xref: /dragonfly/contrib/gdb-7/gdb/buildsym.c (revision 52f9f0d9)
1 /* Support routines for building symbol tables in GDB's internal format.
2    Copyright (C) 1986-2004, 2007-2012 Free Software Foundation, Inc.
3 
4    This file is part of GDB.
5 
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3 of the License, or
9    (at your option) any later version.
10 
11    This program is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
18 
19 /* This module provides subroutines used for creating and adding to
20    the symbol table.  These routines are called from various symbol-
21    file-reading routines.
22 
23    Routines to support specific debugging information formats (stabs,
24    DWARF, etc) belong somewhere else.  */
25 
26 #include "defs.h"
27 #include "bfd.h"
28 #include "gdb_obstack.h"
29 #include "symtab.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdbtypes.h"
33 #include "gdb_assert.h"
34 #include "complaints.h"
35 #include "gdb_string.h"
36 #include "expression.h"		/* For "enum exp_opcode" used by...  */
37 #include "bcache.h"
38 #include "filenames.h"		/* For DOSish file names.  */
39 #include "macrotab.h"
40 #include "demangle.h"		/* Needed by SYMBOL_INIT_DEMANGLED_NAME.  */
41 #include "block.h"
42 #include "cp-support.h"
43 #include "dictionary.h"
44 #include "addrmap.h"
45 
46 /* Ask buildsym.h to define the vars it normally declares `extern'.  */
47 #define	EXTERN
48 /**/
49 #include "buildsym.h"		/* Our own declarations.  */
50 #undef	EXTERN
51 
52 /* For cleanup_undefined_types and finish_global_stabs (somewhat
53    questionable--see comment where we call them).  */
54 
55 #include "stabsread.h"
56 
57 /* List of subfiles.  */
58 
59 static struct subfile *subfiles;
60 
61 /* List of free `struct pending' structures for reuse.  */
62 
63 static struct pending *free_pendings;
64 
65 /* Non-zero if symtab has line number info.  This prevents an
66    otherwise empty symtab from being tossed.  */
67 
68 static int have_line_numbers;
69 
70 /* The mutable address map for the compilation unit whose symbols
71    we're currently reading.  The symtabs' shared blockvector will
72    point to a fixed copy of this.  */
73 static struct addrmap *pending_addrmap;
74 
75 /* The obstack on which we allocate pending_addrmap.
76    If pending_addrmap is NULL, this is uninitialized; otherwise, it is
77    initialized (and holds pending_addrmap).  */
78 static struct obstack pending_addrmap_obstack;
79 
80 /* Non-zero if we recorded any ranges in the addrmap that are
81    different from those in the blockvector already.  We set this to
82    zero when we start processing a symfile, and if it's still zero at
83    the end, then we just toss the addrmap.  */
84 static int pending_addrmap_interesting;
85 
86 
87 static int compare_line_numbers (const void *ln1p, const void *ln2p);
88 
89 
90 /* Initial sizes of data structures.  These are realloc'd larger if
91    needed, and realloc'd down to the size actually used, when
92    completed.  */
93 
94 #define	INITIAL_CONTEXT_STACK_SIZE	10
95 #define	INITIAL_LINE_VECTOR_LENGTH	1000
96 
97 
98 /* Maintain the lists of symbols and blocks.  */
99 
100 /* Add a pending list to free_pendings.  */
101 void
102 add_free_pendings (struct pending *list)
103 {
104   struct pending *link = list;
105 
106   if (list)
107     {
108       while (link->next) link = link->next;
109       link->next = free_pendings;
110       free_pendings = list;
111     }
112 }
113 
114 /* Add a symbol to one of the lists of symbols.  */
115 
116 void
117 add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
118 {
119   struct pending *link;
120 
121   /* If this is an alias for another symbol, don't add it.  */
122   if (symbol->ginfo.name && symbol->ginfo.name[0] == '#')
123     return;
124 
125   /* We keep PENDINGSIZE symbols in each link of the list.  If we
126      don't have a link with room in it, add a new link.  */
127   if (*listhead == NULL || (*listhead)->nsyms == PENDINGSIZE)
128     {
129       if (free_pendings)
130 	{
131 	  link = free_pendings;
132 	  free_pendings = link->next;
133 	}
134       else
135 	{
136 	  link = (struct pending *) xmalloc (sizeof (struct pending));
137 	}
138 
139       link->next = *listhead;
140       *listhead = link;
141       link->nsyms = 0;
142     }
143 
144   (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
145 }
146 
147 /* Find a symbol named NAME on a LIST.  NAME need not be
148    '\0'-terminated; LENGTH is the length of the name.  */
149 
150 struct symbol *
151 find_symbol_in_list (struct pending *list, char *name, int length)
152 {
153   int j;
154   char *pp;
155 
156   while (list != NULL)
157     {
158       for (j = list->nsyms; --j >= 0;)
159 	{
160 	  pp = SYMBOL_LINKAGE_NAME (list->symbol[j]);
161 	  if (*pp == *name && strncmp (pp, name, length) == 0
162 	      && pp[length] == '\0')
163 	    {
164 	      return (list->symbol[j]);
165 	    }
166 	}
167       list = list->next;
168     }
169   return (NULL);
170 }
171 
172 /* At end of reading syms, or in case of quit, really free as many
173    `struct pending's as we can easily find.  */
174 
175 void
176 really_free_pendings (void *dummy)
177 {
178   struct pending *next, *next1;
179 
180   for (next = free_pendings; next; next = next1)
181     {
182       next1 = next->next;
183       xfree ((void *) next);
184     }
185   free_pendings = NULL;
186 
187   free_pending_blocks ();
188 
189   for (next = file_symbols; next != NULL; next = next1)
190     {
191       next1 = next->next;
192       xfree ((void *) next);
193     }
194   file_symbols = NULL;
195 
196   for (next = global_symbols; next != NULL; next = next1)
197     {
198       next1 = next->next;
199       xfree ((void *) next);
200     }
201   global_symbols = NULL;
202 
203   if (pending_macros)
204     free_macro_table (pending_macros);
205 
206   if (pending_addrmap)
207     {
208       obstack_free (&pending_addrmap_obstack, NULL);
209       pending_addrmap = NULL;
210     }
211 }
212 
213 /* This function is called to discard any pending blocks.  */
214 
215 void
216 free_pending_blocks (void)
217 {
218   /* The links are made in the objfile_obstack, so we only need to
219      reset PENDING_BLOCKS.  */
220   pending_blocks = NULL;
221 }
222 
223 /* Take one of the lists of symbols and make a block from it.  Keep
224    the order the symbols have in the list (reversed from the input
225    file).  Put the block on the list of pending blocks.  */
226 
227 struct block *
228 finish_block (struct symbol *symbol, struct pending **listhead,
229 	      struct pending_block *old_blocks,
230 	      CORE_ADDR start, CORE_ADDR end,
231 	      struct objfile *objfile)
232 {
233   struct gdbarch *gdbarch = get_objfile_arch (objfile);
234   struct pending *next, *next1;
235   struct block *block;
236   struct pending_block *pblock;
237   struct pending_block *opblock;
238 
239   block = allocate_block (&objfile->objfile_obstack);
240 
241   if (symbol)
242     {
243       BLOCK_DICT (block) = dict_create_linear (&objfile->objfile_obstack,
244 					       *listhead);
245     }
246   else
247     {
248       BLOCK_DICT (block) = dict_create_hashed (&objfile->objfile_obstack,
249 					       *listhead);
250     }
251 
252   BLOCK_START (block) = start;
253   BLOCK_END (block) = end;
254   /* Superblock filled in when containing block is made.  */
255   BLOCK_SUPERBLOCK (block) = NULL;
256   BLOCK_NAMESPACE (block) = NULL;
257 
258   /* Put the block in as the value of the symbol that names it.  */
259 
260   if (symbol)
261     {
262       struct type *ftype = SYMBOL_TYPE (symbol);
263       struct dict_iterator iter;
264       SYMBOL_BLOCK_VALUE (symbol) = block;
265       BLOCK_FUNCTION (block) = symbol;
266 
267       if (TYPE_NFIELDS (ftype) <= 0)
268 	{
269 	  /* No parameter type information is recorded with the
270 	     function's type.  Set that from the type of the
271 	     parameter symbols.  */
272 	  int nparams = 0, iparams;
273 	  struct symbol *sym;
274 	  ALL_BLOCK_SYMBOLS (block, iter, sym)
275 	    {
276 	      if (SYMBOL_IS_ARGUMENT (sym))
277 		nparams++;
278 	    }
279 	  if (nparams > 0)
280 	    {
281 	      TYPE_NFIELDS (ftype) = nparams;
282 	      TYPE_FIELDS (ftype) = (struct field *)
283 		TYPE_ALLOC (ftype, nparams * sizeof (struct field));
284 
285 	      iparams = 0;
286 	      ALL_BLOCK_SYMBOLS (block, iter, sym)
287 		{
288 		  if (iparams == nparams)
289 		    break;
290 
291 		  if (SYMBOL_IS_ARGUMENT (sym))
292 		    {
293 		      TYPE_FIELD_TYPE (ftype, iparams) = SYMBOL_TYPE (sym);
294 		      TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
295 		      iparams++;
296 		    }
297 		}
298 	    }
299 	}
300     }
301   else
302     {
303       BLOCK_FUNCTION (block) = NULL;
304     }
305 
306   /* Now "free" the links of the list, and empty the list.  */
307 
308   for (next = *listhead; next; next = next1)
309     {
310       next1 = next->next;
311       next->next = free_pendings;
312       free_pendings = next;
313     }
314   *listhead = NULL;
315 
316   /* Check to be sure that the blocks have an end address that is
317      greater than starting address.  */
318 
319   if (BLOCK_END (block) < BLOCK_START (block))
320     {
321       if (symbol)
322 	{
323 	  complaint (&symfile_complaints,
324 		     _("block end address less than block "
325 		       "start address in %s (patched it)"),
326 		     SYMBOL_PRINT_NAME (symbol));
327 	}
328       else
329 	{
330 	  complaint (&symfile_complaints,
331 		     _("block end address %s less than block "
332 		       "start address %s (patched it)"),
333 		     paddress (gdbarch, BLOCK_END (block)),
334 		     paddress (gdbarch, BLOCK_START (block)));
335 	}
336       /* Better than nothing.  */
337       BLOCK_END (block) = BLOCK_START (block);
338     }
339 
340   /* Install this block as the superblock of all blocks made since the
341      start of this scope that don't have superblocks yet.  */
342 
343   opblock = NULL;
344   for (pblock = pending_blocks;
345        pblock && pblock != old_blocks;
346        pblock = pblock->next)
347     {
348       if (BLOCK_SUPERBLOCK (pblock->block) == NULL)
349 	{
350 	  /* Check to be sure the blocks are nested as we receive
351 	     them.  If the compiler/assembler/linker work, this just
352 	     burns a small amount of time.
353 
354 	     Skip blocks which correspond to a function; they're not
355 	     physically nested inside this other blocks, only
356 	     lexically nested.  */
357 	  if (BLOCK_FUNCTION (pblock->block) == NULL
358 	      && (BLOCK_START (pblock->block) < BLOCK_START (block)
359 		  || BLOCK_END (pblock->block) > BLOCK_END (block)))
360 	    {
361 	      if (symbol)
362 		{
363 		  complaint (&symfile_complaints,
364 			     _("inner block not inside outer block in %s"),
365 			     SYMBOL_PRINT_NAME (symbol));
366 		}
367 	      else
368 		{
369 		  complaint (&symfile_complaints,
370 			     _("inner block (%s-%s) not "
371 			       "inside outer block (%s-%s)"),
372 			     paddress (gdbarch, BLOCK_START (pblock->block)),
373 			     paddress (gdbarch, BLOCK_END (pblock->block)),
374 			     paddress (gdbarch, BLOCK_START (block)),
375 			     paddress (gdbarch, BLOCK_END (block)));
376 		}
377 	      if (BLOCK_START (pblock->block) < BLOCK_START (block))
378 		BLOCK_START (pblock->block) = BLOCK_START (block);
379 	      if (BLOCK_END (pblock->block) > BLOCK_END (block))
380 		BLOCK_END (pblock->block) = BLOCK_END (block);
381 	    }
382 	  BLOCK_SUPERBLOCK (pblock->block) = block;
383 	}
384       opblock = pblock;
385     }
386 
387   block_set_using (block, using_directives, &objfile->objfile_obstack);
388   using_directives = NULL;
389 
390   record_pending_block (objfile, block, opblock);
391 
392   return block;
393 }
394 
395 
396 /* Record BLOCK on the list of all blocks in the file.  Put it after
397    OPBLOCK, or at the beginning if opblock is NULL.  This puts the
398    block in the list after all its subblocks.
399 
400    Allocate the pending block struct in the objfile_obstack to save
401    time.  This wastes a little space.  FIXME: Is it worth it?  */
402 
403 void
404 record_pending_block (struct objfile *objfile, struct block *block,
405 		      struct pending_block *opblock)
406 {
407   struct pending_block *pblock;
408 
409   pblock = (struct pending_block *)
410     obstack_alloc (&objfile->objfile_obstack, sizeof (struct pending_block));
411   pblock->block = block;
412   if (opblock)
413     {
414       pblock->next = opblock->next;
415       opblock->next = pblock;
416     }
417   else
418     {
419       pblock->next = pending_blocks;
420       pending_blocks = pblock;
421     }
422 }
423 
424 
425 /* Record that the range of addresses from START to END_INCLUSIVE
426    (inclusive, like it says) belongs to BLOCK.  BLOCK's start and end
427    addresses must be set already.  You must apply this function to all
428    BLOCK's children before applying it to BLOCK.
429 
430    If a call to this function complicates the picture beyond that
431    already provided by BLOCK_START and BLOCK_END, then we create an
432    address map for the block.  */
433 void
434 record_block_range (struct block *block,
435                     CORE_ADDR start, CORE_ADDR end_inclusive)
436 {
437   /* If this is any different from the range recorded in the block's
438      own BLOCK_START and BLOCK_END, then note that the address map has
439      become interesting.  Note that even if this block doesn't have
440      any "interesting" ranges, some later block might, so we still
441      need to record this block in the addrmap.  */
442   if (start != BLOCK_START (block)
443       || end_inclusive + 1 != BLOCK_END (block))
444     pending_addrmap_interesting = 1;
445 
446   if (! pending_addrmap)
447     {
448       obstack_init (&pending_addrmap_obstack);
449       pending_addrmap = addrmap_create_mutable (&pending_addrmap_obstack);
450     }
451 
452   addrmap_set_empty (pending_addrmap, start, end_inclusive, block);
453 }
454 
455 
456 static struct blockvector *
457 make_blockvector (struct objfile *objfile)
458 {
459   struct pending_block *next;
460   struct blockvector *blockvector;
461   int i;
462 
463   /* Count the length of the list of blocks.  */
464 
465   for (next = pending_blocks, i = 0; next; next = next->next, i++)
466     {;
467     }
468 
469   blockvector = (struct blockvector *)
470     obstack_alloc (&objfile->objfile_obstack,
471 		   (sizeof (struct blockvector)
472 		    + (i - 1) * sizeof (struct block *)));
473 
474   /* Copy the blocks into the blockvector.  This is done in reverse
475      order, which happens to put the blocks into the proper order
476      (ascending starting address).  finish_block has hair to insert
477      each block into the list after its subblocks in order to make
478      sure this is true.  */
479 
480   BLOCKVECTOR_NBLOCKS (blockvector) = i;
481   for (next = pending_blocks; next; next = next->next)
482     {
483       BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
484     }
485 
486   free_pending_blocks ();
487 
488   /* If we needed an address map for this symtab, record it in the
489      blockvector.  */
490   if (pending_addrmap && pending_addrmap_interesting)
491     BLOCKVECTOR_MAP (blockvector)
492       = addrmap_create_fixed (pending_addrmap, &objfile->objfile_obstack);
493   else
494     BLOCKVECTOR_MAP (blockvector) = 0;
495 
496   /* Some compilers output blocks in the wrong order, but we depend on
497      their being in the right order so we can binary search.  Check the
498      order and moan about it.  */
499   if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
500     {
501       for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++)
502 	{
503 	  if (BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i - 1))
504 	      > BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i)))
505 	    {
506 	      CORE_ADDR start
507 		= BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i));
508 
509 	      complaint (&symfile_complaints, _("block at %s out of order"),
510 			 hex_string ((LONGEST) start));
511 	    }
512 	}
513     }
514 
515   return (blockvector);
516 }
517 
518 /* Start recording information about source code that came from an
519    included (or otherwise merged-in) source file with a different
520    name.  NAME is the name of the file (cannot be NULL), DIRNAME is
521    the directory in which the file was compiled (or NULL if not
522    known).  */
523 
524 void
525 start_subfile (const char *name, const char *dirname)
526 {
527   struct subfile *subfile;
528 
529   /* See if this subfile is already known as a subfile of the current
530      main source file.  */
531 
532   for (subfile = subfiles; subfile; subfile = subfile->next)
533     {
534       char *subfile_name;
535 
536       /* If NAME is an absolute path, and this subfile is not, then
537 	 attempt to create an absolute path to compare.  */
538       if (IS_ABSOLUTE_PATH (name)
539 	  && !IS_ABSOLUTE_PATH (subfile->name)
540 	  && subfile->dirname != NULL)
541 	subfile_name = concat (subfile->dirname, SLASH_STRING,
542 			       subfile->name, (char *) NULL);
543       else
544 	subfile_name = subfile->name;
545 
546       if (FILENAME_CMP (subfile_name, name) == 0)
547 	{
548 	  current_subfile = subfile;
549 	  if (subfile_name != subfile->name)
550 	    xfree (subfile_name);
551 	  return;
552 	}
553       if (subfile_name != subfile->name)
554 	xfree (subfile_name);
555     }
556 
557   /* This subfile is not known.  Add an entry for it.  Make an entry
558      for this subfile in the list of all subfiles of the current main
559      source file.  */
560 
561   subfile = (struct subfile *) xmalloc (sizeof (struct subfile));
562   memset ((char *) subfile, 0, sizeof (struct subfile));
563   subfile->next = subfiles;
564   subfiles = subfile;
565   current_subfile = subfile;
566 
567   /* Save its name and compilation directory name.  */
568   subfile->name = (name == NULL) ? NULL : xstrdup (name);
569   subfile->dirname = (dirname == NULL) ? NULL : xstrdup (dirname);
570 
571   /* Initialize line-number recording for this subfile.  */
572   subfile->line_vector = NULL;
573 
574   /* Default the source language to whatever can be deduced from the
575      filename.  If nothing can be deduced (such as for a C/C++ include
576      file with a ".h" extension), then inherit whatever language the
577      previous subfile had.  This kludgery is necessary because there
578      is no standard way in some object formats to record the source
579      language.  Also, when symtabs are allocated we try to deduce a
580      language then as well, but it is too late for us to use that
581      information while reading symbols, since symtabs aren't allocated
582      until after all the symbols have been processed for a given
583      source file.  */
584 
585   subfile->language = deduce_language_from_filename (subfile->name);
586   if (subfile->language == language_unknown
587       && subfile->next != NULL)
588     {
589       subfile->language = subfile->next->language;
590     }
591 
592   /* Initialize the debug format string to NULL.  We may supply it
593      later via a call to record_debugformat.  */
594   subfile->debugformat = NULL;
595 
596   /* Similarly for the producer.  */
597   subfile->producer = NULL;
598 
599   /* If the filename of this subfile ends in .C, then change the
600      language of any pending subfiles from C to C++.  We also accept
601      any other C++ suffixes accepted by deduce_language_from_filename.  */
602   /* Likewise for f2c.  */
603 
604   if (subfile->name)
605     {
606       struct subfile *s;
607       enum language sublang = deduce_language_from_filename (subfile->name);
608 
609       if (sublang == language_cplus || sublang == language_fortran)
610 	for (s = subfiles; s != NULL; s = s->next)
611 	  if (s->language == language_c)
612 	    s->language = sublang;
613     }
614 
615   /* And patch up this file if necessary.  */
616   if (subfile->language == language_c
617       && subfile->next != NULL
618       && (subfile->next->language == language_cplus
619 	  || subfile->next->language == language_fortran))
620     {
621       subfile->language = subfile->next->language;
622     }
623 }
624 
625 /* For stabs readers, the first N_SO symbol is assumed to be the
626    source file name, and the subfile struct is initialized using that
627    assumption.  If another N_SO symbol is later seen, immediately
628    following the first one, then the first one is assumed to be the
629    directory name and the second one is really the source file name.
630 
631    So we have to patch up the subfile struct by moving the old name
632    value to dirname and remembering the new name.  Some sanity
633    checking is performed to ensure that the state of the subfile
634    struct is reasonable and that the old name we are assuming to be a
635    directory name actually is (by checking for a trailing '/').  */
636 
637 void
638 patch_subfile_names (struct subfile *subfile, char *name)
639 {
640   if (subfile != NULL && subfile->dirname == NULL && subfile->name != NULL
641       && IS_DIR_SEPARATOR (subfile->name[strlen (subfile->name) - 1]))
642     {
643       subfile->dirname = subfile->name;
644       subfile->name = xstrdup (name);
645       last_source_file = name;
646 
647       /* Default the source language to whatever can be deduced from
648          the filename.  If nothing can be deduced (such as for a C/C++
649          include file with a ".h" extension), then inherit whatever
650          language the previous subfile had.  This kludgery is
651          necessary because there is no standard way in some object
652          formats to record the source language.  Also, when symtabs
653          are allocated we try to deduce a language then as well, but
654          it is too late for us to use that information while reading
655          symbols, since symtabs aren't allocated until after all the
656          symbols have been processed for a given source file.  */
657 
658       subfile->language = deduce_language_from_filename (subfile->name);
659       if (subfile->language == language_unknown
660 	  && subfile->next != NULL)
661 	{
662 	  subfile->language = subfile->next->language;
663 	}
664     }
665 }
666 
667 /* Handle the N_BINCL and N_EINCL symbol types that act like N_SOL for
668    switching source files (different subfiles, as we call them) within
669    one object file, but using a stack rather than in an arbitrary
670    order.  */
671 
672 void
673 push_subfile (void)
674 {
675   struct subfile_stack *tem
676     = (struct subfile_stack *) xmalloc (sizeof (struct subfile_stack));
677 
678   tem->next = subfile_stack;
679   subfile_stack = tem;
680   if (current_subfile == NULL || current_subfile->name == NULL)
681     {
682       internal_error (__FILE__, __LINE__,
683 		      _("failed internal consistency check"));
684     }
685   tem->name = current_subfile->name;
686 }
687 
688 char *
689 pop_subfile (void)
690 {
691   char *name;
692   struct subfile_stack *link = subfile_stack;
693 
694   if (link == NULL)
695     {
696       internal_error (__FILE__, __LINE__,
697 		      _("failed internal consistency check"));
698     }
699   name = link->name;
700   subfile_stack = link->next;
701   xfree ((void *) link);
702   return (name);
703 }
704 
705 /* Add a linetable entry for line number LINE and address PC to the
706    line vector for SUBFILE.  */
707 
708 void
709 record_line (struct subfile *subfile, int line, CORE_ADDR pc)
710 {
711   struct linetable_entry *e;
712 
713   /* Ignore the dummy line number in libg.o */
714   if (line == 0xffff)
715     {
716       return;
717     }
718 
719   /* Make sure line vector exists and is big enough.  */
720   if (!subfile->line_vector)
721     {
722       subfile->line_vector_length = INITIAL_LINE_VECTOR_LENGTH;
723       subfile->line_vector = (struct linetable *)
724 	xmalloc (sizeof (struct linetable)
725 	   + subfile->line_vector_length * sizeof (struct linetable_entry));
726       subfile->line_vector->nitems = 0;
727       have_line_numbers = 1;
728     }
729 
730   if (subfile->line_vector->nitems + 1 >= subfile->line_vector_length)
731     {
732       subfile->line_vector_length *= 2;
733       subfile->line_vector = (struct linetable *)
734 	xrealloc ((char *) subfile->line_vector,
735 		  (sizeof (struct linetable)
736 		   + (subfile->line_vector_length
737 		      * sizeof (struct linetable_entry))));
738     }
739 
740   /* Normally, we treat lines as unsorted.  But the end of sequence
741      marker is special.  We sort line markers at the same PC by line
742      number, so end of sequence markers (which have line == 0) appear
743      first.  This is right if the marker ends the previous function,
744      and there is no padding before the next function.  But it is
745      wrong if the previous line was empty and we are now marking a
746      switch to a different subfile.  We must leave the end of sequence
747      marker at the end of this group of lines, not sort the empty line
748      to after the marker.  The easiest way to accomplish this is to
749      delete any empty lines from our table, if they are followed by
750      end of sequence markers.  All we lose is the ability to set
751      breakpoints at some lines which contain no instructions
752      anyway.  */
753   if (line == 0 && subfile->line_vector->nitems > 0)
754     {
755       e = subfile->line_vector->item + subfile->line_vector->nitems - 1;
756       while (subfile->line_vector->nitems > 0 && e->pc == pc)
757 	{
758 	  e--;
759 	  subfile->line_vector->nitems--;
760 	}
761     }
762 
763   e = subfile->line_vector->item + subfile->line_vector->nitems++;
764   e->line = line;
765   e->pc = pc;
766 }
767 
768 /* Needed in order to sort line tables from IBM xcoff files.  Sigh!  */
769 
770 static int
771 compare_line_numbers (const void *ln1p, const void *ln2p)
772 {
773   struct linetable_entry *ln1 = (struct linetable_entry *) ln1p;
774   struct linetable_entry *ln2 = (struct linetable_entry *) ln2p;
775 
776   /* Note: this code does not assume that CORE_ADDRs can fit in ints.
777      Please keep it that way.  */
778   if (ln1->pc < ln2->pc)
779     return -1;
780 
781   if (ln1->pc > ln2->pc)
782     return 1;
783 
784   /* If pc equal, sort by line.  I'm not sure whether this is optimum
785      behavior (see comment at struct linetable in symtab.h).  */
786   return ln1->line - ln2->line;
787 }
788 
789 /* Start a new symtab for a new source file.  Called, for example,
790    when a stabs symbol of type N_SO is seen, or when a DWARF
791    TAG_compile_unit DIE is seen.  It indicates the start of data for
792    one original source file.
793 
794    NAME is the name of the file (cannot be NULL).  DIRNAME is the directory in
795    which the file was compiled (or NULL if not known).  START_ADDR is the
796    lowest address of objects in the file (or 0 if not known).  */
797 
798 void
799 start_symtab (char *name, char *dirname, CORE_ADDR start_addr)
800 {
801   last_source_file = name;
802   last_source_start_addr = start_addr;
803   file_symbols = NULL;
804   global_symbols = NULL;
805   within_function = 0;
806   have_line_numbers = 0;
807 
808   /* Context stack is initially empty.  Allocate first one with room
809      for 10 levels; reuse it forever afterward.  */
810   if (context_stack == NULL)
811     {
812       context_stack_size = INITIAL_CONTEXT_STACK_SIZE;
813       context_stack = (struct context_stack *)
814 	xmalloc (context_stack_size * sizeof (struct context_stack));
815     }
816   context_stack_depth = 0;
817 
818   /* We shouldn't have any address map at this point.  */
819   gdb_assert (! pending_addrmap);
820 
821   /* Initialize the list of sub source files with one entry for this
822      file (the top-level source file).  */
823 
824   subfiles = NULL;
825   current_subfile = NULL;
826   start_subfile (name, dirname);
827 }
828 
829 /* Subroutine of end_symtab to simplify it.  Look for a subfile that
830    matches the main source file's basename.  If there is only one, and
831    if the main source file doesn't have any symbol or line number
832    information, then copy this file's symtab and line_vector to the
833    main source file's subfile and discard the other subfile.  This can
834    happen because of a compiler bug or from the user playing games
835    with #line or from things like a distributed build system that
836    manipulates the debug info.  */
837 
838 static void
839 watch_main_source_file_lossage (void)
840 {
841   struct subfile *mainsub, *subfile;
842 
843   /* Find the main source file.
844      This loop could be eliminated if start_symtab saved it for us.  */
845   mainsub = NULL;
846   for (subfile = subfiles; subfile; subfile = subfile->next)
847     {
848       /* The main subfile is guaranteed to be the last one.  */
849       if (subfile->next == NULL)
850 	mainsub = subfile;
851     }
852 
853   /* If the main source file doesn't have any line number or symbol
854      info, look for an alias in another subfile.
855 
856      We have to watch for mainsub == NULL here.  It's a quirk of
857      end_symtab, it can return NULL so there may not be a main
858      subfile.  */
859 
860   if (mainsub
861       && mainsub->line_vector == NULL
862       && mainsub->symtab == NULL)
863     {
864       const char *mainbase = lbasename (mainsub->name);
865       int nr_matches = 0;
866       struct subfile *prevsub;
867       struct subfile *mainsub_alias = NULL;
868       struct subfile *prev_mainsub_alias = NULL;
869 
870       prevsub = NULL;
871       for (subfile = subfiles;
872 	   /* Stop before we get to the last one.  */
873 	   subfile->next;
874 	   subfile = subfile->next)
875 	{
876 	  if (filename_cmp (lbasename (subfile->name), mainbase) == 0)
877 	    {
878 	      ++nr_matches;
879 	      mainsub_alias = subfile;
880 	      prev_mainsub_alias = prevsub;
881 	    }
882 	  prevsub = subfile;
883 	}
884 
885       if (nr_matches == 1)
886 	{
887 	  gdb_assert (mainsub_alias != NULL && mainsub_alias != mainsub);
888 
889 	  /* Found a match for the main source file.
890 	     Copy its line_vector and symtab to the main subfile
891 	     and then discard it.  */
892 
893 	  mainsub->line_vector = mainsub_alias->line_vector;
894 	  mainsub->line_vector_length = mainsub_alias->line_vector_length;
895 	  mainsub->symtab = mainsub_alias->symtab;
896 
897 	  if (prev_mainsub_alias == NULL)
898 	    subfiles = mainsub_alias->next;
899 	  else
900 	    prev_mainsub_alias->next = mainsub_alias->next;
901 	  xfree (mainsub_alias);
902 	}
903     }
904 }
905 
906 /* Helper function for qsort.  Parametes are `struct block *' pointers,
907    function sorts them in descending order by their BLOCK_START.  */
908 
909 static int
910 block_compar (const void *ap, const void *bp)
911 {
912   const struct block *a = *(const struct block **) ap;
913   const struct block *b = *(const struct block **) bp;
914 
915   return ((BLOCK_START (b) > BLOCK_START (a))
916 	  - (BLOCK_START (b) < BLOCK_START (a)));
917 }
918 
919 /* Finish the symbol definitions for one main source file, close off
920    all the lexical contexts for that file (creating struct block's for
921    them), then make the struct symtab for that file and put it in the
922    list of all such.
923 
924    END_ADDR is the address of the end of the file's text.  SECTION is
925    the section number (in objfile->section_offsets) of the blockvector
926    and linetable.
927 
928    Note that it is possible for end_symtab() to return NULL.  In
929    particular, for the DWARF case at least, it will return NULL when
930    it finds a compilation unit that has exactly one DIE, a
931    TAG_compile_unit DIE.  This can happen when we link in an object
932    file that was compiled from an empty source file.  Returning NULL
933    is probably not the correct thing to do, because then gdb will
934    never know about this empty file (FIXME).  */
935 
936 struct symtab *
937 end_symtab (CORE_ADDR end_addr, struct objfile *objfile, int section)
938 {
939   struct symtab *symtab = NULL;
940   struct blockvector *blockvector;
941   struct subfile *subfile;
942   struct context_stack *cstk;
943   struct subfile *nextsub;
944 
945   /* Finish the lexical context of the last function in the file; pop
946      the context stack.  */
947 
948   if (context_stack_depth > 0)
949     {
950       cstk = pop_context ();
951       /* Make a block for the local symbols within.  */
952       finish_block (cstk->name, &local_symbols, cstk->old_blocks,
953 		    cstk->start_addr, end_addr, objfile);
954 
955       if (context_stack_depth > 0)
956 	{
957 	  /* This is said to happen with SCO.  The old coffread.c
958 	     code simply emptied the context stack, so we do the
959 	     same.  FIXME: Find out why it is happening.  This is not
960 	     believed to happen in most cases (even for coffread.c);
961 	     it used to be an abort().  */
962 	  complaint (&symfile_complaints,
963 	             _("Context stack not empty in end_symtab"));
964 	  context_stack_depth = 0;
965 	}
966     }
967 
968   /* Reordered executables may have out of order pending blocks; if
969      OBJF_REORDERED is true, then sort the pending blocks.  */
970   if ((objfile->flags & OBJF_REORDERED) && pending_blocks)
971     {
972       unsigned count = 0;
973       struct pending_block *pb;
974       struct block **barray, **bp;
975       struct cleanup *back_to;
976 
977       for (pb = pending_blocks; pb != NULL; pb = pb->next)
978 	count++;
979 
980       barray = xmalloc (sizeof (*barray) * count);
981       back_to = make_cleanup (xfree, barray);
982 
983       bp = barray;
984       for (pb = pending_blocks; pb != NULL; pb = pb->next)
985 	*bp++ = pb->block;
986 
987       qsort (barray, count, sizeof (*barray), block_compar);
988 
989       bp = barray;
990       for (pb = pending_blocks; pb != NULL; pb = pb->next)
991 	pb->block = *bp++;
992 
993       do_cleanups (back_to);
994     }
995 
996   /* Cleanup any undefined types that have been left hanging around
997      (this needs to be done before the finish_blocks so that
998      file_symbols is still good).
999 
1000      Both cleanup_undefined_types and finish_global_stabs are stabs
1001      specific, but harmless for other symbol readers, since on gdb
1002      startup or when finished reading stabs, the state is set so these
1003      are no-ops.  FIXME: Is this handled right in case of QUIT?  Can
1004      we make this cleaner?  */
1005 
1006   cleanup_undefined_types (objfile);
1007   finish_global_stabs (objfile);
1008 
1009   if (pending_blocks == NULL
1010       && file_symbols == NULL
1011       && global_symbols == NULL
1012       && have_line_numbers == 0
1013       && pending_macros == NULL)
1014     {
1015       /* Ignore symtabs that have no functions with real debugging
1016          info.  */
1017       blockvector = NULL;
1018     }
1019   else
1020     {
1021       /* Define the STATIC_BLOCK & GLOBAL_BLOCK, and build the
1022          blockvector.  */
1023       finish_block (0, &file_symbols, 0, last_source_start_addr,
1024 		    end_addr, objfile);
1025       finish_block (0, &global_symbols, 0, last_source_start_addr,
1026 		    end_addr, objfile);
1027       blockvector = make_blockvector (objfile);
1028     }
1029 
1030   /* Read the line table if it has to be read separately.  */
1031   if (objfile->sf->sym_read_linetable != NULL)
1032     objfile->sf->sym_read_linetable ();
1033 
1034   /* Handle the case where the debug info specifies a different path
1035      for the main source file.  It can cause us to lose track of its
1036      line number information.  */
1037   watch_main_source_file_lossage ();
1038 
1039   /* Now create the symtab objects proper, one for each subfile.  */
1040   /* (The main file is the last one on the chain.)  */
1041 
1042   for (subfile = subfiles; subfile; subfile = nextsub)
1043     {
1044       int linetablesize = 0;
1045       symtab = NULL;
1046 
1047       /* If we have blocks of symbols, make a symtab.  Otherwise, just
1048          ignore this file and any line number info in it.  */
1049       if (blockvector)
1050 	{
1051 	  if (subfile->line_vector)
1052 	    {
1053 	      linetablesize = sizeof (struct linetable) +
1054 	        subfile->line_vector->nitems * sizeof (struct linetable_entry);
1055 
1056 	      /* Like the pending blocks, the line table may be
1057 	         scrambled in reordered executables.  Sort it if
1058 	         OBJF_REORDERED is true.  */
1059 	      if (objfile->flags & OBJF_REORDERED)
1060 		qsort (subfile->line_vector->item,
1061 		       subfile->line_vector->nitems,
1062 		     sizeof (struct linetable_entry), compare_line_numbers);
1063 	    }
1064 
1065 	  /* Now, allocate a symbol table.  */
1066 	  if (subfile->symtab == NULL)
1067 	    symtab = allocate_symtab (subfile->name, objfile);
1068 	  else
1069 	    symtab = subfile->symtab;
1070 
1071 	  /* Fill in its components.  */
1072 	  symtab->blockvector = blockvector;
1073           symtab->macro_table = pending_macros;
1074 	  if (subfile->line_vector)
1075 	    {
1076 	      /* Reallocate the line table on the symbol obstack.  */
1077 	      symtab->linetable = (struct linetable *)
1078 		obstack_alloc (&objfile->objfile_obstack, linetablesize);
1079 	      memcpy (symtab->linetable, subfile->line_vector, linetablesize);
1080 	    }
1081 	  else
1082 	    {
1083 	      symtab->linetable = NULL;
1084 	    }
1085 	  symtab->block_line_section = section;
1086 	  if (subfile->dirname)
1087 	    {
1088 	      /* Reallocate the dirname on the symbol obstack.  */
1089 	      symtab->dirname = (char *)
1090 		obstack_alloc (&objfile->objfile_obstack,
1091 			       strlen (subfile->dirname) + 1);
1092 	      strcpy (symtab->dirname, subfile->dirname);
1093 	    }
1094 	  else
1095 	    {
1096 	      symtab->dirname = NULL;
1097 	    }
1098 
1099 	  /* Use whatever language we have been using for this
1100 	     subfile, not the one that was deduced in allocate_symtab
1101 	     from the filename.  We already did our own deducing when
1102 	     we created the subfile, and we may have altered our
1103 	     opinion of what language it is from things we found in
1104 	     the symbols.  */
1105 	  symtab->language = subfile->language;
1106 
1107 	  /* Save the debug format string (if any) in the symtab.  */
1108 	  symtab->debugformat = subfile->debugformat;
1109 
1110 	  /* Similarly for the producer.  */
1111 	  symtab->producer = subfile->producer;
1112 
1113 	  /* All symtabs for the main file and the subfiles share a
1114 	     blockvector, so we need to clear primary for everything
1115 	     but the main file.  */
1116 
1117 	  symtab->primary = 0;
1118 	}
1119       else
1120         {
1121           if (subfile->symtab)
1122             {
1123               /* Since we are ignoring that subfile, we also need
1124                  to unlink the associated empty symtab that we created.
1125                  Otherwise, we can into trouble because various parts
1126                  such as the block-vector are uninitialized whereas
1127                  the rest of the code assumes that they are.
1128 
1129                  We can only unlink the symtab because it was allocated
1130                  on the objfile obstack.  */
1131               struct symtab *s;
1132 
1133               if (objfile->symtabs == subfile->symtab)
1134                 objfile->symtabs = objfile->symtabs->next;
1135               else
1136                 ALL_OBJFILE_SYMTABS (objfile, s)
1137                   if (s->next == subfile->symtab)
1138                     {
1139                       s->next = s->next->next;
1140                       break;
1141                     }
1142               subfile->symtab = NULL;
1143             }
1144         }
1145       if (subfile->name != NULL)
1146 	{
1147 	  xfree ((void *) subfile->name);
1148 	}
1149       if (subfile->dirname != NULL)
1150 	{
1151 	  xfree ((void *) subfile->dirname);
1152 	}
1153       if (subfile->line_vector != NULL)
1154 	{
1155 	  xfree ((void *) subfile->line_vector);
1156 	}
1157 
1158       nextsub = subfile->next;
1159       xfree ((void *) subfile);
1160     }
1161 
1162   /* Set this for the main source file.  */
1163   if (symtab)
1164     {
1165       symtab->primary = 1;
1166     }
1167 
1168   /* Default any symbols without a specified symtab to the primary
1169      symtab.  */
1170   if (blockvector)
1171     {
1172       int block_i;
1173 
1174       for (block_i = 0; block_i < BLOCKVECTOR_NBLOCKS (blockvector); block_i++)
1175 	{
1176 	  struct block *block = BLOCKVECTOR_BLOCK (blockvector, block_i);
1177 	  struct symbol *sym;
1178 	  struct dict_iterator iter;
1179 
1180 	  /* Inlined functions may have symbols not in the global or
1181 	     static symbol lists.  */
1182 	  if (BLOCK_FUNCTION (block) != NULL)
1183 	    if (SYMBOL_SYMTAB (BLOCK_FUNCTION (block)) == NULL)
1184 	      SYMBOL_SYMTAB (BLOCK_FUNCTION (block)) = symtab;
1185 
1186 	  for (sym = dict_iterator_first (BLOCK_DICT (block), &iter);
1187 	       sym != NULL;
1188 	       sym = dict_iterator_next (&iter))
1189 	    if (SYMBOL_SYMTAB (sym) == NULL)
1190 	      SYMBOL_SYMTAB (sym) = symtab;
1191 	}
1192     }
1193 
1194   last_source_file = NULL;
1195   current_subfile = NULL;
1196   pending_macros = NULL;
1197   if (pending_addrmap)
1198     {
1199       obstack_free (&pending_addrmap_obstack, NULL);
1200       pending_addrmap = NULL;
1201     }
1202 
1203   return symtab;
1204 }
1205 
1206 /* Push a context block.  Args are an identifying nesting level
1207    (checkable when you pop it), and the starting PC address of this
1208    context.  */
1209 
1210 struct context_stack *
1211 push_context (int desc, CORE_ADDR valu)
1212 {
1213   struct context_stack *new;
1214 
1215   if (context_stack_depth == context_stack_size)
1216     {
1217       context_stack_size *= 2;
1218       context_stack = (struct context_stack *)
1219 	xrealloc ((char *) context_stack,
1220 		  (context_stack_size * sizeof (struct context_stack)));
1221     }
1222 
1223   new = &context_stack[context_stack_depth++];
1224   new->depth = desc;
1225   new->locals = local_symbols;
1226   new->params = param_symbols;
1227   new->old_blocks = pending_blocks;
1228   new->start_addr = valu;
1229   new->using_directives = using_directives;
1230   new->name = NULL;
1231 
1232   local_symbols = NULL;
1233   param_symbols = NULL;
1234   using_directives = NULL;
1235 
1236   return new;
1237 }
1238 
1239 /* Pop a context block.  Returns the address of the context block just
1240    popped.  */
1241 
1242 struct context_stack *
1243 pop_context (void)
1244 {
1245   gdb_assert (context_stack_depth > 0);
1246   return (&context_stack[--context_stack_depth]);
1247 }
1248 
1249 
1250 
1251 /* Compute a small integer hash code for the given name.  */
1252 
1253 int
1254 hashname (char *name)
1255 {
1256     return (hash(name,strlen(name)) % HASHSIZE);
1257 }
1258 
1259 
1260 void
1261 record_debugformat (const char *format)
1262 {
1263   current_subfile->debugformat = format;
1264 }
1265 
1266 void
1267 record_producer (const char *producer)
1268 {
1269   current_subfile->producer = producer;
1270 }
1271 
1272 /* Merge the first symbol list SRCLIST into the second symbol list
1273    TARGETLIST by repeated calls to add_symbol_to_list().  This
1274    procedure "frees" each link of SRCLIST by adding it to the
1275    free_pendings list.  Caller must set SRCLIST to a null list after
1276    calling this function.
1277 
1278    Void return.  */
1279 
1280 void
1281 merge_symbol_lists (struct pending **srclist, struct pending **targetlist)
1282 {
1283   int i;
1284 
1285   if (!srclist || !*srclist)
1286     return;
1287 
1288   /* Merge in elements from current link.  */
1289   for (i = 0; i < (*srclist)->nsyms; i++)
1290     add_symbol_to_list ((*srclist)->symbol[i], targetlist);
1291 
1292   /* Recurse on next.  */
1293   merge_symbol_lists (&(*srclist)->next, targetlist);
1294 
1295   /* "Free" the current link.  */
1296   (*srclist)->next = free_pendings;
1297   free_pendings = (*srclist);
1298 }
1299 
1300 /* Initialize anything that needs initializing when starting to read a
1301    fresh piece of a symbol file, e.g. reading in the stuff
1302    corresponding to a psymtab.  */
1303 
1304 void
1305 buildsym_init (void)
1306 {
1307   free_pendings = NULL;
1308   file_symbols = NULL;
1309   global_symbols = NULL;
1310   pending_blocks = NULL;
1311   pending_macros = NULL;
1312 
1313   /* We shouldn't have any address map at this point.  */
1314   gdb_assert (! pending_addrmap);
1315   pending_addrmap_interesting = 0;
1316 }
1317 
1318 /* Initialize anything that needs initializing when a completely new
1319    symbol file is specified (not just adding some symbols from another
1320    file, e.g. a shared library).  */
1321 
1322 void
1323 buildsym_new_init (void)
1324 {
1325   buildsym_init ();
1326 }
1327