xref: /dragonfly/contrib/gdb-7/gdb/elfread.c (revision fb151170)
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2 
3    Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4    2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5    Free Software Foundation, Inc.
6 
7    Written by Fred Fish at Cygnus Support.
8 
9    This file is part of GDB.
10 
11    This program is free software; you can redistribute it and/or modify
12    it under the terms of the GNU General Public License as published by
13    the Free Software Foundation; either version 3 of the License, or
14    (at your option) any later version.
15 
16    This program is distributed in the hope that it will be useful,
17    but WITHOUT ANY WARRANTY; without even the implied warranty of
18    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19    GNU General Public License for more details.
20 
21    You should have received a copy of the GNU General Public License
22    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
23 
24 #include "defs.h"
25 #include "bfd.h"
26 #include "gdb_string.h"
27 #include "elf-bfd.h"
28 #include "elf/common.h"
29 #include "elf/internal.h"
30 #include "elf/mips.h"
31 #include "symtab.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "buildsym.h"
35 #include "stabsread.h"
36 #include "gdb-stabs.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "psympriv.h"
40 #include "filenames.h"
41 #include "gdbtypes.h"
42 #include "value.h"
43 #include "infcall.h"
44 #include "gdbthread.h"
45 #include "regcache.h"
46 
47 extern void _initialize_elfread (void);
48 
49 /* Forward declarations.  */
50 static const struct sym_fns elf_sym_fns_gdb_index;
51 static const struct sym_fns elf_sym_fns_lazy_psyms;
52 
53 /* The struct elfinfo is available only during ELF symbol table and
54    psymtab reading.  It is destroyed at the completion of psymtab-reading.
55    It's local to elf_symfile_read.  */
56 
57 struct elfinfo
58   {
59     asection *stabsect;		/* Section pointer for .stab section */
60     asection *stabindexsect;	/* Section pointer for .stab.index section */
61     asection *mdebugsect;	/* Section pointer for .mdebug section */
62   };
63 
64 static void free_elfinfo (void *);
65 
66 /* Minimal symbols located at the GOT entries for .plt - that is the real
67    pointer where the given entry will jump to.  It gets updated by the real
68    function address during lazy ld.so resolving in the inferior.  These
69    minimal symbols are indexed for <tab>-completion.  */
70 
71 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
72 
73 /* Locate the segments in ABFD.  */
74 
75 static struct symfile_segment_data *
76 elf_symfile_segments (bfd *abfd)
77 {
78   Elf_Internal_Phdr *phdrs, **segments;
79   long phdrs_size;
80   int num_phdrs, num_segments, num_sections, i;
81   asection *sect;
82   struct symfile_segment_data *data;
83 
84   phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
85   if (phdrs_size == -1)
86     return NULL;
87 
88   phdrs = alloca (phdrs_size);
89   num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
90   if (num_phdrs == -1)
91     return NULL;
92 
93   num_segments = 0;
94   segments = alloca (sizeof (Elf_Internal_Phdr *) * num_phdrs);
95   for (i = 0; i < num_phdrs; i++)
96     if (phdrs[i].p_type == PT_LOAD)
97       segments[num_segments++] = &phdrs[i];
98 
99   if (num_segments == 0)
100     return NULL;
101 
102   data = XZALLOC (struct symfile_segment_data);
103   data->num_segments = num_segments;
104   data->segment_bases = XCALLOC (num_segments, CORE_ADDR);
105   data->segment_sizes = XCALLOC (num_segments, CORE_ADDR);
106 
107   for (i = 0; i < num_segments; i++)
108     {
109       data->segment_bases[i] = segments[i]->p_vaddr;
110       data->segment_sizes[i] = segments[i]->p_memsz;
111     }
112 
113   num_sections = bfd_count_sections (abfd);
114   data->segment_info = XCALLOC (num_sections, int);
115 
116   for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
117     {
118       int j;
119       CORE_ADDR vma;
120 
121       if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
122 	continue;
123 
124       vma = bfd_get_section_vma (abfd, sect);
125 
126       for (j = 0; j < num_segments; j++)
127 	if (segments[j]->p_memsz > 0
128 	    && vma >= segments[j]->p_vaddr
129 	    && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
130 	  {
131 	    data->segment_info[i] = j + 1;
132 	    break;
133 	  }
134 
135       /* We should have found a segment for every non-empty section.
136 	 If we haven't, we will not relocate this section by any
137 	 offsets we apply to the segments.  As an exception, do not
138 	 warn about SHT_NOBITS sections; in normal ELF execution
139 	 environments, SHT_NOBITS means zero-initialized and belongs
140 	 in a segment, but in no-OS environments some tools (e.g. ARM
141 	 RealView) use SHT_NOBITS for uninitialized data.  Since it is
142 	 uninitialized, it doesn't need a program header.  Such
143 	 binaries are not relocatable.  */
144       if (bfd_get_section_size (sect) > 0 && j == num_segments
145 	  && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
146 	warning (_("Loadable segment \"%s\" outside of ELF segments"),
147 		 bfd_section_name (abfd, sect));
148     }
149 
150   return data;
151 }
152 
153 /* We are called once per section from elf_symfile_read.  We
154    need to examine each section we are passed, check to see
155    if it is something we are interested in processing, and
156    if so, stash away some access information for the section.
157 
158    For now we recognize the dwarf debug information sections and
159    line number sections from matching their section names.  The
160    ELF definition is no real help here since it has no direct
161    knowledge of DWARF (by design, so any debugging format can be
162    used).
163 
164    We also recognize the ".stab" sections used by the Sun compilers
165    released with Solaris 2.
166 
167    FIXME: The section names should not be hardwired strings (what
168    should they be?  I don't think most object file formats have enough
169    section flags to specify what kind of debug section it is.
170    -kingdon).  */
171 
172 static void
173 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
174 {
175   struct elfinfo *ei;
176 
177   ei = (struct elfinfo *) eip;
178   if (strcmp (sectp->name, ".stab") == 0)
179     {
180       ei->stabsect = sectp;
181     }
182   else if (strcmp (sectp->name, ".stab.index") == 0)
183     {
184       ei->stabindexsect = sectp;
185     }
186   else if (strcmp (sectp->name, ".mdebug") == 0)
187     {
188       ei->mdebugsect = sectp;
189     }
190 }
191 
192 static struct minimal_symbol *
193 record_minimal_symbol (const char *name, int name_len, int copy_name,
194 		       CORE_ADDR address,
195 		       enum minimal_symbol_type ms_type,
196 		       asection *bfd_section, struct objfile *objfile)
197 {
198   struct gdbarch *gdbarch = get_objfile_arch (objfile);
199 
200   if (ms_type == mst_text || ms_type == mst_file_text
201       || ms_type == mst_text_gnu_ifunc)
202     address = gdbarch_smash_text_address (gdbarch, address);
203 
204   return prim_record_minimal_symbol_full (name, name_len, copy_name, address,
205 					  ms_type, bfd_section->index,
206 					  bfd_section, objfile);
207 }
208 
209 /*
210 
211    LOCAL FUNCTION
212 
213    elf_symtab_read -- read the symbol table of an ELF file
214 
215    SYNOPSIS
216 
217    void elf_symtab_read (struct objfile *objfile, int type,
218 			 long number_of_symbols, asymbol **symbol_table)
219 
220    DESCRIPTION
221 
222    Given an objfile, a symbol table, and a flag indicating whether the
223    symbol table contains regular, dynamic, or synthetic symbols, add all
224    the global function and data symbols to the minimal symbol table.
225 
226    In stabs-in-ELF, as implemented by Sun, there are some local symbols
227    defined in the ELF symbol table, which can be used to locate
228    the beginnings of sections from each ".o" file that was linked to
229    form the executable objfile.  We gather any such info and record it
230    in data structures hung off the objfile's private data.
231 
232  */
233 
234 #define ST_REGULAR 0
235 #define ST_DYNAMIC 1
236 #define ST_SYNTHETIC 2
237 
238 static void
239 elf_symtab_read (struct objfile *objfile, int type,
240 		 long number_of_symbols, asymbol **symbol_table,
241 		 int copy_names)
242 {
243   struct gdbarch *gdbarch = get_objfile_arch (objfile);
244   asymbol *sym;
245   long i;
246   CORE_ADDR symaddr;
247   CORE_ADDR offset;
248   enum minimal_symbol_type ms_type;
249   /* If sectinfo is nonNULL, it contains section info that should end up
250      filed in the objfile.  */
251   struct stab_section_info *sectinfo = NULL;
252   /* If filesym is nonzero, it points to a file symbol, but we haven't
253      seen any section info for it yet.  */
254   asymbol *filesym = 0;
255   /* Name of filesym.  This is either a constant string or is saved on
256      the objfile's obstack.  */
257   char *filesymname = "";
258   struct dbx_symfile_info *dbx = objfile->deprecated_sym_stab_info;
259   int stripped = (bfd_get_symcount (objfile->obfd) == 0);
260 
261   for (i = 0; i < number_of_symbols; i++)
262     {
263       sym = symbol_table[i];
264       if (sym->name == NULL || *sym->name == '\0')
265 	{
266 	  /* Skip names that don't exist (shouldn't happen), or names
267 	     that are null strings (may happen).  */
268 	  continue;
269 	}
270 
271       /* Skip "special" symbols, e.g. ARM mapping symbols.  These are
272 	 symbols which do not correspond to objects in the symbol table,
273 	 but have some other target-specific meaning.  */
274       if (bfd_is_target_special_symbol (objfile->obfd, sym))
275 	{
276 	  if (gdbarch_record_special_symbol_p (gdbarch))
277 	    gdbarch_record_special_symbol (gdbarch, objfile, sym);
278 	  continue;
279 	}
280 
281       offset = ANOFFSET (objfile->section_offsets, sym->section->index);
282       if (type == ST_DYNAMIC
283 	  && sym->section == &bfd_und_section
284 	  && (sym->flags & BSF_FUNCTION))
285 	{
286 	  struct minimal_symbol *msym;
287 	  bfd *abfd = objfile->obfd;
288 	  asection *sect;
289 
290 	  /* Symbol is a reference to a function defined in
291 	     a shared library.
292 	     If its value is non zero then it is usually the address
293 	     of the corresponding entry in the procedure linkage table,
294 	     plus the desired section offset.
295 	     If its value is zero then the dynamic linker has to resolve
296 	     the symbol.  We are unable to find any meaningful address
297 	     for this symbol in the executable file, so we skip it.  */
298 	  symaddr = sym->value;
299 	  if (symaddr == 0)
300 	    continue;
301 
302 	  /* sym->section is the undefined section.  However, we want to
303 	     record the section where the PLT stub resides with the
304 	     minimal symbol.  Search the section table for the one that
305 	     covers the stub's address.  */
306 	  for (sect = abfd->sections; sect != NULL; sect = sect->next)
307 	    {
308 	      if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
309 		continue;
310 
311 	      if (symaddr >= bfd_get_section_vma (abfd, sect)
312 		  && symaddr < bfd_get_section_vma (abfd, sect)
313 			       + bfd_get_section_size (sect))
314 		break;
315 	    }
316 	  if (!sect)
317 	    continue;
318 
319 	  symaddr += ANOFFSET (objfile->section_offsets, sect->index);
320 
321 	  msym = record_minimal_symbol
322 	    (sym->name, strlen (sym->name), copy_names,
323 	     symaddr, mst_solib_trampoline, sect, objfile);
324 	  if (msym != NULL)
325 	    msym->filename = filesymname;
326 	  continue;
327 	}
328 
329       /* If it is a nonstripped executable, do not enter dynamic
330 	 symbols, as the dynamic symbol table is usually a subset
331 	 of the main symbol table.  */
332       if (type == ST_DYNAMIC && !stripped)
333 	continue;
334       if (sym->flags & BSF_FILE)
335 	{
336 	  /* STT_FILE debugging symbol that helps stabs-in-elf debugging.
337 	     Chain any old one onto the objfile; remember new sym.  */
338 	  if (sectinfo != NULL)
339 	    {
340 	      sectinfo->next = dbx->stab_section_info;
341 	      dbx->stab_section_info = sectinfo;
342 	      sectinfo = NULL;
343 	    }
344 	  filesym = sym;
345 	  filesymname =
346 	    obsavestring ((char *) filesym->name, strlen (filesym->name),
347 			  &objfile->objfile_obstack);
348 	}
349       else if (sym->flags & BSF_SECTION_SYM)
350 	continue;
351       else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK))
352 	{
353 	  struct minimal_symbol *msym;
354 
355 	  /* Select global/local/weak symbols.  Note that bfd puts abs
356 	     symbols in their own section, so all symbols we are
357 	     interested in will have a section.  */
358 	  /* Bfd symbols are section relative.  */
359 	  symaddr = sym->value + sym->section->vma;
360 	  /* Relocate all non-absolute and non-TLS symbols by the
361 	     section offset.  */
362 	  if (sym->section != &bfd_abs_section
363 	      && !(sym->section->flags & SEC_THREAD_LOCAL))
364 	    {
365 	      symaddr += offset;
366 	    }
367 	  /* For non-absolute symbols, use the type of the section
368 	     they are relative to, to intuit text/data.  Bfd provides
369 	     no way of figuring this out for absolute symbols.  */
370 	  if (sym->section == &bfd_abs_section)
371 	    {
372 	      /* This is a hack to get the minimal symbol type
373 		 right for Irix 5, which has absolute addresses
374 		 with special section indices for dynamic symbols.
375 
376 		 NOTE: uweigand-20071112: Synthetic symbols do not
377 		 have an ELF-private part, so do not touch those.  */
378 	      unsigned int shndx = type == ST_SYNTHETIC ? 0 :
379 		((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
380 
381 	      switch (shndx)
382 		{
383 		case SHN_MIPS_TEXT:
384 		  ms_type = mst_text;
385 		  break;
386 		case SHN_MIPS_DATA:
387 		  ms_type = mst_data;
388 		  break;
389 		case SHN_MIPS_ACOMMON:
390 		  ms_type = mst_bss;
391 		  break;
392 		default:
393 		  ms_type = mst_abs;
394 		}
395 
396 	      /* If it is an Irix dynamic symbol, skip section name
397 		 symbols, relocate all others by section offset.  */
398 	      if (ms_type != mst_abs)
399 		{
400 		  if (sym->name[0] == '.')
401 		    continue;
402 		  symaddr += offset;
403 		}
404 	    }
405 	  else if (sym->section->flags & SEC_CODE)
406 	    {
407 	      if (sym->flags & (BSF_GLOBAL | BSF_WEAK))
408 		{
409 		  if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
410 		    ms_type = mst_text_gnu_ifunc;
411 		  else
412 		    ms_type = mst_text;
413 		}
414 	      else if ((sym->name[0] == '.' && sym->name[1] == 'L')
415 		       || ((sym->flags & BSF_LOCAL)
416 			   && sym->name[0] == '$'
417 			   && sym->name[1] == 'L'))
418 		/* Looks like a compiler-generated label.  Skip
419 		   it.  The assembler should be skipping these (to
420 		   keep executables small), but apparently with
421 		   gcc on the (deleted) delta m88k SVR4, it loses.
422 		   So to have us check too should be harmless (but
423 		   I encourage people to fix this in the assembler
424 		   instead of adding checks here).  */
425 		continue;
426 	      else
427 		{
428 		  ms_type = mst_file_text;
429 		}
430 	    }
431 	  else if (sym->section->flags & SEC_ALLOC)
432 	    {
433 	      if (sym->flags & (BSF_GLOBAL | BSF_WEAK))
434 		{
435 		  if (sym->section->flags & SEC_LOAD)
436 		    {
437 		      ms_type = mst_data;
438 		    }
439 		  else
440 		    {
441 		      ms_type = mst_bss;
442 		    }
443 		}
444 	      else if (sym->flags & BSF_LOCAL)
445 		{
446 		  /* Named Local variable in a Data section.
447 		     Check its name for stabs-in-elf.  */
448 		  int special_local_sect;
449 
450 		  if (strcmp ("Bbss.bss", sym->name) == 0)
451 		    special_local_sect = SECT_OFF_BSS (objfile);
452 		  else if (strcmp ("Ddata.data", sym->name) == 0)
453 		    special_local_sect = SECT_OFF_DATA (objfile);
454 		  else if (strcmp ("Drodata.rodata", sym->name) == 0)
455 		    special_local_sect = SECT_OFF_RODATA (objfile);
456 		  else
457 		    special_local_sect = -1;
458 		  if (special_local_sect >= 0)
459 		    {
460 		      /* Found a special local symbol.  Allocate a
461 			 sectinfo, if needed, and fill it in.  */
462 		      if (sectinfo == NULL)
463 			{
464 			  int max_index;
465 			  size_t size;
466 
467 			  max_index = SECT_OFF_BSS (objfile);
468 			  if (objfile->sect_index_data > max_index)
469 			    max_index = objfile->sect_index_data;
470 			  if (objfile->sect_index_rodata > max_index)
471 			    max_index = objfile->sect_index_rodata;
472 
473 			  /* max_index is the largest index we'll
474 			     use into this array, so we must
475 			     allocate max_index+1 elements for it.
476 			     However, 'struct stab_section_info'
477 			     already includes one element, so we
478 			     need to allocate max_index aadditional
479 			     elements.  */
480 			  size = (sizeof (struct stab_section_info)
481 				  + (sizeof (CORE_ADDR) * max_index));
482 			  sectinfo = (struct stab_section_info *)
483 			    xmalloc (size);
484 			  memset (sectinfo, 0, size);
485 			  sectinfo->num_sections = max_index;
486 			  if (filesym == NULL)
487 			    {
488 			      complaint (&symfile_complaints,
489 					 _("elf/stab section information %s "
490 					   "without a preceding file symbol"),
491 					 sym->name);
492 			    }
493 			  else
494 			    {
495 			      sectinfo->filename =
496 				(char *) filesym->name;
497 			    }
498 			}
499 		      if (sectinfo->sections[special_local_sect] != 0)
500 			complaint (&symfile_complaints,
501 				   _("duplicated elf/stab section "
502 				     "information for %s"),
503 				   sectinfo->filename);
504 		      /* BFD symbols are section relative.  */
505 		      symaddr = sym->value + sym->section->vma;
506 		      /* Relocate non-absolute symbols by the
507 			 section offset.  */
508 		      if (sym->section != &bfd_abs_section)
509 			symaddr += offset;
510 		      sectinfo->sections[special_local_sect] = symaddr;
511 		      /* The special local symbols don't go in the
512 			 minimal symbol table, so ignore this one.  */
513 		      continue;
514 		    }
515 		  /* Not a special stabs-in-elf symbol, do regular
516 		     symbol processing.  */
517 		  if (sym->section->flags & SEC_LOAD)
518 		    {
519 		      ms_type = mst_file_data;
520 		    }
521 		  else
522 		    {
523 		      ms_type = mst_file_bss;
524 		    }
525 		}
526 	      else
527 		{
528 		  ms_type = mst_unknown;
529 		}
530 	    }
531 	  else
532 	    {
533 	      /* FIXME:  Solaris2 shared libraries include lots of
534 		 odd "absolute" and "undefined" symbols, that play
535 		 hob with actions like finding what function the PC
536 		 is in.  Ignore them if they aren't text, data, or bss.  */
537 	      /* ms_type = mst_unknown; */
538 	      continue;	/* Skip this symbol.  */
539 	    }
540 	  msym = record_minimal_symbol
541 	    (sym->name, strlen (sym->name), copy_names, symaddr,
542 	     ms_type, sym->section, objfile);
543 
544 	  if (msym)
545 	    {
546 	      /* Pass symbol size field in via BFD.  FIXME!!!  */
547 	      elf_symbol_type *elf_sym;
548 
549 	      /* NOTE: uweigand-20071112: A synthetic symbol does not have an
550 		 ELF-private part.  However, in some cases (e.g. synthetic
551 		 'dot' symbols on ppc64) the udata.p entry is set to point back
552 		 to the original ELF symbol it was derived from.  Get the size
553 		 from that symbol.  */
554 	      if (type != ST_SYNTHETIC)
555 		elf_sym = (elf_symbol_type *) sym;
556 	      else
557 		elf_sym = (elf_symbol_type *) sym->udata.p;
558 
559 	      if (elf_sym)
560 		MSYMBOL_SIZE(msym) = elf_sym->internal_elf_sym.st_size;
561 
562 	      msym->filename = filesymname;
563 	      gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
564 	    }
565 
566 	  /* For @plt symbols, also record a trampoline to the
567 	     destination symbol.  The @plt symbol will be used in
568 	     disassembly, and the trampoline will be used when we are
569 	     trying to find the target.  */
570 	  if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
571 	    {
572 	      int len = strlen (sym->name);
573 
574 	      if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
575 		{
576 		  struct minimal_symbol *mtramp;
577 
578 		  mtramp = record_minimal_symbol (sym->name, len - 4, 1,
579 						  symaddr,
580 						  mst_solib_trampoline,
581 						  sym->section, objfile);
582 		  if (mtramp)
583 		    {
584 		      MSYMBOL_SIZE (mtramp) = MSYMBOL_SIZE (msym);
585 		      mtramp->filename = filesymname;
586 		      gdbarch_elf_make_msymbol_special (gdbarch, sym, mtramp);
587 		    }
588 		}
589 	    }
590 	}
591     }
592 }
593 
594 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
595    for later look ups of which function to call when user requests
596    a STT_GNU_IFUNC function.  As the STT_GNU_IFUNC type is found at the target
597    library defining `function' we cannot yet know while reading OBJFILE which
598    of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
599    DYN_SYMBOL_TABLE is no longer easily available for OBJFILE.  */
600 
601 static void
602 elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table)
603 {
604   bfd *obfd = objfile->obfd;
605   const struct elf_backend_data *bed = get_elf_backend_data (obfd);
606   asection *plt, *relplt, *got_plt;
607   unsigned u;
608   int plt_elf_idx;
609   bfd_size_type reloc_count, reloc;
610   char *string_buffer = NULL;
611   size_t string_buffer_size = 0;
612   struct cleanup *back_to;
613   struct gdbarch *gdbarch = objfile->gdbarch;
614   struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
615   size_t ptr_size = TYPE_LENGTH (ptr_type);
616 
617   if (objfile->separate_debug_objfile_backlink)
618     return;
619 
620   plt = bfd_get_section_by_name (obfd, ".plt");
621   if (plt == NULL)
622     return;
623   plt_elf_idx = elf_section_data (plt)->this_idx;
624 
625   got_plt = bfd_get_section_by_name (obfd, ".got.plt");
626   if (got_plt == NULL)
627     return;
628 
629   /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc.  */
630   for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
631     if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
632 	&& (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
633 	    || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
634       break;
635   if (relplt == NULL)
636     return;
637 
638   if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
639     return;
640 
641   back_to = make_cleanup (free_current_contents, &string_buffer);
642 
643   reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
644   for (reloc = 0; reloc < reloc_count; reloc++)
645     {
646       const char *name, *name_got_plt;
647       struct minimal_symbol *msym;
648       CORE_ADDR address;
649       const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
650       size_t name_len;
651 
652       name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
653       name_len = strlen (name);
654       address = relplt->relocation[reloc].address;
655 
656       /* Does the pointer reside in the .got.plt section?  */
657       if (!(bfd_get_section_vma (obfd, got_plt) <= address
658             && address < bfd_get_section_vma (obfd, got_plt)
659 			 + bfd_get_section_size (got_plt)))
660 	continue;
661 
662       /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
663 	 OBJFILE the symbol is undefined and the objfile having NAME defined
664 	 may not yet have been loaded.  */
665 
666       if (string_buffer_size < name_len + got_suffix_len)
667 	{
668 	  string_buffer_size = 2 * (name_len + got_suffix_len);
669 	  string_buffer = xrealloc (string_buffer, string_buffer_size);
670 	}
671       memcpy (string_buffer, name, name_len);
672       memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX,
673 	      got_suffix_len);
674 
675       msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len,
676                                     1, address, mst_slot_got_plt, got_plt,
677 				    objfile);
678       if (msym)
679 	MSYMBOL_SIZE (msym) = ptr_size;
680     }
681 
682   do_cleanups (back_to);
683 }
684 
685 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked.  */
686 
687 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
688 
689 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data.  */
690 
691 struct elf_gnu_ifunc_cache
692 {
693   /* This is always a function entry address, not a function descriptor.  */
694   CORE_ADDR addr;
695 
696   char name[1];
697 };
698 
699 /* htab_hash for elf_objfile_gnu_ifunc_cache_data.  */
700 
701 static hashval_t
702 elf_gnu_ifunc_cache_hash (const void *a_voidp)
703 {
704   const struct elf_gnu_ifunc_cache *a = a_voidp;
705 
706   return htab_hash_string (a->name);
707 }
708 
709 /* htab_eq for elf_objfile_gnu_ifunc_cache_data.  */
710 
711 static int
712 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
713 {
714   const struct elf_gnu_ifunc_cache *a = a_voidp;
715   const struct elf_gnu_ifunc_cache *b = b_voidp;
716 
717   return strcmp (a->name, b->name) == 0;
718 }
719 
720 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
721    function entry address ADDR.  Return 1 if NAME and ADDR are considered as
722    valid and therefore they were successfully recorded, return 0 otherwise.
723 
724    Function does not expect a duplicate entry.  Use
725    elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
726    exists.  */
727 
728 static int
729 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
730 {
731   struct minimal_symbol *msym;
732   asection *sect;
733   struct objfile *objfile;
734   htab_t htab;
735   struct elf_gnu_ifunc_cache entry_local, *entry_p;
736   void **slot;
737 
738   msym = lookup_minimal_symbol_by_pc (addr);
739   if (msym == NULL)
740     return 0;
741   if (SYMBOL_VALUE_ADDRESS (msym) != addr)
742     return 0;
743   /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL.  */
744   sect = SYMBOL_OBJ_SECTION (msym)->the_bfd_section;
745   objfile = SYMBOL_OBJ_SECTION (msym)->objfile;
746 
747   /* If .plt jumps back to .plt the symbol is still deferred for later
748      resolution and it has no use for GDB.  Besides ".text" this symbol can
749      reside also in ".opd" for ppc64 function descriptor.  */
750   if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
751     return 0;
752 
753   htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
754   if (htab == NULL)
755     {
756       htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
757 				   elf_gnu_ifunc_cache_eq,
758 				   NULL, &objfile->objfile_obstack,
759 				   hashtab_obstack_allocate,
760 				   dummy_obstack_deallocate);
761       set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
762     }
763 
764   entry_local.addr = addr;
765   obstack_grow (&objfile->objfile_obstack, &entry_local,
766 		offsetof (struct elf_gnu_ifunc_cache, name));
767   obstack_grow_str0 (&objfile->objfile_obstack, name);
768   entry_p = obstack_finish (&objfile->objfile_obstack);
769 
770   slot = htab_find_slot (htab, entry_p, INSERT);
771   if (*slot != NULL)
772     {
773       struct elf_gnu_ifunc_cache *entry_found_p = *slot;
774       struct gdbarch *gdbarch = objfile->gdbarch;
775 
776       if (entry_found_p->addr != addr)
777 	{
778 	  /* This case indicates buggy inferior program, the resolved address
779 	     should never change.  */
780 
781 	    warning (_("gnu-indirect-function \"%s\" has changed its resolved "
782 		       "function_address from %s to %s"),
783 		     name, paddress (gdbarch, entry_found_p->addr),
784 		     paddress (gdbarch, addr));
785 	}
786 
787       /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack.  */
788     }
789   *slot = entry_p;
790 
791   return 1;
792 }
793 
794 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
795    function NAME.  If the address is found it is stored to *ADDR_P (if ADDR_P
796    is not NULL) and the function returns 1.  It returns 0 otherwise.
797 
798    Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
799    function.  */
800 
801 static int
802 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
803 {
804   struct objfile *objfile;
805 
806   ALL_PSPACE_OBJFILES (current_program_space, objfile)
807     {
808       htab_t htab;
809       struct elf_gnu_ifunc_cache *entry_p;
810       void **slot;
811 
812       htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
813       if (htab == NULL)
814 	continue;
815 
816       entry_p = alloca (sizeof (*entry_p) + strlen (name));
817       strcpy (entry_p->name, name);
818 
819       slot = htab_find_slot (htab, entry_p, NO_INSERT);
820       if (slot == NULL)
821 	continue;
822       entry_p = *slot;
823       gdb_assert (entry_p != NULL);
824 
825       if (addr_p)
826 	*addr_p = entry_p->addr;
827       return 1;
828     }
829 
830   return 0;
831 }
832 
833 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
834    function NAME.  If the address is found it is stored to *ADDR_P (if ADDR_P
835    is not NULL) and the function returns 1.  It returns 0 otherwise.
836 
837    Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
838    elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
839    prevent cache entries duplicates.  */
840 
841 static int
842 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
843 {
844   char *name_got_plt;
845   struct objfile *objfile;
846   const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
847 
848   name_got_plt = alloca (strlen (name) + got_suffix_len + 1);
849   sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
850 
851   ALL_PSPACE_OBJFILES (current_program_space, objfile)
852     {
853       bfd *obfd = objfile->obfd;
854       struct gdbarch *gdbarch = objfile->gdbarch;
855       struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
856       size_t ptr_size = TYPE_LENGTH (ptr_type);
857       CORE_ADDR pointer_address, addr;
858       asection *plt;
859       gdb_byte *buf = alloca (ptr_size);
860       struct minimal_symbol *msym;
861 
862       msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
863       if (msym == NULL)
864 	continue;
865       if (MSYMBOL_TYPE (msym) != mst_slot_got_plt)
866 	continue;
867       pointer_address = SYMBOL_VALUE_ADDRESS (msym);
868 
869       plt = bfd_get_section_by_name (obfd, ".plt");
870       if (plt == NULL)
871 	continue;
872 
873       if (MSYMBOL_SIZE (msym) != ptr_size)
874 	continue;
875       if (target_read_memory (pointer_address, buf, ptr_size) != 0)
876 	continue;
877       addr = extract_typed_address (buf, ptr_type);
878       addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
879 						 &current_target);
880 
881       if (addr_p)
882 	*addr_p = addr;
883       if (elf_gnu_ifunc_record_cache (name, addr))
884 	return 1;
885     }
886 
887   return 0;
888 }
889 
890 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
891    function NAME.  If the address is found it is stored to *ADDR_P (if ADDR_P
892    is not NULL) and the function returns 1.  It returns 0 otherwise.
893 
894    Both the elf_objfile_gnu_ifunc_cache_data hash table and
895    SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.  */
896 
897 static int
898 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
899 {
900   if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
901     return 1;
902 
903   if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
904     return 1;
905 
906   return 0;
907 }
908 
909 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
910    call.  PC is theSTT_GNU_IFUNC resolving function entry.  The value returned
911    is the entry point of the resolved STT_GNU_IFUNC target function to call.
912    */
913 
914 static CORE_ADDR
915 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
916 {
917   char *name_at_pc;
918   CORE_ADDR start_at_pc, address;
919   struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
920   struct value *function, *address_val;
921 
922   /* Try first any non-intrusive methods without an inferior call.  */
923 
924   if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
925       && start_at_pc == pc)
926     {
927       if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
928 	return address;
929     }
930   else
931     name_at_pc = NULL;
932 
933   function = allocate_value (func_func_type);
934   set_value_address (function, pc);
935 
936   /* STT_GNU_IFUNC resolver functions have no parameters.  FUNCTION is the
937      function entry address.  ADDRESS may be a function descriptor.  */
938 
939   address_val = call_function_by_hand (function, 0, NULL);
940   address = value_as_address (address_val);
941   address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
942 						&current_target);
943 
944   if (name_at_pc)
945     elf_gnu_ifunc_record_cache (name_at_pc, address);
946 
947   return address;
948 }
949 
950 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition.  */
951 
952 static void
953 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
954 {
955   struct breakpoint *b_return;
956   struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
957   struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
958   CORE_ADDR prev_pc = get_frame_pc (prev_frame);
959   int thread_id = pid_to_thread_id (inferior_ptid);
960 
961   gdb_assert (b->type == bp_gnu_ifunc_resolver);
962 
963   for (b_return = b->related_breakpoint; b_return != b;
964        b_return = b_return->related_breakpoint)
965     {
966       gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
967       gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
968       gdb_assert (frame_id_p (b_return->frame_id));
969 
970       if (b_return->thread == thread_id
971 	  && b_return->loc->requested_address == prev_pc
972 	  && frame_id_eq (b_return->frame_id, prev_frame_id))
973 	break;
974     }
975 
976   if (b_return == b)
977     {
978       struct symtab_and_line sal;
979 
980       /* No need to call find_pc_line for symbols resolving as this is only
981 	 a helper breakpointer never shown to the user.  */
982 
983       init_sal (&sal);
984       sal.pspace = current_inferior ()->pspace;
985       sal.pc = prev_pc;
986       sal.section = find_pc_overlay (sal.pc);
987       sal.explicit_pc = 1;
988       b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
989 					   prev_frame_id,
990 					   bp_gnu_ifunc_resolver_return);
991 
992       /* Add new b_return to the ring list b->related_breakpoint.  */
993       gdb_assert (b_return->related_breakpoint == b_return);
994       b_return->related_breakpoint = b->related_breakpoint;
995       b->related_breakpoint = b_return;
996     }
997 }
998 
999 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition.  */
1000 
1001 static void
1002 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
1003 {
1004   struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
1005   struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
1006   struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
1007   struct regcache *regcache = get_thread_regcache (inferior_ptid);
1008   struct value *value;
1009   CORE_ADDR resolved_address, resolved_pc;
1010   struct symtab_and_line sal;
1011   struct symtabs_and_lines sals, sals_end;
1012 
1013   gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1014 
1015   value = allocate_value (value_type);
1016   gdbarch_return_value (gdbarch, func_func_type, value_type, regcache,
1017 			value_contents_raw (value), NULL);
1018   resolved_address = value_as_address (value);
1019   resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1020 						    resolved_address,
1021 						    &current_target);
1022 
1023   while (b->related_breakpoint != b)
1024     {
1025       struct breakpoint *b_next = b->related_breakpoint;
1026 
1027       switch (b->type)
1028 	{
1029 	case bp_gnu_ifunc_resolver:
1030 	  break;
1031 	case bp_gnu_ifunc_resolver_return:
1032 	  delete_breakpoint (b);
1033 	  break;
1034 	default:
1035 	  internal_error (__FILE__, __LINE__,
1036 			  _("handle_inferior_event: Invalid "
1037 			    "gnu-indirect-function breakpoint type %d"),
1038 			  (int) b->type);
1039 	}
1040       b = b_next;
1041     }
1042   gdb_assert (b->type == bp_gnu_ifunc_resolver);
1043 
1044   gdb_assert (current_program_space == b->pspace);
1045   elf_gnu_ifunc_record_cache (b->addr_string, resolved_pc);
1046 
1047   sal = find_pc_line (resolved_pc, 0);
1048   sals.nelts = 1;
1049   sals.sals = &sal;
1050   sals_end.nelts = 0;
1051 
1052   b->type = bp_breakpoint;
1053   update_breakpoint_locations (b, sals, sals_end);
1054 }
1055 
1056 struct build_id
1057   {
1058     size_t size;
1059     gdb_byte data[1];
1060   };
1061 
1062 /* Locate NT_GNU_BUILD_ID from ABFD and return its content.  */
1063 
1064 static struct build_id *
1065 build_id_bfd_get (bfd *abfd)
1066 {
1067   struct build_id *retval;
1068 
1069   if (!bfd_check_format (abfd, bfd_object)
1070       || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1071       || elf_tdata (abfd)->build_id == NULL)
1072     return NULL;
1073 
1074   retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1075   retval->size = elf_tdata (abfd)->build_id_size;
1076   memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1077 
1078   return retval;
1079 }
1080 
1081 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value.  */
1082 
1083 static int
1084 build_id_verify (const char *filename, struct build_id *check)
1085 {
1086   bfd *abfd;
1087   struct build_id *found = NULL;
1088   int retval = 0;
1089 
1090   /* We expect to be silent on the non-existing files.  */
1091   abfd = bfd_open_maybe_remote (filename);
1092   if (abfd == NULL)
1093     return 0;
1094 
1095   found = build_id_bfd_get (abfd);
1096 
1097   if (found == NULL)
1098     warning (_("File \"%s\" has no build-id, file skipped"), filename);
1099   else if (found->size != check->size
1100            || memcmp (found->data, check->data, found->size) != 0)
1101     warning (_("File \"%s\" has a different build-id, file skipped"),
1102 	     filename);
1103   else
1104     retval = 1;
1105 
1106   gdb_bfd_close_or_warn (abfd);
1107 
1108   xfree (found);
1109 
1110   return retval;
1111 }
1112 
1113 static char *
1114 build_id_to_debug_filename (struct build_id *build_id)
1115 {
1116   char *link, *debugdir, *retval = NULL;
1117 
1118   /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1119   link = alloca (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1120 		 + 2 * build_id->size + (sizeof ".debug" - 1) + 1);
1121 
1122   /* Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1123      cause "/.build-id/..." lookups.  */
1124 
1125   debugdir = debug_file_directory;
1126   do
1127     {
1128       char *s, *debugdir_end;
1129       gdb_byte *data = build_id->data;
1130       size_t size = build_id->size;
1131 
1132       while (*debugdir == DIRNAME_SEPARATOR)
1133 	debugdir++;
1134 
1135       debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1136       if (debugdir_end == NULL)
1137 	debugdir_end = &debugdir[strlen (debugdir)];
1138 
1139       memcpy (link, debugdir, debugdir_end - debugdir);
1140       s = &link[debugdir_end - debugdir];
1141       s += sprintf (s, "/.build-id/");
1142       if (size > 0)
1143 	{
1144 	  size--;
1145 	  s += sprintf (s, "%02x", (unsigned) *data++);
1146 	}
1147       if (size > 0)
1148 	*s++ = '/';
1149       while (size-- > 0)
1150 	s += sprintf (s, "%02x", (unsigned) *data++);
1151       strcpy (s, ".debug");
1152 
1153       /* lrealpath() is expensive even for the usually non-existent files.  */
1154       if (access (link, F_OK) == 0)
1155 	retval = lrealpath (link);
1156 
1157       if (retval != NULL && !build_id_verify (retval, build_id))
1158 	{
1159 	  xfree (retval);
1160 	  retval = NULL;
1161 	}
1162 
1163       if (retval != NULL)
1164 	break;
1165 
1166       debugdir = debugdir_end;
1167     }
1168   while (*debugdir != 0);
1169 
1170   return retval;
1171 }
1172 
1173 static char *
1174 find_separate_debug_file_by_buildid (struct objfile *objfile)
1175 {
1176   struct build_id *build_id;
1177 
1178   build_id = build_id_bfd_get (objfile->obfd);
1179   if (build_id != NULL)
1180     {
1181       char *build_id_name;
1182 
1183       build_id_name = build_id_to_debug_filename (build_id);
1184       xfree (build_id);
1185       /* Prevent looping on a stripped .debug file.  */
1186       if (build_id_name != NULL
1187 	  && filename_cmp (build_id_name, objfile->name) == 0)
1188         {
1189 	  warning (_("\"%s\": separate debug info file has no debug info"),
1190 		   build_id_name);
1191 	  xfree (build_id_name);
1192 	}
1193       else if (build_id_name != NULL)
1194         return build_id_name;
1195     }
1196   return NULL;
1197 }
1198 
1199 /* Scan and build partial symbols for a symbol file.
1200    We have been initialized by a call to elf_symfile_init, which
1201    currently does nothing.
1202 
1203    SECTION_OFFSETS is a set of offsets to apply to relocate the symbols
1204    in each section.  We simplify it down to a single offset for all
1205    symbols.  FIXME.
1206 
1207    This function only does the minimum work necessary for letting the
1208    user "name" things symbolically; it does not read the entire symtab.
1209    Instead, it reads the external and static symbols and puts them in partial
1210    symbol tables.  When more extensive information is requested of a
1211    file, the corresponding partial symbol table is mutated into a full
1212    fledged symbol table by going back and reading the symbols
1213    for real.
1214 
1215    We look for sections with specific names, to tell us what debug
1216    format to look for:  FIXME!!!
1217 
1218    elfstab_build_psymtabs() handles STABS symbols;
1219    mdebug_build_psymtabs() handles ECOFF debugging information.
1220 
1221    Note that ELF files have a "minimal" symbol table, which looks a lot
1222    like a COFF symbol table, but has only the minimal information necessary
1223    for linking.  We process this also, and use the information to
1224    build gdb's minimal symbol table.  This gives us some minimal debugging
1225    capability even for files compiled without -g.  */
1226 
1227 static void
1228 elf_symfile_read (struct objfile *objfile, int symfile_flags)
1229 {
1230   bfd *abfd = objfile->obfd;
1231   struct elfinfo ei;
1232   struct cleanup *back_to;
1233   long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1234   asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1235   asymbol *synthsyms;
1236 
1237   init_minimal_symbol_collection ();
1238   back_to = make_cleanup_discard_minimal_symbols ();
1239 
1240   memset ((char *) &ei, 0, sizeof (ei));
1241 
1242   /* Allocate struct to keep track of the symfile.  */
1243   objfile->deprecated_sym_stab_info = (struct dbx_symfile_info *)
1244     xmalloc (sizeof (struct dbx_symfile_info));
1245   memset ((char *) objfile->deprecated_sym_stab_info,
1246 	  0, sizeof (struct dbx_symfile_info));
1247   make_cleanup (free_elfinfo, (void *) objfile);
1248 
1249   /* Process the normal ELF symbol table first.  This may write some
1250      chain of info into the dbx_symfile_info in
1251      objfile->deprecated_sym_stab_info, which can later be used by
1252      elfstab_offset_sections.  */
1253 
1254   storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1255   if (storage_needed < 0)
1256     error (_("Can't read symbols from %s: %s"),
1257 	   bfd_get_filename (objfile->obfd),
1258 	   bfd_errmsg (bfd_get_error ()));
1259 
1260   if (storage_needed > 0)
1261     {
1262       symbol_table = (asymbol **) xmalloc (storage_needed);
1263       make_cleanup (xfree, symbol_table);
1264       symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1265 
1266       if (symcount < 0)
1267 	error (_("Can't read symbols from %s: %s"),
1268 	       bfd_get_filename (objfile->obfd),
1269 	       bfd_errmsg (bfd_get_error ()));
1270 
1271       elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0);
1272     }
1273 
1274   /* Add the dynamic symbols.  */
1275 
1276   storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1277 
1278   if (storage_needed > 0)
1279     {
1280       /* Memory gets permanently referenced from ABFD after
1281 	 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1282 	 It happens only in the case when elf_slurp_reloc_table sees
1283 	 asection->relocation NULL.  Determining which section is asection is
1284 	 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1285 	 implementation detail, though.  */
1286 
1287       dyn_symbol_table = bfd_alloc (abfd, storage_needed);
1288       dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1289 						     dyn_symbol_table);
1290 
1291       if (dynsymcount < 0)
1292 	error (_("Can't read symbols from %s: %s"),
1293 	       bfd_get_filename (objfile->obfd),
1294 	       bfd_errmsg (bfd_get_error ()));
1295 
1296       elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0);
1297 
1298       elf_rel_plt_read (objfile, dyn_symbol_table);
1299     }
1300 
1301   /* Add synthetic symbols - for instance, names for any PLT entries.  */
1302 
1303   synthcount = bfd_get_synthetic_symtab (abfd, symcount, symbol_table,
1304 					 dynsymcount, dyn_symbol_table,
1305 					 &synthsyms);
1306   if (synthcount > 0)
1307     {
1308       asymbol **synth_symbol_table;
1309       long i;
1310 
1311       make_cleanup (xfree, synthsyms);
1312       synth_symbol_table = xmalloc (sizeof (asymbol *) * synthcount);
1313       for (i = 0; i < synthcount; i++)
1314 	synth_symbol_table[i] = synthsyms + i;
1315       make_cleanup (xfree, synth_symbol_table);
1316       elf_symtab_read (objfile, ST_SYNTHETIC, synthcount,
1317 		       synth_symbol_table, 1);
1318     }
1319 
1320   /* Install any minimal symbols that have been collected as the current
1321      minimal symbols for this objfile.  The debug readers below this point
1322      should not generate new minimal symbols; if they do it's their
1323      responsibility to install them.  "mdebug" appears to be the only one
1324      which will do this.  */
1325 
1326   install_minimal_symbols (objfile);
1327   do_cleanups (back_to);
1328 
1329   /* Now process debugging information, which is contained in
1330      special ELF sections.  */
1331 
1332   /* We first have to find them...  */
1333   bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1334 
1335   /* ELF debugging information is inserted into the psymtab in the
1336      order of least informative first - most informative last.  Since
1337      the psymtab table is searched `most recent insertion first' this
1338      increases the probability that more detailed debug information
1339      for a section is found.
1340 
1341      For instance, an object file might contain both .mdebug (XCOFF)
1342      and .debug_info (DWARF2) sections then .mdebug is inserted first
1343      (searched last) and DWARF2 is inserted last (searched first).  If
1344      we don't do this then the XCOFF info is found first - for code in
1345      an included file XCOFF info is useless.  */
1346 
1347   if (ei.mdebugsect)
1348     {
1349       const struct ecoff_debug_swap *swap;
1350 
1351       /* .mdebug section, presumably holding ECOFF debugging
1352          information.  */
1353       swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1354       if (swap)
1355 	elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1356     }
1357   if (ei.stabsect)
1358     {
1359       asection *str_sect;
1360 
1361       /* Stab sections have an associated string table that looks like
1362          a separate section.  */
1363       str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1364 
1365       /* FIXME should probably warn about a stab section without a stabstr.  */
1366       if (str_sect)
1367 	elfstab_build_psymtabs (objfile,
1368 				ei.stabsect,
1369 				str_sect->filepos,
1370 				bfd_section_size (abfd, str_sect));
1371     }
1372 
1373   if (dwarf2_has_info (objfile))
1374     {
1375       /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1376 	 information present in OBJFILE.  If there is such debug info present
1377 	 never use .gdb_index.  */
1378 
1379       if (!objfile_has_partial_symbols (objfile)
1380 	  && dwarf2_initialize_objfile (objfile))
1381 	objfile->sf = &elf_sym_fns_gdb_index;
1382       else
1383 	{
1384 	  /* It is ok to do this even if the stabs reader made some
1385 	     partial symbols, because OBJF_PSYMTABS_READ has not been
1386 	     set, and so our lazy reader function will still be called
1387 	     when needed.  */
1388 	  objfile->sf = &elf_sym_fns_lazy_psyms;
1389 	}
1390     }
1391   /* If the file has its own symbol tables it has no separate debug
1392      info.  `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1393      SYMTABS/PSYMTABS.  `.gnu_debuglink' may no longer be present with
1394      `.note.gnu.build-id'.  */
1395   else if (!objfile_has_partial_symbols (objfile))
1396     {
1397       char *debugfile;
1398 
1399       debugfile = find_separate_debug_file_by_buildid (objfile);
1400 
1401       if (debugfile == NULL)
1402 	debugfile = find_separate_debug_file_by_debuglink (objfile);
1403 
1404       if (debugfile)
1405 	{
1406 	  bfd *abfd = symfile_bfd_open (debugfile);
1407 
1408 	  symbol_file_add_separate (abfd, symfile_flags, objfile);
1409 	  xfree (debugfile);
1410 	}
1411     }
1412 }
1413 
1414 /* Callback to lazily read psymtabs.  */
1415 
1416 static void
1417 read_psyms (struct objfile *objfile)
1418 {
1419   if (dwarf2_has_info (objfile))
1420     dwarf2_build_psymtabs (objfile);
1421 }
1422 
1423 /* This cleans up the objfile's deprecated_sym_stab_info pointer, and
1424    the chain of stab_section_info's, that might be dangling from
1425    it.  */
1426 
1427 static void
1428 free_elfinfo (void *objp)
1429 {
1430   struct objfile *objfile = (struct objfile *) objp;
1431   struct dbx_symfile_info *dbxinfo = objfile->deprecated_sym_stab_info;
1432   struct stab_section_info *ssi, *nssi;
1433 
1434   ssi = dbxinfo->stab_section_info;
1435   while (ssi)
1436     {
1437       nssi = ssi->next;
1438       xfree (ssi);
1439       ssi = nssi;
1440     }
1441 
1442   dbxinfo->stab_section_info = 0;	/* Just say No mo info about this.  */
1443 }
1444 
1445 
1446 /* Initialize anything that needs initializing when a completely new symbol
1447    file is specified (not just adding some symbols from another file, e.g. a
1448    shared library).
1449 
1450    We reinitialize buildsym, since we may be reading stabs from an ELF
1451    file.  */
1452 
1453 static void
1454 elf_new_init (struct objfile *ignore)
1455 {
1456   stabsread_new_init ();
1457   buildsym_new_init ();
1458 }
1459 
1460 /* Perform any local cleanups required when we are done with a particular
1461    objfile.  I.E, we are in the process of discarding all symbol information
1462    for an objfile, freeing up all memory held for it, and unlinking the
1463    objfile struct from the global list of known objfiles.  */
1464 
1465 static void
1466 elf_symfile_finish (struct objfile *objfile)
1467 {
1468   if (objfile->deprecated_sym_stab_info != NULL)
1469     {
1470       xfree (objfile->deprecated_sym_stab_info);
1471     }
1472 
1473   dwarf2_free_objfile (objfile);
1474 }
1475 
1476 /* ELF specific initialization routine for reading symbols.
1477 
1478    It is passed a pointer to a struct sym_fns which contains, among other
1479    things, the BFD for the file whose symbols are being read, and a slot for
1480    a pointer to "private data" which we can fill with goodies.
1481 
1482    For now at least, we have nothing in particular to do, so this function is
1483    just a stub.  */
1484 
1485 static void
1486 elf_symfile_init (struct objfile *objfile)
1487 {
1488   /* ELF objects may be reordered, so set OBJF_REORDERED.  If we
1489      find this causes a significant slowdown in gdb then we could
1490      set it in the debug symbol readers only when necessary.  */
1491   objfile->flags |= OBJF_REORDERED;
1492 }
1493 
1494 /* When handling an ELF file that contains Sun STABS debug info,
1495    some of the debug info is relative to the particular chunk of the
1496    section that was generated in its individual .o file.  E.g.
1497    offsets to static variables are relative to the start of the data
1498    segment *for that module before linking*.  This information is
1499    painfully squirreled away in the ELF symbol table as local symbols
1500    with wierd names.  Go get 'em when needed.  */
1501 
1502 void
1503 elfstab_offset_sections (struct objfile *objfile, struct partial_symtab *pst)
1504 {
1505   const char *filename = pst->filename;
1506   struct dbx_symfile_info *dbx = objfile->deprecated_sym_stab_info;
1507   struct stab_section_info *maybe = dbx->stab_section_info;
1508   struct stab_section_info *questionable = 0;
1509   int i;
1510 
1511   /* The ELF symbol info doesn't include path names, so strip the path
1512      (if any) from the psymtab filename.  */
1513   filename = lbasename (filename);
1514 
1515   /* FIXME:  This linear search could speed up significantly
1516      if it was chained in the right order to match how we search it,
1517      and if we unchained when we found a match.  */
1518   for (; maybe; maybe = maybe->next)
1519     {
1520       if (filename[0] == maybe->filename[0]
1521 	  && filename_cmp (filename, maybe->filename) == 0)
1522 	{
1523 	  /* We found a match.  But there might be several source files
1524 	     (from different directories) with the same name.  */
1525 	  if (0 == maybe->found)
1526 	    break;
1527 	  questionable = maybe;	/* Might use it later.  */
1528 	}
1529     }
1530 
1531   if (maybe == 0 && questionable != 0)
1532     {
1533       complaint (&symfile_complaints,
1534 		 _("elf/stab section information questionable for %s"),
1535 		 filename);
1536       maybe = questionable;
1537     }
1538 
1539   if (maybe)
1540     {
1541       /* Found it!  Allocate a new psymtab struct, and fill it in.  */
1542       maybe->found++;
1543       pst->section_offsets = (struct section_offsets *)
1544 	obstack_alloc (&objfile->objfile_obstack,
1545 		       SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
1546       for (i = 0; i < maybe->num_sections; i++)
1547 	(pst->section_offsets)->offsets[i] = maybe->sections[i];
1548       return;
1549     }
1550 
1551   /* We were unable to find any offsets for this file.  Complain.  */
1552   if (dbx->stab_section_info)	/* If there *is* any info, */
1553     complaint (&symfile_complaints,
1554 	       _("elf/stab section information missing for %s"), filename);
1555 }
1556 
1557 /* Register that we are able to handle ELF object file formats.  */
1558 
1559 static const struct sym_fns elf_sym_fns =
1560 {
1561   bfd_target_elf_flavour,
1562   elf_new_init,			/* init anything gbl to entire symtab */
1563   elf_symfile_init,		/* read initial info, setup for sym_read() */
1564   elf_symfile_read,		/* read a symbol file into symtab */
1565   NULL,				/* sym_read_psymbols */
1566   elf_symfile_finish,		/* finished with file, cleanup */
1567   default_symfile_offsets,	/* Translate ext. to int. relocation */
1568   elf_symfile_segments,		/* Get segment information from a file.  */
1569   NULL,
1570   default_symfile_relocate,	/* Relocate a debug section.  */
1571   &psym_functions
1572 };
1573 
1574 /* The same as elf_sym_fns, but not registered and lazily reads
1575    psymbols.  */
1576 
1577 static const struct sym_fns elf_sym_fns_lazy_psyms =
1578 {
1579   bfd_target_elf_flavour,
1580   elf_new_init,			/* init anything gbl to entire symtab */
1581   elf_symfile_init,		/* read initial info, setup for sym_read() */
1582   elf_symfile_read,		/* read a symbol file into symtab */
1583   read_psyms,			/* sym_read_psymbols */
1584   elf_symfile_finish,		/* finished with file, cleanup */
1585   default_symfile_offsets,	/* Translate ext. to int. relocation */
1586   elf_symfile_segments,		/* Get segment information from a file.  */
1587   NULL,
1588   default_symfile_relocate,	/* Relocate a debug section.  */
1589   &psym_functions
1590 };
1591 
1592 /* The same as elf_sym_fns, but not registered and uses the
1593    DWARF-specific GNU index rather than psymtab.  */
1594 static const struct sym_fns elf_sym_fns_gdb_index =
1595 {
1596   bfd_target_elf_flavour,
1597   elf_new_init,			/* init anything gbl to entire symab */
1598   elf_symfile_init,		/* read initial info, setup for sym_red() */
1599   elf_symfile_read,		/* read a symbol file into symtab */
1600   NULL,				/* sym_read_psymbols */
1601   elf_symfile_finish,		/* finished with file, cleanup */
1602   default_symfile_offsets,	/* Translate ext. to int. relocatin */
1603   elf_symfile_segments,		/* Get segment information from a file.  */
1604   NULL,
1605   default_symfile_relocate,	/* Relocate a debug section.  */
1606   &dwarf2_gdb_index_functions
1607 };
1608 
1609 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p.  */
1610 
1611 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1612 {
1613   elf_gnu_ifunc_resolve_addr,
1614   elf_gnu_ifunc_resolve_name,
1615   elf_gnu_ifunc_resolver_stop,
1616   elf_gnu_ifunc_resolver_return_stop
1617 };
1618 
1619 void
1620 _initialize_elfread (void)
1621 {
1622   add_symtab_fns (&elf_sym_fns);
1623 
1624   elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1625   gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1626 }
1627