xref: /dragonfly/contrib/gdb-7/gdb/disasm.c (revision e96fb831)
1 /* Disassemble support for GDB.
2 
3    Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010,
4    2011 Free Software Foundation, Inc.
5 
6    This file is part of GDB.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20 
21 #include "defs.h"
22 #include "target.h"
23 #include "value.h"
24 #include "ui-out.h"
25 #include "gdb_string.h"
26 #include "disasm.h"
27 #include "gdbcore.h"
28 #include "dis-asm.h"
29 
30 /* Disassemble functions.
31    FIXME: We should get rid of all the duplicate code in gdb that does
32    the same thing: disassemble_command() and the gdbtk variation.  */
33 
34 /* This Structure is used to store line number information.
35    We need a different sort of line table from the normal one cuz we can't
36    depend upon implicit line-end pc's for lines to do the
37    reordering in this function.  */
38 
39 struct dis_line_entry
40 {
41   int line;
42   CORE_ADDR start_pc;
43   CORE_ADDR end_pc;
44 };
45 
46 /* Like target_read_memory, but slightly different parameters.  */
47 static int
48 dis_asm_read_memory (bfd_vma memaddr, gdb_byte *myaddr, unsigned int len,
49 		     struct disassemble_info *info)
50 {
51   return target_read_memory (memaddr, myaddr, len);
52 }
53 
54 /* Like memory_error with slightly different parameters.  */
55 static void
56 dis_asm_memory_error (int status, bfd_vma memaddr,
57 		      struct disassemble_info *info)
58 {
59   memory_error (status, memaddr);
60 }
61 
62 /* Like print_address with slightly different parameters.  */
63 static void
64 dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
65 {
66   struct gdbarch *gdbarch = info->application_data;
67 
68   print_address (gdbarch, addr, info->stream);
69 }
70 
71 static int
72 compare_lines (const void *mle1p, const void *mle2p)
73 {
74   struct dis_line_entry *mle1, *mle2;
75   int val;
76 
77   mle1 = (struct dis_line_entry *) mle1p;
78   mle2 = (struct dis_line_entry *) mle2p;
79 
80   /* End of sequence markers have a line number of 0 but don't want to
81      be sorted to the head of the list, instead sort by PC.  */
82   if (mle1->line == 0 || mle2->line == 0)
83     {
84       val = mle1->start_pc - mle2->start_pc;
85       if (val == 0)
86         val = mle1->line - mle2->line;
87     }
88   else
89     {
90       val = mle1->line - mle2->line;
91       if (val == 0)
92         val = mle1->start_pc - mle2->start_pc;
93     }
94   return val;
95 }
96 
97 static int
98 dump_insns (struct gdbarch *gdbarch, struct ui_out *uiout,
99 	    struct disassemble_info * di,
100 	    CORE_ADDR low, CORE_ADDR high,
101 	    int how_many, int flags, struct ui_stream *stb)
102 {
103   int num_displayed = 0;
104   CORE_ADDR pc;
105 
106   /* parts of the symbolic representation of the address */
107   int unmapped;
108   int offset;
109   int line;
110   struct cleanup *ui_out_chain;
111 
112   for (pc = low; pc < high;)
113     {
114       char *filename = NULL;
115       char *name = NULL;
116 
117       QUIT;
118       if (how_many >= 0)
119 	{
120 	  if (num_displayed >= how_many)
121 	    break;
122 	  else
123 	    num_displayed++;
124 	}
125       ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
126       ui_out_text (uiout, pc_prefix (pc));
127       ui_out_field_core_addr (uiout, "address", gdbarch, pc);
128 
129       if (!build_address_symbolic (gdbarch, pc, 0, &name, &offset, &filename,
130 				   &line, &unmapped))
131 	{
132 	  /* We don't care now about line, filename and
133 	     unmapped. But we might in the future.  */
134 	  ui_out_text (uiout, " <");
135 	  if ((flags & DISASSEMBLY_OMIT_FNAME) == 0)
136 	    ui_out_field_string (uiout, "func-name", name);
137 	  ui_out_text (uiout, "+");
138 	  ui_out_field_int (uiout, "offset", offset);
139 	  ui_out_text (uiout, ">:\t");
140 	}
141       else
142 	ui_out_text (uiout, ":\t");
143 
144       if (filename != NULL)
145 	xfree (filename);
146       if (name != NULL)
147 	xfree (name);
148 
149       ui_file_rewind (stb->stream);
150       if (flags & DISASSEMBLY_RAW_INSN)
151         {
152           CORE_ADDR old_pc = pc;
153           bfd_byte data;
154           int status;
155           const char *spacer = "";
156 
157           /* Build the opcodes using a temporary stream so we can
158              write them out in a single go for the MI.  */
159           struct ui_stream *opcode_stream = ui_out_stream_new (uiout);
160           struct cleanup *cleanups =
161             make_cleanup_ui_out_stream_delete (opcode_stream);
162 
163           pc += gdbarch_print_insn (gdbarch, pc, di);
164           for (;old_pc < pc; old_pc++)
165             {
166               status = (*di->read_memory_func) (old_pc, &data, 1, di);
167               if (status != 0)
168                 (*di->memory_error_func) (status, old_pc, di);
169               fprintf_filtered (opcode_stream->stream, "%s%02x",
170                                 spacer, (unsigned) data);
171               spacer = " ";
172             }
173           ui_out_field_stream (uiout, "opcodes", opcode_stream);
174           ui_out_text (uiout, "\t");
175 
176           do_cleanups (cleanups);
177         }
178       else
179         pc += gdbarch_print_insn (gdbarch, pc, di);
180       ui_out_field_stream (uiout, "inst", stb);
181       ui_file_rewind (stb->stream);
182       do_cleanups (ui_out_chain);
183       ui_out_text (uiout, "\n");
184     }
185   return num_displayed;
186 }
187 
188 /* The idea here is to present a source-O-centric view of a
189    function to the user.  This means that things are presented
190    in source order, with (possibly) out of order assembly
191    immediately following.  */
192 
193 static void
194 do_mixed_source_and_assembly (struct gdbarch *gdbarch, struct ui_out *uiout,
195 			      struct disassemble_info *di, int nlines,
196 			      struct linetable_entry *le,
197 			      CORE_ADDR low, CORE_ADDR high,
198 			      struct symtab *symtab,
199 			      int how_many, int flags, struct ui_stream *stb)
200 {
201   int newlines = 0;
202   struct dis_line_entry *mle;
203   struct symtab_and_line sal;
204   int i;
205   int out_of_order = 0;
206   int next_line = 0;
207   int num_displayed = 0;
208   struct cleanup *ui_out_chain;
209   struct cleanup *ui_out_tuple_chain = make_cleanup (null_cleanup, 0);
210   struct cleanup *ui_out_list_chain = make_cleanup (null_cleanup, 0);
211 
212   mle = (struct dis_line_entry *) alloca (nlines
213 					  * sizeof (struct dis_line_entry));
214 
215   /* Copy linetable entries for this function into our data
216      structure, creating end_pc's and setting out_of_order as
217      appropriate.  */
218 
219   /* First, skip all the preceding functions.  */
220 
221   for (i = 0; i < nlines - 1 && le[i].pc < low; i++);
222 
223   /* Now, copy all entries before the end of this function.  */
224 
225   for (; i < nlines - 1 && le[i].pc < high; i++)
226     {
227       if (le[i].line == le[i + 1].line && le[i].pc == le[i + 1].pc)
228 	continue;		/* Ignore duplicates.  */
229 
230       /* Skip any end-of-function markers.  */
231       if (le[i].line == 0)
232 	continue;
233 
234       mle[newlines].line = le[i].line;
235       if (le[i].line > le[i + 1].line)
236 	out_of_order = 1;
237       mle[newlines].start_pc = le[i].pc;
238       mle[newlines].end_pc = le[i + 1].pc;
239       newlines++;
240     }
241 
242   /* If we're on the last line, and it's part of the function,
243      then we need to get the end pc in a special way.  */
244 
245   if (i == nlines - 1 && le[i].pc < high)
246     {
247       mle[newlines].line = le[i].line;
248       mle[newlines].start_pc = le[i].pc;
249       sal = find_pc_line (le[i].pc, 0);
250       mle[newlines].end_pc = sal.end;
251       newlines++;
252     }
253 
254   /* Now, sort mle by line #s (and, then by addresses within
255      lines).  */
256 
257   if (out_of_order)
258     qsort (mle, newlines, sizeof (struct dis_line_entry), compare_lines);
259 
260   /* Now, for each line entry, emit the specified lines (unless
261      they have been emitted before), followed by the assembly code
262      for that line.  */
263 
264   ui_out_chain = make_cleanup_ui_out_list_begin_end (uiout, "asm_insns");
265 
266   for (i = 0; i < newlines; i++)
267     {
268       /* Print out everything from next_line to the current line.  */
269       if (mle[i].line >= next_line)
270 	{
271 	  if (next_line != 0)
272 	    {
273 	      /* Just one line to print.  */
274 	      if (next_line == mle[i].line)
275 		{
276 		  ui_out_tuple_chain
277 		    = make_cleanup_ui_out_tuple_begin_end (uiout,
278 							   "src_and_asm_line");
279 		  print_source_lines (symtab, next_line, mle[i].line + 1, 0);
280 		}
281 	      else
282 		{
283 		  /* Several source lines w/o asm instructions associated.  */
284 		  for (; next_line < mle[i].line; next_line++)
285 		    {
286 		      struct cleanup *ui_out_list_chain_line;
287 		      struct cleanup *ui_out_tuple_chain_line;
288 
289 		      ui_out_tuple_chain_line
290 			= make_cleanup_ui_out_tuple_begin_end (uiout,
291 							       "src_and_asm_line");
292 		      print_source_lines (symtab, next_line, next_line + 1,
293 					  0);
294 		      ui_out_list_chain_line
295 			= make_cleanup_ui_out_list_begin_end (uiout,
296 							      "line_asm_insn");
297 		      do_cleanups (ui_out_list_chain_line);
298 		      do_cleanups (ui_out_tuple_chain_line);
299 		    }
300 		  /* Print the last line and leave list open for
301 		     asm instructions to be added.  */
302 		  ui_out_tuple_chain
303 		    = make_cleanup_ui_out_tuple_begin_end (uiout,
304 							   "src_and_asm_line");
305 		  print_source_lines (symtab, next_line, mle[i].line + 1, 0);
306 		}
307 	    }
308 	  else
309 	    {
310 	      ui_out_tuple_chain
311 		= make_cleanup_ui_out_tuple_begin_end (uiout,
312 						       "src_and_asm_line");
313 	      print_source_lines (symtab, mle[i].line, mle[i].line + 1, 0);
314 	    }
315 
316 	  next_line = mle[i].line + 1;
317 	  ui_out_list_chain
318 	    = make_cleanup_ui_out_list_begin_end (uiout, "line_asm_insn");
319 	}
320 
321       num_displayed += dump_insns (gdbarch, uiout, di,
322 				   mle[i].start_pc, mle[i].end_pc,
323 				   how_many, flags, stb);
324 
325       /* When we've reached the end of the mle array, or we've seen the last
326          assembly range for this source line, close out the list/tuple.  */
327       if (i == (newlines - 1) || mle[i + 1].line > mle[i].line)
328 	{
329 	  do_cleanups (ui_out_list_chain);
330 	  do_cleanups (ui_out_tuple_chain);
331 	  ui_out_tuple_chain = make_cleanup (null_cleanup, 0);
332 	  ui_out_list_chain = make_cleanup (null_cleanup, 0);
333 	  ui_out_text (uiout, "\n");
334 	}
335       if (how_many >= 0 && num_displayed >= how_many)
336 	break;
337     }
338   do_cleanups (ui_out_chain);
339 }
340 
341 
342 static void
343 do_assembly_only (struct gdbarch *gdbarch, struct ui_out *uiout,
344 		  struct disassemble_info * di,
345 		  CORE_ADDR low, CORE_ADDR high,
346 		  int how_many, int flags, struct ui_stream *stb)
347 {
348   int num_displayed = 0;
349   struct cleanup *ui_out_chain;
350 
351   ui_out_chain = make_cleanup_ui_out_list_begin_end (uiout, "asm_insns");
352 
353   num_displayed = dump_insns (gdbarch, uiout, di, low, high, how_many,
354                               flags, stb);
355 
356   do_cleanups (ui_out_chain);
357 }
358 
359 /* Initialize the disassemble info struct ready for the specified
360    stream.  */
361 
362 static int ATTRIBUTE_PRINTF (2, 3)
363 fprintf_disasm (void *stream, const char *format, ...)
364 {
365   va_list args;
366 
367   va_start (args, format);
368   vfprintf_filtered (stream, format, args);
369   va_end (args);
370   /* Something non -ve.  */
371   return 0;
372 }
373 
374 static struct disassemble_info
375 gdb_disassemble_info (struct gdbarch *gdbarch, struct ui_file *file)
376 {
377   struct disassemble_info di;
378 
379   init_disassemble_info (&di, file, fprintf_disasm);
380   di.flavour = bfd_target_unknown_flavour;
381   di.memory_error_func = dis_asm_memory_error;
382   di.print_address_func = dis_asm_print_address;
383   /* NOTE: cagney/2003-04-28: The original code, from the old Insight
384      disassembler had a local optomization here.  By default it would
385      access the executable file, instead of the target memory (there
386      was a growing list of exceptions though).  Unfortunately, the
387      heuristic was flawed.  Commands like "disassemble &variable"
388      didn't work as they relied on the access going to the target.
389      Further, it has been supperseeded by trust-read-only-sections
390      (although that should be superseeded by target_trust..._p()).  */
391   di.read_memory_func = dis_asm_read_memory;
392   di.arch = gdbarch_bfd_arch_info (gdbarch)->arch;
393   di.mach = gdbarch_bfd_arch_info (gdbarch)->mach;
394   di.endian = gdbarch_byte_order (gdbarch);
395   di.endian_code = gdbarch_byte_order_for_code (gdbarch);
396   di.application_data = gdbarch;
397   disassemble_init_for_target (&di);
398   return di;
399 }
400 
401 void
402 gdb_disassembly (struct gdbarch *gdbarch, struct ui_out *uiout,
403 		 char *file_string, int flags, int how_many,
404 		 CORE_ADDR low, CORE_ADDR high)
405 {
406   struct ui_stream *stb = ui_out_stream_new (uiout);
407   struct cleanup *cleanups = make_cleanup_ui_out_stream_delete (stb);
408   struct disassemble_info di = gdb_disassemble_info (gdbarch, stb->stream);
409   /* To collect the instruction outputted from opcodes.  */
410   struct symtab *symtab = NULL;
411   struct linetable_entry *le = NULL;
412   int nlines = -1;
413 
414   /* Assume symtab is valid for whole PC range.  */
415   symtab = find_pc_symtab (low);
416 
417   if (symtab != NULL && symtab->linetable != NULL)
418     {
419       /* Convert the linetable to a bunch of my_line_entry's.  */
420       le = symtab->linetable->item;
421       nlines = symtab->linetable->nitems;
422     }
423 
424   if (!(flags & DISASSEMBLY_SOURCE) || nlines <= 0
425       || symtab == NULL || symtab->linetable == NULL)
426     do_assembly_only (gdbarch, uiout, &di, low, high, how_many, flags, stb);
427 
428   else if (flags & DISASSEMBLY_SOURCE)
429     do_mixed_source_and_assembly (gdbarch, uiout, &di, nlines, le, low,
430 				  high, symtab, how_many, flags, stb);
431 
432   do_cleanups (cleanups);
433   gdb_flush (gdb_stdout);
434 }
435 
436 /* Print the instruction at address MEMADDR in debugged memory,
437    on STREAM.  Returns the length of the instruction, in bytes,
438    and, if requested, the number of branch delay slot instructions.  */
439 
440 int
441 gdb_print_insn (struct gdbarch *gdbarch, CORE_ADDR memaddr,
442 		struct ui_file *stream, int *branch_delay_insns)
443 {
444   struct disassemble_info di;
445   int length;
446 
447   di = gdb_disassemble_info (gdbarch, stream);
448   length = gdbarch_print_insn (gdbarch, memaddr, &di);
449   if (branch_delay_insns)
450     {
451       if (di.insn_info_valid)
452 	*branch_delay_insns = di.branch_delay_insns;
453       else
454 	*branch_delay_insns = 0;
455     }
456   return length;
457 }
458 
459 static void
460 do_ui_file_delete (void *arg)
461 {
462   ui_file_delete (arg);
463 }
464 
465 /* Return the length in bytes of the instruction at address MEMADDR in
466    debugged memory.  */
467 
468 int
469 gdb_insn_length (struct gdbarch *gdbarch, CORE_ADDR addr)
470 {
471   static struct ui_file *null_stream = NULL;
472 
473   /* Dummy file descriptor for the disassembler.  */
474   if (!null_stream)
475     {
476       null_stream = ui_file_new ();
477       make_final_cleanup (do_ui_file_delete, null_stream);
478     }
479 
480   return gdb_print_insn (gdbarch, addr, null_stream, NULL);
481 }
482 
483 /* fprintf-function for gdb_buffered_insn_length.  This function is a
484    nop, we don't want to print anything, we just want to compute the
485    length of the insn.  */
486 
487 static int ATTRIBUTE_PRINTF (2, 3)
488 gdb_buffered_insn_length_fprintf (void *stream, const char *format, ...)
489 {
490   return 0;
491 }
492 
493 /* Initialize a struct disassemble_info for gdb_buffered_insn_length.  */
494 
495 static void
496 gdb_buffered_insn_length_init_dis (struct gdbarch *gdbarch,
497 				   struct disassemble_info *di,
498 				   const gdb_byte *insn, int max_len,
499 				   CORE_ADDR addr)
500 {
501   init_disassemble_info (di, NULL, gdb_buffered_insn_length_fprintf);
502 
503   /* init_disassemble_info installs buffer_read_memory, etc.
504      so we don't need to do that here.
505      The cast is necessary until disassemble_info is const-ified.  */
506   di->buffer = (gdb_byte *) insn;
507   di->buffer_length = max_len;
508   di->buffer_vma = addr;
509 
510   di->arch = gdbarch_bfd_arch_info (gdbarch)->arch;
511   di->mach = gdbarch_bfd_arch_info (gdbarch)->mach;
512   di->endian = gdbarch_byte_order (gdbarch);
513   di->endian_code = gdbarch_byte_order_for_code (gdbarch);
514 
515   disassemble_init_for_target (di);
516 }
517 
518 /* Return the length in bytes of INSN.  MAX_LEN is the size of the
519    buffer containing INSN.  */
520 
521 int
522 gdb_buffered_insn_length (struct gdbarch *gdbarch,
523 			  const gdb_byte *insn, int max_len, CORE_ADDR addr)
524 {
525   struct disassemble_info di;
526 
527   gdb_buffered_insn_length_init_dis (gdbarch, &di, insn, max_len, addr);
528 
529   return gdbarch_print_insn (gdbarch, addr, &di);
530 }
531