xref: /dragonfly/contrib/gdb-7/gdb/blockframe.c (revision 92fc8b5c)
1 /* Get info from stack frames; convert between frames, blocks,
2    functions and pc values.
3 
4    Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5    1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
6    2010 Free Software Foundation, Inc.
7 
8    This file is part of GDB.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation; either version 3 of the License, or
13    (at your option) any later version.
14 
15    This program is distributed in the hope that it will be useful,
16    but WITHOUT ANY WARRANTY; without even the implied warranty of
17    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18    GNU General Public License for more details.
19 
20    You should have received a copy of the GNU General Public License
21    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
22 
23 #include "defs.h"
24 #include "symtab.h"
25 #include "bfd.h"
26 #include "objfiles.h"
27 #include "frame.h"
28 #include "gdbcore.h"
29 #include "value.h"
30 #include "target.h"
31 #include "inferior.h"
32 #include "annotate.h"
33 #include "regcache.h"
34 #include "gdb_assert.h"
35 #include "dummy-frame.h"
36 #include "command.h"
37 #include "gdbcmd.h"
38 #include "block.h"
39 #include "inline-frame.h"
40 #include "psymtab.h"
41 
42 /* Return the innermost lexical block in execution
43    in a specified stack frame.  The frame address is assumed valid.
44 
45    If ADDR_IN_BLOCK is non-zero, set *ADDR_IN_BLOCK to the exact code
46    address we used to choose the block.  We use this to find a source
47    line, to decide which macro definitions are in scope.
48 
49    The value returned in *ADDR_IN_BLOCK isn't necessarily the frame's
50    PC, and may not really be a valid PC at all.  For example, in the
51    caller of a function declared to never return, the code at the
52    return address will never be reached, so the call instruction may
53    be the very last instruction in the block.  So the address we use
54    to choose the block is actually one byte before the return address
55    --- hopefully pointing us at the call instruction, or its delay
56    slot instruction.  */
57 
58 struct block *
59 get_frame_block (struct frame_info *frame, CORE_ADDR *addr_in_block)
60 {
61   const CORE_ADDR pc = get_frame_address_in_block (frame);
62   struct block *bl;
63   int inline_count;
64 
65   if (addr_in_block)
66     *addr_in_block = pc;
67 
68   bl = block_for_pc (pc);
69   if (bl == NULL)
70     return NULL;
71 
72   inline_count = frame_inlined_callees (frame);
73 
74   while (inline_count > 0)
75     {
76       if (block_inlined_p (bl))
77 	inline_count--;
78 
79       bl = BLOCK_SUPERBLOCK (bl);
80       gdb_assert (bl != NULL);
81     }
82 
83   return bl;
84 }
85 
86 CORE_ADDR
87 get_pc_function_start (CORE_ADDR pc)
88 {
89   struct block *bl;
90   struct minimal_symbol *msymbol;
91 
92   bl = block_for_pc (pc);
93   if (bl)
94     {
95       struct symbol *symbol = block_linkage_function (bl);
96 
97       if (symbol)
98 	{
99 	  bl = SYMBOL_BLOCK_VALUE (symbol);
100 	  return BLOCK_START (bl);
101 	}
102     }
103 
104   msymbol = lookup_minimal_symbol_by_pc (pc);
105   if (msymbol)
106     {
107       CORE_ADDR fstart = SYMBOL_VALUE_ADDRESS (msymbol);
108 
109       if (find_pc_section (fstart))
110 	return fstart;
111     }
112 
113   return 0;
114 }
115 
116 /* Return the symbol for the function executing in frame FRAME.  */
117 
118 struct symbol *
119 get_frame_function (struct frame_info *frame)
120 {
121   struct block *bl = get_frame_block (frame, 0);
122 
123   if (bl == NULL)
124     return NULL;
125 
126   while (BLOCK_FUNCTION (bl) == NULL && BLOCK_SUPERBLOCK (bl) != NULL)
127     bl = BLOCK_SUPERBLOCK (bl);
128 
129   return BLOCK_FUNCTION (bl);
130 }
131 
132 
133 /* Return the function containing pc value PC in section SECTION.
134    Returns 0 if function is not known.  */
135 
136 struct symbol *
137 find_pc_sect_function (CORE_ADDR pc, struct obj_section *section)
138 {
139   struct block *b = block_for_pc_sect (pc, section);
140 
141   if (b == 0)
142     return 0;
143   return block_linkage_function (b);
144 }
145 
146 /* Return the function containing pc value PC.
147    Returns 0 if function is not known.  Backward compatibility, no section */
148 
149 struct symbol *
150 find_pc_function (CORE_ADDR pc)
151 {
152   return find_pc_sect_function (pc, find_pc_mapped_section (pc));
153 }
154 
155 /* These variables are used to cache the most recent result
156  * of find_pc_partial_function. */
157 
158 static CORE_ADDR cache_pc_function_low = 0;
159 static CORE_ADDR cache_pc_function_high = 0;
160 static char *cache_pc_function_name = 0;
161 static struct obj_section *cache_pc_function_section = NULL;
162 
163 /* Clear cache, e.g. when symbol table is discarded. */
164 
165 void
166 clear_pc_function_cache (void)
167 {
168   cache_pc_function_low = 0;
169   cache_pc_function_high = 0;
170   cache_pc_function_name = (char *) 0;
171   cache_pc_function_section = NULL;
172 }
173 
174 /* Finds the "function" (text symbol) that is smaller than PC but
175    greatest of all of the potential text symbols in SECTION.  Sets
176    *NAME and/or *ADDRESS conditionally if that pointer is non-null.
177    If ENDADDR is non-null, then set *ENDADDR to be the end of the
178    function (exclusive), but passing ENDADDR as non-null means that
179    the function might cause symbols to be read.  This function either
180    succeeds or fails (not halfway succeeds).  If it succeeds, it sets
181    *NAME, *ADDRESS, and *ENDADDR to real information and returns 1.
182    If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and
183    returns 0.  */
184 
185 /* Backward compatibility, no section argument.  */
186 
187 int
188 find_pc_partial_function (CORE_ADDR pc, char **name, CORE_ADDR *address,
189 			  CORE_ADDR *endaddr)
190 {
191   struct obj_section *section;
192   struct symbol *f;
193   struct minimal_symbol *msymbol;
194   struct symtab *symtab = NULL;
195   struct objfile *objfile;
196   int i;
197   CORE_ADDR mapped_pc;
198 
199   /* To ensure that the symbol returned belongs to the correct setion
200      (and that the last [random] symbol from the previous section
201      isn't returned) try to find the section containing PC.  First try
202      the overlay code (which by default returns NULL); and second try
203      the normal section code (which almost always succeeds).  */
204   section = find_pc_overlay (pc);
205   if (section == NULL)
206     section = find_pc_section (pc);
207 
208   mapped_pc = overlay_mapped_address (pc, section);
209 
210   if (mapped_pc >= cache_pc_function_low
211       && mapped_pc < cache_pc_function_high
212       && section == cache_pc_function_section)
213     goto return_cached_value;
214 
215   msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section);
216   ALL_OBJFILES (objfile)
217   {
218     if (objfile->sf)
219       symtab = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
220 						     mapped_pc, section, 0);
221     if (symtab)
222       break;
223   }
224 
225   if (symtab)
226     {
227       /* Checking whether the msymbol has a larger value is for the
228 	 "pathological" case mentioned in print_frame_info.  */
229       f = find_pc_sect_function (mapped_pc, section);
230       if (f != NULL
231 	  && (msymbol == NULL
232 	      || (BLOCK_START (SYMBOL_BLOCK_VALUE (f))
233 		  >= SYMBOL_VALUE_ADDRESS (msymbol))))
234 	{
235 	  cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
236 	  cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
237 	  cache_pc_function_name = SYMBOL_LINKAGE_NAME (f);
238 	  cache_pc_function_section = section;
239 	  goto return_cached_value;
240 	}
241     }
242 
243   /* Not in the normal symbol tables, see if the pc is in a known section.
244      If it's not, then give up.  This ensures that anything beyond the end
245      of the text seg doesn't appear to be part of the last function in the
246      text segment.  */
247 
248   if (!section)
249     msymbol = NULL;
250 
251   /* Must be in the minimal symbol table.  */
252   if (msymbol == NULL)
253     {
254       /* No available symbol.  */
255       if (name != NULL)
256 	*name = 0;
257       if (address != NULL)
258 	*address = 0;
259       if (endaddr != NULL)
260 	*endaddr = 0;
261       return 0;
262     }
263 
264   cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
265   cache_pc_function_name = SYMBOL_LINKAGE_NAME (msymbol);
266   cache_pc_function_section = section;
267 
268   /* If the minimal symbol has a size, use it for the cache.
269      Otherwise use the lesser of the next minimal symbol in the same
270      section, or the end of the section, as the end of the
271      function.  */
272 
273   if (MSYMBOL_SIZE (msymbol) != 0)
274     cache_pc_function_high = cache_pc_function_low + MSYMBOL_SIZE (msymbol);
275   else
276     {
277       /* Step over other symbols at this same address, and symbols in
278 	 other sections, to find the next symbol in this section with
279 	 a different address.  */
280 
281       for (i = 1; SYMBOL_LINKAGE_NAME (msymbol + i) != NULL; i++)
282 	{
283 	  if (SYMBOL_VALUE_ADDRESS (msymbol + i) != SYMBOL_VALUE_ADDRESS (msymbol)
284 	      && SYMBOL_OBJ_SECTION (msymbol + i) == SYMBOL_OBJ_SECTION (msymbol))
285 	    break;
286 	}
287 
288       if (SYMBOL_LINKAGE_NAME (msymbol + i) != NULL
289 	  && SYMBOL_VALUE_ADDRESS (msymbol + i) < obj_section_endaddr (section))
290 	cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i);
291       else
292 	/* We got the start address from the last msymbol in the objfile.
293 	   So the end address is the end of the section.  */
294 	cache_pc_function_high = obj_section_endaddr (section);
295     }
296 
297  return_cached_value:
298 
299   if (address)
300     {
301       if (pc_in_unmapped_range (pc, section))
302 	*address = overlay_unmapped_address (cache_pc_function_low, section);
303       else
304 	*address = cache_pc_function_low;
305     }
306 
307   if (name)
308     *name = cache_pc_function_name;
309 
310   if (endaddr)
311     {
312       if (pc_in_unmapped_range (pc, section))
313 	{
314 	  /* Because the high address is actually beyond the end of
315 	     the function (and therefore possibly beyond the end of
316 	     the overlay), we must actually convert (high - 1) and
317 	     then add one to that. */
318 
319 	  *endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1,
320 						   section);
321 	}
322       else
323 	*endaddr = cache_pc_function_high;
324     }
325 
326   return 1;
327 }
328 
329 /* Return the innermost stack frame executing inside of BLOCK,
330    or NULL if there is no such frame.  If BLOCK is NULL, just return NULL.  */
331 
332 struct frame_info *
333 block_innermost_frame (struct block *block)
334 {
335   struct frame_info *frame;
336   CORE_ADDR start;
337   CORE_ADDR end;
338 
339   if (block == NULL)
340     return NULL;
341 
342   start = BLOCK_START (block);
343   end = BLOCK_END (block);
344 
345   frame = get_current_frame ();
346   while (frame != NULL)
347     {
348       struct block *frame_block = get_frame_block (frame, NULL);
349       if (frame_block != NULL && contained_in (frame_block, block))
350 	return frame;
351 
352       frame = get_prev_frame (frame);
353     }
354 
355   return NULL;
356 }
357