xref: /dragonfly/contrib/gdb-7/gdb/dwarf2read.c (revision 77b0c609)
1 /* DWARF 2 debugging format support for GDB.
2 
3    Copyright (C) 1994-2012 Free Software Foundation, Inc.
4 
5    Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6    Inc.  with support from Florida State University (under contract
7    with the Ada Joint Program Office), and Silicon Graphics, Inc.
8    Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9    based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10    support.
11 
12    This file is part of GDB.
13 
14    This program is free software; you can redistribute it and/or modify
15    it under the terms of the GNU General Public License as published by
16    the Free Software Foundation; either version 3 of the License, or
17    (at your option) any later version.
18 
19    This program is distributed in the hope that it will be useful,
20    but WITHOUT ANY WARRANTY; without even the implied warranty of
21    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22    GNU General Public License for more details.
23 
24    You should have received a copy of the GNU General Public License
25    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
26 
27 #include "defs.h"
28 #include "bfd.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "objfiles.h"
32 #include "dwarf2.h"
33 #include "buildsym.h"
34 #include "demangle.h"
35 #include "gdb-demangle.h"
36 #include "expression.h"
37 #include "filenames.h"	/* for DOSish file names */
38 #include "macrotab.h"
39 #include "language.h"
40 #include "complaints.h"
41 #include "bcache.h"
42 #include "dwarf2expr.h"
43 #include "dwarf2loc.h"
44 #include "cp-support.h"
45 #include "hashtab.h"
46 #include "command.h"
47 #include "gdbcmd.h"
48 #include "block.h"
49 #include "addrmap.h"
50 #include "typeprint.h"
51 #include "jv-lang.h"
52 #include "psympriv.h"
53 #include "exceptions.h"
54 #include "gdb_stat.h"
55 #include "completer.h"
56 #include "vec.h"
57 #include "c-lang.h"
58 #include "valprint.h"
59 #include <ctype.h>
60 
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_assert.h"
64 #include <sys/types.h>
65 #ifdef HAVE_ZLIB_H
66 #include <zlib.h>
67 #endif
68 #ifdef HAVE_MMAP
69 #include <sys/mman.h>
70 #ifndef MAP_FAILED
71 #define MAP_FAILED ((void *) -1)
72 #endif
73 #endif
74 
75 typedef struct symbol *symbolp;
76 DEF_VEC_P (symbolp);
77 
78 #if 0
79 /* .debug_info header for a compilation unit
80    Because of alignment constraints, this structure has padding and cannot
81    be mapped directly onto the beginning of the .debug_info section.  */
82 typedef struct comp_unit_header
83   {
84     unsigned int length;	/* length of the .debug_info
85 				   contribution */
86     unsigned short version;	/* version number -- 2 for DWARF
87 				   version 2 */
88     unsigned int abbrev_offset;	/* offset into .debug_abbrev section */
89     unsigned char addr_size;	/* byte size of an address -- 4 */
90   }
91 _COMP_UNIT_HEADER;
92 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
93 #endif
94 
95 /* .debug_line statement program prologue
96    Because of alignment constraints, this structure has padding and cannot
97    be mapped directly onto the beginning of the .debug_info section.  */
98 typedef struct statement_prologue
99   {
100     unsigned int total_length;	/* byte length of the statement
101 				   information */
102     unsigned short version;	/* version number -- 2 for DWARF
103 				   version 2 */
104     unsigned int prologue_length;	/* # bytes between prologue &
105 					   stmt program */
106     unsigned char minimum_instruction_length;	/* byte size of
107 						   smallest instr */
108     unsigned char default_is_stmt;	/* initial value of is_stmt
109 					   register */
110     char line_base;
111     unsigned char line_range;
112     unsigned char opcode_base;	/* number assigned to first special
113 				   opcode */
114     unsigned char *standard_opcode_lengths;
115   }
116 _STATEMENT_PROLOGUE;
117 
118 /* When non-zero, dump DIEs after they are read in.  */
119 static int dwarf2_die_debug = 0;
120 
121 /* When non-zero, cross-check physname against demangler.  */
122 static int check_physname = 0;
123 
124 static int pagesize;
125 
126 /* When set, the file that we're processing is known to have debugging
127    info for C++ namespaces.  GCC 3.3.x did not produce this information,
128    but later versions do.  */
129 
130 static int processing_has_namespace_info;
131 
132 static const struct objfile_data *dwarf2_objfile_data_key;
133 
134 struct dwarf2_section_info
135 {
136   asection *asection;
137   gdb_byte *buffer;
138   bfd_size_type size;
139   /* Not NULL if the section was actually mmapped.  */
140   void *map_addr;
141   /* Page aligned size of mmapped area.  */
142   bfd_size_type map_len;
143   /* True if we have tried to read this section.  */
144   int readin;
145 };
146 
147 typedef struct dwarf2_section_info dwarf2_section_info_def;
148 DEF_VEC_O (dwarf2_section_info_def);
149 
150 /* All offsets in the index are of this type.  It must be
151    architecture-independent.  */
152 typedef uint32_t offset_type;
153 
154 DEF_VEC_I (offset_type);
155 
156 /* A description of the mapped index.  The file format is described in
157    a comment by the code that writes the index.  */
158 struct mapped_index
159 {
160   /* Index data format version.  */
161   int version;
162 
163   /* The total length of the buffer.  */
164   off_t total_size;
165 
166   /* A pointer to the address table data.  */
167   const gdb_byte *address_table;
168 
169   /* Size of the address table data in bytes.  */
170   offset_type address_table_size;
171 
172   /* The symbol table, implemented as a hash table.  */
173   const offset_type *symbol_table;
174 
175   /* Size in slots, each slot is 2 offset_types.  */
176   offset_type symbol_table_slots;
177 
178   /* A pointer to the constant pool.  */
179   const char *constant_pool;
180 };
181 
182 struct dwarf2_per_objfile
183 {
184   struct dwarf2_section_info info;
185   struct dwarf2_section_info abbrev;
186   struct dwarf2_section_info line;
187   struct dwarf2_section_info loc;
188   struct dwarf2_section_info macinfo;
189   struct dwarf2_section_info macro;
190   struct dwarf2_section_info str;
191   struct dwarf2_section_info ranges;
192   struct dwarf2_section_info frame;
193   struct dwarf2_section_info eh_frame;
194   struct dwarf2_section_info gdb_index;
195 
196   VEC (dwarf2_section_info_def) *types;
197 
198   /* Back link.  */
199   struct objfile *objfile;
200 
201   /* A list of all the compilation units.  This is used to locate
202      the target compilation unit of a particular reference.  */
203   struct dwarf2_per_cu_data **all_comp_units;
204 
205   /* The number of compilation units in ALL_COMP_UNITS.  */
206   int n_comp_units;
207 
208   /* The number of .debug_types-related CUs.  */
209   int n_type_comp_units;
210 
211   /* The .debug_types-related CUs.  */
212   struct dwarf2_per_cu_data **type_comp_units;
213 
214   /* A chain of compilation units that are currently read in, so that
215      they can be freed later.  */
216   struct dwarf2_per_cu_data *read_in_chain;
217 
218   /* A table mapping .debug_types signatures to its signatured_type entry.
219      This is NULL if the .debug_types section hasn't been read in yet.  */
220   htab_t signatured_types;
221 
222   /* A flag indicating wether this objfile has a section loaded at a
223      VMA of 0.  */
224   int has_section_at_zero;
225 
226   /* True if we are using the mapped index,
227      or we are faking it for OBJF_READNOW's sake.  */
228   unsigned char using_index;
229 
230   /* The mapped index, or NULL if .gdb_index is missing or not being used.  */
231   struct mapped_index *index_table;
232 
233   /* When using index_table, this keeps track of all quick_file_names entries.
234      TUs can share line table entries with CUs or other TUs, and there can be
235      a lot more TUs than unique line tables, so we maintain a separate table
236      of all line table entries to support the sharing.  */
237   htab_t quick_file_names_table;
238 
239   /* Set during partial symbol reading, to prevent queueing of full
240      symbols.  */
241   int reading_partial_symbols;
242 
243   /* Table mapping type .debug_info DIE offsets to types.
244      This is NULL if not allocated yet.
245      It (currently) makes sense to allocate debug_types_type_hash lazily.
246      To keep things simple we allocate both lazily.  */
247   htab_t debug_info_type_hash;
248 
249   /* Table mapping type .debug_types DIE offsets to types.
250      This is NULL if not allocated yet.  */
251   htab_t debug_types_type_hash;
252 };
253 
254 static struct dwarf2_per_objfile *dwarf2_per_objfile;
255 
256 /* Default names of the debugging sections.  */
257 
258 /* Note that if the debugging section has been compressed, it might
259    have a name like .zdebug_info.  */
260 
261 static const struct dwarf2_debug_sections dwarf2_elf_names = {
262   { ".debug_info", ".zdebug_info" },
263   { ".debug_abbrev", ".zdebug_abbrev" },
264   { ".debug_line", ".zdebug_line" },
265   { ".debug_loc", ".zdebug_loc" },
266   { ".debug_macinfo", ".zdebug_macinfo" },
267   { ".debug_macro", ".zdebug_macro" },
268   { ".debug_str", ".zdebug_str" },
269   { ".debug_ranges", ".zdebug_ranges" },
270   { ".debug_types", ".zdebug_types" },
271   { ".debug_frame", ".zdebug_frame" },
272   { ".eh_frame", NULL },
273   { ".gdb_index", ".zgdb_index" },
274   23
275 };
276 
277 /* local data types */
278 
279 /* We hold several abbreviation tables in memory at the same time.  */
280 #ifndef ABBREV_HASH_SIZE
281 #define ABBREV_HASH_SIZE 121
282 #endif
283 
284 /* The data in a compilation unit header, after target2host
285    translation, looks like this.  */
286 struct comp_unit_head
287 {
288   unsigned int length;
289   short version;
290   unsigned char addr_size;
291   unsigned char signed_addr_p;
292   unsigned int abbrev_offset;
293 
294   /* Size of file offsets; either 4 or 8.  */
295   unsigned int offset_size;
296 
297   /* Size of the length field; either 4 or 12.  */
298   unsigned int initial_length_size;
299 
300   /* Offset to the first byte of this compilation unit header in the
301      .debug_info section, for resolving relative reference dies.  */
302   unsigned int offset;
303 
304   /* Offset to first die in this cu from the start of the cu.
305      This will be the first byte following the compilation unit header.  */
306   unsigned int first_die_offset;
307 };
308 
309 /* Type used for delaying computation of method physnames.
310    See comments for compute_delayed_physnames.  */
311 struct delayed_method_info
312 {
313   /* The type to which the method is attached, i.e., its parent class.  */
314   struct type *type;
315 
316   /* The index of the method in the type's function fieldlists.  */
317   int fnfield_index;
318 
319   /* The index of the method in the fieldlist.  */
320   int index;
321 
322   /* The name of the DIE.  */
323   const char *name;
324 
325   /*  The DIE associated with this method.  */
326   struct die_info *die;
327 };
328 
329 typedef struct delayed_method_info delayed_method_info;
330 DEF_VEC_O (delayed_method_info);
331 
332 /* Internal state when decoding a particular compilation unit.  */
333 struct dwarf2_cu
334 {
335   /* The objfile containing this compilation unit.  */
336   struct objfile *objfile;
337 
338   /* The header of the compilation unit.  */
339   struct comp_unit_head header;
340 
341   /* Base address of this compilation unit.  */
342   CORE_ADDR base_address;
343 
344   /* Non-zero if base_address has been set.  */
345   int base_known;
346 
347   struct function_range *first_fn, *last_fn, *cached_fn;
348 
349   /* The language we are debugging.  */
350   enum language language;
351   const struct language_defn *language_defn;
352 
353   const char *producer;
354 
355   /* The generic symbol table building routines have separate lists for
356      file scope symbols and all all other scopes (local scopes).  So
357      we need to select the right one to pass to add_symbol_to_list().
358      We do it by keeping a pointer to the correct list in list_in_scope.
359 
360      FIXME: The original dwarf code just treated the file scope as the
361      first local scope, and all other local scopes as nested local
362      scopes, and worked fine.  Check to see if we really need to
363      distinguish these in buildsym.c.  */
364   struct pending **list_in_scope;
365 
366   /* DWARF abbreviation table associated with this compilation unit.  */
367   struct abbrev_info **dwarf2_abbrevs;
368 
369   /* Storage for the abbrev table.  */
370   struct obstack abbrev_obstack;
371 
372   /* Hash table holding all the loaded partial DIEs.  */
373   htab_t partial_dies;
374 
375   /* Storage for things with the same lifetime as this read-in compilation
376      unit, including partial DIEs.  */
377   struct obstack comp_unit_obstack;
378 
379   /* When multiple dwarf2_cu structures are living in memory, this field
380      chains them all together, so that they can be released efficiently.
381      We will probably also want a generation counter so that most-recently-used
382      compilation units are cached...  */
383   struct dwarf2_per_cu_data *read_in_chain;
384 
385   /* Backchain to our per_cu entry if the tree has been built.  */
386   struct dwarf2_per_cu_data *per_cu;
387 
388   /* How many compilation units ago was this CU last referenced?  */
389   int last_used;
390 
391   /* A hash table of die offsets for following references.  */
392   htab_t die_hash;
393 
394   /* Full DIEs if read in.  */
395   struct die_info *dies;
396 
397   /* A set of pointers to dwarf2_per_cu_data objects for compilation
398      units referenced by this one.  Only set during full symbol processing;
399      partial symbol tables do not have dependencies.  */
400   htab_t dependencies;
401 
402   /* Header data from the line table, during full symbol processing.  */
403   struct line_header *line_header;
404 
405   /* A list of methods which need to have physnames computed
406      after all type information has been read.  */
407   VEC (delayed_method_info) *method_list;
408 
409   /* To be copied to symtab->call_site_htab.  */
410   htab_t call_site_htab;
411 
412   /* Mark used when releasing cached dies.  */
413   unsigned int mark : 1;
414 
415   /* This flag will be set if this compilation unit might include
416      inter-compilation-unit references.  */
417   unsigned int has_form_ref_addr : 1;
418 
419   /* This flag will be set if this compilation unit includes any
420      DW_TAG_namespace DIEs.  If we know that there are explicit
421      DIEs for namespaces, we don't need to try to infer them
422      from mangled names.  */
423   unsigned int has_namespace_info : 1;
424 
425   /* This CU references .debug_loc.  See the symtab->locations_valid field.
426      This test is imperfect as there may exist optimized debug code not using
427      any location list and still facing inlining issues if handled as
428      unoptimized code.  For a future better test see GCC PR other/32998.  */
429 
430   unsigned int has_loclist : 1;
431 };
432 
433 /* Persistent data held for a compilation unit, even when not
434    processing it.  We put a pointer to this structure in the
435    read_symtab_private field of the psymtab.  If we encounter
436    inter-compilation-unit references, we also maintain a sorted
437    list of all compilation units.  */
438 
439 struct dwarf2_per_cu_data
440 {
441   /* The start offset and length of this compilation unit.  2**29-1
442      bytes should suffice to store the length of any compilation unit
443      - if it doesn't, GDB will fall over anyway.
444      NOTE: Unlike comp_unit_head.length, this length includes
445      initial_length_size.  */
446   unsigned int offset;
447   unsigned int length : 29;
448 
449   /* Flag indicating this compilation unit will be read in before
450      any of the current compilation units are processed.  */
451   unsigned int queued : 1;
452 
453   /* This flag will be set if we need to load absolutely all DIEs
454      for this compilation unit, instead of just the ones we think
455      are interesting.  It gets set if we look for a DIE in the
456      hash table and don't find it.  */
457   unsigned int load_all_dies : 1;
458 
459   /* Non-null if this CU is from .debug_types; in which case it points
460      to the section.  Otherwise it's from .debug_info.  */
461   struct dwarf2_section_info *debug_types_section;
462 
463   /* Set to non-NULL iff this CU is currently loaded.  When it gets freed out
464      of the CU cache it gets reset to NULL again.  */
465   struct dwarf2_cu *cu;
466 
467   /* The corresponding objfile.  */
468   struct objfile *objfile;
469 
470   /* When using partial symbol tables, the 'psymtab' field is active.
471      Otherwise the 'quick' field is active.  */
472   union
473   {
474     /* The partial symbol table associated with this compilation unit,
475        or NULL for partial units (which do not have an associated
476        symtab).  */
477     struct partial_symtab *psymtab;
478 
479     /* Data needed by the "quick" functions.  */
480     struct dwarf2_per_cu_quick_data *quick;
481   } v;
482 };
483 
484 /* Entry in the signatured_types hash table.  */
485 
486 struct signatured_type
487 {
488   ULONGEST signature;
489 
490   /* Offset in .debug_types of the type defined by this TU.  */
491   unsigned int type_offset;
492 
493   /* The CU(/TU) of this type.  */
494   struct dwarf2_per_cu_data per_cu;
495 };
496 
497 /* Struct used to pass misc. parameters to read_die_and_children, et
498    al.  which are used for both .debug_info and .debug_types dies.
499    All parameters here are unchanging for the life of the call.  This
500    struct exists to abstract away the constant parameters of die
501    reading.  */
502 
503 struct die_reader_specs
504 {
505   /* The bfd of this objfile.  */
506   bfd* abfd;
507 
508   /* The CU of the DIE we are parsing.  */
509   struct dwarf2_cu *cu;
510 
511   /* Pointer to start of section buffer.
512      This is either the start of .debug_info or .debug_types.  */
513   const gdb_byte *buffer;
514 };
515 
516 /* The line number information for a compilation unit (found in the
517    .debug_line section) begins with a "statement program header",
518    which contains the following information.  */
519 struct line_header
520 {
521   unsigned int total_length;
522   unsigned short version;
523   unsigned int header_length;
524   unsigned char minimum_instruction_length;
525   unsigned char maximum_ops_per_instruction;
526   unsigned char default_is_stmt;
527   int line_base;
528   unsigned char line_range;
529   unsigned char opcode_base;
530 
531   /* standard_opcode_lengths[i] is the number of operands for the
532      standard opcode whose value is i.  This means that
533      standard_opcode_lengths[0] is unused, and the last meaningful
534      element is standard_opcode_lengths[opcode_base - 1].  */
535   unsigned char *standard_opcode_lengths;
536 
537   /* The include_directories table.  NOTE!  These strings are not
538      allocated with xmalloc; instead, they are pointers into
539      debug_line_buffer.  If you try to free them, `free' will get
540      indigestion.  */
541   unsigned int num_include_dirs, include_dirs_size;
542   char **include_dirs;
543 
544   /* The file_names table.  NOTE!  These strings are not allocated
545      with xmalloc; instead, they are pointers into debug_line_buffer.
546      Don't try to free them directly.  */
547   unsigned int num_file_names, file_names_size;
548   struct file_entry
549   {
550     char *name;
551     unsigned int dir_index;
552     unsigned int mod_time;
553     unsigned int length;
554     int included_p; /* Non-zero if referenced by the Line Number Program.  */
555     struct symtab *symtab; /* The associated symbol table, if any.  */
556   } *file_names;
557 
558   /* The start and end of the statement program following this
559      header.  These point into dwarf2_per_objfile->line_buffer.  */
560   gdb_byte *statement_program_start, *statement_program_end;
561 };
562 
563 /* When we construct a partial symbol table entry we only
564    need this much information.  */
565 struct partial_die_info
566   {
567     /* Offset of this DIE.  */
568     unsigned int offset;
569 
570     /* DWARF-2 tag for this DIE.  */
571     ENUM_BITFIELD(dwarf_tag) tag : 16;
572 
573     /* Assorted flags describing the data found in this DIE.  */
574     unsigned int has_children : 1;
575     unsigned int is_external : 1;
576     unsigned int is_declaration : 1;
577     unsigned int has_type : 1;
578     unsigned int has_specification : 1;
579     unsigned int has_pc_info : 1;
580 
581     /* Flag set if the SCOPE field of this structure has been
582        computed.  */
583     unsigned int scope_set : 1;
584 
585     /* Flag set if the DIE has a byte_size attribute.  */
586     unsigned int has_byte_size : 1;
587 
588     /* Flag set if any of the DIE's children are template arguments.  */
589     unsigned int has_template_arguments : 1;
590 
591     /* Flag set if fixup_partial_die has been called on this die.  */
592     unsigned int fixup_called : 1;
593 
594     /* The name of this DIE.  Normally the value of DW_AT_name, but
595        sometimes a default name for unnamed DIEs.  */
596     char *name;
597 
598     /* The linkage name, if present.  */
599     const char *linkage_name;
600 
601     /* The scope to prepend to our children.  This is generally
602        allocated on the comp_unit_obstack, so will disappear
603        when this compilation unit leaves the cache.  */
604     char *scope;
605 
606     /* The location description associated with this DIE, if any.  */
607     struct dwarf_block *locdesc;
608 
609     /* If HAS_PC_INFO, the PC range associated with this DIE.  */
610     CORE_ADDR lowpc;
611     CORE_ADDR highpc;
612 
613     /* Pointer into the info_buffer (or types_buffer) pointing at the target of
614        DW_AT_sibling, if any.  */
615     /* NOTE: This member isn't strictly necessary, read_partial_die could
616        return DW_AT_sibling values to its caller load_partial_dies.  */
617     gdb_byte *sibling;
618 
619     /* If HAS_SPECIFICATION, the offset of the DIE referred to by
620        DW_AT_specification (or DW_AT_abstract_origin or
621        DW_AT_extension).  */
622     unsigned int spec_offset;
623 
624     /* Pointers to this DIE's parent, first child, and next sibling,
625        if any.  */
626     struct partial_die_info *die_parent, *die_child, *die_sibling;
627   };
628 
629 /* This data structure holds the information of an abbrev.  */
630 struct abbrev_info
631   {
632     unsigned int number;	/* number identifying abbrev */
633     enum dwarf_tag tag;		/* dwarf tag */
634     unsigned short has_children;		/* boolean */
635     unsigned short num_attrs;	/* number of attributes */
636     struct attr_abbrev *attrs;	/* an array of attribute descriptions */
637     struct abbrev_info *next;	/* next in chain */
638   };
639 
640 struct attr_abbrev
641   {
642     ENUM_BITFIELD(dwarf_attribute) name : 16;
643     ENUM_BITFIELD(dwarf_form) form : 16;
644   };
645 
646 /* Attributes have a name and a value.  */
647 struct attribute
648   {
649     ENUM_BITFIELD(dwarf_attribute) name : 16;
650     ENUM_BITFIELD(dwarf_form) form : 15;
651 
652     /* Has DW_STRING already been updated by dwarf2_canonicalize_name?  This
653        field should be in u.str (existing only for DW_STRING) but it is kept
654        here for better struct attribute alignment.  */
655     unsigned int string_is_canonical : 1;
656 
657     union
658       {
659 	char *str;
660 	struct dwarf_block *blk;
661 	ULONGEST unsnd;
662 	LONGEST snd;
663 	CORE_ADDR addr;
664 	struct signatured_type *signatured_type;
665       }
666     u;
667   };
668 
669 /* This data structure holds a complete die structure.  */
670 struct die_info
671   {
672     /* DWARF-2 tag for this DIE.  */
673     ENUM_BITFIELD(dwarf_tag) tag : 16;
674 
675     /* Number of attributes */
676     unsigned char num_attrs;
677 
678     /* True if we're presently building the full type name for the
679        type derived from this DIE.  */
680     unsigned char building_fullname : 1;
681 
682     /* Abbrev number */
683     unsigned int abbrev;
684 
685     /* Offset in .debug_info or .debug_types section.  */
686     unsigned int offset;
687 
688     /* The dies in a compilation unit form an n-ary tree.  PARENT
689        points to this die's parent; CHILD points to the first child of
690        this node; and all the children of a given node are chained
691        together via their SIBLING fields.  */
692     struct die_info *child;	/* Its first child, if any.  */
693     struct die_info *sibling;	/* Its next sibling, if any.  */
694     struct die_info *parent;	/* Its parent, if any.  */
695 
696     /* An array of attributes, with NUM_ATTRS elements.  There may be
697        zero, but it's not common and zero-sized arrays are not
698        sufficiently portable C.  */
699     struct attribute attrs[1];
700   };
701 
702 struct function_range
703 {
704   const char *name;
705   CORE_ADDR lowpc, highpc;
706   int seen_line;
707   struct function_range *next;
708 };
709 
710 /* Get at parts of an attribute structure.  */
711 
712 #define DW_STRING(attr)    ((attr)->u.str)
713 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
714 #define DW_UNSND(attr)     ((attr)->u.unsnd)
715 #define DW_BLOCK(attr)     ((attr)->u.blk)
716 #define DW_SND(attr)       ((attr)->u.snd)
717 #define DW_ADDR(attr)	   ((attr)->u.addr)
718 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
719 
720 /* Blocks are a bunch of untyped bytes.  */
721 struct dwarf_block
722   {
723     unsigned int size;
724 
725     /* Valid only if SIZE is not zero.  */
726     gdb_byte *data;
727   };
728 
729 #ifndef ATTR_ALLOC_CHUNK
730 #define ATTR_ALLOC_CHUNK 4
731 #endif
732 
733 /* Allocate fields for structs, unions and enums in this size.  */
734 #ifndef DW_FIELD_ALLOC_CHUNK
735 #define DW_FIELD_ALLOC_CHUNK 4
736 #endif
737 
738 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
739    but this would require a corresponding change in unpack_field_as_long
740    and friends.  */
741 static int bits_per_byte = 8;
742 
743 /* The routines that read and process dies for a C struct or C++ class
744    pass lists of data member fields and lists of member function fields
745    in an instance of a field_info structure, as defined below.  */
746 struct field_info
747   {
748     /* List of data member and baseclasses fields.  */
749     struct nextfield
750       {
751 	struct nextfield *next;
752 	int accessibility;
753 	int virtuality;
754 	struct field field;
755       }
756      *fields, *baseclasses;
757 
758     /* Number of fields (including baseclasses).  */
759     int nfields;
760 
761     /* Number of baseclasses.  */
762     int nbaseclasses;
763 
764     /* Set if the accesibility of one of the fields is not public.  */
765     int non_public_fields;
766 
767     /* Member function fields array, entries are allocated in the order they
768        are encountered in the object file.  */
769     struct nextfnfield
770       {
771 	struct nextfnfield *next;
772 	struct fn_field fnfield;
773       }
774      *fnfields;
775 
776     /* Member function fieldlist array, contains name of possibly overloaded
777        member function, number of overloaded member functions and a pointer
778        to the head of the member function field chain.  */
779     struct fnfieldlist
780       {
781 	char *name;
782 	int length;
783 	struct nextfnfield *head;
784       }
785      *fnfieldlists;
786 
787     /* Number of entries in the fnfieldlists array.  */
788     int nfnfields;
789 
790     /* typedefs defined inside this class.  TYPEDEF_FIELD_LIST contains head of
791        a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements.  */
792     struct typedef_field_list
793       {
794 	struct typedef_field field;
795 	struct typedef_field_list *next;
796       }
797     *typedef_field_list;
798     unsigned typedef_field_list_count;
799   };
800 
801 /* One item on the queue of compilation units to read in full symbols
802    for.  */
803 struct dwarf2_queue_item
804 {
805   struct dwarf2_per_cu_data *per_cu;
806   struct dwarf2_queue_item *next;
807 };
808 
809 /* The current queue.  */
810 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
811 
812 /* Loaded secondary compilation units are kept in memory until they
813    have not been referenced for the processing of this many
814    compilation units.  Set this to zero to disable caching.  Cache
815    sizes of up to at least twenty will improve startup time for
816    typical inter-CU-reference binaries, at an obvious memory cost.  */
817 static int dwarf2_max_cache_age = 5;
818 static void
819 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
820 			   struct cmd_list_element *c, const char *value)
821 {
822   fprintf_filtered (file, _("The upper bound on the age of cached "
823 			    "dwarf2 compilation units is %s.\n"),
824 		    value);
825 }
826 
827 
828 /* Various complaints about symbol reading that don't abort the process.  */
829 
830 static void
831 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
832 {
833   complaint (&symfile_complaints,
834 	     _("statement list doesn't fit in .debug_line section"));
835 }
836 
837 static void
838 dwarf2_debug_line_missing_file_complaint (void)
839 {
840   complaint (&symfile_complaints,
841 	     _(".debug_line section has line data without a file"));
842 }
843 
844 static void
845 dwarf2_debug_line_missing_end_sequence_complaint (void)
846 {
847   complaint (&symfile_complaints,
848 	     _(".debug_line section has line "
849 	       "program sequence without an end"));
850 }
851 
852 static void
853 dwarf2_complex_location_expr_complaint (void)
854 {
855   complaint (&symfile_complaints, _("location expression too complex"));
856 }
857 
858 static void
859 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
860 					      int arg3)
861 {
862   complaint (&symfile_complaints,
863 	     _("const value length mismatch for '%s', got %d, expected %d"),
864 	     arg1, arg2, arg3);
865 }
866 
867 static void
868 dwarf2_macros_too_long_complaint (struct dwarf2_section_info *section)
869 {
870   complaint (&symfile_complaints,
871 	     _("macro info runs off end of `%s' section"),
872 	     section->asection->name);
873 }
874 
875 static void
876 dwarf2_macro_malformed_definition_complaint (const char *arg1)
877 {
878   complaint (&symfile_complaints,
879 	     _("macro debug info contains a "
880 	       "malformed macro definition:\n`%s'"),
881 	     arg1);
882 }
883 
884 static void
885 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
886 {
887   complaint (&symfile_complaints,
888 	     _("invalid attribute class or form for '%s' in '%s'"),
889 	     arg1, arg2);
890 }
891 
892 /* local function prototypes */
893 
894 static void dwarf2_locate_sections (bfd *, asection *, void *);
895 
896 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
897                                            struct objfile *);
898 
899 static void dwarf2_find_base_address (struct die_info *die,
900 				      struct dwarf2_cu *cu);
901 
902 static void dwarf2_build_psymtabs_hard (struct objfile *);
903 
904 static void scan_partial_symbols (struct partial_die_info *,
905 				  CORE_ADDR *, CORE_ADDR *,
906 				  int, struct dwarf2_cu *);
907 
908 static void add_partial_symbol (struct partial_die_info *,
909 				struct dwarf2_cu *);
910 
911 static void add_partial_namespace (struct partial_die_info *pdi,
912 				   CORE_ADDR *lowpc, CORE_ADDR *highpc,
913 				   int need_pc, struct dwarf2_cu *cu);
914 
915 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
916 				CORE_ADDR *highpc, int need_pc,
917 				struct dwarf2_cu *cu);
918 
919 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
920 				     struct dwarf2_cu *cu);
921 
922 static void add_partial_subprogram (struct partial_die_info *pdi,
923 				    CORE_ADDR *lowpc, CORE_ADDR *highpc,
924 				    int need_pc, struct dwarf2_cu *cu);
925 
926 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
927 				     gdb_byte *buffer, gdb_byte *info_ptr,
928                                      bfd *abfd, struct dwarf2_cu *cu);
929 
930 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
931 
932 static void psymtab_to_symtab_1 (struct partial_symtab *);
933 
934 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
935 
936 static void dwarf2_free_abbrev_table (void *);
937 
938 static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
939 
940 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
941 					    struct dwarf2_cu *);
942 
943 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
944 						 struct dwarf2_cu *);
945 
946 static struct partial_die_info *load_partial_dies (bfd *,
947 						   gdb_byte *, gdb_byte *,
948 						   int, struct dwarf2_cu *);
949 
950 static gdb_byte *read_partial_die (struct partial_die_info *,
951                                    struct abbrev_info *abbrev,
952 				   unsigned int, bfd *,
953 				   gdb_byte *, gdb_byte *,
954 				   struct dwarf2_cu *);
955 
956 static struct partial_die_info *find_partial_die (unsigned int,
957 						  struct dwarf2_cu *);
958 
959 static void fixup_partial_die (struct partial_die_info *,
960 			       struct dwarf2_cu *);
961 
962 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
963                                  bfd *, gdb_byte *, struct dwarf2_cu *);
964 
965 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
966                                        bfd *, gdb_byte *, struct dwarf2_cu *);
967 
968 static unsigned int read_1_byte (bfd *, gdb_byte *);
969 
970 static int read_1_signed_byte (bfd *, gdb_byte *);
971 
972 static unsigned int read_2_bytes (bfd *, gdb_byte *);
973 
974 static unsigned int read_4_bytes (bfd *, gdb_byte *);
975 
976 static ULONGEST read_8_bytes (bfd *, gdb_byte *);
977 
978 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
979 			       unsigned int *);
980 
981 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
982 
983 static LONGEST read_checked_initial_length_and_offset
984   (bfd *, gdb_byte *, const struct comp_unit_head *,
985    unsigned int *, unsigned int *);
986 
987 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
988 			    unsigned int *);
989 
990 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
991 
992 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
993 
994 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
995 
996 static char *read_indirect_string (bfd *, gdb_byte *,
997                                    const struct comp_unit_head *,
998                                    unsigned int *);
999 
1000 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
1001 
1002 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
1003 
1004 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
1005 
1006 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1007 
1008 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1009 				      struct dwarf2_cu *);
1010 
1011 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1012 						unsigned int,
1013 						struct dwarf2_cu *);
1014 
1015 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1016                                struct dwarf2_cu *cu);
1017 
1018 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1019 
1020 static struct die_info *die_specification (struct die_info *die,
1021 					   struct dwarf2_cu **);
1022 
1023 static void free_line_header (struct line_header *lh);
1024 
1025 static void add_file_name (struct line_header *, char *, unsigned int,
1026                            unsigned int, unsigned int);
1027 
1028 static struct line_header *(dwarf_decode_line_header
1029                             (unsigned int offset,
1030                              bfd *abfd, struct dwarf2_cu *cu));
1031 
1032 static void dwarf_decode_lines (struct line_header *, const char *,
1033 				struct dwarf2_cu *, struct partial_symtab *,
1034 				int);
1035 
1036 static void dwarf2_start_subfile (char *, const char *, const char *);
1037 
1038 static struct symbol *new_symbol (struct die_info *, struct type *,
1039 				  struct dwarf2_cu *);
1040 
1041 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1042 				       struct dwarf2_cu *, struct symbol *);
1043 
1044 static void dwarf2_const_value (struct attribute *, struct symbol *,
1045 				struct dwarf2_cu *);
1046 
1047 static void dwarf2_const_value_attr (struct attribute *attr,
1048 				     struct type *type,
1049 				     const char *name,
1050 				     struct obstack *obstack,
1051 				     struct dwarf2_cu *cu, long *value,
1052 				     gdb_byte **bytes,
1053 				     struct dwarf2_locexpr_baton **baton);
1054 
1055 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1056 
1057 static int need_gnat_info (struct dwarf2_cu *);
1058 
1059 static struct type *die_descriptive_type (struct die_info *,
1060 					  struct dwarf2_cu *);
1061 
1062 static void set_descriptive_type (struct type *, struct die_info *,
1063 				  struct dwarf2_cu *);
1064 
1065 static struct type *die_containing_type (struct die_info *,
1066 					 struct dwarf2_cu *);
1067 
1068 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1069 				     struct dwarf2_cu *);
1070 
1071 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1072 
1073 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1074 
1075 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1076 
1077 static char *typename_concat (struct obstack *obs, const char *prefix,
1078 			      const char *suffix, int physname,
1079 			      struct dwarf2_cu *cu);
1080 
1081 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1082 
1083 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1084 
1085 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1086 
1087 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1088 
1089 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1090 
1091 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1092 			       struct dwarf2_cu *, struct partial_symtab *);
1093 
1094 static int dwarf2_get_pc_bounds (struct die_info *,
1095 				 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1096 				 struct partial_symtab *);
1097 
1098 static void get_scope_pc_bounds (struct die_info *,
1099 				 CORE_ADDR *, CORE_ADDR *,
1100 				 struct dwarf2_cu *);
1101 
1102 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1103                                         CORE_ADDR, struct dwarf2_cu *);
1104 
1105 static void dwarf2_add_field (struct field_info *, struct die_info *,
1106 			      struct dwarf2_cu *);
1107 
1108 static void dwarf2_attach_fields_to_type (struct field_info *,
1109 					  struct type *, struct dwarf2_cu *);
1110 
1111 static void dwarf2_add_member_fn (struct field_info *,
1112 				  struct die_info *, struct type *,
1113 				  struct dwarf2_cu *);
1114 
1115 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1116 					     struct type *,
1117 					     struct dwarf2_cu *);
1118 
1119 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1120 
1121 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1122 
1123 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1124 
1125 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1126 
1127 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1128 
1129 static struct type *read_module_type (struct die_info *die,
1130 				      struct dwarf2_cu *cu);
1131 
1132 static const char *namespace_name (struct die_info *die,
1133 				   int *is_anonymous, struct dwarf2_cu *);
1134 
1135 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1136 
1137 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1138 
1139 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1140 						       struct dwarf2_cu *);
1141 
1142 static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
1143 
1144 static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1145 						 gdb_byte *info_ptr,
1146 						 gdb_byte **new_info_ptr,
1147 						 struct die_info *parent);
1148 
1149 static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1150 					       gdb_byte *info_ptr,
1151 					       gdb_byte **new_info_ptr,
1152 					       struct die_info *parent);
1153 
1154 static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1155 					       gdb_byte *info_ptr,
1156 					       gdb_byte **new_info_ptr,
1157 					       struct die_info *parent);
1158 
1159 static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1160 				struct die_info **, gdb_byte *,
1161 				int *);
1162 
1163 static void process_die (struct die_info *, struct dwarf2_cu *);
1164 
1165 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1166 				       struct obstack *);
1167 
1168 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1169 
1170 static const char *dwarf2_full_name (char *name,
1171 				     struct die_info *die,
1172 				     struct dwarf2_cu *cu);
1173 
1174 static struct die_info *dwarf2_extension (struct die_info *die,
1175 					  struct dwarf2_cu **);
1176 
1177 static char *dwarf_tag_name (unsigned int);
1178 
1179 static char *dwarf_attr_name (unsigned int);
1180 
1181 static char *dwarf_form_name (unsigned int);
1182 
1183 static char *dwarf_bool_name (unsigned int);
1184 
1185 static char *dwarf_type_encoding_name (unsigned int);
1186 
1187 #if 0
1188 static char *dwarf_cfi_name (unsigned int);
1189 #endif
1190 
1191 static struct die_info *sibling_die (struct die_info *);
1192 
1193 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1194 
1195 static void dump_die_for_error (struct die_info *);
1196 
1197 static void dump_die_1 (struct ui_file *, int level, int max_level,
1198 			struct die_info *);
1199 
1200 /*static*/ void dump_die (struct die_info *, int max_level);
1201 
1202 static void store_in_ref_table (struct die_info *,
1203 				struct dwarf2_cu *);
1204 
1205 static int is_ref_attr (struct attribute *);
1206 
1207 static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
1208 
1209 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1210 
1211 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1212 					       struct attribute *,
1213 					       struct dwarf2_cu **);
1214 
1215 static struct die_info *follow_die_ref (struct die_info *,
1216 					struct attribute *,
1217 					struct dwarf2_cu **);
1218 
1219 static struct die_info *follow_die_sig (struct die_info *,
1220 					struct attribute *,
1221 					struct dwarf2_cu **);
1222 
1223 static struct signatured_type *lookup_signatured_type_at_offset
1224     (struct objfile *objfile,
1225      struct dwarf2_section_info *section,
1226      unsigned int offset);
1227 
1228 static void read_signatured_type_at_offset (struct objfile *objfile,
1229 					    struct dwarf2_section_info *sect,
1230 					    unsigned int offset);
1231 
1232 static void read_signatured_type (struct objfile *,
1233 				  struct signatured_type *type_sig);
1234 
1235 /* memory allocation interface */
1236 
1237 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1238 
1239 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1240 
1241 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1242 
1243 static void initialize_cu_func_list (struct dwarf2_cu *);
1244 
1245 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1246 				 struct dwarf2_cu *);
1247 
1248 static void dwarf_decode_macros (struct line_header *, unsigned int,
1249                                  char *, bfd *, struct dwarf2_cu *,
1250 				 struct dwarf2_section_info *,
1251 				 int);
1252 
1253 static int attr_form_is_block (struct attribute *);
1254 
1255 static int attr_form_is_section_offset (struct attribute *);
1256 
1257 static int attr_form_is_constant (struct attribute *);
1258 
1259 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1260 				   struct dwarf2_loclist_baton *baton,
1261 				   struct attribute *attr);
1262 
1263 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1264 					 struct symbol *sym,
1265 					 struct dwarf2_cu *cu);
1266 
1267 static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1268 			       struct abbrev_info *abbrev,
1269 			       struct dwarf2_cu *cu);
1270 
1271 static void free_stack_comp_unit (void *);
1272 
1273 static hashval_t partial_die_hash (const void *item);
1274 
1275 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1276 
1277 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1278   (unsigned int offset, struct objfile *objfile);
1279 
1280 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1281   (unsigned int offset, struct objfile *objfile);
1282 
1283 static void init_one_comp_unit (struct dwarf2_cu *cu,
1284 				struct objfile *objfile);
1285 
1286 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1287 				   struct die_info *comp_unit_die);
1288 
1289 static void free_one_comp_unit (void *);
1290 
1291 static void free_cached_comp_units (void *);
1292 
1293 static void age_cached_comp_units (void);
1294 
1295 static void free_one_cached_comp_unit (void *);
1296 
1297 static struct type *set_die_type (struct die_info *, struct type *,
1298 				  struct dwarf2_cu *);
1299 
1300 static void create_all_comp_units (struct objfile *);
1301 
1302 static int create_debug_types_hash_table (struct objfile *objfile);
1303 
1304 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1305 				 struct objfile *);
1306 
1307 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1308 
1309 static void dwarf2_add_dependence (struct dwarf2_cu *,
1310 				   struct dwarf2_per_cu_data *);
1311 
1312 static void dwarf2_mark (struct dwarf2_cu *);
1313 
1314 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1315 
1316 static struct type *get_die_type_at_offset (unsigned int,
1317 					    struct dwarf2_per_cu_data *per_cu);
1318 
1319 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1320 
1321 static void dwarf2_release_queue (void *dummy);
1322 
1323 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1324 			     struct objfile *objfile);
1325 
1326 static void process_queue (struct objfile *objfile);
1327 
1328 static void find_file_and_directory (struct die_info *die,
1329 				     struct dwarf2_cu *cu,
1330 				     char **name, char **comp_dir);
1331 
1332 static char *file_full_name (int file, struct line_header *lh,
1333 			     const char *comp_dir);
1334 
1335 static gdb_byte *partial_read_comp_unit_head (struct comp_unit_head *header,
1336 					      gdb_byte *info_ptr,
1337 					      gdb_byte *buffer,
1338 					      unsigned int buffer_size,
1339 					      bfd *abfd,
1340 					      int is_debug_types_section);
1341 
1342 static void init_cu_die_reader (struct die_reader_specs *reader,
1343 				struct dwarf2_cu *cu);
1344 
1345 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1346 
1347 #if WORDS_BIGENDIAN
1348 
1349 /* Convert VALUE between big- and little-endian.  */
1350 static offset_type
1351 byte_swap (offset_type value)
1352 {
1353   offset_type result;
1354 
1355   result = (value & 0xff) << 24;
1356   result |= (value & 0xff00) << 8;
1357   result |= (value & 0xff0000) >> 8;
1358   result |= (value & 0xff000000) >> 24;
1359   return result;
1360 }
1361 
1362 #define MAYBE_SWAP(V)  byte_swap (V)
1363 
1364 #else
1365 #define MAYBE_SWAP(V) (V)
1366 #endif /* WORDS_BIGENDIAN */
1367 
1368 /* The suffix for an index file.  */
1369 #define INDEX_SUFFIX ".gdb-index"
1370 
1371 static const char *dwarf2_physname (char *name, struct die_info *die,
1372 				    struct dwarf2_cu *cu);
1373 
1374 /* Try to locate the sections we need for DWARF 2 debugging
1375    information and return true if we have enough to do something.
1376    NAMES points to the dwarf2 section names, or is NULL if the standard
1377    ELF names are used.  */
1378 
1379 int
1380 dwarf2_has_info (struct objfile *objfile,
1381                  const struct dwarf2_debug_sections *names)
1382 {
1383   dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1384   if (!dwarf2_per_objfile)
1385     {
1386       /* Initialize per-objfile state.  */
1387       struct dwarf2_per_objfile *data
1388 	= obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1389 
1390       memset (data, 0, sizeof (*data));
1391       set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1392       dwarf2_per_objfile = data;
1393 
1394       bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1395                              (void *) names);
1396       dwarf2_per_objfile->objfile = objfile;
1397     }
1398   return (dwarf2_per_objfile->info.asection != NULL
1399 	  && dwarf2_per_objfile->abbrev.asection != NULL);
1400 }
1401 
1402 /* When loading sections, we look either for uncompressed section or for
1403    compressed section names.  */
1404 
1405 static int
1406 section_is_p (const char *section_name,
1407               const struct dwarf2_section_names *names)
1408 {
1409   if (names->normal != NULL
1410       && strcmp (section_name, names->normal) == 0)
1411     return 1;
1412   if (names->compressed != NULL
1413       && strcmp (section_name, names->compressed) == 0)
1414     return 1;
1415   return 0;
1416 }
1417 
1418 /* This function is mapped across the sections and remembers the
1419    offset and size of each of the debugging sections we are interested
1420    in.  */
1421 
1422 static void
1423 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1424 {
1425   const struct dwarf2_debug_sections *names;
1426 
1427   if (vnames == NULL)
1428     names = &dwarf2_elf_names;
1429   else
1430     names = (const struct dwarf2_debug_sections *) vnames;
1431 
1432   if (section_is_p (sectp->name, &names->info))
1433     {
1434       dwarf2_per_objfile->info.asection = sectp;
1435       dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1436     }
1437   else if (section_is_p (sectp->name, &names->abbrev))
1438     {
1439       dwarf2_per_objfile->abbrev.asection = sectp;
1440       dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1441     }
1442   else if (section_is_p (sectp->name, &names->line))
1443     {
1444       dwarf2_per_objfile->line.asection = sectp;
1445       dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1446     }
1447   else if (section_is_p (sectp->name, &names->loc))
1448     {
1449       dwarf2_per_objfile->loc.asection = sectp;
1450       dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1451     }
1452   else if (section_is_p (sectp->name, &names->macinfo))
1453     {
1454       dwarf2_per_objfile->macinfo.asection = sectp;
1455       dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1456     }
1457   else if (section_is_p (sectp->name, &names->macro))
1458     {
1459       dwarf2_per_objfile->macro.asection = sectp;
1460       dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1461     }
1462   else if (section_is_p (sectp->name, &names->str))
1463     {
1464       dwarf2_per_objfile->str.asection = sectp;
1465       dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1466     }
1467   else if (section_is_p (sectp->name, &names->frame))
1468     {
1469       dwarf2_per_objfile->frame.asection = sectp;
1470       dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1471     }
1472   else if (section_is_p (sectp->name, &names->eh_frame))
1473     {
1474       flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1475 
1476       if (aflag & SEC_HAS_CONTENTS)
1477         {
1478 	  dwarf2_per_objfile->eh_frame.asection = sectp;
1479           dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1480         }
1481     }
1482   else if (section_is_p (sectp->name, &names->ranges))
1483     {
1484       dwarf2_per_objfile->ranges.asection = sectp;
1485       dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1486     }
1487   else if (section_is_p (sectp->name, &names->types))
1488     {
1489       struct dwarf2_section_info type_section;
1490 
1491       memset (&type_section, 0, sizeof (type_section));
1492       type_section.asection = sectp;
1493       type_section.size = bfd_get_section_size (sectp);
1494 
1495       VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1496 		     &type_section);
1497     }
1498   else if (section_is_p (sectp->name, &names->gdb_index))
1499     {
1500       dwarf2_per_objfile->gdb_index.asection = sectp;
1501       dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1502     }
1503 
1504   if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1505       && bfd_section_vma (abfd, sectp) == 0)
1506     dwarf2_per_objfile->has_section_at_zero = 1;
1507 }
1508 
1509 /* Decompress a section that was compressed using zlib.  Store the
1510    decompressed buffer, and its size, in OUTBUF and OUTSIZE.  */
1511 
1512 static void
1513 zlib_decompress_section (struct objfile *objfile, asection *sectp,
1514                          gdb_byte **outbuf, bfd_size_type *outsize)
1515 {
1516   bfd *abfd = objfile->obfd;
1517 #ifndef HAVE_ZLIB_H
1518   error (_("Support for zlib-compressed DWARF data (from '%s') "
1519            "is disabled in this copy of GDB"),
1520          bfd_get_filename (abfd));
1521 #else
1522   bfd_size_type compressed_size = bfd_get_section_size (sectp);
1523   gdb_byte *compressed_buffer = xmalloc (compressed_size);
1524   struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
1525   bfd_size_type uncompressed_size;
1526   gdb_byte *uncompressed_buffer;
1527   z_stream strm;
1528   int rc;
1529   int header_size = 12;
1530 
1531   if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1532       || bfd_bread (compressed_buffer,
1533 		    compressed_size, abfd) != compressed_size)
1534     error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1535            bfd_get_filename (abfd));
1536 
1537   /* Read the zlib header.  In this case, it should be "ZLIB" followed
1538      by the uncompressed section size, 8 bytes in big-endian order.  */
1539   if (compressed_size < header_size
1540       || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1541     error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1542            bfd_get_filename (abfd));
1543   uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1544   uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1545   uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1546   uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1547   uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1548   uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1549   uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1550   uncompressed_size += compressed_buffer[11];
1551 
1552   /* It is possible the section consists of several compressed
1553      buffers concatenated together, so we uncompress in a loop.  */
1554   strm.zalloc = NULL;
1555   strm.zfree = NULL;
1556   strm.opaque = NULL;
1557   strm.avail_in = compressed_size - header_size;
1558   strm.next_in = (Bytef*) compressed_buffer + header_size;
1559   strm.avail_out = uncompressed_size;
1560   uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1561                                        uncompressed_size);
1562   rc = inflateInit (&strm);
1563   while (strm.avail_in > 0)
1564     {
1565       if (rc != Z_OK)
1566         error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1567                bfd_get_filename (abfd), rc);
1568       strm.next_out = ((Bytef*) uncompressed_buffer
1569                        + (uncompressed_size - strm.avail_out));
1570       rc = inflate (&strm, Z_FINISH);
1571       if (rc != Z_STREAM_END)
1572         error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1573                bfd_get_filename (abfd), rc);
1574       rc = inflateReset (&strm);
1575     }
1576   rc = inflateEnd (&strm);
1577   if (rc != Z_OK
1578       || strm.avail_out != 0)
1579     error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1580            bfd_get_filename (abfd), rc);
1581 
1582   do_cleanups (cleanup);
1583   *outbuf = uncompressed_buffer;
1584   *outsize = uncompressed_size;
1585 #endif
1586 }
1587 
1588 /* A helper function that decides whether a section is empty.  */
1589 
1590 static int
1591 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1592 {
1593   return info->asection == NULL || info->size == 0;
1594 }
1595 
1596 /* Read the contents of the section SECTP from object file specified by
1597    OBJFILE, store info about the section into INFO.
1598    If the section is compressed, uncompress it before returning.  */
1599 
1600 static void
1601 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1602 {
1603   bfd *abfd = objfile->obfd;
1604   asection *sectp = info->asection;
1605   gdb_byte *buf, *retbuf;
1606   unsigned char header[4];
1607 
1608   if (info->readin)
1609     return;
1610   info->buffer = NULL;
1611   info->map_addr = NULL;
1612   info->readin = 1;
1613 
1614   if (dwarf2_section_empty_p (info))
1615     return;
1616 
1617   /* Check if the file has a 4-byte header indicating compression.  */
1618   if (info->size > sizeof (header)
1619       && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1620       && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1621     {
1622       /* Upon decompression, update the buffer and its size.  */
1623       if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1624         {
1625           zlib_decompress_section (objfile, sectp, &info->buffer,
1626 				   &info->size);
1627           return;
1628         }
1629     }
1630 
1631 #ifdef HAVE_MMAP
1632   if (pagesize == 0)
1633     pagesize = getpagesize ();
1634 
1635   /* Only try to mmap sections which are large enough: we don't want to
1636      waste space due to fragmentation.  Also, only try mmap for sections
1637      without relocations.  */
1638 
1639   if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1640     {
1641       info->buffer = bfd_mmap (abfd, 0, info->size, PROT_READ,
1642                          MAP_PRIVATE, sectp->filepos,
1643                          &info->map_addr, &info->map_len);
1644 
1645       if ((caddr_t)info->buffer != MAP_FAILED)
1646 	{
1647 #if HAVE_POSIX_MADVISE
1648 	  posix_madvise (info->map_addr, info->map_len, POSIX_MADV_WILLNEED);
1649 #endif
1650 	  return;
1651 	}
1652     }
1653 #endif
1654 
1655   /* If we get here, we are a normal, not-compressed section.  */
1656   info->buffer = buf
1657     = obstack_alloc (&objfile->objfile_obstack, info->size);
1658 
1659   /* When debugging .o files, we may need to apply relocations; see
1660      http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1661      We never compress sections in .o files, so we only need to
1662      try this when the section is not compressed.  */
1663   retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1664   if (retbuf != NULL)
1665     {
1666       info->buffer = retbuf;
1667       return;
1668     }
1669 
1670   if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1671       || bfd_bread (buf, info->size, abfd) != info->size)
1672     error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1673 	   bfd_get_filename (abfd));
1674 }
1675 
1676 /* A helper function that returns the size of a section in a safe way.
1677    If you are positive that the section has been read before using the
1678    size, then it is safe to refer to the dwarf2_section_info object's
1679    "size" field directly.  In other cases, you must call this
1680    function, because for compressed sections the size field is not set
1681    correctly until the section has been read.  */
1682 
1683 static bfd_size_type
1684 dwarf2_section_size (struct objfile *objfile,
1685 		     struct dwarf2_section_info *info)
1686 {
1687   if (!info->readin)
1688     dwarf2_read_section (objfile, info);
1689   return info->size;
1690 }
1691 
1692 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1693    SECTION_NAME.  */
1694 
1695 void
1696 dwarf2_get_section_info (struct objfile *objfile,
1697                          enum dwarf2_section_enum sect,
1698                          asection **sectp, gdb_byte **bufp,
1699                          bfd_size_type *sizep)
1700 {
1701   struct dwarf2_per_objfile *data
1702     = objfile_data (objfile, dwarf2_objfile_data_key);
1703   struct dwarf2_section_info *info;
1704 
1705   /* We may see an objfile without any DWARF, in which case we just
1706      return nothing.  */
1707   if (data == NULL)
1708     {
1709       *sectp = NULL;
1710       *bufp = NULL;
1711       *sizep = 0;
1712       return;
1713     }
1714   switch (sect)
1715     {
1716     case DWARF2_DEBUG_FRAME:
1717       info = &data->frame;
1718       break;
1719     case DWARF2_EH_FRAME:
1720       info = &data->eh_frame;
1721       break;
1722     default:
1723       gdb_assert_not_reached ("unexpected section");
1724     }
1725 
1726   dwarf2_read_section (objfile, info);
1727 
1728   *sectp = info->asection;
1729   *bufp = info->buffer;
1730   *sizep = info->size;
1731 }
1732 
1733 
1734 /* DWARF quick_symbols_functions support.  */
1735 
1736 /* TUs can share .debug_line entries, and there can be a lot more TUs than
1737    unique line tables, so we maintain a separate table of all .debug_line
1738    derived entries to support the sharing.
1739    All the quick functions need is the list of file names.  We discard the
1740    line_header when we're done and don't need to record it here.  */
1741 struct quick_file_names
1742 {
1743   /* The offset in .debug_line of the line table.  We hash on this.  */
1744   unsigned int offset;
1745 
1746   /* The number of entries in file_names, real_names.  */
1747   unsigned int num_file_names;
1748 
1749   /* The file names from the line table, after being run through
1750      file_full_name.  */
1751   const char **file_names;
1752 
1753   /* The file names from the line table after being run through
1754      gdb_realpath.  These are computed lazily.  */
1755   const char **real_names;
1756 };
1757 
1758 /* When using the index (and thus not using psymtabs), each CU has an
1759    object of this type.  This is used to hold information needed by
1760    the various "quick" methods.  */
1761 struct dwarf2_per_cu_quick_data
1762 {
1763   /* The file table.  This can be NULL if there was no file table
1764      or it's currently not read in.
1765      NOTE: This points into dwarf2_per_objfile->quick_file_names_table.  */
1766   struct quick_file_names *file_names;
1767 
1768   /* The corresponding symbol table.  This is NULL if symbols for this
1769      CU have not yet been read.  */
1770   struct symtab *symtab;
1771 
1772   /* A temporary mark bit used when iterating over all CUs in
1773      expand_symtabs_matching.  */
1774   unsigned int mark : 1;
1775 
1776   /* True if we've tried to read the file table and found there isn't one.
1777      There will be no point in trying to read it again next time.  */
1778   unsigned int no_file_data : 1;
1779 };
1780 
1781 /* Hash function for a quick_file_names.  */
1782 
1783 static hashval_t
1784 hash_file_name_entry (const void *e)
1785 {
1786   const struct quick_file_names *file_data = e;
1787 
1788   return file_data->offset;
1789 }
1790 
1791 /* Equality function for a quick_file_names.  */
1792 
1793 static int
1794 eq_file_name_entry (const void *a, const void *b)
1795 {
1796   const struct quick_file_names *ea = a;
1797   const struct quick_file_names *eb = b;
1798 
1799   return ea->offset == eb->offset;
1800 }
1801 
1802 /* Delete function for a quick_file_names.  */
1803 
1804 static void
1805 delete_file_name_entry (void *e)
1806 {
1807   struct quick_file_names *file_data = e;
1808   int i;
1809 
1810   for (i = 0; i < file_data->num_file_names; ++i)
1811     {
1812       xfree ((void*) file_data->file_names[i]);
1813       if (file_data->real_names)
1814 	xfree ((void*) file_data->real_names[i]);
1815     }
1816 
1817   /* The space for the struct itself lives on objfile_obstack,
1818      so we don't free it here.  */
1819 }
1820 
1821 /* Create a quick_file_names hash table.  */
1822 
1823 static htab_t
1824 create_quick_file_names_table (unsigned int nr_initial_entries)
1825 {
1826   return htab_create_alloc (nr_initial_entries,
1827 			    hash_file_name_entry, eq_file_name_entry,
1828 			    delete_file_name_entry, xcalloc, xfree);
1829 }
1830 
1831 /* Read in PER_CU->CU.  This function is unrelated to symtabs, symtab would
1832    have to be created afterwards.  You should call age_cached_comp_units after
1833    processing PER_CU->CU.  dw2_setup must have been already called.  */
1834 
1835 static void
1836 load_cu (struct dwarf2_per_cu_data *per_cu)
1837 {
1838   if (per_cu->debug_types_section)
1839     read_signatured_type_at_offset (per_cu->objfile,
1840 				    per_cu->debug_types_section,
1841 				    per_cu->offset);
1842   else
1843     load_full_comp_unit (per_cu, per_cu->objfile);
1844 
1845   dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
1846 
1847   gdb_assert (per_cu->cu != NULL);
1848 }
1849 
1850 /* Read in the symbols for PER_CU.  OBJFILE is the objfile from which
1851    this CU came.  */
1852 
1853 static void
1854 dw2_do_instantiate_symtab (struct objfile *objfile,
1855 			   struct dwarf2_per_cu_data *per_cu)
1856 {
1857   struct cleanup *back_to;
1858 
1859   back_to = make_cleanup (dwarf2_release_queue, NULL);
1860 
1861   queue_comp_unit (per_cu, objfile);
1862 
1863   load_cu (per_cu);
1864 
1865   process_queue (objfile);
1866 
1867   /* Age the cache, releasing compilation units that have not
1868      been used recently.  */
1869   age_cached_comp_units ();
1870 
1871   do_cleanups (back_to);
1872 }
1873 
1874 /* Ensure that the symbols for PER_CU have been read in.  OBJFILE is
1875    the objfile from which this CU came.  Returns the resulting symbol
1876    table.  */
1877 
1878 static struct symtab *
1879 dw2_instantiate_symtab (struct objfile *objfile,
1880 			struct dwarf2_per_cu_data *per_cu)
1881 {
1882   if (!per_cu->v.quick->symtab)
1883     {
1884       struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
1885       increment_reading_symtab ();
1886       dw2_do_instantiate_symtab (objfile, per_cu);
1887       do_cleanups (back_to);
1888     }
1889   return per_cu->v.quick->symtab;
1890 }
1891 
1892 /* Return the CU given its index.  */
1893 
1894 static struct dwarf2_per_cu_data *
1895 dw2_get_cu (int index)
1896 {
1897   if (index >= dwarf2_per_objfile->n_comp_units)
1898     {
1899       index -= dwarf2_per_objfile->n_comp_units;
1900       return dwarf2_per_objfile->type_comp_units[index];
1901     }
1902   return dwarf2_per_objfile->all_comp_units[index];
1903 }
1904 
1905 /* A helper function that knows how to read a 64-bit value in a way
1906    that doesn't make gdb die.  Returns 1 if the conversion went ok, 0
1907    otherwise.  */
1908 
1909 static int
1910 extract_cu_value (const char *bytes, ULONGEST *result)
1911 {
1912   if (sizeof (ULONGEST) < 8)
1913     {
1914       int i;
1915 
1916       /* Ignore the upper 4 bytes if they are all zero.  */
1917       for (i = 0; i < 4; ++i)
1918 	if (bytes[i + 4] != 0)
1919 	  return 0;
1920 
1921       *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
1922     }
1923   else
1924     *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
1925   return 1;
1926 }
1927 
1928 /* Read the CU list from the mapped index, and use it to create all
1929    the CU objects for this objfile.  Return 0 if something went wrong,
1930    1 if everything went ok.  */
1931 
1932 static int
1933 create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
1934 		       offset_type cu_list_elements)
1935 {
1936   offset_type i;
1937 
1938   dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
1939   dwarf2_per_objfile->all_comp_units
1940     = obstack_alloc (&objfile->objfile_obstack,
1941 		     dwarf2_per_objfile->n_comp_units
1942 		     * sizeof (struct dwarf2_per_cu_data *));
1943 
1944   for (i = 0; i < cu_list_elements; i += 2)
1945     {
1946       struct dwarf2_per_cu_data *the_cu;
1947       ULONGEST offset, length;
1948 
1949       if (!extract_cu_value (cu_list, &offset)
1950 	  || !extract_cu_value (cu_list + 8, &length))
1951 	return 0;
1952       cu_list += 2 * 8;
1953 
1954       the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1955 			       struct dwarf2_per_cu_data);
1956       the_cu->offset = offset;
1957       the_cu->length = length;
1958       the_cu->objfile = objfile;
1959       the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1960 					struct dwarf2_per_cu_quick_data);
1961       dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
1962     }
1963 
1964   return 1;
1965 }
1966 
1967 /* Create the signatured type hash table from the index.  */
1968 
1969 static int
1970 create_signatured_type_table_from_index (struct objfile *objfile,
1971 					 struct dwarf2_section_info *section,
1972 					 const gdb_byte *bytes,
1973 					 offset_type elements)
1974 {
1975   offset_type i;
1976   htab_t sig_types_hash;
1977 
1978   dwarf2_per_objfile->n_type_comp_units = elements / 3;
1979   dwarf2_per_objfile->type_comp_units
1980     = obstack_alloc (&objfile->objfile_obstack,
1981 		     dwarf2_per_objfile->n_type_comp_units
1982 		     * sizeof (struct dwarf2_per_cu_data *));
1983 
1984   sig_types_hash = allocate_signatured_type_table (objfile);
1985 
1986   for (i = 0; i < elements; i += 3)
1987     {
1988       struct signatured_type *type_sig;
1989       ULONGEST offset, type_offset, signature;
1990       void **slot;
1991 
1992       if (!extract_cu_value (bytes, &offset)
1993 	  || !extract_cu_value (bytes + 8, &type_offset))
1994 	return 0;
1995       signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
1996       bytes += 3 * 8;
1997 
1998       type_sig = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1999 				 struct signatured_type);
2000       type_sig->signature = signature;
2001       type_sig->type_offset = type_offset;
2002       type_sig->per_cu.debug_types_section = section;
2003       type_sig->per_cu.offset = offset;
2004       type_sig->per_cu.objfile = objfile;
2005       type_sig->per_cu.v.quick
2006 	= OBSTACK_ZALLOC (&objfile->objfile_obstack,
2007 			  struct dwarf2_per_cu_quick_data);
2008 
2009       slot = htab_find_slot (sig_types_hash, type_sig, INSERT);
2010       *slot = type_sig;
2011 
2012       dwarf2_per_objfile->type_comp_units[i / 3] = &type_sig->per_cu;
2013     }
2014 
2015   dwarf2_per_objfile->signatured_types = sig_types_hash;
2016 
2017   return 1;
2018 }
2019 
2020 /* Read the address map data from the mapped index, and use it to
2021    populate the objfile's psymtabs_addrmap.  */
2022 
2023 static void
2024 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2025 {
2026   const gdb_byte *iter, *end;
2027   struct obstack temp_obstack;
2028   struct addrmap *mutable_map;
2029   struct cleanup *cleanup;
2030   CORE_ADDR baseaddr;
2031 
2032   obstack_init (&temp_obstack);
2033   cleanup = make_cleanup_obstack_free (&temp_obstack);
2034   mutable_map = addrmap_create_mutable (&temp_obstack);
2035 
2036   iter = index->address_table;
2037   end = iter + index->address_table_size;
2038 
2039   baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2040 
2041   while (iter < end)
2042     {
2043       ULONGEST hi, lo, cu_index;
2044       lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2045       iter += 8;
2046       hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2047       iter += 8;
2048       cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2049       iter += 4;
2050 
2051       addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2052 			 dw2_get_cu (cu_index));
2053     }
2054 
2055   objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2056 						    &objfile->objfile_obstack);
2057   do_cleanups (cleanup);
2058 }
2059 
2060 /* The hash function for strings in the mapped index.  This is the same as
2061    SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2062    implementation.  This is necessary because the hash function is tied to the
2063    format of the mapped index file.  The hash values do not have to match with
2064    SYMBOL_HASH_NEXT.
2065 
2066    Use INT_MAX for INDEX_VERSION if you generate the current index format.  */
2067 
2068 static hashval_t
2069 mapped_index_string_hash (int index_version, const void *p)
2070 {
2071   const unsigned char *str = (const unsigned char *) p;
2072   hashval_t r = 0;
2073   unsigned char c;
2074 
2075   while ((c = *str++) != 0)
2076     {
2077       if (index_version >= 5)
2078 	c = tolower (c);
2079       r = r * 67 + c - 113;
2080     }
2081 
2082   return r;
2083 }
2084 
2085 /* Find a slot in the mapped index INDEX for the object named NAME.
2086    If NAME is found, set *VEC_OUT to point to the CU vector in the
2087    constant pool and return 1.  If NAME cannot be found, return 0.  */
2088 
2089 static int
2090 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2091 			  offset_type **vec_out)
2092 {
2093   struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2094   offset_type hash;
2095   offset_type slot, step;
2096   int (*cmp) (const char *, const char *);
2097 
2098   if (current_language->la_language == language_cplus
2099       || current_language->la_language == language_java
2100       || current_language->la_language == language_fortran)
2101     {
2102       /* NAME is already canonical.  Drop any qualifiers as .gdb_index does
2103 	 not contain any.  */
2104       const char *paren = strchr (name, '(');
2105 
2106       if (paren)
2107 	{
2108 	  char *dup;
2109 
2110 	  dup = xmalloc (paren - name + 1);
2111 	  memcpy (dup, name, paren - name);
2112 	  dup[paren - name] = 0;
2113 
2114 	  make_cleanup (xfree, dup);
2115 	  name = dup;
2116 	}
2117     }
2118 
2119   /* Index version 4 did not support case insensitive searches.  But the
2120      indexes for case insensitive languages are built in lowercase, therefore
2121      simulate our NAME being searched is also lowercased.  */
2122   hash = mapped_index_string_hash ((index->version == 4
2123                                     && case_sensitivity == case_sensitive_off
2124 				    ? 5 : index->version),
2125 				   name);
2126 
2127   slot = hash & (index->symbol_table_slots - 1);
2128   step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2129   cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2130 
2131   for (;;)
2132     {
2133       /* Convert a slot number to an offset into the table.  */
2134       offset_type i = 2 * slot;
2135       const char *str;
2136       if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2137 	{
2138 	  do_cleanups (back_to);
2139 	  return 0;
2140 	}
2141 
2142       str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2143       if (!cmp (name, str))
2144 	{
2145 	  *vec_out = (offset_type *) (index->constant_pool
2146 				      + MAYBE_SWAP (index->symbol_table[i + 1]));
2147 	  do_cleanups (back_to);
2148 	  return 1;
2149 	}
2150 
2151       slot = (slot + step) & (index->symbol_table_slots - 1);
2152     }
2153 }
2154 
2155 /* Read the index file.  If everything went ok, initialize the "quick"
2156    elements of all the CUs and return 1.  Otherwise, return 0.  */
2157 
2158 static int
2159 dwarf2_read_index (struct objfile *objfile)
2160 {
2161   char *addr;
2162   struct mapped_index *map;
2163   offset_type *metadata;
2164   const gdb_byte *cu_list;
2165   const gdb_byte *types_list = NULL;
2166   offset_type version, cu_list_elements;
2167   offset_type types_list_elements = 0;
2168   int i;
2169 
2170   if (dwarf2_section_empty_p (&dwarf2_per_objfile->gdb_index))
2171     return 0;
2172 
2173   /* Older elfutils strip versions could keep the section in the main
2174      executable while splitting it for the separate debug info file.  */
2175   if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection)
2176        & SEC_HAS_CONTENTS) == 0)
2177     return 0;
2178 
2179   dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
2180 
2181   addr = dwarf2_per_objfile->gdb_index.buffer;
2182   /* Version check.  */
2183   version = MAYBE_SWAP (*(offset_type *) addr);
2184   /* Versions earlier than 3 emitted every copy of a psymbol.  This
2185      causes the index to behave very poorly for certain requests.  Version 3
2186      contained incomplete addrmap.  So, it seems better to just ignore such
2187      indices.  Index version 4 uses a different hash function than index
2188      version 5 and later.  */
2189   if (version < 4)
2190     return 0;
2191   /* Indexes with higher version than the one supported by GDB may be no
2192      longer backward compatible.  */
2193   if (version > 5)
2194     return 0;
2195 
2196   map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
2197   map->version = version;
2198   map->total_size = dwarf2_per_objfile->gdb_index.size;
2199 
2200   metadata = (offset_type *) (addr + sizeof (offset_type));
2201 
2202   i = 0;
2203   cu_list = addr + MAYBE_SWAP (metadata[i]);
2204   cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2205 		      / 8);
2206   ++i;
2207 
2208   types_list = addr + MAYBE_SWAP (metadata[i]);
2209   types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2210 			  - MAYBE_SWAP (metadata[i]))
2211 			 / 8);
2212   ++i;
2213 
2214   map->address_table = addr + MAYBE_SWAP (metadata[i]);
2215   map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2216 			     - MAYBE_SWAP (metadata[i]));
2217   ++i;
2218 
2219   map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2220   map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2221 			      - MAYBE_SWAP (metadata[i]))
2222 			     / (2 * sizeof (offset_type)));
2223   ++i;
2224 
2225   map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2226 
2227   if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
2228     return 0;
2229 
2230   if (types_list_elements)
2231     {
2232       struct dwarf2_section_info *section;
2233 
2234       /* We can only handle a single .debug_types when we have an
2235 	 index.  */
2236       if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2237 	return 0;
2238 
2239       section = VEC_index (dwarf2_section_info_def,
2240 			   dwarf2_per_objfile->types, 0);
2241 
2242       if (!create_signatured_type_table_from_index (objfile, section,
2243 						    types_list,
2244 						    types_list_elements))
2245 	return 0;
2246     }
2247 
2248   create_addrmap_from_index (objfile, map);
2249 
2250   dwarf2_per_objfile->index_table = map;
2251   dwarf2_per_objfile->using_index = 1;
2252   dwarf2_per_objfile->quick_file_names_table =
2253     create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2254 
2255   return 1;
2256 }
2257 
2258 /* A helper for the "quick" functions which sets the global
2259    dwarf2_per_objfile according to OBJFILE.  */
2260 
2261 static void
2262 dw2_setup (struct objfile *objfile)
2263 {
2264   dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2265   gdb_assert (dwarf2_per_objfile);
2266 }
2267 
2268 /* A helper for the "quick" functions which attempts to read the line
2269    table for THIS_CU.  */
2270 
2271 static struct quick_file_names *
2272 dw2_get_file_names (struct objfile *objfile,
2273 		    struct dwarf2_per_cu_data *this_cu)
2274 {
2275   bfd *abfd = objfile->obfd;
2276   struct line_header *lh;
2277   struct attribute *attr;
2278   struct cleanup *cleanups;
2279   struct die_info *comp_unit_die;
2280   struct dwarf2_section_info* sec;
2281   gdb_byte *info_ptr, *buffer;
2282   int has_children, i;
2283   struct dwarf2_cu cu;
2284   unsigned int bytes_read, buffer_size;
2285   struct die_reader_specs reader_specs;
2286   char *name, *comp_dir;
2287   void **slot;
2288   struct quick_file_names *qfn;
2289   unsigned int line_offset;
2290 
2291   if (this_cu->v.quick->file_names != NULL)
2292     return this_cu->v.quick->file_names;
2293   /* If we know there is no line data, no point in looking again.  */
2294   if (this_cu->v.quick->no_file_data)
2295     return NULL;
2296 
2297   init_one_comp_unit (&cu, objfile);
2298   cleanups = make_cleanup (free_stack_comp_unit, &cu);
2299 
2300   if (this_cu->debug_types_section)
2301     sec = this_cu->debug_types_section;
2302   else
2303     sec = &dwarf2_per_objfile->info;
2304   dwarf2_read_section (objfile, sec);
2305   buffer_size = sec->size;
2306   buffer = sec->buffer;
2307   info_ptr = buffer + this_cu->offset;
2308 
2309   info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
2310 					  buffer, buffer_size,
2311 					  abfd,
2312 					  this_cu->debug_types_section != NULL);
2313 
2314   /* Skip dummy compilation units.  */
2315   if (info_ptr >= buffer + buffer_size
2316       || peek_abbrev_code (abfd, info_ptr) == 0)
2317     {
2318       do_cleanups (cleanups);
2319       return NULL;
2320     }
2321 
2322   this_cu->cu = &cu;
2323   cu.per_cu = this_cu;
2324 
2325   dwarf2_read_abbrevs (abfd, &cu);
2326   make_cleanup (dwarf2_free_abbrev_table, &cu);
2327 
2328   init_cu_die_reader (&reader_specs, &cu);
2329   read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2330 		 &has_children);
2331 
2332   lh = NULL;
2333   slot = NULL;
2334   line_offset = 0;
2335   attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, &cu);
2336   if (attr)
2337     {
2338       struct quick_file_names find_entry;
2339 
2340       line_offset = DW_UNSND (attr);
2341 
2342       /* We may have already read in this line header (TU line header sharing).
2343 	 If we have we're done.  */
2344       find_entry.offset = line_offset;
2345       slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2346 			     &find_entry, INSERT);
2347       if (*slot != NULL)
2348 	{
2349 	  do_cleanups (cleanups);
2350 	  this_cu->v.quick->file_names = *slot;
2351 	  return *slot;
2352 	}
2353 
2354       lh = dwarf_decode_line_header (line_offset, abfd, &cu);
2355     }
2356   if (lh == NULL)
2357     {
2358       do_cleanups (cleanups);
2359       this_cu->v.quick->no_file_data = 1;
2360       return NULL;
2361     }
2362 
2363   qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2364   qfn->offset = line_offset;
2365   gdb_assert (slot != NULL);
2366   *slot = qfn;
2367 
2368   find_file_and_directory (comp_unit_die, &cu, &name, &comp_dir);
2369 
2370   qfn->num_file_names = lh->num_file_names;
2371   qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2372 				   lh->num_file_names * sizeof (char *));
2373   for (i = 0; i < lh->num_file_names; ++i)
2374     qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2375   qfn->real_names = NULL;
2376 
2377   free_line_header (lh);
2378   do_cleanups (cleanups);
2379 
2380   this_cu->v.quick->file_names = qfn;
2381   return qfn;
2382 }
2383 
2384 /* A helper for the "quick" functions which computes and caches the
2385    real path for a given file name from the line table.  */
2386 
2387 static const char *
2388 dw2_get_real_path (struct objfile *objfile,
2389 		   struct quick_file_names *qfn, int index)
2390 {
2391   if (qfn->real_names == NULL)
2392     qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2393 				      qfn->num_file_names, sizeof (char *));
2394 
2395   if (qfn->real_names[index] == NULL)
2396     qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2397 
2398   return qfn->real_names[index];
2399 }
2400 
2401 static struct symtab *
2402 dw2_find_last_source_symtab (struct objfile *objfile)
2403 {
2404   int index;
2405 
2406   dw2_setup (objfile);
2407   index = dwarf2_per_objfile->n_comp_units - 1;
2408   return dw2_instantiate_symtab (objfile, dw2_get_cu (index));
2409 }
2410 
2411 /* Traversal function for dw2_forget_cached_source_info.  */
2412 
2413 static int
2414 dw2_free_cached_file_names (void **slot, void *info)
2415 {
2416   struct quick_file_names *file_data = (struct quick_file_names *) *slot;
2417 
2418   if (file_data->real_names)
2419     {
2420       int i;
2421 
2422       for (i = 0; i < file_data->num_file_names; ++i)
2423 	{
2424 	  xfree ((void*) file_data->real_names[i]);
2425 	  file_data->real_names[i] = NULL;
2426 	}
2427     }
2428 
2429   return 1;
2430 }
2431 
2432 static void
2433 dw2_forget_cached_source_info (struct objfile *objfile)
2434 {
2435   dw2_setup (objfile);
2436 
2437   htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
2438 			  dw2_free_cached_file_names, NULL);
2439 }
2440 
2441 /* Helper function for dw2_map_symtabs_matching_filename that expands
2442    the symtabs and calls the iterator.  */
2443 
2444 static int
2445 dw2_map_expand_apply (struct objfile *objfile,
2446 		      struct dwarf2_per_cu_data *per_cu,
2447 		      const char *name,
2448 		      const char *full_path, const char *real_path,
2449 		      int (*callback) (struct symtab *, void *),
2450 		      void *data)
2451 {
2452   struct symtab *last_made = objfile->symtabs;
2453 
2454   /* Don't visit already-expanded CUs.  */
2455   if (per_cu->v.quick->symtab)
2456     return 0;
2457 
2458   /* This may expand more than one symtab, and we want to iterate over
2459      all of them.  */
2460   dw2_instantiate_symtab (objfile, per_cu);
2461 
2462   return iterate_over_some_symtabs (name, full_path, real_path, callback, data,
2463 				    objfile->symtabs, last_made);
2464 }
2465 
2466 /* Implementation of the map_symtabs_matching_filename method.  */
2467 
2468 static int
2469 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
2470 				   const char *full_path, const char *real_path,
2471 				   int (*callback) (struct symtab *, void *),
2472 				   void *data)
2473 {
2474   int i;
2475   const char *name_basename = lbasename (name);
2476   int check_basename = name_basename == name;
2477   struct dwarf2_per_cu_data *base_cu = NULL;
2478 
2479   dw2_setup (objfile);
2480 
2481   for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2482 		   + dwarf2_per_objfile->n_type_comp_units); ++i)
2483     {
2484       int j;
2485       struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2486       struct quick_file_names *file_data;
2487 
2488       /* We only need to look at symtabs not already expanded.  */
2489       if (per_cu->v.quick->symtab)
2490 	continue;
2491 
2492       file_data = dw2_get_file_names (objfile, per_cu);
2493       if (file_data == NULL)
2494 	continue;
2495 
2496       for (j = 0; j < file_data->num_file_names; ++j)
2497 	{
2498 	  const char *this_name = file_data->file_names[j];
2499 
2500 	  if (FILENAME_CMP (name, this_name) == 0)
2501 	    {
2502 	      if (dw2_map_expand_apply (objfile, per_cu,
2503 					name, full_path, real_path,
2504 					callback, data))
2505 		return 1;
2506 	    }
2507 
2508 	  if (check_basename && ! base_cu
2509 	      && FILENAME_CMP (lbasename (this_name), name) == 0)
2510 	    base_cu = per_cu;
2511 
2512 	  /* Before we invoke realpath, which can get expensive when many
2513 	     files are involved, do a quick comparison of the basenames.  */
2514 	  if (! basenames_may_differ
2515 	      && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
2516 	    continue;
2517 
2518 	  if (full_path != NULL)
2519 	    {
2520 	      const char *this_real_name = dw2_get_real_path (objfile,
2521 							      file_data, j);
2522 
2523 	      if (this_real_name != NULL
2524 		  && FILENAME_CMP (full_path, this_real_name) == 0)
2525 		{
2526 		  if (dw2_map_expand_apply (objfile, per_cu,
2527 					    name, full_path, real_path,
2528 					    callback, data))
2529 		    return 1;
2530 		}
2531 	    }
2532 
2533 	  if (real_path != NULL)
2534 	    {
2535 	      const char *this_real_name = dw2_get_real_path (objfile,
2536 							      file_data, j);
2537 
2538 	      if (this_real_name != NULL
2539 		  && FILENAME_CMP (real_path, this_real_name) == 0)
2540 		{
2541 		  if (dw2_map_expand_apply (objfile, per_cu,
2542 					    name, full_path, real_path,
2543 					    callback, data))
2544 		    return 1;
2545 		}
2546 	    }
2547 	}
2548     }
2549 
2550   if (base_cu)
2551     {
2552       if (dw2_map_expand_apply (objfile, base_cu,
2553 				name, full_path, real_path,
2554 				callback, data))
2555 	return 1;
2556     }
2557 
2558   return 0;
2559 }
2560 
2561 static struct symtab *
2562 dw2_lookup_symbol (struct objfile *objfile, int block_index,
2563 		   const char *name, domain_enum domain)
2564 {
2565   /* We do all the work in the pre_expand_symtabs_matching hook
2566      instead.  */
2567   return NULL;
2568 }
2569 
2570 /* A helper function that expands all symtabs that hold an object
2571    named NAME.  */
2572 
2573 static void
2574 dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2575 {
2576   dw2_setup (objfile);
2577 
2578   /* index_table is NULL if OBJF_READNOW.  */
2579   if (dwarf2_per_objfile->index_table)
2580     {
2581       offset_type *vec;
2582 
2583       if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2584 				    name, &vec))
2585 	{
2586 	  offset_type i, len = MAYBE_SWAP (*vec);
2587 	  for (i = 0; i < len; ++i)
2588 	    {
2589 	      offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
2590 	      struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
2591 
2592 	      dw2_instantiate_symtab (objfile, per_cu);
2593 	    }
2594 	}
2595     }
2596 }
2597 
2598 static void
2599 dw2_pre_expand_symtabs_matching (struct objfile *objfile,
2600 				 enum block_enum block_kind, const char *name,
2601 				 domain_enum domain)
2602 {
2603   dw2_do_expand_symtabs_matching (objfile, name);
2604 }
2605 
2606 static void
2607 dw2_print_stats (struct objfile *objfile)
2608 {
2609   int i, count;
2610 
2611   dw2_setup (objfile);
2612   count = 0;
2613   for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2614 		   + dwarf2_per_objfile->n_type_comp_units); ++i)
2615     {
2616       struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2617 
2618       if (!per_cu->v.quick->symtab)
2619 	++count;
2620     }
2621   printf_filtered (_("  Number of unread CUs: %d\n"), count);
2622 }
2623 
2624 static void
2625 dw2_dump (struct objfile *objfile)
2626 {
2627   /* Nothing worth printing.  */
2628 }
2629 
2630 static void
2631 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2632 	      struct section_offsets *delta)
2633 {
2634   /* There's nothing to relocate here.  */
2635 }
2636 
2637 static void
2638 dw2_expand_symtabs_for_function (struct objfile *objfile,
2639 				 const char *func_name)
2640 {
2641   dw2_do_expand_symtabs_matching (objfile, func_name);
2642 }
2643 
2644 static void
2645 dw2_expand_all_symtabs (struct objfile *objfile)
2646 {
2647   int i;
2648 
2649   dw2_setup (objfile);
2650 
2651   for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2652 		   + dwarf2_per_objfile->n_type_comp_units); ++i)
2653     {
2654       struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2655 
2656       dw2_instantiate_symtab (objfile, per_cu);
2657     }
2658 }
2659 
2660 static void
2661 dw2_expand_symtabs_with_filename (struct objfile *objfile,
2662 				  const char *filename)
2663 {
2664   int i;
2665 
2666   dw2_setup (objfile);
2667 
2668   /* We don't need to consider type units here.
2669      This is only called for examining code, e.g. expand_line_sal.
2670      There can be an order of magnitude (or more) more type units
2671      than comp units, and we avoid them if we can.  */
2672 
2673   for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
2674     {
2675       int j;
2676       struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2677       struct quick_file_names *file_data;
2678 
2679       /* We only need to look at symtabs not already expanded.  */
2680       if (per_cu->v.quick->symtab)
2681 	continue;
2682 
2683       file_data = dw2_get_file_names (objfile, per_cu);
2684       if (file_data == NULL)
2685 	continue;
2686 
2687       for (j = 0; j < file_data->num_file_names; ++j)
2688 	{
2689 	  const char *this_name = file_data->file_names[j];
2690 	  if (FILENAME_CMP (this_name, filename) == 0)
2691 	    {
2692 	      dw2_instantiate_symtab (objfile, per_cu);
2693 	      break;
2694 	    }
2695 	}
2696     }
2697 }
2698 
2699 static const char *
2700 dw2_find_symbol_file (struct objfile *objfile, const char *name)
2701 {
2702   struct dwarf2_per_cu_data *per_cu;
2703   offset_type *vec;
2704   struct quick_file_names *file_data;
2705 
2706   dw2_setup (objfile);
2707 
2708   /* index_table is NULL if OBJF_READNOW.  */
2709   if (!dwarf2_per_objfile->index_table)
2710     {
2711       struct symtab *s;
2712 
2713       ALL_OBJFILE_SYMTABS (objfile, s)
2714 	if (s->primary)
2715 	  {
2716 	    struct blockvector *bv = BLOCKVECTOR (s);
2717 	    const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2718 	    struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
2719 
2720 	    if (sym)
2721 	      return sym->symtab->filename;
2722 	  }
2723       return NULL;
2724     }
2725 
2726   if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2727 				 name, &vec))
2728     return NULL;
2729 
2730   /* Note that this just looks at the very first one named NAME -- but
2731      actually we are looking for a function.  find_main_filename
2732      should be rewritten so that it doesn't require a custom hook.  It
2733      could just use the ordinary symbol tables.  */
2734   /* vec[0] is the length, which must always be >0.  */
2735   per_cu = dw2_get_cu (MAYBE_SWAP (vec[1]));
2736 
2737   file_data = dw2_get_file_names (objfile, per_cu);
2738   if (file_data == NULL)
2739     return NULL;
2740 
2741   return file_data->file_names[file_data->num_file_names - 1];
2742 }
2743 
2744 static void
2745 dw2_map_matching_symbols (const char * name, domain_enum namespace,
2746 			  struct objfile *objfile, int global,
2747 			  int (*callback) (struct block *,
2748 					   struct symbol *, void *),
2749 			  void *data, symbol_compare_ftype *match,
2750 			  symbol_compare_ftype *ordered_compare)
2751 {
2752   /* Currently unimplemented; used for Ada.  The function can be called if the
2753      current language is Ada for a non-Ada objfile using GNU index.  As Ada
2754      does not look for non-Ada symbols this function should just return.  */
2755 }
2756 
2757 static void
2758 dw2_expand_symtabs_matching
2759   (struct objfile *objfile,
2760    int (*file_matcher) (const char *, void *),
2761    int (*name_matcher) (const struct language_defn *, const char *, void *),
2762    enum search_domain kind,
2763    void *data)
2764 {
2765   int i;
2766   offset_type iter;
2767   struct mapped_index *index;
2768 
2769   dw2_setup (objfile);
2770 
2771   /* index_table is NULL if OBJF_READNOW.  */
2772   if (!dwarf2_per_objfile->index_table)
2773     return;
2774   index = dwarf2_per_objfile->index_table;
2775 
2776   if (file_matcher != NULL)
2777     for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2778 		     + dwarf2_per_objfile->n_type_comp_units); ++i)
2779       {
2780 	int j;
2781 	struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2782 	struct quick_file_names *file_data;
2783 
2784 	per_cu->v.quick->mark = 0;
2785 
2786 	/* We only need to look at symtabs not already expanded.  */
2787 	if (per_cu->v.quick->symtab)
2788 	  continue;
2789 
2790 	file_data = dw2_get_file_names (objfile, per_cu);
2791 	if (file_data == NULL)
2792 	  continue;
2793 
2794 	for (j = 0; j < file_data->num_file_names; ++j)
2795 	  {
2796 	    if (file_matcher (file_data->file_names[j], data))
2797 	      {
2798 		per_cu->v.quick->mark = 1;
2799 		break;
2800 	      }
2801 	  }
2802       }
2803 
2804   for (iter = 0; iter < index->symbol_table_slots; ++iter)
2805     {
2806       offset_type idx = 2 * iter;
2807       const char *name;
2808       offset_type *vec, vec_len, vec_idx;
2809 
2810       if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
2811 	continue;
2812 
2813       name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
2814 
2815       if (! (*name_matcher) (current_language, name, data))
2816 	continue;
2817 
2818       /* The name was matched, now expand corresponding CUs that were
2819 	 marked.  */
2820       vec = (offset_type *) (index->constant_pool
2821 			     + MAYBE_SWAP (index->symbol_table[idx + 1]));
2822       vec_len = MAYBE_SWAP (vec[0]);
2823       for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
2824 	{
2825 	  struct dwarf2_per_cu_data *per_cu;
2826 
2827 	  per_cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1]));
2828 	  if (file_matcher == NULL || per_cu->v.quick->mark)
2829 	    dw2_instantiate_symtab (objfile, per_cu);
2830 	}
2831     }
2832 }
2833 
2834 static struct symtab *
2835 dw2_find_pc_sect_symtab (struct objfile *objfile,
2836 			 struct minimal_symbol *msymbol,
2837 			 CORE_ADDR pc,
2838 			 struct obj_section *section,
2839 			 int warn_if_readin)
2840 {
2841   struct dwarf2_per_cu_data *data;
2842 
2843   dw2_setup (objfile);
2844 
2845   if (!objfile->psymtabs_addrmap)
2846     return NULL;
2847 
2848   data = addrmap_find (objfile->psymtabs_addrmap, pc);
2849   if (!data)
2850     return NULL;
2851 
2852   if (warn_if_readin && data->v.quick->symtab)
2853     warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
2854 	     paddress (get_objfile_arch (objfile), pc));
2855 
2856   return dw2_instantiate_symtab (objfile, data);
2857 }
2858 
2859 static void
2860 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
2861 			  void *data, int need_fullname)
2862 {
2863   int i;
2864 
2865   dw2_setup (objfile);
2866 
2867   for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2868 		   + dwarf2_per_objfile->n_type_comp_units); ++i)
2869     {
2870       int j;
2871       struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2872       struct quick_file_names *file_data;
2873 
2874       /* We only need to look at symtabs not already expanded.  */
2875       if (per_cu->v.quick->symtab)
2876 	continue;
2877 
2878       file_data = dw2_get_file_names (objfile, per_cu);
2879       if (file_data == NULL)
2880 	continue;
2881 
2882       for (j = 0; j < file_data->num_file_names; ++j)
2883 	{
2884 	  const char *this_real_name;
2885 
2886 	  if (need_fullname)
2887 	    this_real_name = dw2_get_real_path (objfile, file_data, j);
2888 	  else
2889 	    this_real_name = NULL;
2890 	  (*fun) (file_data->file_names[j], this_real_name, data);
2891 	}
2892     }
2893 }
2894 
2895 static int
2896 dw2_has_symbols (struct objfile *objfile)
2897 {
2898   return 1;
2899 }
2900 
2901 const struct quick_symbol_functions dwarf2_gdb_index_functions =
2902 {
2903   dw2_has_symbols,
2904   dw2_find_last_source_symtab,
2905   dw2_forget_cached_source_info,
2906   dw2_map_symtabs_matching_filename,
2907   dw2_lookup_symbol,
2908   dw2_pre_expand_symtabs_matching,
2909   dw2_print_stats,
2910   dw2_dump,
2911   dw2_relocate,
2912   dw2_expand_symtabs_for_function,
2913   dw2_expand_all_symtabs,
2914   dw2_expand_symtabs_with_filename,
2915   dw2_find_symbol_file,
2916   dw2_map_matching_symbols,
2917   dw2_expand_symtabs_matching,
2918   dw2_find_pc_sect_symtab,
2919   dw2_map_symbol_filenames
2920 };
2921 
2922 /* Initialize for reading DWARF for this objfile.  Return 0 if this
2923    file will use psymtabs, or 1 if using the GNU index.  */
2924 
2925 int
2926 dwarf2_initialize_objfile (struct objfile *objfile)
2927 {
2928   /* If we're about to read full symbols, don't bother with the
2929      indices.  In this case we also don't care if some other debug
2930      format is making psymtabs, because they are all about to be
2931      expanded anyway.  */
2932   if ((objfile->flags & OBJF_READNOW))
2933     {
2934       int i;
2935 
2936       dwarf2_per_objfile->using_index = 1;
2937       create_all_comp_units (objfile);
2938       create_debug_types_hash_table (objfile);
2939       dwarf2_per_objfile->quick_file_names_table =
2940 	create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2941 
2942       for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2943 		       + dwarf2_per_objfile->n_type_comp_units); ++i)
2944 	{
2945 	  struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2946 
2947 	  per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2948 					    struct dwarf2_per_cu_quick_data);
2949 	}
2950 
2951       /* Return 1 so that gdb sees the "quick" functions.  However,
2952 	 these functions will be no-ops because we will have expanded
2953 	 all symtabs.  */
2954       return 1;
2955     }
2956 
2957   if (dwarf2_read_index (objfile))
2958     return 1;
2959 
2960   return 0;
2961 }
2962 
2963 
2964 
2965 /* Build a partial symbol table.  */
2966 
2967 void
2968 dwarf2_build_psymtabs (struct objfile *objfile)
2969 {
2970   if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
2971     {
2972       init_psymbol_list (objfile, 1024);
2973     }
2974 
2975   dwarf2_build_psymtabs_hard (objfile);
2976 }
2977 
2978 /* Return TRUE if OFFSET is within CU_HEADER.  */
2979 
2980 static inline int
2981 offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
2982 {
2983   unsigned int bottom = cu_header->offset;
2984   unsigned int top = (cu_header->offset
2985 		      + cu_header->length
2986 		      + cu_header->initial_length_size);
2987 
2988   return (offset >= bottom && offset < top);
2989 }
2990 
2991 /* Read in the comp unit header information from the debug_info at info_ptr.
2992    NOTE: This leaves members offset, first_die_offset to be filled in
2993    by the caller.  */
2994 
2995 static gdb_byte *
2996 read_comp_unit_head (struct comp_unit_head *cu_header,
2997 		     gdb_byte *info_ptr, bfd *abfd)
2998 {
2999   int signed_addr;
3000   unsigned int bytes_read;
3001 
3002   cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3003   cu_header->initial_length_size = bytes_read;
3004   cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3005   info_ptr += bytes_read;
3006   cu_header->version = read_2_bytes (abfd, info_ptr);
3007   info_ptr += 2;
3008   cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
3009 					  &bytes_read);
3010   info_ptr += bytes_read;
3011   cu_header->addr_size = read_1_byte (abfd, info_ptr);
3012   info_ptr += 1;
3013   signed_addr = bfd_get_sign_extend_vma (abfd);
3014   if (signed_addr < 0)
3015     internal_error (__FILE__, __LINE__,
3016 		    _("read_comp_unit_head: dwarf from non elf file"));
3017   cu_header->signed_addr_p = signed_addr;
3018 
3019   return info_ptr;
3020 }
3021 
3022 /* Read in a CU header and perform some basic error checking.  */
3023 
3024 static gdb_byte *
3025 partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
3026 			     gdb_byte *buffer, unsigned int buffer_size,
3027 			     bfd *abfd, int is_debug_types_section)
3028 {
3029   gdb_byte *beg_of_comp_unit = info_ptr;
3030 
3031   header->offset = beg_of_comp_unit - buffer;
3032 
3033   info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3034 
3035   /* If we're reading a type unit, skip over the signature and
3036      type_offset fields.  */
3037   if (is_debug_types_section)
3038     info_ptr += 8 /*signature*/ + header->offset_size;
3039 
3040   header->first_die_offset = info_ptr - beg_of_comp_unit;
3041 
3042   if (header->version != 2 && header->version != 3 && header->version != 4)
3043     error (_("Dwarf Error: wrong version in compilation unit header "
3044 	   "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3045 	   bfd_get_filename (abfd));
3046 
3047   if (header->abbrev_offset
3048       >= dwarf2_section_size (dwarf2_per_objfile->objfile,
3049 			      &dwarf2_per_objfile->abbrev))
3050     error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3051 	   "(offset 0x%lx + 6) [in module %s]"),
3052 	   (long) header->abbrev_offset,
3053 	   (long) (beg_of_comp_unit - buffer),
3054 	   bfd_get_filename (abfd));
3055 
3056   if (beg_of_comp_unit + header->length + header->initial_length_size
3057       > buffer + buffer_size)
3058     error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3059 	   "(offset 0x%lx + 0) [in module %s]"),
3060 	   (long) header->length,
3061 	   (long) (beg_of_comp_unit - buffer),
3062 	   bfd_get_filename (abfd));
3063 
3064   return info_ptr;
3065 }
3066 
3067 /* Read in the types comp unit header information from .debug_types entry at
3068    types_ptr.  The result is a pointer to one past the end of the header.  */
3069 
3070 static gdb_byte *
3071 read_type_comp_unit_head (struct comp_unit_head *cu_header,
3072 			  struct dwarf2_section_info *section,
3073 			  ULONGEST *signature,
3074 			  gdb_byte *types_ptr, bfd *abfd)
3075 {
3076   gdb_byte *initial_types_ptr = types_ptr;
3077 
3078   dwarf2_read_section (dwarf2_per_objfile->objfile, section);
3079   cu_header->offset = types_ptr - section->buffer;
3080 
3081   types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
3082 
3083   *signature = read_8_bytes (abfd, types_ptr);
3084   types_ptr += 8;
3085   types_ptr += cu_header->offset_size;
3086   cu_header->first_die_offset = types_ptr - initial_types_ptr;
3087 
3088   return types_ptr;
3089 }
3090 
3091 /* Allocate a new partial symtab for file named NAME and mark this new
3092    partial symtab as being an include of PST.  */
3093 
3094 static void
3095 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
3096                                struct objfile *objfile)
3097 {
3098   struct partial_symtab *subpst = allocate_psymtab (name, objfile);
3099 
3100   subpst->section_offsets = pst->section_offsets;
3101   subpst->textlow = 0;
3102   subpst->texthigh = 0;
3103 
3104   subpst->dependencies = (struct partial_symtab **)
3105     obstack_alloc (&objfile->objfile_obstack,
3106                    sizeof (struct partial_symtab *));
3107   subpst->dependencies[0] = pst;
3108   subpst->number_of_dependencies = 1;
3109 
3110   subpst->globals_offset = 0;
3111   subpst->n_global_syms = 0;
3112   subpst->statics_offset = 0;
3113   subpst->n_static_syms = 0;
3114   subpst->symtab = NULL;
3115   subpst->read_symtab = pst->read_symtab;
3116   subpst->readin = 0;
3117 
3118   /* No private part is necessary for include psymtabs.  This property
3119      can be used to differentiate between such include psymtabs and
3120      the regular ones.  */
3121   subpst->read_symtab_private = NULL;
3122 }
3123 
3124 /* Read the Line Number Program data and extract the list of files
3125    included by the source file represented by PST.  Build an include
3126    partial symtab for each of these included files.  */
3127 
3128 static void
3129 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
3130                                struct die_info *die,
3131                                struct partial_symtab *pst)
3132 {
3133   struct objfile *objfile = cu->objfile;
3134   bfd *abfd = objfile->obfd;
3135   struct line_header *lh = NULL;
3136   struct attribute *attr;
3137 
3138   attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3139   if (attr)
3140     {
3141       unsigned int line_offset = DW_UNSND (attr);
3142 
3143       lh = dwarf_decode_line_header (line_offset, abfd, cu);
3144     }
3145   if (lh == NULL)
3146     return;  /* No linetable, so no includes.  */
3147 
3148   /* NOTE: pst->dirname is DW_AT_comp_dir (if present).  */
3149   dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
3150 
3151   free_line_header (lh);
3152 }
3153 
3154 static hashval_t
3155 hash_type_signature (const void *item)
3156 {
3157   const struct signatured_type *type_sig = item;
3158 
3159   /* This drops the top 32 bits of the signature, but is ok for a hash.  */
3160   return type_sig->signature;
3161 }
3162 
3163 static int
3164 eq_type_signature (const void *item_lhs, const void *item_rhs)
3165 {
3166   const struct signatured_type *lhs = item_lhs;
3167   const struct signatured_type *rhs = item_rhs;
3168 
3169   return lhs->signature == rhs->signature;
3170 }
3171 
3172 /* Allocate a hash table for signatured types.  */
3173 
3174 static htab_t
3175 allocate_signatured_type_table (struct objfile *objfile)
3176 {
3177   return htab_create_alloc_ex (41,
3178 			       hash_type_signature,
3179 			       eq_type_signature,
3180 			       NULL,
3181 			       &objfile->objfile_obstack,
3182 			       hashtab_obstack_allocate,
3183 			       dummy_obstack_deallocate);
3184 }
3185 
3186 /* A helper function to add a signatured type CU to a list.  */
3187 
3188 static int
3189 add_signatured_type_cu_to_list (void **slot, void *datum)
3190 {
3191   struct signatured_type *sigt = *slot;
3192   struct dwarf2_per_cu_data ***datap = datum;
3193 
3194   **datap = &sigt->per_cu;
3195   ++*datap;
3196 
3197   return 1;
3198 }
3199 
3200 /* Create the hash table of all entries in the .debug_types section.
3201    The result is zero if there is an error (e.g. missing .debug_types section),
3202    otherwise non-zero.	*/
3203 
3204 static int
3205 create_debug_types_hash_table (struct objfile *objfile)
3206 {
3207   htab_t types_htab = NULL;
3208   struct dwarf2_per_cu_data **iter;
3209   int ix;
3210   struct dwarf2_section_info *section;
3211 
3212   if (VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types))
3213     {
3214       dwarf2_per_objfile->signatured_types = NULL;
3215       return 0;
3216     }
3217 
3218   for (ix = 0;
3219        VEC_iterate (dwarf2_section_info_def, dwarf2_per_objfile->types,
3220 		    ix, section);
3221        ++ix)
3222     {
3223       gdb_byte *info_ptr, *end_ptr;
3224 
3225       dwarf2_read_section (objfile, section);
3226       info_ptr = section->buffer;
3227 
3228       if (info_ptr == NULL)
3229 	continue;
3230 
3231       if (types_htab == NULL)
3232 	types_htab = allocate_signatured_type_table (objfile);
3233 
3234       if (dwarf2_die_debug)
3235 	fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
3236 
3237       end_ptr = info_ptr + section->size;
3238       while (info_ptr < end_ptr)
3239 	{
3240 	  unsigned int offset;
3241 	  unsigned int offset_size;
3242 	  unsigned int type_offset;
3243 	  unsigned int length, initial_length_size;
3244 	  unsigned short version;
3245 	  ULONGEST signature;
3246 	  struct signatured_type *type_sig;
3247 	  void **slot;
3248 	  gdb_byte *ptr = info_ptr;
3249 
3250 	  offset = ptr - section->buffer;
3251 
3252 	  /* We need to read the type's signature in order to build the hash
3253 	     table, but we don't need to read anything else just yet.  */
3254 
3255 	  /* Sanity check to ensure entire cu is present.  */
3256 	  length = read_initial_length (objfile->obfd, ptr,
3257 					&initial_length_size);
3258 	  if (ptr + length + initial_length_size > end_ptr)
3259 	    {
3260 	      complaint (&symfile_complaints,
3261 			 _("debug type entry runs off end "
3262 			   "of `.debug_types' section, ignored"));
3263 	      break;
3264 	    }
3265 
3266 	  offset_size = initial_length_size == 4 ? 4 : 8;
3267 	  ptr += initial_length_size;
3268 	  version = bfd_get_16 (objfile->obfd, ptr);
3269 	  ptr += 2;
3270 	  ptr += offset_size; /* abbrev offset */
3271 	  ptr += 1; /* address size */
3272 	  signature = bfd_get_64 (objfile->obfd, ptr);
3273 	  ptr += 8;
3274 	  type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
3275 	  ptr += offset_size;
3276 
3277 	  /* Skip dummy type units.  */
3278 	  if (ptr >= end_ptr || peek_abbrev_code (objfile->obfd, ptr) == 0)
3279 	    {
3280 	      info_ptr = info_ptr + initial_length_size + length;
3281 	      continue;
3282 	    }
3283 
3284 	  type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
3285 	  memset (type_sig, 0, sizeof (*type_sig));
3286 	  type_sig->signature = signature;
3287 	  type_sig->type_offset = type_offset;
3288 	  type_sig->per_cu.objfile = objfile;
3289 	  type_sig->per_cu.debug_types_section = section;
3290 	  type_sig->per_cu.offset = offset;
3291 
3292 	  slot = htab_find_slot (types_htab, type_sig, INSERT);
3293 	  gdb_assert (slot != NULL);
3294 	  if (*slot != NULL)
3295 	    {
3296 	      const struct signatured_type *dup_sig = *slot;
3297 
3298 	      complaint (&symfile_complaints,
3299 			 _("debug type entry at offset 0x%x is duplicate to the "
3300 			   "entry at offset 0x%x, signature 0x%s"),
3301 			 offset, dup_sig->per_cu.offset,
3302 			 phex (signature, sizeof (signature)));
3303 	      gdb_assert (signature == dup_sig->signature);
3304 	    }
3305 	  *slot = type_sig;
3306 
3307 	  if (dwarf2_die_debug)
3308 	    fprintf_unfiltered (gdb_stdlog, "  offset 0x%x, signature 0x%s\n",
3309 				offset, phex (signature, sizeof (signature)));
3310 
3311 	  info_ptr = info_ptr + initial_length_size + length;
3312 	}
3313     }
3314 
3315   dwarf2_per_objfile->signatured_types = types_htab;
3316 
3317   dwarf2_per_objfile->n_type_comp_units = htab_elements (types_htab);
3318   dwarf2_per_objfile->type_comp_units
3319     = obstack_alloc (&objfile->objfile_obstack,
3320 		     dwarf2_per_objfile->n_type_comp_units
3321 		     * sizeof (struct dwarf2_per_cu_data *));
3322   iter = &dwarf2_per_objfile->type_comp_units[0];
3323   htab_traverse_noresize (types_htab, add_signatured_type_cu_to_list, &iter);
3324   gdb_assert (iter - &dwarf2_per_objfile->type_comp_units[0]
3325 	      == dwarf2_per_objfile->n_type_comp_units);
3326 
3327   return 1;
3328 }
3329 
3330 /* Lookup a signature based type.
3331    Returns NULL if SIG is not present in the table.  */
3332 
3333 static struct signatured_type *
3334 lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
3335 {
3336   struct signatured_type find_entry, *entry;
3337 
3338   if (dwarf2_per_objfile->signatured_types == NULL)
3339     {
3340       complaint (&symfile_complaints,
3341 		 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
3342       return 0;
3343     }
3344 
3345   find_entry.signature = sig;
3346   entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
3347   return entry;
3348 }
3349 
3350 /* Initialize a die_reader_specs struct from a dwarf2_cu struct.  */
3351 
3352 static void
3353 init_cu_die_reader (struct die_reader_specs *reader,
3354 		    struct dwarf2_cu *cu)
3355 {
3356   reader->abfd = cu->objfile->obfd;
3357   reader->cu = cu;
3358   if (cu->per_cu->debug_types_section)
3359     {
3360       gdb_assert (cu->per_cu->debug_types_section->readin);
3361       reader->buffer = cu->per_cu->debug_types_section->buffer;
3362     }
3363   else
3364     {
3365       gdb_assert (dwarf2_per_objfile->info.readin);
3366       reader->buffer = dwarf2_per_objfile->info.buffer;
3367     }
3368 }
3369 
3370 /* Find the base address of the compilation unit for range lists and
3371    location lists.  It will normally be specified by DW_AT_low_pc.
3372    In DWARF-3 draft 4, the base address could be overridden by
3373    DW_AT_entry_pc.  It's been removed, but GCC still uses this for
3374    compilation units with discontinuous ranges.  */
3375 
3376 static void
3377 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3378 {
3379   struct attribute *attr;
3380 
3381   cu->base_known = 0;
3382   cu->base_address = 0;
3383 
3384   attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3385   if (attr)
3386     {
3387       cu->base_address = DW_ADDR (attr);
3388       cu->base_known = 1;
3389     }
3390   else
3391     {
3392       attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3393       if (attr)
3394 	{
3395 	  cu->base_address = DW_ADDR (attr);
3396 	  cu->base_known = 1;
3397 	}
3398     }
3399 }
3400 
3401 /* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
3402    to combine the common parts.
3403    Process a compilation unit for a psymtab.
3404    BUFFER is a pointer to the beginning of the dwarf section buffer,
3405    either .debug_info or debug_types.
3406    INFO_PTR is a pointer to the start of the CU.
3407    Returns a pointer to the next CU.  */
3408 
3409 static gdb_byte *
3410 process_psymtab_comp_unit (struct objfile *objfile,
3411 			   struct dwarf2_per_cu_data *this_cu,
3412 			   gdb_byte *buffer, gdb_byte *info_ptr,
3413 			   unsigned int buffer_size)
3414 {
3415   bfd *abfd = objfile->obfd;
3416   gdb_byte *beg_of_comp_unit = info_ptr;
3417   struct die_info *comp_unit_die;
3418   struct partial_symtab *pst;
3419   CORE_ADDR baseaddr;
3420   struct cleanup *back_to_inner;
3421   struct dwarf2_cu cu;
3422   int has_children, has_pc_info;
3423   struct attribute *attr;
3424   CORE_ADDR best_lowpc = 0, best_highpc = 0;
3425   struct die_reader_specs reader_specs;
3426   const char *filename;
3427 
3428   init_one_comp_unit (&cu, objfile);
3429   back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
3430 
3431   info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
3432 					  buffer, buffer_size,
3433 					  abfd,
3434 					  this_cu->debug_types_section != NULL);
3435 
3436   /* Skip dummy compilation units.  */
3437   if (info_ptr >= buffer + buffer_size
3438       || peek_abbrev_code (abfd, info_ptr) == 0)
3439     {
3440       info_ptr = (beg_of_comp_unit + cu.header.length
3441 		  + cu.header.initial_length_size);
3442       do_cleanups (back_to_inner);
3443       return info_ptr;
3444     }
3445 
3446   cu.list_in_scope = &file_symbols;
3447 
3448   /* If this compilation unit was already read in, free the
3449      cached copy in order to read it in again.	This is
3450      necessary because we skipped some symbols when we first
3451      read in the compilation unit (see load_partial_dies).
3452      This problem could be avoided, but the benefit is
3453      unclear.  */
3454   if (this_cu->cu != NULL)
3455     free_one_cached_comp_unit (this_cu->cu);
3456 
3457   /* Note that this is a pointer to our stack frame, being
3458      added to a global data structure.	It will be cleaned up
3459      in free_stack_comp_unit when we finish with this
3460      compilation unit.	*/
3461   this_cu->cu = &cu;
3462   cu.per_cu = this_cu;
3463 
3464   /* Read the abbrevs for this compilation unit into a table.  */
3465   dwarf2_read_abbrevs (abfd, &cu);
3466   make_cleanup (dwarf2_free_abbrev_table, &cu);
3467 
3468   /* Read the compilation unit die.  */
3469   init_cu_die_reader (&reader_specs, &cu);
3470   info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3471 			    &has_children);
3472 
3473   if (this_cu->debug_types_section)
3474     {
3475       /* LENGTH has not been set yet for type units.  */
3476       gdb_assert (this_cu->offset == cu.header.offset);
3477       this_cu->length = cu.header.length + cu.header.initial_length_size;
3478     }
3479   else if (comp_unit_die->tag == DW_TAG_partial_unit)
3480     {
3481       info_ptr = (beg_of_comp_unit + cu.header.length
3482 		  + cu.header.initial_length_size);
3483       do_cleanups (back_to_inner);
3484       return info_ptr;
3485     }
3486 
3487   prepare_one_comp_unit (&cu, comp_unit_die);
3488 
3489   /* Allocate a new partial symbol table structure.  */
3490   attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
3491   if (attr == NULL || !DW_STRING (attr))
3492     filename = "";
3493   else
3494     filename = DW_STRING (attr);
3495   pst = start_psymtab_common (objfile, objfile->section_offsets,
3496 			      filename,
3497 			      /* TEXTLOW and TEXTHIGH are set below.  */
3498 			      0,
3499 			      objfile->global_psymbols.next,
3500 			      objfile->static_psymbols.next);
3501   pst->psymtabs_addrmap_supported = 1;
3502 
3503   attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
3504   if (attr != NULL)
3505     pst->dirname = DW_STRING (attr);
3506 
3507   pst->read_symtab_private = this_cu;
3508 
3509   baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3510 
3511   /* Store the function that reads in the rest of the symbol table.  */
3512   pst->read_symtab = dwarf2_psymtab_to_symtab;
3513 
3514   this_cu->v.psymtab = pst;
3515 
3516   dwarf2_find_base_address (comp_unit_die, &cu);
3517 
3518   /* Possibly set the default values of LOWPC and HIGHPC from
3519      `DW_AT_ranges'.  */
3520   has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
3521 				      &best_highpc, &cu, pst);
3522   if (has_pc_info == 1 && best_lowpc < best_highpc)
3523     /* Store the contiguous range if it is not empty; it can be empty for
3524        CUs with no code.  */
3525     addrmap_set_empty (objfile->psymtabs_addrmap,
3526 		       best_lowpc + baseaddr,
3527 		       best_highpc + baseaddr - 1, pst);
3528 
3529   /* Check if comp unit has_children.
3530      If so, read the rest of the partial symbols from this comp unit.
3531      If not, there's no more debug_info for this comp unit.  */
3532   if (has_children)
3533     {
3534       struct partial_die_info *first_die;
3535       CORE_ADDR lowpc, highpc;
3536 
3537       lowpc = ((CORE_ADDR) -1);
3538       highpc = ((CORE_ADDR) 0);
3539 
3540       first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
3541 
3542       scan_partial_symbols (first_die, &lowpc, &highpc,
3543 			    ! has_pc_info, &cu);
3544 
3545       /* If we didn't find a lowpc, set it to highpc to avoid
3546 	 complaints from `maint check'.	 */
3547       if (lowpc == ((CORE_ADDR) -1))
3548 	lowpc = highpc;
3549 
3550       /* If the compilation unit didn't have an explicit address range,
3551 	 then use the information extracted from its child dies.  */
3552       if (! has_pc_info)
3553 	{
3554 	  best_lowpc = lowpc;
3555 	  best_highpc = highpc;
3556 	}
3557     }
3558   pst->textlow = best_lowpc + baseaddr;
3559   pst->texthigh = best_highpc + baseaddr;
3560 
3561   pst->n_global_syms = objfile->global_psymbols.next -
3562     (objfile->global_psymbols.list + pst->globals_offset);
3563   pst->n_static_syms = objfile->static_psymbols.next -
3564     (objfile->static_psymbols.list + pst->statics_offset);
3565   sort_pst_symbols (pst);
3566 
3567   info_ptr = (beg_of_comp_unit + cu.header.length
3568 	      + cu.header.initial_length_size);
3569 
3570   if (this_cu->debug_types_section)
3571     {
3572       /* It's not clear we want to do anything with stmt lists here.
3573 	 Waiting to see what gcc ultimately does.  */
3574     }
3575   else
3576     {
3577       /* Get the list of files included in the current compilation unit,
3578 	 and build a psymtab for each of them.  */
3579       dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
3580     }
3581 
3582   do_cleanups (back_to_inner);
3583 
3584   return info_ptr;
3585 }
3586 
3587 /* Traversal function for htab_traverse_noresize.
3588    Process one .debug_types comp-unit.	*/
3589 
3590 static int
3591 process_type_comp_unit (void **slot, void *info)
3592 {
3593   struct signatured_type *entry = (struct signatured_type *) *slot;
3594   struct objfile *objfile = (struct objfile *) info;
3595   struct dwarf2_per_cu_data *this_cu;
3596 
3597   this_cu = &entry->per_cu;
3598 
3599   gdb_assert (this_cu->debug_types_section->readin);
3600   process_psymtab_comp_unit (objfile, this_cu,
3601 			     this_cu->debug_types_section->buffer,
3602 			     (this_cu->debug_types_section->buffer
3603 			      + this_cu->offset),
3604 			     this_cu->debug_types_section->size);
3605 
3606   return 1;
3607 }
3608 
3609 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
3610    Build partial symbol tables for the .debug_types comp-units.  */
3611 
3612 static void
3613 build_type_psymtabs (struct objfile *objfile)
3614 {
3615   if (! create_debug_types_hash_table (objfile))
3616     return;
3617 
3618   htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
3619 			  process_type_comp_unit, objfile);
3620 }
3621 
3622 /* A cleanup function that clears objfile's psymtabs_addrmap field.  */
3623 
3624 static void
3625 psymtabs_addrmap_cleanup (void *o)
3626 {
3627   struct objfile *objfile = o;
3628 
3629   objfile->psymtabs_addrmap = NULL;
3630 }
3631 
3632 /* Build the partial symbol table by doing a quick pass through the
3633    .debug_info and .debug_abbrev sections.  */
3634 
3635 static void
3636 dwarf2_build_psymtabs_hard (struct objfile *objfile)
3637 {
3638   gdb_byte *info_ptr;
3639   struct cleanup *back_to, *addrmap_cleanup;
3640   struct obstack temp_obstack;
3641 
3642   dwarf2_per_objfile->reading_partial_symbols = 1;
3643 
3644   dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3645   info_ptr = dwarf2_per_objfile->info.buffer;
3646 
3647   /* Any cached compilation units will be linked by the per-objfile
3648      read_in_chain.  Make sure to free them when we're done.  */
3649   back_to = make_cleanup (free_cached_comp_units, NULL);
3650 
3651   build_type_psymtabs (objfile);
3652 
3653   create_all_comp_units (objfile);
3654 
3655   /* Create a temporary address map on a temporary obstack.  We later
3656      copy this to the final obstack.  */
3657   obstack_init (&temp_obstack);
3658   make_cleanup_obstack_free (&temp_obstack);
3659   objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
3660   addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
3661 
3662   /* Since the objects we're extracting from .debug_info vary in
3663      length, only the individual functions to extract them (like
3664      read_comp_unit_head and load_partial_die) can really know whether
3665      the buffer is large enough to hold another complete object.
3666 
3667      At the moment, they don't actually check that.  If .debug_info
3668      holds just one extra byte after the last compilation unit's dies,
3669      then read_comp_unit_head will happily read off the end of the
3670      buffer.  read_partial_die is similarly casual.  Those functions
3671      should be fixed.
3672 
3673      For this loop condition, simply checking whether there's any data
3674      left at all should be sufficient.  */
3675 
3676   while (info_ptr < (dwarf2_per_objfile->info.buffer
3677 		     + dwarf2_per_objfile->info.size))
3678     {
3679       struct dwarf2_per_cu_data *this_cu;
3680 
3681       this_cu = dwarf2_find_comp_unit (info_ptr
3682 				       - dwarf2_per_objfile->info.buffer,
3683 				       objfile);
3684 
3685       info_ptr = process_psymtab_comp_unit (objfile, this_cu,
3686 					    dwarf2_per_objfile->info.buffer,
3687 					    info_ptr,
3688 					    dwarf2_per_objfile->info.size);
3689     }
3690 
3691   objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
3692 						    &objfile->objfile_obstack);
3693   discard_cleanups (addrmap_cleanup);
3694 
3695   do_cleanups (back_to);
3696 }
3697 
3698 /* Load the partial DIEs for a secondary CU into memory.  */
3699 
3700 static void
3701 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
3702 			struct objfile *objfile)
3703 {
3704   bfd *abfd = objfile->obfd;
3705   gdb_byte *info_ptr;
3706   struct die_info *comp_unit_die;
3707   struct dwarf2_cu *cu;
3708   struct cleanup *free_abbrevs_cleanup, *free_cu_cleanup = NULL;
3709   int has_children;
3710   struct die_reader_specs reader_specs;
3711   int read_cu = 0;
3712 
3713   gdb_assert (! this_cu->debug_types_section);
3714 
3715   gdb_assert (dwarf2_per_objfile->info.readin);
3716   info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
3717 
3718   if (this_cu->cu == NULL)
3719     {
3720       cu = xmalloc (sizeof (*cu));
3721       init_one_comp_unit (cu, objfile);
3722 
3723       read_cu = 1;
3724 
3725       /* If an error occurs while loading, release our storage.  */
3726       free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
3727 
3728       info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
3729 					      dwarf2_per_objfile->info.buffer,
3730 					      dwarf2_per_objfile->info.size,
3731 					      abfd, 0);
3732 
3733       /* Skip dummy compilation units.  */
3734       if (info_ptr >= (dwarf2_per_objfile->info.buffer
3735 		       + dwarf2_per_objfile->info.size)
3736 	  || peek_abbrev_code (abfd, info_ptr) == 0)
3737 	{
3738 	  do_cleanups (free_cu_cleanup);
3739 	  return;
3740 	}
3741 
3742       /* Link this compilation unit into the compilation unit tree.  */
3743       this_cu->cu = cu;
3744       cu->per_cu = this_cu;
3745 
3746       /* Link this CU into read_in_chain.  */
3747       this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3748       dwarf2_per_objfile->read_in_chain = this_cu;
3749     }
3750   else
3751     {
3752       cu = this_cu->cu;
3753       info_ptr += cu->header.first_die_offset;
3754     }
3755 
3756   /* Read the abbrevs for this compilation unit into a table.  */
3757   gdb_assert (cu->dwarf2_abbrevs == NULL);
3758   dwarf2_read_abbrevs (abfd, cu);
3759   free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
3760 
3761   /* Read the compilation unit die.  */
3762   init_cu_die_reader (&reader_specs, cu);
3763   info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3764 			    &has_children);
3765 
3766   prepare_one_comp_unit (cu, comp_unit_die);
3767 
3768   /* Check if comp unit has_children.
3769      If so, read the rest of the partial symbols from this comp unit.
3770      If not, there's no more debug_info for this comp unit.  */
3771   if (has_children)
3772     load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
3773 
3774   do_cleanups (free_abbrevs_cleanup);
3775 
3776   if (read_cu)
3777     {
3778       /* We've successfully allocated this compilation unit.  Let our
3779 	 caller clean it up when finished with it.  */
3780       discard_cleanups (free_cu_cleanup);
3781     }
3782 }
3783 
3784 /* Create a list of all compilation units in OBJFILE.  We do this only
3785    if an inter-comp-unit reference is found; presumably if there is one,
3786    there will be many, and one will occur early in the .debug_info section.
3787    So there's no point in building this list incrementally.  */
3788 
3789 static void
3790 create_all_comp_units (struct objfile *objfile)
3791 {
3792   int n_allocated;
3793   int n_comp_units;
3794   struct dwarf2_per_cu_data **all_comp_units;
3795   gdb_byte *info_ptr;
3796 
3797   dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3798   info_ptr = dwarf2_per_objfile->info.buffer;
3799 
3800   n_comp_units = 0;
3801   n_allocated = 10;
3802   all_comp_units = xmalloc (n_allocated
3803 			    * sizeof (struct dwarf2_per_cu_data *));
3804 
3805   while (info_ptr < dwarf2_per_objfile->info.buffer
3806 	 + dwarf2_per_objfile->info.size)
3807     {
3808       unsigned int length, initial_length_size;
3809       struct dwarf2_per_cu_data *this_cu;
3810       unsigned int offset;
3811 
3812       offset = info_ptr - dwarf2_per_objfile->info.buffer;
3813 
3814       /* Read just enough information to find out where the next
3815 	 compilation unit is.  */
3816       length = read_initial_length (objfile->obfd, info_ptr,
3817 				    &initial_length_size);
3818 
3819       /* Save the compilation unit for later lookup.  */
3820       this_cu = obstack_alloc (&objfile->objfile_obstack,
3821 			       sizeof (struct dwarf2_per_cu_data));
3822       memset (this_cu, 0, sizeof (*this_cu));
3823       this_cu->offset = offset;
3824       this_cu->length = length + initial_length_size;
3825       this_cu->objfile = objfile;
3826 
3827       if (n_comp_units == n_allocated)
3828 	{
3829 	  n_allocated *= 2;
3830 	  all_comp_units = xrealloc (all_comp_units,
3831 				     n_allocated
3832 				     * sizeof (struct dwarf2_per_cu_data *));
3833 	}
3834       all_comp_units[n_comp_units++] = this_cu;
3835 
3836       info_ptr = info_ptr + this_cu->length;
3837     }
3838 
3839   dwarf2_per_objfile->all_comp_units
3840     = obstack_alloc (&objfile->objfile_obstack,
3841 		     n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3842   memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
3843 	  n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3844   xfree (all_comp_units);
3845   dwarf2_per_objfile->n_comp_units = n_comp_units;
3846 }
3847 
3848 /* Process all loaded DIEs for compilation unit CU, starting at
3849    FIRST_DIE.  The caller should pass NEED_PC == 1 if the compilation
3850    unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
3851    DW_AT_ranges).  If NEED_PC is set, then this function will set
3852    *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
3853    and record the covered ranges in the addrmap.  */
3854 
3855 static void
3856 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
3857 		      CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3858 {
3859   struct partial_die_info *pdi;
3860 
3861   /* Now, march along the PDI's, descending into ones which have
3862      interesting children but skipping the children of the other ones,
3863      until we reach the end of the compilation unit.  */
3864 
3865   pdi = first_die;
3866 
3867   while (pdi != NULL)
3868     {
3869       fixup_partial_die (pdi, cu);
3870 
3871       /* Anonymous namespaces or modules have no name but have interesting
3872 	 children, so we need to look at them.  Ditto for anonymous
3873 	 enums.  */
3874 
3875       if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
3876 	  || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
3877 	{
3878 	  switch (pdi->tag)
3879 	    {
3880 	    case DW_TAG_subprogram:
3881 	      add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
3882 	      break;
3883 	    case DW_TAG_constant:
3884 	    case DW_TAG_variable:
3885 	    case DW_TAG_typedef:
3886 	    case DW_TAG_union_type:
3887 	      if (!pdi->is_declaration)
3888 		{
3889 		  add_partial_symbol (pdi, cu);
3890 		}
3891 	      break;
3892 	    case DW_TAG_class_type:
3893 	    case DW_TAG_interface_type:
3894 	    case DW_TAG_structure_type:
3895 	      if (!pdi->is_declaration)
3896 		{
3897 		  add_partial_symbol (pdi, cu);
3898 		}
3899 	      break;
3900 	    case DW_TAG_enumeration_type:
3901 	      if (!pdi->is_declaration)
3902 		add_partial_enumeration (pdi, cu);
3903 	      break;
3904 	    case DW_TAG_base_type:
3905             case DW_TAG_subrange_type:
3906 	      /* File scope base type definitions are added to the partial
3907 	         symbol table.  */
3908 	      add_partial_symbol (pdi, cu);
3909 	      break;
3910 	    case DW_TAG_namespace:
3911 	      add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
3912 	      break;
3913 	    case DW_TAG_module:
3914 	      add_partial_module (pdi, lowpc, highpc, need_pc, cu);
3915 	      break;
3916 	    default:
3917 	      break;
3918 	    }
3919 	}
3920 
3921       /* If the die has a sibling, skip to the sibling.  */
3922 
3923       pdi = pdi->die_sibling;
3924     }
3925 }
3926 
3927 /* Functions used to compute the fully scoped name of a partial DIE.
3928 
3929    Normally, this is simple.  For C++, the parent DIE's fully scoped
3930    name is concatenated with "::" and the partial DIE's name.  For
3931    Java, the same thing occurs except that "." is used instead of "::".
3932    Enumerators are an exception; they use the scope of their parent
3933    enumeration type, i.e. the name of the enumeration type is not
3934    prepended to the enumerator.
3935 
3936    There are two complexities.  One is DW_AT_specification; in this
3937    case "parent" means the parent of the target of the specification,
3938    instead of the direct parent of the DIE.  The other is compilers
3939    which do not emit DW_TAG_namespace; in this case we try to guess
3940    the fully qualified name of structure types from their members'
3941    linkage names.  This must be done using the DIE's children rather
3942    than the children of any DW_AT_specification target.  We only need
3943    to do this for structures at the top level, i.e. if the target of
3944    any DW_AT_specification (if any; otherwise the DIE itself) does not
3945    have a parent.  */
3946 
3947 /* Compute the scope prefix associated with PDI's parent, in
3948    compilation unit CU.  The result will be allocated on CU's
3949    comp_unit_obstack, or a copy of the already allocated PDI->NAME
3950    field.  NULL is returned if no prefix is necessary.  */
3951 static char *
3952 partial_die_parent_scope (struct partial_die_info *pdi,
3953 			  struct dwarf2_cu *cu)
3954 {
3955   char *grandparent_scope;
3956   struct partial_die_info *parent, *real_pdi;
3957 
3958   /* We need to look at our parent DIE; if we have a DW_AT_specification,
3959      then this means the parent of the specification DIE.  */
3960 
3961   real_pdi = pdi;
3962   while (real_pdi->has_specification)
3963     real_pdi = find_partial_die (real_pdi->spec_offset, cu);
3964 
3965   parent = real_pdi->die_parent;
3966   if (parent == NULL)
3967     return NULL;
3968 
3969   if (parent->scope_set)
3970     return parent->scope;
3971 
3972   fixup_partial_die (parent, cu);
3973 
3974   grandparent_scope = partial_die_parent_scope (parent, cu);
3975 
3976   /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
3977      DW_TAG_namespace DIEs with a name of "::" for the global namespace.
3978      Work around this problem here.  */
3979   if (cu->language == language_cplus
3980       && parent->tag == DW_TAG_namespace
3981       && strcmp (parent->name, "::") == 0
3982       && grandparent_scope == NULL)
3983     {
3984       parent->scope = NULL;
3985       parent->scope_set = 1;
3986       return NULL;
3987     }
3988 
3989   if (pdi->tag == DW_TAG_enumerator)
3990     /* Enumerators should not get the name of the enumeration as a prefix.  */
3991     parent->scope = grandparent_scope;
3992   else if (parent->tag == DW_TAG_namespace
3993       || parent->tag == DW_TAG_module
3994       || parent->tag == DW_TAG_structure_type
3995       || parent->tag == DW_TAG_class_type
3996       || parent->tag == DW_TAG_interface_type
3997       || parent->tag == DW_TAG_union_type
3998       || parent->tag == DW_TAG_enumeration_type)
3999     {
4000       if (grandparent_scope == NULL)
4001 	parent->scope = parent->name;
4002       else
4003 	parent->scope = typename_concat (&cu->comp_unit_obstack,
4004 					 grandparent_scope,
4005 					 parent->name, 0, cu);
4006     }
4007   else
4008     {
4009       /* FIXME drow/2004-04-01: What should we be doing with
4010 	 function-local names?  For partial symbols, we should probably be
4011 	 ignoring them.  */
4012       complaint (&symfile_complaints,
4013 		 _("unhandled containing DIE tag %d for DIE at %d"),
4014 		 parent->tag, pdi->offset);
4015       parent->scope = grandparent_scope;
4016     }
4017 
4018   parent->scope_set = 1;
4019   return parent->scope;
4020 }
4021 
4022 /* Return the fully scoped name associated with PDI, from compilation unit
4023    CU.  The result will be allocated with malloc.  */
4024 static char *
4025 partial_die_full_name (struct partial_die_info *pdi,
4026 		       struct dwarf2_cu *cu)
4027 {
4028   char *parent_scope;
4029 
4030   /* If this is a template instantiation, we can not work out the
4031      template arguments from partial DIEs.  So, unfortunately, we have
4032      to go through the full DIEs.  At least any work we do building
4033      types here will be reused if full symbols are loaded later.  */
4034   if (pdi->has_template_arguments)
4035     {
4036       fixup_partial_die (pdi, cu);
4037 
4038       if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
4039 	{
4040 	  struct die_info *die;
4041 	  struct attribute attr;
4042 	  struct dwarf2_cu *ref_cu = cu;
4043 
4044 	  attr.name = 0;
4045 	  attr.form = DW_FORM_ref_addr;
4046 	  attr.u.addr = pdi->offset;
4047 	  die = follow_die_ref (NULL, &attr, &ref_cu);
4048 
4049 	  return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
4050 	}
4051     }
4052 
4053   parent_scope = partial_die_parent_scope (pdi, cu);
4054   if (parent_scope == NULL)
4055     return NULL;
4056   else
4057     return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
4058 }
4059 
4060 static void
4061 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
4062 {
4063   struct objfile *objfile = cu->objfile;
4064   CORE_ADDR addr = 0;
4065   char *actual_name = NULL;
4066   const struct partial_symbol *psym = NULL;
4067   CORE_ADDR baseaddr;
4068   int built_actual_name = 0;
4069 
4070   baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4071 
4072   actual_name = partial_die_full_name (pdi, cu);
4073   if (actual_name)
4074     built_actual_name = 1;
4075 
4076   if (actual_name == NULL)
4077     actual_name = pdi->name;
4078 
4079   switch (pdi->tag)
4080     {
4081     case DW_TAG_subprogram:
4082       if (pdi->is_external || cu->language == language_ada)
4083 	{
4084           /* brobecker/2007-12-26: Normally, only "external" DIEs are part
4085              of the global scope.  But in Ada, we want to be able to access
4086              nested procedures globally.  So all Ada subprograms are stored
4087              in the global scope.  */
4088 	  /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
4089 	     mst_text, objfile); */
4090 	  add_psymbol_to_list (actual_name, strlen (actual_name),
4091 			       built_actual_name,
4092 			       VAR_DOMAIN, LOC_BLOCK,
4093 			       &objfile->global_psymbols,
4094 			       0, pdi->lowpc + baseaddr,
4095 			       cu->language, objfile);
4096 	}
4097       else
4098 	{
4099 	  /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
4100 	     mst_file_text, objfile); */
4101 	  add_psymbol_to_list (actual_name, strlen (actual_name),
4102 			       built_actual_name,
4103 			       VAR_DOMAIN, LOC_BLOCK,
4104 			       &objfile->static_psymbols,
4105 			       0, pdi->lowpc + baseaddr,
4106 			       cu->language, objfile);
4107 	}
4108       break;
4109     case DW_TAG_constant:
4110       {
4111         struct psymbol_allocation_list *list;
4112 
4113 	if (pdi->is_external)
4114 	  list = &objfile->global_psymbols;
4115 	else
4116 	  list = &objfile->static_psymbols;
4117 	add_psymbol_to_list (actual_name, strlen (actual_name),
4118 			     built_actual_name, VAR_DOMAIN, LOC_STATIC,
4119 			     list, 0, 0, cu->language, objfile);
4120       }
4121       break;
4122     case DW_TAG_variable:
4123       if (pdi->locdesc)
4124 	addr = decode_locdesc (pdi->locdesc, cu);
4125 
4126       if (pdi->locdesc
4127 	  && addr == 0
4128 	  && !dwarf2_per_objfile->has_section_at_zero)
4129 	{
4130 	  /* A global or static variable may also have been stripped
4131 	     out by the linker if unused, in which case its address
4132 	     will be nullified; do not add such variables into partial
4133 	     symbol table then.  */
4134 	}
4135       else if (pdi->is_external)
4136 	{
4137 	  /* Global Variable.
4138 	     Don't enter into the minimal symbol tables as there is
4139 	     a minimal symbol table entry from the ELF symbols already.
4140 	     Enter into partial symbol table if it has a location
4141 	     descriptor or a type.
4142 	     If the location descriptor is missing, new_symbol will create
4143 	     a LOC_UNRESOLVED symbol, the address of the variable will then
4144 	     be determined from the minimal symbol table whenever the variable
4145 	     is referenced.
4146 	     The address for the partial symbol table entry is not
4147 	     used by GDB, but it comes in handy for debugging partial symbol
4148 	     table building.  */
4149 
4150 	  if (pdi->locdesc || pdi->has_type)
4151 	    add_psymbol_to_list (actual_name, strlen (actual_name),
4152 				 built_actual_name,
4153 				 VAR_DOMAIN, LOC_STATIC,
4154 				 &objfile->global_psymbols,
4155 				 0, addr + baseaddr,
4156 				 cu->language, objfile);
4157 	}
4158       else
4159 	{
4160 	  /* Static Variable.  Skip symbols without location descriptors.  */
4161 	  if (pdi->locdesc == NULL)
4162 	    {
4163 	      if (built_actual_name)
4164 		xfree (actual_name);
4165 	      return;
4166 	    }
4167 	  /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
4168 	     mst_file_data, objfile); */
4169 	  add_psymbol_to_list (actual_name, strlen (actual_name),
4170 			       built_actual_name,
4171 			       VAR_DOMAIN, LOC_STATIC,
4172 			       &objfile->static_psymbols,
4173 			       0, addr + baseaddr,
4174 			       cu->language, objfile);
4175 	}
4176       break;
4177     case DW_TAG_typedef:
4178     case DW_TAG_base_type:
4179     case DW_TAG_subrange_type:
4180       add_psymbol_to_list (actual_name, strlen (actual_name),
4181 			   built_actual_name,
4182 			   VAR_DOMAIN, LOC_TYPEDEF,
4183 			   &objfile->static_psymbols,
4184 			   0, (CORE_ADDR) 0, cu->language, objfile);
4185       break;
4186     case DW_TAG_namespace:
4187       add_psymbol_to_list (actual_name, strlen (actual_name),
4188 			   built_actual_name,
4189 			   VAR_DOMAIN, LOC_TYPEDEF,
4190 			   &objfile->global_psymbols,
4191 			   0, (CORE_ADDR) 0, cu->language, objfile);
4192       break;
4193     case DW_TAG_class_type:
4194     case DW_TAG_interface_type:
4195     case DW_TAG_structure_type:
4196     case DW_TAG_union_type:
4197     case DW_TAG_enumeration_type:
4198       /* Skip external references.  The DWARF standard says in the section
4199          about "Structure, Union, and Class Type Entries": "An incomplete
4200          structure, union or class type is represented by a structure,
4201          union or class entry that does not have a byte size attribute
4202          and that has a DW_AT_declaration attribute."  */
4203       if (!pdi->has_byte_size && pdi->is_declaration)
4204 	{
4205 	  if (built_actual_name)
4206 	    xfree (actual_name);
4207 	  return;
4208 	}
4209 
4210       /* NOTE: carlton/2003-10-07: See comment in new_symbol about
4211 	 static vs. global.  */
4212       add_psymbol_to_list (actual_name, strlen (actual_name),
4213 			   built_actual_name,
4214 			   STRUCT_DOMAIN, LOC_TYPEDEF,
4215 			   (cu->language == language_cplus
4216 			    || cu->language == language_java)
4217 			   ? &objfile->global_psymbols
4218 			   : &objfile->static_psymbols,
4219 			   0, (CORE_ADDR) 0, cu->language, objfile);
4220 
4221       break;
4222     case DW_TAG_enumerator:
4223       add_psymbol_to_list (actual_name, strlen (actual_name),
4224 			   built_actual_name,
4225 			   VAR_DOMAIN, LOC_CONST,
4226 			   (cu->language == language_cplus
4227 			    || cu->language == language_java)
4228 			   ? &objfile->global_psymbols
4229 			   : &objfile->static_psymbols,
4230 			   0, (CORE_ADDR) 0, cu->language, objfile);
4231       break;
4232     default:
4233       break;
4234     }
4235 
4236   if (built_actual_name)
4237     xfree (actual_name);
4238 }
4239 
4240 /* Read a partial die corresponding to a namespace; also, add a symbol
4241    corresponding to that namespace to the symbol table.  NAMESPACE is
4242    the name of the enclosing namespace.  */
4243 
4244 static void
4245 add_partial_namespace (struct partial_die_info *pdi,
4246 		       CORE_ADDR *lowpc, CORE_ADDR *highpc,
4247 		       int need_pc, struct dwarf2_cu *cu)
4248 {
4249   /* Add a symbol for the namespace.  */
4250 
4251   add_partial_symbol (pdi, cu);
4252 
4253   /* Now scan partial symbols in that namespace.  */
4254 
4255   if (pdi->has_children)
4256     scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4257 }
4258 
4259 /* Read a partial die corresponding to a Fortran module.  */
4260 
4261 static void
4262 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
4263 		    CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
4264 {
4265   /* Now scan partial symbols in that module.  */
4266 
4267   if (pdi->has_children)
4268     scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4269 }
4270 
4271 /* Read a partial die corresponding to a subprogram and create a partial
4272    symbol for that subprogram.  When the CU language allows it, this
4273    routine also defines a partial symbol for each nested subprogram
4274    that this subprogram contains.
4275 
4276    DIE my also be a lexical block, in which case we simply search
4277    recursively for suprograms defined inside that lexical block.
4278    Again, this is only performed when the CU language allows this
4279    type of definitions.  */
4280 
4281 static void
4282 add_partial_subprogram (struct partial_die_info *pdi,
4283 			CORE_ADDR *lowpc, CORE_ADDR *highpc,
4284 			int need_pc, struct dwarf2_cu *cu)
4285 {
4286   if (pdi->tag == DW_TAG_subprogram)
4287     {
4288       if (pdi->has_pc_info)
4289         {
4290           if (pdi->lowpc < *lowpc)
4291             *lowpc = pdi->lowpc;
4292           if (pdi->highpc > *highpc)
4293             *highpc = pdi->highpc;
4294 	  if (need_pc)
4295 	    {
4296 	      CORE_ADDR baseaddr;
4297 	      struct objfile *objfile = cu->objfile;
4298 
4299 	      baseaddr = ANOFFSET (objfile->section_offsets,
4300 				   SECT_OFF_TEXT (objfile));
4301 	      addrmap_set_empty (objfile->psymtabs_addrmap,
4302 				 pdi->lowpc + baseaddr,
4303 				 pdi->highpc - 1 + baseaddr,
4304 				 cu->per_cu->v.psymtab);
4305 	    }
4306           if (!pdi->is_declaration)
4307 	    /* Ignore subprogram DIEs that do not have a name, they are
4308 	       illegal.  Do not emit a complaint at this point, we will
4309 	       do so when we convert this psymtab into a symtab.  */
4310 	    if (pdi->name)
4311 	      add_partial_symbol (pdi, cu);
4312         }
4313     }
4314 
4315   if (! pdi->has_children)
4316     return;
4317 
4318   if (cu->language == language_ada)
4319     {
4320       pdi = pdi->die_child;
4321       while (pdi != NULL)
4322 	{
4323 	  fixup_partial_die (pdi, cu);
4324 	  if (pdi->tag == DW_TAG_subprogram
4325 	      || pdi->tag == DW_TAG_lexical_block)
4326 	    add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
4327 	  pdi = pdi->die_sibling;
4328 	}
4329     }
4330 }
4331 
4332 /* Read a partial die corresponding to an enumeration type.  */
4333 
4334 static void
4335 add_partial_enumeration (struct partial_die_info *enum_pdi,
4336 			 struct dwarf2_cu *cu)
4337 {
4338   struct partial_die_info *pdi;
4339 
4340   if (enum_pdi->name != NULL)
4341     add_partial_symbol (enum_pdi, cu);
4342 
4343   pdi = enum_pdi->die_child;
4344   while (pdi)
4345     {
4346       if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
4347 	complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
4348       else
4349 	add_partial_symbol (pdi, cu);
4350       pdi = pdi->die_sibling;
4351     }
4352 }
4353 
4354 /* Return the initial uleb128 in the die at INFO_PTR.  */
4355 
4356 static unsigned int
4357 peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
4358 {
4359   unsigned int bytes_read;
4360 
4361   return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4362 }
4363 
4364 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
4365    Return the corresponding abbrev, or NULL if the number is zero (indicating
4366    an empty DIE).  In either case *BYTES_READ will be set to the length of
4367    the initial number.  */
4368 
4369 static struct abbrev_info *
4370 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
4371 		 struct dwarf2_cu *cu)
4372 {
4373   bfd *abfd = cu->objfile->obfd;
4374   unsigned int abbrev_number;
4375   struct abbrev_info *abbrev;
4376 
4377   abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
4378 
4379   if (abbrev_number == 0)
4380     return NULL;
4381 
4382   abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
4383   if (!abbrev)
4384     {
4385       error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
4386 	     abbrev_number, bfd_get_filename (abfd));
4387     }
4388 
4389   return abbrev;
4390 }
4391 
4392 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4393    Returns a pointer to the end of a series of DIEs, terminated by an empty
4394    DIE.  Any children of the skipped DIEs will also be skipped.  */
4395 
4396 static gdb_byte *
4397 skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
4398 {
4399   struct abbrev_info *abbrev;
4400   unsigned int bytes_read;
4401 
4402   while (1)
4403     {
4404       abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
4405       if (abbrev == NULL)
4406 	return info_ptr + bytes_read;
4407       else
4408 	info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
4409     }
4410 }
4411 
4412 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4413    INFO_PTR should point just after the initial uleb128 of a DIE, and the
4414    abbrev corresponding to that skipped uleb128 should be passed in
4415    ABBREV.  Returns a pointer to this DIE's sibling, skipping any
4416    children.  */
4417 
4418 static gdb_byte *
4419 skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
4420 	      struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4421 {
4422   unsigned int bytes_read;
4423   struct attribute attr;
4424   bfd *abfd = cu->objfile->obfd;
4425   unsigned int form, i;
4426 
4427   for (i = 0; i < abbrev->num_attrs; i++)
4428     {
4429       /* The only abbrev we care about is DW_AT_sibling.  */
4430       if (abbrev->attrs[i].name == DW_AT_sibling)
4431 	{
4432 	  read_attribute (&attr, &abbrev->attrs[i],
4433 			  abfd, info_ptr, cu);
4434 	  if (attr.form == DW_FORM_ref_addr)
4435 	    complaint (&symfile_complaints,
4436 		       _("ignoring absolute DW_AT_sibling"));
4437 	  else
4438 	    return buffer + dwarf2_get_ref_die_offset (&attr);
4439 	}
4440 
4441       /* If it isn't DW_AT_sibling, skip this attribute.  */
4442       form = abbrev->attrs[i].form;
4443     skip_attribute:
4444       switch (form)
4445 	{
4446 	case DW_FORM_ref_addr:
4447 	  /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
4448 	     and later it is offset sized.  */
4449 	  if (cu->header.version == 2)
4450 	    info_ptr += cu->header.addr_size;
4451 	  else
4452 	    info_ptr += cu->header.offset_size;
4453 	  break;
4454 	case DW_FORM_addr:
4455 	  info_ptr += cu->header.addr_size;
4456 	  break;
4457 	case DW_FORM_data1:
4458 	case DW_FORM_ref1:
4459 	case DW_FORM_flag:
4460 	  info_ptr += 1;
4461 	  break;
4462 	case DW_FORM_flag_present:
4463 	  break;
4464 	case DW_FORM_data2:
4465 	case DW_FORM_ref2:
4466 	  info_ptr += 2;
4467 	  break;
4468 	case DW_FORM_data4:
4469 	case DW_FORM_ref4:
4470 	  info_ptr += 4;
4471 	  break;
4472 	case DW_FORM_data8:
4473 	case DW_FORM_ref8:
4474 	case DW_FORM_ref_sig8:
4475 	  info_ptr += 8;
4476 	  break;
4477 	case DW_FORM_string:
4478 	  read_direct_string (abfd, info_ptr, &bytes_read);
4479 	  info_ptr += bytes_read;
4480 	  break;
4481 	case DW_FORM_sec_offset:
4482 	case DW_FORM_strp:
4483 	  info_ptr += cu->header.offset_size;
4484 	  break;
4485 	case DW_FORM_exprloc:
4486 	case DW_FORM_block:
4487 	  info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4488 	  info_ptr += bytes_read;
4489 	  break;
4490 	case DW_FORM_block1:
4491 	  info_ptr += 1 + read_1_byte (abfd, info_ptr);
4492 	  break;
4493 	case DW_FORM_block2:
4494 	  info_ptr += 2 + read_2_bytes (abfd, info_ptr);
4495 	  break;
4496 	case DW_FORM_block4:
4497 	  info_ptr += 4 + read_4_bytes (abfd, info_ptr);
4498 	  break;
4499 	case DW_FORM_sdata:
4500 	case DW_FORM_udata:
4501 	case DW_FORM_ref_udata:
4502 	  info_ptr = skip_leb128 (abfd, info_ptr);
4503 	  break;
4504 	case DW_FORM_indirect:
4505 	  form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4506 	  info_ptr += bytes_read;
4507 	  /* We need to continue parsing from here, so just go back to
4508 	     the top.  */
4509 	  goto skip_attribute;
4510 
4511 	default:
4512 	  error (_("Dwarf Error: Cannot handle %s "
4513 		   "in DWARF reader [in module %s]"),
4514 		 dwarf_form_name (form),
4515 		 bfd_get_filename (abfd));
4516 	}
4517     }
4518 
4519   if (abbrev->has_children)
4520     return skip_children (buffer, info_ptr, cu);
4521   else
4522     return info_ptr;
4523 }
4524 
4525 /* Locate ORIG_PDI's sibling.
4526    INFO_PTR should point to the start of the next DIE after ORIG_PDI
4527    in BUFFER.  */
4528 
4529 static gdb_byte *
4530 locate_pdi_sibling (struct partial_die_info *orig_pdi,
4531 		    gdb_byte *buffer, gdb_byte *info_ptr,
4532 		    bfd *abfd, struct dwarf2_cu *cu)
4533 {
4534   /* Do we know the sibling already?  */
4535 
4536   if (orig_pdi->sibling)
4537     return orig_pdi->sibling;
4538 
4539   /* Are there any children to deal with?  */
4540 
4541   if (!orig_pdi->has_children)
4542     return info_ptr;
4543 
4544   /* Skip the children the long way.  */
4545 
4546   return skip_children (buffer, info_ptr, cu);
4547 }
4548 
4549 /* Expand this partial symbol table into a full symbol table.  */
4550 
4551 static void
4552 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
4553 {
4554   if (pst != NULL)
4555     {
4556       if (pst->readin)
4557 	{
4558 	  warning (_("bug: psymtab for %s is already read in."),
4559 		   pst->filename);
4560 	}
4561       else
4562 	{
4563 	  if (info_verbose)
4564 	    {
4565 	      printf_filtered (_("Reading in symbols for %s..."),
4566 			       pst->filename);
4567 	      gdb_flush (gdb_stdout);
4568 	    }
4569 
4570 	  /* Restore our global data.  */
4571 	  dwarf2_per_objfile = objfile_data (pst->objfile,
4572 					     dwarf2_objfile_data_key);
4573 
4574 	  /* If this psymtab is constructed from a debug-only objfile, the
4575 	     has_section_at_zero flag will not necessarily be correct.  We
4576 	     can get the correct value for this flag by looking at the data
4577 	     associated with the (presumably stripped) associated objfile.  */
4578 	  if (pst->objfile->separate_debug_objfile_backlink)
4579 	    {
4580 	      struct dwarf2_per_objfile *dpo_backlink
4581 	        = objfile_data (pst->objfile->separate_debug_objfile_backlink,
4582 		                dwarf2_objfile_data_key);
4583 
4584 	      dwarf2_per_objfile->has_section_at_zero
4585 		= dpo_backlink->has_section_at_zero;
4586 	    }
4587 
4588 	  dwarf2_per_objfile->reading_partial_symbols = 0;
4589 
4590 	  psymtab_to_symtab_1 (pst);
4591 
4592 	  /* Finish up the debug error message.  */
4593 	  if (info_verbose)
4594 	    printf_filtered (_("done.\n"));
4595 	}
4596     }
4597 }
4598 
4599 /* Add PER_CU to the queue.  */
4600 
4601 static void
4602 queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
4603 {
4604   struct dwarf2_queue_item *item;
4605 
4606   per_cu->queued = 1;
4607   item = xmalloc (sizeof (*item));
4608   item->per_cu = per_cu;
4609   item->next = NULL;
4610 
4611   if (dwarf2_queue == NULL)
4612     dwarf2_queue = item;
4613   else
4614     dwarf2_queue_tail->next = item;
4615 
4616   dwarf2_queue_tail = item;
4617 }
4618 
4619 /* Process the queue.  */
4620 
4621 static void
4622 process_queue (struct objfile *objfile)
4623 {
4624   struct dwarf2_queue_item *item, *next_item;
4625 
4626   /* The queue starts out with one item, but following a DIE reference
4627      may load a new CU, adding it to the end of the queue.  */
4628   for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
4629     {
4630       if (dwarf2_per_objfile->using_index
4631 	  ? !item->per_cu->v.quick->symtab
4632 	  : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
4633 	process_full_comp_unit (item->per_cu);
4634 
4635       item->per_cu->queued = 0;
4636       next_item = item->next;
4637       xfree (item);
4638     }
4639 
4640   dwarf2_queue_tail = NULL;
4641 }
4642 
4643 /* Free all allocated queue entries.  This function only releases anything if
4644    an error was thrown; if the queue was processed then it would have been
4645    freed as we went along.  */
4646 
4647 static void
4648 dwarf2_release_queue (void *dummy)
4649 {
4650   struct dwarf2_queue_item *item, *last;
4651 
4652   item = dwarf2_queue;
4653   while (item)
4654     {
4655       /* Anything still marked queued is likely to be in an
4656 	 inconsistent state, so discard it.  */
4657       if (item->per_cu->queued)
4658 	{
4659 	  if (item->per_cu->cu != NULL)
4660 	    free_one_cached_comp_unit (item->per_cu->cu);
4661 	  item->per_cu->queued = 0;
4662 	}
4663 
4664       last = item;
4665       item = item->next;
4666       xfree (last);
4667     }
4668 
4669   dwarf2_queue = dwarf2_queue_tail = NULL;
4670 }
4671 
4672 /* Read in full symbols for PST, and anything it depends on.  */
4673 
4674 static void
4675 psymtab_to_symtab_1 (struct partial_symtab *pst)
4676 {
4677   struct dwarf2_per_cu_data *per_cu;
4678   struct cleanup *back_to;
4679   int i;
4680 
4681   for (i = 0; i < pst->number_of_dependencies; i++)
4682     if (!pst->dependencies[i]->readin)
4683       {
4684         /* Inform about additional files that need to be read in.  */
4685         if (info_verbose)
4686           {
4687 	    /* FIXME: i18n: Need to make this a single string.  */
4688             fputs_filtered (" ", gdb_stdout);
4689             wrap_here ("");
4690             fputs_filtered ("and ", gdb_stdout);
4691             wrap_here ("");
4692             printf_filtered ("%s...", pst->dependencies[i]->filename);
4693             wrap_here ("");     /* Flush output.  */
4694             gdb_flush (gdb_stdout);
4695           }
4696         psymtab_to_symtab_1 (pst->dependencies[i]);
4697       }
4698 
4699   per_cu = pst->read_symtab_private;
4700 
4701   if (per_cu == NULL)
4702     {
4703       /* It's an include file, no symbols to read for it.
4704          Everything is in the parent symtab.  */
4705       pst->readin = 1;
4706       return;
4707     }
4708 
4709   dw2_do_instantiate_symtab (pst->objfile, per_cu);
4710 }
4711 
4712 /* Load the DIEs associated with PER_CU into memory.  */
4713 
4714 static void
4715 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
4716 		     struct objfile *objfile)
4717 {
4718   bfd *abfd = objfile->obfd;
4719   struct dwarf2_cu *cu;
4720   unsigned int offset;
4721   gdb_byte *info_ptr, *beg_of_comp_unit;
4722   struct cleanup *free_abbrevs_cleanup = NULL, *free_cu_cleanup = NULL;
4723   struct attribute *attr;
4724   int read_cu = 0;
4725 
4726   gdb_assert (! per_cu->debug_types_section);
4727 
4728   /* Set local variables from the partial symbol table info.  */
4729   offset = per_cu->offset;
4730 
4731   dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
4732   info_ptr = dwarf2_per_objfile->info.buffer + offset;
4733   beg_of_comp_unit = info_ptr;
4734 
4735   if (per_cu->cu == NULL)
4736     {
4737       cu = xmalloc (sizeof (*cu));
4738       init_one_comp_unit (cu, objfile);
4739 
4740       read_cu = 1;
4741 
4742       /* If an error occurs while loading, release our storage.  */
4743       free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
4744 
4745       /* Read in the comp_unit header.  */
4746       info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
4747 
4748       /* Skip dummy compilation units.  */
4749       if (info_ptr >= (dwarf2_per_objfile->info.buffer
4750 		       + dwarf2_per_objfile->info.size)
4751 	  || peek_abbrev_code (abfd, info_ptr) == 0)
4752 	{
4753 	  do_cleanups (free_cu_cleanup);
4754 	  return;
4755 	}
4756 
4757       /* Complete the cu_header.  */
4758       cu->header.offset = offset;
4759       cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
4760 
4761       /* Read the abbrevs for this compilation unit.  */
4762       dwarf2_read_abbrevs (abfd, cu);
4763       free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
4764 
4765       /* Link this compilation unit into the compilation unit tree.  */
4766       per_cu->cu = cu;
4767       cu->per_cu = per_cu;
4768 
4769       /* Link this CU into read_in_chain.  */
4770       per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4771       dwarf2_per_objfile->read_in_chain = per_cu;
4772     }
4773   else
4774     {
4775       cu = per_cu->cu;
4776       info_ptr += cu->header.first_die_offset;
4777     }
4778 
4779   cu->dies = read_comp_unit (info_ptr, cu);
4780 
4781   /* We try not to read any attributes in this function, because not
4782      all objfiles needed for references have been loaded yet, and symbol
4783      table processing isn't initialized.  But we have to set the CU language,
4784      or we won't be able to build types correctly.  */
4785   prepare_one_comp_unit (cu, cu->dies);
4786 
4787   /* Similarly, if we do not read the producer, we can not apply
4788      producer-specific interpretation.  */
4789   attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
4790   if (attr)
4791     cu->producer = DW_STRING (attr);
4792 
4793   if (read_cu)
4794     {
4795       do_cleanups (free_abbrevs_cleanup);
4796 
4797       /* We've successfully allocated this compilation unit.  Let our
4798 	 caller clean it up when finished with it.  */
4799       discard_cleanups (free_cu_cleanup);
4800     }
4801 }
4802 
4803 /* Add a DIE to the delayed physname list.  */
4804 
4805 static void
4806 add_to_method_list (struct type *type, int fnfield_index, int index,
4807 		    const char *name, struct die_info *die,
4808 		    struct dwarf2_cu *cu)
4809 {
4810   struct delayed_method_info mi;
4811   mi.type = type;
4812   mi.fnfield_index = fnfield_index;
4813   mi.index = index;
4814   mi.name = name;
4815   mi.die = die;
4816   VEC_safe_push (delayed_method_info, cu->method_list, &mi);
4817 }
4818 
4819 /* A cleanup for freeing the delayed method list.  */
4820 
4821 static void
4822 free_delayed_list (void *ptr)
4823 {
4824   struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
4825   if (cu->method_list != NULL)
4826     {
4827       VEC_free (delayed_method_info, cu->method_list);
4828       cu->method_list = NULL;
4829     }
4830 }
4831 
4832 /* Compute the physnames of any methods on the CU's method list.
4833 
4834    The computation of method physnames is delayed in order to avoid the
4835    (bad) condition that one of the method's formal parameters is of an as yet
4836    incomplete type.  */
4837 
4838 static void
4839 compute_delayed_physnames (struct dwarf2_cu *cu)
4840 {
4841   int i;
4842   struct delayed_method_info *mi;
4843   for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
4844     {
4845       const char *physname;
4846       struct fn_fieldlist *fn_flp
4847 	= &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
4848       physname = dwarf2_physname ((char *) mi->name, mi->die, cu);
4849       fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
4850     }
4851 }
4852 
4853 /* Generate full symbol information for PST and CU, whose DIEs have
4854    already been loaded into memory.  */
4855 
4856 static void
4857 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4858 {
4859   struct dwarf2_cu *cu = per_cu->cu;
4860   struct objfile *objfile = per_cu->objfile;
4861   CORE_ADDR lowpc, highpc;
4862   struct symtab *symtab;
4863   struct cleanup *back_to, *delayed_list_cleanup;
4864   CORE_ADDR baseaddr;
4865 
4866   baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4867 
4868   buildsym_init ();
4869   back_to = make_cleanup (really_free_pendings, NULL);
4870   delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
4871 
4872   cu->list_in_scope = &file_symbols;
4873 
4874   /* Do line number decoding in read_file_scope () */
4875   process_die (cu->dies, cu);
4876 
4877   /* Now that we have processed all the DIEs in the CU, all the types
4878      should be complete, and it should now be safe to compute all of the
4879      physnames.  */
4880   compute_delayed_physnames (cu);
4881   do_cleanups (delayed_list_cleanup);
4882 
4883   /* Some compilers don't define a DW_AT_high_pc attribute for the
4884      compilation unit.  If the DW_AT_high_pc is missing, synthesize
4885      it, by scanning the DIE's below the compilation unit.  */
4886   get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
4887 
4888   symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
4889 
4890   if (symtab != NULL)
4891     {
4892       int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4893 
4894       /* Set symtab language to language from DW_AT_language.  If the
4895 	 compilation is from a C file generated by language preprocessors, do
4896 	 not set the language if it was already deduced by start_subfile.  */
4897       if (!(cu->language == language_c && symtab->language != language_c))
4898 	symtab->language = cu->language;
4899 
4900       /* GCC-4.0 has started to support -fvar-tracking.  GCC-3.x still can
4901 	 produce DW_AT_location with location lists but it can be possibly
4902 	 invalid without -fvar-tracking.
4903 
4904 	 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
4905 	 needed, it would be wrong due to missing DW_AT_producer there.
4906 
4907 	 Still one can confuse GDB by using non-standard GCC compilation
4908 	 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
4909 	 */
4910       if (cu->has_loclist && gcc_4_minor >= 0)
4911 	symtab->locations_valid = 1;
4912 
4913       if (gcc_4_minor >= 5)
4914 	symtab->epilogue_unwind_valid = 1;
4915 
4916       symtab->call_site_htab = cu->call_site_htab;
4917     }
4918 
4919   if (dwarf2_per_objfile->using_index)
4920     per_cu->v.quick->symtab = symtab;
4921   else
4922     {
4923       struct partial_symtab *pst = per_cu->v.psymtab;
4924       pst->symtab = symtab;
4925       pst->readin = 1;
4926     }
4927 
4928   do_cleanups (back_to);
4929 }
4930 
4931 /* Process a die and its children.  */
4932 
4933 static void
4934 process_die (struct die_info *die, struct dwarf2_cu *cu)
4935 {
4936   switch (die->tag)
4937     {
4938     case DW_TAG_padding:
4939       break;
4940     case DW_TAG_compile_unit:
4941       read_file_scope (die, cu);
4942       break;
4943     case DW_TAG_type_unit:
4944       read_type_unit_scope (die, cu);
4945       break;
4946     case DW_TAG_subprogram:
4947     case DW_TAG_inlined_subroutine:
4948       read_func_scope (die, cu);
4949       break;
4950     case DW_TAG_lexical_block:
4951     case DW_TAG_try_block:
4952     case DW_TAG_catch_block:
4953       read_lexical_block_scope (die, cu);
4954       break;
4955     case DW_TAG_GNU_call_site:
4956       read_call_site_scope (die, cu);
4957       break;
4958     case DW_TAG_class_type:
4959     case DW_TAG_interface_type:
4960     case DW_TAG_structure_type:
4961     case DW_TAG_union_type:
4962       process_structure_scope (die, cu);
4963       break;
4964     case DW_TAG_enumeration_type:
4965       process_enumeration_scope (die, cu);
4966       break;
4967 
4968     /* These dies have a type, but processing them does not create
4969        a symbol or recurse to process the children.  Therefore we can
4970        read them on-demand through read_type_die.  */
4971     case DW_TAG_subroutine_type:
4972     case DW_TAG_set_type:
4973     case DW_TAG_array_type:
4974     case DW_TAG_pointer_type:
4975     case DW_TAG_ptr_to_member_type:
4976     case DW_TAG_reference_type:
4977     case DW_TAG_string_type:
4978       break;
4979 
4980     case DW_TAG_base_type:
4981     case DW_TAG_subrange_type:
4982     case DW_TAG_typedef:
4983       /* Add a typedef symbol for the type definition, if it has a
4984          DW_AT_name.  */
4985       new_symbol (die, read_type_die (die, cu), cu);
4986       break;
4987     case DW_TAG_common_block:
4988       read_common_block (die, cu);
4989       break;
4990     case DW_TAG_common_inclusion:
4991       break;
4992     case DW_TAG_namespace:
4993       processing_has_namespace_info = 1;
4994       read_namespace (die, cu);
4995       break;
4996     case DW_TAG_module:
4997       processing_has_namespace_info = 1;
4998       read_module (die, cu);
4999       break;
5000     case DW_TAG_imported_declaration:
5001     case DW_TAG_imported_module:
5002       processing_has_namespace_info = 1;
5003       if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
5004 				 || cu->language != language_fortran))
5005 	complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
5006 		   dwarf_tag_name (die->tag));
5007       read_import_statement (die, cu);
5008       break;
5009     default:
5010       new_symbol (die, NULL, cu);
5011       break;
5012     }
5013 }
5014 
5015 /* A helper function for dwarf2_compute_name which determines whether DIE
5016    needs to have the name of the scope prepended to the name listed in the
5017    die.  */
5018 
5019 static int
5020 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
5021 {
5022   struct attribute *attr;
5023 
5024   switch (die->tag)
5025     {
5026     case DW_TAG_namespace:
5027     case DW_TAG_typedef:
5028     case DW_TAG_class_type:
5029     case DW_TAG_interface_type:
5030     case DW_TAG_structure_type:
5031     case DW_TAG_union_type:
5032     case DW_TAG_enumeration_type:
5033     case DW_TAG_enumerator:
5034     case DW_TAG_subprogram:
5035     case DW_TAG_member:
5036       return 1;
5037 
5038     case DW_TAG_variable:
5039     case DW_TAG_constant:
5040       /* We only need to prefix "globally" visible variables.  These include
5041 	 any variable marked with DW_AT_external or any variable that
5042 	 lives in a namespace.  [Variables in anonymous namespaces
5043 	 require prefixing, but they are not DW_AT_external.]  */
5044 
5045       if (dwarf2_attr (die, DW_AT_specification, cu))
5046 	{
5047 	  struct dwarf2_cu *spec_cu = cu;
5048 
5049 	  return die_needs_namespace (die_specification (die, &spec_cu),
5050 				      spec_cu);
5051 	}
5052 
5053       attr = dwarf2_attr (die, DW_AT_external, cu);
5054       if (attr == NULL && die->parent->tag != DW_TAG_namespace
5055 	  && die->parent->tag != DW_TAG_module)
5056 	return 0;
5057       /* A variable in a lexical block of some kind does not need a
5058 	 namespace, even though in C++ such variables may be external
5059 	 and have a mangled name.  */
5060       if (die->parent->tag ==  DW_TAG_lexical_block
5061 	  || die->parent->tag ==  DW_TAG_try_block
5062 	  || die->parent->tag ==  DW_TAG_catch_block
5063 	  || die->parent->tag == DW_TAG_subprogram)
5064 	return 0;
5065       return 1;
5066 
5067     default:
5068       return 0;
5069     }
5070 }
5071 
5072 /* Retrieve the last character from a mem_file.  */
5073 
5074 static void
5075 do_ui_file_peek_last (void *object, const char *buffer, long length)
5076 {
5077   char *last_char_p = (char *) object;
5078 
5079   if (length > 0)
5080     *last_char_p = buffer[length - 1];
5081 }
5082 
5083 /* Compute the fully qualified name of DIE in CU.  If PHYSNAME is nonzero,
5084    compute the physname for the object, which include a method's
5085    formal parameters (C++/Java) and return type (Java).
5086 
5087    For Ada, return the DIE's linkage name rather than the fully qualified
5088    name.  PHYSNAME is ignored..
5089 
5090    The result is allocated on the objfile_obstack and canonicalized.  */
5091 
5092 static const char *
5093 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
5094 		     int physname)
5095 {
5096   if (name == NULL)
5097     name = dwarf2_name (die, cu);
5098 
5099   /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
5100      compute it by typename_concat inside GDB.  */
5101   if (cu->language == language_ada
5102       || (cu->language == language_fortran && physname))
5103     {
5104       /* For Ada unit, we prefer the linkage name over the name, as
5105 	 the former contains the exported name, which the user expects
5106 	 to be able to reference.  Ideally, we want the user to be able
5107 	 to reference this entity using either natural or linkage name,
5108 	 but we haven't started looking at this enhancement yet.  */
5109       struct attribute *attr;
5110 
5111       attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
5112       if (attr == NULL)
5113 	attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
5114       if (attr && DW_STRING (attr))
5115 	return DW_STRING (attr);
5116     }
5117 
5118   /* These are the only languages we know how to qualify names in.  */
5119   if (name != NULL
5120       && (cu->language == language_cplus || cu->language == language_java
5121 	  || cu->language == language_fortran))
5122     {
5123       if (die_needs_namespace (die, cu))
5124 	{
5125 	  long length;
5126 	  char *prefix;
5127 	  struct ui_file *buf;
5128 
5129 	  prefix = determine_prefix (die, cu);
5130 	  buf = mem_fileopen ();
5131 	  if (*prefix != '\0')
5132 	    {
5133 	      char *prefixed_name = typename_concat (NULL, prefix, name,
5134 						     physname, cu);
5135 
5136 	      fputs_unfiltered (prefixed_name, buf);
5137 	      xfree (prefixed_name);
5138 	    }
5139 	  else
5140 	    fputs_unfiltered (name, buf);
5141 
5142 	  /* Template parameters may be specified in the DIE's DW_AT_name, or
5143 	     as children with DW_TAG_template_type_param or
5144 	     DW_TAG_value_type_param.  If the latter, add them to the name
5145 	     here.  If the name already has template parameters, then
5146 	     skip this step; some versions of GCC emit both, and
5147 	     it is more efficient to use the pre-computed name.
5148 
5149 	     Something to keep in mind about this process: it is very
5150 	     unlikely, or in some cases downright impossible, to produce
5151 	     something that will match the mangled name of a function.
5152 	     If the definition of the function has the same debug info,
5153 	     we should be able to match up with it anyway.  But fallbacks
5154 	     using the minimal symbol, for instance to find a method
5155 	     implemented in a stripped copy of libstdc++, will not work.
5156 	     If we do not have debug info for the definition, we will have to
5157 	     match them up some other way.
5158 
5159 	     When we do name matching there is a related problem with function
5160 	     templates; two instantiated function templates are allowed to
5161 	     differ only by their return types, which we do not add here.  */
5162 
5163 	  if (cu->language == language_cplus && strchr (name, '<') == NULL)
5164 	    {
5165 	      struct attribute *attr;
5166 	      struct die_info *child;
5167 	      int first = 1;
5168 
5169 	      die->building_fullname = 1;
5170 
5171 	      for (child = die->child; child != NULL; child = child->sibling)
5172 		{
5173 		  struct type *type;
5174 		  long value;
5175 		  gdb_byte *bytes;
5176 		  struct dwarf2_locexpr_baton *baton;
5177 		  struct value *v;
5178 
5179 		  if (child->tag != DW_TAG_template_type_param
5180 		      && child->tag != DW_TAG_template_value_param)
5181 		    continue;
5182 
5183 		  if (first)
5184 		    {
5185 		      fputs_unfiltered ("<", buf);
5186 		      first = 0;
5187 		    }
5188 		  else
5189 		    fputs_unfiltered (", ", buf);
5190 
5191 		  attr = dwarf2_attr (child, DW_AT_type, cu);
5192 		  if (attr == NULL)
5193 		    {
5194 		      complaint (&symfile_complaints,
5195 				 _("template parameter missing DW_AT_type"));
5196 		      fputs_unfiltered ("UNKNOWN_TYPE", buf);
5197 		      continue;
5198 		    }
5199 		  type = die_type (child, cu);
5200 
5201 		  if (child->tag == DW_TAG_template_type_param)
5202 		    {
5203 		      c_print_type (type, "", buf, -1, 0);
5204 		      continue;
5205 		    }
5206 
5207 		  attr = dwarf2_attr (child, DW_AT_const_value, cu);
5208 		  if (attr == NULL)
5209 		    {
5210 		      complaint (&symfile_complaints,
5211 				 _("template parameter missing "
5212 				   "DW_AT_const_value"));
5213 		      fputs_unfiltered ("UNKNOWN_VALUE", buf);
5214 		      continue;
5215 		    }
5216 
5217 		  dwarf2_const_value_attr (attr, type, name,
5218 					   &cu->comp_unit_obstack, cu,
5219 					   &value, &bytes, &baton);
5220 
5221 		  if (TYPE_NOSIGN (type))
5222 		    /* GDB prints characters as NUMBER 'CHAR'.  If that's
5223 		       changed, this can use value_print instead.  */
5224 		    c_printchar (value, type, buf);
5225 		  else
5226 		    {
5227 		      struct value_print_options opts;
5228 
5229 		      if (baton != NULL)
5230 			v = dwarf2_evaluate_loc_desc (type, NULL,
5231 						      baton->data,
5232 						      baton->size,
5233 						      baton->per_cu);
5234 		      else if (bytes != NULL)
5235 			{
5236 			  v = allocate_value (type);
5237 			  memcpy (value_contents_writeable (v), bytes,
5238 				  TYPE_LENGTH (type));
5239 			}
5240 		      else
5241 			v = value_from_longest (type, value);
5242 
5243 		      /* Specify decimal so that we do not depend on
5244 			 the radix.  */
5245 		      get_formatted_print_options (&opts, 'd');
5246 		      opts.raw = 1;
5247 		      value_print (v, buf, &opts);
5248 		      release_value (v);
5249 		      value_free (v);
5250 		    }
5251 		}
5252 
5253 	      die->building_fullname = 0;
5254 
5255 	      if (!first)
5256 		{
5257 		  /* Close the argument list, with a space if necessary
5258 		     (nested templates).  */
5259 		  char last_char = '\0';
5260 		  ui_file_put (buf, do_ui_file_peek_last, &last_char);
5261 		  if (last_char == '>')
5262 		    fputs_unfiltered (" >", buf);
5263 		  else
5264 		    fputs_unfiltered (">", buf);
5265 		}
5266 	    }
5267 
5268 	  /* For Java and C++ methods, append formal parameter type
5269 	     information, if PHYSNAME.  */
5270 
5271 	  if (physname && die->tag == DW_TAG_subprogram
5272 	      && (cu->language == language_cplus
5273 		  || cu->language == language_java))
5274 	    {
5275 	      struct type *type = read_type_die (die, cu);
5276 
5277 	      c_type_print_args (type, buf, 1, cu->language);
5278 
5279 	      if (cu->language == language_java)
5280 		{
5281 		  /* For java, we must append the return type to method
5282 		     names.  */
5283 		  if (die->tag == DW_TAG_subprogram)
5284 		    java_print_type (TYPE_TARGET_TYPE (type), "", buf,
5285 				     0, 0);
5286 		}
5287 	      else if (cu->language == language_cplus)
5288 		{
5289 		  /* Assume that an artificial first parameter is
5290 		     "this", but do not crash if it is not.  RealView
5291 		     marks unnamed (and thus unused) parameters as
5292 		     artificial; there is no way to differentiate
5293 		     the two cases.  */
5294 		  if (TYPE_NFIELDS (type) > 0
5295 		      && TYPE_FIELD_ARTIFICIAL (type, 0)
5296 		      && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
5297 		      && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
5298 									0))))
5299 		    fputs_unfiltered (" const", buf);
5300 		}
5301 	    }
5302 
5303 	  name = ui_file_obsavestring (buf, &cu->objfile->objfile_obstack,
5304 				       &length);
5305 	  ui_file_delete (buf);
5306 
5307 	  if (cu->language == language_cplus)
5308 	    {
5309 	      char *cname
5310 		= dwarf2_canonicalize_name (name, cu,
5311 					    &cu->objfile->objfile_obstack);
5312 
5313 	      if (cname != NULL)
5314 		name = cname;
5315 	    }
5316 	}
5317     }
5318 
5319   return name;
5320 }
5321 
5322 /* Return the fully qualified name of DIE, based on its DW_AT_name.
5323    If scope qualifiers are appropriate they will be added.  The result
5324    will be allocated on the objfile_obstack, or NULL if the DIE does
5325    not have a name.  NAME may either be from a previous call to
5326    dwarf2_name or NULL.
5327 
5328    The output string will be canonicalized (if C++/Java).  */
5329 
5330 static const char *
5331 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
5332 {
5333   return dwarf2_compute_name (name, die, cu, 0);
5334 }
5335 
5336 /* Construct a physname for the given DIE in CU.  NAME may either be
5337    from a previous call to dwarf2_name or NULL.  The result will be
5338    allocated on the objfile_objstack or NULL if the DIE does not have a
5339    name.
5340 
5341    The output string will be canonicalized (if C++/Java).  */
5342 
5343 static const char *
5344 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
5345 {
5346   struct attribute *attr;
5347   const char *retval, *mangled = NULL, *canon = NULL;
5348   struct cleanup *back_to;
5349   int need_copy = 1;
5350 
5351   /* In this case dwarf2_compute_name is just a shortcut not building anything
5352      on its own.  */
5353   if (!die_needs_namespace (die, cu))
5354     return dwarf2_compute_name (name, die, cu, 1);
5355 
5356   back_to = make_cleanup (null_cleanup, NULL);
5357 
5358   attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
5359   if (!attr)
5360     attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
5361 
5362   /* DW_AT_linkage_name is missing in some cases - depend on what GDB
5363      has computed.  */
5364   if (attr && DW_STRING (attr))
5365     {
5366       char *demangled;
5367 
5368       mangled = DW_STRING (attr);
5369 
5370       /* Use DMGL_RET_DROP for C++ template functions to suppress their return
5371 	 type.  It is easier for GDB users to search for such functions as
5372 	 `name(params)' than `long name(params)'.  In such case the minimal
5373 	 symbol names do not match the full symbol names but for template
5374 	 functions there is never a need to look up their definition from their
5375 	 declaration so the only disadvantage remains the minimal symbol
5376 	 variant `long name(params)' does not have the proper inferior type.
5377 	 */
5378 
5379       demangled = cplus_demangle (mangled, (DMGL_PARAMS | DMGL_ANSI
5380 					    | (cu->language == language_java
5381 					       ? DMGL_JAVA | DMGL_RET_POSTFIX
5382 					       : DMGL_RET_DROP)));
5383       if (demangled)
5384 	{
5385 	  make_cleanup (xfree, demangled);
5386 	  canon = demangled;
5387 	}
5388       else
5389 	{
5390 	  canon = mangled;
5391 	  need_copy = 0;
5392 	}
5393     }
5394 
5395   if (canon == NULL || check_physname)
5396     {
5397       const char *physname = dwarf2_compute_name (name, die, cu, 1);
5398 
5399       if (canon != NULL && strcmp (physname, canon) != 0)
5400 	{
5401 	  /* It may not mean a bug in GDB.  The compiler could also
5402 	     compute DW_AT_linkage_name incorrectly.  But in such case
5403 	     GDB would need to be bug-to-bug compatible.  */
5404 
5405 	  complaint (&symfile_complaints,
5406 		     _("Computed physname <%s> does not match demangled <%s> "
5407 		       "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
5408 		     physname, canon, mangled, die->offset, cu->objfile->name);
5409 
5410 	  /* Prefer DW_AT_linkage_name (in the CANON form) - when it
5411 	     is available here - over computed PHYSNAME.  It is safer
5412 	     against both buggy GDB and buggy compilers.  */
5413 
5414 	  retval = canon;
5415 	}
5416       else
5417 	{
5418 	  retval = physname;
5419 	  need_copy = 0;
5420 	}
5421     }
5422   else
5423     retval = canon;
5424 
5425   if (need_copy)
5426     retval = obsavestring (retval, strlen (retval),
5427 			   &cu->objfile->objfile_obstack);
5428 
5429   do_cleanups (back_to);
5430   return retval;
5431 }
5432 
5433 /* Read the import statement specified by the given die and record it.  */
5434 
5435 static void
5436 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
5437 {
5438   struct attribute *import_attr;
5439   struct die_info *imported_die, *child_die;
5440   struct dwarf2_cu *imported_cu;
5441   const char *imported_name;
5442   const char *imported_name_prefix;
5443   const char *canonical_name;
5444   const char *import_alias;
5445   const char *imported_declaration = NULL;
5446   const char *import_prefix;
5447   VEC (const_char_ptr) *excludes = NULL;
5448   struct cleanup *cleanups;
5449 
5450   char *temp;
5451 
5452   import_attr = dwarf2_attr (die, DW_AT_import, cu);
5453   if (import_attr == NULL)
5454     {
5455       complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5456 		 dwarf_tag_name (die->tag));
5457       return;
5458     }
5459 
5460   imported_cu = cu;
5461   imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
5462   imported_name = dwarf2_name (imported_die, imported_cu);
5463   if (imported_name == NULL)
5464     {
5465       /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
5466 
5467         The import in the following code:
5468         namespace A
5469           {
5470             typedef int B;
5471           }
5472 
5473         int main ()
5474           {
5475             using A::B;
5476             B b;
5477             return b;
5478           }
5479 
5480         ...
5481          <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
5482             <52>   DW_AT_decl_file   : 1
5483             <53>   DW_AT_decl_line   : 6
5484             <54>   DW_AT_import      : <0x75>
5485          <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
5486             <59>   DW_AT_name        : B
5487             <5b>   DW_AT_decl_file   : 1
5488             <5c>   DW_AT_decl_line   : 2
5489             <5d>   DW_AT_type        : <0x6e>
5490         ...
5491          <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
5492             <76>   DW_AT_byte_size   : 4
5493             <77>   DW_AT_encoding    : 5        (signed)
5494 
5495         imports the wrong die ( 0x75 instead of 0x58 ).
5496         This case will be ignored until the gcc bug is fixed.  */
5497       return;
5498     }
5499 
5500   /* Figure out the local name after import.  */
5501   import_alias = dwarf2_name (die, cu);
5502 
5503   /* Figure out where the statement is being imported to.  */
5504   import_prefix = determine_prefix (die, cu);
5505 
5506   /* Figure out what the scope of the imported die is and prepend it
5507      to the name of the imported die.  */
5508   imported_name_prefix = determine_prefix (imported_die, imported_cu);
5509 
5510   if (imported_die->tag != DW_TAG_namespace
5511       && imported_die->tag != DW_TAG_module)
5512     {
5513       imported_declaration = imported_name;
5514       canonical_name = imported_name_prefix;
5515     }
5516   else if (strlen (imported_name_prefix) > 0)
5517     {
5518       temp = alloca (strlen (imported_name_prefix)
5519                      + 2 + strlen (imported_name) + 1);
5520       strcpy (temp, imported_name_prefix);
5521       strcat (temp, "::");
5522       strcat (temp, imported_name);
5523       canonical_name = temp;
5524     }
5525   else
5526     canonical_name = imported_name;
5527 
5528   cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
5529 
5530   if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
5531     for (child_die = die->child; child_die && child_die->tag;
5532 	 child_die = sibling_die (child_die))
5533       {
5534 	/* DWARF-4: A Fortran use statement with a “rename list” may be
5535 	   represented by an imported module entry with an import attribute
5536 	   referring to the module and owned entries corresponding to those
5537 	   entities that are renamed as part of being imported.  */
5538 
5539 	if (child_die->tag != DW_TAG_imported_declaration)
5540 	  {
5541 	    complaint (&symfile_complaints,
5542 		       _("child DW_TAG_imported_declaration expected "
5543 			 "- DIE at 0x%x [in module %s]"),
5544 		       child_die->offset, cu->objfile->name);
5545 	    continue;
5546 	  }
5547 
5548 	import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
5549 	if (import_attr == NULL)
5550 	  {
5551 	    complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5552 		       dwarf_tag_name (child_die->tag));
5553 	    continue;
5554 	  }
5555 
5556 	imported_cu = cu;
5557 	imported_die = follow_die_ref_or_sig (child_die, import_attr,
5558 					      &imported_cu);
5559 	imported_name = dwarf2_name (imported_die, imported_cu);
5560 	if (imported_name == NULL)
5561 	  {
5562 	    complaint (&symfile_complaints,
5563 		       _("child DW_TAG_imported_declaration has unknown "
5564 			 "imported name - DIE at 0x%x [in module %s]"),
5565 		       child_die->offset, cu->objfile->name);
5566 	    continue;
5567 	  }
5568 
5569 	VEC_safe_push (const_char_ptr, excludes, imported_name);
5570 
5571 	process_die (child_die, cu);
5572       }
5573 
5574   cp_add_using_directive (import_prefix,
5575                           canonical_name,
5576                           import_alias,
5577                           imported_declaration,
5578 			  excludes,
5579                           &cu->objfile->objfile_obstack);
5580 
5581   do_cleanups (cleanups);
5582 }
5583 
5584 static void
5585 initialize_cu_func_list (struct dwarf2_cu *cu)
5586 {
5587   cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5588 }
5589 
5590 /* Cleanup function for read_file_scope.  */
5591 
5592 static void
5593 free_cu_line_header (void *arg)
5594 {
5595   struct dwarf2_cu *cu = arg;
5596 
5597   free_line_header (cu->line_header);
5598   cu->line_header = NULL;
5599 }
5600 
5601 static void
5602 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
5603 			 char **name, char **comp_dir)
5604 {
5605   struct attribute *attr;
5606 
5607   *name = NULL;
5608   *comp_dir = NULL;
5609 
5610   /* Find the filename.  Do not use dwarf2_name here, since the filename
5611      is not a source language identifier.  */
5612   attr = dwarf2_attr (die, DW_AT_name, cu);
5613   if (attr)
5614     {
5615       *name = DW_STRING (attr);
5616     }
5617 
5618   attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5619   if (attr)
5620     *comp_dir = DW_STRING (attr);
5621   else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
5622     {
5623       *comp_dir = ldirname (*name);
5624       if (*comp_dir != NULL)
5625 	make_cleanup (xfree, *comp_dir);
5626     }
5627   if (*comp_dir != NULL)
5628     {
5629       /* Irix 6.2 native cc prepends <machine>.: to the compilation
5630 	 directory, get rid of it.  */
5631       char *cp = strchr (*comp_dir, ':');
5632 
5633       if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
5634 	*comp_dir = cp + 1;
5635     }
5636 
5637   if (*name == NULL)
5638     *name = "<unknown>";
5639 }
5640 
5641 /* Handle DW_AT_stmt_list for a compilation unit or type unit.
5642    DIE is the DW_TAG_compile_unit or DW_TAG_type_unit die for CU.
5643    COMP_DIR is the compilation directory.
5644    WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed.  */
5645 
5646 static void
5647 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
5648 			const char *comp_dir, int want_line_info)
5649 {
5650   struct attribute *attr;
5651   struct objfile *objfile = cu->objfile;
5652   bfd *abfd = objfile->obfd;
5653 
5654   attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5655   if (attr)
5656     {
5657       unsigned int line_offset = DW_UNSND (attr);
5658       struct line_header *line_header
5659 	= dwarf_decode_line_header (line_offset, abfd, cu);
5660 
5661       if (line_header)
5662         {
5663           cu->line_header = line_header;
5664           make_cleanup (free_cu_line_header, cu);
5665 	  dwarf_decode_lines (line_header, comp_dir, cu, NULL, want_line_info);
5666         }
5667     }
5668 }
5669 
5670 /* Process DW_TAG_compile_unit.  */
5671 
5672 static void
5673 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
5674 {
5675   struct objfile *objfile = cu->objfile;
5676   struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5677   CORE_ADDR lowpc = ((CORE_ADDR) -1);
5678   CORE_ADDR highpc = ((CORE_ADDR) 0);
5679   struct attribute *attr;
5680   char *name = NULL;
5681   char *comp_dir = NULL;
5682   struct die_info *child_die;
5683   bfd *abfd = objfile->obfd;
5684   CORE_ADDR baseaddr;
5685 
5686   baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5687 
5688   get_scope_pc_bounds (die, &lowpc, &highpc, cu);
5689 
5690   /* If we didn't find a lowpc, set it to highpc to avoid complaints
5691      from finish_block.  */
5692   if (lowpc == ((CORE_ADDR) -1))
5693     lowpc = highpc;
5694   lowpc += baseaddr;
5695   highpc += baseaddr;
5696 
5697   find_file_and_directory (die, cu, &name, &comp_dir);
5698 
5699   attr = dwarf2_attr (die, DW_AT_language, cu);
5700   if (attr)
5701     {
5702       set_cu_language (DW_UNSND (attr), cu);
5703     }
5704 
5705   attr = dwarf2_attr (die, DW_AT_producer, cu);
5706   if (attr)
5707     cu->producer = DW_STRING (attr);
5708 
5709   /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
5710      standardised yet.  As a workaround for the language detection we fall
5711      back to the DW_AT_producer string.  */
5712   if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
5713     cu->language = language_opencl;
5714 
5715   /* We assume that we're processing GCC output.  */
5716   processing_gcc_compilation = 2;
5717 
5718   processing_has_namespace_info = 0;
5719 
5720   start_symtab (name, comp_dir, lowpc);
5721   record_debugformat ("DWARF 2");
5722   record_producer (cu->producer);
5723 
5724   initialize_cu_func_list (cu);
5725 
5726   /* Decode line number information if present.  We do this before
5727      processing child DIEs, so that the line header table is available
5728      for DW_AT_decl_file.  */
5729   handle_DW_AT_stmt_list (die, cu, comp_dir, 1);
5730 
5731   /* Process all dies in compilation unit.  */
5732   if (die->child != NULL)
5733     {
5734       child_die = die->child;
5735       while (child_die && child_die->tag)
5736 	{
5737 	  process_die (child_die, cu);
5738 	  child_die = sibling_die (child_die);
5739 	}
5740     }
5741 
5742   /* Decode macro information, if present.  Dwarf 2 macro information
5743      refers to information in the line number info statement program
5744      header, so we can only read it if we've read the header
5745      successfully.  */
5746   attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
5747   if (attr && cu->line_header)
5748     {
5749       if (dwarf2_attr (die, DW_AT_macro_info, cu))
5750 	complaint (&symfile_complaints,
5751 		   _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
5752 
5753       dwarf_decode_macros (cu->line_header, DW_UNSND (attr),
5754 			   comp_dir, abfd, cu,
5755 			   &dwarf2_per_objfile->macro, 1);
5756     }
5757   else
5758     {
5759       attr = dwarf2_attr (die, DW_AT_macro_info, cu);
5760       if (attr && cu->line_header)
5761 	{
5762 	  unsigned int macro_offset = DW_UNSND (attr);
5763 
5764 	  dwarf_decode_macros (cu->line_header, macro_offset,
5765 			       comp_dir, abfd, cu,
5766 			       &dwarf2_per_objfile->macinfo, 0);
5767 	}
5768     }
5769   do_cleanups (back_to);
5770 }
5771 
5772 /* Process DW_TAG_type_unit.
5773    For TUs we want to skip the first top level sibling if it's not the
5774    actual type being defined by this TU.  In this case the first top
5775    level sibling is there to provide context only.  */
5776 
5777 static void
5778 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
5779 {
5780   struct objfile *objfile = cu->objfile;
5781   struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5782   CORE_ADDR lowpc;
5783   struct attribute *attr;
5784   char *name = NULL;
5785   char *comp_dir = NULL;
5786   struct die_info *child_die;
5787   bfd *abfd = objfile->obfd;
5788 
5789   /* start_symtab needs a low pc, but we don't really have one.
5790      Do what read_file_scope would do in the absence of such info.  */
5791   lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5792 
5793   /* Find the filename.  Do not use dwarf2_name here, since the filename
5794      is not a source language identifier.  */
5795   attr = dwarf2_attr (die, DW_AT_name, cu);
5796   if (attr)
5797     name = DW_STRING (attr);
5798 
5799   attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5800   if (attr)
5801     comp_dir = DW_STRING (attr);
5802   else if (name != NULL && IS_ABSOLUTE_PATH (name))
5803     {
5804       comp_dir = ldirname (name);
5805       if (comp_dir != NULL)
5806 	make_cleanup (xfree, comp_dir);
5807     }
5808 
5809   if (name == NULL)
5810     name = "<unknown>";
5811 
5812   attr = dwarf2_attr (die, DW_AT_language, cu);
5813   if (attr)
5814     set_cu_language (DW_UNSND (attr), cu);
5815 
5816   /* This isn't technically needed today.  It is done for symmetry
5817      with read_file_scope.  */
5818   attr = dwarf2_attr (die, DW_AT_producer, cu);
5819   if (attr)
5820     cu->producer = DW_STRING (attr);
5821 
5822   /* We assume that we're processing GCC output.  */
5823   processing_gcc_compilation = 2;
5824 
5825   processing_has_namespace_info = 0;
5826 
5827   start_symtab (name, comp_dir, lowpc);
5828   record_debugformat ("DWARF 2");
5829   record_producer (cu->producer);
5830 
5831   /* Decode line number information if present.  We do this before
5832      processing child DIEs, so that the line header table is available
5833      for DW_AT_decl_file.
5834      We don't need the pc/line-number mapping for type units.  */
5835   handle_DW_AT_stmt_list (die, cu, comp_dir, 0);
5836 
5837   /* Process the dies in the type unit.  */
5838   if (die->child == NULL)
5839     {
5840       dump_die_for_error (die);
5841       error (_("Dwarf Error: Missing children for type unit [in module %s]"),
5842 	     bfd_get_filename (abfd));
5843     }
5844 
5845   child_die = die->child;
5846 
5847   while (child_die && child_die->tag)
5848     {
5849       process_die (child_die, cu);
5850 
5851       child_die = sibling_die (child_die);
5852     }
5853 
5854   do_cleanups (back_to);
5855 }
5856 
5857 static void
5858 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
5859 		     struct dwarf2_cu *cu)
5860 {
5861   struct function_range *thisfn;
5862 
5863   thisfn = (struct function_range *)
5864     obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5865   thisfn->name = name;
5866   thisfn->lowpc = lowpc;
5867   thisfn->highpc = highpc;
5868   thisfn->seen_line = 0;
5869   thisfn->next = NULL;
5870 
5871   if (cu->last_fn == NULL)
5872       cu->first_fn = thisfn;
5873   else
5874       cu->last_fn->next = thisfn;
5875 
5876   cu->last_fn = thisfn;
5877 }
5878 
5879 /* qsort helper for inherit_abstract_dies.  */
5880 
5881 static int
5882 unsigned_int_compar (const void *ap, const void *bp)
5883 {
5884   unsigned int a = *(unsigned int *) ap;
5885   unsigned int b = *(unsigned int *) bp;
5886 
5887   return (a > b) - (b > a);
5888 }
5889 
5890 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
5891    Inherit only the children of the DW_AT_abstract_origin DIE not being
5892    already referenced by DW_AT_abstract_origin from the children of the
5893    current DIE.  */
5894 
5895 static void
5896 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
5897 {
5898   struct die_info *child_die;
5899   unsigned die_children_count;
5900   /* CU offsets which were referenced by children of the current DIE.  */
5901   unsigned *offsets;
5902   unsigned *offsets_end, *offsetp;
5903   /* Parent of DIE - referenced by DW_AT_abstract_origin.  */
5904   struct die_info *origin_die;
5905   /* Iterator of the ORIGIN_DIE children.  */
5906   struct die_info *origin_child_die;
5907   struct cleanup *cleanups;
5908   struct attribute *attr;
5909   struct dwarf2_cu *origin_cu;
5910   struct pending **origin_previous_list_in_scope;
5911 
5912   attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
5913   if (!attr)
5914     return;
5915 
5916   /* Note that following die references may follow to a die in a
5917      different cu.  */
5918 
5919   origin_cu = cu;
5920   origin_die = follow_die_ref (die, attr, &origin_cu);
5921 
5922   /* We're inheriting ORIGIN's children into the scope we'd put DIE's
5923      symbols in.  */
5924   origin_previous_list_in_scope = origin_cu->list_in_scope;
5925   origin_cu->list_in_scope = cu->list_in_scope;
5926 
5927   if (die->tag != origin_die->tag
5928       && !(die->tag == DW_TAG_inlined_subroutine
5929 	   && origin_die->tag == DW_TAG_subprogram))
5930     complaint (&symfile_complaints,
5931 	       _("DIE 0x%x and its abstract origin 0x%x have different tags"),
5932 	       die->offset, origin_die->offset);
5933 
5934   child_die = die->child;
5935   die_children_count = 0;
5936   while (child_die && child_die->tag)
5937     {
5938       child_die = sibling_die (child_die);
5939       die_children_count++;
5940     }
5941   offsets = xmalloc (sizeof (*offsets) * die_children_count);
5942   cleanups = make_cleanup (xfree, offsets);
5943 
5944   offsets_end = offsets;
5945   child_die = die->child;
5946   while (child_die && child_die->tag)
5947     {
5948       /* For each CHILD_DIE, find the corresponding child of
5949 	 ORIGIN_DIE.  If there is more than one layer of
5950 	 DW_AT_abstract_origin, follow them all; there shouldn't be,
5951 	 but GCC versions at least through 4.4 generate this (GCC PR
5952 	 40573).  */
5953       struct die_info *child_origin_die = child_die;
5954       struct dwarf2_cu *child_origin_cu = cu;
5955 
5956       while (1)
5957 	{
5958 	  attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
5959 			      child_origin_cu);
5960 	  if (attr == NULL)
5961 	    break;
5962 	  child_origin_die = follow_die_ref (child_origin_die, attr,
5963 					     &child_origin_cu);
5964 	}
5965 
5966       /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
5967 	 counterpart may exist.  */
5968       if (child_origin_die != child_die)
5969 	{
5970 	  if (child_die->tag != child_origin_die->tag
5971 	      && !(child_die->tag == DW_TAG_inlined_subroutine
5972 		   && child_origin_die->tag == DW_TAG_subprogram))
5973 	    complaint (&symfile_complaints,
5974 		       _("Child DIE 0x%x and its abstract origin 0x%x have "
5975 			 "different tags"), child_die->offset,
5976 		       child_origin_die->offset);
5977 	  if (child_origin_die->parent != origin_die)
5978 	    complaint (&symfile_complaints,
5979 		       _("Child DIE 0x%x and its abstract origin 0x%x have "
5980 			 "different parents"), child_die->offset,
5981 		       child_origin_die->offset);
5982 	  else
5983 	    *offsets_end++ = child_origin_die->offset;
5984 	}
5985       child_die = sibling_die (child_die);
5986     }
5987   qsort (offsets, offsets_end - offsets, sizeof (*offsets),
5988 	 unsigned_int_compar);
5989   for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
5990     if (offsetp[-1] == *offsetp)
5991       complaint (&symfile_complaints,
5992 		 _("Multiple children of DIE 0x%x refer "
5993 		   "to DIE 0x%x as their abstract origin"),
5994 		 die->offset, *offsetp);
5995 
5996   offsetp = offsets;
5997   origin_child_die = origin_die->child;
5998   while (origin_child_die && origin_child_die->tag)
5999     {
6000       /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children?  */
6001       while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
6002 	offsetp++;
6003       if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
6004 	{
6005 	  /* Found that ORIGIN_CHILD_DIE is really not referenced.  */
6006 	  process_die (origin_child_die, origin_cu);
6007 	}
6008       origin_child_die = sibling_die (origin_child_die);
6009     }
6010   origin_cu->list_in_scope = origin_previous_list_in_scope;
6011 
6012   do_cleanups (cleanups);
6013 }
6014 
6015 static void
6016 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
6017 {
6018   struct objfile *objfile = cu->objfile;
6019   struct context_stack *new;
6020   CORE_ADDR lowpc;
6021   CORE_ADDR highpc;
6022   struct die_info *child_die;
6023   struct attribute *attr, *call_line, *call_file;
6024   char *name;
6025   CORE_ADDR baseaddr;
6026   struct block *block;
6027   int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
6028   VEC (symbolp) *template_args = NULL;
6029   struct template_symbol *templ_func = NULL;
6030 
6031   if (inlined_func)
6032     {
6033       /* If we do not have call site information, we can't show the
6034 	 caller of this inlined function.  That's too confusing, so
6035 	 only use the scope for local variables.  */
6036       call_line = dwarf2_attr (die, DW_AT_call_line, cu);
6037       call_file = dwarf2_attr (die, DW_AT_call_file, cu);
6038       if (call_line == NULL || call_file == NULL)
6039 	{
6040 	  read_lexical_block_scope (die, cu);
6041 	  return;
6042 	}
6043     }
6044 
6045   baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6046 
6047   name = dwarf2_name (die, cu);
6048 
6049   /* Ignore functions with missing or empty names.  These are actually
6050      illegal according to the DWARF standard.  */
6051   if (name == NULL)
6052     {
6053       complaint (&symfile_complaints,
6054                  _("missing name for subprogram DIE at %d"), die->offset);
6055       return;
6056     }
6057 
6058   /* Ignore functions with missing or invalid low and high pc attributes.  */
6059   if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
6060     {
6061       attr = dwarf2_attr (die, DW_AT_external, cu);
6062       if (!attr || !DW_UNSND (attr))
6063 	complaint (&symfile_complaints,
6064 		   _("cannot get low and high bounds "
6065 		     "for subprogram DIE at %d"),
6066 		   die->offset);
6067       return;
6068     }
6069 
6070   lowpc += baseaddr;
6071   highpc += baseaddr;
6072 
6073   /* Record the function range for dwarf_decode_lines.  */
6074   add_to_cu_func_list (name, lowpc, highpc, cu);
6075 
6076   /* If we have any template arguments, then we must allocate a
6077      different sort of symbol.  */
6078   for (child_die = die->child; child_die; child_die = sibling_die (child_die))
6079     {
6080       if (child_die->tag == DW_TAG_template_type_param
6081 	  || child_die->tag == DW_TAG_template_value_param)
6082 	{
6083 	  templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6084 				       struct template_symbol);
6085 	  templ_func->base.is_cplus_template_function = 1;
6086 	  break;
6087 	}
6088     }
6089 
6090   new = push_context (0, lowpc);
6091   new->name = new_symbol_full (die, read_type_die (die, cu), cu,
6092 			       (struct symbol *) templ_func);
6093 
6094   /* If there is a location expression for DW_AT_frame_base, record
6095      it.  */
6096   attr = dwarf2_attr (die, DW_AT_frame_base, cu);
6097   if (attr)
6098     /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
6099        expression is being recorded directly in the function's symbol
6100        and not in a separate frame-base object.  I guess this hack is
6101        to avoid adding some sort of frame-base adjunct/annex to the
6102        function's symbol :-(.  The problem with doing this is that it
6103        results in a function symbol with a location expression that
6104        has nothing to do with the location of the function, ouch!  The
6105        relationship should be: a function's symbol has-a frame base; a
6106        frame-base has-a location expression.  */
6107     dwarf2_symbol_mark_computed (attr, new->name, cu);
6108 
6109   cu->list_in_scope = &local_symbols;
6110 
6111   if (die->child != NULL)
6112     {
6113       child_die = die->child;
6114       while (child_die && child_die->tag)
6115 	{
6116 	  if (child_die->tag == DW_TAG_template_type_param
6117 	      || child_die->tag == DW_TAG_template_value_param)
6118 	    {
6119 	      struct symbol *arg = new_symbol (child_die, NULL, cu);
6120 
6121 	      if (arg != NULL)
6122 		VEC_safe_push (symbolp, template_args, arg);
6123 	    }
6124 	  else
6125 	    process_die (child_die, cu);
6126 	  child_die = sibling_die (child_die);
6127 	}
6128     }
6129 
6130   inherit_abstract_dies (die, cu);
6131 
6132   /* If we have a DW_AT_specification, we might need to import using
6133      directives from the context of the specification DIE.  See the
6134      comment in determine_prefix.  */
6135   if (cu->language == language_cplus
6136       && dwarf2_attr (die, DW_AT_specification, cu))
6137     {
6138       struct dwarf2_cu *spec_cu = cu;
6139       struct die_info *spec_die = die_specification (die, &spec_cu);
6140 
6141       while (spec_die)
6142 	{
6143 	  child_die = spec_die->child;
6144 	  while (child_die && child_die->tag)
6145 	    {
6146 	      if (child_die->tag == DW_TAG_imported_module)
6147 		process_die (child_die, spec_cu);
6148 	      child_die = sibling_die (child_die);
6149 	    }
6150 
6151 	  /* In some cases, GCC generates specification DIEs that
6152 	     themselves contain DW_AT_specification attributes.  */
6153 	  spec_die = die_specification (spec_die, &spec_cu);
6154 	}
6155     }
6156 
6157   new = pop_context ();
6158   /* Make a block for the local symbols within.  */
6159   block = finish_block (new->name, &local_symbols, new->old_blocks,
6160                         lowpc, highpc, objfile);
6161 
6162   /* For C++, set the block's scope.  */
6163   if (cu->language == language_cplus || cu->language == language_fortran)
6164     cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
6165 			determine_prefix (die, cu),
6166 			processing_has_namespace_info);
6167 
6168   /* If we have address ranges, record them.  */
6169   dwarf2_record_block_ranges (die, block, baseaddr, cu);
6170 
6171   /* Attach template arguments to function.  */
6172   if (! VEC_empty (symbolp, template_args))
6173     {
6174       gdb_assert (templ_func != NULL);
6175 
6176       templ_func->n_template_arguments = VEC_length (symbolp, template_args);
6177       templ_func->template_arguments
6178 	= obstack_alloc (&objfile->objfile_obstack,
6179 			 (templ_func->n_template_arguments
6180 			  * sizeof (struct symbol *)));
6181       memcpy (templ_func->template_arguments,
6182 	      VEC_address (symbolp, template_args),
6183 	      (templ_func->n_template_arguments * sizeof (struct symbol *)));
6184       VEC_free (symbolp, template_args);
6185     }
6186 
6187   /* In C++, we can have functions nested inside functions (e.g., when
6188      a function declares a class that has methods).  This means that
6189      when we finish processing a function scope, we may need to go
6190      back to building a containing block's symbol lists.  */
6191   local_symbols = new->locals;
6192   param_symbols = new->params;
6193   using_directives = new->using_directives;
6194 
6195   /* If we've finished processing a top-level function, subsequent
6196      symbols go in the file symbol list.  */
6197   if (outermost_context_p ())
6198     cu->list_in_scope = &file_symbols;
6199 }
6200 
6201 /* Process all the DIES contained within a lexical block scope.  Start
6202    a new scope, process the dies, and then close the scope.  */
6203 
6204 static void
6205 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
6206 {
6207   struct objfile *objfile = cu->objfile;
6208   struct context_stack *new;
6209   CORE_ADDR lowpc, highpc;
6210   struct die_info *child_die;
6211   CORE_ADDR baseaddr;
6212 
6213   baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6214 
6215   /* Ignore blocks with missing or invalid low and high pc attributes.  */
6216   /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
6217      as multiple lexical blocks?  Handling children in a sane way would
6218      be nasty.  Might be easier to properly extend generic blocks to
6219      describe ranges.  */
6220   if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
6221     return;
6222   lowpc += baseaddr;
6223   highpc += baseaddr;
6224 
6225   push_context (0, lowpc);
6226   if (die->child != NULL)
6227     {
6228       child_die = die->child;
6229       while (child_die && child_die->tag)
6230 	{
6231 	  process_die (child_die, cu);
6232 	  child_die = sibling_die (child_die);
6233 	}
6234     }
6235   new = pop_context ();
6236 
6237   if (local_symbols != NULL || using_directives != NULL)
6238     {
6239       struct block *block
6240         = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
6241                         highpc, objfile);
6242 
6243       /* Note that recording ranges after traversing children, as we
6244          do here, means that recording a parent's ranges entails
6245          walking across all its children's ranges as they appear in
6246          the address map, which is quadratic behavior.
6247 
6248          It would be nicer to record the parent's ranges before
6249          traversing its children, simply overriding whatever you find
6250          there.  But since we don't even decide whether to create a
6251          block until after we've traversed its children, that's hard
6252          to do.  */
6253       dwarf2_record_block_ranges (die, block, baseaddr, cu);
6254     }
6255   local_symbols = new->locals;
6256   using_directives = new->using_directives;
6257 }
6258 
6259 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab.  */
6260 
6261 static void
6262 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
6263 {
6264   struct objfile *objfile = cu->objfile;
6265   struct gdbarch *gdbarch = get_objfile_arch (objfile);
6266   CORE_ADDR pc, baseaddr;
6267   struct attribute *attr;
6268   struct call_site *call_site, call_site_local;
6269   void **slot;
6270   int nparams;
6271   struct die_info *child_die;
6272 
6273   baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6274 
6275   attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6276   if (!attr)
6277     {
6278       complaint (&symfile_complaints,
6279 		 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
6280 		   "DIE 0x%x [in module %s]"),
6281 		 die->offset, cu->objfile->name);
6282       return;
6283     }
6284   pc = DW_ADDR (attr) + baseaddr;
6285 
6286   if (cu->call_site_htab == NULL)
6287     cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
6288 					       NULL, &objfile->objfile_obstack,
6289 					       hashtab_obstack_allocate, NULL);
6290   call_site_local.pc = pc;
6291   slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
6292   if (*slot != NULL)
6293     {
6294       complaint (&symfile_complaints,
6295 		 _("Duplicate PC %s for DW_TAG_GNU_call_site "
6296 		   "DIE 0x%x [in module %s]"),
6297 		 paddress (gdbarch, pc), die->offset, cu->objfile->name);
6298       return;
6299     }
6300 
6301   /* Count parameters at the caller.  */
6302 
6303   nparams = 0;
6304   for (child_die = die->child; child_die && child_die->tag;
6305        child_die = sibling_die (child_die))
6306     {
6307       if (child_die->tag != DW_TAG_GNU_call_site_parameter)
6308 	{
6309 	  complaint (&symfile_complaints,
6310 		     _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
6311 		       "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6312 		     child_die->tag, child_die->offset, cu->objfile->name);
6313 	  continue;
6314 	}
6315 
6316       nparams++;
6317     }
6318 
6319   call_site = obstack_alloc (&objfile->objfile_obstack,
6320 			     (sizeof (*call_site)
6321 			      + (sizeof (*call_site->parameter)
6322 				 * (nparams - 1))));
6323   *slot = call_site;
6324   memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
6325   call_site->pc = pc;
6326 
6327   if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
6328     {
6329       struct die_info *func_die;
6330 
6331       /* Skip also over DW_TAG_inlined_subroutine.  */
6332       for (func_die = die->parent;
6333 	   func_die && func_die->tag != DW_TAG_subprogram
6334 	   && func_die->tag != DW_TAG_subroutine_type;
6335 	   func_die = func_die->parent);
6336 
6337       /* DW_AT_GNU_all_call_sites is a superset
6338 	 of DW_AT_GNU_all_tail_call_sites.  */
6339       if (func_die
6340           && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
6341 	  && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
6342 	{
6343 	  /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
6344 	     not complete.  But keep CALL_SITE for look ups via call_site_htab,
6345 	     both the initial caller containing the real return address PC and
6346 	     the final callee containing the current PC of a chain of tail
6347 	     calls do not need to have the tail call list complete.  But any
6348 	     function candidate for a virtual tail call frame searched via
6349 	     TYPE_TAIL_CALL_LIST must have the tail call list complete to be
6350 	     determined unambiguously.  */
6351 	}
6352       else
6353 	{
6354 	  struct type *func_type = NULL;
6355 
6356 	  if (func_die)
6357 	    func_type = get_die_type (func_die, cu);
6358 	  if (func_type != NULL)
6359 	    {
6360 	      gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
6361 
6362 	      /* Enlist this call site to the function.  */
6363 	      call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
6364 	      TYPE_TAIL_CALL_LIST (func_type) = call_site;
6365 	    }
6366 	  else
6367 	    complaint (&symfile_complaints,
6368 		       _("Cannot find function owning DW_TAG_GNU_call_site "
6369 			 "DIE 0x%x [in module %s]"),
6370 		       die->offset, cu->objfile->name);
6371 	}
6372     }
6373 
6374   attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
6375   if (attr == NULL)
6376     attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
6377   SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
6378   if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
6379     /* Keep NULL DWARF_BLOCK.  */;
6380   else if (attr_form_is_block (attr))
6381     {
6382       struct dwarf2_locexpr_baton *dlbaton;
6383 
6384       dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
6385       dlbaton->data = DW_BLOCK (attr)->data;
6386       dlbaton->size = DW_BLOCK (attr)->size;
6387       dlbaton->per_cu = cu->per_cu;
6388 
6389       SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
6390     }
6391   else if (is_ref_attr (attr))
6392     {
6393       struct objfile *objfile = cu->objfile;
6394       struct dwarf2_cu *target_cu = cu;
6395       struct die_info *target_die;
6396 
6397       target_die = follow_die_ref_or_sig (die, attr, &target_cu);
6398       gdb_assert (target_cu->objfile == objfile);
6399       if (die_is_declaration (target_die, target_cu))
6400 	{
6401 	  const char *target_physname;
6402 
6403 	  target_physname = dwarf2_physname (NULL, target_die, target_cu);
6404 	  if (target_physname == NULL)
6405 	    complaint (&symfile_complaints,
6406 		       _("DW_AT_GNU_call_site_target target DIE has invalid "
6407 		         "physname, for referencing DIE 0x%x [in module %s]"),
6408 		       die->offset, cu->objfile->name);
6409 	  else
6410 	    SET_FIELD_PHYSNAME (call_site->target, (char *) target_physname);
6411 	}
6412       else
6413 	{
6414 	  CORE_ADDR lowpc;
6415 
6416 	  /* DW_AT_entry_pc should be preferred.  */
6417 	  if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
6418 	    complaint (&symfile_complaints,
6419 		       _("DW_AT_GNU_call_site_target target DIE has invalid "
6420 		         "low pc, for referencing DIE 0x%x [in module %s]"),
6421 		       die->offset, cu->objfile->name);
6422 	  else
6423 	    SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
6424 	}
6425     }
6426   else
6427     complaint (&symfile_complaints,
6428 	       _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
6429 		 "block nor reference, for DIE 0x%x [in module %s]"),
6430 	       die->offset, cu->objfile->name);
6431 
6432   call_site->per_cu = cu->per_cu;
6433 
6434   for (child_die = die->child;
6435        child_die && child_die->tag;
6436        child_die = sibling_die (child_die))
6437     {
6438       struct dwarf2_locexpr_baton *dlbaton;
6439       struct call_site_parameter *parameter;
6440 
6441       if (child_die->tag != DW_TAG_GNU_call_site_parameter)
6442 	{
6443 	  /* Already printed the complaint above.  */
6444 	  continue;
6445 	}
6446 
6447       gdb_assert (call_site->parameter_count < nparams);
6448       parameter = &call_site->parameter[call_site->parameter_count];
6449 
6450       /* DW_AT_location specifies the register number.  Value of the data
6451 	 assumed for the register is contained in DW_AT_GNU_call_site_value.  */
6452 
6453       attr = dwarf2_attr (child_die, DW_AT_location, cu);
6454       if (!attr || !attr_form_is_block (attr))
6455 	{
6456 	  complaint (&symfile_complaints,
6457 		     _("No DW_FORM_block* DW_AT_location for "
6458 		       "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6459 		     child_die->offset, cu->objfile->name);
6460 	  continue;
6461 	}
6462       parameter->dwarf_reg = dwarf_block_to_dwarf_reg (DW_BLOCK (attr)->data,
6463 				 &DW_BLOCK (attr)->data[DW_BLOCK (attr)->size]);
6464       if (parameter->dwarf_reg == -1
6465 	  && !dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (attr)->data,
6466 				  &DW_BLOCK (attr)->data[DW_BLOCK (attr)->size],
6467 					&parameter->fb_offset))
6468 	{
6469 	  complaint (&symfile_complaints,
6470 		     _("Only single DW_OP_reg or DW_OP_fbreg is supported "
6471 		       "for DW_FORM_block* DW_AT_location for "
6472 		       "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6473 		     child_die->offset, cu->objfile->name);
6474 	  continue;
6475 	}
6476 
6477       attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
6478       if (!attr_form_is_block (attr))
6479 	{
6480 	  complaint (&symfile_complaints,
6481 		     _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
6482 		       "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6483 		     child_die->offset, cu->objfile->name);
6484 	  continue;
6485 	}
6486       parameter->value = DW_BLOCK (attr)->data;
6487       parameter->value_size = DW_BLOCK (attr)->size;
6488 
6489       /* Parameters are not pre-cleared by memset above.  */
6490       parameter->data_value = NULL;
6491       parameter->data_value_size = 0;
6492       call_site->parameter_count++;
6493 
6494       attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
6495       if (attr)
6496 	{
6497 	  if (!attr_form_is_block (attr))
6498 	    complaint (&symfile_complaints,
6499 		       _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
6500 			 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6501 		       child_die->offset, cu->objfile->name);
6502 	  else
6503 	    {
6504 	      parameter->data_value = DW_BLOCK (attr)->data;
6505 	      parameter->data_value_size = DW_BLOCK (attr)->size;
6506 	    }
6507 	}
6508     }
6509 }
6510 
6511 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
6512    Return 1 if the attributes are present and valid, otherwise, return 0.
6513    If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'.  */
6514 
6515 static int
6516 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
6517 		    CORE_ADDR *high_return, struct dwarf2_cu *cu,
6518 		    struct partial_symtab *ranges_pst)
6519 {
6520   struct objfile *objfile = cu->objfile;
6521   struct comp_unit_head *cu_header = &cu->header;
6522   bfd *obfd = objfile->obfd;
6523   unsigned int addr_size = cu_header->addr_size;
6524   CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6525   /* Base address selection entry.  */
6526   CORE_ADDR base;
6527   int found_base;
6528   unsigned int dummy;
6529   gdb_byte *buffer;
6530   CORE_ADDR marker;
6531   int low_set;
6532   CORE_ADDR low = 0;
6533   CORE_ADDR high = 0;
6534   CORE_ADDR baseaddr;
6535 
6536   found_base = cu->base_known;
6537   base = cu->base_address;
6538 
6539   dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
6540   if (offset >= dwarf2_per_objfile->ranges.size)
6541     {
6542       complaint (&symfile_complaints,
6543 		 _("Offset %d out of bounds for DW_AT_ranges attribute"),
6544 		 offset);
6545       return 0;
6546     }
6547   buffer = dwarf2_per_objfile->ranges.buffer + offset;
6548 
6549   /* Read in the largest possible address.  */
6550   marker = read_address (obfd, buffer, cu, &dummy);
6551   if ((marker & mask) == mask)
6552     {
6553       /* If we found the largest possible address, then
6554 	 read the base address.  */
6555       base = read_address (obfd, buffer + addr_size, cu, &dummy);
6556       buffer += 2 * addr_size;
6557       offset += 2 * addr_size;
6558       found_base = 1;
6559     }
6560 
6561   low_set = 0;
6562 
6563   baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6564 
6565   while (1)
6566     {
6567       CORE_ADDR range_beginning, range_end;
6568 
6569       range_beginning = read_address (obfd, buffer, cu, &dummy);
6570       buffer += addr_size;
6571       range_end = read_address (obfd, buffer, cu, &dummy);
6572       buffer += addr_size;
6573       offset += 2 * addr_size;
6574 
6575       /* An end of list marker is a pair of zero addresses.  */
6576       if (range_beginning == 0 && range_end == 0)
6577 	/* Found the end of list entry.  */
6578 	break;
6579 
6580       /* Each base address selection entry is a pair of 2 values.
6581 	 The first is the largest possible address, the second is
6582 	 the base address.  Check for a base address here.  */
6583       if ((range_beginning & mask) == mask)
6584 	{
6585 	  /* If we found the largest possible address, then
6586 	     read the base address.  */
6587 	  base = read_address (obfd, buffer + addr_size, cu, &dummy);
6588 	  found_base = 1;
6589 	  continue;
6590 	}
6591 
6592       if (!found_base)
6593 	{
6594 	  /* We have no valid base address for the ranges
6595 	     data.  */
6596 	  complaint (&symfile_complaints,
6597 		     _("Invalid .debug_ranges data (no base address)"));
6598 	  return 0;
6599 	}
6600 
6601       if (range_beginning > range_end)
6602 	{
6603 	  /* Inverted range entries are invalid.  */
6604 	  complaint (&symfile_complaints,
6605 		     _("Invalid .debug_ranges data (inverted range)"));
6606 	  return 0;
6607 	}
6608 
6609       /* Empty range entries have no effect.  */
6610       if (range_beginning == range_end)
6611 	continue;
6612 
6613       range_beginning += base;
6614       range_end += base;
6615 
6616       if (ranges_pst != NULL)
6617 	addrmap_set_empty (objfile->psymtabs_addrmap,
6618 			   range_beginning + baseaddr,
6619 			   range_end - 1 + baseaddr,
6620 			   ranges_pst);
6621 
6622       /* FIXME: This is recording everything as a low-high
6623 	 segment of consecutive addresses.  We should have a
6624 	 data structure for discontiguous block ranges
6625 	 instead.  */
6626       if (! low_set)
6627 	{
6628 	  low = range_beginning;
6629 	  high = range_end;
6630 	  low_set = 1;
6631 	}
6632       else
6633 	{
6634 	  if (range_beginning < low)
6635 	    low = range_beginning;
6636 	  if (range_end > high)
6637 	    high = range_end;
6638 	}
6639     }
6640 
6641   if (! low_set)
6642     /* If the first entry is an end-of-list marker, the range
6643        describes an empty scope, i.e. no instructions.  */
6644     return 0;
6645 
6646   if (low_return)
6647     *low_return = low;
6648   if (high_return)
6649     *high_return = high;
6650   return 1;
6651 }
6652 
6653 /* Get low and high pc attributes from a die.  Return 1 if the attributes
6654    are present and valid, otherwise, return 0.  Return -1 if the range is
6655    discontinuous, i.e. derived from DW_AT_ranges information.  */
6656 static int
6657 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
6658 		      CORE_ADDR *highpc, struct dwarf2_cu *cu,
6659 		      struct partial_symtab *pst)
6660 {
6661   struct attribute *attr;
6662   CORE_ADDR low = 0;
6663   CORE_ADDR high = 0;
6664   int ret = 0;
6665 
6666   attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6667   if (attr)
6668     {
6669       high = DW_ADDR (attr);
6670       attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6671       if (attr)
6672 	low = DW_ADDR (attr);
6673       else
6674 	/* Found high w/o low attribute.  */
6675 	return 0;
6676 
6677       /* Found consecutive range of addresses.  */
6678       ret = 1;
6679     }
6680   else
6681     {
6682       attr = dwarf2_attr (die, DW_AT_ranges, cu);
6683       if (attr != NULL)
6684 	{
6685 	  /* Value of the DW_AT_ranges attribute is the offset in the
6686 	     .debug_ranges section.  */
6687 	  if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
6688 	    return 0;
6689 	  /* Found discontinuous range of addresses.  */
6690 	  ret = -1;
6691 	}
6692     }
6693 
6694   /* read_partial_die has also the strict LOW < HIGH requirement.  */
6695   if (high <= low)
6696     return 0;
6697 
6698   /* When using the GNU linker, .gnu.linkonce. sections are used to
6699      eliminate duplicate copies of functions and vtables and such.
6700      The linker will arbitrarily choose one and discard the others.
6701      The AT_*_pc values for such functions refer to local labels in
6702      these sections.  If the section from that file was discarded, the
6703      labels are not in the output, so the relocs get a value of 0.
6704      If this is a discarded function, mark the pc bounds as invalid,
6705      so that GDB will ignore it.  */
6706   if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
6707     return 0;
6708 
6709   *lowpc = low;
6710   if (highpc)
6711     *highpc = high;
6712   return ret;
6713 }
6714 
6715 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
6716    its low and high PC addresses.  Do nothing if these addresses could not
6717    be determined.  Otherwise, set LOWPC to the low address if it is smaller,
6718    and HIGHPC to the high address if greater than HIGHPC.  */
6719 
6720 static void
6721 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
6722                                  CORE_ADDR *lowpc, CORE_ADDR *highpc,
6723                                  struct dwarf2_cu *cu)
6724 {
6725   CORE_ADDR low, high;
6726   struct die_info *child = die->child;
6727 
6728   if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
6729     {
6730       *lowpc = min (*lowpc, low);
6731       *highpc = max (*highpc, high);
6732     }
6733 
6734   /* If the language does not allow nested subprograms (either inside
6735      subprograms or lexical blocks), we're done.  */
6736   if (cu->language != language_ada)
6737     return;
6738 
6739   /* Check all the children of the given DIE.  If it contains nested
6740      subprograms, then check their pc bounds.  Likewise, we need to
6741      check lexical blocks as well, as they may also contain subprogram
6742      definitions.  */
6743   while (child && child->tag)
6744     {
6745       if (child->tag == DW_TAG_subprogram
6746           || child->tag == DW_TAG_lexical_block)
6747         dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
6748       child = sibling_die (child);
6749     }
6750 }
6751 
6752 /* Get the low and high pc's represented by the scope DIE, and store
6753    them in *LOWPC and *HIGHPC.  If the correct values can't be
6754    determined, set *LOWPC to -1 and *HIGHPC to 0.  */
6755 
6756 static void
6757 get_scope_pc_bounds (struct die_info *die,
6758 		     CORE_ADDR *lowpc, CORE_ADDR *highpc,
6759 		     struct dwarf2_cu *cu)
6760 {
6761   CORE_ADDR best_low = (CORE_ADDR) -1;
6762   CORE_ADDR best_high = (CORE_ADDR) 0;
6763   CORE_ADDR current_low, current_high;
6764 
6765   if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
6766     {
6767       best_low = current_low;
6768       best_high = current_high;
6769     }
6770   else
6771     {
6772       struct die_info *child = die->child;
6773 
6774       while (child && child->tag)
6775 	{
6776 	  switch (child->tag) {
6777 	  case DW_TAG_subprogram:
6778             dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
6779 	    break;
6780 	  case DW_TAG_namespace:
6781 	  case DW_TAG_module:
6782 	    /* FIXME: carlton/2004-01-16: Should we do this for
6783 	       DW_TAG_class_type/DW_TAG_structure_type, too?  I think
6784 	       that current GCC's always emit the DIEs corresponding
6785 	       to definitions of methods of classes as children of a
6786 	       DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
6787 	       the DIEs giving the declarations, which could be
6788 	       anywhere).  But I don't see any reason why the
6789 	       standards says that they have to be there.  */
6790 	    get_scope_pc_bounds (child, &current_low, &current_high, cu);
6791 
6792 	    if (current_low != ((CORE_ADDR) -1))
6793 	      {
6794 		best_low = min (best_low, current_low);
6795 		best_high = max (best_high, current_high);
6796 	      }
6797 	    break;
6798 	  default:
6799 	    /* Ignore.  */
6800 	    break;
6801 	  }
6802 
6803 	  child = sibling_die (child);
6804 	}
6805     }
6806 
6807   *lowpc = best_low;
6808   *highpc = best_high;
6809 }
6810 
6811 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
6812    in DIE.  */
6813 static void
6814 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
6815                             CORE_ADDR baseaddr, struct dwarf2_cu *cu)
6816 {
6817   struct attribute *attr;
6818 
6819   attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6820   if (attr)
6821     {
6822       CORE_ADDR high = DW_ADDR (attr);
6823 
6824       attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6825       if (attr)
6826         {
6827           CORE_ADDR low = DW_ADDR (attr);
6828 
6829           record_block_range (block, baseaddr + low, baseaddr + high - 1);
6830         }
6831     }
6832 
6833   attr = dwarf2_attr (die, DW_AT_ranges, cu);
6834   if (attr)
6835     {
6836       bfd *obfd = cu->objfile->obfd;
6837 
6838       /* The value of the DW_AT_ranges attribute is the offset of the
6839          address range list in the .debug_ranges section.  */
6840       unsigned long offset = DW_UNSND (attr);
6841       gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
6842 
6843       /* For some target architectures, but not others, the
6844          read_address function sign-extends the addresses it returns.
6845          To recognize base address selection entries, we need a
6846          mask.  */
6847       unsigned int addr_size = cu->header.addr_size;
6848       CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6849 
6850       /* The base address, to which the next pair is relative.  Note
6851          that this 'base' is a DWARF concept: most entries in a range
6852          list are relative, to reduce the number of relocs against the
6853          debugging information.  This is separate from this function's
6854          'baseaddr' argument, which GDB uses to relocate debugging
6855          information from a shared library based on the address at
6856          which the library was loaded.  */
6857       CORE_ADDR base = cu->base_address;
6858       int base_known = cu->base_known;
6859 
6860       gdb_assert (dwarf2_per_objfile->ranges.readin);
6861       if (offset >= dwarf2_per_objfile->ranges.size)
6862         {
6863           complaint (&symfile_complaints,
6864                      _("Offset %lu out of bounds for DW_AT_ranges attribute"),
6865                      offset);
6866           return;
6867         }
6868 
6869       for (;;)
6870         {
6871           unsigned int bytes_read;
6872           CORE_ADDR start, end;
6873 
6874           start = read_address (obfd, buffer, cu, &bytes_read);
6875           buffer += bytes_read;
6876           end = read_address (obfd, buffer, cu, &bytes_read);
6877           buffer += bytes_read;
6878 
6879           /* Did we find the end of the range list?  */
6880           if (start == 0 && end == 0)
6881             break;
6882 
6883           /* Did we find a base address selection entry?  */
6884           else if ((start & base_select_mask) == base_select_mask)
6885             {
6886               base = end;
6887               base_known = 1;
6888             }
6889 
6890           /* We found an ordinary address range.  */
6891           else
6892             {
6893               if (!base_known)
6894                 {
6895                   complaint (&symfile_complaints,
6896 			     _("Invalid .debug_ranges data "
6897 			       "(no base address)"));
6898                   return;
6899                 }
6900 
6901 	      if (start > end)
6902 		{
6903 		  /* Inverted range entries are invalid.  */
6904 		  complaint (&symfile_complaints,
6905 			     _("Invalid .debug_ranges data "
6906 			       "(inverted range)"));
6907 		  return;
6908 		}
6909 
6910 	      /* Empty range entries have no effect.  */
6911 	      if (start == end)
6912 		continue;
6913 
6914               record_block_range (block,
6915                                   baseaddr + base + start,
6916                                   baseaddr + base + end - 1);
6917             }
6918         }
6919     }
6920 }
6921 
6922 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
6923    to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
6924    during 4.6.0 experimental.  */
6925 
6926 static int
6927 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
6928 {
6929   const char *cs;
6930   int major, minor, release;
6931 
6932   if (cu->producer == NULL)
6933     {
6934       /* For unknown compilers expect their behavior is DWARF version
6935 	 compliant.
6936 
6937 	 GCC started to support .debug_types sections by -gdwarf-4 since
6938 	 gcc-4.5.x.  As the .debug_types sections are missing DW_AT_producer
6939 	 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
6940 	 combination.  gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
6941 	 interpreted incorrectly by GDB now - GCC PR debug/48229.  */
6942 
6943       return 0;
6944     }
6945 
6946   /* Skip any identifier after "GNU " - such as "C++" or "Java".  */
6947 
6948   if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) != 0)
6949     {
6950       /* For non-GCC compilers expect their behavior is DWARF version
6951 	 compliant.  */
6952 
6953       return 0;
6954     }
6955   cs = &cu->producer[strlen ("GNU ")];
6956   while (*cs && !isdigit (*cs))
6957     cs++;
6958   if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
6959     {
6960       /* Not recognized as GCC.  */
6961 
6962       return 0;
6963     }
6964 
6965   return major < 4 || (major == 4 && minor < 6);
6966 }
6967 
6968 /* Return the default accessibility type if it is not overriden by
6969    DW_AT_accessibility.  */
6970 
6971 static enum dwarf_access_attribute
6972 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
6973 {
6974   if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
6975     {
6976       /* The default DWARF 2 accessibility for members is public, the default
6977 	 accessibility for inheritance is private.  */
6978 
6979       if (die->tag != DW_TAG_inheritance)
6980 	return DW_ACCESS_public;
6981       else
6982 	return DW_ACCESS_private;
6983     }
6984   else
6985     {
6986       /* DWARF 3+ defines the default accessibility a different way.  The same
6987 	 rules apply now for DW_TAG_inheritance as for the members and it only
6988 	 depends on the container kind.  */
6989 
6990       if (die->parent->tag == DW_TAG_class_type)
6991 	return DW_ACCESS_private;
6992       else
6993 	return DW_ACCESS_public;
6994     }
6995 }
6996 
6997 /* Look for DW_AT_data_member_location.  Set *OFFSET to the byte
6998    offset.  If the attribute was not found return 0, otherwise return
6999    1.  If it was found but could not properly be handled, set *OFFSET
7000    to 0.  */
7001 
7002 static int
7003 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
7004 			     LONGEST *offset)
7005 {
7006   struct attribute *attr;
7007 
7008   attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
7009   if (attr != NULL)
7010     {
7011       *offset = 0;
7012 
7013       /* Note that we do not check for a section offset first here.
7014 	 This is because DW_AT_data_member_location is new in DWARF 4,
7015 	 so if we see it, we can assume that a constant form is really
7016 	 a constant and not a section offset.  */
7017       if (attr_form_is_constant (attr))
7018 	*offset = dwarf2_get_attr_constant_value (attr, 0);
7019       else if (attr_form_is_section_offset (attr))
7020 	dwarf2_complex_location_expr_complaint ();
7021       else if (attr_form_is_block (attr))
7022 	*offset = decode_locdesc (DW_BLOCK (attr), cu);
7023       else
7024 	dwarf2_complex_location_expr_complaint ();
7025 
7026       return 1;
7027     }
7028 
7029   return 0;
7030 }
7031 
7032 /* Add an aggregate field to the field list.  */
7033 
7034 static void
7035 dwarf2_add_field (struct field_info *fip, struct die_info *die,
7036 		  struct dwarf2_cu *cu)
7037 {
7038   struct objfile *objfile = cu->objfile;
7039   struct gdbarch *gdbarch = get_objfile_arch (objfile);
7040   struct nextfield *new_field;
7041   struct attribute *attr;
7042   struct field *fp;
7043   char *fieldname = "";
7044 
7045   /* Allocate a new field list entry and link it in.  */
7046   new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
7047   make_cleanup (xfree, new_field);
7048   memset (new_field, 0, sizeof (struct nextfield));
7049 
7050   if (die->tag == DW_TAG_inheritance)
7051     {
7052       new_field->next = fip->baseclasses;
7053       fip->baseclasses = new_field;
7054     }
7055   else
7056     {
7057       new_field->next = fip->fields;
7058       fip->fields = new_field;
7059     }
7060   fip->nfields++;
7061 
7062   attr = dwarf2_attr (die, DW_AT_accessibility, cu);
7063   if (attr)
7064     new_field->accessibility = DW_UNSND (attr);
7065   else
7066     new_field->accessibility = dwarf2_default_access_attribute (die, cu);
7067   if (new_field->accessibility != DW_ACCESS_public)
7068     fip->non_public_fields = 1;
7069 
7070   attr = dwarf2_attr (die, DW_AT_virtuality, cu);
7071   if (attr)
7072     new_field->virtuality = DW_UNSND (attr);
7073   else
7074     new_field->virtuality = DW_VIRTUALITY_none;
7075 
7076   fp = &new_field->field;
7077 
7078   if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
7079     {
7080       LONGEST offset;
7081 
7082       /* Data member other than a C++ static data member.  */
7083 
7084       /* Get type of field.  */
7085       fp->type = die_type (die, cu);
7086 
7087       SET_FIELD_BITPOS (*fp, 0);
7088 
7089       /* Get bit size of field (zero if none).  */
7090       attr = dwarf2_attr (die, DW_AT_bit_size, cu);
7091       if (attr)
7092 	{
7093 	  FIELD_BITSIZE (*fp) = DW_UNSND (attr);
7094 	}
7095       else
7096 	{
7097 	  FIELD_BITSIZE (*fp) = 0;
7098 	}
7099 
7100       /* Get bit offset of field.  */
7101       if (handle_data_member_location (die, cu, &offset))
7102 	SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
7103       attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
7104       if (attr)
7105 	{
7106 	  if (gdbarch_bits_big_endian (gdbarch))
7107 	    {
7108 	      /* For big endian bits, the DW_AT_bit_offset gives the
7109 	         additional bit offset from the MSB of the containing
7110 	         anonymous object to the MSB of the field.  We don't
7111 	         have to do anything special since we don't need to
7112 	         know the size of the anonymous object.  */
7113 	      FIELD_BITPOS (*fp) += DW_UNSND (attr);
7114 	    }
7115 	  else
7116 	    {
7117 	      /* For little endian bits, compute the bit offset to the
7118 	         MSB of the anonymous object, subtract off the number of
7119 	         bits from the MSB of the field to the MSB of the
7120 	         object, and then subtract off the number of bits of
7121 	         the field itself.  The result is the bit offset of
7122 	         the LSB of the field.  */
7123 	      int anonymous_size;
7124 	      int bit_offset = DW_UNSND (attr);
7125 
7126 	      attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7127 	      if (attr)
7128 		{
7129 		  /* The size of the anonymous object containing
7130 		     the bit field is explicit, so use the
7131 		     indicated size (in bytes).  */
7132 		  anonymous_size = DW_UNSND (attr);
7133 		}
7134 	      else
7135 		{
7136 		  /* The size of the anonymous object containing
7137 		     the bit field must be inferred from the type
7138 		     attribute of the data member containing the
7139 		     bit field.  */
7140 		  anonymous_size = TYPE_LENGTH (fp->type);
7141 		}
7142 	      FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
7143 		- bit_offset - FIELD_BITSIZE (*fp);
7144 	    }
7145 	}
7146 
7147       /* Get name of field.  */
7148       fieldname = dwarf2_name (die, cu);
7149       if (fieldname == NULL)
7150 	fieldname = "";
7151 
7152       /* The name is already allocated along with this objfile, so we don't
7153 	 need to duplicate it for the type.  */
7154       fp->name = fieldname;
7155 
7156       /* Change accessibility for artificial fields (e.g. virtual table
7157          pointer or virtual base class pointer) to private.  */
7158       if (dwarf2_attr (die, DW_AT_artificial, cu))
7159 	{
7160 	  FIELD_ARTIFICIAL (*fp) = 1;
7161 	  new_field->accessibility = DW_ACCESS_private;
7162 	  fip->non_public_fields = 1;
7163 	}
7164     }
7165   else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
7166     {
7167       /* C++ static member.  */
7168 
7169       /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
7170 	 is a declaration, but all versions of G++ as of this writing
7171 	 (so through at least 3.2.1) incorrectly generate
7172 	 DW_TAG_variable tags.  */
7173 
7174       const char *physname;
7175 
7176       /* Get name of field.  */
7177       fieldname = dwarf2_name (die, cu);
7178       if (fieldname == NULL)
7179 	return;
7180 
7181       attr = dwarf2_attr (die, DW_AT_const_value, cu);
7182       if (attr
7183 	  /* Only create a symbol if this is an external value.
7184 	     new_symbol checks this and puts the value in the global symbol
7185 	     table, which we want.  If it is not external, new_symbol
7186 	     will try to put the value in cu->list_in_scope which is wrong.  */
7187 	  && dwarf2_flag_true_p (die, DW_AT_external, cu))
7188 	{
7189 	  /* A static const member, not much different than an enum as far as
7190 	     we're concerned, except that we can support more types.  */
7191 	  new_symbol (die, NULL, cu);
7192 	}
7193 
7194       /* Get physical name.  */
7195       physname = dwarf2_physname (fieldname, die, cu);
7196 
7197       /* The name is already allocated along with this objfile, so we don't
7198 	 need to duplicate it for the type.  */
7199       SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
7200       FIELD_TYPE (*fp) = die_type (die, cu);
7201       FIELD_NAME (*fp) = fieldname;
7202     }
7203   else if (die->tag == DW_TAG_inheritance)
7204     {
7205       LONGEST offset;
7206 
7207       /* C++ base class field.  */
7208       if (handle_data_member_location (die, cu, &offset))
7209 	SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
7210       FIELD_BITSIZE (*fp) = 0;
7211       FIELD_TYPE (*fp) = die_type (die, cu);
7212       FIELD_NAME (*fp) = type_name_no_tag (fp->type);
7213       fip->nbaseclasses++;
7214     }
7215 }
7216 
7217 /* Add a typedef defined in the scope of the FIP's class.  */
7218 
7219 static void
7220 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
7221 		    struct dwarf2_cu *cu)
7222 {
7223   struct objfile *objfile = cu->objfile;
7224   struct typedef_field_list *new_field;
7225   struct attribute *attr;
7226   struct typedef_field *fp;
7227   char *fieldname = "";
7228 
7229   /* Allocate a new field list entry and link it in.  */
7230   new_field = xzalloc (sizeof (*new_field));
7231   make_cleanup (xfree, new_field);
7232 
7233   gdb_assert (die->tag == DW_TAG_typedef);
7234 
7235   fp = &new_field->field;
7236 
7237   /* Get name of field.  */
7238   fp->name = dwarf2_name (die, cu);
7239   if (fp->name == NULL)
7240     return;
7241 
7242   fp->type = read_type_die (die, cu);
7243 
7244   new_field->next = fip->typedef_field_list;
7245   fip->typedef_field_list = new_field;
7246   fip->typedef_field_list_count++;
7247 }
7248 
7249 /* Create the vector of fields, and attach it to the type.  */
7250 
7251 static void
7252 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
7253 			      struct dwarf2_cu *cu)
7254 {
7255   int nfields = fip->nfields;
7256 
7257   /* Record the field count, allocate space for the array of fields,
7258      and create blank accessibility bitfields if necessary.  */
7259   TYPE_NFIELDS (type) = nfields;
7260   TYPE_FIELDS (type) = (struct field *)
7261     TYPE_ALLOC (type, sizeof (struct field) * nfields);
7262   memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
7263 
7264   if (fip->non_public_fields && cu->language != language_ada)
7265     {
7266       ALLOCATE_CPLUS_STRUCT_TYPE (type);
7267 
7268       TYPE_FIELD_PRIVATE_BITS (type) =
7269 	(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7270       B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
7271 
7272       TYPE_FIELD_PROTECTED_BITS (type) =
7273 	(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7274       B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
7275 
7276       TYPE_FIELD_IGNORE_BITS (type) =
7277 	(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7278       B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
7279     }
7280 
7281   /* If the type has baseclasses, allocate and clear a bit vector for
7282      TYPE_FIELD_VIRTUAL_BITS.  */
7283   if (fip->nbaseclasses && cu->language != language_ada)
7284     {
7285       int num_bytes = B_BYTES (fip->nbaseclasses);
7286       unsigned char *pointer;
7287 
7288       ALLOCATE_CPLUS_STRUCT_TYPE (type);
7289       pointer = TYPE_ALLOC (type, num_bytes);
7290       TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
7291       B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
7292       TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
7293     }
7294 
7295   /* Copy the saved-up fields into the field vector.  Start from the head of
7296      the list, adding to the tail of the field array, so that they end up in
7297      the same order in the array in which they were added to the list.  */
7298   while (nfields-- > 0)
7299     {
7300       struct nextfield *fieldp;
7301 
7302       if (fip->fields)
7303 	{
7304 	  fieldp = fip->fields;
7305 	  fip->fields = fieldp->next;
7306 	}
7307       else
7308 	{
7309 	  fieldp = fip->baseclasses;
7310 	  fip->baseclasses = fieldp->next;
7311 	}
7312 
7313       TYPE_FIELD (type, nfields) = fieldp->field;
7314       switch (fieldp->accessibility)
7315 	{
7316 	case DW_ACCESS_private:
7317 	  if (cu->language != language_ada)
7318 	    SET_TYPE_FIELD_PRIVATE (type, nfields);
7319 	  break;
7320 
7321 	case DW_ACCESS_protected:
7322 	  if (cu->language != language_ada)
7323 	    SET_TYPE_FIELD_PROTECTED (type, nfields);
7324 	  break;
7325 
7326 	case DW_ACCESS_public:
7327 	  break;
7328 
7329 	default:
7330 	  /* Unknown accessibility.  Complain and treat it as public.  */
7331 	  {
7332 	    complaint (&symfile_complaints, _("unsupported accessibility %d"),
7333 		       fieldp->accessibility);
7334 	  }
7335 	  break;
7336 	}
7337       if (nfields < fip->nbaseclasses)
7338 	{
7339 	  switch (fieldp->virtuality)
7340 	    {
7341 	    case DW_VIRTUALITY_virtual:
7342 	    case DW_VIRTUALITY_pure_virtual:
7343 	      if (cu->language == language_ada)
7344 		error (_("unexpected virtuality in component of Ada type"));
7345 	      SET_TYPE_FIELD_VIRTUAL (type, nfields);
7346 	      break;
7347 	    }
7348 	}
7349     }
7350 }
7351 
7352 /* Add a member function to the proper fieldlist.  */
7353 
7354 static void
7355 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
7356 		      struct type *type, struct dwarf2_cu *cu)
7357 {
7358   struct objfile *objfile = cu->objfile;
7359   struct attribute *attr;
7360   struct fnfieldlist *flp;
7361   int i;
7362   struct fn_field *fnp;
7363   char *fieldname;
7364   struct nextfnfield *new_fnfield;
7365   struct type *this_type;
7366   enum dwarf_access_attribute accessibility;
7367 
7368   if (cu->language == language_ada)
7369     error (_("unexpected member function in Ada type"));
7370 
7371   /* Get name of member function.  */
7372   fieldname = dwarf2_name (die, cu);
7373   if (fieldname == NULL)
7374     return;
7375 
7376   /* Look up member function name in fieldlist.  */
7377   for (i = 0; i < fip->nfnfields; i++)
7378     {
7379       if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
7380 	break;
7381     }
7382 
7383   /* Create new list element if necessary.  */
7384   if (i < fip->nfnfields)
7385     flp = &fip->fnfieldlists[i];
7386   else
7387     {
7388       if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
7389 	{
7390 	  fip->fnfieldlists = (struct fnfieldlist *)
7391 	    xrealloc (fip->fnfieldlists,
7392 		      (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
7393 		      * sizeof (struct fnfieldlist));
7394 	  if (fip->nfnfields == 0)
7395 	    make_cleanup (free_current_contents, &fip->fnfieldlists);
7396 	}
7397       flp = &fip->fnfieldlists[fip->nfnfields];
7398       flp->name = fieldname;
7399       flp->length = 0;
7400       flp->head = NULL;
7401       i = fip->nfnfields++;
7402     }
7403 
7404   /* Create a new member function field and chain it to the field list
7405      entry.  */
7406   new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
7407   make_cleanup (xfree, new_fnfield);
7408   memset (new_fnfield, 0, sizeof (struct nextfnfield));
7409   new_fnfield->next = flp->head;
7410   flp->head = new_fnfield;
7411   flp->length++;
7412 
7413   /* Fill in the member function field info.  */
7414   fnp = &new_fnfield->fnfield;
7415 
7416   /* Delay processing of the physname until later.  */
7417   if (cu->language == language_cplus || cu->language == language_java)
7418     {
7419       add_to_method_list (type, i, flp->length - 1, fieldname,
7420 			  die, cu);
7421     }
7422   else
7423     {
7424       const char *physname = dwarf2_physname (fieldname, die, cu);
7425       fnp->physname = physname ? physname : "";
7426     }
7427 
7428   fnp->type = alloc_type (objfile);
7429   this_type = read_type_die (die, cu);
7430   if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
7431     {
7432       int nparams = TYPE_NFIELDS (this_type);
7433 
7434       /* TYPE is the domain of this method, and THIS_TYPE is the type
7435 	   of the method itself (TYPE_CODE_METHOD).  */
7436       smash_to_method_type (fnp->type, type,
7437 			    TYPE_TARGET_TYPE (this_type),
7438 			    TYPE_FIELDS (this_type),
7439 			    TYPE_NFIELDS (this_type),
7440 			    TYPE_VARARGS (this_type));
7441 
7442       /* Handle static member functions.
7443          Dwarf2 has no clean way to discern C++ static and non-static
7444          member functions.  G++ helps GDB by marking the first
7445          parameter for non-static member functions (which is the this
7446          pointer) as artificial.  We obtain this information from
7447          read_subroutine_type via TYPE_FIELD_ARTIFICIAL.  */
7448       if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
7449 	fnp->voffset = VOFFSET_STATIC;
7450     }
7451   else
7452     complaint (&symfile_complaints, _("member function type missing for '%s'"),
7453 	       dwarf2_full_name (fieldname, die, cu));
7454 
7455   /* Get fcontext from DW_AT_containing_type if present.  */
7456   if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
7457     fnp->fcontext = die_containing_type (die, cu);
7458 
7459   /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
7460      is_volatile is irrelevant, as it is needed by gdb_mangle_name only.  */
7461 
7462   /* Get accessibility.  */
7463   attr = dwarf2_attr (die, DW_AT_accessibility, cu);
7464   if (attr)
7465     accessibility = DW_UNSND (attr);
7466   else
7467     accessibility = dwarf2_default_access_attribute (die, cu);
7468   switch (accessibility)
7469     {
7470     case DW_ACCESS_private:
7471       fnp->is_private = 1;
7472       break;
7473     case DW_ACCESS_protected:
7474       fnp->is_protected = 1;
7475       break;
7476     }
7477 
7478   /* Check for artificial methods.  */
7479   attr = dwarf2_attr (die, DW_AT_artificial, cu);
7480   if (attr && DW_UNSND (attr) != 0)
7481     fnp->is_artificial = 1;
7482 
7483   /* Get index in virtual function table if it is a virtual member
7484      function.  For older versions of GCC, this is an offset in the
7485      appropriate virtual table, as specified by DW_AT_containing_type.
7486      For everyone else, it is an expression to be evaluated relative
7487      to the object address.  */
7488 
7489   attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
7490   if (attr)
7491     {
7492       if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
7493         {
7494 	  if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
7495 	    {
7496 	      /* Old-style GCC.  */
7497 	      fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
7498 	    }
7499 	  else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
7500 		   || (DW_BLOCK (attr)->size > 1
7501 		       && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
7502 		       && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
7503 	    {
7504 	      struct dwarf_block blk;
7505 	      int offset;
7506 
7507 	      offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
7508 			? 1 : 2);
7509 	      blk.size = DW_BLOCK (attr)->size - offset;
7510 	      blk.data = DW_BLOCK (attr)->data + offset;
7511 	      fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
7512 	      if ((fnp->voffset % cu->header.addr_size) != 0)
7513 		dwarf2_complex_location_expr_complaint ();
7514 	      else
7515 		fnp->voffset /= cu->header.addr_size;
7516 	      fnp->voffset += 2;
7517 	    }
7518 	  else
7519 	    dwarf2_complex_location_expr_complaint ();
7520 
7521 	  if (!fnp->fcontext)
7522 	    fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
7523 	}
7524       else if (attr_form_is_section_offset (attr))
7525         {
7526 	  dwarf2_complex_location_expr_complaint ();
7527         }
7528       else
7529         {
7530 	  dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
7531 						 fieldname);
7532         }
7533     }
7534   else
7535     {
7536       attr = dwarf2_attr (die, DW_AT_virtuality, cu);
7537       if (attr && DW_UNSND (attr))
7538 	{
7539 	  /* GCC does this, as of 2008-08-25; PR debug/37237.  */
7540 	  complaint (&symfile_complaints,
7541 		     _("Member function \"%s\" (offset %d) is virtual "
7542 		       "but the vtable offset is not specified"),
7543 		     fieldname, die->offset);
7544 	  ALLOCATE_CPLUS_STRUCT_TYPE (type);
7545 	  TYPE_CPLUS_DYNAMIC (type) = 1;
7546 	}
7547     }
7548 }
7549 
7550 /* Create the vector of member function fields, and attach it to the type.  */
7551 
7552 static void
7553 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
7554 				 struct dwarf2_cu *cu)
7555 {
7556   struct fnfieldlist *flp;
7557   int total_length = 0;
7558   int i;
7559 
7560   if (cu->language == language_ada)
7561     error (_("unexpected member functions in Ada type"));
7562 
7563   ALLOCATE_CPLUS_STRUCT_TYPE (type);
7564   TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
7565     TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
7566 
7567   for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
7568     {
7569       struct nextfnfield *nfp = flp->head;
7570       struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
7571       int k;
7572 
7573       TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
7574       TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
7575       fn_flp->fn_fields = (struct fn_field *)
7576 	TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
7577       for (k = flp->length; (k--, nfp); nfp = nfp->next)
7578 	fn_flp->fn_fields[k] = nfp->fnfield;
7579 
7580       total_length += flp->length;
7581     }
7582 
7583   TYPE_NFN_FIELDS (type) = fip->nfnfields;
7584   TYPE_NFN_FIELDS_TOTAL (type) = total_length;
7585 }
7586 
7587 /* Returns non-zero if NAME is the name of a vtable member in CU's
7588    language, zero otherwise.  */
7589 static int
7590 is_vtable_name (const char *name, struct dwarf2_cu *cu)
7591 {
7592   static const char vptr[] = "_vptr";
7593   static const char vtable[] = "vtable";
7594 
7595   /* Look for the C++ and Java forms of the vtable.  */
7596   if ((cu->language == language_java
7597        && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
7598        || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
7599        && is_cplus_marker (name[sizeof (vptr) - 1])))
7600     return 1;
7601 
7602   return 0;
7603 }
7604 
7605 /* GCC outputs unnamed structures that are really pointers to member
7606    functions, with the ABI-specified layout.  If TYPE describes
7607    such a structure, smash it into a member function type.
7608 
7609    GCC shouldn't do this; it should just output pointer to member DIEs.
7610    This is GCC PR debug/28767.  */
7611 
7612 static void
7613 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
7614 {
7615   struct type *pfn_type, *domain_type, *new_type;
7616 
7617   /* Check for a structure with no name and two children.  */
7618   if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
7619     return;
7620 
7621   /* Check for __pfn and __delta members.  */
7622   if (TYPE_FIELD_NAME (type, 0) == NULL
7623       || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
7624       || TYPE_FIELD_NAME (type, 1) == NULL
7625       || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
7626     return;
7627 
7628   /* Find the type of the method.  */
7629   pfn_type = TYPE_FIELD_TYPE (type, 0);
7630   if (pfn_type == NULL
7631       || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
7632       || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
7633     return;
7634 
7635   /* Look for the "this" argument.  */
7636   pfn_type = TYPE_TARGET_TYPE (pfn_type);
7637   if (TYPE_NFIELDS (pfn_type) == 0
7638       /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
7639       || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
7640     return;
7641 
7642   domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
7643   new_type = alloc_type (objfile);
7644   smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
7645 			TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
7646 			TYPE_VARARGS (pfn_type));
7647   smash_to_methodptr_type (type, new_type);
7648 }
7649 
7650 /* Called when we find the DIE that starts a structure or union scope
7651    (definition) to create a type for the structure or union.  Fill in
7652    the type's name and general properties; the members will not be
7653    processed until process_structure_type.
7654 
7655    NOTE: we need to call these functions regardless of whether or not the
7656    DIE has a DW_AT_name attribute, since it might be an anonymous
7657    structure or union.  This gets the type entered into our set of
7658    user defined types.
7659 
7660    However, if the structure is incomplete (an opaque struct/union)
7661    then suppress creating a symbol table entry for it since gdb only
7662    wants to find the one with the complete definition.  Note that if
7663    it is complete, we just call new_symbol, which does it's own
7664    checking about whether the struct/union is anonymous or not (and
7665    suppresses creating a symbol table entry itself).  */
7666 
7667 static struct type *
7668 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
7669 {
7670   struct objfile *objfile = cu->objfile;
7671   struct type *type;
7672   struct attribute *attr;
7673   char *name;
7674 
7675   /* If the definition of this type lives in .debug_types, read that type.
7676      Don't follow DW_AT_specification though, that will take us back up
7677      the chain and we want to go down.  */
7678   attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7679   if (attr)
7680     {
7681       struct dwarf2_cu *type_cu = cu;
7682       struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
7683 
7684       /* We could just recurse on read_structure_type, but we need to call
7685 	 get_die_type to ensure only one type for this DIE is created.
7686 	 This is important, for example, because for c++ classes we need
7687 	 TYPE_NAME set which is only done by new_symbol.  Blech.  */
7688       type = read_type_die (type_die, type_cu);
7689 
7690       /* TYPE_CU may not be the same as CU.
7691 	 Ensure TYPE is recorded in CU's type_hash table.  */
7692       return set_die_type (die, type, cu);
7693     }
7694 
7695   type = alloc_type (objfile);
7696   INIT_CPLUS_SPECIFIC (type);
7697 
7698   name = dwarf2_name (die, cu);
7699   if (name != NULL)
7700     {
7701       if (cu->language == language_cplus
7702 	  || cu->language == language_java)
7703 	{
7704 	  char *full_name = (char *) dwarf2_full_name (name, die, cu);
7705 
7706 	  /* dwarf2_full_name might have already finished building the DIE's
7707 	     type.  If so, there is no need to continue.  */
7708 	  if (get_die_type (die, cu) != NULL)
7709 	    return get_die_type (die, cu);
7710 
7711 	  TYPE_TAG_NAME (type) = full_name;
7712 	  if (die->tag == DW_TAG_structure_type
7713 	      || die->tag == DW_TAG_class_type)
7714 	    TYPE_NAME (type) = TYPE_TAG_NAME (type);
7715 	}
7716       else
7717 	{
7718 	  /* The name is already allocated along with this objfile, so
7719 	     we don't need to duplicate it for the type.  */
7720 	  TYPE_TAG_NAME (type) = (char *) name;
7721 	  if (die->tag == DW_TAG_class_type)
7722 	    TYPE_NAME (type) = TYPE_TAG_NAME (type);
7723 	}
7724     }
7725 
7726   if (die->tag == DW_TAG_structure_type)
7727     {
7728       TYPE_CODE (type) = TYPE_CODE_STRUCT;
7729     }
7730   else if (die->tag == DW_TAG_union_type)
7731     {
7732       TYPE_CODE (type) = TYPE_CODE_UNION;
7733     }
7734   else
7735     {
7736       TYPE_CODE (type) = TYPE_CODE_CLASS;
7737     }
7738 
7739   if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
7740     TYPE_DECLARED_CLASS (type) = 1;
7741 
7742   attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7743   if (attr)
7744     {
7745       TYPE_LENGTH (type) = DW_UNSND (attr);
7746     }
7747   else
7748     {
7749       TYPE_LENGTH (type) = 0;
7750     }
7751 
7752   TYPE_STUB_SUPPORTED (type) = 1;
7753   if (die_is_declaration (die, cu))
7754     TYPE_STUB (type) = 1;
7755   else if (attr == NULL && die->child == NULL
7756 	   && producer_is_realview (cu->producer))
7757     /* RealView does not output the required DW_AT_declaration
7758        on incomplete types.  */
7759     TYPE_STUB (type) = 1;
7760 
7761   /* We need to add the type field to the die immediately so we don't
7762      infinitely recurse when dealing with pointers to the structure
7763      type within the structure itself.  */
7764   set_die_type (die, type, cu);
7765 
7766   /* set_die_type should be already done.  */
7767   set_descriptive_type (type, die, cu);
7768 
7769   return type;
7770 }
7771 
7772 /* Finish creating a structure or union type, including filling in
7773    its members and creating a symbol for it.  */
7774 
7775 static void
7776 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
7777 {
7778   struct objfile *objfile = cu->objfile;
7779   struct die_info *child_die = die->child;
7780   struct type *type;
7781 
7782   type = get_die_type (die, cu);
7783   if (type == NULL)
7784     type = read_structure_type (die, cu);
7785 
7786   if (die->child != NULL && ! die_is_declaration (die, cu))
7787     {
7788       struct field_info fi;
7789       struct die_info *child_die;
7790       VEC (symbolp) *template_args = NULL;
7791       struct cleanup *back_to = make_cleanup (null_cleanup, 0);
7792 
7793       memset (&fi, 0, sizeof (struct field_info));
7794 
7795       child_die = die->child;
7796 
7797       while (child_die && child_die->tag)
7798 	{
7799 	  if (child_die->tag == DW_TAG_member
7800 	      || child_die->tag == DW_TAG_variable)
7801 	    {
7802 	      /* NOTE: carlton/2002-11-05: A C++ static data member
7803 		 should be a DW_TAG_member that is a declaration, but
7804 		 all versions of G++ as of this writing (so through at
7805 		 least 3.2.1) incorrectly generate DW_TAG_variable
7806 		 tags for them instead.  */
7807 	      dwarf2_add_field (&fi, child_die, cu);
7808 	    }
7809 	  else if (child_die->tag == DW_TAG_subprogram)
7810 	    {
7811 	      /* C++ member function.  */
7812 	      dwarf2_add_member_fn (&fi, child_die, type, cu);
7813 	    }
7814 	  else if (child_die->tag == DW_TAG_inheritance)
7815 	    {
7816 	      /* C++ base class field.  */
7817 	      dwarf2_add_field (&fi, child_die, cu);
7818 	    }
7819 	  else if (child_die->tag == DW_TAG_typedef)
7820 	    dwarf2_add_typedef (&fi, child_die, cu);
7821 	  else if (child_die->tag == DW_TAG_template_type_param
7822 		   || child_die->tag == DW_TAG_template_value_param)
7823 	    {
7824 	      struct symbol *arg = new_symbol (child_die, NULL, cu);
7825 
7826 	      if (arg != NULL)
7827 		VEC_safe_push (symbolp, template_args, arg);
7828 	    }
7829 
7830 	  child_die = sibling_die (child_die);
7831 	}
7832 
7833       /* Attach template arguments to type.  */
7834       if (! VEC_empty (symbolp, template_args))
7835 	{
7836 	  ALLOCATE_CPLUS_STRUCT_TYPE (type);
7837 	  TYPE_N_TEMPLATE_ARGUMENTS (type)
7838 	    = VEC_length (symbolp, template_args);
7839 	  TYPE_TEMPLATE_ARGUMENTS (type)
7840 	    = obstack_alloc (&objfile->objfile_obstack,
7841 			     (TYPE_N_TEMPLATE_ARGUMENTS (type)
7842 			      * sizeof (struct symbol *)));
7843 	  memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
7844 		  VEC_address (symbolp, template_args),
7845 		  (TYPE_N_TEMPLATE_ARGUMENTS (type)
7846 		   * sizeof (struct symbol *)));
7847 	  VEC_free (symbolp, template_args);
7848 	}
7849 
7850       /* Attach fields and member functions to the type.  */
7851       if (fi.nfields)
7852 	dwarf2_attach_fields_to_type (&fi, type, cu);
7853       if (fi.nfnfields)
7854 	{
7855 	  dwarf2_attach_fn_fields_to_type (&fi, type, cu);
7856 
7857 	  /* Get the type which refers to the base class (possibly this
7858 	     class itself) which contains the vtable pointer for the current
7859 	     class from the DW_AT_containing_type attribute.  This use of
7860 	     DW_AT_containing_type is a GNU extension.  */
7861 
7862 	  if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
7863 	    {
7864 	      struct type *t = die_containing_type (die, cu);
7865 
7866 	      TYPE_VPTR_BASETYPE (type) = t;
7867 	      if (type == t)
7868 		{
7869 		  int i;
7870 
7871 		  /* Our own class provides vtbl ptr.  */
7872 		  for (i = TYPE_NFIELDS (t) - 1;
7873 		       i >= TYPE_N_BASECLASSES (t);
7874 		       --i)
7875 		    {
7876 		      char *fieldname = TYPE_FIELD_NAME (t, i);
7877 
7878                       if (is_vtable_name (fieldname, cu))
7879 			{
7880 			  TYPE_VPTR_FIELDNO (type) = i;
7881 			  break;
7882 			}
7883 		    }
7884 
7885 		  /* Complain if virtual function table field not found.  */
7886 		  if (i < TYPE_N_BASECLASSES (t))
7887 		    complaint (&symfile_complaints,
7888 			       _("virtual function table pointer "
7889 				 "not found when defining class '%s'"),
7890 			       TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
7891 			       "");
7892 		}
7893 	      else
7894 		{
7895 		  TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
7896 		}
7897 	    }
7898 	  else if (cu->producer
7899 		   && strncmp (cu->producer,
7900 			       "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
7901 	    {
7902 	      /* The IBM XLC compiler does not provide direct indication
7903 	         of the containing type, but the vtable pointer is
7904 	         always named __vfp.  */
7905 
7906 	      int i;
7907 
7908 	      for (i = TYPE_NFIELDS (type) - 1;
7909 		   i >= TYPE_N_BASECLASSES (type);
7910 		   --i)
7911 		{
7912 		  if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
7913 		    {
7914 		      TYPE_VPTR_FIELDNO (type) = i;
7915 		      TYPE_VPTR_BASETYPE (type) = type;
7916 		      break;
7917 		    }
7918 		}
7919 	    }
7920 	}
7921 
7922       /* Copy fi.typedef_field_list linked list elements content into the
7923 	 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type).  */
7924       if (fi.typedef_field_list)
7925 	{
7926 	  int i = fi.typedef_field_list_count;
7927 
7928 	  ALLOCATE_CPLUS_STRUCT_TYPE (type);
7929 	  TYPE_TYPEDEF_FIELD_ARRAY (type)
7930 	    = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
7931 	  TYPE_TYPEDEF_FIELD_COUNT (type) = i;
7932 
7933 	  /* Reverse the list order to keep the debug info elements order.  */
7934 	  while (--i >= 0)
7935 	    {
7936 	      struct typedef_field *dest, *src;
7937 
7938 	      dest = &TYPE_TYPEDEF_FIELD (type, i);
7939 	      src = &fi.typedef_field_list->field;
7940 	      fi.typedef_field_list = fi.typedef_field_list->next;
7941 	      *dest = *src;
7942 	    }
7943 	}
7944 
7945       do_cleanups (back_to);
7946 
7947       if (HAVE_CPLUS_STRUCT (type))
7948 	TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
7949     }
7950 
7951   quirk_gcc_member_function_pointer (type, cu->objfile);
7952 
7953   /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
7954      snapshots) has been known to create a die giving a declaration
7955      for a class that has, as a child, a die giving a definition for a
7956      nested class.  So we have to process our children even if the
7957      current die is a declaration.  Normally, of course, a declaration
7958      won't have any children at all.  */
7959 
7960   while (child_die != NULL && child_die->tag)
7961     {
7962       if (child_die->tag == DW_TAG_member
7963 	  || child_die->tag == DW_TAG_variable
7964 	  || child_die->tag == DW_TAG_inheritance
7965 	  || child_die->tag == DW_TAG_template_value_param
7966 	  || child_die->tag == DW_TAG_template_type_param)
7967 	{
7968 	  /* Do nothing.  */
7969 	}
7970       else
7971 	process_die (child_die, cu);
7972 
7973       child_die = sibling_die (child_die);
7974     }
7975 
7976   /* Do not consider external references.  According to the DWARF standard,
7977      these DIEs are identified by the fact that they have no byte_size
7978      attribute, and a declaration attribute.  */
7979   if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
7980       || !die_is_declaration (die, cu))
7981     new_symbol (die, type, cu);
7982 }
7983 
7984 /* Given a DW_AT_enumeration_type die, set its type.  We do not
7985    complete the type's fields yet, or create any symbols.  */
7986 
7987 static struct type *
7988 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
7989 {
7990   struct objfile *objfile = cu->objfile;
7991   struct type *type;
7992   struct attribute *attr;
7993   const char *name;
7994 
7995   /* If the definition of this type lives in .debug_types, read that type.
7996      Don't follow DW_AT_specification though, that will take us back up
7997      the chain and we want to go down.  */
7998   attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7999   if (attr)
8000     {
8001       struct dwarf2_cu *type_cu = cu;
8002       struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
8003 
8004       type = read_type_die (type_die, type_cu);
8005 
8006       /* TYPE_CU may not be the same as CU.
8007 	 Ensure TYPE is recorded in CU's type_hash table.  */
8008       return set_die_type (die, type, cu);
8009     }
8010 
8011   type = alloc_type (objfile);
8012 
8013   TYPE_CODE (type) = TYPE_CODE_ENUM;
8014   name = dwarf2_full_name (NULL, die, cu);
8015   if (name != NULL)
8016     TYPE_TAG_NAME (type) = (char *) name;
8017 
8018   attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8019   if (attr)
8020     {
8021       TYPE_LENGTH (type) = DW_UNSND (attr);
8022     }
8023   else
8024     {
8025       TYPE_LENGTH (type) = 0;
8026     }
8027 
8028   /* The enumeration DIE can be incomplete.  In Ada, any type can be
8029      declared as private in the package spec, and then defined only
8030      inside the package body.  Such types are known as Taft Amendment
8031      Types.  When another package uses such a type, an incomplete DIE
8032      may be generated by the compiler.  */
8033   if (die_is_declaration (die, cu))
8034     TYPE_STUB (type) = 1;
8035 
8036   return set_die_type (die, type, cu);
8037 }
8038 
8039 /* Given a pointer to a die which begins an enumeration, process all
8040    the dies that define the members of the enumeration, and create the
8041    symbol for the enumeration type.
8042 
8043    NOTE: We reverse the order of the element list.  */
8044 
8045 static void
8046 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
8047 {
8048   struct type *this_type;
8049 
8050   this_type = get_die_type (die, cu);
8051   if (this_type == NULL)
8052     this_type = read_enumeration_type (die, cu);
8053 
8054   if (die->child != NULL)
8055     {
8056       struct die_info *child_die;
8057       struct symbol *sym;
8058       struct field *fields = NULL;
8059       int num_fields = 0;
8060       int unsigned_enum = 1;
8061       char *name;
8062 
8063       child_die = die->child;
8064       while (child_die && child_die->tag)
8065 	{
8066 	  if (child_die->tag != DW_TAG_enumerator)
8067 	    {
8068 	      process_die (child_die, cu);
8069 	    }
8070 	  else
8071 	    {
8072 	      name = dwarf2_name (child_die, cu);
8073 	      if (name)
8074 		{
8075 		  sym = new_symbol (child_die, this_type, cu);
8076 		  if (SYMBOL_VALUE (sym) < 0)
8077 		    unsigned_enum = 0;
8078 
8079 		  if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
8080 		    {
8081 		      fields = (struct field *)
8082 			xrealloc (fields,
8083 				  (num_fields + DW_FIELD_ALLOC_CHUNK)
8084 				  * sizeof (struct field));
8085 		    }
8086 
8087 		  FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
8088 		  FIELD_TYPE (fields[num_fields]) = NULL;
8089 		  SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
8090 		  FIELD_BITSIZE (fields[num_fields]) = 0;
8091 
8092 		  num_fields++;
8093 		}
8094 	    }
8095 
8096 	  child_die = sibling_die (child_die);
8097 	}
8098 
8099       if (num_fields)
8100 	{
8101 	  TYPE_NFIELDS (this_type) = num_fields;
8102 	  TYPE_FIELDS (this_type) = (struct field *)
8103 	    TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
8104 	  memcpy (TYPE_FIELDS (this_type), fields,
8105 		  sizeof (struct field) * num_fields);
8106 	  xfree (fields);
8107 	}
8108       if (unsigned_enum)
8109 	TYPE_UNSIGNED (this_type) = 1;
8110     }
8111 
8112   /* If we are reading an enum from a .debug_types unit, and the enum
8113      is a declaration, and the enum is not the signatured type in the
8114      unit, then we do not want to add a symbol for it.  Adding a
8115      symbol would in some cases obscure the true definition of the
8116      enum, giving users an incomplete type when the definition is
8117      actually available.  Note that we do not want to do this for all
8118      enums which are just declarations, because C++0x allows forward
8119      enum declarations.  */
8120   if (cu->per_cu->debug_types_section
8121       && die_is_declaration (die, cu))
8122     {
8123       struct signatured_type *type_sig;
8124 
8125       type_sig
8126 	= lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
8127 					    cu->per_cu->debug_types_section,
8128 					    cu->per_cu->offset);
8129       if (type_sig->type_offset != die->offset)
8130 	return;
8131     }
8132 
8133   new_symbol (die, this_type, cu);
8134 }
8135 
8136 /* Extract all information from a DW_TAG_array_type DIE and put it in
8137    the DIE's type field.  For now, this only handles one dimensional
8138    arrays.  */
8139 
8140 static struct type *
8141 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
8142 {
8143   struct objfile *objfile = cu->objfile;
8144   struct die_info *child_die;
8145   struct type *type;
8146   struct type *element_type, *range_type, *index_type;
8147   struct type **range_types = NULL;
8148   struct attribute *attr;
8149   int ndim = 0;
8150   struct cleanup *back_to;
8151   char *name;
8152 
8153   element_type = die_type (die, cu);
8154 
8155   /* The die_type call above may have already set the type for this DIE.  */
8156   type = get_die_type (die, cu);
8157   if (type)
8158     return type;
8159 
8160   /* Irix 6.2 native cc creates array types without children for
8161      arrays with unspecified length.  */
8162   if (die->child == NULL)
8163     {
8164       index_type = objfile_type (objfile)->builtin_int;
8165       range_type = create_range_type (NULL, index_type, 0, -1);
8166       type = create_array_type (NULL, element_type, range_type);
8167       return set_die_type (die, type, cu);
8168     }
8169 
8170   back_to = make_cleanup (null_cleanup, NULL);
8171   child_die = die->child;
8172   while (child_die && child_die->tag)
8173     {
8174       if (child_die->tag == DW_TAG_subrange_type)
8175 	{
8176 	  struct type *child_type = read_type_die (child_die, cu);
8177 
8178           if (child_type != NULL)
8179             {
8180 	      /* The range type was succesfully read.  Save it for the
8181                  array type creation.  */
8182               if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
8183                 {
8184                   range_types = (struct type **)
8185                     xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
8186                               * sizeof (struct type *));
8187                   if (ndim == 0)
8188                     make_cleanup (free_current_contents, &range_types);
8189 	        }
8190 	      range_types[ndim++] = child_type;
8191             }
8192 	}
8193       child_die = sibling_die (child_die);
8194     }
8195 
8196   /* Dwarf2 dimensions are output from left to right, create the
8197      necessary array types in backwards order.  */
8198 
8199   type = element_type;
8200 
8201   if (read_array_order (die, cu) == DW_ORD_col_major)
8202     {
8203       int i = 0;
8204 
8205       while (i < ndim)
8206 	type = create_array_type (NULL, type, range_types[i++]);
8207     }
8208   else
8209     {
8210       while (ndim-- > 0)
8211 	type = create_array_type (NULL, type, range_types[ndim]);
8212     }
8213 
8214   /* Understand Dwarf2 support for vector types (like they occur on
8215      the PowerPC w/ AltiVec).  Gcc just adds another attribute to the
8216      array type.  This is not part of the Dwarf2/3 standard yet, but a
8217      custom vendor extension.  The main difference between a regular
8218      array and the vector variant is that vectors are passed by value
8219      to functions.  */
8220   attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
8221   if (attr)
8222     make_vector_type (type);
8223 
8224   /* The DIE may have DW_AT_byte_size set.  For example an OpenCL
8225      implementation may choose to implement triple vectors using this
8226      attribute.  */
8227   attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8228   if (attr)
8229     {
8230       if (DW_UNSND (attr) >= TYPE_LENGTH (type))
8231 	TYPE_LENGTH (type) = DW_UNSND (attr);
8232       else
8233 	complaint (&symfile_complaints,
8234 		   _("DW_AT_byte_size for array type smaller "
8235 		     "than the total size of elements"));
8236     }
8237 
8238   name = dwarf2_name (die, cu);
8239   if (name)
8240     TYPE_NAME (type) = name;
8241 
8242   /* Install the type in the die.  */
8243   set_die_type (die, type, cu);
8244 
8245   /* set_die_type should be already done.  */
8246   set_descriptive_type (type, die, cu);
8247 
8248   do_cleanups (back_to);
8249 
8250   return type;
8251 }
8252 
8253 static enum dwarf_array_dim_ordering
8254 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
8255 {
8256   struct attribute *attr;
8257 
8258   attr = dwarf2_attr (die, DW_AT_ordering, cu);
8259 
8260   if (attr) return DW_SND (attr);
8261 
8262   /* GNU F77 is a special case, as at 08/2004 array type info is the
8263      opposite order to the dwarf2 specification, but data is still
8264      laid out as per normal fortran.
8265 
8266      FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
8267      version checking.  */
8268 
8269   if (cu->language == language_fortran
8270       && cu->producer && strstr (cu->producer, "GNU F77"))
8271     {
8272       return DW_ORD_row_major;
8273     }
8274 
8275   switch (cu->language_defn->la_array_ordering)
8276     {
8277     case array_column_major:
8278       return DW_ORD_col_major;
8279     case array_row_major:
8280     default:
8281       return DW_ORD_row_major;
8282     };
8283 }
8284 
8285 /* Extract all information from a DW_TAG_set_type DIE and put it in
8286    the DIE's type field.  */
8287 
8288 static struct type *
8289 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
8290 {
8291   struct type *domain_type, *set_type;
8292   struct attribute *attr;
8293 
8294   domain_type = die_type (die, cu);
8295 
8296   /* The die_type call above may have already set the type for this DIE.  */
8297   set_type = get_die_type (die, cu);
8298   if (set_type)
8299     return set_type;
8300 
8301   set_type = create_set_type (NULL, domain_type);
8302 
8303   attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8304   if (attr)
8305     TYPE_LENGTH (set_type) = DW_UNSND (attr);
8306 
8307   return set_die_type (die, set_type, cu);
8308 }
8309 
8310 /* First cut: install each common block member as a global variable.  */
8311 
8312 static void
8313 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
8314 {
8315   struct die_info *child_die;
8316   struct attribute *attr;
8317   struct symbol *sym;
8318   CORE_ADDR base = (CORE_ADDR) 0;
8319 
8320   attr = dwarf2_attr (die, DW_AT_location, cu);
8321   if (attr)
8322     {
8323       /* Support the .debug_loc offsets.  */
8324       if (attr_form_is_block (attr))
8325         {
8326           base = decode_locdesc (DW_BLOCK (attr), cu);
8327         }
8328       else if (attr_form_is_section_offset (attr))
8329         {
8330 	  dwarf2_complex_location_expr_complaint ();
8331         }
8332       else
8333         {
8334 	  dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
8335 						 "common block member");
8336         }
8337     }
8338   if (die->child != NULL)
8339     {
8340       child_die = die->child;
8341       while (child_die && child_die->tag)
8342 	{
8343 	  LONGEST offset;
8344 
8345 	  sym = new_symbol (child_die, NULL, cu);
8346 	  if (sym != NULL
8347 	      && handle_data_member_location (child_die, cu, &offset))
8348 	    {
8349 	      SYMBOL_VALUE_ADDRESS (sym) = base + offset;
8350 	      add_symbol_to_list (sym, &global_symbols);
8351 	    }
8352 	  child_die = sibling_die (child_die);
8353 	}
8354     }
8355 }
8356 
8357 /* Create a type for a C++ namespace.  */
8358 
8359 static struct type *
8360 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
8361 {
8362   struct objfile *objfile = cu->objfile;
8363   const char *previous_prefix, *name;
8364   int is_anonymous;
8365   struct type *type;
8366 
8367   /* For extensions, reuse the type of the original namespace.  */
8368   if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
8369     {
8370       struct die_info *ext_die;
8371       struct dwarf2_cu *ext_cu = cu;
8372 
8373       ext_die = dwarf2_extension (die, &ext_cu);
8374       type = read_type_die (ext_die, ext_cu);
8375 
8376       /* EXT_CU may not be the same as CU.
8377 	 Ensure TYPE is recorded in CU's type_hash table.  */
8378       return set_die_type (die, type, cu);
8379     }
8380 
8381   name = namespace_name (die, &is_anonymous, cu);
8382 
8383   /* Now build the name of the current namespace.  */
8384 
8385   previous_prefix = determine_prefix (die, cu);
8386   if (previous_prefix[0] != '\0')
8387     name = typename_concat (&objfile->objfile_obstack,
8388 			    previous_prefix, name, 0, cu);
8389 
8390   /* Create the type.  */
8391   type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
8392 		    objfile);
8393   TYPE_NAME (type) = (char *) name;
8394   TYPE_TAG_NAME (type) = TYPE_NAME (type);
8395 
8396   return set_die_type (die, type, cu);
8397 }
8398 
8399 /* Read a C++ namespace.  */
8400 
8401 static void
8402 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
8403 {
8404   struct objfile *objfile = cu->objfile;
8405   int is_anonymous;
8406 
8407   /* Add a symbol associated to this if we haven't seen the namespace
8408      before.  Also, add a using directive if it's an anonymous
8409      namespace.  */
8410 
8411   if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
8412     {
8413       struct type *type;
8414 
8415       type = read_type_die (die, cu);
8416       new_symbol (die, type, cu);
8417 
8418       namespace_name (die, &is_anonymous, cu);
8419       if (is_anonymous)
8420 	{
8421 	  const char *previous_prefix = determine_prefix (die, cu);
8422 
8423 	  cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
8424 				  NULL, NULL, &objfile->objfile_obstack);
8425 	}
8426     }
8427 
8428   if (die->child != NULL)
8429     {
8430       struct die_info *child_die = die->child;
8431 
8432       while (child_die && child_die->tag)
8433 	{
8434 	  process_die (child_die, cu);
8435 	  child_die = sibling_die (child_die);
8436 	}
8437     }
8438 }
8439 
8440 /* Read a Fortran module as type.  This DIE can be only a declaration used for
8441    imported module.  Still we need that type as local Fortran "use ... only"
8442    declaration imports depend on the created type in determine_prefix.  */
8443 
8444 static struct type *
8445 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
8446 {
8447   struct objfile *objfile = cu->objfile;
8448   char *module_name;
8449   struct type *type;
8450 
8451   module_name = dwarf2_name (die, cu);
8452   if (!module_name)
8453     complaint (&symfile_complaints,
8454 	       _("DW_TAG_module has no name, offset 0x%x"),
8455                die->offset);
8456   type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
8457 
8458   /* determine_prefix uses TYPE_TAG_NAME.  */
8459   TYPE_TAG_NAME (type) = TYPE_NAME (type);
8460 
8461   return set_die_type (die, type, cu);
8462 }
8463 
8464 /* Read a Fortran module.  */
8465 
8466 static void
8467 read_module (struct die_info *die, struct dwarf2_cu *cu)
8468 {
8469   struct die_info *child_die = die->child;
8470 
8471   while (child_die && child_die->tag)
8472     {
8473       process_die (child_die, cu);
8474       child_die = sibling_die (child_die);
8475     }
8476 }
8477 
8478 /* Return the name of the namespace represented by DIE.  Set
8479    *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
8480    namespace.  */
8481 
8482 static const char *
8483 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
8484 {
8485   struct die_info *current_die;
8486   const char *name = NULL;
8487 
8488   /* Loop through the extensions until we find a name.  */
8489 
8490   for (current_die = die;
8491        current_die != NULL;
8492        current_die = dwarf2_extension (die, &cu))
8493     {
8494       name = dwarf2_name (current_die, cu);
8495       if (name != NULL)
8496 	break;
8497     }
8498 
8499   /* Is it an anonymous namespace?  */
8500 
8501   *is_anonymous = (name == NULL);
8502   if (*is_anonymous)
8503     name = CP_ANONYMOUS_NAMESPACE_STR;
8504 
8505   return name;
8506 }
8507 
8508 /* Extract all information from a DW_TAG_pointer_type DIE and add to
8509    the user defined type vector.  */
8510 
8511 static struct type *
8512 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
8513 {
8514   struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
8515   struct comp_unit_head *cu_header = &cu->header;
8516   struct type *type;
8517   struct attribute *attr_byte_size;
8518   struct attribute *attr_address_class;
8519   int byte_size, addr_class;
8520   struct type *target_type;
8521 
8522   target_type = die_type (die, cu);
8523 
8524   /* The die_type call above may have already set the type for this DIE.  */
8525   type = get_die_type (die, cu);
8526   if (type)
8527     return type;
8528 
8529   type = lookup_pointer_type (target_type);
8530 
8531   attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8532   if (attr_byte_size)
8533     byte_size = DW_UNSND (attr_byte_size);
8534   else
8535     byte_size = cu_header->addr_size;
8536 
8537   attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8538   if (attr_address_class)
8539     addr_class = DW_UNSND (attr_address_class);
8540   else
8541     addr_class = DW_ADDR_none;
8542 
8543   /* If the pointer size or address class is different than the
8544      default, create a type variant marked as such and set the
8545      length accordingly.  */
8546   if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
8547     {
8548       if (gdbarch_address_class_type_flags_p (gdbarch))
8549 	{
8550 	  int type_flags;
8551 
8552 	  type_flags = gdbarch_address_class_type_flags
8553 			 (gdbarch, byte_size, addr_class);
8554 	  gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
8555 		      == 0);
8556 	  type = make_type_with_address_space (type, type_flags);
8557 	}
8558       else if (TYPE_LENGTH (type) != byte_size)
8559 	{
8560 	  complaint (&symfile_complaints,
8561 		     _("invalid pointer size %d"), byte_size);
8562 	}
8563       else
8564 	{
8565 	  /* Should we also complain about unhandled address classes?  */
8566 	}
8567     }
8568 
8569   TYPE_LENGTH (type) = byte_size;
8570   return set_die_type (die, type, cu);
8571 }
8572 
8573 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
8574    the user defined type vector.  */
8575 
8576 static struct type *
8577 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
8578 {
8579   struct type *type;
8580   struct type *to_type;
8581   struct type *domain;
8582 
8583   to_type = die_type (die, cu);
8584   domain = die_containing_type (die, cu);
8585 
8586   /* The calls above may have already set the type for this DIE.  */
8587   type = get_die_type (die, cu);
8588   if (type)
8589     return type;
8590 
8591   if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
8592     type = lookup_methodptr_type (to_type);
8593   else
8594     type = lookup_memberptr_type (to_type, domain);
8595 
8596   return set_die_type (die, type, cu);
8597 }
8598 
8599 /* Extract all information from a DW_TAG_reference_type DIE and add to
8600    the user defined type vector.  */
8601 
8602 static struct type *
8603 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
8604 {
8605   struct comp_unit_head *cu_header = &cu->header;
8606   struct type *type, *target_type;
8607   struct attribute *attr;
8608 
8609   target_type = die_type (die, cu);
8610 
8611   /* The die_type call above may have already set the type for this DIE.  */
8612   type = get_die_type (die, cu);
8613   if (type)
8614     return type;
8615 
8616   type = lookup_reference_type (target_type);
8617   attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8618   if (attr)
8619     {
8620       TYPE_LENGTH (type) = DW_UNSND (attr);
8621     }
8622   else
8623     {
8624       TYPE_LENGTH (type) = cu_header->addr_size;
8625     }
8626   return set_die_type (die, type, cu);
8627 }
8628 
8629 static struct type *
8630 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
8631 {
8632   struct type *base_type, *cv_type;
8633 
8634   base_type = die_type (die, cu);
8635 
8636   /* The die_type call above may have already set the type for this DIE.  */
8637   cv_type = get_die_type (die, cu);
8638   if (cv_type)
8639     return cv_type;
8640 
8641   /* In case the const qualifier is applied to an array type, the element type
8642      is so qualified, not the array type (section 6.7.3 of C99).  */
8643   if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
8644     {
8645       struct type *el_type, *inner_array;
8646 
8647       base_type = copy_type (base_type);
8648       inner_array = base_type;
8649 
8650       while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
8651 	{
8652 	  TYPE_TARGET_TYPE (inner_array) =
8653 	    copy_type (TYPE_TARGET_TYPE (inner_array));
8654 	  inner_array = TYPE_TARGET_TYPE (inner_array);
8655 	}
8656 
8657       el_type = TYPE_TARGET_TYPE (inner_array);
8658       TYPE_TARGET_TYPE (inner_array) =
8659 	make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
8660 
8661       return set_die_type (die, base_type, cu);
8662     }
8663 
8664   cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
8665   return set_die_type (die, cv_type, cu);
8666 }
8667 
8668 static struct type *
8669 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
8670 {
8671   struct type *base_type, *cv_type;
8672 
8673   base_type = die_type (die, cu);
8674 
8675   /* The die_type call above may have already set the type for this DIE.  */
8676   cv_type = get_die_type (die, cu);
8677   if (cv_type)
8678     return cv_type;
8679 
8680   cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
8681   return set_die_type (die, cv_type, cu);
8682 }
8683 
8684 /* Extract all information from a DW_TAG_string_type DIE and add to
8685    the user defined type vector.  It isn't really a user defined type,
8686    but it behaves like one, with other DIE's using an AT_user_def_type
8687    attribute to reference it.  */
8688 
8689 static struct type *
8690 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
8691 {
8692   struct objfile *objfile = cu->objfile;
8693   struct gdbarch *gdbarch = get_objfile_arch (objfile);
8694   struct type *type, *range_type, *index_type, *char_type;
8695   struct attribute *attr;
8696   unsigned int length;
8697 
8698   attr = dwarf2_attr (die, DW_AT_string_length, cu);
8699   if (attr)
8700     {
8701       length = DW_UNSND (attr);
8702     }
8703   else
8704     {
8705       /* Check for the DW_AT_byte_size attribute.  */
8706       attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8707       if (attr)
8708         {
8709           length = DW_UNSND (attr);
8710         }
8711       else
8712         {
8713           length = 1;
8714         }
8715     }
8716 
8717   index_type = objfile_type (objfile)->builtin_int;
8718   range_type = create_range_type (NULL, index_type, 1, length);
8719   char_type = language_string_char_type (cu->language_defn, gdbarch);
8720   type = create_string_type (NULL, char_type, range_type);
8721 
8722   return set_die_type (die, type, cu);
8723 }
8724 
8725 /* Handle DIES due to C code like:
8726 
8727    struct foo
8728    {
8729    int (*funcp)(int a, long l);
8730    int b;
8731    };
8732 
8733    ('funcp' generates a DW_TAG_subroutine_type DIE).  */
8734 
8735 static struct type *
8736 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
8737 {
8738   struct type *type;		/* Type that this function returns.  */
8739   struct type *ftype;		/* Function that returns above type.  */
8740   struct attribute *attr;
8741 
8742   type = die_type (die, cu);
8743 
8744   /* The die_type call above may have already set the type for this DIE.  */
8745   ftype = get_die_type (die, cu);
8746   if (ftype)
8747     return ftype;
8748 
8749   ftype = lookup_function_type (type);
8750 
8751   /* All functions in C++, Pascal and Java have prototypes.  */
8752   attr = dwarf2_attr (die, DW_AT_prototyped, cu);
8753   if ((attr && (DW_UNSND (attr) != 0))
8754       || cu->language == language_cplus
8755       || cu->language == language_java
8756       || cu->language == language_pascal)
8757     TYPE_PROTOTYPED (ftype) = 1;
8758   else if (producer_is_realview (cu->producer))
8759     /* RealView does not emit DW_AT_prototyped.  We can not
8760        distinguish prototyped and unprototyped functions; default to
8761        prototyped, since that is more common in modern code (and
8762        RealView warns about unprototyped functions).  */
8763     TYPE_PROTOTYPED (ftype) = 1;
8764 
8765   /* Store the calling convention in the type if it's available in
8766      the subroutine die.  Otherwise set the calling convention to
8767      the default value DW_CC_normal.  */
8768   attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
8769   if (attr)
8770     TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
8771   else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
8772     TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
8773   else
8774     TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
8775 
8776   /* We need to add the subroutine type to the die immediately so
8777      we don't infinitely recurse when dealing with parameters
8778      declared as the same subroutine type.  */
8779   set_die_type (die, ftype, cu);
8780 
8781   if (die->child != NULL)
8782     {
8783       struct type *void_type = objfile_type (cu->objfile)->builtin_void;
8784       struct die_info *child_die;
8785       int nparams, iparams;
8786 
8787       /* Count the number of parameters.
8788          FIXME: GDB currently ignores vararg functions, but knows about
8789          vararg member functions.  */
8790       nparams = 0;
8791       child_die = die->child;
8792       while (child_die && child_die->tag)
8793 	{
8794 	  if (child_die->tag == DW_TAG_formal_parameter)
8795 	    nparams++;
8796 	  else if (child_die->tag == DW_TAG_unspecified_parameters)
8797 	    TYPE_VARARGS (ftype) = 1;
8798 	  child_die = sibling_die (child_die);
8799 	}
8800 
8801       /* Allocate storage for parameters and fill them in.  */
8802       TYPE_NFIELDS (ftype) = nparams;
8803       TYPE_FIELDS (ftype) = (struct field *)
8804 	TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
8805 
8806       /* TYPE_FIELD_TYPE must never be NULL.  Pre-fill the array to ensure it
8807 	 even if we error out during the parameters reading below.  */
8808       for (iparams = 0; iparams < nparams; iparams++)
8809 	TYPE_FIELD_TYPE (ftype, iparams) = void_type;
8810 
8811       iparams = 0;
8812       child_die = die->child;
8813       while (child_die && child_die->tag)
8814 	{
8815 	  if (child_die->tag == DW_TAG_formal_parameter)
8816 	    {
8817 	      struct type *arg_type;
8818 
8819 	      /* DWARF version 2 has no clean way to discern C++
8820 		 static and non-static member functions.  G++ helps
8821 		 GDB by marking the first parameter for non-static
8822 		 member functions (which is the this pointer) as
8823 		 artificial.  We pass this information to
8824 		 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
8825 
8826 		 DWARF version 3 added DW_AT_object_pointer, which GCC
8827 		 4.5 does not yet generate.  */
8828 	      attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
8829 	      if (attr)
8830 		TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
8831 	      else
8832 		{
8833 		  TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
8834 
8835 		  /* GCC/43521: In java, the formal parameter
8836 		     "this" is sometimes not marked with DW_AT_artificial.  */
8837 		  if (cu->language == language_java)
8838 		    {
8839 		      const char *name = dwarf2_name (child_die, cu);
8840 
8841 		      if (name && !strcmp (name, "this"))
8842 			TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
8843 		    }
8844 		}
8845 	      arg_type = die_type (child_die, cu);
8846 
8847 	      /* RealView does not mark THIS as const, which the testsuite
8848 		 expects.  GCC marks THIS as const in method definitions,
8849 		 but not in the class specifications (GCC PR 43053).  */
8850 	      if (cu->language == language_cplus && !TYPE_CONST (arg_type)
8851 		  && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
8852 		{
8853 		  int is_this = 0;
8854 		  struct dwarf2_cu *arg_cu = cu;
8855 		  const char *name = dwarf2_name (child_die, cu);
8856 
8857 		  attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
8858 		  if (attr)
8859 		    {
8860 		      /* If the compiler emits this, use it.  */
8861 		      if (follow_die_ref (die, attr, &arg_cu) == child_die)
8862 			is_this = 1;
8863 		    }
8864 		  else if (name && strcmp (name, "this") == 0)
8865 		    /* Function definitions will have the argument names.  */
8866 		    is_this = 1;
8867 		  else if (name == NULL && iparams == 0)
8868 		    /* Declarations may not have the names, so like
8869 		       elsewhere in GDB, assume an artificial first
8870 		       argument is "this".  */
8871 		    is_this = 1;
8872 
8873 		  if (is_this)
8874 		    arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
8875 					     arg_type, 0);
8876 		}
8877 
8878 	      TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
8879 	      iparams++;
8880 	    }
8881 	  child_die = sibling_die (child_die);
8882 	}
8883     }
8884 
8885   return ftype;
8886 }
8887 
8888 static struct type *
8889 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
8890 {
8891   struct objfile *objfile = cu->objfile;
8892   const char *name = NULL;
8893   struct type *this_type;
8894 
8895   name = dwarf2_full_name (NULL, die, cu);
8896   this_type = init_type (TYPE_CODE_TYPEDEF, 0,
8897 			 TYPE_FLAG_TARGET_STUB, NULL, objfile);
8898   TYPE_NAME (this_type) = (char *) name;
8899   set_die_type (die, this_type, cu);
8900   TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
8901   return this_type;
8902 }
8903 
8904 /* Find a representation of a given base type and install
8905    it in the TYPE field of the die.  */
8906 
8907 static struct type *
8908 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
8909 {
8910   struct objfile *objfile = cu->objfile;
8911   struct type *type;
8912   struct attribute *attr;
8913   int encoding = 0, size = 0;
8914   char *name;
8915   enum type_code code = TYPE_CODE_INT;
8916   int type_flags = 0;
8917   struct type *target_type = NULL;
8918 
8919   attr = dwarf2_attr (die, DW_AT_encoding, cu);
8920   if (attr)
8921     {
8922       encoding = DW_UNSND (attr);
8923     }
8924   attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8925   if (attr)
8926     {
8927       size = DW_UNSND (attr);
8928     }
8929   name = dwarf2_name (die, cu);
8930   if (!name)
8931     {
8932       complaint (&symfile_complaints,
8933 		 _("DW_AT_name missing from DW_TAG_base_type"));
8934     }
8935 
8936   switch (encoding)
8937     {
8938       case DW_ATE_address:
8939 	/* Turn DW_ATE_address into a void * pointer.  */
8940 	code = TYPE_CODE_PTR;
8941 	type_flags |= TYPE_FLAG_UNSIGNED;
8942 	target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
8943 	break;
8944       case DW_ATE_boolean:
8945 	code = TYPE_CODE_BOOL;
8946 	type_flags |= TYPE_FLAG_UNSIGNED;
8947 	break;
8948       case DW_ATE_complex_float:
8949 	code = TYPE_CODE_COMPLEX;
8950 	target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
8951 	break;
8952       case DW_ATE_decimal_float:
8953 	code = TYPE_CODE_DECFLOAT;
8954 	break;
8955       case DW_ATE_float:
8956 	code = TYPE_CODE_FLT;
8957 	break;
8958       case DW_ATE_signed:
8959 	break;
8960       case DW_ATE_unsigned:
8961 	type_flags |= TYPE_FLAG_UNSIGNED;
8962 	if (cu->language == language_fortran
8963 	    && name
8964 	    && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
8965 	  code = TYPE_CODE_CHAR;
8966 	break;
8967       case DW_ATE_signed_char:
8968 	if (cu->language == language_ada || cu->language == language_m2
8969 	    || cu->language == language_pascal
8970 	    || cu->language == language_fortran)
8971 	  code = TYPE_CODE_CHAR;
8972 	break;
8973       case DW_ATE_unsigned_char:
8974 	if (cu->language == language_ada || cu->language == language_m2
8975 	    || cu->language == language_pascal
8976 	    || cu->language == language_fortran)
8977 	  code = TYPE_CODE_CHAR;
8978 	type_flags |= TYPE_FLAG_UNSIGNED;
8979 	break;
8980       case DW_ATE_UTF:
8981 	/* We just treat this as an integer and then recognize the
8982 	   type by name elsewhere.  */
8983 	break;
8984 
8985       default:
8986 	complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
8987 		   dwarf_type_encoding_name (encoding));
8988 	break;
8989     }
8990 
8991   type = init_type (code, size, type_flags, NULL, objfile);
8992   TYPE_NAME (type) = name;
8993   TYPE_TARGET_TYPE (type) = target_type;
8994 
8995   if (name && strcmp (name, "char") == 0)
8996     TYPE_NOSIGN (type) = 1;
8997 
8998   return set_die_type (die, type, cu);
8999 }
9000 
9001 /* Read the given DW_AT_subrange DIE.  */
9002 
9003 static struct type *
9004 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
9005 {
9006   struct type *base_type;
9007   struct type *range_type;
9008   struct attribute *attr;
9009   LONGEST low = 0;
9010   LONGEST high = -1;
9011   char *name;
9012   LONGEST negative_mask;
9013 
9014   base_type = die_type (die, cu);
9015   /* Preserve BASE_TYPE's original type, just set its LENGTH.  */
9016   check_typedef (base_type);
9017 
9018   /* The die_type call above may have already set the type for this DIE.  */
9019   range_type = get_die_type (die, cu);
9020   if (range_type)
9021     return range_type;
9022 
9023   if (cu->language == language_fortran)
9024     {
9025       /* FORTRAN implies a lower bound of 1, if not given.  */
9026       low = 1;
9027     }
9028 
9029   /* FIXME: For variable sized arrays either of these could be
9030      a variable rather than a constant value.  We'll allow it,
9031      but we don't know how to handle it.  */
9032   attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
9033   if (attr)
9034     low = dwarf2_get_attr_constant_value (attr, 0);
9035 
9036   attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
9037   if (attr)
9038     {
9039       if (attr_form_is_block (attr) || is_ref_attr (attr))
9040         {
9041           /* GCC encodes arrays with unspecified or dynamic length
9042              with a DW_FORM_block1 attribute or a reference attribute.
9043              FIXME: GDB does not yet know how to handle dynamic
9044              arrays properly, treat them as arrays with unspecified
9045              length for now.
9046 
9047              FIXME: jimb/2003-09-22: GDB does not really know
9048              how to handle arrays of unspecified length
9049              either; we just represent them as zero-length
9050              arrays.  Choose an appropriate upper bound given
9051              the lower bound we've computed above.  */
9052           high = low - 1;
9053         }
9054       else
9055         high = dwarf2_get_attr_constant_value (attr, 1);
9056     }
9057   else
9058     {
9059       attr = dwarf2_attr (die, DW_AT_count, cu);
9060       if (attr)
9061 	{
9062 	  int count = dwarf2_get_attr_constant_value (attr, 1);
9063 	  high = low + count - 1;
9064 	}
9065       else
9066 	{
9067 	  /* Unspecified array length.  */
9068 	  high = low - 1;
9069 	}
9070     }
9071 
9072   /* Dwarf-2 specifications explicitly allows to create subrange types
9073      without specifying a base type.
9074      In that case, the base type must be set to the type of
9075      the lower bound, upper bound or count, in that order, if any of these
9076      three attributes references an object that has a type.
9077      If no base type is found, the Dwarf-2 specifications say that
9078      a signed integer type of size equal to the size of an address should
9079      be used.
9080      For the following C code: `extern char gdb_int [];'
9081      GCC produces an empty range DIE.
9082      FIXME: muller/2010-05-28: Possible references to object for low bound,
9083      high bound or count are not yet handled by this code.  */
9084   if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
9085     {
9086       struct objfile *objfile = cu->objfile;
9087       struct gdbarch *gdbarch = get_objfile_arch (objfile);
9088       int addr_size = gdbarch_addr_bit (gdbarch) /8;
9089       struct type *int_type = objfile_type (objfile)->builtin_int;
9090 
9091       /* Test "int", "long int", and "long long int" objfile types,
9092 	 and select the first one having a size above or equal to the
9093 	 architecture address size.  */
9094       if (int_type && TYPE_LENGTH (int_type) >= addr_size)
9095 	base_type = int_type;
9096       else
9097 	{
9098 	  int_type = objfile_type (objfile)->builtin_long;
9099 	  if (int_type && TYPE_LENGTH (int_type) >= addr_size)
9100 	    base_type = int_type;
9101 	  else
9102 	    {
9103 	      int_type = objfile_type (objfile)->builtin_long_long;
9104 	      if (int_type && TYPE_LENGTH (int_type) >= addr_size)
9105 		base_type = int_type;
9106 	    }
9107 	}
9108     }
9109 
9110   negative_mask =
9111     (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
9112   if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
9113     low |= negative_mask;
9114   if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
9115     high |= negative_mask;
9116 
9117   range_type = create_range_type (NULL, base_type, low, high);
9118 
9119   /* Mark arrays with dynamic length at least as an array of unspecified
9120      length.  GDB could check the boundary but before it gets implemented at
9121      least allow accessing the array elements.  */
9122   if (attr && attr_form_is_block (attr))
9123     TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
9124 
9125   /* Ada expects an empty array on no boundary attributes.  */
9126   if (attr == NULL && cu->language != language_ada)
9127     TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
9128 
9129   name = dwarf2_name (die, cu);
9130   if (name)
9131     TYPE_NAME (range_type) = name;
9132 
9133   attr = dwarf2_attr (die, DW_AT_byte_size, cu);
9134   if (attr)
9135     TYPE_LENGTH (range_type) = DW_UNSND (attr);
9136 
9137   set_die_type (die, range_type, cu);
9138 
9139   /* set_die_type should be already done.  */
9140   set_descriptive_type (range_type, die, cu);
9141 
9142   return range_type;
9143 }
9144 
9145 static struct type *
9146 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
9147 {
9148   struct type *type;
9149 
9150   /* For now, we only support the C meaning of an unspecified type: void.  */
9151 
9152   type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
9153   TYPE_NAME (type) = dwarf2_name (die, cu);
9154 
9155   return set_die_type (die, type, cu);
9156 }
9157 
9158 /* Trivial hash function for die_info: the hash value of a DIE
9159    is its offset in .debug_info for this objfile.  */
9160 
9161 static hashval_t
9162 die_hash (const void *item)
9163 {
9164   const struct die_info *die = item;
9165 
9166   return die->offset;
9167 }
9168 
9169 /* Trivial comparison function for die_info structures: two DIEs
9170    are equal if they have the same offset.  */
9171 
9172 static int
9173 die_eq (const void *item_lhs, const void *item_rhs)
9174 {
9175   const struct die_info *die_lhs = item_lhs;
9176   const struct die_info *die_rhs = item_rhs;
9177 
9178   return die_lhs->offset == die_rhs->offset;
9179 }
9180 
9181 /* Read a whole compilation unit into a linked list of dies.  */
9182 
9183 static struct die_info *
9184 read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
9185 {
9186   struct die_reader_specs reader_specs;
9187   int read_abbrevs = 0;
9188   struct cleanup *back_to = NULL;
9189   struct die_info *die;
9190 
9191   if (cu->dwarf2_abbrevs == NULL)
9192     {
9193       dwarf2_read_abbrevs (cu->objfile->obfd, cu);
9194       back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
9195       read_abbrevs = 1;
9196     }
9197 
9198   gdb_assert (cu->die_hash == NULL);
9199   cu->die_hash
9200     = htab_create_alloc_ex (cu->header.length / 12,
9201 			    die_hash,
9202 			    die_eq,
9203 			    NULL,
9204 			    &cu->comp_unit_obstack,
9205 			    hashtab_obstack_allocate,
9206 			    dummy_obstack_deallocate);
9207 
9208   init_cu_die_reader (&reader_specs, cu);
9209 
9210   die = read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
9211 
9212   if (read_abbrevs)
9213     do_cleanups (back_to);
9214 
9215   return die;
9216 }
9217 
9218 /* Main entry point for reading a DIE and all children.
9219    Read the DIE and dump it if requested.  */
9220 
9221 static struct die_info *
9222 read_die_and_children (const struct die_reader_specs *reader,
9223 		       gdb_byte *info_ptr,
9224 		       gdb_byte **new_info_ptr,
9225 		       struct die_info *parent)
9226 {
9227   struct die_info *result = read_die_and_children_1 (reader, info_ptr,
9228 						     new_info_ptr, parent);
9229 
9230   if (dwarf2_die_debug)
9231     {
9232       fprintf_unfiltered (gdb_stdlog,
9233 			  "\nRead die from %s of %s:\n",
9234 			  (reader->cu->per_cu->debug_types_section
9235 			   ? ".debug_types"
9236 			   : ".debug_info"),
9237 			  reader->abfd->filename);
9238       dump_die (result, dwarf2_die_debug);
9239     }
9240 
9241   return result;
9242 }
9243 
9244 /* Read a single die and all its descendents.  Set the die's sibling
9245    field to NULL; set other fields in the die correctly, and set all
9246    of the descendents' fields correctly.  Set *NEW_INFO_PTR to the
9247    location of the info_ptr after reading all of those dies.  PARENT
9248    is the parent of the die in question.  */
9249 
9250 static struct die_info *
9251 read_die_and_children_1 (const struct die_reader_specs *reader,
9252 			 gdb_byte *info_ptr,
9253 			 gdb_byte **new_info_ptr,
9254 			 struct die_info *parent)
9255 {
9256   struct die_info *die;
9257   gdb_byte *cur_ptr;
9258   int has_children;
9259 
9260   cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
9261   if (die == NULL)
9262     {
9263       *new_info_ptr = cur_ptr;
9264       return NULL;
9265     }
9266   store_in_ref_table (die, reader->cu);
9267 
9268   if (has_children)
9269     die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
9270   else
9271     {
9272       die->child = NULL;
9273       *new_info_ptr = cur_ptr;
9274     }
9275 
9276   die->sibling = NULL;
9277   die->parent = parent;
9278   return die;
9279 }
9280 
9281 /* Read a die, all of its descendents, and all of its siblings; set
9282    all of the fields of all of the dies correctly.  Arguments are as
9283    in read_die_and_children.  */
9284 
9285 static struct die_info *
9286 read_die_and_siblings (const struct die_reader_specs *reader,
9287 		       gdb_byte *info_ptr,
9288 		       gdb_byte **new_info_ptr,
9289 		       struct die_info *parent)
9290 {
9291   struct die_info *first_die, *last_sibling;
9292   gdb_byte *cur_ptr;
9293 
9294   cur_ptr = info_ptr;
9295   first_die = last_sibling = NULL;
9296 
9297   while (1)
9298     {
9299       struct die_info *die
9300 	= read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
9301 
9302       if (die == NULL)
9303 	{
9304 	  *new_info_ptr = cur_ptr;
9305 	  return first_die;
9306 	}
9307 
9308       if (!first_die)
9309 	first_die = die;
9310       else
9311 	last_sibling->sibling = die;
9312 
9313       last_sibling = die;
9314     }
9315 }
9316 
9317 /* Read the die from the .debug_info section buffer.  Set DIEP to
9318    point to a newly allocated die with its information, except for its
9319    child, sibling, and parent fields.  Set HAS_CHILDREN to tell
9320    whether the die has children or not.  */
9321 
9322 static gdb_byte *
9323 read_full_die (const struct die_reader_specs *reader,
9324 	       struct die_info **diep, gdb_byte *info_ptr,
9325 	       int *has_children)
9326 {
9327   unsigned int abbrev_number, bytes_read, i, offset;
9328   struct abbrev_info *abbrev;
9329   struct die_info *die;
9330   struct dwarf2_cu *cu = reader->cu;
9331   bfd *abfd = reader->abfd;
9332 
9333   offset = info_ptr - reader->buffer;
9334   abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9335   info_ptr += bytes_read;
9336   if (!abbrev_number)
9337     {
9338       *diep = NULL;
9339       *has_children = 0;
9340       return info_ptr;
9341     }
9342 
9343   abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
9344   if (!abbrev)
9345     error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
9346 	   abbrev_number,
9347 	   bfd_get_filename (abfd));
9348 
9349   die = dwarf_alloc_die (cu, abbrev->num_attrs);
9350   die->offset = offset;
9351   die->tag = abbrev->tag;
9352   die->abbrev = abbrev_number;
9353 
9354   die->num_attrs = abbrev->num_attrs;
9355 
9356   for (i = 0; i < abbrev->num_attrs; ++i)
9357     info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
9358 			       abfd, info_ptr, cu);
9359 
9360   *diep = die;
9361   *has_children = abbrev->has_children;
9362   return info_ptr;
9363 }
9364 
9365 /* In DWARF version 2, the description of the debugging information is
9366    stored in a separate .debug_abbrev section.  Before we read any
9367    dies from a section we read in all abbreviations and install them
9368    in a hash table.  This function also sets flags in CU describing
9369    the data found in the abbrev table.  */
9370 
9371 static void
9372 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
9373 {
9374   struct comp_unit_head *cu_header = &cu->header;
9375   gdb_byte *abbrev_ptr;
9376   struct abbrev_info *cur_abbrev;
9377   unsigned int abbrev_number, bytes_read, abbrev_name;
9378   unsigned int abbrev_form, hash_number;
9379   struct attr_abbrev *cur_attrs;
9380   unsigned int allocated_attrs;
9381 
9382   /* Initialize dwarf2 abbrevs.  */
9383   obstack_init (&cu->abbrev_obstack);
9384   cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
9385 				      (ABBREV_HASH_SIZE
9386 				       * sizeof (struct abbrev_info *)));
9387   memset (cu->dwarf2_abbrevs, 0,
9388           ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
9389 
9390   dwarf2_read_section (dwarf2_per_objfile->objfile,
9391 		       &dwarf2_per_objfile->abbrev);
9392   abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
9393   abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9394   abbrev_ptr += bytes_read;
9395 
9396   allocated_attrs = ATTR_ALLOC_CHUNK;
9397   cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
9398 
9399   /* Loop until we reach an abbrev number of 0.  */
9400   while (abbrev_number)
9401     {
9402       cur_abbrev = dwarf_alloc_abbrev (cu);
9403 
9404       /* read in abbrev header */
9405       cur_abbrev->number = abbrev_number;
9406       cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9407       abbrev_ptr += bytes_read;
9408       cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
9409       abbrev_ptr += 1;
9410 
9411       if (cur_abbrev->tag == DW_TAG_namespace)
9412 	cu->has_namespace_info = 1;
9413 
9414       /* now read in declarations */
9415       abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9416       abbrev_ptr += bytes_read;
9417       abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9418       abbrev_ptr += bytes_read;
9419       while (abbrev_name)
9420 	{
9421 	  if (cur_abbrev->num_attrs == allocated_attrs)
9422 	    {
9423 	      allocated_attrs += ATTR_ALLOC_CHUNK;
9424 	      cur_attrs
9425 		= xrealloc (cur_attrs, (allocated_attrs
9426 					* sizeof (struct attr_abbrev)));
9427 	    }
9428 
9429 	  /* Record whether this compilation unit might have
9430 	     inter-compilation-unit references.  If we don't know what form
9431 	     this attribute will have, then it might potentially be a
9432 	     DW_FORM_ref_addr, so we conservatively expect inter-CU
9433 	     references.  */
9434 
9435 	  if (abbrev_form == DW_FORM_ref_addr
9436 	      || abbrev_form == DW_FORM_indirect)
9437 	    cu->has_form_ref_addr = 1;
9438 
9439 	  cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
9440 	  cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
9441 	  abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9442 	  abbrev_ptr += bytes_read;
9443 	  abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9444 	  abbrev_ptr += bytes_read;
9445 	}
9446 
9447       cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
9448 					 (cur_abbrev->num_attrs
9449 					  * sizeof (struct attr_abbrev)));
9450       memcpy (cur_abbrev->attrs, cur_attrs,
9451 	      cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
9452 
9453       hash_number = abbrev_number % ABBREV_HASH_SIZE;
9454       cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
9455       cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
9456 
9457       /* Get next abbreviation.
9458          Under Irix6 the abbreviations for a compilation unit are not
9459          always properly terminated with an abbrev number of 0.
9460          Exit loop if we encounter an abbreviation which we have
9461          already read (which means we are about to read the abbreviations
9462          for the next compile unit) or if the end of the abbreviation
9463          table is reached.  */
9464       if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
9465 	  >= dwarf2_per_objfile->abbrev.size)
9466 	break;
9467       abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9468       abbrev_ptr += bytes_read;
9469       if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
9470 	break;
9471     }
9472 
9473   xfree (cur_attrs);
9474 }
9475 
9476 /* Release the memory used by the abbrev table for a compilation unit.  */
9477 
9478 static void
9479 dwarf2_free_abbrev_table (void *ptr_to_cu)
9480 {
9481   struct dwarf2_cu *cu = ptr_to_cu;
9482 
9483   obstack_free (&cu->abbrev_obstack, NULL);
9484   cu->dwarf2_abbrevs = NULL;
9485 }
9486 
9487 /* Lookup an abbrev_info structure in the abbrev hash table.  */
9488 
9489 static struct abbrev_info *
9490 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
9491 {
9492   unsigned int hash_number;
9493   struct abbrev_info *abbrev;
9494 
9495   hash_number = number % ABBREV_HASH_SIZE;
9496   abbrev = cu->dwarf2_abbrevs[hash_number];
9497 
9498   while (abbrev)
9499     {
9500       if (abbrev->number == number)
9501 	return abbrev;
9502       else
9503 	abbrev = abbrev->next;
9504     }
9505   return NULL;
9506 }
9507 
9508 /* Returns nonzero if TAG represents a type that we might generate a partial
9509    symbol for.  */
9510 
9511 static int
9512 is_type_tag_for_partial (int tag)
9513 {
9514   switch (tag)
9515     {
9516 #if 0
9517     /* Some types that would be reasonable to generate partial symbols for,
9518        that we don't at present.  */
9519     case DW_TAG_array_type:
9520     case DW_TAG_file_type:
9521     case DW_TAG_ptr_to_member_type:
9522     case DW_TAG_set_type:
9523     case DW_TAG_string_type:
9524     case DW_TAG_subroutine_type:
9525 #endif
9526     case DW_TAG_base_type:
9527     case DW_TAG_class_type:
9528     case DW_TAG_interface_type:
9529     case DW_TAG_enumeration_type:
9530     case DW_TAG_structure_type:
9531     case DW_TAG_subrange_type:
9532     case DW_TAG_typedef:
9533     case DW_TAG_union_type:
9534       return 1;
9535     default:
9536       return 0;
9537     }
9538 }
9539 
9540 /* Load all DIEs that are interesting for partial symbols into memory.  */
9541 
9542 static struct partial_die_info *
9543 load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
9544 		   int building_psymtab, struct dwarf2_cu *cu)
9545 {
9546   struct partial_die_info *part_die;
9547   struct partial_die_info *parent_die, *last_die, *first_die = NULL;
9548   struct abbrev_info *abbrev;
9549   unsigned int bytes_read;
9550   unsigned int load_all = 0;
9551 
9552   int nesting_level = 1;
9553 
9554   parent_die = NULL;
9555   last_die = NULL;
9556 
9557   if (cu->per_cu && cu->per_cu->load_all_dies)
9558     load_all = 1;
9559 
9560   cu->partial_dies
9561     = htab_create_alloc_ex (cu->header.length / 12,
9562 			    partial_die_hash,
9563 			    partial_die_eq,
9564 			    NULL,
9565 			    &cu->comp_unit_obstack,
9566 			    hashtab_obstack_allocate,
9567 			    dummy_obstack_deallocate);
9568 
9569   part_die = obstack_alloc (&cu->comp_unit_obstack,
9570 			    sizeof (struct partial_die_info));
9571 
9572   while (1)
9573     {
9574       abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
9575 
9576       /* A NULL abbrev means the end of a series of children.  */
9577       if (abbrev == NULL)
9578 	{
9579 	  if (--nesting_level == 0)
9580 	    {
9581 	      /* PART_DIE was probably the last thing allocated on the
9582 		 comp_unit_obstack, so we could call obstack_free
9583 		 here.  We don't do that because the waste is small,
9584 		 and will be cleaned up when we're done with this
9585 		 compilation unit.  This way, we're also more robust
9586 		 against other users of the comp_unit_obstack.  */
9587 	      return first_die;
9588 	    }
9589 	  info_ptr += bytes_read;
9590 	  last_die = parent_die;
9591 	  parent_die = parent_die->die_parent;
9592 	  continue;
9593 	}
9594 
9595       /* Check for template arguments.  We never save these; if
9596 	 they're seen, we just mark the parent, and go on our way.  */
9597       if (parent_die != NULL
9598 	  && cu->language == language_cplus
9599 	  && (abbrev->tag == DW_TAG_template_type_param
9600 	      || abbrev->tag == DW_TAG_template_value_param))
9601 	{
9602 	  parent_die->has_template_arguments = 1;
9603 
9604 	  if (!load_all)
9605 	    {
9606 	      /* We don't need a partial DIE for the template argument.  */
9607 	      info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev,
9608 				       cu);
9609 	      continue;
9610 	    }
9611 	}
9612 
9613       /* We only recurse into subprograms looking for template arguments.
9614 	 Skip their other children.  */
9615       if (!load_all
9616 	  && cu->language == language_cplus
9617 	  && parent_die != NULL
9618 	  && parent_die->tag == DW_TAG_subprogram)
9619 	{
9620 	  info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
9621 	  continue;
9622 	}
9623 
9624       /* Check whether this DIE is interesting enough to save.  Normally
9625 	 we would not be interested in members here, but there may be
9626 	 later variables referencing them via DW_AT_specification (for
9627 	 static members).  */
9628       if (!load_all
9629 	  && !is_type_tag_for_partial (abbrev->tag)
9630 	  && abbrev->tag != DW_TAG_constant
9631 	  && abbrev->tag != DW_TAG_enumerator
9632 	  && abbrev->tag != DW_TAG_subprogram
9633 	  && abbrev->tag != DW_TAG_lexical_block
9634 	  && abbrev->tag != DW_TAG_variable
9635 	  && abbrev->tag != DW_TAG_namespace
9636 	  && abbrev->tag != DW_TAG_module
9637 	  && abbrev->tag != DW_TAG_member)
9638 	{
9639 	  /* Otherwise we skip to the next sibling, if any.  */
9640 	  info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
9641 	  continue;
9642 	}
9643 
9644       info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
9645 				   buffer, info_ptr, cu);
9646 
9647       /* This two-pass algorithm for processing partial symbols has a
9648 	 high cost in cache pressure.  Thus, handle some simple cases
9649 	 here which cover the majority of C partial symbols.  DIEs
9650 	 which neither have specification tags in them, nor could have
9651 	 specification tags elsewhere pointing at them, can simply be
9652 	 processed and discarded.
9653 
9654 	 This segment is also optional; scan_partial_symbols and
9655 	 add_partial_symbol will handle these DIEs if we chain
9656 	 them in normally.  When compilers which do not emit large
9657 	 quantities of duplicate debug information are more common,
9658 	 this code can probably be removed.  */
9659 
9660       /* Any complete simple types at the top level (pretty much all
9661 	 of them, for a language without namespaces), can be processed
9662 	 directly.  */
9663       if (parent_die == NULL
9664 	  && part_die->has_specification == 0
9665 	  && part_die->is_declaration == 0
9666 	  && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
9667 	      || part_die->tag == DW_TAG_base_type
9668 	      || part_die->tag == DW_TAG_subrange_type))
9669 	{
9670 	  if (building_psymtab && part_die->name != NULL)
9671 	    add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
9672 				 VAR_DOMAIN, LOC_TYPEDEF,
9673 				 &cu->objfile->static_psymbols,
9674 				 0, (CORE_ADDR) 0, cu->language, cu->objfile);
9675 	  info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
9676 	  continue;
9677 	}
9678 
9679       /* The exception for DW_TAG_typedef with has_children above is
9680 	 a workaround of GCC PR debug/47510.  In the case of this complaint
9681 	 type_name_no_tag_or_error will error on such types later.
9682 
9683 	 GDB skipped children of DW_TAG_typedef by the shortcut above and then
9684 	 it could not find the child DIEs referenced later, this is checked
9685 	 above.  In correct DWARF DW_TAG_typedef should have no children.  */
9686 
9687       if (part_die->tag == DW_TAG_typedef && part_die->has_children)
9688 	complaint (&symfile_complaints,
9689 		   _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
9690 		     "- DIE at 0x%x [in module %s]"),
9691 		   part_die->offset, cu->objfile->name);
9692 
9693       /* If we're at the second level, and we're an enumerator, and
9694 	 our parent has no specification (meaning possibly lives in a
9695 	 namespace elsewhere), then we can add the partial symbol now
9696 	 instead of queueing it.  */
9697       if (part_die->tag == DW_TAG_enumerator
9698 	  && parent_die != NULL
9699 	  && parent_die->die_parent == NULL
9700 	  && parent_die->tag == DW_TAG_enumeration_type
9701 	  && parent_die->has_specification == 0)
9702 	{
9703 	  if (part_die->name == NULL)
9704 	    complaint (&symfile_complaints,
9705 		       _("malformed enumerator DIE ignored"));
9706 	  else if (building_psymtab)
9707 	    add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
9708 				 VAR_DOMAIN, LOC_CONST,
9709 				 (cu->language == language_cplus
9710 				  || cu->language == language_java)
9711 				 ? &cu->objfile->global_psymbols
9712 				 : &cu->objfile->static_psymbols,
9713 				 0, (CORE_ADDR) 0, cu->language, cu->objfile);
9714 
9715 	  info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
9716 	  continue;
9717 	}
9718 
9719       /* We'll save this DIE so link it in.  */
9720       part_die->die_parent = parent_die;
9721       part_die->die_sibling = NULL;
9722       part_die->die_child = NULL;
9723 
9724       if (last_die && last_die == parent_die)
9725 	last_die->die_child = part_die;
9726       else if (last_die)
9727 	last_die->die_sibling = part_die;
9728 
9729       last_die = part_die;
9730 
9731       if (first_die == NULL)
9732 	first_die = part_die;
9733 
9734       /* Maybe add the DIE to the hash table.  Not all DIEs that we
9735 	 find interesting need to be in the hash table, because we
9736 	 also have the parent/sibling/child chains; only those that we
9737 	 might refer to by offset later during partial symbol reading.
9738 
9739 	 For now this means things that might have be the target of a
9740 	 DW_AT_specification, DW_AT_abstract_origin, or
9741 	 DW_AT_extension.  DW_AT_extension will refer only to
9742 	 namespaces; DW_AT_abstract_origin refers to functions (and
9743 	 many things under the function DIE, but we do not recurse
9744 	 into function DIEs during partial symbol reading) and
9745 	 possibly variables as well; DW_AT_specification refers to
9746 	 declarations.  Declarations ought to have the DW_AT_declaration
9747 	 flag.  It happens that GCC forgets to put it in sometimes, but
9748 	 only for functions, not for types.
9749 
9750 	 Adding more things than necessary to the hash table is harmless
9751 	 except for the performance cost.  Adding too few will result in
9752 	 wasted time in find_partial_die, when we reread the compilation
9753 	 unit with load_all_dies set.  */
9754 
9755       if (load_all
9756 	  || abbrev->tag == DW_TAG_constant
9757 	  || abbrev->tag == DW_TAG_subprogram
9758 	  || abbrev->tag == DW_TAG_variable
9759 	  || abbrev->tag == DW_TAG_namespace
9760 	  || part_die->is_declaration)
9761 	{
9762 	  void **slot;
9763 
9764 	  slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
9765 					   part_die->offset, INSERT);
9766 	  *slot = part_die;
9767 	}
9768 
9769       part_die = obstack_alloc (&cu->comp_unit_obstack,
9770 				sizeof (struct partial_die_info));
9771 
9772       /* For some DIEs we want to follow their children (if any).  For C
9773 	 we have no reason to follow the children of structures; for other
9774 	 languages we have to, so that we can get at method physnames
9775 	 to infer fully qualified class names, for DW_AT_specification,
9776 	 and for C++ template arguments.  For C++, we also look one level
9777 	 inside functions to find template arguments (if the name of the
9778 	 function does not already contain the template arguments).
9779 
9780 	 For Ada, we need to scan the children of subprograms and lexical
9781 	 blocks as well because Ada allows the definition of nested
9782 	 entities that could be interesting for the debugger, such as
9783 	 nested subprograms for instance.  */
9784       if (last_die->has_children
9785 	  && (load_all
9786 	      || last_die->tag == DW_TAG_namespace
9787 	      || last_die->tag == DW_TAG_module
9788 	      || last_die->tag == DW_TAG_enumeration_type
9789 	      || (cu->language == language_cplus
9790 		  && last_die->tag == DW_TAG_subprogram
9791 		  && (last_die->name == NULL
9792 		      || strchr (last_die->name, '<') == NULL))
9793 	      || (cu->language != language_c
9794 		  && (last_die->tag == DW_TAG_class_type
9795 		      || last_die->tag == DW_TAG_interface_type
9796 		      || last_die->tag == DW_TAG_structure_type
9797 		      || last_die->tag == DW_TAG_union_type))
9798 	      || (cu->language == language_ada
9799 		  && (last_die->tag == DW_TAG_subprogram
9800 		      || last_die->tag == DW_TAG_lexical_block))))
9801 	{
9802 	  nesting_level++;
9803 	  parent_die = last_die;
9804 	  continue;
9805 	}
9806 
9807       /* Otherwise we skip to the next sibling, if any.  */
9808       info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
9809 
9810       /* Back to the top, do it again.  */
9811     }
9812 }
9813 
9814 /* Read a minimal amount of information into the minimal die structure.  */
9815 
9816 static gdb_byte *
9817 read_partial_die (struct partial_die_info *part_die,
9818 		  struct abbrev_info *abbrev,
9819 		  unsigned int abbrev_len, bfd *abfd,
9820 		  gdb_byte *buffer, gdb_byte *info_ptr,
9821 		  struct dwarf2_cu *cu)
9822 {
9823   unsigned int i;
9824   struct attribute attr;
9825   int has_low_pc_attr = 0;
9826   int has_high_pc_attr = 0;
9827 
9828   memset (part_die, 0, sizeof (struct partial_die_info));
9829 
9830   part_die->offset = info_ptr - buffer;
9831 
9832   info_ptr += abbrev_len;
9833 
9834   if (abbrev == NULL)
9835     return info_ptr;
9836 
9837   part_die->tag = abbrev->tag;
9838   part_die->has_children = abbrev->has_children;
9839 
9840   for (i = 0; i < abbrev->num_attrs; ++i)
9841     {
9842       info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
9843 
9844       /* Store the data if it is of an attribute we want to keep in a
9845          partial symbol table.  */
9846       switch (attr.name)
9847 	{
9848 	case DW_AT_name:
9849 	  switch (part_die->tag)
9850 	    {
9851 	    case DW_TAG_compile_unit:
9852 	    case DW_TAG_type_unit:
9853 	      /* Compilation units have a DW_AT_name that is a filename, not
9854 		 a source language identifier.  */
9855 	    case DW_TAG_enumeration_type:
9856 	    case DW_TAG_enumerator:
9857 	      /* These tags always have simple identifiers already; no need
9858 		 to canonicalize them.  */
9859 	      part_die->name = DW_STRING (&attr);
9860 	      break;
9861 	    default:
9862 	      part_die->name
9863 		= dwarf2_canonicalize_name (DW_STRING (&attr), cu,
9864 					    &cu->objfile->objfile_obstack);
9865 	      break;
9866 	    }
9867 	  break;
9868 	case DW_AT_linkage_name:
9869 	case DW_AT_MIPS_linkage_name:
9870 	  /* Note that both forms of linkage name might appear.  We
9871 	     assume they will be the same, and we only store the last
9872 	     one we see.  */
9873 	  if (cu->language == language_ada)
9874 	    part_die->name = DW_STRING (&attr);
9875 	  part_die->linkage_name = DW_STRING (&attr);
9876 	  break;
9877 	case DW_AT_low_pc:
9878 	  has_low_pc_attr = 1;
9879 	  part_die->lowpc = DW_ADDR (&attr);
9880 	  break;
9881 	case DW_AT_high_pc:
9882 	  has_high_pc_attr = 1;
9883 	  part_die->highpc = DW_ADDR (&attr);
9884 	  break;
9885 	case DW_AT_location:
9886           /* Support the .debug_loc offsets.  */
9887           if (attr_form_is_block (&attr))
9888             {
9889 	       part_die->locdesc = DW_BLOCK (&attr);
9890             }
9891           else if (attr_form_is_section_offset (&attr))
9892             {
9893 	      dwarf2_complex_location_expr_complaint ();
9894             }
9895           else
9896             {
9897 	      dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
9898 						     "partial symbol information");
9899             }
9900 	  break;
9901 	case DW_AT_external:
9902 	  part_die->is_external = DW_UNSND (&attr);
9903 	  break;
9904 	case DW_AT_declaration:
9905 	  part_die->is_declaration = DW_UNSND (&attr);
9906 	  break;
9907 	case DW_AT_type:
9908 	  part_die->has_type = 1;
9909 	  break;
9910 	case DW_AT_abstract_origin:
9911 	case DW_AT_specification:
9912 	case DW_AT_extension:
9913 	  part_die->has_specification = 1;
9914 	  part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
9915 	  break;
9916 	case DW_AT_sibling:
9917 	  /* Ignore absolute siblings, they might point outside of
9918 	     the current compile unit.  */
9919 	  if (attr.form == DW_FORM_ref_addr)
9920 	    complaint (&symfile_complaints,
9921 		       _("ignoring absolute DW_AT_sibling"));
9922 	  else
9923 	    part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
9924 	  break;
9925         case DW_AT_byte_size:
9926           part_die->has_byte_size = 1;
9927           break;
9928 	case DW_AT_calling_convention:
9929 	  /* DWARF doesn't provide a way to identify a program's source-level
9930 	     entry point.  DW_AT_calling_convention attributes are only meant
9931 	     to describe functions' calling conventions.
9932 
9933 	     However, because it's a necessary piece of information in
9934 	     Fortran, and because DW_CC_program is the only piece of debugging
9935 	     information whose definition refers to a 'main program' at all,
9936 	     several compilers have begun marking Fortran main programs with
9937 	     DW_CC_program --- even when those functions use the standard
9938 	     calling conventions.
9939 
9940 	     So until DWARF specifies a way to provide this information and
9941 	     compilers pick up the new representation, we'll support this
9942 	     practice.  */
9943 	  if (DW_UNSND (&attr) == DW_CC_program
9944 	      && cu->language == language_fortran)
9945 	    {
9946 	      set_main_name (part_die->name);
9947 
9948 	      /* As this DIE has a static linkage the name would be difficult
9949 		 to look up later.  */
9950 	      language_of_main = language_fortran;
9951 	    }
9952 	  break;
9953 	default:
9954 	  break;
9955 	}
9956     }
9957 
9958   if (has_low_pc_attr && has_high_pc_attr)
9959     {
9960       /* When using the GNU linker, .gnu.linkonce. sections are used to
9961 	 eliminate duplicate copies of functions and vtables and such.
9962 	 The linker will arbitrarily choose one and discard the others.
9963 	 The AT_*_pc values for such functions refer to local labels in
9964 	 these sections.  If the section from that file was discarded, the
9965 	 labels are not in the output, so the relocs get a value of 0.
9966 	 If this is a discarded function, mark the pc bounds as invalid,
9967 	 so that GDB will ignore it.  */
9968       if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
9969 	{
9970 	  struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
9971 
9972 	  complaint (&symfile_complaints,
9973 		     _("DW_AT_low_pc %s is zero "
9974 		       "for DIE at 0x%x [in module %s]"),
9975 		     paddress (gdbarch, part_die->lowpc),
9976 		     part_die->offset, cu->objfile->name);
9977 	}
9978       /* dwarf2_get_pc_bounds has also the strict low < high requirement.  */
9979       else if (part_die->lowpc >= part_die->highpc)
9980 	{
9981 	  struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
9982 
9983 	  complaint (&symfile_complaints,
9984 		     _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
9985 		       "for DIE at 0x%x [in module %s]"),
9986 		     paddress (gdbarch, part_die->lowpc),
9987 		     paddress (gdbarch, part_die->highpc),
9988 		     part_die->offset, cu->objfile->name);
9989 	}
9990       else
9991 	part_die->has_pc_info = 1;
9992     }
9993 
9994   return info_ptr;
9995 }
9996 
9997 /* Find a cached partial DIE at OFFSET in CU.  */
9998 
9999 static struct partial_die_info *
10000 find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
10001 {
10002   struct partial_die_info *lookup_die = NULL;
10003   struct partial_die_info part_die;
10004 
10005   part_die.offset = offset;
10006   lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
10007 
10008   return lookup_die;
10009 }
10010 
10011 /* Find a partial DIE at OFFSET, which may or may not be in CU,
10012    except in the case of .debug_types DIEs which do not reference
10013    outside their CU (they do however referencing other types via
10014    DW_FORM_ref_sig8).  */
10015 
10016 static struct partial_die_info *
10017 find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
10018 {
10019   struct dwarf2_per_cu_data *per_cu = NULL;
10020   struct partial_die_info *pd = NULL;
10021 
10022   if (cu->per_cu->debug_types_section)
10023     {
10024       pd = find_partial_die_in_comp_unit (offset, cu);
10025       if (pd != NULL)
10026 	return pd;
10027       goto not_found;
10028     }
10029 
10030   if (offset_in_cu_p (&cu->header, offset))
10031     {
10032       pd = find_partial_die_in_comp_unit (offset, cu);
10033       if (pd != NULL)
10034 	return pd;
10035     }
10036 
10037   per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
10038 
10039   if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
10040     load_partial_comp_unit (per_cu, cu->objfile);
10041 
10042   per_cu->cu->last_used = 0;
10043   pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
10044 
10045   if (pd == NULL && per_cu->load_all_dies == 0)
10046     {
10047       struct cleanup *back_to;
10048       struct partial_die_info comp_unit_die;
10049       struct abbrev_info *abbrev;
10050       unsigned int bytes_read;
10051       char *info_ptr;
10052 
10053       per_cu->load_all_dies = 1;
10054 
10055       /* Re-read the DIEs.  */
10056       back_to = make_cleanup (null_cleanup, 0);
10057       if (per_cu->cu->dwarf2_abbrevs == NULL)
10058 	{
10059 	  dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
10060 	  make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
10061 	}
10062       info_ptr = (dwarf2_per_objfile->info.buffer
10063 		  + per_cu->cu->header.offset
10064 		  + per_cu->cu->header.first_die_offset);
10065       abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
10066       info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
10067 				   per_cu->cu->objfile->obfd,
10068 				   dwarf2_per_objfile->info.buffer, info_ptr,
10069 				   per_cu->cu);
10070       if (comp_unit_die.has_children)
10071 	load_partial_dies (per_cu->cu->objfile->obfd,
10072 			   dwarf2_per_objfile->info.buffer, info_ptr,
10073 			   0, per_cu->cu);
10074       do_cleanups (back_to);
10075 
10076       pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
10077     }
10078 
10079  not_found:
10080 
10081   if (pd == NULL)
10082     internal_error (__FILE__, __LINE__,
10083 		    _("could not find partial DIE 0x%x "
10084 		      "in cache [from module %s]\n"),
10085 		    offset, bfd_get_filename (cu->objfile->obfd));
10086   return pd;
10087 }
10088 
10089 /* See if we can figure out if the class lives in a namespace.  We do
10090    this by looking for a member function; its demangled name will
10091    contain namespace info, if there is any.  */
10092 
10093 static void
10094 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
10095 				  struct dwarf2_cu *cu)
10096 {
10097   /* NOTE: carlton/2003-10-07: Getting the info this way changes
10098      what template types look like, because the demangler
10099      frequently doesn't give the same name as the debug info.  We
10100      could fix this by only using the demangled name to get the
10101      prefix (but see comment in read_structure_type).  */
10102 
10103   struct partial_die_info *real_pdi;
10104   struct partial_die_info *child_pdi;
10105 
10106   /* If this DIE (this DIE's specification, if any) has a parent, then
10107      we should not do this.  We'll prepend the parent's fully qualified
10108      name when we create the partial symbol.  */
10109 
10110   real_pdi = struct_pdi;
10111   while (real_pdi->has_specification)
10112     real_pdi = find_partial_die (real_pdi->spec_offset, cu);
10113 
10114   if (real_pdi->die_parent != NULL)
10115     return;
10116 
10117   for (child_pdi = struct_pdi->die_child;
10118        child_pdi != NULL;
10119        child_pdi = child_pdi->die_sibling)
10120     {
10121       if (child_pdi->tag == DW_TAG_subprogram
10122 	  && child_pdi->linkage_name != NULL)
10123 	{
10124 	  char *actual_class_name
10125 	    = language_class_name_from_physname (cu->language_defn,
10126 						 child_pdi->linkage_name);
10127 	  if (actual_class_name != NULL)
10128 	    {
10129 	      struct_pdi->name
10130 		= obsavestring (actual_class_name,
10131 				strlen (actual_class_name),
10132 				&cu->objfile->objfile_obstack);
10133 	      xfree (actual_class_name);
10134 	    }
10135 	  break;
10136 	}
10137     }
10138 }
10139 
10140 /* Adjust PART_DIE before generating a symbol for it.  This function
10141    may set the is_external flag or change the DIE's name.  */
10142 
10143 static void
10144 fixup_partial_die (struct partial_die_info *part_die,
10145 		   struct dwarf2_cu *cu)
10146 {
10147   /* Once we've fixed up a die, there's no point in doing so again.
10148      This also avoids a memory leak if we were to call
10149      guess_partial_die_structure_name multiple times.  */
10150   if (part_die->fixup_called)
10151     return;
10152 
10153   /* If we found a reference attribute and the DIE has no name, try
10154      to find a name in the referred to DIE.  */
10155 
10156   if (part_die->name == NULL && part_die->has_specification)
10157     {
10158       struct partial_die_info *spec_die;
10159 
10160       spec_die = find_partial_die (part_die->spec_offset, cu);
10161 
10162       fixup_partial_die (spec_die, cu);
10163 
10164       if (spec_die->name)
10165 	{
10166 	  part_die->name = spec_die->name;
10167 
10168 	  /* Copy DW_AT_external attribute if it is set.  */
10169 	  if (spec_die->is_external)
10170 	    part_die->is_external = spec_die->is_external;
10171 	}
10172     }
10173 
10174   /* Set default names for some unnamed DIEs.  */
10175 
10176   if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
10177     part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
10178 
10179   /* If there is no parent die to provide a namespace, and there are
10180      children, see if we can determine the namespace from their linkage
10181      name.
10182      NOTE: We need to do this even if cu->has_namespace_info != 0.
10183      gcc-4.5 -gdwarf-4 can drop the enclosing namespace.  */
10184   if (cu->language == language_cplus
10185       && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
10186       && part_die->die_parent == NULL
10187       && part_die->has_children
10188       && (part_die->tag == DW_TAG_class_type
10189 	  || part_die->tag == DW_TAG_structure_type
10190 	  || part_die->tag == DW_TAG_union_type))
10191     guess_partial_die_structure_name (part_die, cu);
10192 
10193   /* GCC might emit a nameless struct or union that has a linkage
10194      name.  See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510.  */
10195   if (part_die->name == NULL
10196       && (part_die->tag == DW_TAG_class_type
10197 	  || part_die->tag == DW_TAG_interface_type
10198 	  || part_die->tag == DW_TAG_structure_type
10199 	  || part_die->tag == DW_TAG_union_type)
10200       && part_die->linkage_name != NULL)
10201     {
10202       char *demangled;
10203 
10204       demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
10205       if (demangled)
10206 	{
10207 	  const char *base;
10208 
10209 	  /* Strip any leading namespaces/classes, keep only the base name.
10210 	     DW_AT_name for named DIEs does not contain the prefixes.  */
10211 	  base = strrchr (demangled, ':');
10212 	  if (base && base > demangled && base[-1] == ':')
10213 	    base++;
10214 	  else
10215 	    base = demangled;
10216 
10217 	  part_die->name = obsavestring (base, strlen (base),
10218 					 &cu->objfile->objfile_obstack);
10219 	  xfree (demangled);
10220 	}
10221     }
10222 
10223   part_die->fixup_called = 1;
10224 }
10225 
10226 /* Read an attribute value described by an attribute form.  */
10227 
10228 static gdb_byte *
10229 read_attribute_value (struct attribute *attr, unsigned form,
10230 		      bfd *abfd, gdb_byte *info_ptr,
10231 		      struct dwarf2_cu *cu)
10232 {
10233   struct comp_unit_head *cu_header = &cu->header;
10234   unsigned int bytes_read;
10235   struct dwarf_block *blk;
10236 
10237   attr->form = form;
10238   switch (form)
10239     {
10240     case DW_FORM_ref_addr:
10241       if (cu->header.version == 2)
10242 	DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
10243       else
10244 	DW_ADDR (attr) = read_offset (abfd, info_ptr,
10245 				      &cu->header, &bytes_read);
10246       info_ptr += bytes_read;
10247       break;
10248     case DW_FORM_addr:
10249       DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
10250       info_ptr += bytes_read;
10251       break;
10252     case DW_FORM_block2:
10253       blk = dwarf_alloc_block (cu);
10254       blk->size = read_2_bytes (abfd, info_ptr);
10255       info_ptr += 2;
10256       blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10257       info_ptr += blk->size;
10258       DW_BLOCK (attr) = blk;
10259       break;
10260     case DW_FORM_block4:
10261       blk = dwarf_alloc_block (cu);
10262       blk->size = read_4_bytes (abfd, info_ptr);
10263       info_ptr += 4;
10264       blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10265       info_ptr += blk->size;
10266       DW_BLOCK (attr) = blk;
10267       break;
10268     case DW_FORM_data2:
10269       DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
10270       info_ptr += 2;
10271       break;
10272     case DW_FORM_data4:
10273       DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
10274       info_ptr += 4;
10275       break;
10276     case DW_FORM_data8:
10277       DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
10278       info_ptr += 8;
10279       break;
10280     case DW_FORM_sec_offset:
10281       DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
10282       info_ptr += bytes_read;
10283       break;
10284     case DW_FORM_string:
10285       DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
10286       DW_STRING_IS_CANONICAL (attr) = 0;
10287       info_ptr += bytes_read;
10288       break;
10289     case DW_FORM_strp:
10290       DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
10291 					       &bytes_read);
10292       DW_STRING_IS_CANONICAL (attr) = 0;
10293       info_ptr += bytes_read;
10294       break;
10295     case DW_FORM_exprloc:
10296     case DW_FORM_block:
10297       blk = dwarf_alloc_block (cu);
10298       blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10299       info_ptr += bytes_read;
10300       blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10301       info_ptr += blk->size;
10302       DW_BLOCK (attr) = blk;
10303       break;
10304     case DW_FORM_block1:
10305       blk = dwarf_alloc_block (cu);
10306       blk->size = read_1_byte (abfd, info_ptr);
10307       info_ptr += 1;
10308       blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10309       info_ptr += blk->size;
10310       DW_BLOCK (attr) = blk;
10311       break;
10312     case DW_FORM_data1:
10313       DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
10314       info_ptr += 1;
10315       break;
10316     case DW_FORM_flag:
10317       DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
10318       info_ptr += 1;
10319       break;
10320     case DW_FORM_flag_present:
10321       DW_UNSND (attr) = 1;
10322       break;
10323     case DW_FORM_sdata:
10324       DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
10325       info_ptr += bytes_read;
10326       break;
10327     case DW_FORM_udata:
10328       DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10329       info_ptr += bytes_read;
10330       break;
10331     case DW_FORM_ref1:
10332       DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
10333       info_ptr += 1;
10334       break;
10335     case DW_FORM_ref2:
10336       DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
10337       info_ptr += 2;
10338       break;
10339     case DW_FORM_ref4:
10340       DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
10341       info_ptr += 4;
10342       break;
10343     case DW_FORM_ref8:
10344       DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
10345       info_ptr += 8;
10346       break;
10347     case DW_FORM_ref_sig8:
10348       /* Convert the signature to something we can record in DW_UNSND
10349 	 for later lookup.
10350          NOTE: This is NULL if the type wasn't found.  */
10351       DW_SIGNATURED_TYPE (attr) =
10352 	lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
10353       info_ptr += 8;
10354       break;
10355     case DW_FORM_ref_udata:
10356       DW_ADDR (attr) = (cu->header.offset
10357 			+ read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
10358       info_ptr += bytes_read;
10359       break;
10360     case DW_FORM_indirect:
10361       form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10362       info_ptr += bytes_read;
10363       info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
10364       break;
10365     default:
10366       error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
10367 	     dwarf_form_name (form),
10368 	     bfd_get_filename (abfd));
10369     }
10370 
10371   /* We have seen instances where the compiler tried to emit a byte
10372      size attribute of -1 which ended up being encoded as an unsigned
10373      0xffffffff.  Although 0xffffffff is technically a valid size value,
10374      an object of this size seems pretty unlikely so we can relatively
10375      safely treat these cases as if the size attribute was invalid and
10376      treat them as zero by default.  */
10377   if (attr->name == DW_AT_byte_size
10378       && form == DW_FORM_data4
10379       && DW_UNSND (attr) >= 0xffffffff)
10380     {
10381       complaint
10382         (&symfile_complaints,
10383          _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
10384          hex_string (DW_UNSND (attr)));
10385       DW_UNSND (attr) = 0;
10386     }
10387 
10388   return info_ptr;
10389 }
10390 
10391 /* Read an attribute described by an abbreviated attribute.  */
10392 
10393 static gdb_byte *
10394 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
10395 		bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
10396 {
10397   attr->name = abbrev->name;
10398   return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
10399 }
10400 
10401 /* Read dwarf information from a buffer.  */
10402 
10403 static unsigned int
10404 read_1_byte (bfd *abfd, gdb_byte *buf)
10405 {
10406   return bfd_get_8 (abfd, buf);
10407 }
10408 
10409 static int
10410 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
10411 {
10412   return bfd_get_signed_8 (abfd, buf);
10413 }
10414 
10415 static unsigned int
10416 read_2_bytes (bfd *abfd, gdb_byte *buf)
10417 {
10418   return bfd_get_16 (abfd, buf);
10419 }
10420 
10421 static int
10422 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
10423 {
10424   return bfd_get_signed_16 (abfd, buf);
10425 }
10426 
10427 static unsigned int
10428 read_4_bytes (bfd *abfd, gdb_byte *buf)
10429 {
10430   return bfd_get_32 (abfd, buf);
10431 }
10432 
10433 static int
10434 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
10435 {
10436   return bfd_get_signed_32 (abfd, buf);
10437 }
10438 
10439 static ULONGEST
10440 read_8_bytes (bfd *abfd, gdb_byte *buf)
10441 {
10442   return bfd_get_64 (abfd, buf);
10443 }
10444 
10445 static CORE_ADDR
10446 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
10447 	      unsigned int *bytes_read)
10448 {
10449   struct comp_unit_head *cu_header = &cu->header;
10450   CORE_ADDR retval = 0;
10451 
10452   if (cu_header->signed_addr_p)
10453     {
10454       switch (cu_header->addr_size)
10455 	{
10456 	case 2:
10457 	  retval = bfd_get_signed_16 (abfd, buf);
10458 	  break;
10459 	case 4:
10460 	  retval = bfd_get_signed_32 (abfd, buf);
10461 	  break;
10462 	case 8:
10463 	  retval = bfd_get_signed_64 (abfd, buf);
10464 	  break;
10465 	default:
10466 	  internal_error (__FILE__, __LINE__,
10467 			  _("read_address: bad switch, signed [in module %s]"),
10468 			  bfd_get_filename (abfd));
10469 	}
10470     }
10471   else
10472     {
10473       switch (cu_header->addr_size)
10474 	{
10475 	case 2:
10476 	  retval = bfd_get_16 (abfd, buf);
10477 	  break;
10478 	case 4:
10479 	  retval = bfd_get_32 (abfd, buf);
10480 	  break;
10481 	case 8:
10482 	  retval = bfd_get_64 (abfd, buf);
10483 	  break;
10484 	default:
10485 	  internal_error (__FILE__, __LINE__,
10486 			  _("read_address: bad switch, "
10487 			    "unsigned [in module %s]"),
10488 			  bfd_get_filename (abfd));
10489 	}
10490     }
10491 
10492   *bytes_read = cu_header->addr_size;
10493   return retval;
10494 }
10495 
10496 /* Read the initial length from a section.  The (draft) DWARF 3
10497    specification allows the initial length to take up either 4 bytes
10498    or 12 bytes.  If the first 4 bytes are 0xffffffff, then the next 8
10499    bytes describe the length and all offsets will be 8 bytes in length
10500    instead of 4.
10501 
10502    An older, non-standard 64-bit format is also handled by this
10503    function.  The older format in question stores the initial length
10504    as an 8-byte quantity without an escape value.  Lengths greater
10505    than 2^32 aren't very common which means that the initial 4 bytes
10506    is almost always zero.  Since a length value of zero doesn't make
10507    sense for the 32-bit format, this initial zero can be considered to
10508    be an escape value which indicates the presence of the older 64-bit
10509    format.  As written, the code can't detect (old format) lengths
10510    greater than 4GB.  If it becomes necessary to handle lengths
10511    somewhat larger than 4GB, we could allow other small values (such
10512    as the non-sensical values of 1, 2, and 3) to also be used as
10513    escape values indicating the presence of the old format.
10514 
10515    The value returned via bytes_read should be used to increment the
10516    relevant pointer after calling read_initial_length().
10517 
10518    [ Note:  read_initial_length() and read_offset() are based on the
10519      document entitled "DWARF Debugging Information Format", revision
10520      3, draft 8, dated November 19, 2001.  This document was obtained
10521      from:
10522 
10523 	http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
10524 
10525      This document is only a draft and is subject to change.  (So beware.)
10526 
10527      Details regarding the older, non-standard 64-bit format were
10528      determined empirically by examining 64-bit ELF files produced by
10529      the SGI toolchain on an IRIX 6.5 machine.
10530 
10531      - Kevin, July 16, 2002
10532    ] */
10533 
10534 static LONGEST
10535 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
10536 {
10537   LONGEST length = bfd_get_32 (abfd, buf);
10538 
10539   if (length == 0xffffffff)
10540     {
10541       length = bfd_get_64 (abfd, buf + 4);
10542       *bytes_read = 12;
10543     }
10544   else if (length == 0)
10545     {
10546       /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX.  */
10547       length = bfd_get_64 (abfd, buf);
10548       *bytes_read = 8;
10549     }
10550   else
10551     {
10552       *bytes_read = 4;
10553     }
10554 
10555   return length;
10556 }
10557 
10558 /* Cover function for read_initial_length.
10559    Returns the length of the object at BUF, and stores the size of the
10560    initial length in *BYTES_READ and stores the size that offsets will be in
10561    *OFFSET_SIZE.
10562    If the initial length size is not equivalent to that specified in
10563    CU_HEADER then issue a complaint.
10564    This is useful when reading non-comp-unit headers.  */
10565 
10566 static LONGEST
10567 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
10568 					const struct comp_unit_head *cu_header,
10569 					unsigned int *bytes_read,
10570 					unsigned int *offset_size)
10571 {
10572   LONGEST length = read_initial_length (abfd, buf, bytes_read);
10573 
10574   gdb_assert (cu_header->initial_length_size == 4
10575 	      || cu_header->initial_length_size == 8
10576 	      || cu_header->initial_length_size == 12);
10577 
10578   if (cu_header->initial_length_size != *bytes_read)
10579     complaint (&symfile_complaints,
10580 	       _("intermixed 32-bit and 64-bit DWARF sections"));
10581 
10582   *offset_size = (*bytes_read == 4) ? 4 : 8;
10583   return length;
10584 }
10585 
10586 /* Read an offset from the data stream.  The size of the offset is
10587    given by cu_header->offset_size.  */
10588 
10589 static LONGEST
10590 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
10591              unsigned int *bytes_read)
10592 {
10593   LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
10594 
10595   *bytes_read = cu_header->offset_size;
10596   return offset;
10597 }
10598 
10599 /* Read an offset from the data stream.  */
10600 
10601 static LONGEST
10602 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
10603 {
10604   LONGEST retval = 0;
10605 
10606   switch (offset_size)
10607     {
10608     case 4:
10609       retval = bfd_get_32 (abfd, buf);
10610       break;
10611     case 8:
10612       retval = bfd_get_64 (abfd, buf);
10613       break;
10614     default:
10615       internal_error (__FILE__, __LINE__,
10616 		      _("read_offset_1: bad switch [in module %s]"),
10617 		      bfd_get_filename (abfd));
10618     }
10619 
10620   return retval;
10621 }
10622 
10623 static gdb_byte *
10624 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
10625 {
10626   /* If the size of a host char is 8 bits, we can return a pointer
10627      to the buffer, otherwise we have to copy the data to a buffer
10628      allocated on the temporary obstack.  */
10629   gdb_assert (HOST_CHAR_BIT == 8);
10630   return buf;
10631 }
10632 
10633 static char *
10634 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
10635 {
10636   /* If the size of a host char is 8 bits, we can return a pointer
10637      to the string, otherwise we have to copy the string to a buffer
10638      allocated on the temporary obstack.  */
10639   gdb_assert (HOST_CHAR_BIT == 8);
10640   if (*buf == '\0')
10641     {
10642       *bytes_read_ptr = 1;
10643       return NULL;
10644     }
10645   *bytes_read_ptr = strlen ((char *) buf) + 1;
10646   return (char *) buf;
10647 }
10648 
10649 static char *
10650 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
10651 {
10652   dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
10653   if (dwarf2_per_objfile->str.buffer == NULL)
10654     error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
10655 	   bfd_get_filename (abfd));
10656   if (str_offset >= dwarf2_per_objfile->str.size)
10657     error (_("DW_FORM_strp pointing outside of "
10658 	     ".debug_str section [in module %s]"),
10659 	   bfd_get_filename (abfd));
10660   gdb_assert (HOST_CHAR_BIT == 8);
10661   if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
10662     return NULL;
10663   return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
10664 }
10665 
10666 static char *
10667 read_indirect_string (bfd *abfd, gdb_byte *buf,
10668 		      const struct comp_unit_head *cu_header,
10669 		      unsigned int *bytes_read_ptr)
10670 {
10671   LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
10672 
10673   return read_indirect_string_at_offset (abfd, str_offset);
10674 }
10675 
10676 static unsigned long
10677 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
10678 {
10679   unsigned long result;
10680   unsigned int num_read;
10681   int i, shift;
10682   unsigned char byte;
10683 
10684   result = 0;
10685   shift = 0;
10686   num_read = 0;
10687   i = 0;
10688   while (1)
10689     {
10690       byte = bfd_get_8 (abfd, buf);
10691       buf++;
10692       num_read++;
10693       result |= ((unsigned long)(byte & 127) << shift);
10694       if ((byte & 128) == 0)
10695 	{
10696 	  break;
10697 	}
10698       shift += 7;
10699     }
10700   *bytes_read_ptr = num_read;
10701   return result;
10702 }
10703 
10704 static long
10705 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
10706 {
10707   long result;
10708   int i, shift, num_read;
10709   unsigned char byte;
10710 
10711   result = 0;
10712   shift = 0;
10713   num_read = 0;
10714   i = 0;
10715   while (1)
10716     {
10717       byte = bfd_get_8 (abfd, buf);
10718       buf++;
10719       num_read++;
10720       result |= ((long)(byte & 127) << shift);
10721       shift += 7;
10722       if ((byte & 128) == 0)
10723 	{
10724 	  break;
10725 	}
10726     }
10727   if ((shift < 8 * sizeof (result)) && (byte & 0x40))
10728     result |= -(((long)1) << shift);
10729   *bytes_read_ptr = num_read;
10730   return result;
10731 }
10732 
10733 /* Return a pointer to just past the end of an LEB128 number in BUF.  */
10734 
10735 static gdb_byte *
10736 skip_leb128 (bfd *abfd, gdb_byte *buf)
10737 {
10738   int byte;
10739 
10740   while (1)
10741     {
10742       byte = bfd_get_8 (abfd, buf);
10743       buf++;
10744       if ((byte & 128) == 0)
10745 	return buf;
10746     }
10747 }
10748 
10749 static void
10750 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
10751 {
10752   switch (lang)
10753     {
10754     case DW_LANG_C89:
10755     case DW_LANG_C99:
10756     case DW_LANG_C:
10757       cu->language = language_c;
10758       break;
10759     case DW_LANG_C_plus_plus:
10760       cu->language = language_cplus;
10761       break;
10762     case DW_LANG_D:
10763       cu->language = language_d;
10764       break;
10765     case DW_LANG_Fortran77:
10766     case DW_LANG_Fortran90:
10767     case DW_LANG_Fortran95:
10768       cu->language = language_fortran;
10769       break;
10770     case DW_LANG_Mips_Assembler:
10771       cu->language = language_asm;
10772       break;
10773     case DW_LANG_Java:
10774       cu->language = language_java;
10775       break;
10776     case DW_LANG_Ada83:
10777     case DW_LANG_Ada95:
10778       cu->language = language_ada;
10779       break;
10780     case DW_LANG_Modula2:
10781       cu->language = language_m2;
10782       break;
10783     case DW_LANG_Pascal83:
10784       cu->language = language_pascal;
10785       break;
10786     case DW_LANG_ObjC:
10787       cu->language = language_objc;
10788       break;
10789     case DW_LANG_Cobol74:
10790     case DW_LANG_Cobol85:
10791     default:
10792       cu->language = language_minimal;
10793       break;
10794     }
10795   cu->language_defn = language_def (cu->language);
10796 }
10797 
10798 /* Return the named attribute or NULL if not there.  */
10799 
10800 static struct attribute *
10801 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
10802 {
10803   unsigned int i;
10804   struct attribute *spec = NULL;
10805 
10806   for (i = 0; i < die->num_attrs; ++i)
10807     {
10808       if (die->attrs[i].name == name)
10809 	return &die->attrs[i];
10810       if (die->attrs[i].name == DW_AT_specification
10811 	  || die->attrs[i].name == DW_AT_abstract_origin)
10812 	spec = &die->attrs[i];
10813     }
10814 
10815   if (spec)
10816     {
10817       die = follow_die_ref (die, spec, &cu);
10818       return dwarf2_attr (die, name, cu);
10819     }
10820 
10821   return NULL;
10822 }
10823 
10824 /* Return the named attribute or NULL if not there,
10825    but do not follow DW_AT_specification, etc.
10826    This is for use in contexts where we're reading .debug_types dies.
10827    Following DW_AT_specification, DW_AT_abstract_origin will take us
10828    back up the chain, and we want to go down.  */
10829 
10830 static struct attribute *
10831 dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
10832 		       struct dwarf2_cu *cu)
10833 {
10834   unsigned int i;
10835 
10836   for (i = 0; i < die->num_attrs; ++i)
10837     if (die->attrs[i].name == name)
10838       return &die->attrs[i];
10839 
10840   return NULL;
10841 }
10842 
10843 /* Return non-zero iff the attribute NAME is defined for the given DIE,
10844    and holds a non-zero value.  This function should only be used for
10845    DW_FORM_flag or DW_FORM_flag_present attributes.  */
10846 
10847 static int
10848 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
10849 {
10850   struct attribute *attr = dwarf2_attr (die, name, cu);
10851 
10852   return (attr && DW_UNSND (attr));
10853 }
10854 
10855 static int
10856 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
10857 {
10858   /* A DIE is a declaration if it has a DW_AT_declaration attribute
10859      which value is non-zero.  However, we have to be careful with
10860      DIEs having a DW_AT_specification attribute, because dwarf2_attr()
10861      (via dwarf2_flag_true_p) follows this attribute.  So we may
10862      end up accidently finding a declaration attribute that belongs
10863      to a different DIE referenced by the specification attribute,
10864      even though the given DIE does not have a declaration attribute.  */
10865   return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
10866 	  && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
10867 }
10868 
10869 /* Return the die giving the specification for DIE, if there is
10870    one.  *SPEC_CU is the CU containing DIE on input, and the CU
10871    containing the return value on output.  If there is no
10872    specification, but there is an abstract origin, that is
10873    returned.  */
10874 
10875 static struct die_info *
10876 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
10877 {
10878   struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
10879 					     *spec_cu);
10880 
10881   if (spec_attr == NULL)
10882     spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
10883 
10884   if (spec_attr == NULL)
10885     return NULL;
10886   else
10887     return follow_die_ref (die, spec_attr, spec_cu);
10888 }
10889 
10890 /* Free the line_header structure *LH, and any arrays and strings it
10891    refers to.
10892    NOTE: This is also used as a "cleanup" function.  */
10893 
10894 static void
10895 free_line_header (struct line_header *lh)
10896 {
10897   if (lh->standard_opcode_lengths)
10898     xfree (lh->standard_opcode_lengths);
10899 
10900   /* Remember that all the lh->file_names[i].name pointers are
10901      pointers into debug_line_buffer, and don't need to be freed.  */
10902   if (lh->file_names)
10903     xfree (lh->file_names);
10904 
10905   /* Similarly for the include directory names.  */
10906   if (lh->include_dirs)
10907     xfree (lh->include_dirs);
10908 
10909   xfree (lh);
10910 }
10911 
10912 /* Add an entry to LH's include directory table.  */
10913 
10914 static void
10915 add_include_dir (struct line_header *lh, char *include_dir)
10916 {
10917   /* Grow the array if necessary.  */
10918   if (lh->include_dirs_size == 0)
10919     {
10920       lh->include_dirs_size = 1; /* for testing */
10921       lh->include_dirs = xmalloc (lh->include_dirs_size
10922                                   * sizeof (*lh->include_dirs));
10923     }
10924   else if (lh->num_include_dirs >= lh->include_dirs_size)
10925     {
10926       lh->include_dirs_size *= 2;
10927       lh->include_dirs = xrealloc (lh->include_dirs,
10928                                    (lh->include_dirs_size
10929                                     * sizeof (*lh->include_dirs)));
10930     }
10931 
10932   lh->include_dirs[lh->num_include_dirs++] = include_dir;
10933 }
10934 
10935 /* Add an entry to LH's file name table.  */
10936 
10937 static void
10938 add_file_name (struct line_header *lh,
10939                char *name,
10940                unsigned int dir_index,
10941                unsigned int mod_time,
10942                unsigned int length)
10943 {
10944   struct file_entry *fe;
10945 
10946   /* Grow the array if necessary.  */
10947   if (lh->file_names_size == 0)
10948     {
10949       lh->file_names_size = 1; /* for testing */
10950       lh->file_names = xmalloc (lh->file_names_size
10951                                 * sizeof (*lh->file_names));
10952     }
10953   else if (lh->num_file_names >= lh->file_names_size)
10954     {
10955       lh->file_names_size *= 2;
10956       lh->file_names = xrealloc (lh->file_names,
10957                                  (lh->file_names_size
10958                                   * sizeof (*lh->file_names)));
10959     }
10960 
10961   fe = &lh->file_names[lh->num_file_names++];
10962   fe->name = name;
10963   fe->dir_index = dir_index;
10964   fe->mod_time = mod_time;
10965   fe->length = length;
10966   fe->included_p = 0;
10967   fe->symtab = NULL;
10968 }
10969 
10970 /* Read the statement program header starting at OFFSET in
10971    .debug_line, according to the endianness of ABFD.  Return a pointer
10972    to a struct line_header, allocated using xmalloc.
10973 
10974    NOTE: the strings in the include directory and file name tables of
10975    the returned object point into debug_line_buffer, and must not be
10976    freed.  */
10977 
10978 static struct line_header *
10979 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
10980 			  struct dwarf2_cu *cu)
10981 {
10982   struct cleanup *back_to;
10983   struct line_header *lh;
10984   gdb_byte *line_ptr;
10985   unsigned int bytes_read, offset_size;
10986   int i;
10987   char *cur_dir, *cur_file;
10988 
10989   dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
10990   if (dwarf2_per_objfile->line.buffer == NULL)
10991     {
10992       complaint (&symfile_complaints, _("missing .debug_line section"));
10993       return 0;
10994     }
10995 
10996   /* Make sure that at least there's room for the total_length field.
10997      That could be 12 bytes long, but we're just going to fudge that.  */
10998   if (offset + 4 >= dwarf2_per_objfile->line.size)
10999     {
11000       dwarf2_statement_list_fits_in_line_number_section_complaint ();
11001       return 0;
11002     }
11003 
11004   lh = xmalloc (sizeof (*lh));
11005   memset (lh, 0, sizeof (*lh));
11006   back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
11007                           (void *) lh);
11008 
11009   line_ptr = dwarf2_per_objfile->line.buffer + offset;
11010 
11011   /* Read in the header.  */
11012   lh->total_length =
11013     read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
11014 					    &bytes_read, &offset_size);
11015   line_ptr += bytes_read;
11016   if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
11017 				     + dwarf2_per_objfile->line.size))
11018     {
11019       dwarf2_statement_list_fits_in_line_number_section_complaint ();
11020       return 0;
11021     }
11022   lh->statement_program_end = line_ptr + lh->total_length;
11023   lh->version = read_2_bytes (abfd, line_ptr);
11024   line_ptr += 2;
11025   lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
11026   line_ptr += offset_size;
11027   lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
11028   line_ptr += 1;
11029   if (lh->version >= 4)
11030     {
11031       lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
11032       line_ptr += 1;
11033     }
11034   else
11035     lh->maximum_ops_per_instruction = 1;
11036 
11037   if (lh->maximum_ops_per_instruction == 0)
11038     {
11039       lh->maximum_ops_per_instruction = 1;
11040       complaint (&symfile_complaints,
11041 		 _("invalid maximum_ops_per_instruction "
11042 		   "in `.debug_line' section"));
11043     }
11044 
11045   lh->default_is_stmt = read_1_byte (abfd, line_ptr);
11046   line_ptr += 1;
11047   lh->line_base = read_1_signed_byte (abfd, line_ptr);
11048   line_ptr += 1;
11049   lh->line_range = read_1_byte (abfd, line_ptr);
11050   line_ptr += 1;
11051   lh->opcode_base = read_1_byte (abfd, line_ptr);
11052   line_ptr += 1;
11053   lh->standard_opcode_lengths
11054     = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
11055 
11056   lh->standard_opcode_lengths[0] = 1;  /* This should never be used anyway.  */
11057   for (i = 1; i < lh->opcode_base; ++i)
11058     {
11059       lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
11060       line_ptr += 1;
11061     }
11062 
11063   /* Read directory table.  */
11064   while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
11065     {
11066       line_ptr += bytes_read;
11067       add_include_dir (lh, cur_dir);
11068     }
11069   line_ptr += bytes_read;
11070 
11071   /* Read file name table.  */
11072   while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
11073     {
11074       unsigned int dir_index, mod_time, length;
11075 
11076       line_ptr += bytes_read;
11077       dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11078       line_ptr += bytes_read;
11079       mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11080       line_ptr += bytes_read;
11081       length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11082       line_ptr += bytes_read;
11083 
11084       add_file_name (lh, cur_file, dir_index, mod_time, length);
11085     }
11086   line_ptr += bytes_read;
11087   lh->statement_program_start = line_ptr;
11088 
11089   if (line_ptr > (dwarf2_per_objfile->line.buffer
11090 		  + dwarf2_per_objfile->line.size))
11091     complaint (&symfile_complaints,
11092 	       _("line number info header doesn't "
11093 		 "fit in `.debug_line' section"));
11094 
11095   discard_cleanups (back_to);
11096   return lh;
11097 }
11098 
11099 /* This function exists to work around a bug in certain compilers
11100    (particularly GCC 2.95), in which the first line number marker of a
11101    function does not show up until after the prologue, right before
11102    the second line number marker.  This function shifts ADDRESS down
11103    to the beginning of the function if necessary, and is called on
11104    addresses passed to record_line.  */
11105 
11106 static CORE_ADDR
11107 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
11108 {
11109   struct function_range *fn;
11110 
11111   /* Find the function_range containing address.  */
11112   if (!cu->first_fn)
11113     return address;
11114 
11115   if (!cu->cached_fn)
11116     cu->cached_fn = cu->first_fn;
11117 
11118   fn = cu->cached_fn;
11119   while (fn)
11120     if (fn->lowpc <= address && fn->highpc > address)
11121       goto found;
11122     else
11123       fn = fn->next;
11124 
11125   fn = cu->first_fn;
11126   while (fn && fn != cu->cached_fn)
11127     if (fn->lowpc <= address && fn->highpc > address)
11128       goto found;
11129     else
11130       fn = fn->next;
11131 
11132   return address;
11133 
11134  found:
11135   if (fn->seen_line)
11136     return address;
11137   if (address != fn->lowpc)
11138     complaint (&symfile_complaints,
11139 	       _("misplaced first line number at 0x%lx for '%s'"),
11140 	       (unsigned long) address, fn->name);
11141   fn->seen_line = 1;
11142   return fn->lowpc;
11143 }
11144 
11145 /* Subroutine of dwarf_decode_lines to simplify it.
11146    Return the file name of the psymtab for included file FILE_INDEX
11147    in line header LH of PST.
11148    COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
11149    If space for the result is malloc'd, it will be freed by a cleanup.
11150    Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.  */
11151 
11152 static char *
11153 psymtab_include_file_name (const struct line_header *lh, int file_index,
11154 			   const struct partial_symtab *pst,
11155 			   const char *comp_dir)
11156 {
11157   const struct file_entry fe = lh->file_names [file_index];
11158   char *include_name = fe.name;
11159   char *include_name_to_compare = include_name;
11160   char *dir_name = NULL;
11161   const char *pst_filename;
11162   char *copied_name = NULL;
11163   int file_is_pst;
11164 
11165   if (fe.dir_index)
11166     dir_name = lh->include_dirs[fe.dir_index - 1];
11167 
11168   if (!IS_ABSOLUTE_PATH (include_name)
11169       && (dir_name != NULL || comp_dir != NULL))
11170     {
11171       /* Avoid creating a duplicate psymtab for PST.
11172 	 We do this by comparing INCLUDE_NAME and PST_FILENAME.
11173 	 Before we do the comparison, however, we need to account
11174 	 for DIR_NAME and COMP_DIR.
11175 	 First prepend dir_name (if non-NULL).  If we still don't
11176 	 have an absolute path prepend comp_dir (if non-NULL).
11177 	 However, the directory we record in the include-file's
11178 	 psymtab does not contain COMP_DIR (to match the
11179 	 corresponding symtab(s)).
11180 
11181 	 Example:
11182 
11183 	 bash$ cd /tmp
11184 	 bash$ gcc -g ./hello.c
11185 	 include_name = "hello.c"
11186 	 dir_name = "."
11187 	 DW_AT_comp_dir = comp_dir = "/tmp"
11188 	 DW_AT_name = "./hello.c"  */
11189 
11190       if (dir_name != NULL)
11191 	{
11192 	  include_name = concat (dir_name, SLASH_STRING,
11193 				 include_name, (char *)NULL);
11194 	  include_name_to_compare = include_name;
11195 	  make_cleanup (xfree, include_name);
11196 	}
11197       if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
11198 	{
11199 	  include_name_to_compare = concat (comp_dir, SLASH_STRING,
11200 					    include_name, (char *)NULL);
11201 	}
11202     }
11203 
11204   pst_filename = pst->filename;
11205   if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
11206     {
11207       copied_name = concat (pst->dirname, SLASH_STRING,
11208 			    pst_filename, (char *)NULL);
11209       pst_filename = copied_name;
11210     }
11211 
11212   file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
11213 
11214   if (include_name_to_compare != include_name)
11215     xfree (include_name_to_compare);
11216   if (copied_name != NULL)
11217     xfree (copied_name);
11218 
11219   if (file_is_pst)
11220     return NULL;
11221   return include_name;
11222 }
11223 
11224 /* Ignore this record_line request.  */
11225 
11226 static void
11227 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
11228 {
11229   return;
11230 }
11231 
11232 /* Subroutine of dwarf_decode_lines to simplify it.
11233    Process the line number information in LH.  */
11234 
11235 static void
11236 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
11237 		      struct dwarf2_cu *cu, struct partial_symtab *pst)
11238 {
11239   gdb_byte *line_ptr, *extended_end;
11240   gdb_byte *line_end;
11241   unsigned int bytes_read, extended_len;
11242   unsigned char op_code, extended_op, adj_opcode;
11243   CORE_ADDR baseaddr;
11244   struct objfile *objfile = cu->objfile;
11245   bfd *abfd = objfile->obfd;
11246   struct gdbarch *gdbarch = get_objfile_arch (objfile);
11247   const int decode_for_pst_p = (pst != NULL);
11248   struct subfile *last_subfile = NULL;
11249   void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
11250     = record_line;
11251 
11252   baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11253 
11254   line_ptr = lh->statement_program_start;
11255   line_end = lh->statement_program_end;
11256 
11257   /* Read the statement sequences until there's nothing left.  */
11258   while (line_ptr < line_end)
11259     {
11260       /* state machine registers  */
11261       CORE_ADDR address = 0;
11262       unsigned int file = 1;
11263       unsigned int line = 1;
11264       unsigned int column = 0;
11265       int is_stmt = lh->default_is_stmt;
11266       int basic_block = 0;
11267       int end_sequence = 0;
11268       CORE_ADDR addr;
11269       unsigned char op_index = 0;
11270 
11271       if (!decode_for_pst_p && lh->num_file_names >= file)
11272 	{
11273           /* Start a subfile for the current file of the state machine.  */
11274 	  /* lh->include_dirs and lh->file_names are 0-based, but the
11275 	     directory and file name numbers in the statement program
11276 	     are 1-based.  */
11277           struct file_entry *fe = &lh->file_names[file - 1];
11278           char *dir = NULL;
11279 
11280           if (fe->dir_index)
11281             dir = lh->include_dirs[fe->dir_index - 1];
11282 
11283 	  dwarf2_start_subfile (fe->name, dir, comp_dir);
11284 	}
11285 
11286       /* Decode the table.  */
11287       while (!end_sequence)
11288 	{
11289 	  op_code = read_1_byte (abfd, line_ptr);
11290 	  line_ptr += 1;
11291           if (line_ptr > line_end)
11292             {
11293               dwarf2_debug_line_missing_end_sequence_complaint ();
11294               break;
11295             }
11296 
11297 	  if (op_code >= lh->opcode_base)
11298 	    {
11299 	      /* Special operand.  */
11300 	      adj_opcode = op_code - lh->opcode_base;
11301 	      address += (((op_index + (adj_opcode / lh->line_range))
11302 			   / lh->maximum_ops_per_instruction)
11303 			  * lh->minimum_instruction_length);
11304 	      op_index = ((op_index + (adj_opcode / lh->line_range))
11305 			  % lh->maximum_ops_per_instruction);
11306 	      line += lh->line_base + (adj_opcode % lh->line_range);
11307 	      if (lh->num_file_names < file || file == 0)
11308 		dwarf2_debug_line_missing_file_complaint ();
11309 	      /* For now we ignore lines not starting on an
11310 		 instruction boundary.  */
11311 	      else if (op_index == 0)
11312 		{
11313 		  lh->file_names[file - 1].included_p = 1;
11314 		  if (!decode_for_pst_p && is_stmt)
11315 		    {
11316 		      if (last_subfile != current_subfile)
11317 			{
11318 			  addr = gdbarch_addr_bits_remove (gdbarch, address);
11319 			  if (last_subfile)
11320 			    (*p_record_line) (last_subfile, 0, addr);
11321 			  last_subfile = current_subfile;
11322 			}
11323 		      /* Append row to matrix using current values.  */
11324 		      addr = check_cu_functions (address, cu);
11325 		      addr = gdbarch_addr_bits_remove (gdbarch, addr);
11326 		      (*p_record_line) (current_subfile, line, addr);
11327 		    }
11328 		}
11329 	      basic_block = 0;
11330 	    }
11331 	  else switch (op_code)
11332 	    {
11333 	    case DW_LNS_extended_op:
11334 	      extended_len = read_unsigned_leb128 (abfd, line_ptr,
11335 						   &bytes_read);
11336 	      line_ptr += bytes_read;
11337 	      extended_end = line_ptr + extended_len;
11338 	      extended_op = read_1_byte (abfd, line_ptr);
11339 	      line_ptr += 1;
11340 	      switch (extended_op)
11341 		{
11342 		case DW_LNE_end_sequence:
11343 		  p_record_line = record_line;
11344 		  end_sequence = 1;
11345 		  break;
11346 		case DW_LNE_set_address:
11347 		  address = read_address (abfd, line_ptr, cu, &bytes_read);
11348 
11349 		  if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
11350 		    {
11351 		      /* This line table is for a function which has been
11352 			 GCd by the linker.  Ignore it.  PR gdb/12528 */
11353 
11354 		      long line_offset
11355 			= line_ptr - dwarf2_per_objfile->line.buffer;
11356 
11357 		      complaint (&symfile_complaints,
11358 				 _(".debug_line address at offset 0x%lx is 0 "
11359 				   "[in module %s]"),
11360 				 line_offset, cu->objfile->name);
11361 		      p_record_line = noop_record_line;
11362 		    }
11363 
11364 		  op_index = 0;
11365 		  line_ptr += bytes_read;
11366 		  address += baseaddr;
11367 		  break;
11368 		case DW_LNE_define_file:
11369                   {
11370                     char *cur_file;
11371                     unsigned int dir_index, mod_time, length;
11372 
11373                     cur_file = read_direct_string (abfd, line_ptr,
11374 						   &bytes_read);
11375                     line_ptr += bytes_read;
11376                     dir_index =
11377                       read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11378                     line_ptr += bytes_read;
11379                     mod_time =
11380                       read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11381                     line_ptr += bytes_read;
11382                     length =
11383                       read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11384                     line_ptr += bytes_read;
11385                     add_file_name (lh, cur_file, dir_index, mod_time, length);
11386                   }
11387 		  break;
11388 		case DW_LNE_set_discriminator:
11389 		  /* The discriminator is not interesting to the debugger;
11390 		     just ignore it.  */
11391 		  line_ptr = extended_end;
11392 		  break;
11393 		default:
11394 		  complaint (&symfile_complaints,
11395 			     _("mangled .debug_line section"));
11396 		  return;
11397 		}
11398 	      /* Make sure that we parsed the extended op correctly.  If e.g.
11399 		 we expected a different address size than the producer used,
11400 		 we may have read the wrong number of bytes.  */
11401 	      if (line_ptr != extended_end)
11402 		{
11403 		  complaint (&symfile_complaints,
11404 			     _("mangled .debug_line section"));
11405 		  return;
11406 		}
11407 	      break;
11408 	    case DW_LNS_copy:
11409 	      if (lh->num_file_names < file || file == 0)
11410 		dwarf2_debug_line_missing_file_complaint ();
11411 	      else
11412 		{
11413 		  lh->file_names[file - 1].included_p = 1;
11414 		  if (!decode_for_pst_p && is_stmt)
11415 		    {
11416 		      if (last_subfile != current_subfile)
11417 			{
11418 			  addr = gdbarch_addr_bits_remove (gdbarch, address);
11419 			  if (last_subfile)
11420 			    (*p_record_line) (last_subfile, 0, addr);
11421 			  last_subfile = current_subfile;
11422 			}
11423 		      addr = check_cu_functions (address, cu);
11424 		      addr = gdbarch_addr_bits_remove (gdbarch, addr);
11425 		      (*p_record_line) (current_subfile, line, addr);
11426 		    }
11427 		}
11428 	      basic_block = 0;
11429 	      break;
11430 	    case DW_LNS_advance_pc:
11431 	      {
11432 		CORE_ADDR adjust
11433 		  = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11434 
11435 		address += (((op_index + adjust)
11436 			     / lh->maximum_ops_per_instruction)
11437 			    * lh->minimum_instruction_length);
11438 		op_index = ((op_index + adjust)
11439 			    % lh->maximum_ops_per_instruction);
11440 		line_ptr += bytes_read;
11441 	      }
11442 	      break;
11443 	    case DW_LNS_advance_line:
11444 	      line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
11445 	      line_ptr += bytes_read;
11446 	      break;
11447 	    case DW_LNS_set_file:
11448               {
11449                 /* The arrays lh->include_dirs and lh->file_names are
11450                    0-based, but the directory and file name numbers in
11451                    the statement program are 1-based.  */
11452                 struct file_entry *fe;
11453                 char *dir = NULL;
11454 
11455                 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11456                 line_ptr += bytes_read;
11457                 if (lh->num_file_names < file || file == 0)
11458                   dwarf2_debug_line_missing_file_complaint ();
11459                 else
11460                   {
11461                     fe = &lh->file_names[file - 1];
11462                     if (fe->dir_index)
11463                       dir = lh->include_dirs[fe->dir_index - 1];
11464                     if (!decode_for_pst_p)
11465                       {
11466                         last_subfile = current_subfile;
11467                         dwarf2_start_subfile (fe->name, dir, comp_dir);
11468                       }
11469                   }
11470               }
11471 	      break;
11472 	    case DW_LNS_set_column:
11473 	      column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11474 	      line_ptr += bytes_read;
11475 	      break;
11476 	    case DW_LNS_negate_stmt:
11477 	      is_stmt = (!is_stmt);
11478 	      break;
11479 	    case DW_LNS_set_basic_block:
11480 	      basic_block = 1;
11481 	      break;
11482 	    /* Add to the address register of the state machine the
11483 	       address increment value corresponding to special opcode
11484 	       255.  I.e., this value is scaled by the minimum
11485 	       instruction length since special opcode 255 would have
11486 	       scaled the increment.  */
11487 	    case DW_LNS_const_add_pc:
11488 	      {
11489 		CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
11490 
11491 		address += (((op_index + adjust)
11492 			     / lh->maximum_ops_per_instruction)
11493 			    * lh->minimum_instruction_length);
11494 		op_index = ((op_index + adjust)
11495 			    % lh->maximum_ops_per_instruction);
11496 	      }
11497 	      break;
11498 	    case DW_LNS_fixed_advance_pc:
11499 	      address += read_2_bytes (abfd, line_ptr);
11500 	      op_index = 0;
11501 	      line_ptr += 2;
11502 	      break;
11503 	    default:
11504 	      {
11505 		/* Unknown standard opcode, ignore it.  */
11506 		int i;
11507 
11508 		for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
11509 		  {
11510 		    (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11511 		    line_ptr += bytes_read;
11512 		  }
11513 	      }
11514 	    }
11515 	}
11516       if (lh->num_file_names < file || file == 0)
11517         dwarf2_debug_line_missing_file_complaint ();
11518       else
11519         {
11520           lh->file_names[file - 1].included_p = 1;
11521           if (!decode_for_pst_p)
11522 	    {
11523 	      addr = gdbarch_addr_bits_remove (gdbarch, address);
11524 	      (*p_record_line) (current_subfile, 0, addr);
11525 	    }
11526         }
11527     }
11528 }
11529 
11530 /* Decode the Line Number Program (LNP) for the given line_header
11531    structure and CU.  The actual information extracted and the type
11532    of structures created from the LNP depends on the value of PST.
11533 
11534    1. If PST is NULL, then this procedure uses the data from the program
11535       to create all necessary symbol tables, and their linetables.
11536 
11537    2. If PST is not NULL, this procedure reads the program to determine
11538       the list of files included by the unit represented by PST, and
11539       builds all the associated partial symbol tables.
11540 
11541    COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
11542    It is used for relative paths in the line table.
11543    NOTE: When processing partial symtabs (pst != NULL),
11544    comp_dir == pst->dirname.
11545 
11546    NOTE: It is important that psymtabs have the same file name (via strcmp)
11547    as the corresponding symtab.  Since COMP_DIR is not used in the name of the
11548    symtab we don't use it in the name of the psymtabs we create.
11549    E.g. expand_line_sal requires this when finding psymtabs to expand.
11550    A good testcase for this is mb-inline.exp.  */
11551 
11552 static void
11553 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
11554 		    struct dwarf2_cu *cu, struct partial_symtab *pst,
11555 		    int want_line_info)
11556 {
11557   struct objfile *objfile = cu->objfile;
11558   const int decode_for_pst_p = (pst != NULL);
11559   struct subfile *first_subfile = current_subfile;
11560 
11561   if (want_line_info)
11562     dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
11563 
11564   if (decode_for_pst_p)
11565     {
11566       int file_index;
11567 
11568       /* Now that we're done scanning the Line Header Program, we can
11569          create the psymtab of each included file.  */
11570       for (file_index = 0; file_index < lh->num_file_names; file_index++)
11571         if (lh->file_names[file_index].included_p == 1)
11572           {
11573 	    char *include_name =
11574 	      psymtab_include_file_name (lh, file_index, pst, comp_dir);
11575 	    if (include_name != NULL)
11576               dwarf2_create_include_psymtab (include_name, pst, objfile);
11577           }
11578     }
11579   else
11580     {
11581       /* Make sure a symtab is created for every file, even files
11582 	 which contain only variables (i.e. no code with associated
11583 	 line numbers).  */
11584       int i;
11585 
11586       for (i = 0; i < lh->num_file_names; i++)
11587 	{
11588 	  char *dir = NULL;
11589 	  struct file_entry *fe;
11590 
11591 	  fe = &lh->file_names[i];
11592 	  if (fe->dir_index)
11593 	    dir = lh->include_dirs[fe->dir_index - 1];
11594 	  dwarf2_start_subfile (fe->name, dir, comp_dir);
11595 
11596 	  /* Skip the main file; we don't need it, and it must be
11597 	     allocated last, so that it will show up before the
11598 	     non-primary symtabs in the objfile's symtab list.  */
11599 	  if (current_subfile == first_subfile)
11600 	    continue;
11601 
11602 	  if (current_subfile->symtab == NULL)
11603 	    current_subfile->symtab = allocate_symtab (current_subfile->name,
11604 						       cu->objfile);
11605 	  fe->symtab = current_subfile->symtab;
11606 	}
11607     }
11608 }
11609 
11610 /* Start a subfile for DWARF.  FILENAME is the name of the file and
11611    DIRNAME the name of the source directory which contains FILENAME
11612    or NULL if not known.  COMP_DIR is the compilation directory for the
11613    linetable's compilation unit or NULL if not known.
11614    This routine tries to keep line numbers from identical absolute and
11615    relative file names in a common subfile.
11616 
11617    Using the `list' example from the GDB testsuite, which resides in
11618    /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
11619    of /srcdir/list0.c yields the following debugging information for list0.c:
11620 
11621    DW_AT_name:          /srcdir/list0.c
11622    DW_AT_comp_dir:              /compdir
11623    files.files[0].name: list0.h
11624    files.files[0].dir:  /srcdir
11625    files.files[1].name: list0.c
11626    files.files[1].dir:  /srcdir
11627 
11628    The line number information for list0.c has to end up in a single
11629    subfile, so that `break /srcdir/list0.c:1' works as expected.
11630    start_subfile will ensure that this happens provided that we pass the
11631    concatenation of files.files[1].dir and files.files[1].name as the
11632    subfile's name.  */
11633 
11634 static void
11635 dwarf2_start_subfile (char *filename, const char *dirname,
11636 		      const char *comp_dir)
11637 {
11638   char *fullname;
11639 
11640   /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
11641      `start_symtab' will always pass the contents of DW_AT_comp_dir as
11642      second argument to start_subfile.  To be consistent, we do the
11643      same here.  In order not to lose the line information directory,
11644      we concatenate it to the filename when it makes sense.
11645      Note that the Dwarf3 standard says (speaking of filenames in line
11646      information): ``The directory index is ignored for file names
11647      that represent full path names''.  Thus ignoring dirname in the
11648      `else' branch below isn't an issue.  */
11649 
11650   if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
11651     fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
11652   else
11653     fullname = filename;
11654 
11655   start_subfile (fullname, comp_dir);
11656 
11657   if (fullname != filename)
11658     xfree (fullname);
11659 }
11660 
11661 static void
11662 var_decode_location (struct attribute *attr, struct symbol *sym,
11663 		     struct dwarf2_cu *cu)
11664 {
11665   struct objfile *objfile = cu->objfile;
11666   struct comp_unit_head *cu_header = &cu->header;
11667 
11668   /* NOTE drow/2003-01-30: There used to be a comment and some special
11669      code here to turn a symbol with DW_AT_external and a
11670      SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol.  This was
11671      necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
11672      with some versions of binutils) where shared libraries could have
11673      relocations against symbols in their debug information - the
11674      minimal symbol would have the right address, but the debug info
11675      would not.  It's no longer necessary, because we will explicitly
11676      apply relocations when we read in the debug information now.  */
11677 
11678   /* A DW_AT_location attribute with no contents indicates that a
11679      variable has been optimized away.  */
11680   if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
11681     {
11682       SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
11683       return;
11684     }
11685 
11686   /* Handle one degenerate form of location expression specially, to
11687      preserve GDB's previous behavior when section offsets are
11688      specified.  If this is just a DW_OP_addr then mark this symbol
11689      as LOC_STATIC.  */
11690 
11691   if (attr_form_is_block (attr)
11692       && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
11693       && DW_BLOCK (attr)->data[0] == DW_OP_addr)
11694     {
11695       unsigned int dummy;
11696 
11697       SYMBOL_VALUE_ADDRESS (sym) =
11698 	read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
11699       SYMBOL_CLASS (sym) = LOC_STATIC;
11700       fixup_symbol_section (sym, objfile);
11701       SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
11702 					      SYMBOL_SECTION (sym));
11703       return;
11704     }
11705 
11706   /* NOTE drow/2002-01-30: It might be worthwhile to have a static
11707      expression evaluator, and use LOC_COMPUTED only when necessary
11708      (i.e. when the value of a register or memory location is
11709      referenced, or a thread-local block, etc.).  Then again, it might
11710      not be worthwhile.  I'm assuming that it isn't unless performance
11711      or memory numbers show me otherwise.  */
11712 
11713   dwarf2_symbol_mark_computed (attr, sym, cu);
11714   SYMBOL_CLASS (sym) = LOC_COMPUTED;
11715 
11716   if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs)
11717     cu->has_loclist = 1;
11718 }
11719 
11720 /* Given a pointer to a DWARF information entry, figure out if we need
11721    to make a symbol table entry for it, and if so, create a new entry
11722    and return a pointer to it.
11723    If TYPE is NULL, determine symbol type from the die, otherwise
11724    used the passed type.
11725    If SPACE is not NULL, use it to hold the new symbol.  If it is
11726    NULL, allocate a new symbol on the objfile's obstack.  */
11727 
11728 static struct symbol *
11729 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
11730 		 struct symbol *space)
11731 {
11732   struct objfile *objfile = cu->objfile;
11733   struct symbol *sym = NULL;
11734   char *name;
11735   struct attribute *attr = NULL;
11736   struct attribute *attr2 = NULL;
11737   CORE_ADDR baseaddr;
11738   struct pending **list_to_add = NULL;
11739 
11740   int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11741 
11742   baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11743 
11744   name = dwarf2_name (die, cu);
11745   if (name)
11746     {
11747       const char *linkagename;
11748       int suppress_add = 0;
11749 
11750       if (space)
11751 	sym = space;
11752       else
11753 	sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
11754       OBJSTAT (objfile, n_syms++);
11755 
11756       /* Cache this symbol's name and the name's demangled form (if any).  */
11757       SYMBOL_SET_LANGUAGE (sym, cu->language);
11758       linkagename = dwarf2_physname (name, die, cu);
11759       SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
11760 
11761       /* Fortran does not have mangling standard and the mangling does differ
11762 	 between gfortran, iFort etc.  */
11763       if (cu->language == language_fortran
11764           && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
11765 	symbol_set_demangled_name (&(sym->ginfo),
11766 				   (char *) dwarf2_full_name (name, die, cu),
11767 	                           NULL);
11768 
11769       /* Default assumptions.
11770          Use the passed type or decode it from the die.  */
11771       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11772       SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
11773       if (type != NULL)
11774 	SYMBOL_TYPE (sym) = type;
11775       else
11776 	SYMBOL_TYPE (sym) = die_type (die, cu);
11777       attr = dwarf2_attr (die,
11778 			  inlined_func ? DW_AT_call_line : DW_AT_decl_line,
11779 			  cu);
11780       if (attr)
11781 	{
11782 	  SYMBOL_LINE (sym) = DW_UNSND (attr);
11783 	}
11784 
11785       attr = dwarf2_attr (die,
11786 			  inlined_func ? DW_AT_call_file : DW_AT_decl_file,
11787 			  cu);
11788       if (attr)
11789 	{
11790 	  int file_index = DW_UNSND (attr);
11791 
11792 	  if (cu->line_header == NULL
11793 	      || file_index > cu->line_header->num_file_names)
11794 	    complaint (&symfile_complaints,
11795 		       _("file index out of range"));
11796 	  else if (file_index > 0)
11797 	    {
11798 	      struct file_entry *fe;
11799 
11800 	      fe = &cu->line_header->file_names[file_index - 1];
11801 	      SYMBOL_SYMTAB (sym) = fe->symtab;
11802 	    }
11803 	}
11804 
11805       switch (die->tag)
11806 	{
11807 	case DW_TAG_label:
11808 	  attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11809 	  if (attr)
11810 	    {
11811 	      SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
11812 	    }
11813 	  SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
11814 	  SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
11815 	  SYMBOL_CLASS (sym) = LOC_LABEL;
11816 	  add_symbol_to_list (sym, cu->list_in_scope);
11817 	  break;
11818 	case DW_TAG_subprogram:
11819 	  /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
11820 	     finish_block.  */
11821 	  SYMBOL_CLASS (sym) = LOC_BLOCK;
11822 	  attr2 = dwarf2_attr (die, DW_AT_external, cu);
11823 	  if ((attr2 && (DW_UNSND (attr2) != 0))
11824               || cu->language == language_ada)
11825 	    {
11826               /* Subprograms marked external are stored as a global symbol.
11827                  Ada subprograms, whether marked external or not, are always
11828                  stored as a global symbol, because we want to be able to
11829                  access them globally.  For instance, we want to be able
11830                  to break on a nested subprogram without having to
11831                  specify the context.  */
11832 	      list_to_add = &global_symbols;
11833 	    }
11834 	  else
11835 	    {
11836 	      list_to_add = cu->list_in_scope;
11837 	    }
11838 	  break;
11839 	case DW_TAG_inlined_subroutine:
11840 	  /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
11841 	     finish_block.  */
11842 	  SYMBOL_CLASS (sym) = LOC_BLOCK;
11843 	  SYMBOL_INLINED (sym) = 1;
11844 	  /* Do not add the symbol to any lists.  It will be found via
11845 	     BLOCK_FUNCTION from the blockvector.  */
11846 	  break;
11847 	case DW_TAG_template_value_param:
11848 	  suppress_add = 1;
11849 	  /* Fall through.  */
11850 	case DW_TAG_constant:
11851 	case DW_TAG_variable:
11852 	case DW_TAG_member:
11853 	  /* Compilation with minimal debug info may result in
11854 	     variables with missing type entries.  Change the
11855 	     misleading `void' type to something sensible.  */
11856 	  if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
11857 	    SYMBOL_TYPE (sym)
11858 	      = objfile_type (objfile)->nodebug_data_symbol;
11859 
11860 	  attr = dwarf2_attr (die, DW_AT_const_value, cu);
11861 	  /* In the case of DW_TAG_member, we should only be called for
11862 	     static const members.  */
11863 	  if (die->tag == DW_TAG_member)
11864 	    {
11865 	      /* dwarf2_add_field uses die_is_declaration,
11866 		 so we do the same.  */
11867 	      gdb_assert (die_is_declaration (die, cu));
11868 	      gdb_assert (attr);
11869 	    }
11870 	  if (attr)
11871 	    {
11872 	      dwarf2_const_value (attr, sym, cu);
11873 	      attr2 = dwarf2_attr (die, DW_AT_external, cu);
11874 	      if (!suppress_add)
11875 		{
11876 		  if (attr2 && (DW_UNSND (attr2) != 0))
11877 		    list_to_add = &global_symbols;
11878 		  else
11879 		    list_to_add = cu->list_in_scope;
11880 		}
11881 	      break;
11882 	    }
11883 	  attr = dwarf2_attr (die, DW_AT_location, cu);
11884 	  if (attr)
11885 	    {
11886 	      var_decode_location (attr, sym, cu);
11887 	      attr2 = dwarf2_attr (die, DW_AT_external, cu);
11888 	      if (SYMBOL_CLASS (sym) == LOC_STATIC
11889 		  && SYMBOL_VALUE_ADDRESS (sym) == 0
11890 		  && !dwarf2_per_objfile->has_section_at_zero)
11891 		{
11892 		  /* When a static variable is eliminated by the linker,
11893 		     the corresponding debug information is not stripped
11894 		     out, but the variable address is set to null;
11895 		     do not add such variables into symbol table.  */
11896 		}
11897 	      else if (attr2 && (DW_UNSND (attr2) != 0))
11898 		{
11899 		  /* Workaround gfortran PR debug/40040 - it uses
11900 		     DW_AT_location for variables in -fPIC libraries which may
11901 		     get overriden by other libraries/executable and get
11902 		     a different address.  Resolve it by the minimal symbol
11903 		     which may come from inferior's executable using copy
11904 		     relocation.  Make this workaround only for gfortran as for
11905 		     other compilers GDB cannot guess the minimal symbol
11906 		     Fortran mangling kind.  */
11907 		  if (cu->language == language_fortran && die->parent
11908 		      && die->parent->tag == DW_TAG_module
11909 		      && cu->producer
11910 		      && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
11911 		    SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
11912 
11913 		  /* A variable with DW_AT_external is never static,
11914 		     but it may be block-scoped.  */
11915 		  list_to_add = (cu->list_in_scope == &file_symbols
11916 				 ? &global_symbols : cu->list_in_scope);
11917 		}
11918 	      else
11919 		list_to_add = cu->list_in_scope;
11920 	    }
11921 	  else
11922 	    {
11923 	      /* We do not know the address of this symbol.
11924 	         If it is an external symbol and we have type information
11925 	         for it, enter the symbol as a LOC_UNRESOLVED symbol.
11926 	         The address of the variable will then be determined from
11927 	         the minimal symbol table whenever the variable is
11928 	         referenced.  */
11929 	      attr2 = dwarf2_attr (die, DW_AT_external, cu);
11930 	      if (attr2 && (DW_UNSND (attr2) != 0)
11931 		  && dwarf2_attr (die, DW_AT_type, cu) != NULL)
11932 		{
11933 		  /* A variable with DW_AT_external is never static, but it
11934 		     may be block-scoped.  */
11935 		  list_to_add = (cu->list_in_scope == &file_symbols
11936 				 ? &global_symbols : cu->list_in_scope);
11937 
11938 		  SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
11939 		}
11940 	      else if (!die_is_declaration (die, cu))
11941 		{
11942 		  /* Use the default LOC_OPTIMIZED_OUT class.  */
11943 		  gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
11944 		  if (!suppress_add)
11945 		    list_to_add = cu->list_in_scope;
11946 		}
11947 	    }
11948 	  break;
11949 	case DW_TAG_formal_parameter:
11950 	  /* If we are inside a function, mark this as an argument.  If
11951 	     not, we might be looking at an argument to an inlined function
11952 	     when we do not have enough information to show inlined frames;
11953 	     pretend it's a local variable in that case so that the user can
11954 	     still see it.  */
11955 	  if (context_stack_depth > 0
11956 	      && context_stack[context_stack_depth - 1].name != NULL)
11957 	    SYMBOL_IS_ARGUMENT (sym) = 1;
11958 	  attr = dwarf2_attr (die, DW_AT_location, cu);
11959 	  if (attr)
11960 	    {
11961 	      var_decode_location (attr, sym, cu);
11962 	    }
11963 	  attr = dwarf2_attr (die, DW_AT_const_value, cu);
11964 	  if (attr)
11965 	    {
11966 	      dwarf2_const_value (attr, sym, cu);
11967 	    }
11968 
11969 	  list_to_add = cu->list_in_scope;
11970 	  break;
11971 	case DW_TAG_unspecified_parameters:
11972 	  /* From varargs functions; gdb doesn't seem to have any
11973 	     interest in this information, so just ignore it for now.
11974 	     (FIXME?) */
11975 	  break;
11976 	case DW_TAG_template_type_param:
11977 	  suppress_add = 1;
11978 	  /* Fall through.  */
11979 	case DW_TAG_class_type:
11980 	case DW_TAG_interface_type:
11981 	case DW_TAG_structure_type:
11982 	case DW_TAG_union_type:
11983 	case DW_TAG_set_type:
11984 	case DW_TAG_enumeration_type:
11985 	  SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11986 	  SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
11987 
11988 	  {
11989 	    /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
11990 	       really ever be static objects: otherwise, if you try
11991 	       to, say, break of a class's method and you're in a file
11992 	       which doesn't mention that class, it won't work unless
11993 	       the check for all static symbols in lookup_symbol_aux
11994 	       saves you.  See the OtherFileClass tests in
11995 	       gdb.c++/namespace.exp.  */
11996 
11997 	    if (!suppress_add)
11998 	      {
11999 		list_to_add = (cu->list_in_scope == &file_symbols
12000 			       && (cu->language == language_cplus
12001 				   || cu->language == language_java)
12002 			       ? &global_symbols : cu->list_in_scope);
12003 
12004 		/* The semantics of C++ state that "struct foo {
12005 		   ... }" also defines a typedef for "foo".  A Java
12006 		   class declaration also defines a typedef for the
12007 		   class.  */
12008 		if (cu->language == language_cplus
12009 		    || cu->language == language_java
12010 		    || cu->language == language_ada)
12011 		  {
12012 		    /* The symbol's name is already allocated along
12013 		       with this objfile, so we don't need to
12014 		       duplicate it for the type.  */
12015 		    if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
12016 		      TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
12017 		  }
12018 	      }
12019 	  }
12020 	  break;
12021 	case DW_TAG_typedef:
12022 	  SYMBOL_CLASS (sym) = LOC_TYPEDEF;
12023 	  SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
12024 	  list_to_add = cu->list_in_scope;
12025 	  break;
12026 	case DW_TAG_base_type:
12027         case DW_TAG_subrange_type:
12028 	  SYMBOL_CLASS (sym) = LOC_TYPEDEF;
12029 	  SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
12030 	  list_to_add = cu->list_in_scope;
12031 	  break;
12032 	case DW_TAG_enumerator:
12033 	  attr = dwarf2_attr (die, DW_AT_const_value, cu);
12034 	  if (attr)
12035 	    {
12036 	      dwarf2_const_value (attr, sym, cu);
12037 	    }
12038 	  {
12039 	    /* NOTE: carlton/2003-11-10: See comment above in the
12040 	       DW_TAG_class_type, etc. block.  */
12041 
12042 	    list_to_add = (cu->list_in_scope == &file_symbols
12043 			   && (cu->language == language_cplus
12044 			       || cu->language == language_java)
12045 			   ? &global_symbols : cu->list_in_scope);
12046 	  }
12047 	  break;
12048 	case DW_TAG_namespace:
12049 	  SYMBOL_CLASS (sym) = LOC_TYPEDEF;
12050 	  list_to_add = &global_symbols;
12051 	  break;
12052 	default:
12053 	  /* Not a tag we recognize.  Hopefully we aren't processing
12054 	     trash data, but since we must specifically ignore things
12055 	     we don't recognize, there is nothing else we should do at
12056 	     this point.  */
12057 	  complaint (&symfile_complaints, _("unsupported tag: '%s'"),
12058 		     dwarf_tag_name (die->tag));
12059 	  break;
12060 	}
12061 
12062       if (suppress_add)
12063 	{
12064 	  sym->hash_next = objfile->template_symbols;
12065 	  objfile->template_symbols = sym;
12066 	  list_to_add = NULL;
12067 	}
12068 
12069       if (list_to_add != NULL)
12070 	add_symbol_to_list (sym, list_to_add);
12071 
12072       /* For the benefit of old versions of GCC, check for anonymous
12073 	 namespaces based on the demangled name.  */
12074       if (!processing_has_namespace_info
12075 	  && cu->language == language_cplus)
12076 	cp_scan_for_anonymous_namespaces (sym, objfile);
12077     }
12078   return (sym);
12079 }
12080 
12081 /* A wrapper for new_symbol_full that always allocates a new symbol.  */
12082 
12083 static struct symbol *
12084 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
12085 {
12086   return new_symbol_full (die, type, cu, NULL);
12087 }
12088 
12089 /* Given an attr with a DW_FORM_dataN value in host byte order,
12090    zero-extend it as appropriate for the symbol's type.  The DWARF
12091    standard (v4) is not entirely clear about the meaning of using
12092    DW_FORM_dataN for a constant with a signed type, where the type is
12093    wider than the data.  The conclusion of a discussion on the DWARF
12094    list was that this is unspecified.  We choose to always zero-extend
12095    because that is the interpretation long in use by GCC.  */
12096 
12097 static gdb_byte *
12098 dwarf2_const_value_data (struct attribute *attr, struct type *type,
12099 			 const char *name, struct obstack *obstack,
12100 			 struct dwarf2_cu *cu, long *value, int bits)
12101 {
12102   struct objfile *objfile = cu->objfile;
12103   enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
12104 				BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
12105   LONGEST l = DW_UNSND (attr);
12106 
12107   if (bits < sizeof (*value) * 8)
12108     {
12109       l &= ((LONGEST) 1 << bits) - 1;
12110       *value = l;
12111     }
12112   else if (bits == sizeof (*value) * 8)
12113     *value = l;
12114   else
12115     {
12116       gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
12117       store_unsigned_integer (bytes, bits / 8, byte_order, l);
12118       return bytes;
12119     }
12120 
12121   return NULL;
12122 }
12123 
12124 /* Read a constant value from an attribute.  Either set *VALUE, or if
12125    the value does not fit in *VALUE, set *BYTES - either already
12126    allocated on the objfile obstack, or newly allocated on OBSTACK,
12127    or, set *BATON, if we translated the constant to a location
12128    expression.  */
12129 
12130 static void
12131 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
12132 			 const char *name, struct obstack *obstack,
12133 			 struct dwarf2_cu *cu,
12134 			 long *value, gdb_byte **bytes,
12135 			 struct dwarf2_locexpr_baton **baton)
12136 {
12137   struct objfile *objfile = cu->objfile;
12138   struct comp_unit_head *cu_header = &cu->header;
12139   struct dwarf_block *blk;
12140   enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
12141 				BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
12142 
12143   *value = 0;
12144   *bytes = NULL;
12145   *baton = NULL;
12146 
12147   switch (attr->form)
12148     {
12149     case DW_FORM_addr:
12150       {
12151 	gdb_byte *data;
12152 
12153 	if (TYPE_LENGTH (type) != cu_header->addr_size)
12154 	  dwarf2_const_value_length_mismatch_complaint (name,
12155 							cu_header->addr_size,
12156 							TYPE_LENGTH (type));
12157 	/* Symbols of this form are reasonably rare, so we just
12158 	   piggyback on the existing location code rather than writing
12159 	   a new implementation of symbol_computed_ops.  */
12160 	*baton = obstack_alloc (&objfile->objfile_obstack,
12161 				sizeof (struct dwarf2_locexpr_baton));
12162 	(*baton)->per_cu = cu->per_cu;
12163 	gdb_assert ((*baton)->per_cu);
12164 
12165 	(*baton)->size = 2 + cu_header->addr_size;
12166 	data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
12167 	(*baton)->data = data;
12168 
12169 	data[0] = DW_OP_addr;
12170 	store_unsigned_integer (&data[1], cu_header->addr_size,
12171 				byte_order, DW_ADDR (attr));
12172 	data[cu_header->addr_size + 1] = DW_OP_stack_value;
12173       }
12174       break;
12175     case DW_FORM_string:
12176     case DW_FORM_strp:
12177       /* DW_STRING is already allocated on the objfile obstack, point
12178 	 directly to it.  */
12179       *bytes = (gdb_byte *) DW_STRING (attr);
12180       break;
12181     case DW_FORM_block1:
12182     case DW_FORM_block2:
12183     case DW_FORM_block4:
12184     case DW_FORM_block:
12185     case DW_FORM_exprloc:
12186       blk = DW_BLOCK (attr);
12187       if (TYPE_LENGTH (type) != blk->size)
12188 	dwarf2_const_value_length_mismatch_complaint (name, blk->size,
12189 						      TYPE_LENGTH (type));
12190       *bytes = blk->data;
12191       break;
12192 
12193       /* The DW_AT_const_value attributes are supposed to carry the
12194 	 symbol's value "represented as it would be on the target
12195 	 architecture."  By the time we get here, it's already been
12196 	 converted to host endianness, so we just need to sign- or
12197 	 zero-extend it as appropriate.  */
12198     case DW_FORM_data1:
12199       *bytes = dwarf2_const_value_data (attr, type, name,
12200 					obstack, cu, value, 8);
12201       break;
12202     case DW_FORM_data2:
12203       *bytes = dwarf2_const_value_data (attr, type, name,
12204 					obstack, cu, value, 16);
12205       break;
12206     case DW_FORM_data4:
12207       *bytes = dwarf2_const_value_data (attr, type, name,
12208 					obstack, cu, value, 32);
12209       break;
12210     case DW_FORM_data8:
12211       *bytes = dwarf2_const_value_data (attr, type, name,
12212 					obstack, cu, value, 64);
12213       break;
12214 
12215     case DW_FORM_sdata:
12216       *value = DW_SND (attr);
12217       break;
12218 
12219     case DW_FORM_udata:
12220       *value = DW_UNSND (attr);
12221       break;
12222 
12223     default:
12224       complaint (&symfile_complaints,
12225 		 _("unsupported const value attribute form: '%s'"),
12226 		 dwarf_form_name (attr->form));
12227       *value = 0;
12228       break;
12229     }
12230 }
12231 
12232 
12233 /* Copy constant value from an attribute to a symbol.  */
12234 
12235 static void
12236 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
12237 		    struct dwarf2_cu *cu)
12238 {
12239   struct objfile *objfile = cu->objfile;
12240   struct comp_unit_head *cu_header = &cu->header;
12241   long value;
12242   gdb_byte *bytes;
12243   struct dwarf2_locexpr_baton *baton;
12244 
12245   dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
12246 			   SYMBOL_PRINT_NAME (sym),
12247 			   &objfile->objfile_obstack, cu,
12248 			   &value, &bytes, &baton);
12249 
12250   if (baton != NULL)
12251     {
12252       SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
12253       SYMBOL_LOCATION_BATON (sym) = baton;
12254       SYMBOL_CLASS (sym) = LOC_COMPUTED;
12255     }
12256   else if (bytes != NULL)
12257      {
12258       SYMBOL_VALUE_BYTES (sym) = bytes;
12259       SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
12260     }
12261   else
12262     {
12263       SYMBOL_VALUE (sym) = value;
12264       SYMBOL_CLASS (sym) = LOC_CONST;
12265     }
12266 }
12267 
12268 /* Return the type of the die in question using its DW_AT_type attribute.  */
12269 
12270 static struct type *
12271 die_type (struct die_info *die, struct dwarf2_cu *cu)
12272 {
12273   struct attribute *type_attr;
12274 
12275   type_attr = dwarf2_attr (die, DW_AT_type, cu);
12276   if (!type_attr)
12277     {
12278       /* A missing DW_AT_type represents a void type.  */
12279       return objfile_type (cu->objfile)->builtin_void;
12280     }
12281 
12282   return lookup_die_type (die, type_attr, cu);
12283 }
12284 
12285 /* True iff CU's producer generates GNAT Ada auxiliary information
12286    that allows to find parallel types through that information instead
12287    of having to do expensive parallel lookups by type name.  */
12288 
12289 static int
12290 need_gnat_info (struct dwarf2_cu *cu)
12291 {
12292   /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
12293      of GNAT produces this auxiliary information, without any indication
12294      that it is produced.  Part of enhancing the FSF version of GNAT
12295      to produce that information will be to put in place an indicator
12296      that we can use in order to determine whether the descriptive type
12297      info is available or not.  One suggestion that has been made is
12298      to use a new attribute, attached to the CU die.  For now, assume
12299      that the descriptive type info is not available.  */
12300   return 0;
12301 }
12302 
12303 /* Return the auxiliary type of the die in question using its
12304    DW_AT_GNAT_descriptive_type attribute.  Returns NULL if the
12305    attribute is not present.  */
12306 
12307 static struct type *
12308 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
12309 {
12310   struct attribute *type_attr;
12311 
12312   type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
12313   if (!type_attr)
12314     return NULL;
12315 
12316   return lookup_die_type (die, type_attr, cu);
12317 }
12318 
12319 /* If DIE has a descriptive_type attribute, then set the TYPE's
12320    descriptive type accordingly.  */
12321 
12322 static void
12323 set_descriptive_type (struct type *type, struct die_info *die,
12324 		      struct dwarf2_cu *cu)
12325 {
12326   struct type *descriptive_type = die_descriptive_type (die, cu);
12327 
12328   if (descriptive_type)
12329     {
12330       ALLOCATE_GNAT_AUX_TYPE (type);
12331       TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
12332     }
12333 }
12334 
12335 /* Return the containing type of the die in question using its
12336    DW_AT_containing_type attribute.  */
12337 
12338 static struct type *
12339 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
12340 {
12341   struct attribute *type_attr;
12342 
12343   type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
12344   if (!type_attr)
12345     error (_("Dwarf Error: Problem turning containing type into gdb type "
12346 	     "[in module %s]"), cu->objfile->name);
12347 
12348   return lookup_die_type (die, type_attr, cu);
12349 }
12350 
12351 /* Look up the type of DIE in CU using its type attribute ATTR.
12352    If there is no type substitute an error marker.  */
12353 
12354 static struct type *
12355 lookup_die_type (struct die_info *die, struct attribute *attr,
12356 		 struct dwarf2_cu *cu)
12357 {
12358   struct type *this_type;
12359 
12360   /* First see if we have it cached.  */
12361 
12362   if (is_ref_attr (attr))
12363     {
12364       unsigned int offset = dwarf2_get_ref_die_offset (attr);
12365 
12366       this_type = get_die_type_at_offset (offset, cu->per_cu);
12367     }
12368   else if (attr->form == DW_FORM_ref_sig8)
12369     {
12370       struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
12371       struct dwarf2_cu *sig_cu;
12372       unsigned int offset;
12373 
12374       /* sig_type will be NULL if the signatured type is missing from
12375 	 the debug info.  */
12376       if (sig_type == NULL)
12377 	error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
12378 		 "at 0x%x [in module %s]"),
12379 	       die->offset, cu->objfile->name);
12380 
12381       gdb_assert (sig_type->per_cu.debug_types_section);
12382       offset = sig_type->per_cu.offset + sig_type->type_offset;
12383       this_type = get_die_type_at_offset (offset, &sig_type->per_cu);
12384     }
12385   else
12386     {
12387       dump_die_for_error (die);
12388       error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
12389 	     dwarf_attr_name (attr->name), cu->objfile->name);
12390     }
12391 
12392   /* If not cached we need to read it in.  */
12393 
12394   if (this_type == NULL)
12395     {
12396       struct die_info *type_die;
12397       struct dwarf2_cu *type_cu = cu;
12398 
12399       type_die = follow_die_ref_or_sig (die, attr, &type_cu);
12400       /* If the type is cached, we should have found it above.  */
12401       gdb_assert (get_die_type (type_die, type_cu) == NULL);
12402       this_type = read_type_die_1 (type_die, type_cu);
12403     }
12404 
12405   /* If we still don't have a type use an error marker.  */
12406 
12407   if (this_type == NULL)
12408     {
12409       char *message, *saved;
12410 
12411       /* read_type_die already issued a complaint.  */
12412       message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
12413 			    cu->objfile->name,
12414 			    cu->header.offset,
12415 			    die->offset);
12416       saved = obstack_copy0 (&cu->objfile->objfile_obstack,
12417 			     message, strlen (message));
12418       xfree (message);
12419 
12420       this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, cu->objfile);
12421     }
12422 
12423   return this_type;
12424 }
12425 
12426 /* Return the type in DIE, CU.
12427    Returns NULL for invalid types.
12428 
12429    This first does a lookup in the appropriate type_hash table,
12430    and only reads the die in if necessary.
12431 
12432    NOTE: This can be called when reading in partial or full symbols.  */
12433 
12434 static struct type *
12435 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
12436 {
12437   struct type *this_type;
12438 
12439   this_type = get_die_type (die, cu);
12440   if (this_type)
12441     return this_type;
12442 
12443   return read_type_die_1 (die, cu);
12444 }
12445 
12446 /* Read the type in DIE, CU.
12447    Returns NULL for invalid types.  */
12448 
12449 static struct type *
12450 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
12451 {
12452   struct type *this_type = NULL;
12453 
12454   switch (die->tag)
12455     {
12456     case DW_TAG_class_type:
12457     case DW_TAG_interface_type:
12458     case DW_TAG_structure_type:
12459     case DW_TAG_union_type:
12460       this_type = read_structure_type (die, cu);
12461       break;
12462     case DW_TAG_enumeration_type:
12463       this_type = read_enumeration_type (die, cu);
12464       break;
12465     case DW_TAG_subprogram:
12466     case DW_TAG_subroutine_type:
12467     case DW_TAG_inlined_subroutine:
12468       this_type = read_subroutine_type (die, cu);
12469       break;
12470     case DW_TAG_array_type:
12471       this_type = read_array_type (die, cu);
12472       break;
12473     case DW_TAG_set_type:
12474       this_type = read_set_type (die, cu);
12475       break;
12476     case DW_TAG_pointer_type:
12477       this_type = read_tag_pointer_type (die, cu);
12478       break;
12479     case DW_TAG_ptr_to_member_type:
12480       this_type = read_tag_ptr_to_member_type (die, cu);
12481       break;
12482     case DW_TAG_reference_type:
12483       this_type = read_tag_reference_type (die, cu);
12484       break;
12485     case DW_TAG_const_type:
12486       this_type = read_tag_const_type (die, cu);
12487       break;
12488     case DW_TAG_volatile_type:
12489       this_type = read_tag_volatile_type (die, cu);
12490       break;
12491     case DW_TAG_string_type:
12492       this_type = read_tag_string_type (die, cu);
12493       break;
12494     case DW_TAG_typedef:
12495       this_type = read_typedef (die, cu);
12496       break;
12497     case DW_TAG_subrange_type:
12498       this_type = read_subrange_type (die, cu);
12499       break;
12500     case DW_TAG_base_type:
12501       this_type = read_base_type (die, cu);
12502       break;
12503     case DW_TAG_unspecified_type:
12504       this_type = read_unspecified_type (die, cu);
12505       break;
12506     case DW_TAG_namespace:
12507       this_type = read_namespace_type (die, cu);
12508       break;
12509     case DW_TAG_module:
12510       this_type = read_module_type (die, cu);
12511       break;
12512     default:
12513       complaint (&symfile_complaints,
12514 		 _("unexpected tag in read_type_die: '%s'"),
12515 		 dwarf_tag_name (die->tag));
12516       break;
12517     }
12518 
12519   return this_type;
12520 }
12521 
12522 /* See if we can figure out if the class lives in a namespace.  We do
12523    this by looking for a member function; its demangled name will
12524    contain namespace info, if there is any.
12525    Return the computed name or NULL.
12526    Space for the result is allocated on the objfile's obstack.
12527    This is the full-die version of guess_partial_die_structure_name.
12528    In this case we know DIE has no useful parent.  */
12529 
12530 static char *
12531 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
12532 {
12533   struct die_info *spec_die;
12534   struct dwarf2_cu *spec_cu;
12535   struct die_info *child;
12536 
12537   spec_cu = cu;
12538   spec_die = die_specification (die, &spec_cu);
12539   if (spec_die != NULL)
12540     {
12541       die = spec_die;
12542       cu = spec_cu;
12543     }
12544 
12545   for (child = die->child;
12546        child != NULL;
12547        child = child->sibling)
12548     {
12549       if (child->tag == DW_TAG_subprogram)
12550 	{
12551 	  struct attribute *attr;
12552 
12553 	  attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
12554 	  if (attr == NULL)
12555 	    attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
12556 	  if (attr != NULL)
12557 	    {
12558 	      char *actual_name
12559 		= language_class_name_from_physname (cu->language_defn,
12560 						     DW_STRING (attr));
12561 	      char *name = NULL;
12562 
12563 	      if (actual_name != NULL)
12564 		{
12565 		  char *die_name = dwarf2_name (die, cu);
12566 
12567 		  if (die_name != NULL
12568 		      && strcmp (die_name, actual_name) != 0)
12569 		    {
12570 		      /* Strip off the class name from the full name.
12571 			 We want the prefix.  */
12572 		      int die_name_len = strlen (die_name);
12573 		      int actual_name_len = strlen (actual_name);
12574 
12575 		      /* Test for '::' as a sanity check.  */
12576 		      if (actual_name_len > die_name_len + 2
12577 			  && actual_name[actual_name_len
12578 					 - die_name_len - 1] == ':')
12579 			name =
12580 			  obsavestring (actual_name,
12581 					actual_name_len - die_name_len - 2,
12582 					&cu->objfile->objfile_obstack);
12583 		    }
12584 		}
12585 	      xfree (actual_name);
12586 	      return name;
12587 	    }
12588 	}
12589     }
12590 
12591   return NULL;
12592 }
12593 
12594 /* GCC might emit a nameless typedef that has a linkage name.  Determine the
12595    prefix part in such case.  See
12596    http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510.  */
12597 
12598 static char *
12599 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
12600 {
12601   struct attribute *attr;
12602   char *base;
12603 
12604   if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
12605       && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
12606     return NULL;
12607 
12608   attr = dwarf2_attr (die, DW_AT_name, cu);
12609   if (attr != NULL && DW_STRING (attr) != NULL)
12610     return NULL;
12611 
12612   attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
12613   if (attr == NULL)
12614     attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
12615   if (attr == NULL || DW_STRING (attr) == NULL)
12616     return NULL;
12617 
12618   /* dwarf2_name had to be already called.  */
12619   gdb_assert (DW_STRING_IS_CANONICAL (attr));
12620 
12621   /* Strip the base name, keep any leading namespaces/classes.  */
12622   base = strrchr (DW_STRING (attr), ':');
12623   if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
12624     return "";
12625 
12626   return obsavestring (DW_STRING (attr), &base[-1] - DW_STRING (attr),
12627 		       &cu->objfile->objfile_obstack);
12628 }
12629 
12630 /* Return the name of the namespace/class that DIE is defined within,
12631    or "" if we can't tell.  The caller should not xfree the result.
12632 
12633    For example, if we're within the method foo() in the following
12634    code:
12635 
12636    namespace N {
12637      class C {
12638        void foo () {
12639        }
12640      };
12641    }
12642 
12643    then determine_prefix on foo's die will return "N::C".  */
12644 
12645 static char *
12646 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
12647 {
12648   struct die_info *parent, *spec_die;
12649   struct dwarf2_cu *spec_cu;
12650   struct type *parent_type;
12651   char *retval;
12652 
12653   if (cu->language != language_cplus && cu->language != language_java
12654       && cu->language != language_fortran)
12655     return "";
12656 
12657   retval = anonymous_struct_prefix (die, cu);
12658   if (retval)
12659     return retval;
12660 
12661   /* We have to be careful in the presence of DW_AT_specification.
12662      For example, with GCC 3.4, given the code
12663 
12664      namespace N {
12665        void foo() {
12666 	 // Definition of N::foo.
12667        }
12668      }
12669 
12670      then we'll have a tree of DIEs like this:
12671 
12672      1: DW_TAG_compile_unit
12673        2: DW_TAG_namespace        // N
12674 	 3: DW_TAG_subprogram     // declaration of N::foo
12675        4: DW_TAG_subprogram       // definition of N::foo
12676 	    DW_AT_specification   // refers to die #3
12677 
12678      Thus, when processing die #4, we have to pretend that we're in
12679      the context of its DW_AT_specification, namely the contex of die
12680      #3.  */
12681   spec_cu = cu;
12682   spec_die = die_specification (die, &spec_cu);
12683   if (spec_die == NULL)
12684     parent = die->parent;
12685   else
12686     {
12687       parent = spec_die->parent;
12688       cu = spec_cu;
12689     }
12690 
12691   if (parent == NULL)
12692     return "";
12693   else if (parent->building_fullname)
12694     {
12695       const char *name;
12696       const char *parent_name;
12697 
12698       /* It has been seen on RealView 2.2 built binaries,
12699 	 DW_TAG_template_type_param types actually _defined_ as
12700 	 children of the parent class:
12701 
12702 	 enum E {};
12703 	 template class <class Enum> Class{};
12704 	 Class<enum E> class_e;
12705 
12706          1: DW_TAG_class_type (Class)
12707            2: DW_TAG_enumeration_type (E)
12708              3: DW_TAG_enumerator (enum1:0)
12709              3: DW_TAG_enumerator (enum2:1)
12710              ...
12711            2: DW_TAG_template_type_param
12712               DW_AT_type  DW_FORM_ref_udata (E)
12713 
12714 	 Besides being broken debug info, it can put GDB into an
12715 	 infinite loop.  Consider:
12716 
12717 	 When we're building the full name for Class<E>, we'll start
12718 	 at Class, and go look over its template type parameters,
12719 	 finding E.  We'll then try to build the full name of E, and
12720 	 reach here.  We're now trying to build the full name of E,
12721 	 and look over the parent DIE for containing scope.  In the
12722 	 broken case, if we followed the parent DIE of E, we'd again
12723 	 find Class, and once again go look at its template type
12724 	 arguments, etc., etc.  Simply don't consider such parent die
12725 	 as source-level parent of this die (it can't be, the language
12726 	 doesn't allow it), and break the loop here.  */
12727       name = dwarf2_name (die, cu);
12728       parent_name = dwarf2_name (parent, cu);
12729       complaint (&symfile_complaints,
12730 		 _("template param type '%s' defined within parent '%s'"),
12731 		 name ? name : "<unknown>",
12732 		 parent_name ? parent_name : "<unknown>");
12733       return "";
12734     }
12735   else
12736     switch (parent->tag)
12737       {
12738       case DW_TAG_namespace:
12739 	parent_type = read_type_die (parent, cu);
12740 	/* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
12741 	   DW_TAG_namespace DIEs with a name of "::" for the global namespace.
12742 	   Work around this problem here.  */
12743 	if (cu->language == language_cplus
12744 	    && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
12745 	  return "";
12746 	/* We give a name to even anonymous namespaces.  */
12747 	return TYPE_TAG_NAME (parent_type);
12748       case DW_TAG_class_type:
12749       case DW_TAG_interface_type:
12750       case DW_TAG_structure_type:
12751       case DW_TAG_union_type:
12752       case DW_TAG_module:
12753 	parent_type = read_type_die (parent, cu);
12754 	if (TYPE_TAG_NAME (parent_type) != NULL)
12755 	  return TYPE_TAG_NAME (parent_type);
12756 	else
12757 	  /* An anonymous structure is only allowed non-static data
12758 	     members; no typedefs, no member functions, et cetera.
12759 	     So it does not need a prefix.  */
12760 	  return "";
12761       case DW_TAG_compile_unit:
12762 	/* gcc-4.5 -gdwarf-4 can drop the enclosing namespace.  Cope.  */
12763 	if (cu->language == language_cplus
12764 	    && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
12765 	    && die->child != NULL
12766 	    && (die->tag == DW_TAG_class_type
12767 		|| die->tag == DW_TAG_structure_type
12768 		|| die->tag == DW_TAG_union_type))
12769 	  {
12770 	    char *name = guess_full_die_structure_name (die, cu);
12771 	    if (name != NULL)
12772 	      return name;
12773 	  }
12774 	return "";
12775       default:
12776 	return determine_prefix (parent, cu);
12777       }
12778 }
12779 
12780 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
12781    with appropriate separator.  If PREFIX or SUFFIX is NULL or empty, then
12782    simply copy the SUFFIX or PREFIX, respectively.  If OBS is non-null, perform
12783    an obconcat, otherwise allocate storage for the result.  The CU argument is
12784    used to determine the language and hence, the appropriate separator.  */
12785 
12786 #define MAX_SEP_LEN 7  /* strlen ("__") + strlen ("_MOD_")  */
12787 
12788 static char *
12789 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
12790                  int physname, struct dwarf2_cu *cu)
12791 {
12792   const char *lead = "";
12793   const char *sep;
12794 
12795   if (suffix == NULL || suffix[0] == '\0'
12796       || prefix == NULL || prefix[0] == '\0')
12797     sep = "";
12798   else if (cu->language == language_java)
12799     sep = ".";
12800   else if (cu->language == language_fortran && physname)
12801     {
12802       /* This is gfortran specific mangling.  Normally DW_AT_linkage_name or
12803 	 DW_AT_MIPS_linkage_name is preferred and used instead.  */
12804 
12805       lead = "__";
12806       sep = "_MOD_";
12807     }
12808   else
12809     sep = "::";
12810 
12811   if (prefix == NULL)
12812     prefix = "";
12813   if (suffix == NULL)
12814     suffix = "";
12815 
12816   if (obs == NULL)
12817     {
12818       char *retval
12819 	= xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
12820 
12821       strcpy (retval, lead);
12822       strcat (retval, prefix);
12823       strcat (retval, sep);
12824       strcat (retval, suffix);
12825       return retval;
12826     }
12827   else
12828     {
12829       /* We have an obstack.  */
12830       return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
12831     }
12832 }
12833 
12834 /* Return sibling of die, NULL if no sibling.  */
12835 
12836 static struct die_info *
12837 sibling_die (struct die_info *die)
12838 {
12839   return die->sibling;
12840 }
12841 
12842 /* Get name of a die, return NULL if not found.  */
12843 
12844 static char *
12845 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
12846 			  struct obstack *obstack)
12847 {
12848   if (name && cu->language == language_cplus)
12849     {
12850       char *canon_name = cp_canonicalize_string (name);
12851 
12852       if (canon_name != NULL)
12853 	{
12854 	  if (strcmp (canon_name, name) != 0)
12855 	    name = obsavestring (canon_name, strlen (canon_name),
12856 				 obstack);
12857 	  xfree (canon_name);
12858 	}
12859     }
12860 
12861   return name;
12862 }
12863 
12864 /* Get name of a die, return NULL if not found.  */
12865 
12866 static char *
12867 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
12868 {
12869   struct attribute *attr;
12870 
12871   attr = dwarf2_attr (die, DW_AT_name, cu);
12872   if ((!attr || !DW_STRING (attr))
12873       && die->tag != DW_TAG_class_type
12874       && die->tag != DW_TAG_interface_type
12875       && die->tag != DW_TAG_structure_type
12876       && die->tag != DW_TAG_union_type)
12877     return NULL;
12878 
12879   switch (die->tag)
12880     {
12881     case DW_TAG_compile_unit:
12882       /* Compilation units have a DW_AT_name that is a filename, not
12883 	 a source language identifier.  */
12884     case DW_TAG_enumeration_type:
12885     case DW_TAG_enumerator:
12886       /* These tags always have simple identifiers already; no need
12887 	 to canonicalize them.  */
12888       return DW_STRING (attr);
12889 
12890     case DW_TAG_subprogram:
12891       /* Java constructors will all be named "<init>", so return
12892 	 the class name when we see this special case.  */
12893       if (cu->language == language_java
12894 	  && DW_STRING (attr) != NULL
12895 	  && strcmp (DW_STRING (attr), "<init>") == 0)
12896 	{
12897 	  struct dwarf2_cu *spec_cu = cu;
12898 	  struct die_info *spec_die;
12899 
12900 	  /* GCJ will output '<init>' for Java constructor names.
12901 	     For this special case, return the name of the parent class.  */
12902 
12903 	  /* GCJ may output suprogram DIEs with AT_specification set.
12904 	     If so, use the name of the specified DIE.  */
12905 	  spec_die = die_specification (die, &spec_cu);
12906 	  if (spec_die != NULL)
12907 	    return dwarf2_name (spec_die, spec_cu);
12908 
12909 	  do
12910 	    {
12911 	      die = die->parent;
12912 	      if (die->tag == DW_TAG_class_type)
12913 		return dwarf2_name (die, cu);
12914 	    }
12915 	  while (die->tag != DW_TAG_compile_unit);
12916 	}
12917       break;
12918 
12919     case DW_TAG_class_type:
12920     case DW_TAG_interface_type:
12921     case DW_TAG_structure_type:
12922     case DW_TAG_union_type:
12923       /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
12924 	 structures or unions.  These were of the form "._%d" in GCC 4.1,
12925 	 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
12926 	 and GCC 4.4.  We work around this problem by ignoring these.  */
12927       if (attr && DW_STRING (attr)
12928 	  && (strncmp (DW_STRING (attr), "._", 2) == 0
12929 	      || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
12930 	return NULL;
12931 
12932       /* GCC might emit a nameless typedef that has a linkage name.  See
12933 	 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510.  */
12934       if (!attr || DW_STRING (attr) == NULL)
12935 	{
12936 	  char *demangled = NULL;
12937 
12938 	  attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
12939 	  if (attr == NULL)
12940 	    attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
12941 
12942 	  if (attr == NULL || DW_STRING (attr) == NULL)
12943 	    return NULL;
12944 
12945 	  /* Avoid demangling DW_STRING (attr) the second time on a second
12946 	     call for the same DIE.  */
12947 	  if (!DW_STRING_IS_CANONICAL (attr))
12948 	    demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
12949 
12950 	  if (demangled)
12951 	    {
12952 	      char *base;
12953 
12954 	      /* FIXME: we already did this for the partial symbol... */
12955 	      DW_STRING (attr) = obsavestring (demangled, strlen (demangled),
12956 					       &cu->objfile->objfile_obstack);
12957 	      DW_STRING_IS_CANONICAL (attr) = 1;
12958 	      xfree (demangled);
12959 
12960 	      /* Strip any leading namespaces/classes, keep only the base name.
12961 		 DW_AT_name for named DIEs does not contain the prefixes.  */
12962 	      base = strrchr (DW_STRING (attr), ':');
12963 	      if (base && base > DW_STRING (attr) && base[-1] == ':')
12964 		return &base[1];
12965 	      else
12966 		return DW_STRING (attr);
12967 	    }
12968 	}
12969       break;
12970 
12971     default:
12972       break;
12973     }
12974 
12975   if (!DW_STRING_IS_CANONICAL (attr))
12976     {
12977       DW_STRING (attr)
12978 	= dwarf2_canonicalize_name (DW_STRING (attr), cu,
12979 				    &cu->objfile->objfile_obstack);
12980       DW_STRING_IS_CANONICAL (attr) = 1;
12981     }
12982   return DW_STRING (attr);
12983 }
12984 
12985 /* Return the die that this die in an extension of, or NULL if there
12986    is none.  *EXT_CU is the CU containing DIE on input, and the CU
12987    containing the return value on output.  */
12988 
12989 static struct die_info *
12990 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
12991 {
12992   struct attribute *attr;
12993 
12994   attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
12995   if (attr == NULL)
12996     return NULL;
12997 
12998   return follow_die_ref (die, attr, ext_cu);
12999 }
13000 
13001 /* Convert a DIE tag into its string name.  */
13002 
13003 static char *
13004 dwarf_tag_name (unsigned tag)
13005 {
13006   switch (tag)
13007     {
13008     case DW_TAG_padding:
13009       return "DW_TAG_padding";
13010     case DW_TAG_array_type:
13011       return "DW_TAG_array_type";
13012     case DW_TAG_class_type:
13013       return "DW_TAG_class_type";
13014     case DW_TAG_entry_point:
13015       return "DW_TAG_entry_point";
13016     case DW_TAG_enumeration_type:
13017       return "DW_TAG_enumeration_type";
13018     case DW_TAG_formal_parameter:
13019       return "DW_TAG_formal_parameter";
13020     case DW_TAG_imported_declaration:
13021       return "DW_TAG_imported_declaration";
13022     case DW_TAG_label:
13023       return "DW_TAG_label";
13024     case DW_TAG_lexical_block:
13025       return "DW_TAG_lexical_block";
13026     case DW_TAG_member:
13027       return "DW_TAG_member";
13028     case DW_TAG_pointer_type:
13029       return "DW_TAG_pointer_type";
13030     case DW_TAG_reference_type:
13031       return "DW_TAG_reference_type";
13032     case DW_TAG_compile_unit:
13033       return "DW_TAG_compile_unit";
13034     case DW_TAG_string_type:
13035       return "DW_TAG_string_type";
13036     case DW_TAG_structure_type:
13037       return "DW_TAG_structure_type";
13038     case DW_TAG_subroutine_type:
13039       return "DW_TAG_subroutine_type";
13040     case DW_TAG_typedef:
13041       return "DW_TAG_typedef";
13042     case DW_TAG_union_type:
13043       return "DW_TAG_union_type";
13044     case DW_TAG_unspecified_parameters:
13045       return "DW_TAG_unspecified_parameters";
13046     case DW_TAG_variant:
13047       return "DW_TAG_variant";
13048     case DW_TAG_common_block:
13049       return "DW_TAG_common_block";
13050     case DW_TAG_common_inclusion:
13051       return "DW_TAG_common_inclusion";
13052     case DW_TAG_inheritance:
13053       return "DW_TAG_inheritance";
13054     case DW_TAG_inlined_subroutine:
13055       return "DW_TAG_inlined_subroutine";
13056     case DW_TAG_module:
13057       return "DW_TAG_module";
13058     case DW_TAG_ptr_to_member_type:
13059       return "DW_TAG_ptr_to_member_type";
13060     case DW_TAG_set_type:
13061       return "DW_TAG_set_type";
13062     case DW_TAG_subrange_type:
13063       return "DW_TAG_subrange_type";
13064     case DW_TAG_with_stmt:
13065       return "DW_TAG_with_stmt";
13066     case DW_TAG_access_declaration:
13067       return "DW_TAG_access_declaration";
13068     case DW_TAG_base_type:
13069       return "DW_TAG_base_type";
13070     case DW_TAG_catch_block:
13071       return "DW_TAG_catch_block";
13072     case DW_TAG_const_type:
13073       return "DW_TAG_const_type";
13074     case DW_TAG_constant:
13075       return "DW_TAG_constant";
13076     case DW_TAG_enumerator:
13077       return "DW_TAG_enumerator";
13078     case DW_TAG_file_type:
13079       return "DW_TAG_file_type";
13080     case DW_TAG_friend:
13081       return "DW_TAG_friend";
13082     case DW_TAG_namelist:
13083       return "DW_TAG_namelist";
13084     case DW_TAG_namelist_item:
13085       return "DW_TAG_namelist_item";
13086     case DW_TAG_packed_type:
13087       return "DW_TAG_packed_type";
13088     case DW_TAG_subprogram:
13089       return "DW_TAG_subprogram";
13090     case DW_TAG_template_type_param:
13091       return "DW_TAG_template_type_param";
13092     case DW_TAG_template_value_param:
13093       return "DW_TAG_template_value_param";
13094     case DW_TAG_thrown_type:
13095       return "DW_TAG_thrown_type";
13096     case DW_TAG_try_block:
13097       return "DW_TAG_try_block";
13098     case DW_TAG_variant_part:
13099       return "DW_TAG_variant_part";
13100     case DW_TAG_variable:
13101       return "DW_TAG_variable";
13102     case DW_TAG_volatile_type:
13103       return "DW_TAG_volatile_type";
13104     case DW_TAG_dwarf_procedure:
13105       return "DW_TAG_dwarf_procedure";
13106     case DW_TAG_restrict_type:
13107       return "DW_TAG_restrict_type";
13108     case DW_TAG_interface_type:
13109       return "DW_TAG_interface_type";
13110     case DW_TAG_namespace:
13111       return "DW_TAG_namespace";
13112     case DW_TAG_imported_module:
13113       return "DW_TAG_imported_module";
13114     case DW_TAG_unspecified_type:
13115       return "DW_TAG_unspecified_type";
13116     case DW_TAG_partial_unit:
13117       return "DW_TAG_partial_unit";
13118     case DW_TAG_imported_unit:
13119       return "DW_TAG_imported_unit";
13120     case DW_TAG_condition:
13121       return "DW_TAG_condition";
13122     case DW_TAG_shared_type:
13123       return "DW_TAG_shared_type";
13124     case DW_TAG_type_unit:
13125       return "DW_TAG_type_unit";
13126     case DW_TAG_MIPS_loop:
13127       return "DW_TAG_MIPS_loop";
13128     case DW_TAG_HP_array_descriptor:
13129       return "DW_TAG_HP_array_descriptor";
13130     case DW_TAG_format_label:
13131       return "DW_TAG_format_label";
13132     case DW_TAG_function_template:
13133       return "DW_TAG_function_template";
13134     case DW_TAG_class_template:
13135       return "DW_TAG_class_template";
13136     case DW_TAG_GNU_BINCL:
13137       return "DW_TAG_GNU_BINCL";
13138     case DW_TAG_GNU_EINCL:
13139       return "DW_TAG_GNU_EINCL";
13140     case DW_TAG_upc_shared_type:
13141       return "DW_TAG_upc_shared_type";
13142     case DW_TAG_upc_strict_type:
13143       return "DW_TAG_upc_strict_type";
13144     case DW_TAG_upc_relaxed_type:
13145       return "DW_TAG_upc_relaxed_type";
13146     case DW_TAG_PGI_kanji_type:
13147       return "DW_TAG_PGI_kanji_type";
13148     case DW_TAG_PGI_interface_block:
13149       return "DW_TAG_PGI_interface_block";
13150     case DW_TAG_GNU_call_site:
13151       return "DW_TAG_GNU_call_site";
13152     default:
13153       return "DW_TAG_<unknown>";
13154     }
13155 }
13156 
13157 /* Convert a DWARF attribute code into its string name.  */
13158 
13159 static char *
13160 dwarf_attr_name (unsigned attr)
13161 {
13162   switch (attr)
13163     {
13164     case DW_AT_sibling:
13165       return "DW_AT_sibling";
13166     case DW_AT_location:
13167       return "DW_AT_location";
13168     case DW_AT_name:
13169       return "DW_AT_name";
13170     case DW_AT_ordering:
13171       return "DW_AT_ordering";
13172     case DW_AT_subscr_data:
13173       return "DW_AT_subscr_data";
13174     case DW_AT_byte_size:
13175       return "DW_AT_byte_size";
13176     case DW_AT_bit_offset:
13177       return "DW_AT_bit_offset";
13178     case DW_AT_bit_size:
13179       return "DW_AT_bit_size";
13180     case DW_AT_element_list:
13181       return "DW_AT_element_list";
13182     case DW_AT_stmt_list:
13183       return "DW_AT_stmt_list";
13184     case DW_AT_low_pc:
13185       return "DW_AT_low_pc";
13186     case DW_AT_high_pc:
13187       return "DW_AT_high_pc";
13188     case DW_AT_language:
13189       return "DW_AT_language";
13190     case DW_AT_member:
13191       return "DW_AT_member";
13192     case DW_AT_discr:
13193       return "DW_AT_discr";
13194     case DW_AT_discr_value:
13195       return "DW_AT_discr_value";
13196     case DW_AT_visibility:
13197       return "DW_AT_visibility";
13198     case DW_AT_import:
13199       return "DW_AT_import";
13200     case DW_AT_string_length:
13201       return "DW_AT_string_length";
13202     case DW_AT_common_reference:
13203       return "DW_AT_common_reference";
13204     case DW_AT_comp_dir:
13205       return "DW_AT_comp_dir";
13206     case DW_AT_const_value:
13207       return "DW_AT_const_value";
13208     case DW_AT_containing_type:
13209       return "DW_AT_containing_type";
13210     case DW_AT_default_value:
13211       return "DW_AT_default_value";
13212     case DW_AT_inline:
13213       return "DW_AT_inline";
13214     case DW_AT_is_optional:
13215       return "DW_AT_is_optional";
13216     case DW_AT_lower_bound:
13217       return "DW_AT_lower_bound";
13218     case DW_AT_producer:
13219       return "DW_AT_producer";
13220     case DW_AT_prototyped:
13221       return "DW_AT_prototyped";
13222     case DW_AT_return_addr:
13223       return "DW_AT_return_addr";
13224     case DW_AT_start_scope:
13225       return "DW_AT_start_scope";
13226     case DW_AT_bit_stride:
13227       return "DW_AT_bit_stride";
13228     case DW_AT_upper_bound:
13229       return "DW_AT_upper_bound";
13230     case DW_AT_abstract_origin:
13231       return "DW_AT_abstract_origin";
13232     case DW_AT_accessibility:
13233       return "DW_AT_accessibility";
13234     case DW_AT_address_class:
13235       return "DW_AT_address_class";
13236     case DW_AT_artificial:
13237       return "DW_AT_artificial";
13238     case DW_AT_base_types:
13239       return "DW_AT_base_types";
13240     case DW_AT_calling_convention:
13241       return "DW_AT_calling_convention";
13242     case DW_AT_count:
13243       return "DW_AT_count";
13244     case DW_AT_data_member_location:
13245       return "DW_AT_data_member_location";
13246     case DW_AT_decl_column:
13247       return "DW_AT_decl_column";
13248     case DW_AT_decl_file:
13249       return "DW_AT_decl_file";
13250     case DW_AT_decl_line:
13251       return "DW_AT_decl_line";
13252     case DW_AT_declaration:
13253       return "DW_AT_declaration";
13254     case DW_AT_discr_list:
13255       return "DW_AT_discr_list";
13256     case DW_AT_encoding:
13257       return "DW_AT_encoding";
13258     case DW_AT_external:
13259       return "DW_AT_external";
13260     case DW_AT_frame_base:
13261       return "DW_AT_frame_base";
13262     case DW_AT_friend:
13263       return "DW_AT_friend";
13264     case DW_AT_identifier_case:
13265       return "DW_AT_identifier_case";
13266     case DW_AT_macro_info:
13267       return "DW_AT_macro_info";
13268     case DW_AT_namelist_items:
13269       return "DW_AT_namelist_items";
13270     case DW_AT_priority:
13271       return "DW_AT_priority";
13272     case DW_AT_segment:
13273       return "DW_AT_segment";
13274     case DW_AT_specification:
13275       return "DW_AT_specification";
13276     case DW_AT_static_link:
13277       return "DW_AT_static_link";
13278     case DW_AT_type:
13279       return "DW_AT_type";
13280     case DW_AT_use_location:
13281       return "DW_AT_use_location";
13282     case DW_AT_variable_parameter:
13283       return "DW_AT_variable_parameter";
13284     case DW_AT_virtuality:
13285       return "DW_AT_virtuality";
13286     case DW_AT_vtable_elem_location:
13287       return "DW_AT_vtable_elem_location";
13288     /* DWARF 3 values.  */
13289     case DW_AT_allocated:
13290       return "DW_AT_allocated";
13291     case DW_AT_associated:
13292       return "DW_AT_associated";
13293     case DW_AT_data_location:
13294       return "DW_AT_data_location";
13295     case DW_AT_byte_stride:
13296       return "DW_AT_byte_stride";
13297     case DW_AT_entry_pc:
13298       return "DW_AT_entry_pc";
13299     case DW_AT_use_UTF8:
13300       return "DW_AT_use_UTF8";
13301     case DW_AT_extension:
13302       return "DW_AT_extension";
13303     case DW_AT_ranges:
13304       return "DW_AT_ranges";
13305     case DW_AT_trampoline:
13306       return "DW_AT_trampoline";
13307     case DW_AT_call_column:
13308       return "DW_AT_call_column";
13309     case DW_AT_call_file:
13310       return "DW_AT_call_file";
13311     case DW_AT_call_line:
13312       return "DW_AT_call_line";
13313     case DW_AT_description:
13314       return "DW_AT_description";
13315     case DW_AT_binary_scale:
13316       return "DW_AT_binary_scale";
13317     case DW_AT_decimal_scale:
13318       return "DW_AT_decimal_scale";
13319     case DW_AT_small:
13320       return "DW_AT_small";
13321     case DW_AT_decimal_sign:
13322       return "DW_AT_decimal_sign";
13323     case DW_AT_digit_count:
13324       return "DW_AT_digit_count";
13325     case DW_AT_picture_string:
13326       return "DW_AT_picture_string";
13327     case DW_AT_mutable:
13328       return "DW_AT_mutable";
13329     case DW_AT_threads_scaled:
13330       return "DW_AT_threads_scaled";
13331     case DW_AT_explicit:
13332       return "DW_AT_explicit";
13333     case DW_AT_object_pointer:
13334       return "DW_AT_object_pointer";
13335     case DW_AT_endianity:
13336       return "DW_AT_endianity";
13337     case DW_AT_elemental:
13338       return "DW_AT_elemental";
13339     case DW_AT_pure:
13340       return "DW_AT_pure";
13341     case DW_AT_recursive:
13342       return "DW_AT_recursive";
13343     /* DWARF 4 values.  */
13344     case DW_AT_signature:
13345       return "DW_AT_signature";
13346     case DW_AT_linkage_name:
13347       return "DW_AT_linkage_name";
13348     /* SGI/MIPS extensions.  */
13349 #ifdef MIPS /* collides with DW_AT_HP_block_index */
13350     case DW_AT_MIPS_fde:
13351       return "DW_AT_MIPS_fde";
13352 #endif
13353     case DW_AT_MIPS_loop_begin:
13354       return "DW_AT_MIPS_loop_begin";
13355     case DW_AT_MIPS_tail_loop_begin:
13356       return "DW_AT_MIPS_tail_loop_begin";
13357     case DW_AT_MIPS_epilog_begin:
13358       return "DW_AT_MIPS_epilog_begin";
13359     case DW_AT_MIPS_loop_unroll_factor:
13360       return "DW_AT_MIPS_loop_unroll_factor";
13361     case DW_AT_MIPS_software_pipeline_depth:
13362       return "DW_AT_MIPS_software_pipeline_depth";
13363     case DW_AT_MIPS_linkage_name:
13364       return "DW_AT_MIPS_linkage_name";
13365     case DW_AT_MIPS_stride:
13366       return "DW_AT_MIPS_stride";
13367     case DW_AT_MIPS_abstract_name:
13368       return "DW_AT_MIPS_abstract_name";
13369     case DW_AT_MIPS_clone_origin:
13370       return "DW_AT_MIPS_clone_origin";
13371     case DW_AT_MIPS_has_inlines:
13372       return "DW_AT_MIPS_has_inlines";
13373     /* HP extensions.  */
13374 #ifndef MIPS /* collides with DW_AT_MIPS_fde */
13375     case DW_AT_HP_block_index:
13376       return "DW_AT_HP_block_index";
13377 #endif
13378     case DW_AT_HP_unmodifiable:
13379       return "DW_AT_HP_unmodifiable";
13380     case DW_AT_HP_actuals_stmt_list:
13381       return "DW_AT_HP_actuals_stmt_list";
13382     case DW_AT_HP_proc_per_section:
13383       return "DW_AT_HP_proc_per_section";
13384     case DW_AT_HP_raw_data_ptr:
13385       return "DW_AT_HP_raw_data_ptr";
13386     case DW_AT_HP_pass_by_reference:
13387       return "DW_AT_HP_pass_by_reference";
13388     case DW_AT_HP_opt_level:
13389       return "DW_AT_HP_opt_level";
13390     case DW_AT_HP_prof_version_id:
13391       return "DW_AT_HP_prof_version_id";
13392     case DW_AT_HP_opt_flags:
13393       return "DW_AT_HP_opt_flags";
13394     case DW_AT_HP_cold_region_low_pc:
13395       return "DW_AT_HP_cold_region_low_pc";
13396     case DW_AT_HP_cold_region_high_pc:
13397       return "DW_AT_HP_cold_region_high_pc";
13398     case DW_AT_HP_all_variables_modifiable:
13399       return "DW_AT_HP_all_variables_modifiable";
13400     case DW_AT_HP_linkage_name:
13401       return "DW_AT_HP_linkage_name";
13402     case DW_AT_HP_prof_flags:
13403       return "DW_AT_HP_prof_flags";
13404     /* GNU extensions.  */
13405     case DW_AT_sf_names:
13406       return "DW_AT_sf_names";
13407     case DW_AT_src_info:
13408       return "DW_AT_src_info";
13409     case DW_AT_mac_info:
13410       return "DW_AT_mac_info";
13411     case DW_AT_src_coords:
13412       return "DW_AT_src_coords";
13413     case DW_AT_body_begin:
13414       return "DW_AT_body_begin";
13415     case DW_AT_body_end:
13416       return "DW_AT_body_end";
13417     case DW_AT_GNU_vector:
13418       return "DW_AT_GNU_vector";
13419     case DW_AT_GNU_odr_signature:
13420       return "DW_AT_GNU_odr_signature";
13421     /* VMS extensions.  */
13422     case DW_AT_VMS_rtnbeg_pd_address:
13423       return "DW_AT_VMS_rtnbeg_pd_address";
13424     /* UPC extension.  */
13425     case DW_AT_upc_threads_scaled:
13426       return "DW_AT_upc_threads_scaled";
13427     /* PGI (STMicroelectronics) extensions.  */
13428     case DW_AT_PGI_lbase:
13429       return "DW_AT_PGI_lbase";
13430     case DW_AT_PGI_soffset:
13431       return "DW_AT_PGI_soffset";
13432     case DW_AT_PGI_lstride:
13433       return "DW_AT_PGI_lstride";
13434     default:
13435       return "DW_AT_<unknown>";
13436     }
13437 }
13438 
13439 /* Convert a DWARF value form code into its string name.  */
13440 
13441 static char *
13442 dwarf_form_name (unsigned form)
13443 {
13444   switch (form)
13445     {
13446     case DW_FORM_addr:
13447       return "DW_FORM_addr";
13448     case DW_FORM_block2:
13449       return "DW_FORM_block2";
13450     case DW_FORM_block4:
13451       return "DW_FORM_block4";
13452     case DW_FORM_data2:
13453       return "DW_FORM_data2";
13454     case DW_FORM_data4:
13455       return "DW_FORM_data4";
13456     case DW_FORM_data8:
13457       return "DW_FORM_data8";
13458     case DW_FORM_string:
13459       return "DW_FORM_string";
13460     case DW_FORM_block:
13461       return "DW_FORM_block";
13462     case DW_FORM_block1:
13463       return "DW_FORM_block1";
13464     case DW_FORM_data1:
13465       return "DW_FORM_data1";
13466     case DW_FORM_flag:
13467       return "DW_FORM_flag";
13468     case DW_FORM_sdata:
13469       return "DW_FORM_sdata";
13470     case DW_FORM_strp:
13471       return "DW_FORM_strp";
13472     case DW_FORM_udata:
13473       return "DW_FORM_udata";
13474     case DW_FORM_ref_addr:
13475       return "DW_FORM_ref_addr";
13476     case DW_FORM_ref1:
13477       return "DW_FORM_ref1";
13478     case DW_FORM_ref2:
13479       return "DW_FORM_ref2";
13480     case DW_FORM_ref4:
13481       return "DW_FORM_ref4";
13482     case DW_FORM_ref8:
13483       return "DW_FORM_ref8";
13484     case DW_FORM_ref_udata:
13485       return "DW_FORM_ref_udata";
13486     case DW_FORM_indirect:
13487       return "DW_FORM_indirect";
13488     case DW_FORM_sec_offset:
13489       return "DW_FORM_sec_offset";
13490     case DW_FORM_exprloc:
13491       return "DW_FORM_exprloc";
13492     case DW_FORM_flag_present:
13493       return "DW_FORM_flag_present";
13494     case DW_FORM_ref_sig8:
13495       return "DW_FORM_ref_sig8";
13496     default:
13497       return "DW_FORM_<unknown>";
13498     }
13499 }
13500 
13501 /* Convert a DWARF stack opcode into its string name.  */
13502 
13503 const char *
13504 dwarf_stack_op_name (unsigned op)
13505 {
13506   switch (op)
13507     {
13508     case DW_OP_addr:
13509       return "DW_OP_addr";
13510     case DW_OP_deref:
13511       return "DW_OP_deref";
13512     case DW_OP_const1u:
13513       return "DW_OP_const1u";
13514     case DW_OP_const1s:
13515       return "DW_OP_const1s";
13516     case DW_OP_const2u:
13517       return "DW_OP_const2u";
13518     case DW_OP_const2s:
13519       return "DW_OP_const2s";
13520     case DW_OP_const4u:
13521       return "DW_OP_const4u";
13522     case DW_OP_const4s:
13523       return "DW_OP_const4s";
13524     case DW_OP_const8u:
13525       return "DW_OP_const8u";
13526     case DW_OP_const8s:
13527       return "DW_OP_const8s";
13528     case DW_OP_constu:
13529       return "DW_OP_constu";
13530     case DW_OP_consts:
13531       return "DW_OP_consts";
13532     case DW_OP_dup:
13533       return "DW_OP_dup";
13534     case DW_OP_drop:
13535       return "DW_OP_drop";
13536     case DW_OP_over:
13537       return "DW_OP_over";
13538     case DW_OP_pick:
13539       return "DW_OP_pick";
13540     case DW_OP_swap:
13541       return "DW_OP_swap";
13542     case DW_OP_rot:
13543       return "DW_OP_rot";
13544     case DW_OP_xderef:
13545       return "DW_OP_xderef";
13546     case DW_OP_abs:
13547       return "DW_OP_abs";
13548     case DW_OP_and:
13549       return "DW_OP_and";
13550     case DW_OP_div:
13551       return "DW_OP_div";
13552     case DW_OP_minus:
13553       return "DW_OP_minus";
13554     case DW_OP_mod:
13555       return "DW_OP_mod";
13556     case DW_OP_mul:
13557       return "DW_OP_mul";
13558     case DW_OP_neg:
13559       return "DW_OP_neg";
13560     case DW_OP_not:
13561       return "DW_OP_not";
13562     case DW_OP_or:
13563       return "DW_OP_or";
13564     case DW_OP_plus:
13565       return "DW_OP_plus";
13566     case DW_OP_plus_uconst:
13567       return "DW_OP_plus_uconst";
13568     case DW_OP_shl:
13569       return "DW_OP_shl";
13570     case DW_OP_shr:
13571       return "DW_OP_shr";
13572     case DW_OP_shra:
13573       return "DW_OP_shra";
13574     case DW_OP_xor:
13575       return "DW_OP_xor";
13576     case DW_OP_bra:
13577       return "DW_OP_bra";
13578     case DW_OP_eq:
13579       return "DW_OP_eq";
13580     case DW_OP_ge:
13581       return "DW_OP_ge";
13582     case DW_OP_gt:
13583       return "DW_OP_gt";
13584     case DW_OP_le:
13585       return "DW_OP_le";
13586     case DW_OP_lt:
13587       return "DW_OP_lt";
13588     case DW_OP_ne:
13589       return "DW_OP_ne";
13590     case DW_OP_skip:
13591       return "DW_OP_skip";
13592     case DW_OP_lit0:
13593       return "DW_OP_lit0";
13594     case DW_OP_lit1:
13595       return "DW_OP_lit1";
13596     case DW_OP_lit2:
13597       return "DW_OP_lit2";
13598     case DW_OP_lit3:
13599       return "DW_OP_lit3";
13600     case DW_OP_lit4:
13601       return "DW_OP_lit4";
13602     case DW_OP_lit5:
13603       return "DW_OP_lit5";
13604     case DW_OP_lit6:
13605       return "DW_OP_lit6";
13606     case DW_OP_lit7:
13607       return "DW_OP_lit7";
13608     case DW_OP_lit8:
13609       return "DW_OP_lit8";
13610     case DW_OP_lit9:
13611       return "DW_OP_lit9";
13612     case DW_OP_lit10:
13613       return "DW_OP_lit10";
13614     case DW_OP_lit11:
13615       return "DW_OP_lit11";
13616     case DW_OP_lit12:
13617       return "DW_OP_lit12";
13618     case DW_OP_lit13:
13619       return "DW_OP_lit13";
13620     case DW_OP_lit14:
13621       return "DW_OP_lit14";
13622     case DW_OP_lit15:
13623       return "DW_OP_lit15";
13624     case DW_OP_lit16:
13625       return "DW_OP_lit16";
13626     case DW_OP_lit17:
13627       return "DW_OP_lit17";
13628     case DW_OP_lit18:
13629       return "DW_OP_lit18";
13630     case DW_OP_lit19:
13631       return "DW_OP_lit19";
13632     case DW_OP_lit20:
13633       return "DW_OP_lit20";
13634     case DW_OP_lit21:
13635       return "DW_OP_lit21";
13636     case DW_OP_lit22:
13637       return "DW_OP_lit22";
13638     case DW_OP_lit23:
13639       return "DW_OP_lit23";
13640     case DW_OP_lit24:
13641       return "DW_OP_lit24";
13642     case DW_OP_lit25:
13643       return "DW_OP_lit25";
13644     case DW_OP_lit26:
13645       return "DW_OP_lit26";
13646     case DW_OP_lit27:
13647       return "DW_OP_lit27";
13648     case DW_OP_lit28:
13649       return "DW_OP_lit28";
13650     case DW_OP_lit29:
13651       return "DW_OP_lit29";
13652     case DW_OP_lit30:
13653       return "DW_OP_lit30";
13654     case DW_OP_lit31:
13655       return "DW_OP_lit31";
13656     case DW_OP_reg0:
13657       return "DW_OP_reg0";
13658     case DW_OP_reg1:
13659       return "DW_OP_reg1";
13660     case DW_OP_reg2:
13661       return "DW_OP_reg2";
13662     case DW_OP_reg3:
13663       return "DW_OP_reg3";
13664     case DW_OP_reg4:
13665       return "DW_OP_reg4";
13666     case DW_OP_reg5:
13667       return "DW_OP_reg5";
13668     case DW_OP_reg6:
13669       return "DW_OP_reg6";
13670     case DW_OP_reg7:
13671       return "DW_OP_reg7";
13672     case DW_OP_reg8:
13673       return "DW_OP_reg8";
13674     case DW_OP_reg9:
13675       return "DW_OP_reg9";
13676     case DW_OP_reg10:
13677       return "DW_OP_reg10";
13678     case DW_OP_reg11:
13679       return "DW_OP_reg11";
13680     case DW_OP_reg12:
13681       return "DW_OP_reg12";
13682     case DW_OP_reg13:
13683       return "DW_OP_reg13";
13684     case DW_OP_reg14:
13685       return "DW_OP_reg14";
13686     case DW_OP_reg15:
13687       return "DW_OP_reg15";
13688     case DW_OP_reg16:
13689       return "DW_OP_reg16";
13690     case DW_OP_reg17:
13691       return "DW_OP_reg17";
13692     case DW_OP_reg18:
13693       return "DW_OP_reg18";
13694     case DW_OP_reg19:
13695       return "DW_OP_reg19";
13696     case DW_OP_reg20:
13697       return "DW_OP_reg20";
13698     case DW_OP_reg21:
13699       return "DW_OP_reg21";
13700     case DW_OP_reg22:
13701       return "DW_OP_reg22";
13702     case DW_OP_reg23:
13703       return "DW_OP_reg23";
13704     case DW_OP_reg24:
13705       return "DW_OP_reg24";
13706     case DW_OP_reg25:
13707       return "DW_OP_reg25";
13708     case DW_OP_reg26:
13709       return "DW_OP_reg26";
13710     case DW_OP_reg27:
13711       return "DW_OP_reg27";
13712     case DW_OP_reg28:
13713       return "DW_OP_reg28";
13714     case DW_OP_reg29:
13715       return "DW_OP_reg29";
13716     case DW_OP_reg30:
13717       return "DW_OP_reg30";
13718     case DW_OP_reg31:
13719       return "DW_OP_reg31";
13720     case DW_OP_breg0:
13721       return "DW_OP_breg0";
13722     case DW_OP_breg1:
13723       return "DW_OP_breg1";
13724     case DW_OP_breg2:
13725       return "DW_OP_breg2";
13726     case DW_OP_breg3:
13727       return "DW_OP_breg3";
13728     case DW_OP_breg4:
13729       return "DW_OP_breg4";
13730     case DW_OP_breg5:
13731       return "DW_OP_breg5";
13732     case DW_OP_breg6:
13733       return "DW_OP_breg6";
13734     case DW_OP_breg7:
13735       return "DW_OP_breg7";
13736     case DW_OP_breg8:
13737       return "DW_OP_breg8";
13738     case DW_OP_breg9:
13739       return "DW_OP_breg9";
13740     case DW_OP_breg10:
13741       return "DW_OP_breg10";
13742     case DW_OP_breg11:
13743       return "DW_OP_breg11";
13744     case DW_OP_breg12:
13745       return "DW_OP_breg12";
13746     case DW_OP_breg13:
13747       return "DW_OP_breg13";
13748     case DW_OP_breg14:
13749       return "DW_OP_breg14";
13750     case DW_OP_breg15:
13751       return "DW_OP_breg15";
13752     case DW_OP_breg16:
13753       return "DW_OP_breg16";
13754     case DW_OP_breg17:
13755       return "DW_OP_breg17";
13756     case DW_OP_breg18:
13757       return "DW_OP_breg18";
13758     case DW_OP_breg19:
13759       return "DW_OP_breg19";
13760     case DW_OP_breg20:
13761       return "DW_OP_breg20";
13762     case DW_OP_breg21:
13763       return "DW_OP_breg21";
13764     case DW_OP_breg22:
13765       return "DW_OP_breg22";
13766     case DW_OP_breg23:
13767       return "DW_OP_breg23";
13768     case DW_OP_breg24:
13769       return "DW_OP_breg24";
13770     case DW_OP_breg25:
13771       return "DW_OP_breg25";
13772     case DW_OP_breg26:
13773       return "DW_OP_breg26";
13774     case DW_OP_breg27:
13775       return "DW_OP_breg27";
13776     case DW_OP_breg28:
13777       return "DW_OP_breg28";
13778     case DW_OP_breg29:
13779       return "DW_OP_breg29";
13780     case DW_OP_breg30:
13781       return "DW_OP_breg30";
13782     case DW_OP_breg31:
13783       return "DW_OP_breg31";
13784     case DW_OP_regx:
13785       return "DW_OP_regx";
13786     case DW_OP_fbreg:
13787       return "DW_OP_fbreg";
13788     case DW_OP_bregx:
13789       return "DW_OP_bregx";
13790     case DW_OP_piece:
13791       return "DW_OP_piece";
13792     case DW_OP_deref_size:
13793       return "DW_OP_deref_size";
13794     case DW_OP_xderef_size:
13795       return "DW_OP_xderef_size";
13796     case DW_OP_nop:
13797       return "DW_OP_nop";
13798     /* DWARF 3 extensions.  */
13799     case DW_OP_push_object_address:
13800       return "DW_OP_push_object_address";
13801     case DW_OP_call2:
13802       return "DW_OP_call2";
13803     case DW_OP_call4:
13804       return "DW_OP_call4";
13805     case DW_OP_call_ref:
13806       return "DW_OP_call_ref";
13807     case DW_OP_form_tls_address:
13808       return "DW_OP_form_tls_address";
13809     case DW_OP_call_frame_cfa:
13810       return "DW_OP_call_frame_cfa";
13811     case DW_OP_bit_piece:
13812       return "DW_OP_bit_piece";
13813     /* DWARF 4 extensions.  */
13814     case DW_OP_implicit_value:
13815       return "DW_OP_implicit_value";
13816     case DW_OP_stack_value:
13817       return "DW_OP_stack_value";
13818     /* GNU extensions.  */
13819     case DW_OP_GNU_push_tls_address:
13820       return "DW_OP_GNU_push_tls_address";
13821     case DW_OP_GNU_uninit:
13822       return "DW_OP_GNU_uninit";
13823     case DW_OP_GNU_implicit_pointer:
13824       return "DW_OP_GNU_implicit_pointer";
13825     case DW_OP_GNU_entry_value:
13826       return "DW_OP_GNU_entry_value";
13827     case DW_OP_GNU_const_type:
13828       return "DW_OP_GNU_const_type";
13829     case DW_OP_GNU_regval_type:
13830       return "DW_OP_GNU_regval_type";
13831     case DW_OP_GNU_deref_type:
13832       return "DW_OP_GNU_deref_type";
13833     case DW_OP_GNU_convert:
13834       return "DW_OP_GNU_convert";
13835     case DW_OP_GNU_reinterpret:
13836       return "DW_OP_GNU_reinterpret";
13837     default:
13838       return NULL;
13839     }
13840 }
13841 
13842 static char *
13843 dwarf_bool_name (unsigned mybool)
13844 {
13845   if (mybool)
13846     return "TRUE";
13847   else
13848     return "FALSE";
13849 }
13850 
13851 /* Convert a DWARF type code into its string name.  */
13852 
13853 static char *
13854 dwarf_type_encoding_name (unsigned enc)
13855 {
13856   switch (enc)
13857     {
13858     case DW_ATE_void:
13859       return "DW_ATE_void";
13860     case DW_ATE_address:
13861       return "DW_ATE_address";
13862     case DW_ATE_boolean:
13863       return "DW_ATE_boolean";
13864     case DW_ATE_complex_float:
13865       return "DW_ATE_complex_float";
13866     case DW_ATE_float:
13867       return "DW_ATE_float";
13868     case DW_ATE_signed:
13869       return "DW_ATE_signed";
13870     case DW_ATE_signed_char:
13871       return "DW_ATE_signed_char";
13872     case DW_ATE_unsigned:
13873       return "DW_ATE_unsigned";
13874     case DW_ATE_unsigned_char:
13875       return "DW_ATE_unsigned_char";
13876     /* DWARF 3.  */
13877     case DW_ATE_imaginary_float:
13878       return "DW_ATE_imaginary_float";
13879     case DW_ATE_packed_decimal:
13880       return "DW_ATE_packed_decimal";
13881     case DW_ATE_numeric_string:
13882       return "DW_ATE_numeric_string";
13883     case DW_ATE_edited:
13884       return "DW_ATE_edited";
13885     case DW_ATE_signed_fixed:
13886       return "DW_ATE_signed_fixed";
13887     case DW_ATE_unsigned_fixed:
13888       return "DW_ATE_unsigned_fixed";
13889     case DW_ATE_decimal_float:
13890       return "DW_ATE_decimal_float";
13891     /* DWARF 4.  */
13892     case DW_ATE_UTF:
13893       return "DW_ATE_UTF";
13894     /* HP extensions.  */
13895     case DW_ATE_HP_float80:
13896       return "DW_ATE_HP_float80";
13897     case DW_ATE_HP_complex_float80:
13898       return "DW_ATE_HP_complex_float80";
13899     case DW_ATE_HP_float128:
13900       return "DW_ATE_HP_float128";
13901     case DW_ATE_HP_complex_float128:
13902       return "DW_ATE_HP_complex_float128";
13903     case DW_ATE_HP_floathpintel:
13904       return "DW_ATE_HP_floathpintel";
13905     case DW_ATE_HP_imaginary_float80:
13906       return "DW_ATE_HP_imaginary_float80";
13907     case DW_ATE_HP_imaginary_float128:
13908       return "DW_ATE_HP_imaginary_float128";
13909     default:
13910       return "DW_ATE_<unknown>";
13911     }
13912 }
13913 
13914 /* Convert a DWARF call frame info operation to its string name.  */
13915 
13916 #if 0
13917 static char *
13918 dwarf_cfi_name (unsigned cfi_opc)
13919 {
13920   switch (cfi_opc)
13921     {
13922     case DW_CFA_advance_loc:
13923       return "DW_CFA_advance_loc";
13924     case DW_CFA_offset:
13925       return "DW_CFA_offset";
13926     case DW_CFA_restore:
13927       return "DW_CFA_restore";
13928     case DW_CFA_nop:
13929       return "DW_CFA_nop";
13930     case DW_CFA_set_loc:
13931       return "DW_CFA_set_loc";
13932     case DW_CFA_advance_loc1:
13933       return "DW_CFA_advance_loc1";
13934     case DW_CFA_advance_loc2:
13935       return "DW_CFA_advance_loc2";
13936     case DW_CFA_advance_loc4:
13937       return "DW_CFA_advance_loc4";
13938     case DW_CFA_offset_extended:
13939       return "DW_CFA_offset_extended";
13940     case DW_CFA_restore_extended:
13941       return "DW_CFA_restore_extended";
13942     case DW_CFA_undefined:
13943       return "DW_CFA_undefined";
13944     case DW_CFA_same_value:
13945       return "DW_CFA_same_value";
13946     case DW_CFA_register:
13947       return "DW_CFA_register";
13948     case DW_CFA_remember_state:
13949       return "DW_CFA_remember_state";
13950     case DW_CFA_restore_state:
13951       return "DW_CFA_restore_state";
13952     case DW_CFA_def_cfa:
13953       return "DW_CFA_def_cfa";
13954     case DW_CFA_def_cfa_register:
13955       return "DW_CFA_def_cfa_register";
13956     case DW_CFA_def_cfa_offset:
13957       return "DW_CFA_def_cfa_offset";
13958     /* DWARF 3.  */
13959     case DW_CFA_def_cfa_expression:
13960       return "DW_CFA_def_cfa_expression";
13961     case DW_CFA_expression:
13962       return "DW_CFA_expression";
13963     case DW_CFA_offset_extended_sf:
13964       return "DW_CFA_offset_extended_sf";
13965     case DW_CFA_def_cfa_sf:
13966       return "DW_CFA_def_cfa_sf";
13967     case DW_CFA_def_cfa_offset_sf:
13968       return "DW_CFA_def_cfa_offset_sf";
13969     case DW_CFA_val_offset:
13970       return "DW_CFA_val_offset";
13971     case DW_CFA_val_offset_sf:
13972       return "DW_CFA_val_offset_sf";
13973     case DW_CFA_val_expression:
13974       return "DW_CFA_val_expression";
13975     /* SGI/MIPS specific.  */
13976     case DW_CFA_MIPS_advance_loc8:
13977       return "DW_CFA_MIPS_advance_loc8";
13978     /* GNU extensions.  */
13979     case DW_CFA_GNU_window_save:
13980       return "DW_CFA_GNU_window_save";
13981     case DW_CFA_GNU_args_size:
13982       return "DW_CFA_GNU_args_size";
13983     case DW_CFA_GNU_negative_offset_extended:
13984       return "DW_CFA_GNU_negative_offset_extended";
13985     default:
13986       return "DW_CFA_<unknown>";
13987     }
13988 }
13989 #endif
13990 
13991 static void
13992 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
13993 {
13994   unsigned int i;
13995 
13996   print_spaces (indent, f);
13997   fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
13998 	   dwarf_tag_name (die->tag), die->abbrev, die->offset);
13999 
14000   if (die->parent != NULL)
14001     {
14002       print_spaces (indent, f);
14003       fprintf_unfiltered (f, "  parent at offset: 0x%x\n",
14004 			  die->parent->offset);
14005     }
14006 
14007   print_spaces (indent, f);
14008   fprintf_unfiltered (f, "  has children: %s\n",
14009 	   dwarf_bool_name (die->child != NULL));
14010 
14011   print_spaces (indent, f);
14012   fprintf_unfiltered (f, "  attributes:\n");
14013 
14014   for (i = 0; i < die->num_attrs; ++i)
14015     {
14016       print_spaces (indent, f);
14017       fprintf_unfiltered (f, "    %s (%s) ",
14018 	       dwarf_attr_name (die->attrs[i].name),
14019 	       dwarf_form_name (die->attrs[i].form));
14020 
14021       switch (die->attrs[i].form)
14022 	{
14023 	case DW_FORM_ref_addr:
14024 	case DW_FORM_addr:
14025 	  fprintf_unfiltered (f, "address: ");
14026 	  fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
14027 	  break;
14028 	case DW_FORM_block2:
14029 	case DW_FORM_block4:
14030 	case DW_FORM_block:
14031 	case DW_FORM_block1:
14032 	  fprintf_unfiltered (f, "block: size %d",
14033 			      DW_BLOCK (&die->attrs[i])->size);
14034 	  break;
14035 	case DW_FORM_exprloc:
14036 	  fprintf_unfiltered (f, "expression: size %u",
14037 			      DW_BLOCK (&die->attrs[i])->size);
14038 	  break;
14039 	case DW_FORM_ref1:
14040 	case DW_FORM_ref2:
14041 	case DW_FORM_ref4:
14042 	  fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
14043 			      (long) (DW_ADDR (&die->attrs[i])));
14044 	  break;
14045 	case DW_FORM_data1:
14046 	case DW_FORM_data2:
14047 	case DW_FORM_data4:
14048 	case DW_FORM_data8:
14049 	case DW_FORM_udata:
14050 	case DW_FORM_sdata:
14051 	  fprintf_unfiltered (f, "constant: %s",
14052 			      pulongest (DW_UNSND (&die->attrs[i])));
14053 	  break;
14054 	case DW_FORM_sec_offset:
14055 	  fprintf_unfiltered (f, "section offset: %s",
14056 			      pulongest (DW_UNSND (&die->attrs[i])));
14057 	  break;
14058 	case DW_FORM_ref_sig8:
14059 	  if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
14060 	    fprintf_unfiltered (f, "signatured type, offset: 0x%x",
14061 			  DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset);
14062 	  else
14063 	    fprintf_unfiltered (f, "signatured type, offset: unknown");
14064 	  break;
14065 	case DW_FORM_string:
14066 	case DW_FORM_strp:
14067 	  fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
14068 		   DW_STRING (&die->attrs[i])
14069 		   ? DW_STRING (&die->attrs[i]) : "",
14070 		   DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
14071 	  break;
14072 	case DW_FORM_flag:
14073 	  if (DW_UNSND (&die->attrs[i]))
14074 	    fprintf_unfiltered (f, "flag: TRUE");
14075 	  else
14076 	    fprintf_unfiltered (f, "flag: FALSE");
14077 	  break;
14078 	case DW_FORM_flag_present:
14079 	  fprintf_unfiltered (f, "flag: TRUE");
14080 	  break;
14081 	case DW_FORM_indirect:
14082 	  /* The reader will have reduced the indirect form to
14083 	     the "base form" so this form should not occur.  */
14084 	  fprintf_unfiltered (f,
14085 			      "unexpected attribute form: DW_FORM_indirect");
14086 	  break;
14087 	default:
14088 	  fprintf_unfiltered (f, "unsupported attribute form: %d.",
14089 		   die->attrs[i].form);
14090 	  break;
14091 	}
14092       fprintf_unfiltered (f, "\n");
14093     }
14094 }
14095 
14096 static void
14097 dump_die_for_error (struct die_info *die)
14098 {
14099   dump_die_shallow (gdb_stderr, 0, die);
14100 }
14101 
14102 static void
14103 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
14104 {
14105   int indent = level * 4;
14106 
14107   gdb_assert (die != NULL);
14108 
14109   if (level >= max_level)
14110     return;
14111 
14112   dump_die_shallow (f, indent, die);
14113 
14114   if (die->child != NULL)
14115     {
14116       print_spaces (indent, f);
14117       fprintf_unfiltered (f, "  Children:");
14118       if (level + 1 < max_level)
14119 	{
14120 	  fprintf_unfiltered (f, "\n");
14121 	  dump_die_1 (f, level + 1, max_level, die->child);
14122 	}
14123       else
14124 	{
14125 	  fprintf_unfiltered (f,
14126 			      " [not printed, max nesting level reached]\n");
14127 	}
14128     }
14129 
14130   if (die->sibling != NULL && level > 0)
14131     {
14132       dump_die_1 (f, level, max_level, die->sibling);
14133     }
14134 }
14135 
14136 /* This is called from the pdie macro in gdbinit.in.
14137    It's not static so gcc will keep a copy callable from gdb.  */
14138 
14139 void
14140 dump_die (struct die_info *die, int max_level)
14141 {
14142   dump_die_1 (gdb_stdlog, 0, max_level, die);
14143 }
14144 
14145 static void
14146 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
14147 {
14148   void **slot;
14149 
14150   slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
14151 
14152   *slot = die;
14153 }
14154 
14155 static int
14156 is_ref_attr (struct attribute *attr)
14157 {
14158   switch (attr->form)
14159     {
14160     case DW_FORM_ref_addr:
14161     case DW_FORM_ref1:
14162     case DW_FORM_ref2:
14163     case DW_FORM_ref4:
14164     case DW_FORM_ref8:
14165     case DW_FORM_ref_udata:
14166       return 1;
14167     default:
14168       return 0;
14169     }
14170 }
14171 
14172 static unsigned int
14173 dwarf2_get_ref_die_offset (struct attribute *attr)
14174 {
14175   if (is_ref_attr (attr))
14176     return DW_ADDR (attr);
14177 
14178   complaint (&symfile_complaints,
14179 	     _("unsupported die ref attribute form: '%s'"),
14180 	     dwarf_form_name (attr->form));
14181   return 0;
14182 }
14183 
14184 /* Return the constant value held by ATTR.  Return DEFAULT_VALUE if
14185  * the value held by the attribute is not constant.  */
14186 
14187 static LONGEST
14188 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
14189 {
14190   if (attr->form == DW_FORM_sdata)
14191     return DW_SND (attr);
14192   else if (attr->form == DW_FORM_udata
14193            || attr->form == DW_FORM_data1
14194            || attr->form == DW_FORM_data2
14195            || attr->form == DW_FORM_data4
14196            || attr->form == DW_FORM_data8)
14197     return DW_UNSND (attr);
14198   else
14199     {
14200       complaint (&symfile_complaints,
14201 		 _("Attribute value is not a constant (%s)"),
14202                  dwarf_form_name (attr->form));
14203       return default_value;
14204     }
14205 }
14206 
14207 /* THIS_CU has a reference to PER_CU.  If necessary, load the new compilation
14208    unit and add it to our queue.
14209    The result is non-zero if PER_CU was queued, otherwise the result is zero
14210    meaning either PER_CU is already queued or it is already loaded.  */
14211 
14212 static int
14213 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
14214 		       struct dwarf2_per_cu_data *per_cu)
14215 {
14216   /* We may arrive here during partial symbol reading, if we need full
14217      DIEs to process an unusual case (e.g. template arguments).  Do
14218      not queue PER_CU, just tell our caller to load its DIEs.  */
14219   if (dwarf2_per_objfile->reading_partial_symbols)
14220     {
14221       if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
14222 	return 1;
14223       return 0;
14224     }
14225 
14226   /* Mark the dependence relation so that we don't flush PER_CU
14227      too early.  */
14228   dwarf2_add_dependence (this_cu, per_cu);
14229 
14230   /* If it's already on the queue, we have nothing to do.  */
14231   if (per_cu->queued)
14232     return 0;
14233 
14234   /* If the compilation unit is already loaded, just mark it as
14235      used.  */
14236   if (per_cu->cu != NULL)
14237     {
14238       per_cu->cu->last_used = 0;
14239       return 0;
14240     }
14241 
14242   /* Add it to the queue.  */
14243   queue_comp_unit (per_cu, this_cu->objfile);
14244 
14245   return 1;
14246 }
14247 
14248 /* Follow reference or signature attribute ATTR of SRC_DIE.
14249    On entry *REF_CU is the CU of SRC_DIE.
14250    On exit *REF_CU is the CU of the result.  */
14251 
14252 static struct die_info *
14253 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
14254 		       struct dwarf2_cu **ref_cu)
14255 {
14256   struct die_info *die;
14257 
14258   if (is_ref_attr (attr))
14259     die = follow_die_ref (src_die, attr, ref_cu);
14260   else if (attr->form == DW_FORM_ref_sig8)
14261     die = follow_die_sig (src_die, attr, ref_cu);
14262   else
14263     {
14264       dump_die_for_error (src_die);
14265       error (_("Dwarf Error: Expected reference attribute [in module %s]"),
14266 	     (*ref_cu)->objfile->name);
14267     }
14268 
14269   return die;
14270 }
14271 
14272 /* Follow reference OFFSET.
14273    On entry *REF_CU is the CU of the source die referencing OFFSET.
14274    On exit *REF_CU is the CU of the result.
14275    Returns NULL if OFFSET is invalid.  */
14276 
14277 static struct die_info *
14278 follow_die_offset (unsigned int offset, struct dwarf2_cu **ref_cu)
14279 {
14280   struct die_info temp_die;
14281   struct dwarf2_cu *target_cu, *cu = *ref_cu;
14282 
14283   gdb_assert (cu->per_cu != NULL);
14284 
14285   target_cu = cu;
14286 
14287   if (cu->per_cu->debug_types_section)
14288     {
14289       /* .debug_types CUs cannot reference anything outside their CU.
14290 	 If they need to, they have to reference a signatured type via
14291 	 DW_FORM_ref_sig8.  */
14292       if (! offset_in_cu_p (&cu->header, offset))
14293 	return NULL;
14294     }
14295   else if (! offset_in_cu_p (&cu->header, offset))
14296     {
14297       struct dwarf2_per_cu_data *per_cu;
14298 
14299       per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
14300 
14301       /* If necessary, add it to the queue and load its DIEs.  */
14302       if (maybe_queue_comp_unit (cu, per_cu))
14303 	load_full_comp_unit (per_cu, cu->objfile);
14304 
14305       target_cu = per_cu->cu;
14306     }
14307   else if (cu->dies == NULL)
14308     {
14309       /* We're loading full DIEs during partial symbol reading.  */
14310       gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
14311       load_full_comp_unit (cu->per_cu, cu->objfile);
14312     }
14313 
14314   *ref_cu = target_cu;
14315   temp_die.offset = offset;
14316   return htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
14317 }
14318 
14319 /* Follow reference attribute ATTR of SRC_DIE.
14320    On entry *REF_CU is the CU of SRC_DIE.
14321    On exit *REF_CU is the CU of the result.  */
14322 
14323 static struct die_info *
14324 follow_die_ref (struct die_info *src_die, struct attribute *attr,
14325 		struct dwarf2_cu **ref_cu)
14326 {
14327   unsigned int offset = dwarf2_get_ref_die_offset (attr);
14328   struct dwarf2_cu *cu = *ref_cu;
14329   struct die_info *die;
14330 
14331   die = follow_die_offset (offset, ref_cu);
14332   if (!die)
14333     error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
14334 	   "at 0x%x [in module %s]"),
14335 	   offset, src_die->offset, cu->objfile->name);
14336 
14337   return die;
14338 }
14339 
14340 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
14341    Returned value is intended for DW_OP_call*.  Returned
14342    dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE.  */
14343 
14344 struct dwarf2_locexpr_baton
14345 dwarf2_fetch_die_location_block (unsigned int offset,
14346 				 struct dwarf2_per_cu_data *per_cu,
14347 				 CORE_ADDR (*get_frame_pc) (void *baton),
14348 				 void *baton)
14349 {
14350   struct dwarf2_cu *cu;
14351   struct die_info *die;
14352   struct attribute *attr;
14353   struct dwarf2_locexpr_baton retval;
14354 
14355   dw2_setup (per_cu->objfile);
14356 
14357   if (per_cu->cu == NULL)
14358     load_cu (per_cu);
14359   cu = per_cu->cu;
14360 
14361   die = follow_die_offset (offset, &cu);
14362   if (!die)
14363     error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
14364 	   offset, per_cu->cu->objfile->name);
14365 
14366   attr = dwarf2_attr (die, DW_AT_location, cu);
14367   if (!attr)
14368     {
14369       /* DWARF: "If there is no such attribute, then there is no effect.".
14370 	 DATA is ignored if SIZE is 0.  */
14371 
14372       retval.data = NULL;
14373       retval.size = 0;
14374     }
14375   else if (attr_form_is_section_offset (attr))
14376     {
14377       struct dwarf2_loclist_baton loclist_baton;
14378       CORE_ADDR pc = (*get_frame_pc) (baton);
14379       size_t size;
14380 
14381       fill_in_loclist_baton (cu, &loclist_baton, attr);
14382 
14383       retval.data = dwarf2_find_location_expression (&loclist_baton,
14384 						     &size, pc);
14385       retval.size = size;
14386     }
14387   else
14388     {
14389       if (!attr_form_is_block (attr))
14390 	error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
14391 		 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
14392 	       offset, per_cu->cu->objfile->name);
14393 
14394       retval.data = DW_BLOCK (attr)->data;
14395       retval.size = DW_BLOCK (attr)->size;
14396     }
14397   retval.per_cu = cu->per_cu;
14398 
14399   age_cached_comp_units ();
14400 
14401   return retval;
14402 }
14403 
14404 /* Return the type of the DIE at DIE_OFFSET in the CU named by
14405    PER_CU.  */
14406 
14407 struct type *
14408 dwarf2_get_die_type (unsigned int die_offset,
14409 		     struct dwarf2_per_cu_data *per_cu)
14410 {
14411   dw2_setup (per_cu->objfile);
14412   return get_die_type_at_offset (die_offset, per_cu);
14413 }
14414 
14415 /* Follow the signature attribute ATTR in SRC_DIE.
14416    On entry *REF_CU is the CU of SRC_DIE.
14417    On exit *REF_CU is the CU of the result.  */
14418 
14419 static struct die_info *
14420 follow_die_sig (struct die_info *src_die, struct attribute *attr,
14421 		struct dwarf2_cu **ref_cu)
14422 {
14423   struct objfile *objfile = (*ref_cu)->objfile;
14424   struct die_info temp_die;
14425   struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
14426   struct dwarf2_cu *sig_cu;
14427   struct die_info *die;
14428 
14429   /* sig_type will be NULL if the signatured type is missing from
14430      the debug info.  */
14431   if (sig_type == NULL)
14432     error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
14433 	     "at 0x%x [in module %s]"),
14434 	   src_die->offset, objfile->name);
14435 
14436   /* If necessary, add it to the queue and load its DIEs.  */
14437 
14438   if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
14439     read_signatured_type (objfile, sig_type);
14440 
14441   gdb_assert (sig_type->per_cu.cu != NULL);
14442 
14443   sig_cu = sig_type->per_cu.cu;
14444   temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
14445   die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
14446   if (die)
14447     {
14448       *ref_cu = sig_cu;
14449       return die;
14450     }
14451 
14452   error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
14453 	 "from DIE at 0x%x [in module %s]"),
14454 	 sig_type->type_offset, src_die->offset, objfile->name);
14455 }
14456 
14457 /* Given an offset of a signatured type, return its signatured_type.  */
14458 
14459 static struct signatured_type *
14460 lookup_signatured_type_at_offset (struct objfile *objfile,
14461 				  struct dwarf2_section_info *section,
14462 				  unsigned int offset)
14463 {
14464   gdb_byte *info_ptr = section->buffer + offset;
14465   unsigned int length, initial_length_size;
14466   unsigned int sig_offset;
14467   struct signatured_type find_entry, *type_sig;
14468 
14469   length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
14470   sig_offset = (initial_length_size
14471 		+ 2 /*version*/
14472 		+ (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
14473 		+ 1 /*address_size*/);
14474   find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
14475   type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
14476 
14477   /* This is only used to lookup previously recorded types.
14478      If we didn't find it, it's our bug.  */
14479   gdb_assert (type_sig != NULL);
14480   gdb_assert (offset == type_sig->per_cu.offset);
14481 
14482   return type_sig;
14483 }
14484 
14485 /* Read in signatured type at OFFSET and build its CU and die(s).  */
14486 
14487 static void
14488 read_signatured_type_at_offset (struct objfile *objfile,
14489 				struct dwarf2_section_info *sect,
14490 				unsigned int offset)
14491 {
14492   struct signatured_type *type_sig;
14493 
14494   dwarf2_read_section (objfile, sect);
14495 
14496   /* We have the section offset, but we need the signature to do the
14497      hash table lookup.	 */
14498   type_sig = lookup_signatured_type_at_offset (objfile, sect, offset);
14499 
14500   gdb_assert (type_sig->per_cu.cu == NULL);
14501 
14502   read_signatured_type (objfile, type_sig);
14503 
14504   gdb_assert (type_sig->per_cu.cu != NULL);
14505 }
14506 
14507 /* Read in a signatured type and build its CU and DIEs.  */
14508 
14509 static void
14510 read_signatured_type (struct objfile *objfile,
14511 		      struct signatured_type *type_sig)
14512 {
14513   gdb_byte *types_ptr;
14514   struct die_reader_specs reader_specs;
14515   struct dwarf2_cu *cu;
14516   ULONGEST signature;
14517   struct cleanup *back_to, *free_cu_cleanup;
14518   struct dwarf2_section_info *section = type_sig->per_cu.debug_types_section;
14519 
14520   dwarf2_read_section (objfile, section);
14521   types_ptr = section->buffer + type_sig->per_cu.offset;
14522 
14523   gdb_assert (type_sig->per_cu.cu == NULL);
14524 
14525   cu = xmalloc (sizeof (*cu));
14526   init_one_comp_unit (cu, objfile);
14527 
14528   type_sig->per_cu.cu = cu;
14529   cu->per_cu = &type_sig->per_cu;
14530 
14531   /* If an error occurs while loading, release our storage.  */
14532   free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
14533 
14534   types_ptr = read_type_comp_unit_head (&cu->header, section, &signature,
14535 					types_ptr, objfile->obfd);
14536   gdb_assert (signature == type_sig->signature);
14537 
14538   cu->die_hash
14539     = htab_create_alloc_ex (cu->header.length / 12,
14540 			    die_hash,
14541 			    die_eq,
14542 			    NULL,
14543 			    &cu->comp_unit_obstack,
14544 			    hashtab_obstack_allocate,
14545 			    dummy_obstack_deallocate);
14546 
14547   dwarf2_read_abbrevs (cu->objfile->obfd, cu);
14548   back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
14549 
14550   init_cu_die_reader (&reader_specs, cu);
14551 
14552   cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
14553 				    NULL /*parent*/);
14554 
14555   /* We try not to read any attributes in this function, because not
14556      all objfiles needed for references have been loaded yet, and symbol
14557      table processing isn't initialized.  But we have to set the CU language,
14558      or we won't be able to build types correctly.  */
14559   prepare_one_comp_unit (cu, cu->dies);
14560 
14561   do_cleanups (back_to);
14562 
14563   /* We've successfully allocated this compilation unit.  Let our caller
14564      clean it up when finished with it.	 */
14565   discard_cleanups (free_cu_cleanup);
14566 
14567   type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
14568   dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
14569 }
14570 
14571 /* Decode simple location descriptions.
14572    Given a pointer to a dwarf block that defines a location, compute
14573    the location and return the value.
14574 
14575    NOTE drow/2003-11-18: This function is called in two situations
14576    now: for the address of static or global variables (partial symbols
14577    only) and for offsets into structures which are expected to be
14578    (more or less) constant.  The partial symbol case should go away,
14579    and only the constant case should remain.  That will let this
14580    function complain more accurately.  A few special modes are allowed
14581    without complaint for global variables (for instance, global
14582    register values and thread-local values).
14583 
14584    A location description containing no operations indicates that the
14585    object is optimized out.  The return value is 0 for that case.
14586    FIXME drow/2003-11-16: No callers check for this case any more; soon all
14587    callers will only want a very basic result and this can become a
14588    complaint.
14589 
14590    Note that stack[0] is unused except as a default error return.  */
14591 
14592 static CORE_ADDR
14593 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
14594 {
14595   struct objfile *objfile = cu->objfile;
14596   int i;
14597   int size = blk->size;
14598   gdb_byte *data = blk->data;
14599   CORE_ADDR stack[64];
14600   int stacki;
14601   unsigned int bytes_read, unsnd;
14602   gdb_byte op;
14603 
14604   i = 0;
14605   stacki = 0;
14606   stack[stacki] = 0;
14607   stack[++stacki] = 0;
14608 
14609   while (i < size)
14610     {
14611       op = data[i++];
14612       switch (op)
14613 	{
14614 	case DW_OP_lit0:
14615 	case DW_OP_lit1:
14616 	case DW_OP_lit2:
14617 	case DW_OP_lit3:
14618 	case DW_OP_lit4:
14619 	case DW_OP_lit5:
14620 	case DW_OP_lit6:
14621 	case DW_OP_lit7:
14622 	case DW_OP_lit8:
14623 	case DW_OP_lit9:
14624 	case DW_OP_lit10:
14625 	case DW_OP_lit11:
14626 	case DW_OP_lit12:
14627 	case DW_OP_lit13:
14628 	case DW_OP_lit14:
14629 	case DW_OP_lit15:
14630 	case DW_OP_lit16:
14631 	case DW_OP_lit17:
14632 	case DW_OP_lit18:
14633 	case DW_OP_lit19:
14634 	case DW_OP_lit20:
14635 	case DW_OP_lit21:
14636 	case DW_OP_lit22:
14637 	case DW_OP_lit23:
14638 	case DW_OP_lit24:
14639 	case DW_OP_lit25:
14640 	case DW_OP_lit26:
14641 	case DW_OP_lit27:
14642 	case DW_OP_lit28:
14643 	case DW_OP_lit29:
14644 	case DW_OP_lit30:
14645 	case DW_OP_lit31:
14646 	  stack[++stacki] = op - DW_OP_lit0;
14647 	  break;
14648 
14649 	case DW_OP_reg0:
14650 	case DW_OP_reg1:
14651 	case DW_OP_reg2:
14652 	case DW_OP_reg3:
14653 	case DW_OP_reg4:
14654 	case DW_OP_reg5:
14655 	case DW_OP_reg6:
14656 	case DW_OP_reg7:
14657 	case DW_OP_reg8:
14658 	case DW_OP_reg9:
14659 	case DW_OP_reg10:
14660 	case DW_OP_reg11:
14661 	case DW_OP_reg12:
14662 	case DW_OP_reg13:
14663 	case DW_OP_reg14:
14664 	case DW_OP_reg15:
14665 	case DW_OP_reg16:
14666 	case DW_OP_reg17:
14667 	case DW_OP_reg18:
14668 	case DW_OP_reg19:
14669 	case DW_OP_reg20:
14670 	case DW_OP_reg21:
14671 	case DW_OP_reg22:
14672 	case DW_OP_reg23:
14673 	case DW_OP_reg24:
14674 	case DW_OP_reg25:
14675 	case DW_OP_reg26:
14676 	case DW_OP_reg27:
14677 	case DW_OP_reg28:
14678 	case DW_OP_reg29:
14679 	case DW_OP_reg30:
14680 	case DW_OP_reg31:
14681 	  stack[++stacki] = op - DW_OP_reg0;
14682 	  if (i < size)
14683 	    dwarf2_complex_location_expr_complaint ();
14684 	  break;
14685 
14686 	case DW_OP_regx:
14687 	  unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
14688 	  i += bytes_read;
14689 	  stack[++stacki] = unsnd;
14690 	  if (i < size)
14691 	    dwarf2_complex_location_expr_complaint ();
14692 	  break;
14693 
14694 	case DW_OP_addr:
14695 	  stack[++stacki] = read_address (objfile->obfd, &data[i],
14696 					  cu, &bytes_read);
14697 	  i += bytes_read;
14698 	  break;
14699 
14700 	case DW_OP_const1u:
14701 	  stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
14702 	  i += 1;
14703 	  break;
14704 
14705 	case DW_OP_const1s:
14706 	  stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
14707 	  i += 1;
14708 	  break;
14709 
14710 	case DW_OP_const2u:
14711 	  stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
14712 	  i += 2;
14713 	  break;
14714 
14715 	case DW_OP_const2s:
14716 	  stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
14717 	  i += 2;
14718 	  break;
14719 
14720 	case DW_OP_const4u:
14721 	  stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
14722 	  i += 4;
14723 	  break;
14724 
14725 	case DW_OP_const4s:
14726 	  stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
14727 	  i += 4;
14728 	  break;
14729 
14730 	case DW_OP_const8u:
14731 	  stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
14732 	  i += 8;
14733 	  break;
14734 
14735 	case DW_OP_constu:
14736 	  stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
14737 						  &bytes_read);
14738 	  i += bytes_read;
14739 	  break;
14740 
14741 	case DW_OP_consts:
14742 	  stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
14743 	  i += bytes_read;
14744 	  break;
14745 
14746 	case DW_OP_dup:
14747 	  stack[stacki + 1] = stack[stacki];
14748 	  stacki++;
14749 	  break;
14750 
14751 	case DW_OP_plus:
14752 	  stack[stacki - 1] += stack[stacki];
14753 	  stacki--;
14754 	  break;
14755 
14756 	case DW_OP_plus_uconst:
14757 	  stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
14758 						 &bytes_read);
14759 	  i += bytes_read;
14760 	  break;
14761 
14762 	case DW_OP_minus:
14763 	  stack[stacki - 1] -= stack[stacki];
14764 	  stacki--;
14765 	  break;
14766 
14767 	case DW_OP_deref:
14768 	  /* If we're not the last op, then we definitely can't encode
14769 	     this using GDB's address_class enum.  This is valid for partial
14770 	     global symbols, although the variable's address will be bogus
14771 	     in the psymtab.  */
14772 	  if (i < size)
14773 	    dwarf2_complex_location_expr_complaint ();
14774 	  break;
14775 
14776         case DW_OP_GNU_push_tls_address:
14777 	  /* The top of the stack has the offset from the beginning
14778 	     of the thread control block at which the variable is located.  */
14779 	  /* Nothing should follow this operator, so the top of stack would
14780 	     be returned.  */
14781 	  /* This is valid for partial global symbols, but the variable's
14782 	     address will be bogus in the psymtab.  Make it always at least
14783 	     non-zero to not look as a variable garbage collected by linker
14784 	     which have DW_OP_addr 0.  */
14785 	  if (i < size)
14786 	    dwarf2_complex_location_expr_complaint ();
14787 	  stack[stacki]++;
14788           break;
14789 
14790 	case DW_OP_GNU_uninit:
14791 	  break;
14792 
14793 	default:
14794 	  {
14795 	    const char *name = dwarf_stack_op_name (op);
14796 
14797 	    if (name)
14798 	      complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
14799 			 name);
14800 	    else
14801 	      complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
14802 			 op);
14803 	  }
14804 
14805 	  return (stack[stacki]);
14806 	}
14807 
14808       /* Enforce maximum stack depth of SIZE-1 to avoid writing
14809          outside of the allocated space.  Also enforce minimum>0.  */
14810       if (stacki >= ARRAY_SIZE (stack) - 1)
14811 	{
14812 	  complaint (&symfile_complaints,
14813 		     _("location description stack overflow"));
14814 	  return 0;
14815 	}
14816 
14817       if (stacki <= 0)
14818 	{
14819 	  complaint (&symfile_complaints,
14820 		     _("location description stack underflow"));
14821 	  return 0;
14822 	}
14823     }
14824   return (stack[stacki]);
14825 }
14826 
14827 /* memory allocation interface */
14828 
14829 static struct dwarf_block *
14830 dwarf_alloc_block (struct dwarf2_cu *cu)
14831 {
14832   struct dwarf_block *blk;
14833 
14834   blk = (struct dwarf_block *)
14835     obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
14836   return (blk);
14837 }
14838 
14839 static struct abbrev_info *
14840 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
14841 {
14842   struct abbrev_info *abbrev;
14843 
14844   abbrev = (struct abbrev_info *)
14845     obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
14846   memset (abbrev, 0, sizeof (struct abbrev_info));
14847   return (abbrev);
14848 }
14849 
14850 static struct die_info *
14851 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
14852 {
14853   struct die_info *die;
14854   size_t size = sizeof (struct die_info);
14855 
14856   if (num_attrs > 1)
14857     size += (num_attrs - 1) * sizeof (struct attribute);
14858 
14859   die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
14860   memset (die, 0, sizeof (struct die_info));
14861   return (die);
14862 }
14863 
14864 
14865 /* Macro support.  */
14866 
14867 /* Return the full name of file number I in *LH's file name table.
14868    Use COMP_DIR as the name of the current directory of the
14869    compilation.  The result is allocated using xmalloc; the caller is
14870    responsible for freeing it.  */
14871 static char *
14872 file_full_name (int file, struct line_header *lh, const char *comp_dir)
14873 {
14874   /* Is the file number a valid index into the line header's file name
14875      table?  Remember that file numbers start with one, not zero.  */
14876   if (1 <= file && file <= lh->num_file_names)
14877     {
14878       struct file_entry *fe = &lh->file_names[file - 1];
14879 
14880       if (IS_ABSOLUTE_PATH (fe->name))
14881         return xstrdup (fe->name);
14882       else
14883         {
14884           const char *dir;
14885           int dir_len;
14886           char *full_name;
14887 
14888           if (fe->dir_index)
14889             dir = lh->include_dirs[fe->dir_index - 1];
14890           else
14891             dir = comp_dir;
14892 
14893           if (dir)
14894             {
14895               dir_len = strlen (dir);
14896               full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
14897               strcpy (full_name, dir);
14898               full_name[dir_len] = '/';
14899               strcpy (full_name + dir_len + 1, fe->name);
14900               return full_name;
14901             }
14902           else
14903             return xstrdup (fe->name);
14904         }
14905     }
14906   else
14907     {
14908       /* The compiler produced a bogus file number.  We can at least
14909          record the macro definitions made in the file, even if we
14910          won't be able to find the file by name.  */
14911       char fake_name[80];
14912 
14913       sprintf (fake_name, "<bad macro file number %d>", file);
14914 
14915       complaint (&symfile_complaints,
14916                  _("bad file number in macro information (%d)"),
14917                  file);
14918 
14919       return xstrdup (fake_name);
14920     }
14921 }
14922 
14923 
14924 static struct macro_source_file *
14925 macro_start_file (int file, int line,
14926                   struct macro_source_file *current_file,
14927                   const char *comp_dir,
14928                   struct line_header *lh, struct objfile *objfile)
14929 {
14930   /* The full name of this source file.  */
14931   char *full_name = file_full_name (file, lh, comp_dir);
14932 
14933   /* We don't create a macro table for this compilation unit
14934      at all until we actually get a filename.  */
14935   if (! pending_macros)
14936     pending_macros = new_macro_table (&objfile->objfile_obstack,
14937                                       objfile->macro_cache);
14938 
14939   if (! current_file)
14940     /* If we have no current file, then this must be the start_file
14941        directive for the compilation unit's main source file.  */
14942     current_file = macro_set_main (pending_macros, full_name);
14943   else
14944     current_file = macro_include (current_file, line, full_name);
14945 
14946   xfree (full_name);
14947 
14948   return current_file;
14949 }
14950 
14951 
14952 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
14953    followed by a null byte.  */
14954 static char *
14955 copy_string (const char *buf, int len)
14956 {
14957   char *s = xmalloc (len + 1);
14958 
14959   memcpy (s, buf, len);
14960   s[len] = '\0';
14961   return s;
14962 }
14963 
14964 
14965 static const char *
14966 consume_improper_spaces (const char *p, const char *body)
14967 {
14968   if (*p == ' ')
14969     {
14970       complaint (&symfile_complaints,
14971 		 _("macro definition contains spaces "
14972 		   "in formal argument list:\n`%s'"),
14973 		 body);
14974 
14975       while (*p == ' ')
14976         p++;
14977     }
14978 
14979   return p;
14980 }
14981 
14982 
14983 static void
14984 parse_macro_definition (struct macro_source_file *file, int line,
14985                         const char *body)
14986 {
14987   const char *p;
14988 
14989   /* The body string takes one of two forms.  For object-like macro
14990      definitions, it should be:
14991 
14992         <macro name> " " <definition>
14993 
14994      For function-like macro definitions, it should be:
14995 
14996         <macro name> "() " <definition>
14997      or
14998         <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
14999 
15000      Spaces may appear only where explicitly indicated, and in the
15001      <definition>.
15002 
15003      The Dwarf 2 spec says that an object-like macro's name is always
15004      followed by a space, but versions of GCC around March 2002 omit
15005      the space when the macro's definition is the empty string.
15006 
15007      The Dwarf 2 spec says that there should be no spaces between the
15008      formal arguments in a function-like macro's formal argument list,
15009      but versions of GCC around March 2002 include spaces after the
15010      commas.  */
15011 
15012 
15013   /* Find the extent of the macro name.  The macro name is terminated
15014      by either a space or null character (for an object-like macro) or
15015      an opening paren (for a function-like macro).  */
15016   for (p = body; *p; p++)
15017     if (*p == ' ' || *p == '(')
15018       break;
15019 
15020   if (*p == ' ' || *p == '\0')
15021     {
15022       /* It's an object-like macro.  */
15023       int name_len = p - body;
15024       char *name = copy_string (body, name_len);
15025       const char *replacement;
15026 
15027       if (*p == ' ')
15028         replacement = body + name_len + 1;
15029       else
15030         {
15031 	  dwarf2_macro_malformed_definition_complaint (body);
15032           replacement = body + name_len;
15033         }
15034 
15035       macro_define_object (file, line, name, replacement);
15036 
15037       xfree (name);
15038     }
15039   else if (*p == '(')
15040     {
15041       /* It's a function-like macro.  */
15042       char *name = copy_string (body, p - body);
15043       int argc = 0;
15044       int argv_size = 1;
15045       char **argv = xmalloc (argv_size * sizeof (*argv));
15046 
15047       p++;
15048 
15049       p = consume_improper_spaces (p, body);
15050 
15051       /* Parse the formal argument list.  */
15052       while (*p && *p != ')')
15053         {
15054           /* Find the extent of the current argument name.  */
15055           const char *arg_start = p;
15056 
15057           while (*p && *p != ',' && *p != ')' && *p != ' ')
15058             p++;
15059 
15060           if (! *p || p == arg_start)
15061 	    dwarf2_macro_malformed_definition_complaint (body);
15062           else
15063             {
15064               /* Make sure argv has room for the new argument.  */
15065               if (argc >= argv_size)
15066                 {
15067                   argv_size *= 2;
15068                   argv = xrealloc (argv, argv_size * sizeof (*argv));
15069                 }
15070 
15071               argv[argc++] = copy_string (arg_start, p - arg_start);
15072             }
15073 
15074           p = consume_improper_spaces (p, body);
15075 
15076           /* Consume the comma, if present.  */
15077           if (*p == ',')
15078             {
15079               p++;
15080 
15081               p = consume_improper_spaces (p, body);
15082             }
15083         }
15084 
15085       if (*p == ')')
15086         {
15087           p++;
15088 
15089           if (*p == ' ')
15090             /* Perfectly formed definition, no complaints.  */
15091             macro_define_function (file, line, name,
15092                                    argc, (const char **) argv,
15093                                    p + 1);
15094           else if (*p == '\0')
15095             {
15096               /* Complain, but do define it.  */
15097 	      dwarf2_macro_malformed_definition_complaint (body);
15098               macro_define_function (file, line, name,
15099                                      argc, (const char **) argv,
15100                                      p);
15101             }
15102           else
15103             /* Just complain.  */
15104 	    dwarf2_macro_malformed_definition_complaint (body);
15105         }
15106       else
15107         /* Just complain.  */
15108 	dwarf2_macro_malformed_definition_complaint (body);
15109 
15110       xfree (name);
15111       {
15112         int i;
15113 
15114         for (i = 0; i < argc; i++)
15115           xfree (argv[i]);
15116       }
15117       xfree (argv);
15118     }
15119   else
15120     dwarf2_macro_malformed_definition_complaint (body);
15121 }
15122 
15123 /* Skip some bytes from BYTES according to the form given in FORM.
15124    Returns the new pointer.  */
15125 
15126 static gdb_byte *
15127 skip_form_bytes (bfd *abfd, gdb_byte *bytes,
15128 		 enum dwarf_form form,
15129 		 unsigned int offset_size,
15130 		 struct dwarf2_section_info *section)
15131 {
15132   unsigned int bytes_read;
15133 
15134   switch (form)
15135     {
15136     case DW_FORM_data1:
15137     case DW_FORM_flag:
15138       ++bytes;
15139       break;
15140 
15141     case DW_FORM_data2:
15142       bytes += 2;
15143       break;
15144 
15145     case DW_FORM_data4:
15146       bytes += 4;
15147       break;
15148 
15149     case DW_FORM_data8:
15150       bytes += 8;
15151       break;
15152 
15153     case DW_FORM_string:
15154       read_direct_string (abfd, bytes, &bytes_read);
15155       bytes += bytes_read;
15156       break;
15157 
15158     case DW_FORM_sec_offset:
15159     case DW_FORM_strp:
15160       bytes += offset_size;
15161       break;
15162 
15163     case DW_FORM_block:
15164       bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
15165       bytes += bytes_read;
15166       break;
15167 
15168     case DW_FORM_block1:
15169       bytes += 1 + read_1_byte (abfd, bytes);
15170       break;
15171     case DW_FORM_block2:
15172       bytes += 2 + read_2_bytes (abfd, bytes);
15173       break;
15174     case DW_FORM_block4:
15175       bytes += 4 + read_4_bytes (abfd, bytes);
15176       break;
15177 
15178     case DW_FORM_sdata:
15179     case DW_FORM_udata:
15180       bytes = skip_leb128 (abfd, bytes);
15181       break;
15182 
15183     default:
15184       {
15185       complain:
15186 	complaint (&symfile_complaints,
15187 		   _("invalid form 0x%x in `%s'"),
15188 		   form,
15189 		   section->asection->name);
15190 	return NULL;
15191       }
15192     }
15193 
15194   return bytes;
15195 }
15196 
15197 /* A helper for dwarf_decode_macros that handles skipping an unknown
15198    opcode.  Returns an updated pointer to the macro data buffer; or,
15199    on error, issues a complaint and returns NULL.  */
15200 
15201 static gdb_byte *
15202 skip_unknown_opcode (unsigned int opcode,
15203 		     gdb_byte **opcode_definitions,
15204 		     gdb_byte *mac_ptr,
15205 		     bfd *abfd,
15206 		     unsigned int offset_size,
15207 		     struct dwarf2_section_info *section)
15208 {
15209   unsigned int bytes_read, i;
15210   unsigned long arg;
15211   gdb_byte *defn;
15212 
15213   if (opcode_definitions[opcode] == NULL)
15214     {
15215       complaint (&symfile_complaints,
15216 		 _("unrecognized DW_MACFINO opcode 0x%x"),
15217 		 opcode);
15218       return NULL;
15219     }
15220 
15221   defn = opcode_definitions[opcode];
15222   arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
15223   defn += bytes_read;
15224 
15225   for (i = 0; i < arg; ++i)
15226     {
15227       mac_ptr = skip_form_bytes (abfd, mac_ptr, defn[i], offset_size, section);
15228       if (mac_ptr == NULL)
15229 	{
15230 	  /* skip_form_bytes already issued the complaint.  */
15231 	  return NULL;
15232 	}
15233     }
15234 
15235   return mac_ptr;
15236 }
15237 
15238 /* A helper function which parses the header of a macro section.
15239    If the macro section is the extended (for now called "GNU") type,
15240    then this updates *OFFSET_SIZE.  Returns a pointer to just after
15241    the header, or issues a complaint and returns NULL on error.  */
15242 
15243 static gdb_byte *
15244 dwarf_parse_macro_header (gdb_byte **opcode_definitions,
15245 			  bfd *abfd,
15246 			  gdb_byte *mac_ptr,
15247 			  unsigned int *offset_size,
15248 			  int section_is_gnu)
15249 {
15250   memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
15251 
15252   if (section_is_gnu)
15253     {
15254       unsigned int version, flags;
15255 
15256       version = read_2_bytes (abfd, mac_ptr);
15257       if (version != 4)
15258 	{
15259 	  complaint (&symfile_complaints,
15260 		     _("unrecognized version `%d' in .debug_macro section"),
15261 		     version);
15262 	  return NULL;
15263 	}
15264       mac_ptr += 2;
15265 
15266       flags = read_1_byte (abfd, mac_ptr);
15267       ++mac_ptr;
15268       *offset_size = (flags & 1) ? 8 : 4;
15269 
15270       if ((flags & 2) != 0)
15271 	/* We don't need the line table offset.  */
15272 	mac_ptr += *offset_size;
15273 
15274       /* Vendor opcode descriptions.  */
15275       if ((flags & 4) != 0)
15276 	{
15277 	  unsigned int i, count;
15278 
15279 	  count = read_1_byte (abfd, mac_ptr);
15280 	  ++mac_ptr;
15281 	  for (i = 0; i < count; ++i)
15282 	    {
15283 	      unsigned int opcode, bytes_read;
15284 	      unsigned long arg;
15285 
15286 	      opcode = read_1_byte (abfd, mac_ptr);
15287 	      ++mac_ptr;
15288 	      opcode_definitions[opcode] = mac_ptr;
15289 	      arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15290 	      mac_ptr += bytes_read;
15291 	      mac_ptr += arg;
15292 	    }
15293 	}
15294     }
15295 
15296   return mac_ptr;
15297 }
15298 
15299 /* A helper for dwarf_decode_macros that handles the GNU extensions,
15300    including DW_GNU_MACINFO_transparent_include.  */
15301 
15302 static void
15303 dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
15304 			  struct macro_source_file *current_file,
15305 			  struct line_header *lh, char *comp_dir,
15306 			  struct dwarf2_section_info *section,
15307 			  int section_is_gnu,
15308 			  unsigned int offset_size,
15309 			  struct objfile *objfile)
15310 {
15311   enum dwarf_macro_record_type macinfo_type;
15312   int at_commandline;
15313   gdb_byte *opcode_definitions[256];
15314 
15315   mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
15316 				      &offset_size, section_is_gnu);
15317   if (mac_ptr == NULL)
15318     {
15319       /* We already issued a complaint.  */
15320       return;
15321     }
15322 
15323   /* Determines if GDB is still before first DW_MACINFO_start_file.  If true
15324      GDB is still reading the definitions from command line.  First
15325      DW_MACINFO_start_file will need to be ignored as it was already executed
15326      to create CURRENT_FILE for the main source holding also the command line
15327      definitions.  On first met DW_MACINFO_start_file this flag is reset to
15328      normally execute all the remaining DW_MACINFO_start_file macinfos.  */
15329 
15330   at_commandline = 1;
15331 
15332   do
15333     {
15334       /* Do we at least have room for a macinfo type byte?  */
15335       if (mac_ptr >= mac_end)
15336 	{
15337 	  dwarf2_macros_too_long_complaint (section);
15338 	  break;
15339 	}
15340 
15341       macinfo_type = read_1_byte (abfd, mac_ptr);
15342       mac_ptr++;
15343 
15344       /* Note that we rely on the fact that the corresponding GNU and
15345 	 DWARF constants are the same.  */
15346       switch (macinfo_type)
15347 	{
15348 	  /* A zero macinfo type indicates the end of the macro
15349 	     information.  */
15350 	case 0:
15351 	  break;
15352 
15353         case DW_MACRO_GNU_define:
15354         case DW_MACRO_GNU_undef:
15355 	case DW_MACRO_GNU_define_indirect:
15356 	case DW_MACRO_GNU_undef_indirect:
15357           {
15358             unsigned int bytes_read;
15359             int line;
15360             char *body;
15361 	    int is_define;
15362 
15363 	    line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15364 	    mac_ptr += bytes_read;
15365 
15366 	    if (macinfo_type == DW_MACRO_GNU_define
15367 		|| macinfo_type == DW_MACRO_GNU_undef)
15368 	      {
15369 		body = read_direct_string (abfd, mac_ptr, &bytes_read);
15370 		mac_ptr += bytes_read;
15371 	      }
15372 	    else
15373 	      {
15374 		LONGEST str_offset;
15375 
15376 		str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
15377 		mac_ptr += offset_size;
15378 
15379 		body = read_indirect_string_at_offset (abfd, str_offset);
15380 	      }
15381 
15382 	    is_define = (macinfo_type == DW_MACRO_GNU_define
15383 			 || macinfo_type == DW_MACRO_GNU_define_indirect);
15384             if (! current_file)
15385 	      {
15386 		/* DWARF violation as no main source is present.  */
15387 		complaint (&symfile_complaints,
15388 			   _("debug info with no main source gives macro %s "
15389 			     "on line %d: %s"),
15390 			   is_define ? _("definition") : _("undefinition"),
15391 			   line, body);
15392 		break;
15393 	      }
15394 	    if ((line == 0 && !at_commandline)
15395 		|| (line != 0 && at_commandline))
15396 	      complaint (&symfile_complaints,
15397 			 _("debug info gives %s macro %s with %s line %d: %s"),
15398 			 at_commandline ? _("command-line") : _("in-file"),
15399 			 is_define ? _("definition") : _("undefinition"),
15400 			 line == 0 ? _("zero") : _("non-zero"), line, body);
15401 
15402 	    if (is_define)
15403 	      parse_macro_definition (current_file, line, body);
15404 	    else
15405 	      {
15406 		gdb_assert (macinfo_type == DW_MACRO_GNU_undef
15407 			    || macinfo_type == DW_MACRO_GNU_undef_indirect);
15408 		macro_undef (current_file, line, body);
15409 	      }
15410           }
15411           break;
15412 
15413         case DW_MACRO_GNU_start_file:
15414           {
15415             unsigned int bytes_read;
15416             int line, file;
15417 
15418             line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15419             mac_ptr += bytes_read;
15420             file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15421             mac_ptr += bytes_read;
15422 
15423 	    if ((line == 0 && !at_commandline)
15424 		|| (line != 0 && at_commandline))
15425 	      complaint (&symfile_complaints,
15426 			 _("debug info gives source %d included "
15427 			   "from %s at %s line %d"),
15428 			 file, at_commandline ? _("command-line") : _("file"),
15429 			 line == 0 ? _("zero") : _("non-zero"), line);
15430 
15431 	    if (at_commandline)
15432 	      {
15433 		/* This DW_MACRO_GNU_start_file was executed in the
15434 		   pass one.  */
15435 		at_commandline = 0;
15436 	      }
15437 	    else
15438 	      current_file = macro_start_file (file, line,
15439 					       current_file, comp_dir,
15440 					       lh, objfile);
15441           }
15442           break;
15443 
15444         case DW_MACRO_GNU_end_file:
15445           if (! current_file)
15446 	    complaint (&symfile_complaints,
15447 		       _("macro debug info has an unmatched "
15448 			 "`close_file' directive"));
15449           else
15450             {
15451               current_file = current_file->included_by;
15452               if (! current_file)
15453                 {
15454                   enum dwarf_macro_record_type next_type;
15455 
15456                   /* GCC circa March 2002 doesn't produce the zero
15457                      type byte marking the end of the compilation
15458                      unit.  Complain if it's not there, but exit no
15459                      matter what.  */
15460 
15461                   /* Do we at least have room for a macinfo type byte?  */
15462                   if (mac_ptr >= mac_end)
15463                     {
15464 		      dwarf2_macros_too_long_complaint (section);
15465                       return;
15466                     }
15467 
15468                   /* We don't increment mac_ptr here, so this is just
15469                      a look-ahead.  */
15470                   next_type = read_1_byte (abfd, mac_ptr);
15471                   if (next_type != 0)
15472 		    complaint (&symfile_complaints,
15473 			       _("no terminating 0-type entry for "
15474 				 "macros in `.debug_macinfo' section"));
15475 
15476                   return;
15477                 }
15478             }
15479           break;
15480 
15481 	case DW_MACRO_GNU_transparent_include:
15482 	  {
15483 	    LONGEST offset;
15484 
15485 	    offset = read_offset_1 (abfd, mac_ptr, offset_size);
15486 	    mac_ptr += offset_size;
15487 
15488 	    dwarf_decode_macro_bytes (abfd,
15489 				      section->buffer + offset,
15490 				      mac_end, current_file,
15491 				      lh, comp_dir,
15492 				      section, section_is_gnu,
15493 				      offset_size, objfile);
15494 	  }
15495 	  break;
15496 
15497         case DW_MACINFO_vendor_ext:
15498 	  if (!section_is_gnu)
15499 	    {
15500 	      unsigned int bytes_read;
15501 	      int constant;
15502 
15503 	      constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15504 	      mac_ptr += bytes_read;
15505 	      read_direct_string (abfd, mac_ptr, &bytes_read);
15506 	      mac_ptr += bytes_read;
15507 
15508 	      /* We don't recognize any vendor extensions.  */
15509 	      break;
15510 	    }
15511 	  /* FALLTHROUGH */
15512 
15513 	default:
15514 	  mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
15515 					 mac_ptr, abfd, offset_size,
15516 					 section);
15517 	  if (mac_ptr == NULL)
15518 	    return;
15519 	  break;
15520         }
15521     } while (macinfo_type != 0);
15522 }
15523 
15524 static void
15525 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
15526                      char *comp_dir, bfd *abfd,
15527                      struct dwarf2_cu *cu,
15528 		     struct dwarf2_section_info *section,
15529 		     int section_is_gnu)
15530 {
15531   gdb_byte *mac_ptr, *mac_end;
15532   struct macro_source_file *current_file = 0;
15533   enum dwarf_macro_record_type macinfo_type;
15534   unsigned int offset_size = cu->header.offset_size;
15535   gdb_byte *opcode_definitions[256];
15536 
15537   dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15538   if (section->buffer == NULL)
15539     {
15540       complaint (&symfile_complaints, _("missing %s section"),
15541 		 section->asection->name);
15542       return;
15543     }
15544 
15545   /* First pass: Find the name of the base filename.
15546      This filename is needed in order to process all macros whose definition
15547      (or undefinition) comes from the command line.  These macros are defined
15548      before the first DW_MACINFO_start_file entry, and yet still need to be
15549      associated to the base file.
15550 
15551      To determine the base file name, we scan the macro definitions until we
15552      reach the first DW_MACINFO_start_file entry.  We then initialize
15553      CURRENT_FILE accordingly so that any macro definition found before the
15554      first DW_MACINFO_start_file can still be associated to the base file.  */
15555 
15556   mac_ptr = section->buffer + offset;
15557   mac_end = section->buffer + section->size;
15558 
15559   mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
15560 				      &offset_size, section_is_gnu);
15561   if (mac_ptr == NULL)
15562     {
15563       /* We already issued a complaint.  */
15564       return;
15565     }
15566 
15567   do
15568     {
15569       /* Do we at least have room for a macinfo type byte?  */
15570       if (mac_ptr >= mac_end)
15571         {
15572 	  /* Complaint is printed during the second pass as GDB will probably
15573 	     stop the first pass earlier upon finding
15574 	     DW_MACINFO_start_file.  */
15575 	  break;
15576         }
15577 
15578       macinfo_type = read_1_byte (abfd, mac_ptr);
15579       mac_ptr++;
15580 
15581       /* Note that we rely on the fact that the corresponding GNU and
15582 	 DWARF constants are the same.  */
15583       switch (macinfo_type)
15584         {
15585           /* A zero macinfo type indicates the end of the macro
15586              information.  */
15587         case 0:
15588 	  break;
15589 
15590 	case DW_MACRO_GNU_define:
15591 	case DW_MACRO_GNU_undef:
15592 	  /* Only skip the data by MAC_PTR.  */
15593 	  {
15594 	    unsigned int bytes_read;
15595 
15596 	    read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15597 	    mac_ptr += bytes_read;
15598 	    read_direct_string (abfd, mac_ptr, &bytes_read);
15599 	    mac_ptr += bytes_read;
15600 	  }
15601 	  break;
15602 
15603 	case DW_MACRO_GNU_start_file:
15604 	  {
15605 	    unsigned int bytes_read;
15606 	    int line, file;
15607 
15608 	    line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15609 	    mac_ptr += bytes_read;
15610 	    file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15611 	    mac_ptr += bytes_read;
15612 
15613 	    current_file = macro_start_file (file, line, current_file,
15614 					     comp_dir, lh, cu->objfile);
15615 	  }
15616 	  break;
15617 
15618 	case DW_MACRO_GNU_end_file:
15619 	  /* No data to skip by MAC_PTR.  */
15620 	  break;
15621 
15622 	case DW_MACRO_GNU_define_indirect:
15623 	case DW_MACRO_GNU_undef_indirect:
15624 	  {
15625 	    unsigned int bytes_read;
15626 
15627 	    read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15628 	    mac_ptr += bytes_read;
15629 	    mac_ptr += offset_size;
15630 	  }
15631 	  break;
15632 
15633 	case DW_MACRO_GNU_transparent_include:
15634 	  /* Note that, according to the spec, a transparent include
15635 	     chain cannot call DW_MACRO_GNU_start_file.  So, we can just
15636 	     skip this opcode.  */
15637 	  mac_ptr += offset_size;
15638 	  break;
15639 
15640 	case DW_MACINFO_vendor_ext:
15641 	  /* Only skip the data by MAC_PTR.  */
15642 	  if (!section_is_gnu)
15643 	    {
15644 	      unsigned int bytes_read;
15645 
15646 	      read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15647 	      mac_ptr += bytes_read;
15648 	      read_direct_string (abfd, mac_ptr, &bytes_read);
15649 	      mac_ptr += bytes_read;
15650 	    }
15651 	  /* FALLTHROUGH */
15652 
15653 	default:
15654 	  mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
15655 					 mac_ptr, abfd, offset_size,
15656 					 section);
15657 	  if (mac_ptr == NULL)
15658 	    return;
15659 	  break;
15660 	}
15661     } while (macinfo_type != 0 && current_file == NULL);
15662 
15663   /* Second pass: Process all entries.
15664 
15665      Use the AT_COMMAND_LINE flag to determine whether we are still processing
15666      command-line macro definitions/undefinitions.  This flag is unset when we
15667      reach the first DW_MACINFO_start_file entry.  */
15668 
15669   dwarf_decode_macro_bytes (abfd, section->buffer + offset, mac_end,
15670 			    current_file, lh, comp_dir, section, section_is_gnu,
15671 			    offset_size, cu->objfile);
15672 }
15673 
15674 /* Check if the attribute's form is a DW_FORM_block*
15675    if so return true else false.  */
15676 static int
15677 attr_form_is_block (struct attribute *attr)
15678 {
15679   return (attr == NULL ? 0 :
15680       attr->form == DW_FORM_block1
15681       || attr->form == DW_FORM_block2
15682       || attr->form == DW_FORM_block4
15683       || attr->form == DW_FORM_block
15684       || attr->form == DW_FORM_exprloc);
15685 }
15686 
15687 /* Return non-zero if ATTR's value is a section offset --- classes
15688    lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
15689    You may use DW_UNSND (attr) to retrieve such offsets.
15690 
15691    Section 7.5.4, "Attribute Encodings", explains that no attribute
15692    may have a value that belongs to more than one of these classes; it
15693    would be ambiguous if we did, because we use the same forms for all
15694    of them.  */
15695 static int
15696 attr_form_is_section_offset (struct attribute *attr)
15697 {
15698   return (attr->form == DW_FORM_data4
15699           || attr->form == DW_FORM_data8
15700 	  || attr->form == DW_FORM_sec_offset);
15701 }
15702 
15703 
15704 /* Return non-zero if ATTR's value falls in the 'constant' class, or
15705    zero otherwise.  When this function returns true, you can apply
15706    dwarf2_get_attr_constant_value to it.
15707 
15708    However, note that for some attributes you must check
15709    attr_form_is_section_offset before using this test.  DW_FORM_data4
15710    and DW_FORM_data8 are members of both the constant class, and of
15711    the classes that contain offsets into other debug sections
15712    (lineptr, loclistptr, macptr or rangelistptr).  The DWARF spec says
15713    that, if an attribute's can be either a constant or one of the
15714    section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
15715    taken as section offsets, not constants.  */
15716 static int
15717 attr_form_is_constant (struct attribute *attr)
15718 {
15719   switch (attr->form)
15720     {
15721     case DW_FORM_sdata:
15722     case DW_FORM_udata:
15723     case DW_FORM_data1:
15724     case DW_FORM_data2:
15725     case DW_FORM_data4:
15726     case DW_FORM_data8:
15727       return 1;
15728     default:
15729       return 0;
15730     }
15731 }
15732 
15733 /* A helper function that fills in a dwarf2_loclist_baton.  */
15734 
15735 static void
15736 fill_in_loclist_baton (struct dwarf2_cu *cu,
15737 		       struct dwarf2_loclist_baton *baton,
15738 		       struct attribute *attr)
15739 {
15740   dwarf2_read_section (dwarf2_per_objfile->objfile,
15741 		       &dwarf2_per_objfile->loc);
15742 
15743   baton->per_cu = cu->per_cu;
15744   gdb_assert (baton->per_cu);
15745   /* We don't know how long the location list is, but make sure we
15746      don't run off the edge of the section.  */
15747   baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
15748   baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
15749   baton->base_address = cu->base_address;
15750 }
15751 
15752 static void
15753 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
15754 			     struct dwarf2_cu *cu)
15755 {
15756   if (attr_form_is_section_offset (attr)
15757       /* ".debug_loc" may not exist at all, or the offset may be outside
15758 	 the section.  If so, fall through to the complaint in the
15759 	 other branch.  */
15760       && DW_UNSND (attr) < dwarf2_section_size (dwarf2_per_objfile->objfile,
15761 						&dwarf2_per_objfile->loc))
15762     {
15763       struct dwarf2_loclist_baton *baton;
15764 
15765       baton = obstack_alloc (&cu->objfile->objfile_obstack,
15766 			     sizeof (struct dwarf2_loclist_baton));
15767 
15768       fill_in_loclist_baton (cu, baton, attr);
15769 
15770       if (cu->base_known == 0)
15771 	complaint (&symfile_complaints,
15772 		   _("Location list used without "
15773 		     "specifying the CU base address."));
15774 
15775       SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
15776       SYMBOL_LOCATION_BATON (sym) = baton;
15777     }
15778   else
15779     {
15780       struct dwarf2_locexpr_baton *baton;
15781 
15782       baton = obstack_alloc (&cu->objfile->objfile_obstack,
15783 			     sizeof (struct dwarf2_locexpr_baton));
15784       baton->per_cu = cu->per_cu;
15785       gdb_assert (baton->per_cu);
15786 
15787       if (attr_form_is_block (attr))
15788 	{
15789 	  /* Note that we're just copying the block's data pointer
15790 	     here, not the actual data.  We're still pointing into the
15791 	     info_buffer for SYM's objfile; right now we never release
15792 	     that buffer, but when we do clean up properly this may
15793 	     need to change.  */
15794 	  baton->size = DW_BLOCK (attr)->size;
15795 	  baton->data = DW_BLOCK (attr)->data;
15796 	}
15797       else
15798 	{
15799 	  dwarf2_invalid_attrib_class_complaint ("location description",
15800 						 SYMBOL_NATURAL_NAME (sym));
15801 	  baton->size = 0;
15802 	}
15803 
15804       SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
15805       SYMBOL_LOCATION_BATON (sym) = baton;
15806     }
15807 }
15808 
15809 /* Return the OBJFILE associated with the compilation unit CU.  If CU
15810    came from a separate debuginfo file, then the master objfile is
15811    returned.  */
15812 
15813 struct objfile *
15814 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
15815 {
15816   struct objfile *objfile = per_cu->objfile;
15817 
15818   /* Return the master objfile, so that we can report and look up the
15819      correct file containing this variable.  */
15820   if (objfile->separate_debug_objfile_backlink)
15821     objfile = objfile->separate_debug_objfile_backlink;
15822 
15823   return objfile;
15824 }
15825 
15826 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
15827    (CU_HEADERP is unused in such case) or prepare a temporary copy at
15828    CU_HEADERP first.  */
15829 
15830 static const struct comp_unit_head *
15831 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
15832 		       struct dwarf2_per_cu_data *per_cu)
15833 {
15834   struct objfile *objfile;
15835   struct dwarf2_per_objfile *per_objfile;
15836   gdb_byte *info_ptr;
15837 
15838   if (per_cu->cu)
15839     return &per_cu->cu->header;
15840 
15841   objfile = per_cu->objfile;
15842   per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
15843   info_ptr = per_objfile->info.buffer + per_cu->offset;
15844 
15845   memset (cu_headerp, 0, sizeof (*cu_headerp));
15846   read_comp_unit_head (cu_headerp, info_ptr, objfile->obfd);
15847 
15848   return cu_headerp;
15849 }
15850 
15851 /* Return the address size given in the compilation unit header for CU.  */
15852 
15853 CORE_ADDR
15854 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
15855 {
15856   struct comp_unit_head cu_header_local;
15857   const struct comp_unit_head *cu_headerp;
15858 
15859   cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15860 
15861   return cu_headerp->addr_size;
15862 }
15863 
15864 /* Return the offset size given in the compilation unit header for CU.  */
15865 
15866 int
15867 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
15868 {
15869   struct comp_unit_head cu_header_local;
15870   const struct comp_unit_head *cu_headerp;
15871 
15872   cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15873 
15874   return cu_headerp->offset_size;
15875 }
15876 
15877 /* See its dwarf2loc.h declaration.  */
15878 
15879 int
15880 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
15881 {
15882   struct comp_unit_head cu_header_local;
15883   const struct comp_unit_head *cu_headerp;
15884 
15885   cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15886 
15887   if (cu_headerp->version == 2)
15888     return cu_headerp->addr_size;
15889   else
15890     return cu_headerp->offset_size;
15891 }
15892 
15893 /* Return the text offset of the CU.  The returned offset comes from
15894    this CU's objfile.  If this objfile came from a separate debuginfo
15895    file, then the offset may be different from the corresponding
15896    offset in the parent objfile.  */
15897 
15898 CORE_ADDR
15899 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
15900 {
15901   struct objfile *objfile = per_cu->objfile;
15902 
15903   return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15904 }
15905 
15906 /* Locate the .debug_info compilation unit from CU's objfile which contains
15907    the DIE at OFFSET.  Raises an error on failure.  */
15908 
15909 static struct dwarf2_per_cu_data *
15910 dwarf2_find_containing_comp_unit (unsigned int offset,
15911 				  struct objfile *objfile)
15912 {
15913   struct dwarf2_per_cu_data *this_cu;
15914   int low, high;
15915 
15916   low = 0;
15917   high = dwarf2_per_objfile->n_comp_units - 1;
15918   while (high > low)
15919     {
15920       int mid = low + (high - low) / 2;
15921 
15922       if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
15923 	high = mid;
15924       else
15925 	low = mid + 1;
15926     }
15927   gdb_assert (low == high);
15928   if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
15929     {
15930       if (low == 0)
15931 	error (_("Dwarf Error: could not find partial DIE containing "
15932 	       "offset 0x%lx [in module %s]"),
15933 	       (long) offset, bfd_get_filename (objfile->obfd));
15934 
15935       gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
15936       return dwarf2_per_objfile->all_comp_units[low-1];
15937     }
15938   else
15939     {
15940       this_cu = dwarf2_per_objfile->all_comp_units[low];
15941       if (low == dwarf2_per_objfile->n_comp_units - 1
15942 	  && offset >= this_cu->offset + this_cu->length)
15943 	error (_("invalid dwarf2 offset %u"), offset);
15944       gdb_assert (offset < this_cu->offset + this_cu->length);
15945       return this_cu;
15946     }
15947 }
15948 
15949 /* Locate the compilation unit from OBJFILE which is located at exactly
15950    OFFSET.  Raises an error on failure.  */
15951 
15952 static struct dwarf2_per_cu_data *
15953 dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
15954 {
15955   struct dwarf2_per_cu_data *this_cu;
15956 
15957   this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
15958   if (this_cu->offset != offset)
15959     error (_("no compilation unit with offset %u."), offset);
15960   return this_cu;
15961 }
15962 
15963 /* Initialize dwarf2_cu CU for OBJFILE in a pre-allocated space.  */
15964 
15965 static void
15966 init_one_comp_unit (struct dwarf2_cu *cu, struct objfile *objfile)
15967 {
15968   memset (cu, 0, sizeof (*cu));
15969   cu->objfile = objfile;
15970   obstack_init (&cu->comp_unit_obstack);
15971 }
15972 
15973 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE.  */
15974 
15975 static void
15976 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die)
15977 {
15978   struct attribute *attr;
15979 
15980   /* Set the language we're debugging.  */
15981   attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
15982   if (attr)
15983     set_cu_language (DW_UNSND (attr), cu);
15984   else
15985     {
15986       cu->language = language_minimal;
15987       cu->language_defn = language_def (cu->language);
15988     }
15989 }
15990 
15991 /* Release one cached compilation unit, CU.  We unlink it from the tree
15992    of compilation units, but we don't remove it from the read_in_chain;
15993    the caller is responsible for that.
15994    NOTE: DATA is a void * because this function is also used as a
15995    cleanup routine.  */
15996 
15997 static void
15998 free_one_comp_unit (void *data)
15999 {
16000   struct dwarf2_cu *cu = data;
16001 
16002   if (cu->per_cu != NULL)
16003     cu->per_cu->cu = NULL;
16004   cu->per_cu = NULL;
16005 
16006   obstack_free (&cu->comp_unit_obstack, NULL);
16007 
16008   xfree (cu);
16009 }
16010 
16011 /* This cleanup function is passed the address of a dwarf2_cu on the stack
16012    when we're finished with it.  We can't free the pointer itself, but be
16013    sure to unlink it from the cache.  Also release any associated storage
16014    and perform cache maintenance.
16015 
16016    Only used during partial symbol parsing.  */
16017 
16018 static void
16019 free_stack_comp_unit (void *data)
16020 {
16021   struct dwarf2_cu *cu = data;
16022 
16023   obstack_free (&cu->comp_unit_obstack, NULL);
16024   cu->partial_dies = NULL;
16025 
16026   if (cu->per_cu != NULL)
16027     {
16028       /* This compilation unit is on the stack in our caller, so we
16029 	 should not xfree it.  Just unlink it.  */
16030       cu->per_cu->cu = NULL;
16031       cu->per_cu = NULL;
16032 
16033       /* If we had a per-cu pointer, then we may have other compilation
16034 	 units loaded, so age them now.  */
16035       age_cached_comp_units ();
16036     }
16037 }
16038 
16039 /* Free all cached compilation units.  */
16040 
16041 static void
16042 free_cached_comp_units (void *data)
16043 {
16044   struct dwarf2_per_cu_data *per_cu, **last_chain;
16045 
16046   per_cu = dwarf2_per_objfile->read_in_chain;
16047   last_chain = &dwarf2_per_objfile->read_in_chain;
16048   while (per_cu != NULL)
16049     {
16050       struct dwarf2_per_cu_data *next_cu;
16051 
16052       next_cu = per_cu->cu->read_in_chain;
16053 
16054       free_one_comp_unit (per_cu->cu);
16055       *last_chain = next_cu;
16056 
16057       per_cu = next_cu;
16058     }
16059 }
16060 
16061 /* Increase the age counter on each cached compilation unit, and free
16062    any that are too old.  */
16063 
16064 static void
16065 age_cached_comp_units (void)
16066 {
16067   struct dwarf2_per_cu_data *per_cu, **last_chain;
16068 
16069   dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
16070   per_cu = dwarf2_per_objfile->read_in_chain;
16071   while (per_cu != NULL)
16072     {
16073       per_cu->cu->last_used ++;
16074       if (per_cu->cu->last_used <= dwarf2_max_cache_age)
16075 	dwarf2_mark (per_cu->cu);
16076       per_cu = per_cu->cu->read_in_chain;
16077     }
16078 
16079   per_cu = dwarf2_per_objfile->read_in_chain;
16080   last_chain = &dwarf2_per_objfile->read_in_chain;
16081   while (per_cu != NULL)
16082     {
16083       struct dwarf2_per_cu_data *next_cu;
16084 
16085       next_cu = per_cu->cu->read_in_chain;
16086 
16087       if (!per_cu->cu->mark)
16088 	{
16089 	  free_one_comp_unit (per_cu->cu);
16090 	  *last_chain = next_cu;
16091 	}
16092       else
16093 	last_chain = &per_cu->cu->read_in_chain;
16094 
16095       per_cu = next_cu;
16096     }
16097 }
16098 
16099 /* Remove a single compilation unit from the cache.  */
16100 
16101 static void
16102 free_one_cached_comp_unit (void *target_cu)
16103 {
16104   struct dwarf2_per_cu_data *per_cu, **last_chain;
16105 
16106   per_cu = dwarf2_per_objfile->read_in_chain;
16107   last_chain = &dwarf2_per_objfile->read_in_chain;
16108   while (per_cu != NULL)
16109     {
16110       struct dwarf2_per_cu_data *next_cu;
16111 
16112       next_cu = per_cu->cu->read_in_chain;
16113 
16114       if (per_cu->cu == target_cu)
16115 	{
16116 	  free_one_comp_unit (per_cu->cu);
16117 	  *last_chain = next_cu;
16118 	  break;
16119 	}
16120       else
16121 	last_chain = &per_cu->cu->read_in_chain;
16122 
16123       per_cu = next_cu;
16124     }
16125 }
16126 
16127 /* Release all extra memory associated with OBJFILE.  */
16128 
16129 void
16130 dwarf2_free_objfile (struct objfile *objfile)
16131 {
16132   dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
16133 
16134   if (dwarf2_per_objfile == NULL)
16135     return;
16136 
16137   /* Cached DIE trees use xmalloc and the comp_unit_obstack.  */
16138   free_cached_comp_units (NULL);
16139 
16140   if (dwarf2_per_objfile->quick_file_names_table)
16141     htab_delete (dwarf2_per_objfile->quick_file_names_table);
16142 
16143   /* Everything else should be on the objfile obstack.  */
16144 }
16145 
16146 /* A pair of DIE offset and GDB type pointer.  We store these
16147    in a hash table separate from the DIEs, and preserve them
16148    when the DIEs are flushed out of cache.  */
16149 
16150 struct dwarf2_offset_and_type
16151 {
16152   unsigned int offset;
16153   struct type *type;
16154 };
16155 
16156 /* Hash function for a dwarf2_offset_and_type.  */
16157 
16158 static hashval_t
16159 offset_and_type_hash (const void *item)
16160 {
16161   const struct dwarf2_offset_and_type *ofs = item;
16162 
16163   return ofs->offset;
16164 }
16165 
16166 /* Equality function for a dwarf2_offset_and_type.  */
16167 
16168 static int
16169 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
16170 {
16171   const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
16172   const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
16173 
16174   return ofs_lhs->offset == ofs_rhs->offset;
16175 }
16176 
16177 /* Set the type associated with DIE to TYPE.  Save it in CU's hash
16178    table if necessary.  For convenience, return TYPE.
16179 
16180    The DIEs reading must have careful ordering to:
16181     * Not cause infite loops trying to read in DIEs as a prerequisite for
16182       reading current DIE.
16183     * Not trying to dereference contents of still incompletely read in types
16184       while reading in other DIEs.
16185     * Enable referencing still incompletely read in types just by a pointer to
16186       the type without accessing its fields.
16187 
16188    Therefore caller should follow these rules:
16189      * Try to fetch any prerequisite types we may need to build this DIE type
16190        before building the type and calling set_die_type.
16191      * After building type call set_die_type for current DIE as soon as
16192        possible before fetching more types to complete the current type.
16193      * Make the type as complete as possible before fetching more types.  */
16194 
16195 static struct type *
16196 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16197 {
16198   struct dwarf2_offset_and_type **slot, ofs;
16199   struct objfile *objfile = cu->objfile;
16200   htab_t *type_hash_ptr;
16201 
16202   /* For Ada types, make sure that the gnat-specific data is always
16203      initialized (if not already set).  There are a few types where
16204      we should not be doing so, because the type-specific area is
16205      already used to hold some other piece of info (eg: TYPE_CODE_FLT
16206      where the type-specific area is used to store the floatformat).
16207      But this is not a problem, because the gnat-specific information
16208      is actually not needed for these types.  */
16209   if (need_gnat_info (cu)
16210       && TYPE_CODE (type) != TYPE_CODE_FUNC
16211       && TYPE_CODE (type) != TYPE_CODE_FLT
16212       && !HAVE_GNAT_AUX_INFO (type))
16213     INIT_GNAT_SPECIFIC (type);
16214 
16215   if (cu->per_cu->debug_types_section)
16216     type_hash_ptr = &dwarf2_per_objfile->debug_types_type_hash;
16217   else
16218     type_hash_ptr = &dwarf2_per_objfile->debug_info_type_hash;
16219 
16220   if (*type_hash_ptr == NULL)
16221     {
16222       *type_hash_ptr
16223 	= htab_create_alloc_ex (127,
16224 				offset_and_type_hash,
16225 				offset_and_type_eq,
16226 				NULL,
16227 				&objfile->objfile_obstack,
16228 				hashtab_obstack_allocate,
16229 				dummy_obstack_deallocate);
16230     }
16231 
16232   ofs.offset = die->offset;
16233   ofs.type = type;
16234   slot = (struct dwarf2_offset_and_type **)
16235     htab_find_slot_with_hash (*type_hash_ptr, &ofs, ofs.offset, INSERT);
16236   if (*slot)
16237     complaint (&symfile_complaints,
16238 	       _("A problem internal to GDB: DIE 0x%x has type already set"),
16239 	       die->offset);
16240   *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
16241   **slot = ofs;
16242   return type;
16243 }
16244 
16245 /* Look up the type for the die at DIE_OFFSET in the appropriate type_hash
16246    table, or return NULL if the die does not have a saved type.  */
16247 
16248 static struct type *
16249 get_die_type_at_offset (unsigned int offset,
16250 			struct dwarf2_per_cu_data *per_cu)
16251 {
16252   struct dwarf2_offset_and_type *slot, ofs;
16253   htab_t type_hash;
16254 
16255   if (per_cu->debug_types_section)
16256     type_hash = dwarf2_per_objfile->debug_types_type_hash;
16257   else
16258     type_hash = dwarf2_per_objfile->debug_info_type_hash;
16259   if (type_hash == NULL)
16260     return NULL;
16261 
16262   ofs.offset = offset;
16263   slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
16264   if (slot)
16265     return slot->type;
16266   else
16267     return NULL;
16268 }
16269 
16270 /* Look up the type for DIE in the appropriate type_hash table,
16271    or return NULL if DIE does not have a saved type.  */
16272 
16273 static struct type *
16274 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
16275 {
16276   return get_die_type_at_offset (die->offset, cu->per_cu);
16277 }
16278 
16279 /* Add a dependence relationship from CU to REF_PER_CU.  */
16280 
16281 static void
16282 dwarf2_add_dependence (struct dwarf2_cu *cu,
16283 		       struct dwarf2_per_cu_data *ref_per_cu)
16284 {
16285   void **slot;
16286 
16287   if (cu->dependencies == NULL)
16288     cu->dependencies
16289       = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
16290 			      NULL, &cu->comp_unit_obstack,
16291 			      hashtab_obstack_allocate,
16292 			      dummy_obstack_deallocate);
16293 
16294   slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
16295   if (*slot == NULL)
16296     *slot = ref_per_cu;
16297 }
16298 
16299 /* Subroutine of dwarf2_mark to pass to htab_traverse.
16300    Set the mark field in every compilation unit in the
16301    cache that we must keep because we are keeping CU.  */
16302 
16303 static int
16304 dwarf2_mark_helper (void **slot, void *data)
16305 {
16306   struct dwarf2_per_cu_data *per_cu;
16307 
16308   per_cu = (struct dwarf2_per_cu_data *) *slot;
16309 
16310   /* cu->dependencies references may not yet have been ever read if QUIT aborts
16311      reading of the chain.  As such dependencies remain valid it is not much
16312      useful to track and undo them during QUIT cleanups.  */
16313   if (per_cu->cu == NULL)
16314     return 1;
16315 
16316   if (per_cu->cu->mark)
16317     return 1;
16318   per_cu->cu->mark = 1;
16319 
16320   if (per_cu->cu->dependencies != NULL)
16321     htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
16322 
16323   return 1;
16324 }
16325 
16326 /* Set the mark field in CU and in every other compilation unit in the
16327    cache that we must keep because we are keeping CU.  */
16328 
16329 static void
16330 dwarf2_mark (struct dwarf2_cu *cu)
16331 {
16332   if (cu->mark)
16333     return;
16334   cu->mark = 1;
16335   if (cu->dependencies != NULL)
16336     htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
16337 }
16338 
16339 static void
16340 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
16341 {
16342   while (per_cu)
16343     {
16344       per_cu->cu->mark = 0;
16345       per_cu = per_cu->cu->read_in_chain;
16346     }
16347 }
16348 
16349 /* Trivial hash function for partial_die_info: the hash value of a DIE
16350    is its offset in .debug_info for this objfile.  */
16351 
16352 static hashval_t
16353 partial_die_hash (const void *item)
16354 {
16355   const struct partial_die_info *part_die = item;
16356 
16357   return part_die->offset;
16358 }
16359 
16360 /* Trivial comparison function for partial_die_info structures: two DIEs
16361    are equal if they have the same offset.  */
16362 
16363 static int
16364 partial_die_eq (const void *item_lhs, const void *item_rhs)
16365 {
16366   const struct partial_die_info *part_die_lhs = item_lhs;
16367   const struct partial_die_info *part_die_rhs = item_rhs;
16368 
16369   return part_die_lhs->offset == part_die_rhs->offset;
16370 }
16371 
16372 static struct cmd_list_element *set_dwarf2_cmdlist;
16373 static struct cmd_list_element *show_dwarf2_cmdlist;
16374 
16375 static void
16376 set_dwarf2_cmd (char *args, int from_tty)
16377 {
16378   help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
16379 }
16380 
16381 static void
16382 show_dwarf2_cmd (char *args, int from_tty)
16383 {
16384   cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
16385 }
16386 
16387 /* If section described by INFO was mmapped, munmap it now.  */
16388 
16389 static void
16390 munmap_section_buffer (struct dwarf2_section_info *info)
16391 {
16392   if (info->map_addr != NULL)
16393     {
16394 #ifdef HAVE_MMAP
16395       int res;
16396 
16397       res = munmap (info->map_addr, info->map_len);
16398       gdb_assert (res == 0);
16399 #else
16400       /* Without HAVE_MMAP, we should never be here to begin with.  */
16401       gdb_assert_not_reached ("no mmap support");
16402 #endif
16403     }
16404 }
16405 
16406 /* munmap debug sections for OBJFILE, if necessary.  */
16407 
16408 static void
16409 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
16410 {
16411   struct dwarf2_per_objfile *data = d;
16412   int ix;
16413   struct dwarf2_section_info *section;
16414 
16415   /* This is sorted according to the order they're defined in to make it easier
16416      to keep in sync.  */
16417   munmap_section_buffer (&data->info);
16418   munmap_section_buffer (&data->abbrev);
16419   munmap_section_buffer (&data->line);
16420   munmap_section_buffer (&data->loc);
16421   munmap_section_buffer (&data->macinfo);
16422   munmap_section_buffer (&data->macro);
16423   munmap_section_buffer (&data->str);
16424   munmap_section_buffer (&data->ranges);
16425   munmap_section_buffer (&data->frame);
16426   munmap_section_buffer (&data->eh_frame);
16427   munmap_section_buffer (&data->gdb_index);
16428 
16429   for (ix = 0;
16430        VEC_iterate (dwarf2_section_info_def, data->types, ix, section);
16431        ++ix)
16432     munmap_section_buffer (section);
16433 
16434   VEC_free (dwarf2_section_info_def, data->types);
16435 }
16436 
16437 
16438 /* The "save gdb-index" command.  */
16439 
16440 /* The contents of the hash table we create when building the string
16441    table.  */
16442 struct strtab_entry
16443 {
16444   offset_type offset;
16445   const char *str;
16446 };
16447 
16448 /* Hash function for a strtab_entry.
16449 
16450    Function is used only during write_hash_table so no index format backward
16451    compatibility is needed.  */
16452 
16453 static hashval_t
16454 hash_strtab_entry (const void *e)
16455 {
16456   const struct strtab_entry *entry = e;
16457   return mapped_index_string_hash (INT_MAX, entry->str);
16458 }
16459 
16460 /* Equality function for a strtab_entry.  */
16461 
16462 static int
16463 eq_strtab_entry (const void *a, const void *b)
16464 {
16465   const struct strtab_entry *ea = a;
16466   const struct strtab_entry *eb = b;
16467   return !strcmp (ea->str, eb->str);
16468 }
16469 
16470 /* Create a strtab_entry hash table.  */
16471 
16472 static htab_t
16473 create_strtab (void)
16474 {
16475   return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
16476 			    xfree, xcalloc, xfree);
16477 }
16478 
16479 /* Add a string to the constant pool.  Return the string's offset in
16480    host order.  */
16481 
16482 static offset_type
16483 add_string (htab_t table, struct obstack *cpool, const char *str)
16484 {
16485   void **slot;
16486   struct strtab_entry entry;
16487   struct strtab_entry *result;
16488 
16489   entry.str = str;
16490   slot = htab_find_slot (table, &entry, INSERT);
16491   if (*slot)
16492     result = *slot;
16493   else
16494     {
16495       result = XNEW (struct strtab_entry);
16496       result->offset = obstack_object_size (cpool);
16497       result->str = str;
16498       obstack_grow_str0 (cpool, str);
16499       *slot = result;
16500     }
16501   return result->offset;
16502 }
16503 
16504 /* An entry in the symbol table.  */
16505 struct symtab_index_entry
16506 {
16507   /* The name of the symbol.  */
16508   const char *name;
16509   /* The offset of the name in the constant pool.  */
16510   offset_type index_offset;
16511   /* A sorted vector of the indices of all the CUs that hold an object
16512      of this name.  */
16513   VEC (offset_type) *cu_indices;
16514 };
16515 
16516 /* The symbol table.  This is a power-of-2-sized hash table.  */
16517 struct mapped_symtab
16518 {
16519   offset_type n_elements;
16520   offset_type size;
16521   struct symtab_index_entry **data;
16522 };
16523 
16524 /* Hash function for a symtab_index_entry.  */
16525 
16526 static hashval_t
16527 hash_symtab_entry (const void *e)
16528 {
16529   const struct symtab_index_entry *entry = e;
16530   return iterative_hash (VEC_address (offset_type, entry->cu_indices),
16531 			 sizeof (offset_type) * VEC_length (offset_type,
16532 							    entry->cu_indices),
16533 			 0);
16534 }
16535 
16536 /* Equality function for a symtab_index_entry.  */
16537 
16538 static int
16539 eq_symtab_entry (const void *a, const void *b)
16540 {
16541   const struct symtab_index_entry *ea = a;
16542   const struct symtab_index_entry *eb = b;
16543   int len = VEC_length (offset_type, ea->cu_indices);
16544   if (len != VEC_length (offset_type, eb->cu_indices))
16545     return 0;
16546   return !memcmp (VEC_address (offset_type, ea->cu_indices),
16547 		  VEC_address (offset_type, eb->cu_indices),
16548 		  sizeof (offset_type) * len);
16549 }
16550 
16551 /* Destroy a symtab_index_entry.  */
16552 
16553 static void
16554 delete_symtab_entry (void *p)
16555 {
16556   struct symtab_index_entry *entry = p;
16557   VEC_free (offset_type, entry->cu_indices);
16558   xfree (entry);
16559 }
16560 
16561 /* Create a hash table holding symtab_index_entry objects.  */
16562 
16563 static htab_t
16564 create_symbol_hash_table (void)
16565 {
16566   return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
16567 			    delete_symtab_entry, xcalloc, xfree);
16568 }
16569 
16570 /* Create a new mapped symtab object.  */
16571 
16572 static struct mapped_symtab *
16573 create_mapped_symtab (void)
16574 {
16575   struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
16576   symtab->n_elements = 0;
16577   symtab->size = 1024;
16578   symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
16579   return symtab;
16580 }
16581 
16582 /* Destroy a mapped_symtab.  */
16583 
16584 static void
16585 cleanup_mapped_symtab (void *p)
16586 {
16587   struct mapped_symtab *symtab = p;
16588   /* The contents of the array are freed when the other hash table is
16589      destroyed.  */
16590   xfree (symtab->data);
16591   xfree (symtab);
16592 }
16593 
16594 /* Find a slot in SYMTAB for the symbol NAME.  Returns a pointer to
16595    the slot.
16596 
16597    Function is used only during write_hash_table so no index format backward
16598    compatibility is needed.  */
16599 
16600 static struct symtab_index_entry **
16601 find_slot (struct mapped_symtab *symtab, const char *name)
16602 {
16603   offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
16604 
16605   index = hash & (symtab->size - 1);
16606   step = ((hash * 17) & (symtab->size - 1)) | 1;
16607 
16608   for (;;)
16609     {
16610       if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
16611 	return &symtab->data[index];
16612       index = (index + step) & (symtab->size - 1);
16613     }
16614 }
16615 
16616 /* Expand SYMTAB's hash table.  */
16617 
16618 static void
16619 hash_expand (struct mapped_symtab *symtab)
16620 {
16621   offset_type old_size = symtab->size;
16622   offset_type i;
16623   struct symtab_index_entry **old_entries = symtab->data;
16624 
16625   symtab->size *= 2;
16626   symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
16627 
16628   for (i = 0; i < old_size; ++i)
16629     {
16630       if (old_entries[i])
16631 	{
16632 	  struct symtab_index_entry **slot = find_slot (symtab,
16633 							old_entries[i]->name);
16634 	  *slot = old_entries[i];
16635 	}
16636     }
16637 
16638   xfree (old_entries);
16639 }
16640 
16641 /* Add an entry to SYMTAB.  NAME is the name of the symbol.  CU_INDEX
16642    is the index of the CU in which the symbol appears.  */
16643 
16644 static void
16645 add_index_entry (struct mapped_symtab *symtab, const char *name,
16646 		 offset_type cu_index)
16647 {
16648   struct symtab_index_entry **slot;
16649 
16650   ++symtab->n_elements;
16651   if (4 * symtab->n_elements / 3 >= symtab->size)
16652     hash_expand (symtab);
16653 
16654   slot = find_slot (symtab, name);
16655   if (!*slot)
16656     {
16657       *slot = XNEW (struct symtab_index_entry);
16658       (*slot)->name = name;
16659       (*slot)->cu_indices = NULL;
16660     }
16661   /* Don't push an index twice.  Due to how we add entries we only
16662      have to check the last one.  */
16663   if (VEC_empty (offset_type, (*slot)->cu_indices)
16664       || VEC_last (offset_type, (*slot)->cu_indices) != cu_index)
16665     VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
16666 }
16667 
16668 /* Add a vector of indices to the constant pool.  */
16669 
16670 static offset_type
16671 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
16672 		      struct symtab_index_entry *entry)
16673 {
16674   void **slot;
16675 
16676   slot = htab_find_slot (symbol_hash_table, entry, INSERT);
16677   if (!*slot)
16678     {
16679       offset_type len = VEC_length (offset_type, entry->cu_indices);
16680       offset_type val = MAYBE_SWAP (len);
16681       offset_type iter;
16682       int i;
16683 
16684       *slot = entry;
16685       entry->index_offset = obstack_object_size (cpool);
16686 
16687       obstack_grow (cpool, &val, sizeof (val));
16688       for (i = 0;
16689 	   VEC_iterate (offset_type, entry->cu_indices, i, iter);
16690 	   ++i)
16691 	{
16692 	  val = MAYBE_SWAP (iter);
16693 	  obstack_grow (cpool, &val, sizeof (val));
16694 	}
16695     }
16696   else
16697     {
16698       struct symtab_index_entry *old_entry = *slot;
16699       entry->index_offset = old_entry->index_offset;
16700       entry = old_entry;
16701     }
16702   return entry->index_offset;
16703 }
16704 
16705 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
16706    constant pool entries going into the obstack CPOOL.  */
16707 
16708 static void
16709 write_hash_table (struct mapped_symtab *symtab,
16710 		  struct obstack *output, struct obstack *cpool)
16711 {
16712   offset_type i;
16713   htab_t symbol_hash_table;
16714   htab_t str_table;
16715 
16716   symbol_hash_table = create_symbol_hash_table ();
16717   str_table = create_strtab ();
16718 
16719   /* We add all the index vectors to the constant pool first, to
16720      ensure alignment is ok.  */
16721   for (i = 0; i < symtab->size; ++i)
16722     {
16723       if (symtab->data[i])
16724 	add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
16725     }
16726 
16727   /* Now write out the hash table.  */
16728   for (i = 0; i < symtab->size; ++i)
16729     {
16730       offset_type str_off, vec_off;
16731 
16732       if (symtab->data[i])
16733 	{
16734 	  str_off = add_string (str_table, cpool, symtab->data[i]->name);
16735 	  vec_off = symtab->data[i]->index_offset;
16736 	}
16737       else
16738 	{
16739 	  /* While 0 is a valid constant pool index, it is not valid
16740 	     to have 0 for both offsets.  */
16741 	  str_off = 0;
16742 	  vec_off = 0;
16743 	}
16744 
16745       str_off = MAYBE_SWAP (str_off);
16746       vec_off = MAYBE_SWAP (vec_off);
16747 
16748       obstack_grow (output, &str_off, sizeof (str_off));
16749       obstack_grow (output, &vec_off, sizeof (vec_off));
16750     }
16751 
16752   htab_delete (str_table);
16753   htab_delete (symbol_hash_table);
16754 }
16755 
16756 /* Struct to map psymtab to CU index in the index file.  */
16757 struct psymtab_cu_index_map
16758 {
16759   struct partial_symtab *psymtab;
16760   unsigned int cu_index;
16761 };
16762 
16763 static hashval_t
16764 hash_psymtab_cu_index (const void *item)
16765 {
16766   const struct psymtab_cu_index_map *map = item;
16767 
16768   return htab_hash_pointer (map->psymtab);
16769 }
16770 
16771 static int
16772 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
16773 {
16774   const struct psymtab_cu_index_map *lhs = item_lhs;
16775   const struct psymtab_cu_index_map *rhs = item_rhs;
16776 
16777   return lhs->psymtab == rhs->psymtab;
16778 }
16779 
16780 /* Helper struct for building the address table.  */
16781 struct addrmap_index_data
16782 {
16783   struct objfile *objfile;
16784   struct obstack *addr_obstack;
16785   htab_t cu_index_htab;
16786 
16787   /* Non-zero if the previous_* fields are valid.
16788      We can't write an entry until we see the next entry (since it is only then
16789      that we know the end of the entry).  */
16790   int previous_valid;
16791   /* Index of the CU in the table of all CUs in the index file.  */
16792   unsigned int previous_cu_index;
16793   /* Start address of the CU.  */
16794   CORE_ADDR previous_cu_start;
16795 };
16796 
16797 /* Write an address entry to OBSTACK.  */
16798 
16799 static void
16800 add_address_entry (struct objfile *objfile, struct obstack *obstack,
16801 		   CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
16802 {
16803   offset_type cu_index_to_write;
16804   char addr[8];
16805   CORE_ADDR baseaddr;
16806 
16807   baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16808 
16809   store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
16810   obstack_grow (obstack, addr, 8);
16811   store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
16812   obstack_grow (obstack, addr, 8);
16813   cu_index_to_write = MAYBE_SWAP (cu_index);
16814   obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
16815 }
16816 
16817 /* Worker function for traversing an addrmap to build the address table.  */
16818 
16819 static int
16820 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
16821 {
16822   struct addrmap_index_data *data = datap;
16823   struct partial_symtab *pst = obj;
16824   offset_type cu_index;
16825   void **slot;
16826 
16827   if (data->previous_valid)
16828     add_address_entry (data->objfile, data->addr_obstack,
16829 		       data->previous_cu_start, start_addr,
16830 		       data->previous_cu_index);
16831 
16832   data->previous_cu_start = start_addr;
16833   if (pst != NULL)
16834     {
16835       struct psymtab_cu_index_map find_map, *map;
16836       find_map.psymtab = pst;
16837       map = htab_find (data->cu_index_htab, &find_map);
16838       gdb_assert (map != NULL);
16839       data->previous_cu_index = map->cu_index;
16840       data->previous_valid = 1;
16841     }
16842   else
16843       data->previous_valid = 0;
16844 
16845   return 0;
16846 }
16847 
16848 /* Write OBJFILE's address map to OBSTACK.
16849    CU_INDEX_HTAB is used to map addrmap entries to their CU indices
16850    in the index file.  */
16851 
16852 static void
16853 write_address_map (struct objfile *objfile, struct obstack *obstack,
16854 		   htab_t cu_index_htab)
16855 {
16856   struct addrmap_index_data addrmap_index_data;
16857 
16858   /* When writing the address table, we have to cope with the fact that
16859      the addrmap iterator only provides the start of a region; we have to
16860      wait until the next invocation to get the start of the next region.  */
16861 
16862   addrmap_index_data.objfile = objfile;
16863   addrmap_index_data.addr_obstack = obstack;
16864   addrmap_index_data.cu_index_htab = cu_index_htab;
16865   addrmap_index_data.previous_valid = 0;
16866 
16867   addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
16868 		   &addrmap_index_data);
16869 
16870   /* It's highly unlikely the last entry (end address = 0xff...ff)
16871      is valid, but we should still handle it.
16872      The end address is recorded as the start of the next region, but that
16873      doesn't work here.  To cope we pass 0xff...ff, this is a rare situation
16874      anyway.  */
16875   if (addrmap_index_data.previous_valid)
16876     add_address_entry (objfile, obstack,
16877 		       addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
16878 		       addrmap_index_data.previous_cu_index);
16879 }
16880 
16881 /* Add a list of partial symbols to SYMTAB.  */
16882 
16883 static void
16884 write_psymbols (struct mapped_symtab *symtab,
16885 		htab_t psyms_seen,
16886 		struct partial_symbol **psymp,
16887 		int count,
16888 		offset_type cu_index,
16889 		int is_static)
16890 {
16891   for (; count-- > 0; ++psymp)
16892     {
16893       void **slot, *lookup;
16894 
16895       if (SYMBOL_LANGUAGE (*psymp) == language_ada)
16896 	error (_("Ada is not currently supported by the index"));
16897 
16898       /* We only want to add a given psymbol once.  However, we also
16899 	 want to account for whether it is global or static.  So, we
16900 	 may add it twice, using slightly different values.  */
16901       if (is_static)
16902 	{
16903 	  uintptr_t val = 1 | (uintptr_t) *psymp;
16904 
16905 	  lookup = (void *) val;
16906 	}
16907       else
16908 	lookup = *psymp;
16909 
16910       /* Only add a given psymbol once.  */
16911       slot = htab_find_slot (psyms_seen, lookup, INSERT);
16912       if (!*slot)
16913 	{
16914 	  *slot = lookup;
16915 	  add_index_entry (symtab, SYMBOL_NATURAL_NAME (*psymp), cu_index);
16916 	}
16917     }
16918 }
16919 
16920 /* Write the contents of an ("unfinished") obstack to FILE.  Throw an
16921    exception if there is an error.  */
16922 
16923 static void
16924 write_obstack (FILE *file, struct obstack *obstack)
16925 {
16926   if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
16927 	      file)
16928       != obstack_object_size (obstack))
16929     error (_("couldn't data write to file"));
16930 }
16931 
16932 /* Unlink a file if the argument is not NULL.  */
16933 
16934 static void
16935 unlink_if_set (void *p)
16936 {
16937   char **filename = p;
16938   if (*filename)
16939     unlink (*filename);
16940 }
16941 
16942 /* A helper struct used when iterating over debug_types.  */
16943 struct signatured_type_index_data
16944 {
16945   struct objfile *objfile;
16946   struct mapped_symtab *symtab;
16947   struct obstack *types_list;
16948   htab_t psyms_seen;
16949   int cu_index;
16950 };
16951 
16952 /* A helper function that writes a single signatured_type to an
16953    obstack.  */
16954 
16955 static int
16956 write_one_signatured_type (void **slot, void *d)
16957 {
16958   struct signatured_type_index_data *info = d;
16959   struct signatured_type *entry = (struct signatured_type *) *slot;
16960   struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
16961   struct partial_symtab *psymtab = per_cu->v.psymtab;
16962   gdb_byte val[8];
16963 
16964   write_psymbols (info->symtab,
16965 		  info->psyms_seen,
16966 		  info->objfile->global_psymbols.list
16967 		  + psymtab->globals_offset,
16968 		  psymtab->n_global_syms, info->cu_index,
16969 		  0);
16970   write_psymbols (info->symtab,
16971 		  info->psyms_seen,
16972 		  info->objfile->static_psymbols.list
16973 		  + psymtab->statics_offset,
16974 		  psymtab->n_static_syms, info->cu_index,
16975 		  1);
16976 
16977   store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->per_cu.offset);
16978   obstack_grow (info->types_list, val, 8);
16979   store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->type_offset);
16980   obstack_grow (info->types_list, val, 8);
16981   store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
16982   obstack_grow (info->types_list, val, 8);
16983 
16984   ++info->cu_index;
16985 
16986   return 1;
16987 }
16988 
16989 /* Create an index file for OBJFILE in the directory DIR.  */
16990 
16991 static void
16992 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
16993 {
16994   struct cleanup *cleanup;
16995   char *filename, *cleanup_filename;
16996   struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
16997   struct obstack cu_list, types_cu_list;
16998   int i;
16999   FILE *out_file;
17000   struct mapped_symtab *symtab;
17001   offset_type val, size_of_contents, total_len;
17002   struct stat st;
17003   char buf[8];
17004   htab_t psyms_seen;
17005   htab_t cu_index_htab;
17006   struct psymtab_cu_index_map *psymtab_cu_index_map;
17007 
17008   if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
17009     return;
17010 
17011   if (dwarf2_per_objfile->using_index)
17012     error (_("Cannot use an index to create the index"));
17013 
17014   if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
17015     error (_("Cannot make an index when the file has multiple .debug_types sections"));
17016 
17017   if (stat (objfile->name, &st) < 0)
17018     perror_with_name (objfile->name);
17019 
17020   filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
17021 		     INDEX_SUFFIX, (char *) NULL);
17022   cleanup = make_cleanup (xfree, filename);
17023 
17024   out_file = fopen (filename, "wb");
17025   if (!out_file)
17026     error (_("Can't open `%s' for writing"), filename);
17027 
17028   cleanup_filename = filename;
17029   make_cleanup (unlink_if_set, &cleanup_filename);
17030 
17031   symtab = create_mapped_symtab ();
17032   make_cleanup (cleanup_mapped_symtab, symtab);
17033 
17034   obstack_init (&addr_obstack);
17035   make_cleanup_obstack_free (&addr_obstack);
17036 
17037   obstack_init (&cu_list);
17038   make_cleanup_obstack_free (&cu_list);
17039 
17040   obstack_init (&types_cu_list);
17041   make_cleanup_obstack_free (&types_cu_list);
17042 
17043   psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
17044 				  NULL, xcalloc, xfree);
17045   make_cleanup_htab_delete (psyms_seen);
17046 
17047   /* While we're scanning CU's create a table that maps a psymtab pointer
17048      (which is what addrmap records) to its index (which is what is recorded
17049      in the index file).  This will later be needed to write the address
17050      table.  */
17051   cu_index_htab = htab_create_alloc (100,
17052 				     hash_psymtab_cu_index,
17053 				     eq_psymtab_cu_index,
17054 				     NULL, xcalloc, xfree);
17055   make_cleanup_htab_delete (cu_index_htab);
17056   psymtab_cu_index_map = (struct psymtab_cu_index_map *)
17057     xmalloc (sizeof (struct psymtab_cu_index_map)
17058 	     * dwarf2_per_objfile->n_comp_units);
17059   make_cleanup (xfree, psymtab_cu_index_map);
17060 
17061   /* The CU list is already sorted, so we don't need to do additional
17062      work here.  Also, the debug_types entries do not appear in
17063      all_comp_units, but only in their own hash table.  */
17064   for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
17065     {
17066       struct dwarf2_per_cu_data *per_cu
17067 	= dwarf2_per_objfile->all_comp_units[i];
17068       struct partial_symtab *psymtab = per_cu->v.psymtab;
17069       gdb_byte val[8];
17070       struct psymtab_cu_index_map *map;
17071       void **slot;
17072 
17073       write_psymbols (symtab,
17074 		      psyms_seen,
17075 		      objfile->global_psymbols.list + psymtab->globals_offset,
17076 		      psymtab->n_global_syms, i,
17077 		      0);
17078       write_psymbols (symtab,
17079 		      psyms_seen,
17080 		      objfile->static_psymbols.list + psymtab->statics_offset,
17081 		      psymtab->n_static_syms, i,
17082 		      1);
17083 
17084       map = &psymtab_cu_index_map[i];
17085       map->psymtab = psymtab;
17086       map->cu_index = i;
17087       slot = htab_find_slot (cu_index_htab, map, INSERT);
17088       gdb_assert (slot != NULL);
17089       gdb_assert (*slot == NULL);
17090       *slot = map;
17091 
17092       store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->offset);
17093       obstack_grow (&cu_list, val, 8);
17094       store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
17095       obstack_grow (&cu_list, val, 8);
17096     }
17097 
17098   /* Dump the address map.  */
17099   write_address_map (objfile, &addr_obstack, cu_index_htab);
17100 
17101   /* Write out the .debug_type entries, if any.  */
17102   if (dwarf2_per_objfile->signatured_types)
17103     {
17104       struct signatured_type_index_data sig_data;
17105 
17106       sig_data.objfile = objfile;
17107       sig_data.symtab = symtab;
17108       sig_data.types_list = &types_cu_list;
17109       sig_data.psyms_seen = psyms_seen;
17110       sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
17111       htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
17112 			      write_one_signatured_type, &sig_data);
17113     }
17114 
17115   obstack_init (&constant_pool);
17116   make_cleanup_obstack_free (&constant_pool);
17117   obstack_init (&symtab_obstack);
17118   make_cleanup_obstack_free (&symtab_obstack);
17119   write_hash_table (symtab, &symtab_obstack, &constant_pool);
17120 
17121   obstack_init (&contents);
17122   make_cleanup_obstack_free (&contents);
17123   size_of_contents = 6 * sizeof (offset_type);
17124   total_len = size_of_contents;
17125 
17126   /* The version number.  */
17127   val = MAYBE_SWAP (5);
17128   obstack_grow (&contents, &val, sizeof (val));
17129 
17130   /* The offset of the CU list from the start of the file.  */
17131   val = MAYBE_SWAP (total_len);
17132   obstack_grow (&contents, &val, sizeof (val));
17133   total_len += obstack_object_size (&cu_list);
17134 
17135   /* The offset of the types CU list from the start of the file.  */
17136   val = MAYBE_SWAP (total_len);
17137   obstack_grow (&contents, &val, sizeof (val));
17138   total_len += obstack_object_size (&types_cu_list);
17139 
17140   /* The offset of the address table from the start of the file.  */
17141   val = MAYBE_SWAP (total_len);
17142   obstack_grow (&contents, &val, sizeof (val));
17143   total_len += obstack_object_size (&addr_obstack);
17144 
17145   /* The offset of the symbol table from the start of the file.  */
17146   val = MAYBE_SWAP (total_len);
17147   obstack_grow (&contents, &val, sizeof (val));
17148   total_len += obstack_object_size (&symtab_obstack);
17149 
17150   /* The offset of the constant pool from the start of the file.  */
17151   val = MAYBE_SWAP (total_len);
17152   obstack_grow (&contents, &val, sizeof (val));
17153   total_len += obstack_object_size (&constant_pool);
17154 
17155   gdb_assert (obstack_object_size (&contents) == size_of_contents);
17156 
17157   write_obstack (out_file, &contents);
17158   write_obstack (out_file, &cu_list);
17159   write_obstack (out_file, &types_cu_list);
17160   write_obstack (out_file, &addr_obstack);
17161   write_obstack (out_file, &symtab_obstack);
17162   write_obstack (out_file, &constant_pool);
17163 
17164   fclose (out_file);
17165 
17166   /* We want to keep the file, so we set cleanup_filename to NULL
17167      here.  See unlink_if_set.  */
17168   cleanup_filename = NULL;
17169 
17170   do_cleanups (cleanup);
17171 }
17172 
17173 /* Implementation of the `save gdb-index' command.
17174 
17175    Note that the file format used by this command is documented in the
17176    GDB manual.  Any changes here must be documented there.  */
17177 
17178 static void
17179 save_gdb_index_command (char *arg, int from_tty)
17180 {
17181   struct objfile *objfile;
17182 
17183   if (!arg || !*arg)
17184     error (_("usage: save gdb-index DIRECTORY"));
17185 
17186   ALL_OBJFILES (objfile)
17187   {
17188     struct stat st;
17189 
17190     /* If the objfile does not correspond to an actual file, skip it.  */
17191     if (stat (objfile->name, &st) < 0)
17192       continue;
17193 
17194     dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
17195     if (dwarf2_per_objfile)
17196       {
17197 	volatile struct gdb_exception except;
17198 
17199 	TRY_CATCH (except, RETURN_MASK_ERROR)
17200 	  {
17201 	    write_psymtabs_to_index (objfile, arg);
17202 	  }
17203 	if (except.reason < 0)
17204 	  exception_fprintf (gdb_stderr, except,
17205 			     _("Error while writing index for `%s': "),
17206 			     objfile->name);
17207       }
17208   }
17209 }
17210 
17211 
17212 
17213 int dwarf2_always_disassemble;
17214 
17215 static void
17216 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
17217 				struct cmd_list_element *c, const char *value)
17218 {
17219   fprintf_filtered (file,
17220 		    _("Whether to always disassemble "
17221 		      "DWARF expressions is %s.\n"),
17222 		    value);
17223 }
17224 
17225 static void
17226 show_check_physname (struct ui_file *file, int from_tty,
17227 		     struct cmd_list_element *c, const char *value)
17228 {
17229   fprintf_filtered (file,
17230 		    _("Whether to check \"physname\" is %s.\n"),
17231 		    value);
17232 }
17233 
17234 void _initialize_dwarf2_read (void);
17235 
17236 void
17237 _initialize_dwarf2_read (void)
17238 {
17239   struct cmd_list_element *c;
17240 
17241   dwarf2_objfile_data_key
17242     = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
17243 
17244   add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
17245 Set DWARF 2 specific variables.\n\
17246 Configure DWARF 2 variables such as the cache size"),
17247                   &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
17248                   0/*allow-unknown*/, &maintenance_set_cmdlist);
17249 
17250   add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
17251 Show DWARF 2 specific variables\n\
17252 Show DWARF 2 variables such as the cache size"),
17253                   &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
17254                   0/*allow-unknown*/, &maintenance_show_cmdlist);
17255 
17256   add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
17257 			    &dwarf2_max_cache_age, _("\
17258 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
17259 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
17260 A higher limit means that cached compilation units will be stored\n\
17261 in memory longer, and more total memory will be used.  Zero disables\n\
17262 caching, which can slow down startup."),
17263 			    NULL,
17264 			    show_dwarf2_max_cache_age,
17265 			    &set_dwarf2_cmdlist,
17266 			    &show_dwarf2_cmdlist);
17267 
17268   add_setshow_boolean_cmd ("always-disassemble", class_obscure,
17269 			   &dwarf2_always_disassemble, _("\
17270 Set whether `info address' always disassembles DWARF expressions."), _("\
17271 Show whether `info address' always disassembles DWARF expressions."), _("\
17272 When enabled, DWARF expressions are always printed in an assembly-like\n\
17273 syntax.  When disabled, expressions will be printed in a more\n\
17274 conversational style, when possible."),
17275 			   NULL,
17276 			   show_dwarf2_always_disassemble,
17277 			   &set_dwarf2_cmdlist,
17278 			   &show_dwarf2_cmdlist);
17279 
17280   add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
17281 Set debugging of the dwarf2 DIE reader."), _("\
17282 Show debugging of the dwarf2 DIE reader."), _("\
17283 When enabled (non-zero), DIEs are dumped after they are read in.\n\
17284 The value is the maximum depth to print."),
17285 			    NULL,
17286 			    NULL,
17287 			    &setdebuglist, &showdebuglist);
17288 
17289   add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
17290 Set cross-checking of \"physname\" code against demangler."), _("\
17291 Show cross-checking of \"physname\" code against demangler."), _("\
17292 When enabled, GDB's internal \"physname\" code is checked against\n\
17293 the demangler."),
17294 			   NULL, show_check_physname,
17295 			   &setdebuglist, &showdebuglist);
17296 
17297   c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
17298 	       _("\
17299 Save a gdb-index file.\n\
17300 Usage: save gdb-index DIRECTORY"),
17301 	       &save_cmdlist);
17302   set_cmd_completer (c, filename_completer);
17303 }
17304