xref: /dragonfly/contrib/gdb-7/gdb/event-loop.c (revision 78478697)
1 /* Event loop machinery for GDB, the GNU debugger.
2    Copyright (C) 1999-2013 Free Software Foundation, Inc.
3    Written by Elena Zannoni <ezannoni@cygnus.com> of Cygnus Solutions.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "event-loop.h"
22 #include "event-top.h"
23 #include "queue.h"
24 
25 #ifdef HAVE_POLL
26 #if defined (HAVE_POLL_H)
27 #include <poll.h>
28 #elif defined (HAVE_SYS_POLL_H)
29 #include <sys/poll.h>
30 #endif
31 #endif
32 
33 #include <sys/types.h>
34 #include "gdb_string.h"
35 #include <errno.h>
36 #include <sys/time.h>
37 #include "exceptions.h"
38 #include "gdb_assert.h"
39 #include "gdb_select.h"
40 
41 /* Tell create_file_handler what events we are interested in.
42    This is used by the select version of the event loop.  */
43 
44 #define GDB_READABLE	(1<<1)
45 #define GDB_WRITABLE	(1<<2)
46 #define GDB_EXCEPTION	(1<<3)
47 
48 /* Data point to pass to the event handler.  */
49 typedef union event_data
50 {
51   void *ptr;
52   int integer;
53 } event_data;
54 
55 typedef struct gdb_event gdb_event;
56 typedef void (event_handler_func) (event_data);
57 
58 /* Event for the GDB event system.  Events are queued by calling
59    async_queue_event and serviced later on by gdb_do_one_event.  An
60    event can be, for instance, a file descriptor becoming ready to be
61    read.  Servicing an event simply means that the procedure PROC will
62    be called.  We have 2 queues, one for file handlers that we listen
63    to in the event loop, and one for the file handlers+events that are
64    ready.  The procedure PROC associated with each event is dependant
65    of the event source.  In the case of monitored file descriptors, it
66    is always the same (handle_file_event).  Its duty is to invoke the
67    handler associated with the file descriptor whose state change
68    generated the event, plus doing other cleanups and such.  In the
69    case of async signal handlers, it is
70    invoke_async_signal_handler.  */
71 
72 typedef struct gdb_event
73   {
74     /* Procedure to call to service this event.  */
75     event_handler_func *proc;
76 
77     /* Data to pass to the event handler.  */
78     event_data data;
79   } *gdb_event_p;
80 
81 /* Information about each file descriptor we register with the event
82    loop.  */
83 
84 typedef struct file_handler
85   {
86     int fd;			/* File descriptor.  */
87     int mask;			/* Events we want to monitor: POLLIN, etc.  */
88     int ready_mask;		/* Events that have been seen since
89 				   the last time.  */
90     handler_func *proc;		/* Procedure to call when fd is ready.  */
91     gdb_client_data client_data;	/* Argument to pass to proc.  */
92     int error;			/* Was an error detected on this fd?  */
93     struct file_handler *next_file;	/* Next registered file descriptor.  */
94   }
95 file_handler;
96 
97 /* PROC is a function to be invoked when the READY flag is set.  This
98    happens when there has been a signal and the corresponding signal
99    handler has 'triggered' this async_signal_handler for execution.
100    The actual work to be done in response to a signal will be carried
101    out by PROC at a later time, within process_event.  This provides a
102    deferred execution of signal handlers.
103 
104    Async_init_signals takes care of setting up such an
105    async_signal_handler for each interesting signal.  */
106 
107 typedef struct async_signal_handler
108   {
109     int ready;			    /* If ready, call this handler
110 				       from the main event loop, using
111 				       invoke_async_handler.  */
112     struct async_signal_handler *next_handler;	/* Ptr to next handler.  */
113     sig_handler_func *proc;	    /* Function to call to do the work.  */
114     gdb_client_data client_data;    /* Argument to async_handler_func.  */
115   }
116 async_signal_handler;
117 
118 /* PROC is a function to be invoked when the READY flag is set.  This
119    happens when the event has been marked with
120    MARK_ASYNC_EVENT_HANDLER.  The actual work to be done in response
121    to an event will be carried out by PROC at a later time, within
122    process_event.  This provides a deferred execution of event
123    handlers.  */
124 typedef struct async_event_handler
125   {
126     /* If ready, call this handler from the main event loop, using
127        invoke_event_handler.  */
128     int ready;
129 
130     /* Point to next handler.  */
131     struct async_event_handler *next_handler;
132 
133     /* Function to call to do the work.  */
134     async_event_handler_func *proc;
135 
136     /* Argument to PROC.  */
137     gdb_client_data client_data;
138   }
139 async_event_handler;
140 
141 DECLARE_QUEUE_P(gdb_event_p);
142 DEFINE_QUEUE_P(gdb_event_p);
143 static QUEUE(gdb_event_p) *event_queue = NULL;
144 
145 /* Gdb_notifier is just a list of file descriptors gdb is interested in.
146    These are the input file descriptor, and the target file
147    descriptor.  We have two flavors of the notifier, one for platforms
148    that have the POLL function, the other for those that don't, and
149    only support SELECT.  Each of the elements in the gdb_notifier list is
150    basically a description of what kind of events gdb is interested
151    in, for each fd.  */
152 
153 /* As of 1999-04-30 only the input file descriptor is registered with the
154    event loop.  */
155 
156 /* Do we use poll or select ? */
157 #ifdef HAVE_POLL
158 #define USE_POLL 1
159 #else
160 #define USE_POLL 0
161 #endif /* HAVE_POLL */
162 
163 static unsigned char use_poll = USE_POLL;
164 
165 #ifdef USE_WIN32API
166 #include <windows.h>
167 #include <io.h>
168 #endif
169 
170 static struct
171   {
172     /* Ptr to head of file handler list.  */
173     file_handler *first_file_handler;
174 
175 #ifdef HAVE_POLL
176     /* Ptr to array of pollfd structures.  */
177     struct pollfd *poll_fds;
178 
179     /* Timeout in milliseconds for calls to poll().  */
180     int poll_timeout;
181 #endif
182 
183     /* Masks to be used in the next call to select.
184        Bits are set in response to calls to create_file_handler.  */
185     fd_set check_masks[3];
186 
187     /* What file descriptors were found ready by select.  */
188     fd_set ready_masks[3];
189 
190     /* Number of file descriptors to monitor (for poll).  */
191     /* Number of valid bits (highest fd value + 1) (for select).  */
192     int num_fds;
193 
194     /* Time structure for calls to select().  */
195     struct timeval select_timeout;
196 
197     /* Flag to tell whether the timeout should be used.  */
198     int timeout_valid;
199   }
200 gdb_notifier;
201 
202 /* Structure associated with a timer.  PROC will be executed at the
203    first occasion after WHEN.  */
204 struct gdb_timer
205   {
206     struct timeval when;
207     int timer_id;
208     struct gdb_timer *next;
209     timer_handler_func *proc;	    /* Function to call to do the work.  */
210     gdb_client_data client_data;    /* Argument to async_handler_func.  */
211   };
212 
213 /* List of currently active timers.  It is sorted in order of
214    increasing timers.  */
215 static struct
216   {
217     /* Pointer to first in timer list.  */
218     struct gdb_timer *first_timer;
219 
220     /* Id of the last timer created.  */
221     int num_timers;
222   }
223 timer_list;
224 
225 /* All the async_signal_handlers gdb is interested in are kept onto
226    this list.  */
227 static struct
228   {
229     /* Pointer to first in handler list.  */
230     async_signal_handler *first_handler;
231 
232     /* Pointer to last in handler list.  */
233     async_signal_handler *last_handler;
234   }
235 sighandler_list;
236 
237 /* All the async_event_handlers gdb is interested in are kept onto
238    this list.  */
239 static struct
240   {
241     /* Pointer to first in handler list.  */
242     async_event_handler *first_handler;
243 
244     /* Pointer to last in handler list.  */
245     async_event_handler *last_handler;
246   }
247 async_event_handler_list;
248 
249 static int invoke_async_signal_handlers (void);
250 static void create_file_handler (int fd, int mask, handler_func *proc,
251 				 gdb_client_data client_data);
252 static void handle_file_event (event_data data);
253 static void check_async_event_handlers (void);
254 static int gdb_wait_for_event (int);
255 static void poll_timers (void);
256 
257 
258 /* Create a generic event, to be enqueued in the event queue for
259    processing.  PROC is the procedure associated to the event.  DATA
260    is passed to PROC upon PROC invocation.  */
261 
262 static gdb_event *
263 create_event (event_handler_func proc, event_data data)
264 {
265   gdb_event *event;
266 
267   event = xmalloc (sizeof (*event));
268   event->proc = proc;
269   event->data = data;
270 
271   return event;
272 }
273 
274 /* Create a file event, to be enqueued in the event queue for
275    processing.  The procedure associated to this event is always
276    handle_file_event, which will in turn invoke the one that was
277    associated to FD when it was registered with the event loop.  */
278 static gdb_event *
279 create_file_event (int fd)
280 {
281   event_data data;
282 
283   data.integer = fd;
284   return create_event (handle_file_event, data);
285 }
286 
287 
288 /* Free EVENT.  */
289 
290 static void
291 gdb_event_xfree (struct gdb_event *event)
292 {
293   xfree (event);
294 }
295 
296 /* Initialize the event queue.  */
297 
298 void
299 initialize_event_loop (void)
300 {
301   event_queue = QUEUE_alloc (gdb_event_p, gdb_event_xfree);
302 }
303 
304 /* Process one event.
305    The event can be the next one to be serviced in the event queue,
306    or an asynchronous event handler can be invoked in response to
307    the reception of a signal.
308    If an event was processed (either way), 1 is returned otherwise
309    0 is returned.
310    Scan the queue from head to tail, processing therefore the high
311    priority events first, by invoking the associated event handler
312    procedure.  */
313 static int
314 process_event (void)
315 {
316   /* First let's see if there are any asynchronous event handlers that
317      are ready.  These would be the result of invoking any of the
318      signal handlers.  */
319 
320   if (invoke_async_signal_handlers ())
321     return 1;
322 
323   /* Look in the event queue to find an event that is ready
324      to be processed.  */
325 
326   if (!QUEUE_is_empty (gdb_event_p, event_queue))
327     {
328       /* Let's get rid of the event from the event queue.  We need to
329 	 do this now because while processing the event, the proc
330 	 function could end up calling 'error' and therefore jump out
331 	 to the caller of this function, gdb_do_one_event.  In that
332 	 case, we would have on the event queue an event wich has been
333 	 processed, but not deleted.  */
334       gdb_event *event_ptr = QUEUE_deque (gdb_event_p, event_queue);
335       /* Call the handler for the event.  */
336       event_handler_func *proc = event_ptr->proc;
337       event_data data = event_ptr->data;
338 
339       gdb_event_xfree (event_ptr);
340 
341       /* Now call the procedure associated with the event.  */
342       (*proc) (data);
343       return 1;
344     }
345 
346   /* This is the case if there are no event on the event queue.  */
347   return 0;
348 }
349 
350 /* Process one high level event.  If nothing is ready at this time,
351    wait for something to happen (via gdb_wait_for_event), then process
352    it.  Returns >0 if something was done otherwise returns <0 (this
353    can happen if there are no event sources to wait for).  */
354 
355 int
356 gdb_do_one_event (void)
357 {
358   static int event_source_head = 0;
359   const int number_of_sources = 3;
360   int current = 0;
361 
362   /* Any events already waiting in the queue?  */
363   if (process_event ())
364     return 1;
365 
366   /* To level the fairness across event sources, we poll them in a
367      round-robin fashion.  */
368   for (current = 0; current < number_of_sources; current++)
369     {
370       switch (event_source_head)
371 	{
372 	case 0:
373 	  /* Are any timers that are ready? If so, put an event on the
374 	     queue.  */
375 	  poll_timers ();
376 	  break;
377 	case 1:
378 	  /* Are there events already waiting to be collected on the
379 	     monitored file descriptors?  */
380 	  gdb_wait_for_event (0);
381 	  break;
382 	case 2:
383 	  /* Are there any asynchronous event handlers ready?  */
384 	  check_async_event_handlers ();
385 	  break;
386 	}
387 
388       event_source_head++;
389       if (event_source_head == number_of_sources)
390 	event_source_head = 0;
391     }
392 
393   /* Handle any new events collected.  */
394   if (process_event ())
395     return 1;
396 
397   /* Block waiting for a new event.  If gdb_wait_for_event returns -1,
398      we should get out because this means that there are no event
399      sources left.  This will make the event loop stop, and the
400      application exit.  */
401 
402   if (gdb_wait_for_event (1) < 0)
403     return -1;
404 
405   /* Handle any new events occurred while waiting.  */
406   if (process_event ())
407     return 1;
408 
409   /* If gdb_wait_for_event has returned 1, it means that one event has
410      been handled.  We break out of the loop.  */
411   return 1;
412 }
413 
414 /* Start up the event loop.  This is the entry point to the event loop
415    from the command loop.  */
416 
417 void
418 start_event_loop (void)
419 {
420   /* Loop until there is nothing to do.  This is the entry point to
421      the event loop engine.  gdb_do_one_event will process one event
422      for each invocation.  It blocks waiting for an event and then
423      processes it.  */
424   while (1)
425     {
426       volatile struct gdb_exception ex;
427       int result = 0;
428 
429       TRY_CATCH (ex, RETURN_MASK_ALL)
430 	{
431 	  result = gdb_do_one_event ();
432 	}
433       if (ex.reason < 0)
434 	{
435 	  exception_print (gdb_stderr, ex);
436 
437 	  /* If any exception escaped to here, we better enable
438 	     stdin.  Otherwise, any command that calls async_disable_stdin,
439 	     and then throws, will leave stdin inoperable.  */
440 	  async_enable_stdin ();
441 	  /* If we long-jumped out of do_one_event, we probably didn't
442 	     get around to resetting the prompt, which leaves readline
443 	     in a messed-up state.  Reset it here.  */
444 	  /* FIXME: this should really be a call to a hook that is
445 	     interface specific, because interfaces can display the
446 	     prompt in their own way.  */
447 	  display_gdb_prompt (0);
448 	  /* This call looks bizarre, but it is required.  If the user
449 	     entered a command that caused an error,
450 	     after_char_processing_hook won't be called from
451 	     rl_callback_read_char_wrapper.  Using a cleanup there
452 	     won't work, since we want this function to be called
453 	     after a new prompt is printed.  */
454 	  if (after_char_processing_hook)
455 	    (*after_char_processing_hook) ();
456 	  /* Maybe better to set a flag to be checked somewhere as to
457 	     whether display the prompt or not.  */
458 	}
459       if (result < 0)
460 	break;
461     }
462 
463   /* We are done with the event loop.  There are no more event sources
464      to listen to.  So we exit GDB.  */
465   return;
466 }
467 
468 
469 /* Wrapper function for create_file_handler, so that the caller
470    doesn't have to know implementation details about the use of poll
471    vs. select.  */
472 void
473 add_file_handler (int fd, handler_func * proc, gdb_client_data client_data)
474 {
475 #ifdef HAVE_POLL
476   struct pollfd fds;
477 #endif
478 
479   if (use_poll)
480     {
481 #ifdef HAVE_POLL
482       /* Check to see if poll () is usable.  If not, we'll switch to
483          use select.  This can happen on systems like
484          m68k-motorola-sys, `poll' cannot be used to wait for `stdin'.
485          On m68k-motorola-sysv, tty's are not stream-based and not
486          `poll'able.  */
487       fds.fd = fd;
488       fds.events = POLLIN;
489       if (poll (&fds, 1, 0) == 1 && (fds.revents & POLLNVAL))
490 	use_poll = 0;
491 #else
492       internal_error (__FILE__, __LINE__,
493 		      _("use_poll without HAVE_POLL"));
494 #endif /* HAVE_POLL */
495     }
496   if (use_poll)
497     {
498 #ifdef HAVE_POLL
499       create_file_handler (fd, POLLIN, proc, client_data);
500 #else
501       internal_error (__FILE__, __LINE__,
502 		      _("use_poll without HAVE_POLL"));
503 #endif
504     }
505   else
506     create_file_handler (fd, GDB_READABLE | GDB_EXCEPTION,
507 			 proc, client_data);
508 }
509 
510 /* Add a file handler/descriptor to the list of descriptors we are
511    interested in.
512 
513    FD is the file descriptor for the file/stream to be listened to.
514 
515    For the poll case, MASK is a combination (OR) of POLLIN,
516    POLLRDNORM, POLLRDBAND, POLLPRI, POLLOUT, POLLWRNORM, POLLWRBAND:
517    these are the events we are interested in.  If any of them occurs,
518    proc should be called.
519 
520    For the select case, MASK is a combination of READABLE, WRITABLE,
521    EXCEPTION.  PROC is the procedure that will be called when an event
522    occurs for FD.  CLIENT_DATA is the argument to pass to PROC.  */
523 
524 static void
525 create_file_handler (int fd, int mask, handler_func * proc,
526 		     gdb_client_data client_data)
527 {
528   file_handler *file_ptr;
529 
530   /* Do we already have a file handler for this file?  (We may be
531      changing its associated procedure).  */
532   for (file_ptr = gdb_notifier.first_file_handler; file_ptr != NULL;
533        file_ptr = file_ptr->next_file)
534     {
535       if (file_ptr->fd == fd)
536 	break;
537     }
538 
539   /* It is a new file descriptor.  Add it to the list.  Otherwise, just
540      change the data associated with it.  */
541   if (file_ptr == NULL)
542     {
543       file_ptr = (file_handler *) xmalloc (sizeof (file_handler));
544       file_ptr->fd = fd;
545       file_ptr->ready_mask = 0;
546       file_ptr->next_file = gdb_notifier.first_file_handler;
547       gdb_notifier.first_file_handler = file_ptr;
548 
549       if (use_poll)
550 	{
551 #ifdef HAVE_POLL
552 	  gdb_notifier.num_fds++;
553 	  if (gdb_notifier.poll_fds)
554 	    gdb_notifier.poll_fds =
555 	      (struct pollfd *) xrealloc (gdb_notifier.poll_fds,
556 					  (gdb_notifier.num_fds
557 					   * sizeof (struct pollfd)));
558 	  else
559 	    gdb_notifier.poll_fds =
560 	      (struct pollfd *) xmalloc (sizeof (struct pollfd));
561 	  (gdb_notifier.poll_fds + gdb_notifier.num_fds - 1)->fd = fd;
562 	  (gdb_notifier.poll_fds + gdb_notifier.num_fds - 1)->events = mask;
563 	  (gdb_notifier.poll_fds + gdb_notifier.num_fds - 1)->revents = 0;
564 #else
565 	  internal_error (__FILE__, __LINE__,
566 			  _("use_poll without HAVE_POLL"));
567 #endif /* HAVE_POLL */
568 	}
569       else
570 	{
571 	  if (mask & GDB_READABLE)
572 	    FD_SET (fd, &gdb_notifier.check_masks[0]);
573 	  else
574 	    FD_CLR (fd, &gdb_notifier.check_masks[0]);
575 
576 	  if (mask & GDB_WRITABLE)
577 	    FD_SET (fd, &gdb_notifier.check_masks[1]);
578 	  else
579 	    FD_CLR (fd, &gdb_notifier.check_masks[1]);
580 
581 	  if (mask & GDB_EXCEPTION)
582 	    FD_SET (fd, &gdb_notifier.check_masks[2]);
583 	  else
584 	    FD_CLR (fd, &gdb_notifier.check_masks[2]);
585 
586 	  if (gdb_notifier.num_fds <= fd)
587 	    gdb_notifier.num_fds = fd + 1;
588 	}
589     }
590 
591   file_ptr->proc = proc;
592   file_ptr->client_data = client_data;
593   file_ptr->mask = mask;
594 }
595 
596 /* Remove the file descriptor FD from the list of monitored fd's:
597    i.e. we don't care anymore about events on the FD.  */
598 void
599 delete_file_handler (int fd)
600 {
601   file_handler *file_ptr, *prev_ptr = NULL;
602   int i;
603 #ifdef HAVE_POLL
604   int j;
605   struct pollfd *new_poll_fds;
606 #endif
607 
608   /* Find the entry for the given file.  */
609 
610   for (file_ptr = gdb_notifier.first_file_handler; file_ptr != NULL;
611        file_ptr = file_ptr->next_file)
612     {
613       if (file_ptr->fd == fd)
614 	break;
615     }
616 
617   if (file_ptr == NULL)
618     return;
619 
620   if (use_poll)
621     {
622 #ifdef HAVE_POLL
623       /* Create a new poll_fds array by copying every fd's information
624          but the one we want to get rid of.  */
625 
626       new_poll_fds = (struct pollfd *)
627 	xmalloc ((gdb_notifier.num_fds - 1) * sizeof (struct pollfd));
628 
629       for (i = 0, j = 0; i < gdb_notifier.num_fds; i++)
630 	{
631 	  if ((gdb_notifier.poll_fds + i)->fd != fd)
632 	    {
633 	      (new_poll_fds + j)->fd = (gdb_notifier.poll_fds + i)->fd;
634 	      (new_poll_fds + j)->events = (gdb_notifier.poll_fds + i)->events;
635 	      (new_poll_fds + j)->revents
636 		= (gdb_notifier.poll_fds + i)->revents;
637 	      j++;
638 	    }
639 	}
640       xfree (gdb_notifier.poll_fds);
641       gdb_notifier.poll_fds = new_poll_fds;
642       gdb_notifier.num_fds--;
643 #else
644       internal_error (__FILE__, __LINE__,
645 		      _("use_poll without HAVE_POLL"));
646 #endif /* HAVE_POLL */
647     }
648   else
649     {
650       if (file_ptr->mask & GDB_READABLE)
651 	FD_CLR (fd, &gdb_notifier.check_masks[0]);
652       if (file_ptr->mask & GDB_WRITABLE)
653 	FD_CLR (fd, &gdb_notifier.check_masks[1]);
654       if (file_ptr->mask & GDB_EXCEPTION)
655 	FD_CLR (fd, &gdb_notifier.check_masks[2]);
656 
657       /* Find current max fd.  */
658 
659       if ((fd + 1) == gdb_notifier.num_fds)
660 	{
661 	  gdb_notifier.num_fds--;
662 	  for (i = gdb_notifier.num_fds; i; i--)
663 	    {
664 	      if (FD_ISSET (i - 1, &gdb_notifier.check_masks[0])
665 		  || FD_ISSET (i - 1, &gdb_notifier.check_masks[1])
666 		  || FD_ISSET (i - 1, &gdb_notifier.check_masks[2]))
667 		break;
668 	    }
669 	  gdb_notifier.num_fds = i;
670 	}
671     }
672 
673   /* Deactivate the file descriptor, by clearing its mask,
674      so that it will not fire again.  */
675 
676   file_ptr->mask = 0;
677 
678   /* Get rid of the file handler in the file handler list.  */
679   if (file_ptr == gdb_notifier.first_file_handler)
680     gdb_notifier.first_file_handler = file_ptr->next_file;
681   else
682     {
683       for (prev_ptr = gdb_notifier.first_file_handler;
684 	   prev_ptr->next_file != file_ptr;
685 	   prev_ptr = prev_ptr->next_file)
686 	;
687       prev_ptr->next_file = file_ptr->next_file;
688     }
689   xfree (file_ptr);
690 }
691 
692 /* Handle the given event by calling the procedure associated to the
693    corresponding file handler.  Called by process_event indirectly,
694    through event_ptr->proc.  EVENT_FILE_DESC is file descriptor of the
695    event in the front of the event queue.  */
696 static void
697 handle_file_event (event_data data)
698 {
699   file_handler *file_ptr;
700   int mask;
701 #ifdef HAVE_POLL
702   int error_mask;
703 #endif
704   int event_file_desc = data.integer;
705 
706   /* Search the file handler list to find one that matches the fd in
707      the event.  */
708   for (file_ptr = gdb_notifier.first_file_handler; file_ptr != NULL;
709        file_ptr = file_ptr->next_file)
710     {
711       if (file_ptr->fd == event_file_desc)
712 	{
713 	  /* With poll, the ready_mask could have any of three events
714 	     set to 1: POLLHUP, POLLERR, POLLNVAL.  These events
715 	     cannot be used in the requested event mask (events), but
716 	     they can be returned in the return mask (revents).  We
717 	     need to check for those event too, and add them to the
718 	     mask which will be passed to the handler.  */
719 
720 	  /* See if the desired events (mask) match the received
721 	     events (ready_mask).  */
722 
723 	  if (use_poll)
724 	    {
725 #ifdef HAVE_POLL
726 	      /* POLLHUP means EOF, but can be combined with POLLIN to
727 		 signal more data to read.  */
728 	      error_mask = POLLHUP | POLLERR | POLLNVAL;
729 	      mask = file_ptr->ready_mask & (file_ptr->mask | error_mask);
730 
731 	      if ((mask & (POLLERR | POLLNVAL)) != 0)
732 		{
733 		  /* Work in progress.  We may need to tell somebody
734 		     what kind of error we had.  */
735 		  if (mask & POLLERR)
736 		    printf_unfiltered (_("Error detected on fd %d\n"),
737 				       file_ptr->fd);
738 		  if (mask & POLLNVAL)
739 		    printf_unfiltered (_("Invalid or non-`poll'able fd %d\n"),
740 				       file_ptr->fd);
741 		  file_ptr->error = 1;
742 		}
743 	      else
744 		file_ptr->error = 0;
745 #else
746 	      internal_error (__FILE__, __LINE__,
747 			      _("use_poll without HAVE_POLL"));
748 #endif /* HAVE_POLL */
749 	    }
750 	  else
751 	    {
752 	      if (file_ptr->ready_mask & GDB_EXCEPTION)
753 		{
754 		  printf_unfiltered (_("Exception condition detected "
755 				       "on fd %d\n"), file_ptr->fd);
756 		  file_ptr->error = 1;
757 		}
758 	      else
759 		file_ptr->error = 0;
760 	      mask = file_ptr->ready_mask & file_ptr->mask;
761 	    }
762 
763 	  /* Clear the received events for next time around.  */
764 	  file_ptr->ready_mask = 0;
765 
766 	  /* If there was a match, then call the handler.  */
767 	  if (mask != 0)
768 	    (*file_ptr->proc) (file_ptr->error, file_ptr->client_data);
769 	  break;
770 	}
771     }
772 }
773 
774 /* Called by gdb_do_one_event to wait for new events on the monitored
775    file descriptors.  Queue file events as they are detected by the
776    poll.  If BLOCK and if there are no events, this function will
777    block in the call to poll.  Return -1 if there are no file
778    descriptors to monitor, otherwise return 0.  */
779 static int
780 gdb_wait_for_event (int block)
781 {
782   file_handler *file_ptr;
783   gdb_event *file_event_ptr;
784   int num_found = 0;
785   int i;
786 
787   /* Make sure all output is done before getting another event.  */
788   gdb_flush (gdb_stdout);
789   gdb_flush (gdb_stderr);
790 
791   if (gdb_notifier.num_fds == 0)
792     return -1;
793 
794   if (use_poll)
795     {
796 #ifdef HAVE_POLL
797       int timeout;
798 
799       if (block)
800 	timeout = gdb_notifier.timeout_valid ? gdb_notifier.poll_timeout : -1;
801       else
802 	timeout = 0;
803 
804       num_found = poll (gdb_notifier.poll_fds,
805 			(unsigned long) gdb_notifier.num_fds, timeout);
806 
807       /* Don't print anything if we get out of poll because of a
808 	 signal.  */
809       if (num_found == -1 && errno != EINTR)
810 	perror_with_name (("poll"));
811 #else
812       internal_error (__FILE__, __LINE__,
813 		      _("use_poll without HAVE_POLL"));
814 #endif /* HAVE_POLL */
815     }
816   else
817     {
818       struct timeval select_timeout;
819       struct timeval *timeout_p;
820 
821       if (block)
822 	timeout_p = gdb_notifier.timeout_valid
823 	  ? &gdb_notifier.select_timeout : NULL;
824       else
825 	{
826 	  memset (&select_timeout, 0, sizeof (select_timeout));
827 	  timeout_p = &select_timeout;
828 	}
829 
830       gdb_notifier.ready_masks[0] = gdb_notifier.check_masks[0];
831       gdb_notifier.ready_masks[1] = gdb_notifier.check_masks[1];
832       gdb_notifier.ready_masks[2] = gdb_notifier.check_masks[2];
833       num_found = gdb_select (gdb_notifier.num_fds,
834 			      &gdb_notifier.ready_masks[0],
835 			      &gdb_notifier.ready_masks[1],
836 			      &gdb_notifier.ready_masks[2],
837 			      timeout_p);
838 
839       /* Clear the masks after an error from select.  */
840       if (num_found == -1)
841 	{
842 	  FD_ZERO (&gdb_notifier.ready_masks[0]);
843 	  FD_ZERO (&gdb_notifier.ready_masks[1]);
844 	  FD_ZERO (&gdb_notifier.ready_masks[2]);
845 
846 	  /* Dont print anything if we got a signal, let gdb handle
847 	     it.  */
848 	  if (errno != EINTR)
849 	    perror_with_name (("select"));
850 	}
851     }
852 
853   /* Enqueue all detected file events.  */
854 
855   if (use_poll)
856     {
857 #ifdef HAVE_POLL
858       for (i = 0; (i < gdb_notifier.num_fds) && (num_found > 0); i++)
859 	{
860 	  if ((gdb_notifier.poll_fds + i)->revents)
861 	    num_found--;
862 	  else
863 	    continue;
864 
865 	  for (file_ptr = gdb_notifier.first_file_handler;
866 	       file_ptr != NULL;
867 	       file_ptr = file_ptr->next_file)
868 	    {
869 	      if (file_ptr->fd == (gdb_notifier.poll_fds + i)->fd)
870 		break;
871 	    }
872 
873 	  if (file_ptr)
874 	    {
875 	      /* Enqueue an event only if this is still a new event for
876 	         this fd.  */
877 	      if (file_ptr->ready_mask == 0)
878 		{
879 		  file_event_ptr = create_file_event (file_ptr->fd);
880 		  QUEUE_enque (gdb_event_p, event_queue, file_event_ptr);
881 		}
882 	      file_ptr->ready_mask = (gdb_notifier.poll_fds + i)->revents;
883 	    }
884 	}
885 #else
886       internal_error (__FILE__, __LINE__,
887 		      _("use_poll without HAVE_POLL"));
888 #endif /* HAVE_POLL */
889     }
890   else
891     {
892       for (file_ptr = gdb_notifier.first_file_handler;
893 	   (file_ptr != NULL) && (num_found > 0);
894 	   file_ptr = file_ptr->next_file)
895 	{
896 	  int mask = 0;
897 
898 	  if (FD_ISSET (file_ptr->fd, &gdb_notifier.ready_masks[0]))
899 	    mask |= GDB_READABLE;
900 	  if (FD_ISSET (file_ptr->fd, &gdb_notifier.ready_masks[1]))
901 	    mask |= GDB_WRITABLE;
902 	  if (FD_ISSET (file_ptr->fd, &gdb_notifier.ready_masks[2]))
903 	    mask |= GDB_EXCEPTION;
904 
905 	  if (!mask)
906 	    continue;
907 	  else
908 	    num_found--;
909 
910 	  /* Enqueue an event only if this is still a new event for
911 	     this fd.  */
912 
913 	  if (file_ptr->ready_mask == 0)
914 	    {
915 	      file_event_ptr = create_file_event (file_ptr->fd);
916 	      QUEUE_enque (gdb_event_p, event_queue, file_event_ptr);
917 	    }
918 	  file_ptr->ready_mask = mask;
919 	}
920     }
921   return 0;
922 }
923 
924 
925 /* Create an asynchronous handler, allocating memory for it.
926    Return a pointer to the newly created handler.
927    This pointer will be used to invoke the handler by
928    invoke_async_signal_handler.
929    PROC is the function to call with CLIENT_DATA argument
930    whenever the handler is invoked.  */
931 async_signal_handler *
932 create_async_signal_handler (sig_handler_func * proc,
933 			     gdb_client_data client_data)
934 {
935   async_signal_handler *async_handler_ptr;
936 
937   async_handler_ptr =
938     (async_signal_handler *) xmalloc (sizeof (async_signal_handler));
939   async_handler_ptr->ready = 0;
940   async_handler_ptr->next_handler = NULL;
941   async_handler_ptr->proc = proc;
942   async_handler_ptr->client_data = client_data;
943   if (sighandler_list.first_handler == NULL)
944     sighandler_list.first_handler = async_handler_ptr;
945   else
946     sighandler_list.last_handler->next_handler = async_handler_ptr;
947   sighandler_list.last_handler = async_handler_ptr;
948   return async_handler_ptr;
949 }
950 
951 /* Call the handler from HANDLER immediately.  This function runs
952    signal handlers when returning to the event loop would be too
953    slow.  */
954 void
955 call_async_signal_handler (struct async_signal_handler *handler)
956 {
957   (*handler->proc) (handler->client_data);
958 }
959 
960 /* Mark the handler (ASYNC_HANDLER_PTR) as ready.  This information
961    will be used when the handlers are invoked, after we have waited
962    for some event.  The caller of this function is the interrupt
963    handler associated with a signal.  */
964 void
965 mark_async_signal_handler (async_signal_handler * async_handler_ptr)
966 {
967   async_handler_ptr->ready = 1;
968 }
969 
970 /* Call all the handlers that are ready.  Returns true if any was
971    indeed ready.  */
972 static int
973 invoke_async_signal_handlers (void)
974 {
975   async_signal_handler *async_handler_ptr;
976   int any_ready = 0;
977 
978   /* Invoke ready handlers.  */
979 
980   while (1)
981     {
982       for (async_handler_ptr = sighandler_list.first_handler;
983 	   async_handler_ptr != NULL;
984 	   async_handler_ptr = async_handler_ptr->next_handler)
985 	{
986 	  if (async_handler_ptr->ready)
987 	    break;
988 	}
989       if (async_handler_ptr == NULL)
990 	break;
991       any_ready = 1;
992       async_handler_ptr->ready = 0;
993       (*async_handler_ptr->proc) (async_handler_ptr->client_data);
994     }
995 
996   return any_ready;
997 }
998 
999 /* Delete an asynchronous handler (ASYNC_HANDLER_PTR).
1000    Free the space allocated for it.  */
1001 void
1002 delete_async_signal_handler (async_signal_handler ** async_handler_ptr)
1003 {
1004   async_signal_handler *prev_ptr;
1005 
1006   if (sighandler_list.first_handler == (*async_handler_ptr))
1007     {
1008       sighandler_list.first_handler = (*async_handler_ptr)->next_handler;
1009       if (sighandler_list.first_handler == NULL)
1010 	sighandler_list.last_handler = NULL;
1011     }
1012   else
1013     {
1014       prev_ptr = sighandler_list.first_handler;
1015       while (prev_ptr && prev_ptr->next_handler != (*async_handler_ptr))
1016 	prev_ptr = prev_ptr->next_handler;
1017       gdb_assert (prev_ptr);
1018       prev_ptr->next_handler = (*async_handler_ptr)->next_handler;
1019       if (sighandler_list.last_handler == (*async_handler_ptr))
1020 	sighandler_list.last_handler = prev_ptr;
1021     }
1022   xfree ((*async_handler_ptr));
1023   (*async_handler_ptr) = NULL;
1024 }
1025 
1026 /* Create an asynchronous event handler, allocating memory for it.
1027    Return a pointer to the newly created handler.  PROC is the
1028    function to call with CLIENT_DATA argument whenever the handler is
1029    invoked.  */
1030 async_event_handler *
1031 create_async_event_handler (async_event_handler_func *proc,
1032 			    gdb_client_data client_data)
1033 {
1034   async_event_handler *h;
1035 
1036   h = xmalloc (sizeof (*h));
1037   h->ready = 0;
1038   h->next_handler = NULL;
1039   h->proc = proc;
1040   h->client_data = client_data;
1041   if (async_event_handler_list.first_handler == NULL)
1042     async_event_handler_list.first_handler = h;
1043   else
1044     async_event_handler_list.last_handler->next_handler = h;
1045   async_event_handler_list.last_handler = h;
1046   return h;
1047 }
1048 
1049 /* Mark the handler (ASYNC_HANDLER_PTR) as ready.  This information
1050    will be used by gdb_do_one_event.  The caller will be whoever
1051    created the event source, and wants to signal that the event is
1052    ready to be handled.  */
1053 void
1054 mark_async_event_handler (async_event_handler *async_handler_ptr)
1055 {
1056   async_handler_ptr->ready = 1;
1057 }
1058 
1059 struct async_event_handler_data
1060 {
1061   async_event_handler_func* proc;
1062   gdb_client_data client_data;
1063 };
1064 
1065 static void
1066 invoke_async_event_handler (event_data data)
1067 {
1068   struct async_event_handler_data *hdata = data.ptr;
1069   async_event_handler_func* proc = hdata->proc;
1070   gdb_client_data client_data = hdata->client_data;
1071 
1072   xfree (hdata);
1073   (*proc) (client_data);
1074 }
1075 
1076 /* Check if any asynchronous event handlers are ready, and queue
1077    events in the ready queue for any that are.  */
1078 static void
1079 check_async_event_handlers (void)
1080 {
1081   async_event_handler *async_handler_ptr;
1082   struct async_event_handler_data *hdata;
1083   struct gdb_event *event_ptr;
1084   event_data data;
1085 
1086   for (async_handler_ptr = async_event_handler_list.first_handler;
1087        async_handler_ptr != NULL;
1088        async_handler_ptr = async_handler_ptr->next_handler)
1089     {
1090       if (async_handler_ptr->ready)
1091 	{
1092 	  async_handler_ptr->ready = 0;
1093 
1094 	  hdata = xmalloc (sizeof (*hdata));
1095 
1096 	  hdata->proc = async_handler_ptr->proc;
1097 	  hdata->client_data = async_handler_ptr->client_data;
1098 
1099 	  data.ptr = hdata;
1100 
1101 	  event_ptr = create_event (invoke_async_event_handler, data);
1102 	  QUEUE_enque (gdb_event_p, event_queue, event_ptr);
1103 	}
1104     }
1105 }
1106 
1107 /* Delete an asynchronous handler (ASYNC_HANDLER_PTR).
1108    Free the space allocated for it.  */
1109 void
1110 delete_async_event_handler (async_event_handler **async_handler_ptr)
1111 {
1112   async_event_handler *prev_ptr;
1113 
1114   if (async_event_handler_list.first_handler == *async_handler_ptr)
1115     {
1116       async_event_handler_list.first_handler
1117 	= (*async_handler_ptr)->next_handler;
1118       if (async_event_handler_list.first_handler == NULL)
1119 	async_event_handler_list.last_handler = NULL;
1120     }
1121   else
1122     {
1123       prev_ptr = async_event_handler_list.first_handler;
1124       while (prev_ptr && prev_ptr->next_handler != *async_handler_ptr)
1125 	prev_ptr = prev_ptr->next_handler;
1126       gdb_assert (prev_ptr);
1127       prev_ptr->next_handler = (*async_handler_ptr)->next_handler;
1128       if (async_event_handler_list.last_handler == (*async_handler_ptr))
1129 	async_event_handler_list.last_handler = prev_ptr;
1130     }
1131   xfree (*async_handler_ptr);
1132   *async_handler_ptr = NULL;
1133 }
1134 
1135 /* Create a timer that will expire in MILLISECONDS from now.  When the
1136    timer is ready, PROC will be executed.  At creation, the timer is
1137    aded to the timers queue.  This queue is kept sorted in order of
1138    increasing timers.  Return a handle to the timer struct.  */
1139 int
1140 create_timer (int milliseconds, timer_handler_func * proc,
1141 	      gdb_client_data client_data)
1142 {
1143   struct gdb_timer *timer_ptr, *timer_index, *prev_timer;
1144   struct timeval time_now, delta;
1145 
1146   /* Compute seconds.  */
1147   delta.tv_sec = milliseconds / 1000;
1148   /* Compute microseconds.  */
1149   delta.tv_usec = (milliseconds % 1000) * 1000;
1150 
1151   gettimeofday (&time_now, NULL);
1152 
1153   timer_ptr = (struct gdb_timer *) xmalloc (sizeof (*timer_ptr));
1154   timer_ptr->when.tv_sec = time_now.tv_sec + delta.tv_sec;
1155   timer_ptr->when.tv_usec = time_now.tv_usec + delta.tv_usec;
1156   /* Carry?  */
1157   if (timer_ptr->when.tv_usec >= 1000000)
1158     {
1159       timer_ptr->when.tv_sec += 1;
1160       timer_ptr->when.tv_usec -= 1000000;
1161     }
1162   timer_ptr->proc = proc;
1163   timer_ptr->client_data = client_data;
1164   timer_list.num_timers++;
1165   timer_ptr->timer_id = timer_list.num_timers;
1166 
1167   /* Now add the timer to the timer queue, making sure it is sorted in
1168      increasing order of expiration.  */
1169 
1170   for (timer_index = timer_list.first_timer;
1171        timer_index != NULL;
1172        timer_index = timer_index->next)
1173     {
1174       /* If the seconds field is greater or if it is the same, but the
1175          microsecond field is greater.  */
1176       if ((timer_index->when.tv_sec > timer_ptr->when.tv_sec)
1177 	  || ((timer_index->when.tv_sec == timer_ptr->when.tv_sec)
1178 	      && (timer_index->when.tv_usec > timer_ptr->when.tv_usec)))
1179 	break;
1180     }
1181 
1182   if (timer_index == timer_list.first_timer)
1183     {
1184       timer_ptr->next = timer_list.first_timer;
1185       timer_list.first_timer = timer_ptr;
1186 
1187     }
1188   else
1189     {
1190       for (prev_timer = timer_list.first_timer;
1191 	   prev_timer->next != timer_index;
1192 	   prev_timer = prev_timer->next)
1193 	;
1194 
1195       prev_timer->next = timer_ptr;
1196       timer_ptr->next = timer_index;
1197     }
1198 
1199   gdb_notifier.timeout_valid = 0;
1200   return timer_ptr->timer_id;
1201 }
1202 
1203 /* There is a chance that the creator of the timer wants to get rid of
1204    it before it expires.  */
1205 void
1206 delete_timer (int id)
1207 {
1208   struct gdb_timer *timer_ptr, *prev_timer = NULL;
1209 
1210   /* Find the entry for the given timer.  */
1211 
1212   for (timer_ptr = timer_list.first_timer; timer_ptr != NULL;
1213        timer_ptr = timer_ptr->next)
1214     {
1215       if (timer_ptr->timer_id == id)
1216 	break;
1217     }
1218 
1219   if (timer_ptr == NULL)
1220     return;
1221   /* Get rid of the timer in the timer list.  */
1222   if (timer_ptr == timer_list.first_timer)
1223     timer_list.first_timer = timer_ptr->next;
1224   else
1225     {
1226       for (prev_timer = timer_list.first_timer;
1227 	   prev_timer->next != timer_ptr;
1228 	   prev_timer = prev_timer->next)
1229 	;
1230       prev_timer->next = timer_ptr->next;
1231     }
1232   xfree (timer_ptr);
1233 
1234   gdb_notifier.timeout_valid = 0;
1235 }
1236 
1237 /* When a timer event is put on the event queue, it will be handled by
1238    this function.  Just call the associated procedure and delete the
1239    timer event from the event queue.  Repeat this for each timer that
1240    has expired.  */
1241 static void
1242 handle_timer_event (event_data dummy)
1243 {
1244   struct timeval time_now;
1245   struct gdb_timer *timer_ptr, *saved_timer;
1246 
1247   gettimeofday (&time_now, NULL);
1248   timer_ptr = timer_list.first_timer;
1249 
1250   while (timer_ptr != NULL)
1251     {
1252       if ((timer_ptr->when.tv_sec > time_now.tv_sec)
1253 	  || ((timer_ptr->when.tv_sec == time_now.tv_sec)
1254 	      && (timer_ptr->when.tv_usec > time_now.tv_usec)))
1255 	break;
1256 
1257       /* Get rid of the timer from the beginning of the list.  */
1258       timer_list.first_timer = timer_ptr->next;
1259       saved_timer = timer_ptr;
1260       timer_ptr = timer_ptr->next;
1261       /* Call the procedure associated with that timer.  */
1262       (*saved_timer->proc) (saved_timer->client_data);
1263       xfree (saved_timer);
1264     }
1265 
1266   gdb_notifier.timeout_valid = 0;
1267 }
1268 
1269 /* Check whether any timers in the timers queue are ready.  If at least
1270    one timer is ready, stick an event onto the event queue.  Even in
1271    case more than one timer is ready, one event is enough, because the
1272    handle_timer_event() will go through the timers list and call the
1273    procedures associated with all that have expired.l Update the
1274    timeout for the select() or poll() as well.  */
1275 static void
1276 poll_timers (void)
1277 {
1278   struct timeval time_now, delta;
1279   gdb_event *event_ptr;
1280 
1281   if (timer_list.first_timer != NULL)
1282     {
1283       gettimeofday (&time_now, NULL);
1284       delta.tv_sec = timer_list.first_timer->when.tv_sec - time_now.tv_sec;
1285       delta.tv_usec = timer_list.first_timer->when.tv_usec - time_now.tv_usec;
1286       /* Borrow?  */
1287       if (delta.tv_usec < 0)
1288 	{
1289 	  delta.tv_sec -= 1;
1290 	  delta.tv_usec += 1000000;
1291 	}
1292 
1293       /* Oops it expired already.  Tell select / poll to return
1294          immediately.  (Cannot simply test if delta.tv_sec is negative
1295          because time_t might be unsigned.)  */
1296       if (timer_list.first_timer->when.tv_sec < time_now.tv_sec
1297 	  || (timer_list.first_timer->when.tv_sec == time_now.tv_sec
1298 	      && timer_list.first_timer->when.tv_usec < time_now.tv_usec))
1299 	{
1300 	  delta.tv_sec = 0;
1301 	  delta.tv_usec = 0;
1302 	}
1303 
1304       if (delta.tv_sec == 0 && delta.tv_usec == 0)
1305 	{
1306 	  event_ptr = (gdb_event *) xmalloc (sizeof (gdb_event));
1307 	  event_ptr->proc = handle_timer_event;
1308 	  event_ptr->data.integer = timer_list.first_timer->timer_id;
1309 	  QUEUE_enque (gdb_event_p, event_queue, event_ptr);
1310 	}
1311 
1312       /* Now we need to update the timeout for select/ poll, because
1313          we don't want to sit there while this timer is expiring.  */
1314       if (use_poll)
1315 	{
1316 #ifdef HAVE_POLL
1317 	  gdb_notifier.poll_timeout = delta.tv_sec * 1000;
1318 #else
1319 	  internal_error (__FILE__, __LINE__,
1320 			  _("use_poll without HAVE_POLL"));
1321 #endif /* HAVE_POLL */
1322 	}
1323       else
1324 	{
1325 	  gdb_notifier.select_timeout.tv_sec = delta.tv_sec;
1326 	  gdb_notifier.select_timeout.tv_usec = delta.tv_usec;
1327 	}
1328       gdb_notifier.timeout_valid = 1;
1329     }
1330   else
1331     gdb_notifier.timeout_valid = 0;
1332 }
1333