trace its contents."),
412 	       user_reg_map_regnum_to_name (ax->gdbarch, reg));
413       if (gdbarch_ax_pseudo_register_collect (ax->gdbarch, ax, reg))
414 	error (_("Trace '%s' failed."),
415 	       user_reg_map_regnum_to_name (ax->gdbarch, reg));
416     }
417   else
418     {
419       int byte = reg / 8;
420 
421       /* Grow the bit mask if necessary.  */
422       if (byte >= ax->reg_mask_len)
423         {
424           /* It's not appropriate to double here.  This isn't a
425 	     string buffer.  */
426           int new_len = byte + 1;
427           unsigned char *new_reg_mask = xrealloc (ax->reg_mask,
428 					          new_len
429 					          * sizeof (ax->reg_mask[0]));
430           memset (new_reg_mask + ax->reg_mask_len, 0,
431 	          (new_len - ax->reg_mask_len) * sizeof (ax->reg_mask[0]));
432           ax->reg_mask_len = new_len;
433           ax->reg_mask = new_reg_mask;
434         }
435 
436       ax->reg_mask[byte] |= 1 << (reg % 8);
437     }
438 }
439 
440 /* Given an agent expression AX, fill in requirements and other descriptive
441    bits.  */
442 void
443 ax_reqs (struct agent_expr *ax)
444 {
445   int i;
446   int height;
447 
448   /* Jump target table.  targets[i] is non-zero iff we have found a
449      jump to offset i.  */
450   char *targets = (char *) alloca (ax->len * sizeof (targets[0]));
451 
452   /* Instruction boundary table.  boundary[i] is non-zero iff our scan
453      has reached an instruction starting at offset i.  */
454   char *boundary = (char *) alloca (ax->len * sizeof (boundary[0]));
455 
456   /* Stack height record.  If either targets[i] or boundary[i] is
457      non-zero, heights[i] is the height the stack should have before
458      executing the bytecode at that point.  */
459   int *heights = (int *) alloca (ax->len * sizeof (heights[0]));
460 
461   /* Pointer to a description of the present op.  */
462   struct aop_map *op;
463 
464   memset (targets, 0, ax->len * sizeof (targets[0]));
465   memset (boundary, 0, ax->len * sizeof (boundary[0]));
466 
467   ax->max_height = ax->min_height = height = 0;
468   ax->flaw = agent_flaw_none;
469   ax->max_data_size = 0;
470 
471   for (i = 0; i < ax->len; i += 1 + op->op_size)
472     {
473       if (ax->buf[i] > (sizeof (aop_map) / sizeof (aop_map[0])))
474 	{
475 	  ax->flaw = agent_flaw_bad_instruction;
476 	  return;
477 	}
478 
479       op = &aop_map[ax->buf[i]];
480 
481       if (!op->name)
482 	{
483 	  ax->flaw = agent_flaw_bad_instruction;
484 	  return;
485 	}
486 
487       if (i + 1 + op->op_size > ax->len)
488 	{
489 	  ax->flaw = agent_flaw_incomplete_instruction;
490 	  return;
491 	}
492 
493       /* If this instruction is a forward jump target, does the
494          current stack height match the stack height at the jump
495          source?  */
496       if (targets[i] && (heights[i] != height))
497 	{
498 	  ax->flaw = agent_flaw_height_mismatch;
499 	  return;
500 	}
501 
502       boundary[i] = 1;
503       heights[i] = height;
504 
505       height -= op->consumed;
506       if (height < ax->min_height)
507 	ax->min_height = height;
508       height += op->produced;
509       if (height > ax->max_height)
510 	ax->max_height = height;
511 
512       if (op->data_size > ax->max_data_size)
513 	ax->max_data_size = op->data_size;
514 
515       /* For jump instructions, check that the target is a valid
516          offset.  If it is, record the fact that that location is a
517          jump target, and record the height we expect there.  */
518       if (aop_goto == op - aop_map
519 	  || aop_if_goto == op - aop_map)
520 	{
521 	  int target = read_const (ax, i + 1, 2);
522 	  if (target < 0 || target >= ax->len)
523 	    {
524 	      ax->flaw = agent_flaw_bad_jump;
525 	      return;
526 	    }
527 
528 	  /* Do we have any information about what the stack height
529              should be at the target?  */
530 	  if (targets[target] || boundary[target])
531 	    {
532 	      if (heights[target] != height)
533 		{
534 		  ax->flaw = agent_flaw_height_mismatch;
535 		  return;
536 		}
537 	    }
538 
539           /* Record the target, along with the stack height we expect.  */
540           targets[target] = 1;
541           heights[target] = height;
542 	}
543 
544       /* For unconditional jumps with a successor, check that the
545          successor is a target, and pick up its stack height.  */
546       if (aop_goto == op - aop_map
547 	  && i + 3 < ax->len)
548 	{
549 	  if (!targets[i + 3])
550 	    {
551 	      ax->flaw = agent_flaw_hole;
552 	      return;
553 	    }
554 
555 	  height = heights[i + 3];
556 	}
557 
558       /* For reg instructions, record the register in the bit mask.  */
559       if (aop_reg == op - aop_map)
560 	{
561 	  int reg = read_const (ax, i + 1, 2);
562 
563 	  ax_reg_mask (ax, reg);
564 	}
565     }
566 
567   /* Check that all the targets are on boundaries.  */
568   for (i = 0; i < ax->len; i++)
569     if (targets[i] && !boundary[i])
570       {
571 	ax->flaw = agent_flaw_bad_jump;
572 	return;
573       }
574 
575   ax->final_height = height;
576 }
577