xref: /dragonfly/contrib/gdb-7/gdb/elfread.c (revision cfd1aba3)
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2 
3    Copyright (C) 1991-2013 Free Software Foundation, Inc.
4 
5    Written by Fred Fish at Cygnus Support.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 #include "defs.h"
23 #include "bfd.h"
24 #include "gdb_string.h"
25 #include "elf-bfd.h"
26 #include "elf/common.h"
27 #include "elf/internal.h"
28 #include "elf/mips.h"
29 #include "symtab.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "buildsym.h"
33 #include "stabsread.h"
34 #include "gdb-stabs.h"
35 #include "complaints.h"
36 #include "demangle.h"
37 #include "psympriv.h"
38 #include "filenames.h"
39 #include "probe.h"
40 #include "arch-utils.h"
41 #include "gdbtypes.h"
42 #include "value.h"
43 #include "infcall.h"
44 #include "gdbthread.h"
45 #include "regcache.h"
46 #include "bcache.h"
47 #include "gdb_bfd.h"
48 
49 extern void _initialize_elfread (void);
50 
51 /* Forward declarations.  */
52 static const struct sym_fns elf_sym_fns_gdb_index;
53 static const struct sym_fns elf_sym_fns_lazy_psyms;
54 
55 /* The struct elfinfo is available only during ELF symbol table and
56    psymtab reading.  It is destroyed at the completion of psymtab-reading.
57    It's local to elf_symfile_read.  */
58 
59 struct elfinfo
60   {
61     asection *stabsect;		/* Section pointer for .stab section */
62     asection *stabindexsect;	/* Section pointer for .stab.index section */
63     asection *mdebugsect;	/* Section pointer for .mdebug section */
64   };
65 
66 /* Per-objfile data for probe info.  */
67 
68 static const struct objfile_data *probe_key = NULL;
69 
70 static void free_elfinfo (void *);
71 
72 /* Minimal symbols located at the GOT entries for .plt - that is the real
73    pointer where the given entry will jump to.  It gets updated by the real
74    function address during lazy ld.so resolving in the inferior.  These
75    minimal symbols are indexed for <tab>-completion.  */
76 
77 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
78 
79 /* Locate the segments in ABFD.  */
80 
81 static struct symfile_segment_data *
82 elf_symfile_segments (bfd *abfd)
83 {
84   Elf_Internal_Phdr *phdrs, **segments;
85   long phdrs_size;
86   int num_phdrs, num_segments, num_sections, i;
87   asection *sect;
88   struct symfile_segment_data *data;
89 
90   phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
91   if (phdrs_size == -1)
92     return NULL;
93 
94   phdrs = alloca (phdrs_size);
95   num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
96   if (num_phdrs == -1)
97     return NULL;
98 
99   num_segments = 0;
100   segments = alloca (sizeof (Elf_Internal_Phdr *) * num_phdrs);
101   for (i = 0; i < num_phdrs; i++)
102     if (phdrs[i].p_type == PT_LOAD)
103       segments[num_segments++] = &phdrs[i];
104 
105   if (num_segments == 0)
106     return NULL;
107 
108   data = XZALLOC (struct symfile_segment_data);
109   data->num_segments = num_segments;
110   data->segment_bases = XCALLOC (num_segments, CORE_ADDR);
111   data->segment_sizes = XCALLOC (num_segments, CORE_ADDR);
112 
113   for (i = 0; i < num_segments; i++)
114     {
115       data->segment_bases[i] = segments[i]->p_vaddr;
116       data->segment_sizes[i] = segments[i]->p_memsz;
117     }
118 
119   num_sections = bfd_count_sections (abfd);
120   data->segment_info = XCALLOC (num_sections, int);
121 
122   for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
123     {
124       int j;
125       CORE_ADDR vma;
126 
127       if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
128 	continue;
129 
130       vma = bfd_get_section_vma (abfd, sect);
131 
132       for (j = 0; j < num_segments; j++)
133 	if (segments[j]->p_memsz > 0
134 	    && vma >= segments[j]->p_vaddr
135 	    && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
136 	  {
137 	    data->segment_info[i] = j + 1;
138 	    break;
139 	  }
140 
141       /* We should have found a segment for every non-empty section.
142 	 If we haven't, we will not relocate this section by any
143 	 offsets we apply to the segments.  As an exception, do not
144 	 warn about SHT_NOBITS sections; in normal ELF execution
145 	 environments, SHT_NOBITS means zero-initialized and belongs
146 	 in a segment, but in no-OS environments some tools (e.g. ARM
147 	 RealView) use SHT_NOBITS for uninitialized data.  Since it is
148 	 uninitialized, it doesn't need a program header.  Such
149 	 binaries are not relocatable.  */
150       if (bfd_get_section_size (sect) > 0 && j == num_segments
151 	  && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
152 	warning (_("Loadable section \"%s\" outside of ELF segments"),
153 		 bfd_section_name (abfd, sect));
154     }
155 
156   return data;
157 }
158 
159 /* We are called once per section from elf_symfile_read.  We
160    need to examine each section we are passed, check to see
161    if it is something we are interested in processing, and
162    if so, stash away some access information for the section.
163 
164    For now we recognize the dwarf debug information sections and
165    line number sections from matching their section names.  The
166    ELF definition is no real help here since it has no direct
167    knowledge of DWARF (by design, so any debugging format can be
168    used).
169 
170    We also recognize the ".stab" sections used by the Sun compilers
171    released with Solaris 2.
172 
173    FIXME: The section names should not be hardwired strings (what
174    should they be?  I don't think most object file formats have enough
175    section flags to specify what kind of debug section it is.
176    -kingdon).  */
177 
178 static void
179 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
180 {
181   struct elfinfo *ei;
182 
183   ei = (struct elfinfo *) eip;
184   if (strcmp (sectp->name, ".stab") == 0)
185     {
186       ei->stabsect = sectp;
187     }
188   else if (strcmp (sectp->name, ".stab.index") == 0)
189     {
190       ei->stabindexsect = sectp;
191     }
192   else if (strcmp (sectp->name, ".mdebug") == 0)
193     {
194       ei->mdebugsect = sectp;
195     }
196 }
197 
198 static struct minimal_symbol *
199 record_minimal_symbol (const char *name, int name_len, int copy_name,
200 		       CORE_ADDR address,
201 		       enum minimal_symbol_type ms_type,
202 		       asection *bfd_section, struct objfile *objfile)
203 {
204   struct gdbarch *gdbarch = get_objfile_arch (objfile);
205 
206   if (ms_type == mst_text || ms_type == mst_file_text
207       || ms_type == mst_text_gnu_ifunc)
208     address = gdbarch_addr_bits_remove (gdbarch, address);
209 
210   return prim_record_minimal_symbol_full (name, name_len, copy_name, address,
211 					  ms_type, bfd_section->index,
212 					  bfd_section, objfile);
213 }
214 
215 /* Read the symbol table of an ELF file.
216 
217    Given an objfile, a symbol table, and a flag indicating whether the
218    symbol table contains regular, dynamic, or synthetic symbols, add all
219    the global function and data symbols to the minimal symbol table.
220 
221    In stabs-in-ELF, as implemented by Sun, there are some local symbols
222    defined in the ELF symbol table, which can be used to locate
223    the beginnings of sections from each ".o" file that was linked to
224    form the executable objfile.  We gather any such info and record it
225    in data structures hung off the objfile's private data.  */
226 
227 #define ST_REGULAR 0
228 #define ST_DYNAMIC 1
229 #define ST_SYNTHETIC 2
230 
231 static void
232 elf_symtab_read (struct objfile *objfile, int type,
233 		 long number_of_symbols, asymbol **symbol_table,
234 		 int copy_names)
235 {
236   struct gdbarch *gdbarch = get_objfile_arch (objfile);
237   asymbol *sym;
238   long i;
239   CORE_ADDR symaddr;
240   CORE_ADDR offset;
241   enum minimal_symbol_type ms_type;
242   /* If sectinfo is nonNULL, it contains section info that should end up
243      filed in the objfile.  */
244   struct stab_section_info *sectinfo = NULL;
245   /* If filesym is nonzero, it points to a file symbol, but we haven't
246      seen any section info for it yet.  */
247   asymbol *filesym = 0;
248   /* Name of filesym.  This is either a constant string or is saved on
249      the objfile's filename cache.  */
250   const char *filesymname = "";
251   struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
252   int stripped = (bfd_get_symcount (objfile->obfd) == 0);
253 
254   for (i = 0; i < number_of_symbols; i++)
255     {
256       sym = symbol_table[i];
257       if (sym->name == NULL || *sym->name == '\0')
258 	{
259 	  /* Skip names that don't exist (shouldn't happen), or names
260 	     that are null strings (may happen).  */
261 	  continue;
262 	}
263 
264       /* Skip "special" symbols, e.g. ARM mapping symbols.  These are
265 	 symbols which do not correspond to objects in the symbol table,
266 	 but have some other target-specific meaning.  */
267       if (bfd_is_target_special_symbol (objfile->obfd, sym))
268 	{
269 	  if (gdbarch_record_special_symbol_p (gdbarch))
270 	    gdbarch_record_special_symbol (gdbarch, objfile, sym);
271 	  continue;
272 	}
273 
274       offset = ANOFFSET (objfile->section_offsets, sym->section->index);
275       if (type == ST_DYNAMIC
276 	  && sym->section == bfd_und_section_ptr
277 	  && (sym->flags & BSF_FUNCTION))
278 	{
279 	  struct minimal_symbol *msym;
280 	  bfd *abfd = objfile->obfd;
281 	  asection *sect;
282 
283 	  /* Symbol is a reference to a function defined in
284 	     a shared library.
285 	     If its value is non zero then it is usually the address
286 	     of the corresponding entry in the procedure linkage table,
287 	     plus the desired section offset.
288 	     If its value is zero then the dynamic linker has to resolve
289 	     the symbol.  We are unable to find any meaningful address
290 	     for this symbol in the executable file, so we skip it.  */
291 	  symaddr = sym->value;
292 	  if (symaddr == 0)
293 	    continue;
294 
295 	  /* sym->section is the undefined section.  However, we want to
296 	     record the section where the PLT stub resides with the
297 	     minimal symbol.  Search the section table for the one that
298 	     covers the stub's address.  */
299 	  for (sect = abfd->sections; sect != NULL; sect = sect->next)
300 	    {
301 	      if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
302 		continue;
303 
304 	      if (symaddr >= bfd_get_section_vma (abfd, sect)
305 		  && symaddr < bfd_get_section_vma (abfd, sect)
306 			       + bfd_get_section_size (sect))
307 		break;
308 	    }
309 	  if (!sect)
310 	    continue;
311 
312 	  /* On ia64-hpux, we have discovered that the system linker
313 	     adds undefined symbols with nonzero addresses that cannot
314 	     be right (their address points inside the code of another
315 	     function in the .text section).  This creates problems
316 	     when trying to determine which symbol corresponds to
317 	     a given address.
318 
319 	     We try to detect those buggy symbols by checking which
320 	     section we think they correspond to.  Normally, PLT symbols
321 	     are stored inside their own section, and the typical name
322 	     for that section is ".plt".  So, if there is a ".plt"
323 	     section, and yet the section name of our symbol does not
324 	     start with ".plt", we ignore that symbol.  */
325 	  if (strncmp (sect->name, ".plt", 4) != 0
326 	      && bfd_get_section_by_name (abfd, ".plt") != NULL)
327 	    continue;
328 
329 	  symaddr += ANOFFSET (objfile->section_offsets, sect->index);
330 
331 	  msym = record_minimal_symbol
332 	    (sym->name, strlen (sym->name), copy_names,
333 	     symaddr, mst_solib_trampoline, sect, objfile);
334 	  if (msym != NULL)
335 	    msym->filename = filesymname;
336 	  continue;
337 	}
338 
339       /* If it is a nonstripped executable, do not enter dynamic
340 	 symbols, as the dynamic symbol table is usually a subset
341 	 of the main symbol table.  */
342       if (type == ST_DYNAMIC && !stripped)
343 	continue;
344       if (sym->flags & BSF_FILE)
345 	{
346 	  /* STT_FILE debugging symbol that helps stabs-in-elf debugging.
347 	     Chain any old one onto the objfile; remember new sym.  */
348 	  if (sectinfo != NULL)
349 	    {
350 	      sectinfo->next = dbx->stab_section_info;
351 	      dbx->stab_section_info = sectinfo;
352 	      sectinfo = NULL;
353 	    }
354 	  filesym = sym;
355 	  filesymname = bcache (filesym->name, strlen (filesym->name) + 1,
356 				objfile->per_bfd->filename_cache);
357 	}
358       else if (sym->flags & BSF_SECTION_SYM)
359 	continue;
360       else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
361 			     | BSF_GNU_UNIQUE))
362 	{
363 	  struct minimal_symbol *msym;
364 
365 	  /* Select global/local/weak symbols.  Note that bfd puts abs
366 	     symbols in their own section, so all symbols we are
367 	     interested in will have a section.  */
368 	  /* Bfd symbols are section relative.  */
369 	  symaddr = sym->value + sym->section->vma;
370 	  /* Relocate all non-absolute and non-TLS symbols by the
371 	     section offset.  */
372 	  if (sym->section != bfd_abs_section_ptr
373 	      && !(sym->section->flags & SEC_THREAD_LOCAL))
374 	    {
375 	      symaddr += offset;
376 	    }
377 	  /* For non-absolute symbols, use the type of the section
378 	     they are relative to, to intuit text/data.  Bfd provides
379 	     no way of figuring this out for absolute symbols.  */
380 	  if (sym->section == bfd_abs_section_ptr)
381 	    {
382 	      /* This is a hack to get the minimal symbol type
383 		 right for Irix 5, which has absolute addresses
384 		 with special section indices for dynamic symbols.
385 
386 		 NOTE: uweigand-20071112: Synthetic symbols do not
387 		 have an ELF-private part, so do not touch those.  */
388 	      unsigned int shndx = type == ST_SYNTHETIC ? 0 :
389 		((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
390 
391 	      switch (shndx)
392 		{
393 		case SHN_MIPS_TEXT:
394 		  ms_type = mst_text;
395 		  break;
396 		case SHN_MIPS_DATA:
397 		  ms_type = mst_data;
398 		  break;
399 		case SHN_MIPS_ACOMMON:
400 		  ms_type = mst_bss;
401 		  break;
402 		default:
403 		  ms_type = mst_abs;
404 		}
405 
406 	      /* If it is an Irix dynamic symbol, skip section name
407 		 symbols, relocate all others by section offset.  */
408 	      if (ms_type != mst_abs)
409 		{
410 		  if (sym->name[0] == '.')
411 		    continue;
412 		  symaddr += offset;
413 		}
414 	    }
415 	  else if (sym->section->flags & SEC_CODE)
416 	    {
417 	      if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
418 		{
419 		  if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
420 		    ms_type = mst_text_gnu_ifunc;
421 		  else
422 		    ms_type = mst_text;
423 		}
424 	      /* The BSF_SYNTHETIC check is there to omit ppc64 function
425 		 descriptors mistaken for static functions starting with 'L'.
426 		 */
427 	      else if ((sym->name[0] == '.' && sym->name[1] == 'L'
428 			&& (sym->flags & BSF_SYNTHETIC) == 0)
429 		       || ((sym->flags & BSF_LOCAL)
430 			   && sym->name[0] == '$'
431 			   && sym->name[1] == 'L'))
432 		/* Looks like a compiler-generated label.  Skip
433 		   it.  The assembler should be skipping these (to
434 		   keep executables small), but apparently with
435 		   gcc on the (deleted) delta m88k SVR4, it loses.
436 		   So to have us check too should be harmless (but
437 		   I encourage people to fix this in the assembler
438 		   instead of adding checks here).  */
439 		continue;
440 	      else
441 		{
442 		  ms_type = mst_file_text;
443 		}
444 	    }
445 	  else if (sym->section->flags & SEC_ALLOC)
446 	    {
447 	      if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
448 		{
449 		  if (sym->section->flags & SEC_LOAD)
450 		    {
451 		      ms_type = mst_data;
452 		    }
453 		  else
454 		    {
455 		      ms_type = mst_bss;
456 		    }
457 		}
458 	      else if (sym->flags & BSF_LOCAL)
459 		{
460 		  /* Named Local variable in a Data section.
461 		     Check its name for stabs-in-elf.  */
462 		  int special_local_sect;
463 
464 		  if (strcmp ("Bbss.bss", sym->name) == 0)
465 		    special_local_sect = SECT_OFF_BSS (objfile);
466 		  else if (strcmp ("Ddata.data", sym->name) == 0)
467 		    special_local_sect = SECT_OFF_DATA (objfile);
468 		  else if (strcmp ("Drodata.rodata", sym->name) == 0)
469 		    special_local_sect = SECT_OFF_RODATA (objfile);
470 		  else
471 		    special_local_sect = -1;
472 		  if (special_local_sect >= 0)
473 		    {
474 		      /* Found a special local symbol.  Allocate a
475 			 sectinfo, if needed, and fill it in.  */
476 		      if (sectinfo == NULL)
477 			{
478 			  int max_index;
479 			  size_t size;
480 
481 			  max_index = SECT_OFF_BSS (objfile);
482 			  if (objfile->sect_index_data > max_index)
483 			    max_index = objfile->sect_index_data;
484 			  if (objfile->sect_index_rodata > max_index)
485 			    max_index = objfile->sect_index_rodata;
486 
487 			  /* max_index is the largest index we'll
488 			     use into this array, so we must
489 			     allocate max_index+1 elements for it.
490 			     However, 'struct stab_section_info'
491 			     already includes one element, so we
492 			     need to allocate max_index aadditional
493 			     elements.  */
494 			  size = (sizeof (struct stab_section_info)
495 				  + (sizeof (CORE_ADDR) * max_index));
496 			  sectinfo = (struct stab_section_info *)
497 			    xmalloc (size);
498 			  memset (sectinfo, 0, size);
499 			  sectinfo->num_sections = max_index;
500 			  if (filesym == NULL)
501 			    {
502 			      complaint (&symfile_complaints,
503 					 _("elf/stab section information %s "
504 					   "without a preceding file symbol"),
505 					 sym->name);
506 			    }
507 			  else
508 			    {
509 			      sectinfo->filename =
510 				(char *) filesym->name;
511 			    }
512 			}
513 		      if (sectinfo->sections[special_local_sect] != 0)
514 			complaint (&symfile_complaints,
515 				   _("duplicated elf/stab section "
516 				     "information for %s"),
517 				   sectinfo->filename);
518 		      /* BFD symbols are section relative.  */
519 		      symaddr = sym->value + sym->section->vma;
520 		      /* Relocate non-absolute symbols by the
521 			 section offset.  */
522 		      if (sym->section != bfd_abs_section_ptr)
523 			symaddr += offset;
524 		      sectinfo->sections[special_local_sect] = symaddr;
525 		      /* The special local symbols don't go in the
526 			 minimal symbol table, so ignore this one.  */
527 		      continue;
528 		    }
529 		  /* Not a special stabs-in-elf symbol, do regular
530 		     symbol processing.  */
531 		  if (sym->section->flags & SEC_LOAD)
532 		    {
533 		      ms_type = mst_file_data;
534 		    }
535 		  else
536 		    {
537 		      ms_type = mst_file_bss;
538 		    }
539 		}
540 	      else
541 		{
542 		  ms_type = mst_unknown;
543 		}
544 	    }
545 	  else
546 	    {
547 	      /* FIXME:  Solaris2 shared libraries include lots of
548 		 odd "absolute" and "undefined" symbols, that play
549 		 hob with actions like finding what function the PC
550 		 is in.  Ignore them if they aren't text, data, or bss.  */
551 	      /* ms_type = mst_unknown; */
552 	      continue;	/* Skip this symbol.  */
553 	    }
554 	  msym = record_minimal_symbol
555 	    (sym->name, strlen (sym->name), copy_names, symaddr,
556 	     ms_type, sym->section, objfile);
557 
558 	  if (msym)
559 	    {
560 	      /* NOTE: uweigand-20071112: A synthetic symbol does not have an
561 		 ELF-private part.  */
562 	      if (type != ST_SYNTHETIC)
563 		{
564 		  /* Pass symbol size field in via BFD.  FIXME!!!  */
565 		  elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
566 		  SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
567 		}
568 
569 	      msym->filename = filesymname;
570 	      gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
571 	    }
572 
573 	  /* For @plt symbols, also record a trampoline to the
574 	     destination symbol.  The @plt symbol will be used in
575 	     disassembly, and the trampoline will be used when we are
576 	     trying to find the target.  */
577 	  if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
578 	    {
579 	      int len = strlen (sym->name);
580 
581 	      if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
582 		{
583 		  struct minimal_symbol *mtramp;
584 
585 		  mtramp = record_minimal_symbol (sym->name, len - 4, 1,
586 						  symaddr,
587 						  mst_solib_trampoline,
588 						  sym->section, objfile);
589 		  if (mtramp)
590 		    {
591 		      SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
592 		      mtramp->created_by_gdb = 1;
593 		      mtramp->filename = filesymname;
594 		      gdbarch_elf_make_msymbol_special (gdbarch, sym, mtramp);
595 		    }
596 		}
597 	    }
598 	}
599     }
600 }
601 
602 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
603    for later look ups of which function to call when user requests
604    a STT_GNU_IFUNC function.  As the STT_GNU_IFUNC type is found at the target
605    library defining `function' we cannot yet know while reading OBJFILE which
606    of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
607    DYN_SYMBOL_TABLE is no longer easily available for OBJFILE.  */
608 
609 static void
610 elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table)
611 {
612   bfd *obfd = objfile->obfd;
613   const struct elf_backend_data *bed = get_elf_backend_data (obfd);
614   asection *plt, *relplt, *got_plt;
615   int plt_elf_idx;
616   bfd_size_type reloc_count, reloc;
617   char *string_buffer = NULL;
618   size_t string_buffer_size = 0;
619   struct cleanup *back_to;
620   struct gdbarch *gdbarch = objfile->gdbarch;
621   struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
622   size_t ptr_size = TYPE_LENGTH (ptr_type);
623 
624   if (objfile->separate_debug_objfile_backlink)
625     return;
626 
627   plt = bfd_get_section_by_name (obfd, ".plt");
628   if (plt == NULL)
629     return;
630   plt_elf_idx = elf_section_data (plt)->this_idx;
631 
632   got_plt = bfd_get_section_by_name (obfd, ".got.plt");
633   if (got_plt == NULL)
634     return;
635 
636   /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc.  */
637   for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
638     if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
639 	&& (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
640 	    || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
641       break;
642   if (relplt == NULL)
643     return;
644 
645   if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
646     return;
647 
648   back_to = make_cleanup (free_current_contents, &string_buffer);
649 
650   reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
651   for (reloc = 0; reloc < reloc_count; reloc++)
652     {
653       const char *name;
654       struct minimal_symbol *msym;
655       CORE_ADDR address;
656       const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
657       size_t name_len;
658 
659       name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
660       name_len = strlen (name);
661       address = relplt->relocation[reloc].address;
662 
663       /* Does the pointer reside in the .got.plt section?  */
664       if (!(bfd_get_section_vma (obfd, got_plt) <= address
665             && address < bfd_get_section_vma (obfd, got_plt)
666 			 + bfd_get_section_size (got_plt)))
667 	continue;
668 
669       /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
670 	 OBJFILE the symbol is undefined and the objfile having NAME defined
671 	 may not yet have been loaded.  */
672 
673       if (string_buffer_size < name_len + got_suffix_len + 1)
674 	{
675 	  string_buffer_size = 2 * (name_len + got_suffix_len);
676 	  string_buffer = xrealloc (string_buffer, string_buffer_size);
677 	}
678       memcpy (string_buffer, name, name_len);
679       memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX,
680 	      got_suffix_len + 1);
681 
682       msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len,
683                                     1, address, mst_slot_got_plt, got_plt,
684 				    objfile);
685       if (msym)
686 	SET_MSYMBOL_SIZE (msym, ptr_size);
687     }
688 
689   do_cleanups (back_to);
690 }
691 
692 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked.  */
693 
694 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
695 
696 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data.  */
697 
698 struct elf_gnu_ifunc_cache
699 {
700   /* This is always a function entry address, not a function descriptor.  */
701   CORE_ADDR addr;
702 
703   char name[1];
704 };
705 
706 /* htab_hash for elf_objfile_gnu_ifunc_cache_data.  */
707 
708 static hashval_t
709 elf_gnu_ifunc_cache_hash (const void *a_voidp)
710 {
711   const struct elf_gnu_ifunc_cache *a = a_voidp;
712 
713   return htab_hash_string (a->name);
714 }
715 
716 /* htab_eq for elf_objfile_gnu_ifunc_cache_data.  */
717 
718 static int
719 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
720 {
721   const struct elf_gnu_ifunc_cache *a = a_voidp;
722   const struct elf_gnu_ifunc_cache *b = b_voidp;
723 
724   return strcmp (a->name, b->name) == 0;
725 }
726 
727 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
728    function entry address ADDR.  Return 1 if NAME and ADDR are considered as
729    valid and therefore they were successfully recorded, return 0 otherwise.
730 
731    Function does not expect a duplicate entry.  Use
732    elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
733    exists.  */
734 
735 static int
736 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
737 {
738   struct minimal_symbol *msym;
739   asection *sect;
740   struct objfile *objfile;
741   htab_t htab;
742   struct elf_gnu_ifunc_cache entry_local, *entry_p;
743   void **slot;
744 
745   msym = lookup_minimal_symbol_by_pc (addr);
746   if (msym == NULL)
747     return 0;
748   if (SYMBOL_VALUE_ADDRESS (msym) != addr)
749     return 0;
750   /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL.  */
751   sect = SYMBOL_OBJ_SECTION (msym)->the_bfd_section;
752   objfile = SYMBOL_OBJ_SECTION (msym)->objfile;
753 
754   /* If .plt jumps back to .plt the symbol is still deferred for later
755      resolution and it has no use for GDB.  Besides ".text" this symbol can
756      reside also in ".opd" for ppc64 function descriptor.  */
757   if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
758     return 0;
759 
760   htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
761   if (htab == NULL)
762     {
763       htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
764 				   elf_gnu_ifunc_cache_eq,
765 				   NULL, &objfile->objfile_obstack,
766 				   hashtab_obstack_allocate,
767 				   dummy_obstack_deallocate);
768       set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
769     }
770 
771   entry_local.addr = addr;
772   obstack_grow (&objfile->objfile_obstack, &entry_local,
773 		offsetof (struct elf_gnu_ifunc_cache, name));
774   obstack_grow_str0 (&objfile->objfile_obstack, name);
775   entry_p = obstack_finish (&objfile->objfile_obstack);
776 
777   slot = htab_find_slot (htab, entry_p, INSERT);
778   if (*slot != NULL)
779     {
780       struct elf_gnu_ifunc_cache *entry_found_p = *slot;
781       struct gdbarch *gdbarch = objfile->gdbarch;
782 
783       if (entry_found_p->addr != addr)
784 	{
785 	  /* This case indicates buggy inferior program, the resolved address
786 	     should never change.  */
787 
788 	    warning (_("gnu-indirect-function \"%s\" has changed its resolved "
789 		       "function_address from %s to %s"),
790 		     name, paddress (gdbarch, entry_found_p->addr),
791 		     paddress (gdbarch, addr));
792 	}
793 
794       /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack.  */
795     }
796   *slot = entry_p;
797 
798   return 1;
799 }
800 
801 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
802    function NAME.  If the address is found it is stored to *ADDR_P (if ADDR_P
803    is not NULL) and the function returns 1.  It returns 0 otherwise.
804 
805    Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
806    function.  */
807 
808 static int
809 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
810 {
811   struct objfile *objfile;
812 
813   ALL_PSPACE_OBJFILES (current_program_space, objfile)
814     {
815       htab_t htab;
816       struct elf_gnu_ifunc_cache *entry_p;
817       void **slot;
818 
819       htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
820       if (htab == NULL)
821 	continue;
822 
823       entry_p = alloca (sizeof (*entry_p) + strlen (name));
824       strcpy (entry_p->name, name);
825 
826       slot = htab_find_slot (htab, entry_p, NO_INSERT);
827       if (slot == NULL)
828 	continue;
829       entry_p = *slot;
830       gdb_assert (entry_p != NULL);
831 
832       if (addr_p)
833 	*addr_p = entry_p->addr;
834       return 1;
835     }
836 
837   return 0;
838 }
839 
840 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
841    function NAME.  If the address is found it is stored to *ADDR_P (if ADDR_P
842    is not NULL) and the function returns 1.  It returns 0 otherwise.
843 
844    Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
845    elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
846    prevent cache entries duplicates.  */
847 
848 static int
849 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
850 {
851   char *name_got_plt;
852   struct objfile *objfile;
853   const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
854 
855   name_got_plt = alloca (strlen (name) + got_suffix_len + 1);
856   sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
857 
858   ALL_PSPACE_OBJFILES (current_program_space, objfile)
859     {
860       bfd *obfd = objfile->obfd;
861       struct gdbarch *gdbarch = objfile->gdbarch;
862       struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
863       size_t ptr_size = TYPE_LENGTH (ptr_type);
864       CORE_ADDR pointer_address, addr;
865       asection *plt;
866       gdb_byte *buf = alloca (ptr_size);
867       struct minimal_symbol *msym;
868 
869       msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
870       if (msym == NULL)
871 	continue;
872       if (MSYMBOL_TYPE (msym) != mst_slot_got_plt)
873 	continue;
874       pointer_address = SYMBOL_VALUE_ADDRESS (msym);
875 
876       plt = bfd_get_section_by_name (obfd, ".plt");
877       if (plt == NULL)
878 	continue;
879 
880       if (MSYMBOL_SIZE (msym) != ptr_size)
881 	continue;
882       if (target_read_memory (pointer_address, buf, ptr_size) != 0)
883 	continue;
884       addr = extract_typed_address (buf, ptr_type);
885       addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
886 						 &current_target);
887 
888       if (addr_p)
889 	*addr_p = addr;
890       if (elf_gnu_ifunc_record_cache (name, addr))
891 	return 1;
892     }
893 
894   return 0;
895 }
896 
897 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
898    function NAME.  If the address is found it is stored to *ADDR_P (if ADDR_P
899    is not NULL) and the function returns 1.  It returns 0 otherwise.
900 
901    Both the elf_objfile_gnu_ifunc_cache_data hash table and
902    SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.  */
903 
904 static int
905 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
906 {
907   if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
908     return 1;
909 
910   if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
911     return 1;
912 
913   return 0;
914 }
915 
916 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
917    call.  PC is theSTT_GNU_IFUNC resolving function entry.  The value returned
918    is the entry point of the resolved STT_GNU_IFUNC target function to call.
919    */
920 
921 static CORE_ADDR
922 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
923 {
924   const char *name_at_pc;
925   CORE_ADDR start_at_pc, address;
926   struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
927   struct value *function, *address_val;
928 
929   /* Try first any non-intrusive methods without an inferior call.  */
930 
931   if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
932       && start_at_pc == pc)
933     {
934       if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
935 	return address;
936     }
937   else
938     name_at_pc = NULL;
939 
940   function = allocate_value (func_func_type);
941   set_value_address (function, pc);
942 
943   /* STT_GNU_IFUNC resolver functions have no parameters.  FUNCTION is the
944      function entry address.  ADDRESS may be a function descriptor.  */
945 
946   address_val = call_function_by_hand (function, 0, NULL);
947   address = value_as_address (address_val);
948   address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
949 						&current_target);
950 
951   if (name_at_pc)
952     elf_gnu_ifunc_record_cache (name_at_pc, address);
953 
954   return address;
955 }
956 
957 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition.  */
958 
959 static void
960 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
961 {
962   struct breakpoint *b_return;
963   struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
964   struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
965   CORE_ADDR prev_pc = get_frame_pc (prev_frame);
966   int thread_id = pid_to_thread_id (inferior_ptid);
967 
968   gdb_assert (b->type == bp_gnu_ifunc_resolver);
969 
970   for (b_return = b->related_breakpoint; b_return != b;
971        b_return = b_return->related_breakpoint)
972     {
973       gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
974       gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
975       gdb_assert (frame_id_p (b_return->frame_id));
976 
977       if (b_return->thread == thread_id
978 	  && b_return->loc->requested_address == prev_pc
979 	  && frame_id_eq (b_return->frame_id, prev_frame_id))
980 	break;
981     }
982 
983   if (b_return == b)
984     {
985       struct symtab_and_line sal;
986 
987       /* No need to call find_pc_line for symbols resolving as this is only
988 	 a helper breakpointer never shown to the user.  */
989 
990       init_sal (&sal);
991       sal.pspace = current_inferior ()->pspace;
992       sal.pc = prev_pc;
993       sal.section = find_pc_overlay (sal.pc);
994       sal.explicit_pc = 1;
995       b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
996 					   prev_frame_id,
997 					   bp_gnu_ifunc_resolver_return);
998 
999       /* set_momentary_breakpoint invalidates PREV_FRAME.  */
1000       prev_frame = NULL;
1001 
1002       /* Add new b_return to the ring list b->related_breakpoint.  */
1003       gdb_assert (b_return->related_breakpoint == b_return);
1004       b_return->related_breakpoint = b->related_breakpoint;
1005       b->related_breakpoint = b_return;
1006     }
1007 }
1008 
1009 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition.  */
1010 
1011 static void
1012 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
1013 {
1014   struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
1015   struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
1016   struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
1017   struct regcache *regcache = get_thread_regcache (inferior_ptid);
1018   struct value *func_func;
1019   struct value *value;
1020   CORE_ADDR resolved_address, resolved_pc;
1021   struct symtab_and_line sal;
1022   struct symtabs_and_lines sals, sals_end;
1023 
1024   gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1025 
1026   while (b->related_breakpoint != b)
1027     {
1028       struct breakpoint *b_next = b->related_breakpoint;
1029 
1030       switch (b->type)
1031 	{
1032 	case bp_gnu_ifunc_resolver:
1033 	  break;
1034 	case bp_gnu_ifunc_resolver_return:
1035 	  delete_breakpoint (b);
1036 	  break;
1037 	default:
1038 	  internal_error (__FILE__, __LINE__,
1039 			  _("handle_inferior_event: Invalid "
1040 			    "gnu-indirect-function breakpoint type %d"),
1041 			  (int) b->type);
1042 	}
1043       b = b_next;
1044     }
1045   gdb_assert (b->type == bp_gnu_ifunc_resolver);
1046   gdb_assert (b->loc->next == NULL);
1047 
1048   func_func = allocate_value (func_func_type);
1049   set_value_address (func_func, b->loc->related_address);
1050 
1051   value = allocate_value (value_type);
1052   gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1053 			value_contents_raw (value), NULL);
1054   resolved_address = value_as_address (value);
1055   resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1056 						    resolved_address,
1057 						    &current_target);
1058 
1059   gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1060   elf_gnu_ifunc_record_cache (b->addr_string, resolved_pc);
1061 
1062   sal = find_pc_line (resolved_pc, 0);
1063   sals.nelts = 1;
1064   sals.sals = &sal;
1065   sals_end.nelts = 0;
1066 
1067   b->type = bp_breakpoint;
1068   update_breakpoint_locations (b, sals, sals_end);
1069 }
1070 
1071 /* Locate NT_GNU_BUILD_ID from ABFD and return its content.  */
1072 
1073 static const struct elf_build_id *
1074 build_id_bfd_get (bfd *abfd)
1075 {
1076   if (!bfd_check_format (abfd, bfd_object)
1077       || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1078       || elf_tdata (abfd)->build_id == NULL)
1079     return NULL;
1080 
1081   return elf_tdata (abfd)->build_id;
1082 }
1083 
1084 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value.  */
1085 
1086 static int
1087 build_id_verify (const char *filename, const struct elf_build_id *check)
1088 {
1089   bfd *abfd;
1090   const struct elf_build_id *found;
1091   int retval = 0;
1092 
1093   /* We expect to be silent on the non-existing files.  */
1094   abfd = gdb_bfd_open_maybe_remote (filename);
1095   if (abfd == NULL)
1096     return 0;
1097 
1098   found = build_id_bfd_get (abfd);
1099 
1100   if (found == NULL)
1101     warning (_("File \"%s\" has no build-id, file skipped"), filename);
1102   else if (found->size != check->size
1103            || memcmp (found->data, check->data, found->size) != 0)
1104     warning (_("File \"%s\" has a different build-id, file skipped"),
1105 	     filename);
1106   else
1107     retval = 1;
1108 
1109   gdb_bfd_unref (abfd);
1110 
1111   return retval;
1112 }
1113 
1114 static char *
1115 build_id_to_debug_filename (const struct elf_build_id *build_id)
1116 {
1117   char *link, *debugdir, *retval = NULL;
1118   VEC (char_ptr) *debugdir_vec;
1119   struct cleanup *back_to;
1120   int ix;
1121 
1122   /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1123   link = alloca (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1124 		 + 2 * build_id->size + (sizeof ".debug" - 1) + 1);
1125 
1126   /* Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1127      cause "/.build-id/..." lookups.  */
1128 
1129   debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1130   back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1131 
1132   for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1133     {
1134       size_t debugdir_len = strlen (debugdir);
1135       const gdb_byte *data = build_id->data;
1136       size_t size = build_id->size;
1137       char *s;
1138 
1139       memcpy (link, debugdir, debugdir_len);
1140       s = &link[debugdir_len];
1141       s += sprintf (s, "/.build-id/");
1142       if (size > 0)
1143 	{
1144 	  size--;
1145 	  s += sprintf (s, "%02x", (unsigned) *data++);
1146 	}
1147       if (size > 0)
1148 	*s++ = '/';
1149       while (size-- > 0)
1150 	s += sprintf (s, "%02x", (unsigned) *data++);
1151       strcpy (s, ".debug");
1152 
1153       /* lrealpath() is expensive even for the usually non-existent files.  */
1154       if (access (link, F_OK) == 0)
1155 	retval = lrealpath (link);
1156 
1157       if (retval != NULL && !build_id_verify (retval, build_id))
1158 	{
1159 	  xfree (retval);
1160 	  retval = NULL;
1161 	}
1162 
1163       if (retval != NULL)
1164 	break;
1165     }
1166 
1167   do_cleanups (back_to);
1168   return retval;
1169 }
1170 
1171 static char *
1172 find_separate_debug_file_by_buildid (struct objfile *objfile)
1173 {
1174   const struct elf_build_id *build_id;
1175 
1176   build_id = build_id_bfd_get (objfile->obfd);
1177   if (build_id != NULL)
1178     {
1179       char *build_id_name;
1180 
1181       build_id_name = build_id_to_debug_filename (build_id);
1182       /* Prevent looping on a stripped .debug file.  */
1183       if (build_id_name != NULL
1184 	  && filename_cmp (build_id_name, objfile->name) == 0)
1185         {
1186 	  warning (_("\"%s\": separate debug info file has no debug info"),
1187 		   build_id_name);
1188 	  xfree (build_id_name);
1189 	}
1190       else if (build_id_name != NULL)
1191         return build_id_name;
1192     }
1193   return NULL;
1194 }
1195 
1196 /* Scan and build partial symbols for a symbol file.
1197    We have been initialized by a call to elf_symfile_init, which
1198    currently does nothing.
1199 
1200    SECTION_OFFSETS is a set of offsets to apply to relocate the symbols
1201    in each section.  We simplify it down to a single offset for all
1202    symbols.  FIXME.
1203 
1204    This function only does the minimum work necessary for letting the
1205    user "name" things symbolically; it does not read the entire symtab.
1206    Instead, it reads the external and static symbols and puts them in partial
1207    symbol tables.  When more extensive information is requested of a
1208    file, the corresponding partial symbol table is mutated into a full
1209    fledged symbol table by going back and reading the symbols
1210    for real.
1211 
1212    We look for sections with specific names, to tell us what debug
1213    format to look for:  FIXME!!!
1214 
1215    elfstab_build_psymtabs() handles STABS symbols;
1216    mdebug_build_psymtabs() handles ECOFF debugging information.
1217 
1218    Note that ELF files have a "minimal" symbol table, which looks a lot
1219    like a COFF symbol table, but has only the minimal information necessary
1220    for linking.  We process this also, and use the information to
1221    build gdb's minimal symbol table.  This gives us some minimal debugging
1222    capability even for files compiled without -g.  */
1223 
1224 static void
1225 elf_symfile_read (struct objfile *objfile, int symfile_flags)
1226 {
1227   bfd *synth_abfd, *abfd = objfile->obfd;
1228   struct elfinfo ei;
1229   struct cleanup *back_to;
1230   long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1231   asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1232   asymbol *synthsyms;
1233   struct dbx_symfile_info *dbx;
1234 
1235   if (symtab_create_debug)
1236     {
1237       fprintf_unfiltered (gdb_stdlog,
1238 			  "Reading minimal symbols of objfile %s ...\n",
1239 			  objfile->name);
1240     }
1241 
1242   init_minimal_symbol_collection ();
1243   back_to = make_cleanup_discard_minimal_symbols ();
1244 
1245   memset ((char *) &ei, 0, sizeof (ei));
1246 
1247   /* Allocate struct to keep track of the symfile.  */
1248   dbx = XCNEW (struct dbx_symfile_info);
1249   set_objfile_data (objfile, dbx_objfile_data_key, dbx);
1250   make_cleanup (free_elfinfo, (void *) objfile);
1251 
1252   /* Process the normal ELF symbol table first.  This may write some
1253      chain of info into the dbx_symfile_info of the objfile, which can
1254      later be used by elfstab_offset_sections.  */
1255 
1256   storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1257   if (storage_needed < 0)
1258     error (_("Can't read symbols from %s: %s"),
1259 	   bfd_get_filename (objfile->obfd),
1260 	   bfd_errmsg (bfd_get_error ()));
1261 
1262   if (storage_needed > 0)
1263     {
1264       symbol_table = (asymbol **) xmalloc (storage_needed);
1265       make_cleanup (xfree, symbol_table);
1266       symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1267 
1268       if (symcount < 0)
1269 	error (_("Can't read symbols from %s: %s"),
1270 	       bfd_get_filename (objfile->obfd),
1271 	       bfd_errmsg (bfd_get_error ()));
1272 
1273       elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0);
1274     }
1275 
1276   /* Add the dynamic symbols.  */
1277 
1278   storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1279 
1280   if (storage_needed > 0)
1281     {
1282       /* Memory gets permanently referenced from ABFD after
1283 	 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1284 	 It happens only in the case when elf_slurp_reloc_table sees
1285 	 asection->relocation NULL.  Determining which section is asection is
1286 	 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1287 	 implementation detail, though.  */
1288 
1289       dyn_symbol_table = bfd_alloc (abfd, storage_needed);
1290       dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1291 						     dyn_symbol_table);
1292 
1293       if (dynsymcount < 0)
1294 	error (_("Can't read symbols from %s: %s"),
1295 	       bfd_get_filename (objfile->obfd),
1296 	       bfd_errmsg (bfd_get_error ()));
1297 
1298       elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0);
1299 
1300       elf_rel_plt_read (objfile, dyn_symbol_table);
1301     }
1302 
1303   /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1304      elfutils (eu-strip) moves even the .symtab section into the .debug file.
1305 
1306      bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1307      'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1308      address.  But with eu-strip files bfd_get_synthetic_symtab would fail to
1309      read the code address from .opd while it reads the .symtab section from
1310      a separate debug info file as the .opd section is SHT_NOBITS there.
1311 
1312      With SYNTH_ABFD the .opd section will be read from the original
1313      backlinked binary where it is valid.  */
1314 
1315   if (objfile->separate_debug_objfile_backlink)
1316     synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1317   else
1318     synth_abfd = abfd;
1319 
1320   /* Add synthetic symbols - for instance, names for any PLT entries.  */
1321 
1322   synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1323 					 dynsymcount, dyn_symbol_table,
1324 					 &synthsyms);
1325   if (synthcount > 0)
1326     {
1327       asymbol **synth_symbol_table;
1328       long i;
1329 
1330       make_cleanup (xfree, synthsyms);
1331       synth_symbol_table = xmalloc (sizeof (asymbol *) * synthcount);
1332       for (i = 0; i < synthcount; i++)
1333 	synth_symbol_table[i] = synthsyms + i;
1334       make_cleanup (xfree, synth_symbol_table);
1335       elf_symtab_read (objfile, ST_SYNTHETIC, synthcount,
1336 		       synth_symbol_table, 1);
1337     }
1338 
1339   /* Install any minimal symbols that have been collected as the current
1340      minimal symbols for this objfile.  The debug readers below this point
1341      should not generate new minimal symbols; if they do it's their
1342      responsibility to install them.  "mdebug" appears to be the only one
1343      which will do this.  */
1344 
1345   install_minimal_symbols (objfile);
1346   do_cleanups (back_to);
1347 
1348   /* Now process debugging information, which is contained in
1349      special ELF sections.  */
1350 
1351   /* We first have to find them...  */
1352   bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1353 
1354   /* ELF debugging information is inserted into the psymtab in the
1355      order of least informative first - most informative last.  Since
1356      the psymtab table is searched `most recent insertion first' this
1357      increases the probability that more detailed debug information
1358      for a section is found.
1359 
1360      For instance, an object file might contain both .mdebug (XCOFF)
1361      and .debug_info (DWARF2) sections then .mdebug is inserted first
1362      (searched last) and DWARF2 is inserted last (searched first).  If
1363      we don't do this then the XCOFF info is found first - for code in
1364      an included file XCOFF info is useless.  */
1365 
1366   if (ei.mdebugsect)
1367     {
1368       const struct ecoff_debug_swap *swap;
1369 
1370       /* .mdebug section, presumably holding ECOFF debugging
1371          information.  */
1372       swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1373       if (swap)
1374 	elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1375     }
1376   if (ei.stabsect)
1377     {
1378       asection *str_sect;
1379 
1380       /* Stab sections have an associated string table that looks like
1381          a separate section.  */
1382       str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1383 
1384       /* FIXME should probably warn about a stab section without a stabstr.  */
1385       if (str_sect)
1386 	elfstab_build_psymtabs (objfile,
1387 				ei.stabsect,
1388 				str_sect->filepos,
1389 				bfd_section_size (abfd, str_sect));
1390     }
1391 
1392   if (symtab_create_debug)
1393     fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1394 
1395   if (dwarf2_has_info (objfile, NULL))
1396     {
1397       /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1398 	 information present in OBJFILE.  If there is such debug info present
1399 	 never use .gdb_index.  */
1400 
1401       if (!objfile_has_partial_symbols (objfile)
1402 	  && dwarf2_initialize_objfile (objfile))
1403 	objfile->sf = &elf_sym_fns_gdb_index;
1404       else
1405 	{
1406 	  /* It is ok to do this even if the stabs reader made some
1407 	     partial symbols, because OBJF_PSYMTABS_READ has not been
1408 	     set, and so our lazy reader function will still be called
1409 	     when needed.  */
1410 	  objfile->sf = &elf_sym_fns_lazy_psyms;
1411 	}
1412     }
1413   /* If the file has its own symbol tables it has no separate debug
1414      info.  `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1415      SYMTABS/PSYMTABS.  `.gnu_debuglink' may no longer be present with
1416      `.note.gnu.build-id'.
1417 
1418      .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1419      .symtab, not .debug_* section.  But if we already added .gnu_debugdata as
1420      an objfile via find_separate_debug_file_in_section there was no separate
1421      debug info available.  Therefore do not attempt to search for another one,
1422      objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1423      be NULL and we would possibly violate it.  */
1424 
1425   else if (!objfile_has_partial_symbols (objfile)
1426 	   && objfile->separate_debug_objfile == NULL
1427 	   && objfile->separate_debug_objfile_backlink == NULL)
1428     {
1429       char *debugfile;
1430 
1431       debugfile = find_separate_debug_file_by_buildid (objfile);
1432 
1433       if (debugfile == NULL)
1434 	debugfile = find_separate_debug_file_by_debuglink (objfile);
1435 
1436       if (debugfile)
1437 	{
1438 	  struct cleanup *cleanup = make_cleanup (xfree, debugfile);
1439 	  bfd *abfd = symfile_bfd_open (debugfile);
1440 
1441 	  make_cleanup_bfd_unref (abfd);
1442 	  symbol_file_add_separate (abfd, symfile_flags, objfile);
1443 	  do_cleanups (cleanup);
1444 	}
1445     }
1446 }
1447 
1448 /* Callback to lazily read psymtabs.  */
1449 
1450 static void
1451 read_psyms (struct objfile *objfile)
1452 {
1453   if (dwarf2_has_info (objfile, NULL))
1454     dwarf2_build_psymtabs (objfile);
1455 }
1456 
1457 /* This cleans up the objfile's dbx symfile info, and the chain of
1458    stab_section_info's, that might be dangling from it.  */
1459 
1460 static void
1461 free_elfinfo (void *objp)
1462 {
1463   struct objfile *objfile = (struct objfile *) objp;
1464   struct dbx_symfile_info *dbxinfo = DBX_SYMFILE_INFO (objfile);
1465   struct stab_section_info *ssi, *nssi;
1466 
1467   ssi = dbxinfo->stab_section_info;
1468   while (ssi)
1469     {
1470       nssi = ssi->next;
1471       xfree (ssi);
1472       ssi = nssi;
1473     }
1474 
1475   dbxinfo->stab_section_info = 0;	/* Just say No mo info about this.  */
1476 }
1477 
1478 
1479 /* Initialize anything that needs initializing when a completely new symbol
1480    file is specified (not just adding some symbols from another file, e.g. a
1481    shared library).
1482 
1483    We reinitialize buildsym, since we may be reading stabs from an ELF
1484    file.  */
1485 
1486 static void
1487 elf_new_init (struct objfile *ignore)
1488 {
1489   stabsread_new_init ();
1490   buildsym_new_init ();
1491 }
1492 
1493 /* Perform any local cleanups required when we are done with a particular
1494    objfile.  I.E, we are in the process of discarding all symbol information
1495    for an objfile, freeing up all memory held for it, and unlinking the
1496    objfile struct from the global list of known objfiles.  */
1497 
1498 static void
1499 elf_symfile_finish (struct objfile *objfile)
1500 {
1501   dwarf2_free_objfile (objfile);
1502 }
1503 
1504 /* ELF specific initialization routine for reading symbols.
1505 
1506    It is passed a pointer to a struct sym_fns which contains, among other
1507    things, the BFD for the file whose symbols are being read, and a slot for
1508    a pointer to "private data" which we can fill with goodies.
1509 
1510    For now at least, we have nothing in particular to do, so this function is
1511    just a stub.  */
1512 
1513 static void
1514 elf_symfile_init (struct objfile *objfile)
1515 {
1516   /* ELF objects may be reordered, so set OBJF_REORDERED.  If we
1517      find this causes a significant slowdown in gdb then we could
1518      set it in the debug symbol readers only when necessary.  */
1519   objfile->flags |= OBJF_REORDERED;
1520 }
1521 
1522 /* When handling an ELF file that contains Sun STABS debug info,
1523    some of the debug info is relative to the particular chunk of the
1524    section that was generated in its individual .o file.  E.g.
1525    offsets to static variables are relative to the start of the data
1526    segment *for that module before linking*.  This information is
1527    painfully squirreled away in the ELF symbol table as local symbols
1528    with wierd names.  Go get 'em when needed.  */
1529 
1530 void
1531 elfstab_offset_sections (struct objfile *objfile, struct partial_symtab *pst)
1532 {
1533   const char *filename = pst->filename;
1534   struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
1535   struct stab_section_info *maybe = dbx->stab_section_info;
1536   struct stab_section_info *questionable = 0;
1537   int i;
1538 
1539   /* The ELF symbol info doesn't include path names, so strip the path
1540      (if any) from the psymtab filename.  */
1541   filename = lbasename (filename);
1542 
1543   /* FIXME:  This linear search could speed up significantly
1544      if it was chained in the right order to match how we search it,
1545      and if we unchained when we found a match.  */
1546   for (; maybe; maybe = maybe->next)
1547     {
1548       if (filename[0] == maybe->filename[0]
1549 	  && filename_cmp (filename, maybe->filename) == 0)
1550 	{
1551 	  /* We found a match.  But there might be several source files
1552 	     (from different directories) with the same name.  */
1553 	  if (0 == maybe->found)
1554 	    break;
1555 	  questionable = maybe;	/* Might use it later.  */
1556 	}
1557     }
1558 
1559   if (maybe == 0 && questionable != 0)
1560     {
1561       complaint (&symfile_complaints,
1562 		 _("elf/stab section information questionable for %s"),
1563 		 filename);
1564       maybe = questionable;
1565     }
1566 
1567   if (maybe)
1568     {
1569       /* Found it!  Allocate a new psymtab struct, and fill it in.  */
1570       maybe->found++;
1571       pst->section_offsets = (struct section_offsets *)
1572 	obstack_alloc (&objfile->objfile_obstack,
1573 		       SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
1574       for (i = 0; i < maybe->num_sections; i++)
1575 	(pst->section_offsets)->offsets[i] = maybe->sections[i];
1576       return;
1577     }
1578 
1579   /* We were unable to find any offsets for this file.  Complain.  */
1580   if (dbx->stab_section_info)	/* If there *is* any info, */
1581     complaint (&symfile_complaints,
1582 	       _("elf/stab section information missing for %s"), filename);
1583 }
1584 
1585 /* Implementation of `sym_get_probes', as documented in symfile.h.  */
1586 
1587 static VEC (probe_p) *
1588 elf_get_probes (struct objfile *objfile)
1589 {
1590   VEC (probe_p) *probes_per_objfile;
1591 
1592   /* Have we parsed this objfile's probes already?  */
1593   probes_per_objfile = objfile_data (objfile, probe_key);
1594 
1595   if (!probes_per_objfile)
1596     {
1597       int ix;
1598       const struct probe_ops *probe_ops;
1599 
1600       /* Here we try to gather information about all types of probes from the
1601 	 objfile.  */
1602       for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops);
1603 	   ix++)
1604 	probe_ops->get_probes (&probes_per_objfile, objfile);
1605 
1606       if (probes_per_objfile == NULL)
1607 	{
1608 	  VEC_reserve (probe_p, probes_per_objfile, 1);
1609 	  gdb_assert (probes_per_objfile != NULL);
1610 	}
1611 
1612       set_objfile_data (objfile, probe_key, probes_per_objfile);
1613     }
1614 
1615   return probes_per_objfile;
1616 }
1617 
1618 /* Implementation of `sym_get_probe_argument_count', as documented in
1619    symfile.h.  */
1620 
1621 static unsigned
1622 elf_get_probe_argument_count (struct probe *probe)
1623 {
1624   return probe->pops->get_probe_argument_count (probe);
1625 }
1626 
1627 /* Implementation of `sym_evaluate_probe_argument', as documented in
1628    symfile.h.  */
1629 
1630 static struct value *
1631 elf_evaluate_probe_argument (struct probe *probe, unsigned n)
1632 {
1633   return probe->pops->evaluate_probe_argument (probe, n);
1634 }
1635 
1636 /* Implementation of `sym_compile_to_ax', as documented in symfile.h.  */
1637 
1638 static void
1639 elf_compile_to_ax (struct probe *probe,
1640 		   struct agent_expr *expr,
1641 		   struct axs_value *value,
1642 		   unsigned n)
1643 {
1644   probe->pops->compile_to_ax (probe, expr, value, n);
1645 }
1646 
1647 /* Implementation of `sym_relocate_probe', as documented in symfile.h.  */
1648 
1649 static void
1650 elf_symfile_relocate_probe (struct objfile *objfile,
1651 			    struct section_offsets *new_offsets,
1652 			    struct section_offsets *delta)
1653 {
1654   int ix;
1655   VEC (probe_p) *probes = objfile_data (objfile, probe_key);
1656   struct probe *probe;
1657 
1658   for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1659     probe->pops->relocate (probe, ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
1660 }
1661 
1662 /* Helper function used to free the space allocated for storing SystemTap
1663    probe information.  */
1664 
1665 static void
1666 probe_key_free (struct objfile *objfile, void *d)
1667 {
1668   int ix;
1669   VEC (probe_p) *probes = d;
1670   struct probe *probe;
1671 
1672   for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1673     probe->pops->destroy (probe);
1674 
1675   VEC_free (probe_p, probes);
1676 }
1677 
1678 
1679 
1680 /* Implementation `sym_probe_fns', as documented in symfile.h.  */
1681 
1682 static const struct sym_probe_fns elf_probe_fns =
1683 {
1684   elf_get_probes,		/* sym_get_probes */
1685   elf_get_probe_argument_count,	/* sym_get_probe_argument_count */
1686   elf_evaluate_probe_argument,	/* sym_evaluate_probe_argument */
1687   elf_compile_to_ax,		/* sym_compile_to_ax */
1688   elf_symfile_relocate_probe,	/* sym_relocate_probe */
1689 };
1690 
1691 /* Register that we are able to handle ELF object file formats.  */
1692 
1693 static const struct sym_fns elf_sym_fns =
1694 {
1695   bfd_target_elf_flavour,
1696   elf_new_init,			/* init anything gbl to entire symtab */
1697   elf_symfile_init,		/* read initial info, setup for sym_read() */
1698   elf_symfile_read,		/* read a symbol file into symtab */
1699   NULL,				/* sym_read_psymbols */
1700   elf_symfile_finish,		/* finished with file, cleanup */
1701   default_symfile_offsets,	/* Translate ext. to int. relocation */
1702   elf_symfile_segments,		/* Get segment information from a file.  */
1703   NULL,
1704   default_symfile_relocate,	/* Relocate a debug section.  */
1705   &elf_probe_fns,		/* sym_probe_fns */
1706   &psym_functions
1707 };
1708 
1709 /* The same as elf_sym_fns, but not registered and lazily reads
1710    psymbols.  */
1711 
1712 static const struct sym_fns elf_sym_fns_lazy_psyms =
1713 {
1714   bfd_target_elf_flavour,
1715   elf_new_init,			/* init anything gbl to entire symtab */
1716   elf_symfile_init,		/* read initial info, setup for sym_read() */
1717   elf_symfile_read,		/* read a symbol file into symtab */
1718   read_psyms,			/* sym_read_psymbols */
1719   elf_symfile_finish,		/* finished with file, cleanup */
1720   default_symfile_offsets,	/* Translate ext. to int. relocation */
1721   elf_symfile_segments,		/* Get segment information from a file.  */
1722   NULL,
1723   default_symfile_relocate,	/* Relocate a debug section.  */
1724   &elf_probe_fns,		/* sym_probe_fns */
1725   &psym_functions
1726 };
1727 
1728 /* The same as elf_sym_fns, but not registered and uses the
1729    DWARF-specific GNU index rather than psymtab.  */
1730 static const struct sym_fns elf_sym_fns_gdb_index =
1731 {
1732   bfd_target_elf_flavour,
1733   elf_new_init,			/* init anything gbl to entire symab */
1734   elf_symfile_init,		/* read initial info, setup for sym_red() */
1735   elf_symfile_read,		/* read a symbol file into symtab */
1736   NULL,				/* sym_read_psymbols */
1737   elf_symfile_finish,		/* finished with file, cleanup */
1738   default_symfile_offsets,	/* Translate ext. to int. relocatin */
1739   elf_symfile_segments,		/* Get segment information from a file.  */
1740   NULL,
1741   default_symfile_relocate,	/* Relocate a debug section.  */
1742   &elf_probe_fns,		/* sym_probe_fns */
1743   &dwarf2_gdb_index_functions
1744 };
1745 
1746 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p.  */
1747 
1748 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1749 {
1750   elf_gnu_ifunc_resolve_addr,
1751   elf_gnu_ifunc_resolve_name,
1752   elf_gnu_ifunc_resolver_stop,
1753   elf_gnu_ifunc_resolver_return_stop
1754 };
1755 
1756 void
1757 _initialize_elfread (void)
1758 {
1759   probe_key = register_objfile_data_with_cleanup (NULL, probe_key_free);
1760   add_symtab_fns (&elf_sym_fns);
1761 
1762   elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1763   gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1764 }
1765