xref: /dragonfly/contrib/gdb-7/gdb/corelow.c (revision cfd1aba3)
1 /* Core dump and executable file functions below target vector, for GDB.
2 
3    Copyright (C) 1986-2013 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "gdb_string.h"
23 #include <errno.h>
24 #include <signal.h>
25 #include <fcntl.h>
26 #ifdef HAVE_SYS_FILE_H
27 #include <sys/file.h>		/* needed for F_OK and friends */
28 #endif
29 #include "frame.h"		/* required by inferior.h */
30 #include "inferior.h"
31 #include "symtab.h"
32 #include "command.h"
33 #include "bfd.h"
34 #include "target.h"
35 #include "gdbcore.h"
36 #include "gdbthread.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "exec.h"
41 #include "readline/readline.h"
42 #include "gdb_assert.h"
43 #include "exceptions.h"
44 #include "solib.h"
45 #include "filenames.h"
46 #include "progspace.h"
47 #include "objfiles.h"
48 #include "gdb_bfd.h"
49 
50 #ifndef O_LARGEFILE
51 #define O_LARGEFILE 0
52 #endif
53 
54 /* List of all available core_fns.  On gdb startup, each core file
55    register reader calls deprecated_add_core_fns() to register
56    information on each core format it is prepared to read.  */
57 
58 static struct core_fns *core_file_fns = NULL;
59 
60 /* The core_fns for a core file handler that is prepared to read the
61    core file currently open on core_bfd.  */
62 
63 static struct core_fns *core_vec = NULL;
64 
65 /* FIXME: kettenis/20031023: Eventually this variable should
66    disappear.  */
67 
68 struct gdbarch *core_gdbarch = NULL;
69 
70 /* Per-core data.  Currently, only the section table.  Note that these
71    target sections are *not* mapped in the current address spaces' set
72    of target sections --- those should come only from pure executable
73    or shared library bfds.  The core bfd sections are an
74    implementation detail of the core target, just like ptrace is for
75    unix child targets.  */
76 static struct target_section_table *core_data;
77 
78 static void core_files_info (struct target_ops *);
79 
80 static struct core_fns *sniff_core_bfd (bfd *);
81 
82 static int gdb_check_format (bfd *);
83 
84 static void core_open (char *, int);
85 
86 static void core_detach (struct target_ops *ops, char *, int);
87 
88 static void core_close (int);
89 
90 static void core_close_cleanup (void *ignore);
91 
92 static void add_to_thread_list (bfd *, asection *, void *);
93 
94 static void init_core_ops (void);
95 
96 void _initialize_corelow (void);
97 
98 static struct target_ops core_ops;
99 
100 /* An arbitrary identifier for the core inferior.  */
101 #define CORELOW_PID 1
102 
103 /* Link a new core_fns into the global core_file_fns list.  Called on
104    gdb startup by the _initialize routine in each core file register
105    reader, to register information about each format the reader is
106    prepared to handle.  */
107 
108 void
109 deprecated_add_core_fns (struct core_fns *cf)
110 {
111   cf->next = core_file_fns;
112   core_file_fns = cf;
113 }
114 
115 /* The default function that core file handlers can use to examine a
116    core file BFD and decide whether or not to accept the job of
117    reading the core file.  */
118 
119 int
120 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
121 {
122   int result;
123 
124   result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
125   return (result);
126 }
127 
128 /* Walk through the list of core functions to find a set that can
129    handle the core file open on ABFD.  Returns pointer to set that is
130    selected.  */
131 
132 static struct core_fns *
133 sniff_core_bfd (bfd *abfd)
134 {
135   struct core_fns *cf;
136   struct core_fns *yummy = NULL;
137   int matches = 0;;
138 
139   /* Don't sniff if we have support for register sets in
140      CORE_GDBARCH.  */
141   if (core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
142     return NULL;
143 
144   for (cf = core_file_fns; cf != NULL; cf = cf->next)
145     {
146       if (cf->core_sniffer (cf, abfd))
147 	{
148 	  yummy = cf;
149 	  matches++;
150 	}
151     }
152   if (matches > 1)
153     {
154       warning (_("\"%s\": ambiguous core format, %d handlers match"),
155 	       bfd_get_filename (abfd), matches);
156     }
157   else if (matches == 0)
158     error (_("\"%s\": no core file handler recognizes format"),
159 	   bfd_get_filename (abfd));
160 
161   return (yummy);
162 }
163 
164 /* The default is to reject every core file format we see.  Either
165    BFD has to recognize it, or we have to provide a function in the
166    core file handler that recognizes it.  */
167 
168 int
169 default_check_format (bfd *abfd)
170 {
171   return (0);
172 }
173 
174 /* Attempt to recognize core file formats that BFD rejects.  */
175 
176 static int
177 gdb_check_format (bfd *abfd)
178 {
179   struct core_fns *cf;
180 
181   for (cf = core_file_fns; cf != NULL; cf = cf->next)
182     {
183       if (cf->check_format (abfd))
184 	{
185 	  return (1);
186 	}
187     }
188   return (0);
189 }
190 
191 /* Discard all vestiges of any previous core file and mark data and
192    stack spaces as empty.  */
193 
194 static void
195 core_close (int quitting)
196 {
197   if (core_bfd)
198     {
199       int pid = ptid_get_pid (inferior_ptid);
200       inferior_ptid = null_ptid;    /* Avoid confusion from thread
201 				       stuff.  */
202       if (pid != 0)
203 	exit_inferior_silent (pid);
204 
205       /* Clear out solib state while the bfd is still open.  See
206          comments in clear_solib in solib.c.  */
207       clear_solib ();
208 
209       if (core_data)
210 	{
211 	  xfree (core_data->sections);
212 	  xfree (core_data);
213 	  core_data = NULL;
214 	}
215 
216       gdb_bfd_unref (core_bfd);
217       core_bfd = NULL;
218     }
219   core_vec = NULL;
220   core_gdbarch = NULL;
221 }
222 
223 static void
224 core_close_cleanup (void *ignore)
225 {
226   core_close (0/*ignored*/);
227 }
228 
229 /* Look for sections whose names start with `.reg/' so that we can
230    extract the list of threads in a core file.  */
231 
232 static void
233 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
234 {
235   ptid_t ptid;
236   int core_tid;
237   int pid, lwpid;
238   asection *reg_sect = (asection *) reg_sect_arg;
239   int fake_pid_p = 0;
240   struct inferior *inf;
241 
242   if (strncmp (bfd_section_name (abfd, asect), ".reg/", 5) != 0)
243     return;
244 
245   core_tid = atoi (bfd_section_name (abfd, asect) + 5);
246 
247   pid = bfd_core_file_pid (core_bfd);
248   if (pid == 0)
249     {
250       fake_pid_p = 1;
251       pid = CORELOW_PID;
252     }
253 
254   lwpid = core_tid;
255 
256   inf = current_inferior ();
257   if (inf->pid == 0)
258     {
259       inferior_appeared (inf, pid);
260       inf->fake_pid_p = fake_pid_p;
261     }
262 
263   ptid = ptid_build (pid, lwpid, 0);
264 
265   add_thread (ptid);
266 
267 /* Warning, Will Robinson, looking at BFD private data! */
268 
269   if (reg_sect != NULL
270       && asect->filepos == reg_sect->filepos)	/* Did we find .reg?  */
271     inferior_ptid = ptid;			/* Yes, make it current.  */
272 }
273 
274 /* This routine opens and sets up the core file bfd.  */
275 
276 static void
277 core_open (char *filename, int from_tty)
278 {
279   const char *p;
280   int siggy;
281   struct cleanup *old_chain;
282   char *temp;
283   bfd *temp_bfd;
284   int scratch_chan;
285   int flags;
286   volatile struct gdb_exception except;
287 
288   target_preopen (from_tty);
289   if (!filename)
290     {
291       if (core_bfd)
292 	error (_("No core file specified.  (Use `detach' "
293 		 "to stop debugging a core file.)"));
294       else
295 	error (_("No core file specified."));
296     }
297 
298   filename = tilde_expand (filename);
299   if (!IS_ABSOLUTE_PATH (filename))
300     {
301       temp = concat (current_directory, "/",
302 		     filename, (char *) NULL);
303       xfree (filename);
304       filename = temp;
305     }
306 
307   old_chain = make_cleanup (xfree, filename);
308 
309   flags = O_BINARY | O_LARGEFILE;
310   if (write_files)
311     flags |= O_RDWR;
312   else
313     flags |= O_RDONLY;
314   scratch_chan = open (filename, flags, 0);
315   if (scratch_chan < 0)
316     perror_with_name (filename);
317 
318   temp_bfd = gdb_bfd_fopen (filename, gnutarget,
319 			    write_files ? FOPEN_RUB : FOPEN_RB,
320 			    scratch_chan);
321   if (temp_bfd == NULL)
322     perror_with_name (filename);
323 
324   if (!bfd_check_format (temp_bfd, bfd_core)
325       && !gdb_check_format (temp_bfd))
326     {
327       /* Do it after the err msg */
328       /* FIXME: should be checking for errors from bfd_close (for one
329          thing, on error it does not free all the storage associated
330          with the bfd).  */
331       make_cleanup_bfd_unref (temp_bfd);
332       error (_("\"%s\" is not a core dump: %s"),
333 	     filename, bfd_errmsg (bfd_get_error ()));
334     }
335 
336   /* Looks semi-reasonable.  Toss the old core file and work on the
337      new.  */
338 
339   do_cleanups (old_chain);
340   unpush_target (&core_ops);
341   core_bfd = temp_bfd;
342   old_chain = make_cleanup (core_close_cleanup, 0 /*ignore*/);
343 
344   core_gdbarch = gdbarch_from_bfd (core_bfd);
345 
346   /* Find a suitable core file handler to munch on core_bfd */
347   core_vec = sniff_core_bfd (core_bfd);
348 
349   validate_files ();
350 
351   core_data = XZALLOC (struct target_section_table);
352 
353   /* Find the data section */
354   if (build_section_table (core_bfd,
355 			   &core_data->sections,
356 			   &core_data->sections_end))
357     error (_("\"%s\": Can't find sections: %s"),
358 	   bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
359 
360   /* If we have no exec file, try to set the architecture from the
361      core file.  We don't do this unconditionally since an exec file
362      typically contains more information that helps us determine the
363      architecture than a core file.  */
364   if (!exec_bfd)
365     set_gdbarch_from_file (core_bfd);
366 
367   push_target (&core_ops);
368   discard_cleanups (old_chain);
369 
370   /* Do this before acknowledging the inferior, so if
371      post_create_inferior throws (can happen easilly if you're loading
372      a core file with the wrong exec), we aren't left with threads
373      from the previous inferior.  */
374   init_thread_list ();
375 
376   inferior_ptid = null_ptid;
377 
378   /* Need to flush the register cache (and the frame cache) from a
379      previous debug session.  If inferior_ptid ends up the same as the
380      last debug session --- e.g., b foo; run; gcore core1; step; gcore
381      core2; core core1; core core2 --- then there's potential for
382      get_current_regcache to return the cached regcache of the
383      previous session, and the frame cache being stale.  */
384   registers_changed ();
385 
386   /* Build up thread list from BFD sections, and possibly set the
387      current thread to the .reg/NN section matching the .reg
388      section.  */
389   bfd_map_over_sections (core_bfd, add_to_thread_list,
390 			 bfd_get_section_by_name (core_bfd, ".reg"));
391 
392   if (ptid_equal (inferior_ptid, null_ptid))
393     {
394       /* Either we found no .reg/NN section, and hence we have a
395 	 non-threaded core (single-threaded, from gdb's perspective),
396 	 or for some reason add_to_thread_list couldn't determine
397 	 which was the "main" thread.  The latter case shouldn't
398 	 usually happen, but we're dealing with input here, which can
399 	 always be broken in different ways.  */
400       struct thread_info *thread = first_thread_of_process (-1);
401 
402       if (thread == NULL)
403 	{
404 	  inferior_appeared (current_inferior (), CORELOW_PID);
405 	  inferior_ptid = pid_to_ptid (CORELOW_PID);
406 	  add_thread_silent (inferior_ptid);
407 	}
408       else
409 	switch_to_thread (thread->ptid);
410     }
411 
412   post_create_inferior (&core_ops, from_tty);
413 
414   /* Now go through the target stack looking for threads since there
415      may be a thread_stratum target loaded on top of target core by
416      now.  The layer above should claim threads found in the BFD
417      sections.  */
418   TRY_CATCH (except, RETURN_MASK_ERROR)
419     {
420       target_find_new_threads ();
421     }
422 
423   if (except.reason < 0)
424     exception_print (gdb_stderr, except);
425 
426   p = bfd_core_file_failing_command (core_bfd);
427   if (p)
428     printf_filtered (_("Core was generated by `%s'.\n"), p);
429 
430   siggy = bfd_core_file_failing_signal (core_bfd);
431   if (siggy > 0)
432     {
433       /* If we don't have a CORE_GDBARCH to work with, assume a native
434 	 core (map gdb_signal from host signals).  If we do have
435 	 CORE_GDBARCH to work with, but no gdb_signal_from_target
436 	 implementation for that gdbarch, as a fallback measure,
437 	 assume the host signal mapping.  It'll be correct for native
438 	 cores, but most likely incorrect for cross-cores.  */
439       enum gdb_signal sig = (core_gdbarch != NULL
440 			     && gdbarch_gdb_signal_from_target_p (core_gdbarch)
441 			     ? gdbarch_gdb_signal_from_target (core_gdbarch,
442 							       siggy)
443 			     : gdb_signal_from_host (siggy));
444 
445       printf_filtered (_("Program terminated with signal %d, %s.\n"),
446 		       siggy, gdb_signal_to_string (sig));
447     }
448 
449   /* Fetch all registers from core file.  */
450   target_fetch_registers (get_current_regcache (), -1);
451 
452   /* Now, set up the frame cache, and print the top of stack.  */
453   reinit_frame_cache ();
454   print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC);
455 }
456 
457 static void
458 core_detach (struct target_ops *ops, char *args, int from_tty)
459 {
460   if (args)
461     error (_("Too many arguments"));
462   unpush_target (ops);
463   reinit_frame_cache ();
464   if (from_tty)
465     printf_filtered (_("No core file now.\n"));
466 }
467 
468 #ifdef DEPRECATED_IBM6000_TARGET
469 
470 /* Resize the core memory's section table, by NUM_ADDED.  Returns a
471    pointer into the first new slot.  This will not be necessary when
472    the rs6000 target is converted to use the standard solib
473    framework.  */
474 
475 struct target_section *
476 deprecated_core_resize_section_table (int num_added)
477 {
478   int old_count;
479 
480   old_count = resize_section_table (core_data, num_added);
481   return core_data->sections + old_count;
482 }
483 
484 #endif
485 
486 /* Try to retrieve registers from a section in core_bfd, and supply
487    them to core_vec->core_read_registers, as the register set numbered
488    WHICH.
489 
490    If inferior_ptid's lwp member is zero, do the single-threaded
491    thing: look for a section named NAME.  If inferior_ptid's lwp
492    member is non-zero, do the multi-threaded thing: look for a section
493    named "NAME/LWP", where LWP is the shortest ASCII decimal
494    representation of inferior_ptid's lwp member.
495 
496    HUMAN_NAME is a human-readable name for the kind of registers the
497    NAME section contains, for use in error messages.
498 
499    If REQUIRED is non-zero, print an error if the core file doesn't
500    have a section by the appropriate name.  Otherwise, just do
501    nothing.  */
502 
503 static void
504 get_core_register_section (struct regcache *regcache,
505 			   const char *name,
506 			   int which,
507 			   const char *human_name,
508 			   int required)
509 {
510   static char *section_name = NULL;
511   struct bfd_section *section;
512   bfd_size_type size;
513   char *contents;
514 
515   xfree (section_name);
516 
517   if (ptid_get_lwp (inferior_ptid))
518     section_name = xstrprintf ("%s/%ld", name,
519 			       ptid_get_lwp (inferior_ptid));
520   else
521     section_name = xstrdup (name);
522 
523   section = bfd_get_section_by_name (core_bfd, section_name);
524   if (! section)
525     {
526       if (required)
527 	warning (_("Couldn't find %s registers in core file."),
528 		 human_name);
529       return;
530     }
531 
532   size = bfd_section_size (core_bfd, section);
533   contents = alloca (size);
534   if (! bfd_get_section_contents (core_bfd, section, contents,
535 				  (file_ptr) 0, size))
536     {
537       warning (_("Couldn't read %s registers from `%s' section in core file."),
538 	       human_name, name);
539       return;
540     }
541 
542   if (core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
543     {
544       const struct regset *regset;
545 
546       regset = gdbarch_regset_from_core_section (core_gdbarch,
547 						 name, size);
548       if (regset == NULL)
549 	{
550 	  if (required)
551 	    warning (_("Couldn't recognize %s registers in core file."),
552 		     human_name);
553 	  return;
554 	}
555 
556       regset->supply_regset (regset, regcache, -1, contents, size);
557       return;
558     }
559 
560   gdb_assert (core_vec);
561   core_vec->core_read_registers (regcache, contents, size, which,
562 				 ((CORE_ADDR)
563 				  bfd_section_vma (core_bfd, section)));
564 }
565 
566 
567 /* Get the registers out of a core file.  This is the machine-
568    independent part.  Fetch_core_registers is the machine-dependent
569    part, typically implemented in the xm-file for each
570    architecture.  */
571 
572 /* We just get all the registers, so we don't use regno.  */
573 
574 static void
575 get_core_registers (struct target_ops *ops,
576 		    struct regcache *regcache, int regno)
577 {
578   struct core_regset_section *sect_list;
579   int i;
580 
581   if (!(core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
582       && (core_vec == NULL || core_vec->core_read_registers == NULL))
583     {
584       fprintf_filtered (gdb_stderr,
585 		     "Can't fetch registers from this type of core file\n");
586       return;
587     }
588 
589   sect_list = gdbarch_core_regset_sections (get_regcache_arch (regcache));
590   if (sect_list)
591     while (sect_list->sect_name != NULL)
592       {
593         if (strcmp (sect_list->sect_name, ".reg") == 0)
594 	  get_core_register_section (regcache, sect_list->sect_name,
595 				     0, sect_list->human_name, 1);
596         else if (strcmp (sect_list->sect_name, ".reg2") == 0)
597 	  get_core_register_section (regcache, sect_list->sect_name,
598 				     2, sect_list->human_name, 0);
599 	else
600 	  get_core_register_section (regcache, sect_list->sect_name,
601 				     3, sect_list->human_name, 0);
602 
603 	sect_list++;
604       }
605 
606   else
607     {
608       get_core_register_section (regcache,
609 				 ".reg", 0, "general-purpose", 1);
610       get_core_register_section (regcache,
611 				 ".reg2", 2, "floating-point", 0);
612     }
613 
614   /* Mark all registers not found in the core as unavailable.  */
615   for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
616     if (regcache_register_status (regcache, i) == REG_UNKNOWN)
617       regcache_raw_supply (regcache, i, NULL);
618 }
619 
620 static void
621 core_files_info (struct target_ops *t)
622 {
623   print_section_info (core_data, core_bfd);
624 }
625 
626 struct spuid_list
627 {
628   gdb_byte *buf;
629   ULONGEST offset;
630   LONGEST len;
631   ULONGEST pos;
632   ULONGEST written;
633 };
634 
635 static void
636 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
637 {
638   struct spuid_list *list = list_p;
639   enum bfd_endian byte_order
640     = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
641   int fd, pos = 0;
642 
643   sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
644   if (pos == 0)
645     return;
646 
647   if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
648     {
649       store_unsigned_integer (list->buf + list->pos - list->offset,
650 			      4, byte_order, fd);
651       list->written += 4;
652     }
653   list->pos += 4;
654 }
655 
656 /* Read siginfo data from the core, if possible.  Returns -1 on
657    failure.  Otherwise, returns the number of bytes read.  ABFD is the
658    core file's BFD; READBUF, OFFSET, and LEN are all as specified by
659    the to_xfer_partial interface.  */
660 
661 static LONGEST
662 get_core_siginfo (bfd *abfd, gdb_byte *readbuf, ULONGEST offset, LONGEST len)
663 {
664   asection *section;
665   char *section_name;
666   const char *name = ".note.linuxcore.siginfo";
667 
668   if (ptid_get_lwp (inferior_ptid))
669     section_name = xstrprintf ("%s/%ld", name,
670 			       ptid_get_lwp (inferior_ptid));
671   else
672     section_name = xstrdup (name);
673 
674   section = bfd_get_section_by_name (abfd, section_name);
675   xfree (section_name);
676   if (section == NULL)
677     return -1;
678 
679   if (!bfd_get_section_contents (abfd, section, readbuf, offset, len))
680     return -1;
681 
682   return len;
683 }
684 
685 static LONGEST
686 core_xfer_partial (struct target_ops *ops, enum target_object object,
687 		   const char *annex, gdb_byte *readbuf,
688 		   const gdb_byte *writebuf, ULONGEST offset,
689 		   LONGEST len)
690 {
691   switch (object)
692     {
693     case TARGET_OBJECT_MEMORY:
694       return section_table_xfer_memory_partial (readbuf, writebuf,
695 						offset, len,
696 						core_data->sections,
697 						core_data->sections_end,
698 						NULL);
699 
700     case TARGET_OBJECT_AUXV:
701       if (readbuf)
702 	{
703 	  /* When the aux vector is stored in core file, BFD
704 	     represents this with a fake section called ".auxv".  */
705 
706 	  struct bfd_section *section;
707 	  bfd_size_type size;
708 
709 	  section = bfd_get_section_by_name (core_bfd, ".auxv");
710 	  if (section == NULL)
711 	    return -1;
712 
713 	  size = bfd_section_size (core_bfd, section);
714 	  if (offset >= size)
715 	    return 0;
716 	  size -= offset;
717 	  if (size > len)
718 	    size = len;
719 	  if (size > 0
720 	      && !bfd_get_section_contents (core_bfd, section, readbuf,
721 					    (file_ptr) offset, size))
722 	    {
723 	      warning (_("Couldn't read NT_AUXV note in core file."));
724 	      return -1;
725 	    }
726 
727 	  return size;
728 	}
729       return -1;
730 
731     case TARGET_OBJECT_WCOOKIE:
732       if (readbuf)
733 	{
734 	  /* When the StackGhost cookie is stored in core file, BFD
735 	     represents this with a fake section called
736 	     ".wcookie".  */
737 
738 	  struct bfd_section *section;
739 	  bfd_size_type size;
740 
741 	  section = bfd_get_section_by_name (core_bfd, ".wcookie");
742 	  if (section == NULL)
743 	    return -1;
744 
745 	  size = bfd_section_size (core_bfd, section);
746 	  if (offset >= size)
747 	    return 0;
748 	  size -= offset;
749 	  if (size > len)
750 	    size = len;
751 	  if (size > 0
752 	      && !bfd_get_section_contents (core_bfd, section, readbuf,
753 					    (file_ptr) offset, size))
754 	    {
755 	      warning (_("Couldn't read StackGhost cookie in core file."));
756 	      return -1;
757 	    }
758 
759 	  return size;
760 	}
761       return -1;
762 
763     case TARGET_OBJECT_LIBRARIES:
764       if (core_gdbarch
765 	  && gdbarch_core_xfer_shared_libraries_p (core_gdbarch))
766 	{
767 	  if (writebuf)
768 	    return -1;
769 	  return
770 	    gdbarch_core_xfer_shared_libraries (core_gdbarch,
771 						readbuf, offset, len);
772 	}
773       /* FALL THROUGH */
774 
775     case TARGET_OBJECT_SPU:
776       if (readbuf && annex)
777 	{
778 	  /* When the SPU contexts are stored in a core file, BFD
779 	     represents this with a fake section called
780 	     "SPU/<annex>".  */
781 
782 	  struct bfd_section *section;
783 	  bfd_size_type size;
784 	  char sectionstr[100];
785 
786 	  xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
787 
788 	  section = bfd_get_section_by_name (core_bfd, sectionstr);
789 	  if (section == NULL)
790 	    return -1;
791 
792 	  size = bfd_section_size (core_bfd, section);
793 	  if (offset >= size)
794 	    return 0;
795 	  size -= offset;
796 	  if (size > len)
797 	    size = len;
798 	  if (size > 0
799 	      && !bfd_get_section_contents (core_bfd, section, readbuf,
800 					    (file_ptr) offset, size))
801 	    {
802 	      warning (_("Couldn't read SPU section in core file."));
803 	      return -1;
804 	    }
805 
806 	  return size;
807 	}
808       else if (readbuf)
809 	{
810 	  /* NULL annex requests list of all present spuids.  */
811 	  struct spuid_list list;
812 
813 	  list.buf = readbuf;
814 	  list.offset = offset;
815 	  list.len = len;
816 	  list.pos = 0;
817 	  list.written = 0;
818 	  bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
819 	  return list.written;
820 	}
821       return -1;
822 
823     case TARGET_OBJECT_SIGNAL_INFO:
824       if (readbuf)
825 	return get_core_siginfo (core_bfd, readbuf, offset, len);
826       return -1;
827 
828     default:
829       if (ops->beneath != NULL)
830 	return ops->beneath->to_xfer_partial (ops->beneath, object,
831 					      annex, readbuf,
832 					      writebuf, offset, len);
833       return -1;
834     }
835 }
836 
837 
838 /* If mourn is being called in all the right places, this could be say
839    `gdb internal error' (since generic_mourn calls
840    breakpoint_init_inferior).  */
841 
842 static int
843 ignore (struct gdbarch *gdbarch, struct bp_target_info *bp_tgt)
844 {
845   return 0;
846 }
847 
848 
849 /* Okay, let's be honest: threads gleaned from a core file aren't
850    exactly lively, are they?  On the other hand, if we don't claim
851    that each & every one is alive, then we don't get any of them
852    to appear in an "info thread" command, which is quite a useful
853    behaviour.
854  */
855 static int
856 core_thread_alive (struct target_ops *ops, ptid_t ptid)
857 {
858   return 1;
859 }
860 
861 /* Ask the current architecture what it knows about this core file.
862    That will be used, in turn, to pick a better architecture.  This
863    wrapper could be avoided if targets got a chance to specialize
864    core_ops.  */
865 
866 static const struct target_desc *
867 core_read_description (struct target_ops *target)
868 {
869   if (core_gdbarch && gdbarch_core_read_description_p (core_gdbarch))
870     return gdbarch_core_read_description (core_gdbarch,
871 					  target, core_bfd);
872 
873   return NULL;
874 }
875 
876 static char *
877 core_pid_to_str (struct target_ops *ops, ptid_t ptid)
878 {
879   static char buf[64];
880   struct inferior *inf;
881   int pid;
882 
883   /* The preferred way is to have a gdbarch/OS specific
884      implementation.  */
885   if (core_gdbarch
886       && gdbarch_core_pid_to_str_p (core_gdbarch))
887     return gdbarch_core_pid_to_str (core_gdbarch, ptid);
888 
889   /* Otherwise, if we don't have one, we'll just fallback to
890      "process", with normal_pid_to_str.  */
891 
892   /* Try the LWPID field first.  */
893   pid = ptid_get_lwp (ptid);
894   if (pid != 0)
895     return normal_pid_to_str (pid_to_ptid (pid));
896 
897   /* Otherwise, this isn't a "threaded" core -- use the PID field, but
898      only if it isn't a fake PID.  */
899   inf = find_inferior_pid (ptid_get_pid (ptid));
900   if (inf != NULL && !inf->fake_pid_p)
901     return normal_pid_to_str (ptid);
902 
903   /* No luck.  We simply don't have a valid PID to print.  */
904   xsnprintf (buf, sizeof buf, "<main task>");
905   return buf;
906 }
907 
908 static int
909 core_has_memory (struct target_ops *ops)
910 {
911   return (core_bfd != NULL);
912 }
913 
914 static int
915 core_has_stack (struct target_ops *ops)
916 {
917   return (core_bfd != NULL);
918 }
919 
920 static int
921 core_has_registers (struct target_ops *ops)
922 {
923   return (core_bfd != NULL);
924 }
925 
926 /* Implement the to_info_proc method.  */
927 
928 static void
929 core_info_proc (struct target_ops *ops, char *args, enum info_proc_what request)
930 {
931   struct gdbarch *gdbarch = get_current_arch ();
932 
933   /* Since this is the core file target, call the 'core_info_proc'
934      method on gdbarch, not 'info_proc'.  */
935   if (gdbarch_core_info_proc_p (gdbarch))
936     gdbarch_core_info_proc (gdbarch, args, request);
937 }
938 
939 /* Fill in core_ops with its defined operations and properties.  */
940 
941 static void
942 init_core_ops (void)
943 {
944   core_ops.to_shortname = "core";
945   core_ops.to_longname = "Local core dump file";
946   core_ops.to_doc =
947     "Use a core file as a target.  Specify the filename of the core file.";
948   core_ops.to_open = core_open;
949   core_ops.to_close = core_close;
950   core_ops.to_attach = find_default_attach;
951   core_ops.to_detach = core_detach;
952   core_ops.to_fetch_registers = get_core_registers;
953   core_ops.to_xfer_partial = core_xfer_partial;
954   core_ops.to_files_info = core_files_info;
955   core_ops.to_insert_breakpoint = ignore;
956   core_ops.to_remove_breakpoint = ignore;
957   core_ops.to_create_inferior = find_default_create_inferior;
958   core_ops.to_thread_alive = core_thread_alive;
959   core_ops.to_read_description = core_read_description;
960   core_ops.to_pid_to_str = core_pid_to_str;
961   core_ops.to_stratum = process_stratum;
962   core_ops.to_has_memory = core_has_memory;
963   core_ops.to_has_stack = core_has_stack;
964   core_ops.to_has_registers = core_has_registers;
965   core_ops.to_info_proc = core_info_proc;
966   core_ops.to_magic = OPS_MAGIC;
967 
968   if (core_target)
969     internal_error (__FILE__, __LINE__,
970 		    _("init_core_ops: core target already exists (\"%s\")."),
971 		    core_target->to_longname);
972   core_target = &core_ops;
973 }
974 
975 void
976 _initialize_corelow (void)
977 {
978   init_core_ops ();
979 
980   add_target (&core_ops);
981 }
982