xref: /dragonfly/contrib/gdb-7/gdb/gdbtypes.c (revision 77b0c609)
1 /* Support routines for manipulating internal types for GDB.
2 
3    Copyright (C) 1992-1996, 1998-2012 Free Software Foundation, Inc.
4 
5    Contributed by Cygnus Support, using pieces from other GDB modules.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "bfd.h"
25 #include "symtab.h"
26 #include "symfile.h"
27 #include "objfiles.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "language.h"
31 #include "target.h"
32 #include "value.h"
33 #include "demangle.h"
34 #include "complaints.h"
35 #include "gdbcmd.h"
36 #include "wrapper.h"
37 #include "cp-abi.h"
38 #include "gdb_assert.h"
39 #include "hashtab.h"
40 
41 
42 /* Initialize BADNESS constants.  */
43 
44 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
45 
46 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
48 
49 const struct rank EXACT_MATCH_BADNESS = {0,0};
50 
51 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
58 const struct rank BOOL_PTR_CONVERSION_BADNESS = {3,0};
59 const struct rank BASE_CONVERSION_BADNESS = {2,0};
60 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
61 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
62 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
63 
64 /* Floatformat pairs.  */
65 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
66   &floatformat_ieee_half_big,
67   &floatformat_ieee_half_little
68 };
69 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
70   &floatformat_ieee_single_big,
71   &floatformat_ieee_single_little
72 };
73 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
74   &floatformat_ieee_double_big,
75   &floatformat_ieee_double_little
76 };
77 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
78   &floatformat_ieee_double_big,
79   &floatformat_ieee_double_littlebyte_bigword
80 };
81 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
82   &floatformat_i387_ext,
83   &floatformat_i387_ext
84 };
85 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
86   &floatformat_m68881_ext,
87   &floatformat_m68881_ext
88 };
89 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
90   &floatformat_arm_ext_big,
91   &floatformat_arm_ext_littlebyte_bigword
92 };
93 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
94   &floatformat_ia64_spill_big,
95   &floatformat_ia64_spill_little
96 };
97 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
98   &floatformat_ia64_quad_big,
99   &floatformat_ia64_quad_little
100 };
101 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
102   &floatformat_vax_f,
103   &floatformat_vax_f
104 };
105 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
106   &floatformat_vax_d,
107   &floatformat_vax_d
108 };
109 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
110   &floatformat_ibm_long_double,
111   &floatformat_ibm_long_double
112 };
113 
114 
115 int opaque_type_resolution = 1;
116 static void
117 show_opaque_type_resolution (struct ui_file *file, int from_tty,
118 			     struct cmd_list_element *c,
119 			     const char *value)
120 {
121   fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
122 			    "(if set before loading symbols) is %s.\n"),
123 		    value);
124 }
125 
126 int overload_debug = 0;
127 static void
128 show_overload_debug (struct ui_file *file, int from_tty,
129 		     struct cmd_list_element *c, const char *value)
130 {
131   fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
132 		    value);
133 }
134 
135 struct extra
136   {
137     char str[128];
138     int len;
139   };				/* Maximum extension is 128!  FIXME  */
140 
141 static void print_bit_vector (B_TYPE *, int);
142 static void print_arg_types (struct field *, int, int);
143 static void dump_fn_fieldlists (struct type *, int);
144 static void print_cplus_stuff (struct type *, int);
145 
146 
147 /* Allocate a new OBJFILE-associated type structure and fill it
148    with some defaults.  Space for the type structure is allocated
149    on the objfile's objfile_obstack.  */
150 
151 struct type *
152 alloc_type (struct objfile *objfile)
153 {
154   struct type *type;
155 
156   gdb_assert (objfile != NULL);
157 
158   /* Alloc the structure and start off with all fields zeroed.  */
159   type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
160   TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
161 					  struct main_type);
162   OBJSTAT (objfile, n_types++);
163 
164   TYPE_OBJFILE_OWNED (type) = 1;
165   TYPE_OWNER (type).objfile = objfile;
166 
167   /* Initialize the fields that might not be zero.  */
168 
169   TYPE_CODE (type) = TYPE_CODE_UNDEF;
170   TYPE_VPTR_FIELDNO (type) = -1;
171   TYPE_CHAIN (type) = type;	/* Chain back to itself.  */
172 
173   return type;
174 }
175 
176 /* Allocate a new GDBARCH-associated type structure and fill it
177    with some defaults.  Space for the type structure is allocated
178    on the heap.  */
179 
180 struct type *
181 alloc_type_arch (struct gdbarch *gdbarch)
182 {
183   struct type *type;
184 
185   gdb_assert (gdbarch != NULL);
186 
187   /* Alloc the structure and start off with all fields zeroed.  */
188 
189   type = XZALLOC (struct type);
190   TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
191 
192   TYPE_OBJFILE_OWNED (type) = 0;
193   TYPE_OWNER (type).gdbarch = gdbarch;
194 
195   /* Initialize the fields that might not be zero.  */
196 
197   TYPE_CODE (type) = TYPE_CODE_UNDEF;
198   TYPE_VPTR_FIELDNO (type) = -1;
199   TYPE_CHAIN (type) = type;	/* Chain back to itself.  */
200 
201   return type;
202 }
203 
204 /* If TYPE is objfile-associated, allocate a new type structure
205    associated with the same objfile.  If TYPE is gdbarch-associated,
206    allocate a new type structure associated with the same gdbarch.  */
207 
208 struct type *
209 alloc_type_copy (const struct type *type)
210 {
211   if (TYPE_OBJFILE_OWNED (type))
212     return alloc_type (TYPE_OWNER (type).objfile);
213   else
214     return alloc_type_arch (TYPE_OWNER (type).gdbarch);
215 }
216 
217 /* If TYPE is gdbarch-associated, return that architecture.
218    If TYPE is objfile-associated, return that objfile's architecture.  */
219 
220 struct gdbarch *
221 get_type_arch (const struct type *type)
222 {
223   if (TYPE_OBJFILE_OWNED (type))
224     return get_objfile_arch (TYPE_OWNER (type).objfile);
225   else
226     return TYPE_OWNER (type).gdbarch;
227 }
228 
229 
230 /* Alloc a new type instance structure, fill it with some defaults,
231    and point it at OLDTYPE.  Allocate the new type instance from the
232    same place as OLDTYPE.  */
233 
234 static struct type *
235 alloc_type_instance (struct type *oldtype)
236 {
237   struct type *type;
238 
239   /* Allocate the structure.  */
240 
241   if (! TYPE_OBJFILE_OWNED (oldtype))
242     type = XZALLOC (struct type);
243   else
244     type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
245 			   struct type);
246 
247   TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
248 
249   TYPE_CHAIN (type) = type;	/* Chain back to itself for now.  */
250 
251   return type;
252 }
253 
254 /* Clear all remnants of the previous type at TYPE, in preparation for
255    replacing it with something else.  Preserve owner information.  */
256 static void
257 smash_type (struct type *type)
258 {
259   int objfile_owned = TYPE_OBJFILE_OWNED (type);
260   union type_owner owner = TYPE_OWNER (type);
261 
262   memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
263 
264   /* Restore owner information.  */
265   TYPE_OBJFILE_OWNED (type) = objfile_owned;
266   TYPE_OWNER (type) = owner;
267 
268   /* For now, delete the rings.  */
269   TYPE_CHAIN (type) = type;
270 
271   /* For now, leave the pointer/reference types alone.  */
272 }
273 
274 /* Lookup a pointer to a type TYPE.  TYPEPTR, if nonzero, points
275    to a pointer to memory where the pointer type should be stored.
276    If *TYPEPTR is zero, update it to point to the pointer type we return.
277    We allocate new memory if needed.  */
278 
279 struct type *
280 make_pointer_type (struct type *type, struct type **typeptr)
281 {
282   struct type *ntype;	/* New type */
283   struct type *chain;
284 
285   ntype = TYPE_POINTER_TYPE (type);
286 
287   if (ntype)
288     {
289       if (typeptr == 0)
290 	return ntype;		/* Don't care about alloc,
291 				   and have new type.  */
292       else if (*typeptr == 0)
293 	{
294 	  *typeptr = ntype;	/* Tracking alloc, and have new type.  */
295 	  return ntype;
296 	}
297     }
298 
299   if (typeptr == 0 || *typeptr == 0)	/* We'll need to allocate one.  */
300     {
301       ntype = alloc_type_copy (type);
302       if (typeptr)
303 	*typeptr = ntype;
304     }
305   else			/* We have storage, but need to reset it.  */
306     {
307       ntype = *typeptr;
308       chain = TYPE_CHAIN (ntype);
309       smash_type (ntype);
310       TYPE_CHAIN (ntype) = chain;
311     }
312 
313   TYPE_TARGET_TYPE (ntype) = type;
314   TYPE_POINTER_TYPE (type) = ntype;
315 
316   /* FIXME!  Assume the machine has only one representation for
317      pointers!  */
318 
319   TYPE_LENGTH (ntype)
320     = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
321   TYPE_CODE (ntype) = TYPE_CODE_PTR;
322 
323   /* Mark pointers as unsigned.  The target converts between pointers
324      and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
325      gdbarch_address_to_pointer.  */
326   TYPE_UNSIGNED (ntype) = 1;
327 
328   if (!TYPE_POINTER_TYPE (type))	/* Remember it, if don't have one.  */
329     TYPE_POINTER_TYPE (type) = ntype;
330 
331   /* Update the length of all the other variants of this type.  */
332   chain = TYPE_CHAIN (ntype);
333   while (chain != ntype)
334     {
335       TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
336       chain = TYPE_CHAIN (chain);
337     }
338 
339   return ntype;
340 }
341 
342 /* Given a type TYPE, return a type of pointers to that type.
343    May need to construct such a type if this is the first use.  */
344 
345 struct type *
346 lookup_pointer_type (struct type *type)
347 {
348   return make_pointer_type (type, (struct type **) 0);
349 }
350 
351 /* Lookup a C++ `reference' to a type TYPE.  TYPEPTR, if nonzero,
352    points to a pointer to memory where the reference type should be
353    stored.  If *TYPEPTR is zero, update it to point to the reference
354    type we return.  We allocate new memory if needed.  */
355 
356 struct type *
357 make_reference_type (struct type *type, struct type **typeptr)
358 {
359   struct type *ntype;	/* New type */
360   struct type *chain;
361 
362   ntype = TYPE_REFERENCE_TYPE (type);
363 
364   if (ntype)
365     {
366       if (typeptr == 0)
367 	return ntype;		/* Don't care about alloc,
368 				   and have new type.  */
369       else if (*typeptr == 0)
370 	{
371 	  *typeptr = ntype;	/* Tracking alloc, and have new type.  */
372 	  return ntype;
373 	}
374     }
375 
376   if (typeptr == 0 || *typeptr == 0)	/* We'll need to allocate one.  */
377     {
378       ntype = alloc_type_copy (type);
379       if (typeptr)
380 	*typeptr = ntype;
381     }
382   else			/* We have storage, but need to reset it.  */
383     {
384       ntype = *typeptr;
385       chain = TYPE_CHAIN (ntype);
386       smash_type (ntype);
387       TYPE_CHAIN (ntype) = chain;
388     }
389 
390   TYPE_TARGET_TYPE (ntype) = type;
391   TYPE_REFERENCE_TYPE (type) = ntype;
392 
393   /* FIXME!  Assume the machine has only one representation for
394      references, and that it matches the (only) representation for
395      pointers!  */
396 
397   TYPE_LENGTH (ntype) =
398     gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
399   TYPE_CODE (ntype) = TYPE_CODE_REF;
400 
401   if (!TYPE_REFERENCE_TYPE (type))	/* Remember it, if don't have one.  */
402     TYPE_REFERENCE_TYPE (type) = ntype;
403 
404   /* Update the length of all the other variants of this type.  */
405   chain = TYPE_CHAIN (ntype);
406   while (chain != ntype)
407     {
408       TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
409       chain = TYPE_CHAIN (chain);
410     }
411 
412   return ntype;
413 }
414 
415 /* Same as above, but caller doesn't care about memory allocation
416    details.  */
417 
418 struct type *
419 lookup_reference_type (struct type *type)
420 {
421   return make_reference_type (type, (struct type **) 0);
422 }
423 
424 /* Lookup a function type that returns type TYPE.  TYPEPTR, if
425    nonzero, points to a pointer to memory where the function type
426    should be stored.  If *TYPEPTR is zero, update it to point to the
427    function type we return.  We allocate new memory if needed.  */
428 
429 struct type *
430 make_function_type (struct type *type, struct type **typeptr)
431 {
432   struct type *ntype;	/* New type */
433 
434   if (typeptr == 0 || *typeptr == 0)	/* We'll need to allocate one.  */
435     {
436       ntype = alloc_type_copy (type);
437       if (typeptr)
438 	*typeptr = ntype;
439     }
440   else			/* We have storage, but need to reset it.  */
441     {
442       ntype = *typeptr;
443       smash_type (ntype);
444     }
445 
446   TYPE_TARGET_TYPE (ntype) = type;
447 
448   TYPE_LENGTH (ntype) = 1;
449   TYPE_CODE (ntype) = TYPE_CODE_FUNC;
450 
451   INIT_FUNC_SPECIFIC (ntype);
452 
453   return ntype;
454 }
455 
456 
457 /* Given a type TYPE, return a type of functions that return that type.
458    May need to construct such a type if this is the first use.  */
459 
460 struct type *
461 lookup_function_type (struct type *type)
462 {
463   return make_function_type (type, (struct type **) 0);
464 }
465 
466 /* Identify address space identifier by name --
467    return the integer flag defined in gdbtypes.h.  */
468 extern int
469 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
470 {
471   int type_flags;
472 
473   /* Check for known address space delimiters.  */
474   if (!strcmp (space_identifier, "code"))
475     return TYPE_INSTANCE_FLAG_CODE_SPACE;
476   else if (!strcmp (space_identifier, "data"))
477     return TYPE_INSTANCE_FLAG_DATA_SPACE;
478   else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
479            && gdbarch_address_class_name_to_type_flags (gdbarch,
480 							space_identifier,
481 							&type_flags))
482     return type_flags;
483   else
484     error (_("Unknown address space specifier: \"%s\""), space_identifier);
485 }
486 
487 /* Identify address space identifier by integer flag as defined in
488    gdbtypes.h -- return the string version of the adress space name.  */
489 
490 const char *
491 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
492 {
493   if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
494     return "code";
495   else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
496     return "data";
497   else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
498            && gdbarch_address_class_type_flags_to_name_p (gdbarch))
499     return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
500   else
501     return NULL;
502 }
503 
504 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
505 
506    If STORAGE is non-NULL, create the new type instance there.
507    STORAGE must be in the same obstack as TYPE.  */
508 
509 static struct type *
510 make_qualified_type (struct type *type, int new_flags,
511 		     struct type *storage)
512 {
513   struct type *ntype;
514 
515   ntype = type;
516   do
517     {
518       if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
519 	return ntype;
520       ntype = TYPE_CHAIN (ntype);
521     }
522   while (ntype != type);
523 
524   /* Create a new type instance.  */
525   if (storage == NULL)
526     ntype = alloc_type_instance (type);
527   else
528     {
529       /* If STORAGE was provided, it had better be in the same objfile
530 	 as TYPE.  Otherwise, we can't link it into TYPE's cv chain:
531 	 if one objfile is freed and the other kept, we'd have
532 	 dangling pointers.  */
533       gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
534 
535       ntype = storage;
536       TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
537       TYPE_CHAIN (ntype) = ntype;
538     }
539 
540   /* Pointers or references to the original type are not relevant to
541      the new type.  */
542   TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
543   TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
544 
545   /* Chain the new qualified type to the old type.  */
546   TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
547   TYPE_CHAIN (type) = ntype;
548 
549   /* Now set the instance flags and return the new type.  */
550   TYPE_INSTANCE_FLAGS (ntype) = new_flags;
551 
552   /* Set length of new type to that of the original type.  */
553   TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
554 
555   return ntype;
556 }
557 
558 /* Make an address-space-delimited variant of a type -- a type that
559    is identical to the one supplied except that it has an address
560    space attribute attached to it (such as "code" or "data").
561 
562    The space attributes "code" and "data" are for Harvard
563    architectures.  The address space attributes are for architectures
564    which have alternately sized pointers or pointers with alternate
565    representations.  */
566 
567 struct type *
568 make_type_with_address_space (struct type *type, int space_flag)
569 {
570   int new_flags = ((TYPE_INSTANCE_FLAGS (type)
571 		    & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
572 			| TYPE_INSTANCE_FLAG_DATA_SPACE
573 		        | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
574 		   | space_flag);
575 
576   return make_qualified_type (type, new_flags, NULL);
577 }
578 
579 /* Make a "c-v" variant of a type -- a type that is identical to the
580    one supplied except that it may have const or volatile attributes
581    CNST is a flag for setting the const attribute
582    VOLTL is a flag for setting the volatile attribute
583    TYPE is the base type whose variant we are creating.
584 
585    If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
586    storage to hold the new qualified type; *TYPEPTR and TYPE must be
587    in the same objfile.  Otherwise, allocate fresh memory for the new
588    type whereever TYPE lives.  If TYPEPTR is non-zero, set it to the
589    new type we construct.  */
590 struct type *
591 make_cv_type (int cnst, int voltl,
592 	      struct type *type,
593 	      struct type **typeptr)
594 {
595   struct type *ntype;	/* New type */
596 
597   int new_flags = (TYPE_INSTANCE_FLAGS (type)
598 		   & ~(TYPE_INSTANCE_FLAG_CONST
599 		       | TYPE_INSTANCE_FLAG_VOLATILE));
600 
601   if (cnst)
602     new_flags |= TYPE_INSTANCE_FLAG_CONST;
603 
604   if (voltl)
605     new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
606 
607   if (typeptr && *typeptr != NULL)
608     {
609       /* TYPE and *TYPEPTR must be in the same objfile.  We can't have
610 	 a C-V variant chain that threads across objfiles: if one
611 	 objfile gets freed, then the other has a broken C-V chain.
612 
613 	 This code used to try to copy over the main type from TYPE to
614 	 *TYPEPTR if they were in different objfiles, but that's
615 	 wrong, too: TYPE may have a field list or member function
616 	 lists, which refer to types of their own, etc. etc.  The
617 	 whole shebang would need to be copied over recursively; you
618 	 can't have inter-objfile pointers.  The only thing to do is
619 	 to leave stub types as stub types, and look them up afresh by
620 	 name each time you encounter them.  */
621       gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
622     }
623 
624   ntype = make_qualified_type (type, new_flags,
625 			       typeptr ? *typeptr : NULL);
626 
627   if (typeptr != NULL)
628     *typeptr = ntype;
629 
630   return ntype;
631 }
632 
633 /* Replace the contents of ntype with the type *type.  This changes the
634    contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
635    the changes are propogated to all types in the TYPE_CHAIN.
636 
637    In order to build recursive types, it's inevitable that we'll need
638    to update types in place --- but this sort of indiscriminate
639    smashing is ugly, and needs to be replaced with something more
640    controlled.  TYPE_MAIN_TYPE is a step in this direction; it's not
641    clear if more steps are needed.  */
642 void
643 replace_type (struct type *ntype, struct type *type)
644 {
645   struct type *chain;
646 
647   /* These two types had better be in the same objfile.  Otherwise,
648      the assignment of one type's main type structure to the other
649      will produce a type with references to objects (names; field
650      lists; etc.) allocated on an objfile other than its own.  */
651   gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
652 
653   *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
654 
655   /* The type length is not a part of the main type.  Update it for
656      each type on the variant chain.  */
657   chain = ntype;
658   do
659     {
660       /* Assert that this element of the chain has no address-class bits
661 	 set in its flags.  Such type variants might have type lengths
662 	 which are supposed to be different from the non-address-class
663 	 variants.  This assertion shouldn't ever be triggered because
664 	 symbol readers which do construct address-class variants don't
665 	 call replace_type().  */
666       gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
667 
668       TYPE_LENGTH (chain) = TYPE_LENGTH (type);
669       chain = TYPE_CHAIN (chain);
670     }
671   while (ntype != chain);
672 
673   /* Assert that the two types have equivalent instance qualifiers.
674      This should be true for at least all of our debug readers.  */
675   gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
676 }
677 
678 /* Implement direct support for MEMBER_TYPE in GNU C++.
679    May need to construct such a type if this is the first use.
680    The TYPE is the type of the member.  The DOMAIN is the type
681    of the aggregate that the member belongs to.  */
682 
683 struct type *
684 lookup_memberptr_type (struct type *type, struct type *domain)
685 {
686   struct type *mtype;
687 
688   mtype = alloc_type_copy (type);
689   smash_to_memberptr_type (mtype, domain, type);
690   return mtype;
691 }
692 
693 /* Return a pointer-to-method type, for a method of type TO_TYPE.  */
694 
695 struct type *
696 lookup_methodptr_type (struct type *to_type)
697 {
698   struct type *mtype;
699 
700   mtype = alloc_type_copy (to_type);
701   smash_to_methodptr_type (mtype, to_type);
702   return mtype;
703 }
704 
705 /* Allocate a stub method whose return type is TYPE.  This apparently
706    happens for speed of symbol reading, since parsing out the
707    arguments to the method is cpu-intensive, the way we are doing it.
708    So, we will fill in arguments later.  This always returns a fresh
709    type.  */
710 
711 struct type *
712 allocate_stub_method (struct type *type)
713 {
714   struct type *mtype;
715 
716   mtype = alloc_type_copy (type);
717   TYPE_CODE (mtype) = TYPE_CODE_METHOD;
718   TYPE_LENGTH (mtype) = 1;
719   TYPE_STUB (mtype) = 1;
720   TYPE_TARGET_TYPE (mtype) = type;
721   /*  _DOMAIN_TYPE (mtype) = unknown yet */
722   return mtype;
723 }
724 
725 /* Create a range type using either a blank type supplied in
726    RESULT_TYPE, or creating a new type, inheriting the objfile from
727    INDEX_TYPE.
728 
729    Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
730    to HIGH_BOUND, inclusive.
731 
732    FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
733    sure it is TYPE_CODE_UNDEF before we bash it into a range type?  */
734 
735 struct type *
736 create_range_type (struct type *result_type, struct type *index_type,
737 		   LONGEST low_bound, LONGEST high_bound)
738 {
739   if (result_type == NULL)
740     result_type = alloc_type_copy (index_type);
741   TYPE_CODE (result_type) = TYPE_CODE_RANGE;
742   TYPE_TARGET_TYPE (result_type) = index_type;
743   if (TYPE_STUB (index_type))
744     TYPE_TARGET_STUB (result_type) = 1;
745   else
746     TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
747   TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
748     TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
749   TYPE_LOW_BOUND (result_type) = low_bound;
750   TYPE_HIGH_BOUND (result_type) = high_bound;
751 
752   if (low_bound >= 0)
753     TYPE_UNSIGNED (result_type) = 1;
754 
755   return result_type;
756 }
757 
758 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
759    TYPE.  Return 1 if type is a range type, 0 if it is discrete (and
760    bounds will fit in LONGEST), or -1 otherwise.  */
761 
762 int
763 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
764 {
765   CHECK_TYPEDEF (type);
766   switch (TYPE_CODE (type))
767     {
768     case TYPE_CODE_RANGE:
769       *lowp = TYPE_LOW_BOUND (type);
770       *highp = TYPE_HIGH_BOUND (type);
771       return 1;
772     case TYPE_CODE_ENUM:
773       if (TYPE_NFIELDS (type) > 0)
774 	{
775 	  /* The enums may not be sorted by value, so search all
776 	     entries.  */
777 	  int i;
778 
779 	  *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
780 	  for (i = 0; i < TYPE_NFIELDS (type); i++)
781 	    {
782 	      if (TYPE_FIELD_BITPOS (type, i) < *lowp)
783 		*lowp = TYPE_FIELD_BITPOS (type, i);
784 	      if (TYPE_FIELD_BITPOS (type, i) > *highp)
785 		*highp = TYPE_FIELD_BITPOS (type, i);
786 	    }
787 
788 	  /* Set unsigned indicator if warranted.  */
789 	  if (*lowp >= 0)
790 	    {
791 	      TYPE_UNSIGNED (type) = 1;
792 	    }
793 	}
794       else
795 	{
796 	  *lowp = 0;
797 	  *highp = -1;
798 	}
799       return 0;
800     case TYPE_CODE_BOOL:
801       *lowp = 0;
802       *highp = 1;
803       return 0;
804     case TYPE_CODE_INT:
805       if (TYPE_LENGTH (type) > sizeof (LONGEST))	/* Too big */
806 	return -1;
807       if (!TYPE_UNSIGNED (type))
808 	{
809 	  *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
810 	  *highp = -*lowp - 1;
811 	  return 0;
812 	}
813       /* ... fall through for unsigned ints ...  */
814     case TYPE_CODE_CHAR:
815       *lowp = 0;
816       /* This round-about calculation is to avoid shifting by
817          TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
818          if TYPE_LENGTH (type) == sizeof (LONGEST).  */
819       *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
820       *highp = (*highp - 1) | *highp;
821       return 0;
822     default:
823       return -1;
824     }
825 }
826 
827 /* Assuming TYPE is a simple, non-empty array type, compute its upper
828    and lower bound.  Save the low bound into LOW_BOUND if not NULL.
829    Save the high bound into HIGH_BOUND if not NULL.
830 
831    Return 1 if the operation was successful.  Return zero otherwise,
832    in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
833 
834    We now simply use get_discrete_bounds call to get the values
835    of the low and high bounds.
836    get_discrete_bounds can return three values:
837    1, meaning that index is a range,
838    0, meaning that index is a discrete type,
839    or -1 for failure.  */
840 
841 int
842 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
843 {
844   struct type *index = TYPE_INDEX_TYPE (type);
845   LONGEST low = 0;
846   LONGEST high = 0;
847   int res;
848 
849   if (index == NULL)
850     return 0;
851 
852   res = get_discrete_bounds (index, &low, &high);
853   if (res == -1)
854     return 0;
855 
856   /* Check if the array bounds are undefined.  */
857   if (res == 1
858       && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
859 	  || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
860     return 0;
861 
862   if (low_bound)
863     *low_bound = low;
864 
865   if (high_bound)
866     *high_bound = high;
867 
868   return 1;
869 }
870 
871 /* Create an array type using either a blank type supplied in
872    RESULT_TYPE, or creating a new type, inheriting the objfile from
873    RANGE_TYPE.
874 
875    Elements will be of type ELEMENT_TYPE, the indices will be of type
876    RANGE_TYPE.
877 
878    FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
879    sure it is TYPE_CODE_UNDEF before we bash it into an array
880    type?  */
881 
882 struct type *
883 create_array_type (struct type *result_type,
884 		   struct type *element_type,
885 		   struct type *range_type)
886 {
887   LONGEST low_bound, high_bound;
888 
889   if (result_type == NULL)
890     result_type = alloc_type_copy (range_type);
891 
892   TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
893   TYPE_TARGET_TYPE (result_type) = element_type;
894   if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
895     low_bound = high_bound = 0;
896   CHECK_TYPEDEF (element_type);
897   /* Be careful when setting the array length.  Ada arrays can be
898      empty arrays with the high_bound being smaller than the low_bound.
899      In such cases, the array length should be zero.  */
900   if (high_bound < low_bound)
901     TYPE_LENGTH (result_type) = 0;
902   else
903     TYPE_LENGTH (result_type) =
904       TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
905   TYPE_NFIELDS (result_type) = 1;
906   TYPE_FIELDS (result_type) =
907     (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
908   TYPE_INDEX_TYPE (result_type) = range_type;
909   TYPE_VPTR_FIELDNO (result_type) = -1;
910 
911   /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays.  */
912   if (TYPE_LENGTH (result_type) == 0)
913     TYPE_TARGET_STUB (result_type) = 1;
914 
915   return result_type;
916 }
917 
918 struct type *
919 lookup_array_range_type (struct type *element_type,
920 			 int low_bound, int high_bound)
921 {
922   struct gdbarch *gdbarch = get_type_arch (element_type);
923   struct type *index_type = builtin_type (gdbarch)->builtin_int;
924   struct type *range_type
925     = create_range_type (NULL, index_type, low_bound, high_bound);
926 
927   return create_array_type (NULL, element_type, range_type);
928 }
929 
930 /* Create a string type using either a blank type supplied in
931    RESULT_TYPE, or creating a new type.  String types are similar
932    enough to array of char types that we can use create_array_type to
933    build the basic type and then bash it into a string type.
934 
935    For fixed length strings, the range type contains 0 as the lower
936    bound and the length of the string minus one as the upper bound.
937 
938    FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
939    sure it is TYPE_CODE_UNDEF before we bash it into a string
940    type?  */
941 
942 struct type *
943 create_string_type (struct type *result_type,
944 		    struct type *string_char_type,
945 		    struct type *range_type)
946 {
947   result_type = create_array_type (result_type,
948 				   string_char_type,
949 				   range_type);
950   TYPE_CODE (result_type) = TYPE_CODE_STRING;
951   return result_type;
952 }
953 
954 struct type *
955 lookup_string_range_type (struct type *string_char_type,
956 			  int low_bound, int high_bound)
957 {
958   struct type *result_type;
959 
960   result_type = lookup_array_range_type (string_char_type,
961 					 low_bound, high_bound);
962   TYPE_CODE (result_type) = TYPE_CODE_STRING;
963   return result_type;
964 }
965 
966 struct type *
967 create_set_type (struct type *result_type, struct type *domain_type)
968 {
969   if (result_type == NULL)
970     result_type = alloc_type_copy (domain_type);
971 
972   TYPE_CODE (result_type) = TYPE_CODE_SET;
973   TYPE_NFIELDS (result_type) = 1;
974   TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
975 
976   if (!TYPE_STUB (domain_type))
977     {
978       LONGEST low_bound, high_bound, bit_length;
979 
980       if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
981 	low_bound = high_bound = 0;
982       bit_length = high_bound - low_bound + 1;
983       TYPE_LENGTH (result_type)
984 	= (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
985       if (low_bound >= 0)
986 	TYPE_UNSIGNED (result_type) = 1;
987     }
988   TYPE_FIELD_TYPE (result_type, 0) = domain_type;
989 
990   return result_type;
991 }
992 
993 /* Convert ARRAY_TYPE to a vector type.  This may modify ARRAY_TYPE
994    and any array types nested inside it.  */
995 
996 void
997 make_vector_type (struct type *array_type)
998 {
999   struct type *inner_array, *elt_type;
1000   int flags;
1001 
1002   /* Find the innermost array type, in case the array is
1003      multi-dimensional.  */
1004   inner_array = array_type;
1005   while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1006     inner_array = TYPE_TARGET_TYPE (inner_array);
1007 
1008   elt_type = TYPE_TARGET_TYPE (inner_array);
1009   if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1010     {
1011       flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1012       elt_type = make_qualified_type (elt_type, flags, NULL);
1013       TYPE_TARGET_TYPE (inner_array) = elt_type;
1014     }
1015 
1016   TYPE_VECTOR (array_type) = 1;
1017 }
1018 
1019 struct type *
1020 init_vector_type (struct type *elt_type, int n)
1021 {
1022   struct type *array_type;
1023 
1024   array_type = lookup_array_range_type (elt_type, 0, n - 1);
1025   make_vector_type (array_type);
1026   return array_type;
1027 }
1028 
1029 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
1030    TO_TYPE.  A member pointer is a wierd thing -- it amounts to a
1031    typed offset into a struct, e.g. "an int at offset 8".  A MEMBER
1032    TYPE doesn't include the offset (that's the value of the MEMBER
1033    itself), but does include the structure type into which it points
1034    (for some reason).
1035 
1036    When "smashing" the type, we preserve the objfile that the old type
1037    pointed to, since we aren't changing where the type is actually
1038    allocated.  */
1039 
1040 void
1041 smash_to_memberptr_type (struct type *type, struct type *domain,
1042 			 struct type *to_type)
1043 {
1044   smash_type (type);
1045   TYPE_TARGET_TYPE (type) = to_type;
1046   TYPE_DOMAIN_TYPE (type) = domain;
1047   /* Assume that a data member pointer is the same size as a normal
1048      pointer.  */
1049   TYPE_LENGTH (type)
1050     = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1051   TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1052 }
1053 
1054 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1055 
1056    When "smashing" the type, we preserve the objfile that the old type
1057    pointed to, since we aren't changing where the type is actually
1058    allocated.  */
1059 
1060 void
1061 smash_to_methodptr_type (struct type *type, struct type *to_type)
1062 {
1063   smash_type (type);
1064   TYPE_TARGET_TYPE (type) = to_type;
1065   TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1066   TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1067   TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1068 }
1069 
1070 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1071    METHOD just means `function that gets an extra "this" argument'.
1072 
1073    When "smashing" the type, we preserve the objfile that the old type
1074    pointed to, since we aren't changing where the type is actually
1075    allocated.  */
1076 
1077 void
1078 smash_to_method_type (struct type *type, struct type *domain,
1079 		      struct type *to_type, struct field *args,
1080 		      int nargs, int varargs)
1081 {
1082   smash_type (type);
1083   TYPE_TARGET_TYPE (type) = to_type;
1084   TYPE_DOMAIN_TYPE (type) = domain;
1085   TYPE_FIELDS (type) = args;
1086   TYPE_NFIELDS (type) = nargs;
1087   if (varargs)
1088     TYPE_VARARGS (type) = 1;
1089   TYPE_LENGTH (type) = 1;	/* In practice, this is never needed.  */
1090   TYPE_CODE (type) = TYPE_CODE_METHOD;
1091 }
1092 
1093 /* Return a typename for a struct/union/enum type without "struct ",
1094    "union ", or "enum ".  If the type has a NULL name, return NULL.  */
1095 
1096 char *
1097 type_name_no_tag (const struct type *type)
1098 {
1099   if (TYPE_TAG_NAME (type) != NULL)
1100     return TYPE_TAG_NAME (type);
1101 
1102   /* Is there code which expects this to return the name if there is
1103      no tag name?  My guess is that this is mainly used for C++ in
1104      cases where the two will always be the same.  */
1105   return TYPE_NAME (type);
1106 }
1107 
1108 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1109    Since GCC PR debug/47510 DWARF provides associated information to detect the
1110    anonymous class linkage name from its typedef.
1111 
1112    Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1113    apply it itself.  */
1114 
1115 const char *
1116 type_name_no_tag_or_error (struct type *type)
1117 {
1118   struct type *saved_type = type;
1119   const char *name;
1120   struct objfile *objfile;
1121 
1122   CHECK_TYPEDEF (type);
1123 
1124   name = type_name_no_tag (type);
1125   if (name != NULL)
1126     return name;
1127 
1128   name = type_name_no_tag (saved_type);
1129   objfile = TYPE_OBJFILE (saved_type);
1130   error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1131 	 name ? name : "<anonymous>", objfile ? objfile->name : "<arch>");
1132 }
1133 
1134 /* Lookup a typedef or primitive type named NAME, visible in lexical
1135    block BLOCK.  If NOERR is nonzero, return zero if NAME is not
1136    suitably defined.  */
1137 
1138 struct type *
1139 lookup_typename (const struct language_defn *language,
1140 		 struct gdbarch *gdbarch, const char *name,
1141 		 const struct block *block, int noerr)
1142 {
1143   struct symbol *sym;
1144   struct type *tmp;
1145 
1146   sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1147   if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1148     {
1149       tmp = language_lookup_primitive_type_by_name (language, gdbarch, name);
1150       if (tmp)
1151 	{
1152 	  return tmp;
1153 	}
1154       else if (!tmp && noerr)
1155 	{
1156 	  return NULL;
1157 	}
1158       else
1159 	{
1160 	  error (_("No type named %s."), name);
1161 	}
1162     }
1163   return (SYMBOL_TYPE (sym));
1164 }
1165 
1166 struct type *
1167 lookup_unsigned_typename (const struct language_defn *language,
1168 			  struct gdbarch *gdbarch, char *name)
1169 {
1170   char *uns = alloca (strlen (name) + 10);
1171 
1172   strcpy (uns, "unsigned ");
1173   strcpy (uns + 9, name);
1174   return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1175 }
1176 
1177 struct type *
1178 lookup_signed_typename (const struct language_defn *language,
1179 			struct gdbarch *gdbarch, char *name)
1180 {
1181   struct type *t;
1182   char *uns = alloca (strlen (name) + 8);
1183 
1184   strcpy (uns, "signed ");
1185   strcpy (uns + 7, name);
1186   t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1187   /* If we don't find "signed FOO" just try again with plain "FOO".  */
1188   if (t != NULL)
1189     return t;
1190   return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1191 }
1192 
1193 /* Lookup a structure type named "struct NAME",
1194    visible in lexical block BLOCK.  */
1195 
1196 struct type *
1197 lookup_struct (const char *name, struct block *block)
1198 {
1199   struct symbol *sym;
1200 
1201   sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1202 
1203   if (sym == NULL)
1204     {
1205       error (_("No struct type named %s."), name);
1206     }
1207   if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1208     {
1209       error (_("This context has class, union or enum %s, not a struct."),
1210 	     name);
1211     }
1212   return (SYMBOL_TYPE (sym));
1213 }
1214 
1215 /* Lookup a union type named "union NAME",
1216    visible in lexical block BLOCK.  */
1217 
1218 struct type *
1219 lookup_union (const char *name, struct block *block)
1220 {
1221   struct symbol *sym;
1222   struct type *t;
1223 
1224   sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1225 
1226   if (sym == NULL)
1227     error (_("No union type named %s."), name);
1228 
1229   t = SYMBOL_TYPE (sym);
1230 
1231   if (TYPE_CODE (t) == TYPE_CODE_UNION)
1232     return t;
1233 
1234   /* If we get here, it's not a union.  */
1235   error (_("This context has class, struct or enum %s, not a union."),
1236 	 name);
1237 }
1238 
1239 
1240 /* Lookup an enum type named "enum NAME",
1241    visible in lexical block BLOCK.  */
1242 
1243 struct type *
1244 lookup_enum (const char *name, struct block *block)
1245 {
1246   struct symbol *sym;
1247 
1248   sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1249   if (sym == NULL)
1250     {
1251       error (_("No enum type named %s."), name);
1252     }
1253   if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1254     {
1255       error (_("This context has class, struct or union %s, not an enum."),
1256 	     name);
1257     }
1258   return (SYMBOL_TYPE (sym));
1259 }
1260 
1261 /* Lookup a template type named "template NAME<TYPE>",
1262    visible in lexical block BLOCK.  */
1263 
1264 struct type *
1265 lookup_template_type (char *name, struct type *type,
1266 		      struct block *block)
1267 {
1268   struct symbol *sym;
1269   char *nam = (char *)
1270     alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1271 
1272   strcpy (nam, name);
1273   strcat (nam, "<");
1274   strcat (nam, TYPE_NAME (type));
1275   strcat (nam, " >");	/* FIXME, extra space still introduced in gcc?  */
1276 
1277   sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1278 
1279   if (sym == NULL)
1280     {
1281       error (_("No template type named %s."), name);
1282     }
1283   if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1284     {
1285       error (_("This context has class, union or enum %s, not a struct."),
1286 	     name);
1287     }
1288   return (SYMBOL_TYPE (sym));
1289 }
1290 
1291 /* Given a type TYPE, lookup the type of the component of type named
1292    NAME.
1293 
1294    TYPE can be either a struct or union, or a pointer or reference to
1295    a struct or union.  If it is a pointer or reference, its target
1296    type is automatically used.  Thus '.' and '->' are interchangable,
1297    as specified for the definitions of the expression element types
1298    STRUCTOP_STRUCT and STRUCTOP_PTR.
1299 
1300    If NOERR is nonzero, return zero if NAME is not suitably defined.
1301    If NAME is the name of a baseclass type, return that type.  */
1302 
1303 struct type *
1304 lookup_struct_elt_type (struct type *type, char *name, int noerr)
1305 {
1306   int i;
1307   char *typename;
1308 
1309   for (;;)
1310     {
1311       CHECK_TYPEDEF (type);
1312       if (TYPE_CODE (type) != TYPE_CODE_PTR
1313 	  && TYPE_CODE (type) != TYPE_CODE_REF)
1314 	break;
1315       type = TYPE_TARGET_TYPE (type);
1316     }
1317 
1318   if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1319       && TYPE_CODE (type) != TYPE_CODE_UNION)
1320     {
1321       typename = type_to_string (type);
1322       make_cleanup (xfree, typename);
1323       error (_("Type %s is not a structure or union type."), typename);
1324     }
1325 
1326 #if 0
1327   /* FIXME: This change put in by Michael seems incorrect for the case
1328      where the structure tag name is the same as the member name.
1329      I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1330      foo; } bell;" Disabled by fnf.  */
1331   {
1332     char *typename;
1333 
1334     typename = type_name_no_tag (type);
1335     if (typename != NULL && strcmp (typename, name) == 0)
1336       return type;
1337   }
1338 #endif
1339 
1340   for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1341     {
1342       char *t_field_name = TYPE_FIELD_NAME (type, i);
1343 
1344       if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1345 	{
1346 	  return TYPE_FIELD_TYPE (type, i);
1347 	}
1348      else if (!t_field_name || *t_field_name == '\0')
1349 	{
1350 	  struct type *subtype
1351 	    = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1352 
1353 	  if (subtype != NULL)
1354 	    return subtype;
1355 	}
1356     }
1357 
1358   /* OK, it's not in this class.  Recursively check the baseclasses.  */
1359   for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1360     {
1361       struct type *t;
1362 
1363       t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1364       if (t != NULL)
1365 	{
1366 	  return t;
1367 	}
1368     }
1369 
1370   if (noerr)
1371     {
1372       return NULL;
1373     }
1374 
1375   typename = type_to_string (type);
1376   make_cleanup (xfree, typename);
1377   error (_("Type %s has no component named %s."), typename, name);
1378 }
1379 
1380 /* Lookup the vptr basetype/fieldno values for TYPE.
1381    If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1382    vptr_fieldno.  Also, if found and basetype is from the same objfile,
1383    cache the results.
1384    If not found, return -1 and ignore BASETYPEP.
1385    Callers should be aware that in some cases (for example,
1386    the type or one of its baseclasses is a stub type and we are
1387    debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1388    this function will not be able to find the
1389    virtual function table pointer, and vptr_fieldno will remain -1 and
1390    vptr_basetype will remain NULL or incomplete.  */
1391 
1392 int
1393 get_vptr_fieldno (struct type *type, struct type **basetypep)
1394 {
1395   CHECK_TYPEDEF (type);
1396 
1397   if (TYPE_VPTR_FIELDNO (type) < 0)
1398     {
1399       int i;
1400 
1401       /* We must start at zero in case the first (and only) baseclass
1402          is virtual (and hence we cannot share the table pointer).  */
1403       for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1404 	{
1405 	  struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1406 	  int fieldno;
1407 	  struct type *basetype;
1408 
1409 	  fieldno = get_vptr_fieldno (baseclass, &basetype);
1410 	  if (fieldno >= 0)
1411 	    {
1412 	      /* If the type comes from a different objfile we can't cache
1413 		 it, it may have a different lifetime.  PR 2384 */
1414 	      if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1415 		{
1416 		  TYPE_VPTR_FIELDNO (type) = fieldno;
1417 		  TYPE_VPTR_BASETYPE (type) = basetype;
1418 		}
1419 	      if (basetypep)
1420 		*basetypep = basetype;
1421 	      return fieldno;
1422 	    }
1423 	}
1424 
1425       /* Not found.  */
1426       return -1;
1427     }
1428   else
1429     {
1430       if (basetypep)
1431 	*basetypep = TYPE_VPTR_BASETYPE (type);
1432       return TYPE_VPTR_FIELDNO (type);
1433     }
1434 }
1435 
1436 static void
1437 stub_noname_complaint (void)
1438 {
1439   complaint (&symfile_complaints, _("stub type has NULL name"));
1440 }
1441 
1442 /* Find the real type of TYPE.  This function returns the real type,
1443    after removing all layers of typedefs, and completing opaque or stub
1444    types.  Completion changes the TYPE argument, but stripping of
1445    typedefs does not.
1446 
1447    Instance flags (e.g. const/volatile) are preserved as typedefs are
1448    stripped.  If necessary a new qualified form of the underlying type
1449    is created.
1450 
1451    NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1452    not been computed and we're either in the middle of reading symbols, or
1453    there was no name for the typedef in the debug info.
1454 
1455    NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1456    QUITs in the symbol reading code can also throw.
1457    Thus this function can throw an exception.
1458 
1459    If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1460    the target type.
1461 
1462    If this is a stubbed struct (i.e. declared as struct foo *), see if
1463    we can find a full definition in some other file.  If so, copy this
1464    definition, so we can use it in future.  There used to be a comment
1465    (but not any code) that if we don't find a full definition, we'd
1466    set a flag so we don't spend time in the future checking the same
1467    type.  That would be a mistake, though--we might load in more
1468    symbols which contain a full definition for the type.  */
1469 
1470 struct type *
1471 check_typedef (struct type *type)
1472 {
1473   struct type *orig_type = type;
1474   /* While we're removing typedefs, we don't want to lose qualifiers.
1475      E.g., const/volatile.  */
1476   int instance_flags = TYPE_INSTANCE_FLAGS (type);
1477 
1478   gdb_assert (type);
1479 
1480   while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1481     {
1482       if (!TYPE_TARGET_TYPE (type))
1483 	{
1484 	  char *name;
1485 	  struct symbol *sym;
1486 
1487 	  /* It is dangerous to call lookup_symbol if we are currently
1488 	     reading a symtab.  Infinite recursion is one danger.  */
1489 	  if (currently_reading_symtab)
1490 	    return make_qualified_type (type, instance_flags, NULL);
1491 
1492 	  name = type_name_no_tag (type);
1493 	  /* FIXME: shouldn't we separately check the TYPE_NAME and
1494 	     the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1495 	     VAR_DOMAIN as appropriate?  (this code was written before
1496 	     TYPE_NAME and TYPE_TAG_NAME were separate).  */
1497 	  if (name == NULL)
1498 	    {
1499 	      stub_noname_complaint ();
1500 	      return make_qualified_type (type, instance_flags, NULL);
1501 	    }
1502 	  sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1503 	  if (sym)
1504 	    TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1505 	  else					/* TYPE_CODE_UNDEF */
1506 	    TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1507 	}
1508       type = TYPE_TARGET_TYPE (type);
1509 
1510       /* Preserve the instance flags as we traverse down the typedef chain.
1511 
1512 	 Handling address spaces/classes is nasty, what do we do if there's a
1513 	 conflict?
1514 	 E.g., what if an outer typedef marks the type as class_1 and an inner
1515 	 typedef marks the type as class_2?
1516 	 This is the wrong place to do such error checking.  We leave it to
1517 	 the code that created the typedef in the first place to flag the
1518 	 error.  We just pick the outer address space (akin to letting the
1519 	 outer cast in a chain of casting win), instead of assuming
1520 	 "it can't happen".  */
1521       {
1522 	const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1523 				| TYPE_INSTANCE_FLAG_DATA_SPACE);
1524 	const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1525 	int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1526 
1527 	/* Treat code vs data spaces and address classes separately.  */
1528 	if ((instance_flags & ALL_SPACES) != 0)
1529 	  new_instance_flags &= ~ALL_SPACES;
1530 	if ((instance_flags & ALL_CLASSES) != 0)
1531 	  new_instance_flags &= ~ALL_CLASSES;
1532 
1533 	instance_flags |= new_instance_flags;
1534       }
1535     }
1536 
1537   /* If this is a struct/class/union with no fields, then check
1538      whether a full definition exists somewhere else.  This is for
1539      systems where a type definition with no fields is issued for such
1540      types, instead of identifying them as stub types in the first
1541      place.  */
1542 
1543   if (TYPE_IS_OPAQUE (type)
1544       && opaque_type_resolution
1545       && !currently_reading_symtab)
1546     {
1547       char *name = type_name_no_tag (type);
1548       struct type *newtype;
1549 
1550       if (name == NULL)
1551 	{
1552 	  stub_noname_complaint ();
1553 	  return make_qualified_type (type, instance_flags, NULL);
1554 	}
1555       newtype = lookup_transparent_type (name);
1556 
1557       if (newtype)
1558 	{
1559 	  /* If the resolved type and the stub are in the same
1560 	     objfile, then replace the stub type with the real deal.
1561 	     But if they're in separate objfiles, leave the stub
1562 	     alone; we'll just look up the transparent type every time
1563 	     we call check_typedef.  We can't create pointers between
1564 	     types allocated to different objfiles, since they may
1565 	     have different lifetimes.  Trying to copy NEWTYPE over to
1566 	     TYPE's objfile is pointless, too, since you'll have to
1567 	     move over any other types NEWTYPE refers to, which could
1568 	     be an unbounded amount of stuff.  */
1569 	  if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1570 	    type = make_qualified_type (newtype,
1571 					TYPE_INSTANCE_FLAGS (type),
1572 					type);
1573 	  else
1574 	    type = newtype;
1575 	}
1576     }
1577   /* Otherwise, rely on the stub flag being set for opaque/stubbed
1578      types.  */
1579   else if (TYPE_STUB (type) && !currently_reading_symtab)
1580     {
1581       char *name = type_name_no_tag (type);
1582       /* FIXME: shouldn't we separately check the TYPE_NAME and the
1583          TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1584          as appropriate?  (this code was written before TYPE_NAME and
1585          TYPE_TAG_NAME were separate).  */
1586       struct symbol *sym;
1587 
1588       if (name == NULL)
1589 	{
1590 	  stub_noname_complaint ();
1591 	  return make_qualified_type (type, instance_flags, NULL);
1592 	}
1593       sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1594       if (sym)
1595         {
1596           /* Same as above for opaque types, we can replace the stub
1597              with the complete type only if they are in the same
1598              objfile.  */
1599 	  if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1600             type = make_qualified_type (SYMBOL_TYPE (sym),
1601 					TYPE_INSTANCE_FLAGS (type),
1602 					type);
1603 	  else
1604 	    type = SYMBOL_TYPE (sym);
1605         }
1606     }
1607 
1608   if (TYPE_TARGET_STUB (type))
1609     {
1610       struct type *range_type;
1611       struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1612 
1613       if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1614 	{
1615 	  /* Nothing we can do.  */
1616 	}
1617       else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1618 	       && TYPE_NFIELDS (type) == 1
1619 	       && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
1620 		   == TYPE_CODE_RANGE))
1621 	{
1622 	  /* Now recompute the length of the array type, based on its
1623 	     number of elements and the target type's length.
1624 	     Watch out for Ada null Ada arrays where the high bound
1625 	     is smaller than the low bound.  */
1626 	  const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1627 	  const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1628 	  ULONGEST len;
1629 
1630 	  if (high_bound < low_bound)
1631 	    len = 0;
1632 	  else
1633 	    {
1634 	      /* For now, we conservatively take the array length to be 0
1635 		 if its length exceeds UINT_MAX.  The code below assumes
1636 		 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1637 		 which is technically not guaranteed by C, but is usually true
1638 		 (because it would be true if x were unsigned with its
1639 		 high-order bit on).  It uses the fact that
1640 		 high_bound-low_bound is always representable in
1641 		 ULONGEST and that if high_bound-low_bound+1 overflows,
1642 		 it overflows to 0.  We must change these tests if we
1643 		 decide to increase the representation of TYPE_LENGTH
1644 		 from unsigned int to ULONGEST.  */
1645 	      ULONGEST ulow = low_bound, uhigh = high_bound;
1646 	      ULONGEST tlen = TYPE_LENGTH (target_type);
1647 
1648 	      len = tlen * (uhigh - ulow + 1);
1649 	      if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1650 		  || len > UINT_MAX)
1651 		len = 0;
1652 	    }
1653 	  TYPE_LENGTH (type) = len;
1654 	  TYPE_TARGET_STUB (type) = 0;
1655 	}
1656       else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1657 	{
1658 	  TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1659 	  TYPE_TARGET_STUB (type) = 0;
1660 	}
1661     }
1662 
1663   type = make_qualified_type (type, instance_flags, NULL);
1664 
1665   /* Cache TYPE_LENGTH for future use.  */
1666   TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1667 
1668   return type;
1669 }
1670 
1671 /* Parse a type expression in the string [P..P+LENGTH).  If an error
1672    occurs, silently return a void type.  */
1673 
1674 static struct type *
1675 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
1676 {
1677   struct ui_file *saved_gdb_stderr;
1678   struct type *type;
1679 
1680   /* Suppress error messages.  */
1681   saved_gdb_stderr = gdb_stderr;
1682   gdb_stderr = ui_file_new ();
1683 
1684   /* Call parse_and_eval_type() without fear of longjmp()s.  */
1685   if (!gdb_parse_and_eval_type (p, length, &type))
1686     type = builtin_type (gdbarch)->builtin_void;
1687 
1688   /* Stop suppressing error messages.  */
1689   ui_file_delete (gdb_stderr);
1690   gdb_stderr = saved_gdb_stderr;
1691 
1692   return type;
1693 }
1694 
1695 /* Ugly hack to convert method stubs into method types.
1696 
1697    He ain't kiddin'.  This demangles the name of the method into a
1698    string including argument types, parses out each argument type,
1699    generates a string casting a zero to that type, evaluates the
1700    string, and stuffs the resulting type into an argtype vector!!!
1701    Then it knows the type of the whole function (including argument
1702    types for overloading), which info used to be in the stab's but was
1703    removed to hack back the space required for them.  */
1704 
1705 static void
1706 check_stub_method (struct type *type, int method_id, int signature_id)
1707 {
1708   struct gdbarch *gdbarch = get_type_arch (type);
1709   struct fn_field *f;
1710   char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1711   char *demangled_name = cplus_demangle (mangled_name,
1712 					 DMGL_PARAMS | DMGL_ANSI);
1713   char *argtypetext, *p;
1714   int depth = 0, argcount = 1;
1715   struct field *argtypes;
1716   struct type *mtype;
1717 
1718   /* Make sure we got back a function string that we can use.  */
1719   if (demangled_name)
1720     p = strchr (demangled_name, '(');
1721   else
1722     p = NULL;
1723 
1724   if (demangled_name == NULL || p == NULL)
1725     error (_("Internal: Cannot demangle mangled name `%s'."),
1726 	   mangled_name);
1727 
1728   /* Now, read in the parameters that define this type.  */
1729   p += 1;
1730   argtypetext = p;
1731   while (*p)
1732     {
1733       if (*p == '(' || *p == '<')
1734 	{
1735 	  depth += 1;
1736 	}
1737       else if (*p == ')' || *p == '>')
1738 	{
1739 	  depth -= 1;
1740 	}
1741       else if (*p == ',' && depth == 0)
1742 	{
1743 	  argcount += 1;
1744 	}
1745 
1746       p += 1;
1747     }
1748 
1749   /* If we read one argument and it was ``void'', don't count it.  */
1750   if (strncmp (argtypetext, "(void)", 6) == 0)
1751     argcount -= 1;
1752 
1753   /* We need one extra slot, for the THIS pointer.  */
1754 
1755   argtypes = (struct field *)
1756     TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
1757   p = argtypetext;
1758 
1759   /* Add THIS pointer for non-static methods.  */
1760   f = TYPE_FN_FIELDLIST1 (type, method_id);
1761   if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1762     argcount = 0;
1763   else
1764     {
1765       argtypes[0].type = lookup_pointer_type (type);
1766       argcount = 1;
1767     }
1768 
1769   if (*p != ')')		/* () means no args, skip while.  */
1770     {
1771       depth = 0;
1772       while (*p)
1773 	{
1774 	  if (depth <= 0 && (*p == ',' || *p == ')'))
1775 	    {
1776 	      /* Avoid parsing of ellipsis, they will be handled below.
1777 	         Also avoid ``void'' as above.  */
1778 	      if (strncmp (argtypetext, "...", p - argtypetext) != 0
1779 		  && strncmp (argtypetext, "void", p - argtypetext) != 0)
1780 		{
1781 		  argtypes[argcount].type =
1782 		    safe_parse_type (gdbarch, argtypetext, p - argtypetext);
1783 		  argcount += 1;
1784 		}
1785 	      argtypetext = p + 1;
1786 	    }
1787 
1788 	  if (*p == '(' || *p == '<')
1789 	    {
1790 	      depth += 1;
1791 	    }
1792 	  else if (*p == ')' || *p == '>')
1793 	    {
1794 	      depth -= 1;
1795 	    }
1796 
1797 	  p += 1;
1798 	}
1799     }
1800 
1801   TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1802 
1803   /* Now update the old "stub" type into a real type.  */
1804   mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1805   TYPE_DOMAIN_TYPE (mtype) = type;
1806   TYPE_FIELDS (mtype) = argtypes;
1807   TYPE_NFIELDS (mtype) = argcount;
1808   TYPE_STUB (mtype) = 0;
1809   TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1810   if (p[-2] == '.')
1811     TYPE_VARARGS (mtype) = 1;
1812 
1813   xfree (demangled_name);
1814 }
1815 
1816 /* This is the external interface to check_stub_method, above.  This
1817    function unstubs all of the signatures for TYPE's METHOD_ID method
1818    name.  After calling this function TYPE_FN_FIELD_STUB will be
1819    cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1820    correct.
1821 
1822    This function unfortunately can not die until stabs do.  */
1823 
1824 void
1825 check_stub_method_group (struct type *type, int method_id)
1826 {
1827   int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1828   struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
1829   int j, found_stub = 0;
1830 
1831   for (j = 0; j < len; j++)
1832     if (TYPE_FN_FIELD_STUB (f, j))
1833       {
1834 	found_stub = 1;
1835 	check_stub_method (type, method_id, j);
1836       }
1837 
1838   /* GNU v3 methods with incorrect names were corrected when we read
1839      in type information, because it was cheaper to do it then.  The
1840      only GNU v2 methods with incorrect method names are operators and
1841      destructors; destructors were also corrected when we read in type
1842      information.
1843 
1844      Therefore the only thing we need to handle here are v2 operator
1845      names.  */
1846   if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1847     {
1848       int ret;
1849       char dem_opname[256];
1850 
1851       ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1852 							   method_id),
1853 				   dem_opname, DMGL_ANSI);
1854       if (!ret)
1855 	ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1856 							     method_id),
1857 				     dem_opname, 0);
1858       if (ret)
1859 	TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1860     }
1861 }
1862 
1863 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690.  */
1864 const struct cplus_struct_type cplus_struct_default = { };
1865 
1866 void
1867 allocate_cplus_struct_type (struct type *type)
1868 {
1869   if (HAVE_CPLUS_STRUCT (type))
1870     /* Structure was already allocated.  Nothing more to do.  */
1871     return;
1872 
1873   TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1874   TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1875     TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1876   *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1877 }
1878 
1879 const struct gnat_aux_type gnat_aux_default =
1880   { NULL };
1881 
1882 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1883    and allocate the associated gnat-specific data.  The gnat-specific
1884    data is also initialized to gnat_aux_default.  */
1885 void
1886 allocate_gnat_aux_type (struct type *type)
1887 {
1888   TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1889   TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1890     TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1891   *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1892 }
1893 
1894 
1895 /* Helper function to initialize the standard scalar types.
1896 
1897    If NAME is non-NULL, then we make a copy of the string pointed
1898    to by name in the objfile_obstack for that objfile, and initialize
1899    the type name to that copy.  There are places (mipsread.c in particular),
1900    where init_type is called with a NULL value for NAME).  */
1901 
1902 struct type *
1903 init_type (enum type_code code, int length, int flags,
1904 	   char *name, struct objfile *objfile)
1905 {
1906   struct type *type;
1907 
1908   type = alloc_type (objfile);
1909   TYPE_CODE (type) = code;
1910   TYPE_LENGTH (type) = length;
1911 
1912   gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1913   if (flags & TYPE_FLAG_UNSIGNED)
1914     TYPE_UNSIGNED (type) = 1;
1915   if (flags & TYPE_FLAG_NOSIGN)
1916     TYPE_NOSIGN (type) = 1;
1917   if (flags & TYPE_FLAG_STUB)
1918     TYPE_STUB (type) = 1;
1919   if (flags & TYPE_FLAG_TARGET_STUB)
1920     TYPE_TARGET_STUB (type) = 1;
1921   if (flags & TYPE_FLAG_STATIC)
1922     TYPE_STATIC (type) = 1;
1923   if (flags & TYPE_FLAG_PROTOTYPED)
1924     TYPE_PROTOTYPED (type) = 1;
1925   if (flags & TYPE_FLAG_INCOMPLETE)
1926     TYPE_INCOMPLETE (type) = 1;
1927   if (flags & TYPE_FLAG_VARARGS)
1928     TYPE_VARARGS (type) = 1;
1929   if (flags & TYPE_FLAG_VECTOR)
1930     TYPE_VECTOR (type) = 1;
1931   if (flags & TYPE_FLAG_STUB_SUPPORTED)
1932     TYPE_STUB_SUPPORTED (type) = 1;
1933   if (flags & TYPE_FLAG_FIXED_INSTANCE)
1934     TYPE_FIXED_INSTANCE (type) = 1;
1935   if (flags & TYPE_FLAG_GNU_IFUNC)
1936     TYPE_GNU_IFUNC (type) = 1;
1937 
1938   if (name)
1939     TYPE_NAME (type) = obsavestring (name, strlen (name),
1940 				     &objfile->objfile_obstack);
1941 
1942   /* C++ fancies.  */
1943 
1944   if (name && strcmp (name, "char") == 0)
1945     TYPE_NOSIGN (type) = 1;
1946 
1947   switch (code)
1948     {
1949       case TYPE_CODE_STRUCT:
1950       case TYPE_CODE_UNION:
1951       case TYPE_CODE_NAMESPACE:
1952         INIT_CPLUS_SPECIFIC (type);
1953         break;
1954       case TYPE_CODE_FLT:
1955         TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
1956         break;
1957       case TYPE_CODE_FUNC:
1958 	INIT_FUNC_SPECIFIC (type);
1959         break;
1960     }
1961   return type;
1962 }
1963 
1964 int
1965 can_dereference (struct type *t)
1966 {
1967   /* FIXME: Should we return true for references as well as
1968      pointers?  */
1969   CHECK_TYPEDEF (t);
1970   return
1971     (t != NULL
1972      && TYPE_CODE (t) == TYPE_CODE_PTR
1973      && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1974 }
1975 
1976 int
1977 is_integral_type (struct type *t)
1978 {
1979   CHECK_TYPEDEF (t);
1980   return
1981     ((t != NULL)
1982      && ((TYPE_CODE (t) == TYPE_CODE_INT)
1983 	 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
1984 	 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
1985 	 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1986 	 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1987 	 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
1988 }
1989 
1990 /* Return true if TYPE is scalar.  */
1991 
1992 static int
1993 is_scalar_type (struct type *type)
1994 {
1995   CHECK_TYPEDEF (type);
1996 
1997   switch (TYPE_CODE (type))
1998     {
1999     case TYPE_CODE_ARRAY:
2000     case TYPE_CODE_STRUCT:
2001     case TYPE_CODE_UNION:
2002     case TYPE_CODE_SET:
2003     case TYPE_CODE_STRING:
2004     case TYPE_CODE_BITSTRING:
2005       return 0;
2006     default:
2007       return 1;
2008     }
2009 }
2010 
2011 /* Return true if T is scalar, or a composite type which in practice has
2012    the memory layout of a scalar type.  E.g., an array or struct with only
2013    one scalar element inside it, or a union with only scalar elements.  */
2014 
2015 int
2016 is_scalar_type_recursive (struct type *t)
2017 {
2018   CHECK_TYPEDEF (t);
2019 
2020   if (is_scalar_type (t))
2021     return 1;
2022   /* Are we dealing with an array or string of known dimensions?  */
2023   else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2024 	    || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2025 	   && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2026     {
2027       LONGEST low_bound, high_bound;
2028       struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2029 
2030       get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2031 
2032       return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2033     }
2034   /* Are we dealing with a struct with one element?  */
2035   else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2036     return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2037   else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2038     {
2039       int i, n = TYPE_NFIELDS (t);
2040 
2041       /* If all elements of the union are scalar, then the union is scalar.  */
2042       for (i = 0; i < n; i++)
2043 	if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2044 	  return 0;
2045 
2046       return 1;
2047     }
2048 
2049   return 0;
2050 }
2051 
2052 /* A helper function which returns true if types A and B represent the
2053    "same" class type.  This is true if the types have the same main
2054    type, or the same name.  */
2055 
2056 int
2057 class_types_same_p (const struct type *a, const struct type *b)
2058 {
2059   return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2060 	  || (TYPE_NAME (a) && TYPE_NAME (b)
2061 	      && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2062 }
2063 
2064 /* If BASE is an ancestor of DCLASS return the distance between them.
2065    otherwise return -1;
2066    eg:
2067 
2068    class A {};
2069    class B: public A {};
2070    class C: public B {};
2071    class D: C {};
2072 
2073    distance_to_ancestor (A, A, 0) = 0
2074    distance_to_ancestor (A, B, 0) = 1
2075    distance_to_ancestor (A, C, 0) = 2
2076    distance_to_ancestor (A, D, 0) = 3
2077 
2078    If PUBLIC is 1 then only public ancestors are considered,
2079    and the function returns the distance only if BASE is a public ancestor
2080    of DCLASS.
2081    Eg:
2082 
2083    distance_to_ancestor (A, D, 1) = -1.  */
2084 
2085 static int
2086 distance_to_ancestor (struct type *base, struct type *dclass, int public)
2087 {
2088   int i;
2089   int d;
2090 
2091   CHECK_TYPEDEF (base);
2092   CHECK_TYPEDEF (dclass);
2093 
2094   if (class_types_same_p (base, dclass))
2095     return 0;
2096 
2097   for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2098     {
2099       if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2100 	continue;
2101 
2102       d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2103       if (d >= 0)
2104 	return 1 + d;
2105     }
2106 
2107   return -1;
2108 }
2109 
2110 /* Check whether BASE is an ancestor or base class or DCLASS
2111    Return 1 if so, and 0 if not.
2112    Note: If BASE and DCLASS are of the same type, this function
2113    will return 1. So for some class A, is_ancestor (A, A) will
2114    return 1.  */
2115 
2116 int
2117 is_ancestor (struct type *base, struct type *dclass)
2118 {
2119   return distance_to_ancestor (base, dclass, 0) >= 0;
2120 }
2121 
2122 /* Like is_ancestor, but only returns true when BASE is a public
2123    ancestor of DCLASS.  */
2124 
2125 int
2126 is_public_ancestor (struct type *base, struct type *dclass)
2127 {
2128   return distance_to_ancestor (base, dclass, 1) >= 0;
2129 }
2130 
2131 /* A helper function for is_unique_ancestor.  */
2132 
2133 static int
2134 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2135 			   int *offset,
2136 			   const gdb_byte *valaddr, int embedded_offset,
2137 			   CORE_ADDR address, struct value *val)
2138 {
2139   int i, count = 0;
2140 
2141   CHECK_TYPEDEF (base);
2142   CHECK_TYPEDEF (dclass);
2143 
2144   for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2145     {
2146       struct type *iter;
2147       int this_offset;
2148 
2149       iter = check_typedef (TYPE_BASECLASS (dclass, i));
2150 
2151       this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2152 				      address, val);
2153 
2154       if (class_types_same_p (base, iter))
2155 	{
2156 	  /* If this is the first subclass, set *OFFSET and set count
2157 	     to 1.  Otherwise, if this is at the same offset as
2158 	     previous instances, do nothing.  Otherwise, increment
2159 	     count.  */
2160 	  if (*offset == -1)
2161 	    {
2162 	      *offset = this_offset;
2163 	      count = 1;
2164 	    }
2165 	  else if (this_offset == *offset)
2166 	    {
2167 	      /* Nothing.  */
2168 	    }
2169 	  else
2170 	    ++count;
2171 	}
2172       else
2173 	count += is_unique_ancestor_worker (base, iter, offset,
2174 					    valaddr,
2175 					    embedded_offset + this_offset,
2176 					    address, val);
2177     }
2178 
2179   return count;
2180 }
2181 
2182 /* Like is_ancestor, but only returns true if BASE is a unique base
2183    class of the type of VAL.  */
2184 
2185 int
2186 is_unique_ancestor (struct type *base, struct value *val)
2187 {
2188   int offset = -1;
2189 
2190   return is_unique_ancestor_worker (base, value_type (val), &offset,
2191 				    value_contents_for_printing (val),
2192 				    value_embedded_offset (val),
2193 				    value_address (val), val) == 1;
2194 }
2195 
2196 
2197 
2198 /* Return the sum of the rank of A with the rank of B.  */
2199 
2200 struct rank
2201 sum_ranks (struct rank a, struct rank b)
2202 {
2203   struct rank c;
2204   c.rank = a.rank + b.rank;
2205   c.subrank = a.subrank + b.subrank;
2206   return c;
2207 }
2208 
2209 /* Compare rank A and B and return:
2210    0 if a = b
2211    1 if a is better than b
2212   -1 if b is better than a.  */
2213 
2214 int
2215 compare_ranks (struct rank a, struct rank b)
2216 {
2217   if (a.rank == b.rank)
2218     {
2219       if (a.subrank == b.subrank)
2220 	return 0;
2221       if (a.subrank < b.subrank)
2222 	return 1;
2223       if (a.subrank > b.subrank)
2224 	return -1;
2225     }
2226 
2227   if (a.rank < b.rank)
2228     return 1;
2229 
2230   /* a.rank > b.rank */
2231   return -1;
2232 }
2233 
2234 /* Functions for overload resolution begin here.  */
2235 
2236 /* Compare two badness vectors A and B and return the result.
2237    0 => A and B are identical
2238    1 => A and B are incomparable
2239    2 => A is better than B
2240    3 => A is worse than B  */
2241 
2242 int
2243 compare_badness (struct badness_vector *a, struct badness_vector *b)
2244 {
2245   int i;
2246   int tmp;
2247   short found_pos = 0;		/* any positives in c? */
2248   short found_neg = 0;		/* any negatives in c? */
2249 
2250   /* differing lengths => incomparable */
2251   if (a->length != b->length)
2252     return 1;
2253 
2254   /* Subtract b from a */
2255   for (i = 0; i < a->length; i++)
2256     {
2257       tmp = compare_ranks (b->rank[i], a->rank[i]);
2258       if (tmp > 0)
2259 	found_pos = 1;
2260       else if (tmp < 0)
2261 	found_neg = 1;
2262     }
2263 
2264   if (found_pos)
2265     {
2266       if (found_neg)
2267 	return 1;		/* incomparable */
2268       else
2269 	return 3;		/* A > B */
2270     }
2271   else
2272     /* no positives */
2273     {
2274       if (found_neg)
2275 	return 2;		/* A < B */
2276       else
2277 	return 0;		/* A == B */
2278     }
2279 }
2280 
2281 /* Rank a function by comparing its parameter types (PARMS, length
2282    NPARMS), to the types of an argument list (ARGS, length NARGS).
2283    Return a pointer to a badness vector.  This has NARGS + 1
2284    entries.  */
2285 
2286 struct badness_vector *
2287 rank_function (struct type **parms, int nparms,
2288 	       struct value **args, int nargs)
2289 {
2290   int i;
2291   struct badness_vector *bv;
2292   int min_len = nparms < nargs ? nparms : nargs;
2293 
2294   bv = xmalloc (sizeof (struct badness_vector));
2295   bv->length = nargs + 1;	/* add 1 for the length-match rank.  */
2296   bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2297 
2298   /* First compare the lengths of the supplied lists.
2299      If there is a mismatch, set it to a high value.  */
2300 
2301   /* pai/1997-06-03 FIXME: when we have debug info about default
2302      arguments and ellipsis parameter lists, we should consider those
2303      and rank the length-match more finely.  */
2304 
2305   LENGTH_MATCH (bv) = (nargs != nparms)
2306 		      ? LENGTH_MISMATCH_BADNESS
2307 		      : EXACT_MATCH_BADNESS;
2308 
2309   /* Now rank all the parameters of the candidate function.  */
2310   for (i = 1; i <= min_len; i++)
2311     bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2312 				 args[i - 1]);
2313 
2314   /* If more arguments than parameters, add dummy entries.  */
2315   for (i = min_len + 1; i <= nargs; i++)
2316     bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2317 
2318   return bv;
2319 }
2320 
2321 /* Compare the names of two integer types, assuming that any sign
2322    qualifiers have been checked already.  We do it this way because
2323    there may be an "int" in the name of one of the types.  */
2324 
2325 static int
2326 integer_types_same_name_p (const char *first, const char *second)
2327 {
2328   int first_p, second_p;
2329 
2330   /* If both are shorts, return 1; if neither is a short, keep
2331      checking.  */
2332   first_p = (strstr (first, "short") != NULL);
2333   second_p = (strstr (second, "short") != NULL);
2334   if (first_p && second_p)
2335     return 1;
2336   if (first_p || second_p)
2337     return 0;
2338 
2339   /* Likewise for long.  */
2340   first_p = (strstr (first, "long") != NULL);
2341   second_p = (strstr (second, "long") != NULL);
2342   if (first_p && second_p)
2343     return 1;
2344   if (first_p || second_p)
2345     return 0;
2346 
2347   /* Likewise for char.  */
2348   first_p = (strstr (first, "char") != NULL);
2349   second_p = (strstr (second, "char") != NULL);
2350   if (first_p && second_p)
2351     return 1;
2352   if (first_p || second_p)
2353     return 0;
2354 
2355   /* They must both be ints.  */
2356   return 1;
2357 }
2358 
2359 /* Compares type A to type B returns 1 if the represent the same type
2360    0 otherwise.  */
2361 
2362 static int
2363 types_equal (struct type *a, struct type *b)
2364 {
2365   /* Identical type pointers.  */
2366   /* However, this still doesn't catch all cases of same type for b
2367      and a.  The reason is that builtin types are different from
2368      the same ones constructed from the object.  */
2369   if (a == b)
2370     return 1;
2371 
2372   /* Resolve typedefs */
2373   if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2374     a = check_typedef (a);
2375   if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2376     b = check_typedef (b);
2377 
2378   /* If after resolving typedefs a and b are not of the same type
2379      code then they are not equal.  */
2380   if (TYPE_CODE (a) != TYPE_CODE (b))
2381     return 0;
2382 
2383   /* If a and b are both pointers types or both reference types then
2384      they are equal of the same type iff the objects they refer to are
2385      of the same type.  */
2386   if (TYPE_CODE (a) == TYPE_CODE_PTR
2387       || TYPE_CODE (a) == TYPE_CODE_REF)
2388     return types_equal (TYPE_TARGET_TYPE (a),
2389                         TYPE_TARGET_TYPE (b));
2390 
2391   /* Well, damnit, if the names are exactly the same, I'll say they
2392      are exactly the same.  This happens when we generate method
2393      stubs.  The types won't point to the same address, but they
2394      really are the same.  */
2395 
2396   if (TYPE_NAME (a) && TYPE_NAME (b)
2397       && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2398     return 1;
2399 
2400   /* Check if identical after resolving typedefs.  */
2401   if (a == b)
2402     return 1;
2403 
2404   return 0;
2405 }
2406 
2407 /* Compare one type (PARM) for compatibility with another (ARG).
2408  * PARM is intended to be the parameter type of a function; and
2409  * ARG is the supplied argument's type.  This function tests if
2410  * the latter can be converted to the former.
2411  * VALUE is the argument's value or NULL if none (or called recursively)
2412  *
2413  * Return 0 if they are identical types;
2414  * Otherwise, return an integer which corresponds to how compatible
2415  * PARM is to ARG.  The higher the return value, the worse the match.
2416  * Generally the "bad" conversions are all uniformly assigned a 100.  */
2417 
2418 struct rank
2419 rank_one_type (struct type *parm, struct type *arg, struct value *value)
2420 {
2421   struct rank rank = {0,0};
2422 
2423   if (types_equal (parm, arg))
2424     return EXACT_MATCH_BADNESS;
2425 
2426   /* Resolve typedefs */
2427   if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2428     parm = check_typedef (parm);
2429   if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2430     arg = check_typedef (arg);
2431 
2432   /* See through references, since we can almost make non-references
2433      references.  */
2434   if (TYPE_CODE (arg) == TYPE_CODE_REF)
2435     return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
2436                        REFERENCE_CONVERSION_BADNESS));
2437   if (TYPE_CODE (parm) == TYPE_CODE_REF)
2438     return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
2439                        REFERENCE_CONVERSION_BADNESS));
2440   if (overload_debug)
2441   /* Debugging only.  */
2442     fprintf_filtered (gdb_stderr,
2443 		      "------ Arg is %s [%d], parm is %s [%d]\n",
2444 		      TYPE_NAME (arg), TYPE_CODE (arg),
2445 		      TYPE_NAME (parm), TYPE_CODE (parm));
2446 
2447   /* x -> y means arg of type x being supplied for parameter of type y.  */
2448 
2449   switch (TYPE_CODE (parm))
2450     {
2451     case TYPE_CODE_PTR:
2452       switch (TYPE_CODE (arg))
2453 	{
2454 	case TYPE_CODE_PTR:
2455 
2456 	  /* Allowed pointer conversions are:
2457 	     (a) pointer to void-pointer conversion.  */
2458 	  if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2459 	    return VOID_PTR_CONVERSION_BADNESS;
2460 
2461 	  /* (b) pointer to ancestor-pointer conversion.  */
2462 	  rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
2463 	                                       TYPE_TARGET_TYPE (arg),
2464 	                                       0);
2465 	  if (rank.subrank >= 0)
2466 	    return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
2467 
2468 	  return INCOMPATIBLE_TYPE_BADNESS;
2469 	case TYPE_CODE_ARRAY:
2470 	  if (types_equal (TYPE_TARGET_TYPE (parm),
2471 	                   TYPE_TARGET_TYPE (arg)))
2472 	    return EXACT_MATCH_BADNESS;
2473 	  return INCOMPATIBLE_TYPE_BADNESS;
2474 	case TYPE_CODE_FUNC:
2475 	  return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
2476 	case TYPE_CODE_INT:
2477 	  if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT
2478 	      && value_as_long (value) == 0)
2479 	    {
2480 	      /* Null pointer conversion: allow it to be cast to a pointer.
2481 		 [4.10.1 of C++ standard draft n3290]  */
2482 	      return NULL_POINTER_CONVERSION_BADNESS;
2483 	    }
2484 	  /* fall through  */
2485 	case TYPE_CODE_ENUM:
2486 	case TYPE_CODE_FLAGS:
2487 	case TYPE_CODE_CHAR:
2488 	case TYPE_CODE_RANGE:
2489 	case TYPE_CODE_BOOL:
2490 	default:
2491 	  return INCOMPATIBLE_TYPE_BADNESS;
2492 	}
2493     case TYPE_CODE_ARRAY:
2494       switch (TYPE_CODE (arg))
2495 	{
2496 	case TYPE_CODE_PTR:
2497 	case TYPE_CODE_ARRAY:
2498 	  return rank_one_type (TYPE_TARGET_TYPE (parm),
2499 				TYPE_TARGET_TYPE (arg), NULL);
2500 	default:
2501 	  return INCOMPATIBLE_TYPE_BADNESS;
2502 	}
2503     case TYPE_CODE_FUNC:
2504       switch (TYPE_CODE (arg))
2505 	{
2506 	case TYPE_CODE_PTR:	/* funcptr -> func */
2507 	  return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
2508 	default:
2509 	  return INCOMPATIBLE_TYPE_BADNESS;
2510 	}
2511     case TYPE_CODE_INT:
2512       switch (TYPE_CODE (arg))
2513 	{
2514 	case TYPE_CODE_INT:
2515 	  if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2516 	    {
2517 	      /* Deal with signed, unsigned, and plain chars and
2518 	         signed and unsigned ints.  */
2519 	      if (TYPE_NOSIGN (parm))
2520 		{
2521 		  /* This case only for character types.  */
2522 		  if (TYPE_NOSIGN (arg))
2523 		    return EXACT_MATCH_BADNESS;	/* plain char -> plain char */
2524 		  else		/* signed/unsigned char -> plain char */
2525 		    return INTEGER_CONVERSION_BADNESS;
2526 		}
2527 	      else if (TYPE_UNSIGNED (parm))
2528 		{
2529 		  if (TYPE_UNSIGNED (arg))
2530 		    {
2531 		      /* unsigned int -> unsigned int, or
2532 			 unsigned long -> unsigned long */
2533 		      if (integer_types_same_name_p (TYPE_NAME (parm),
2534 						     TYPE_NAME (arg)))
2535 			return EXACT_MATCH_BADNESS;
2536 		      else if (integer_types_same_name_p (TYPE_NAME (arg),
2537 							  "int")
2538 			       && integer_types_same_name_p (TYPE_NAME (parm),
2539 							     "long"))
2540 			/* unsigned int -> unsigned long */
2541 			return INTEGER_PROMOTION_BADNESS;
2542 		      else
2543 			/* unsigned long -> unsigned int */
2544 			return INTEGER_CONVERSION_BADNESS;
2545 		    }
2546 		  else
2547 		    {
2548 		      if (integer_types_same_name_p (TYPE_NAME (arg),
2549 						     "long")
2550 			  && integer_types_same_name_p (TYPE_NAME (parm),
2551 							"int"))
2552 			/* signed long -> unsigned int */
2553 			return INTEGER_CONVERSION_BADNESS;
2554 		      else
2555 			/* signed int/long -> unsigned int/long */
2556 			return INTEGER_CONVERSION_BADNESS;
2557 		    }
2558 		}
2559 	      else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2560 		{
2561 		  if (integer_types_same_name_p (TYPE_NAME (parm),
2562 						 TYPE_NAME (arg)))
2563 		    return EXACT_MATCH_BADNESS;
2564 		  else if (integer_types_same_name_p (TYPE_NAME (arg),
2565 						      "int")
2566 			   && integer_types_same_name_p (TYPE_NAME (parm),
2567 							 "long"))
2568 		    return INTEGER_PROMOTION_BADNESS;
2569 		  else
2570 		    return INTEGER_CONVERSION_BADNESS;
2571 		}
2572 	      else
2573 		return INTEGER_CONVERSION_BADNESS;
2574 	    }
2575 	  else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2576 	    return INTEGER_PROMOTION_BADNESS;
2577 	  else
2578 	    return INTEGER_CONVERSION_BADNESS;
2579 	case TYPE_CODE_ENUM:
2580 	case TYPE_CODE_FLAGS:
2581 	case TYPE_CODE_CHAR:
2582 	case TYPE_CODE_RANGE:
2583 	case TYPE_CODE_BOOL:
2584 	  return INTEGER_PROMOTION_BADNESS;
2585 	case TYPE_CODE_FLT:
2586 	  return INT_FLOAT_CONVERSION_BADNESS;
2587 	case TYPE_CODE_PTR:
2588 	  return NS_POINTER_CONVERSION_BADNESS;
2589 	default:
2590 	  return INCOMPATIBLE_TYPE_BADNESS;
2591 	}
2592       break;
2593     case TYPE_CODE_ENUM:
2594       switch (TYPE_CODE (arg))
2595 	{
2596 	case TYPE_CODE_INT:
2597 	case TYPE_CODE_CHAR:
2598 	case TYPE_CODE_RANGE:
2599 	case TYPE_CODE_BOOL:
2600 	case TYPE_CODE_ENUM:
2601 	  return INTEGER_CONVERSION_BADNESS;
2602 	case TYPE_CODE_FLT:
2603 	  return INT_FLOAT_CONVERSION_BADNESS;
2604 	default:
2605 	  return INCOMPATIBLE_TYPE_BADNESS;
2606 	}
2607       break;
2608     case TYPE_CODE_CHAR:
2609       switch (TYPE_CODE (arg))
2610 	{
2611 	case TYPE_CODE_RANGE:
2612 	case TYPE_CODE_BOOL:
2613 	case TYPE_CODE_ENUM:
2614 	  return INTEGER_CONVERSION_BADNESS;
2615 	case TYPE_CODE_FLT:
2616 	  return INT_FLOAT_CONVERSION_BADNESS;
2617 	case TYPE_CODE_INT:
2618 	  if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2619 	    return INTEGER_CONVERSION_BADNESS;
2620 	  else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2621 	    return INTEGER_PROMOTION_BADNESS;
2622 	  /* >>> !! else fall through !! <<< */
2623 	case TYPE_CODE_CHAR:
2624 	  /* Deal with signed, unsigned, and plain chars for C++ and
2625 	     with int cases falling through from previous case.  */
2626 	  if (TYPE_NOSIGN (parm))
2627 	    {
2628 	      if (TYPE_NOSIGN (arg))
2629 		return EXACT_MATCH_BADNESS;
2630 	      else
2631 		return INTEGER_CONVERSION_BADNESS;
2632 	    }
2633 	  else if (TYPE_UNSIGNED (parm))
2634 	    {
2635 	      if (TYPE_UNSIGNED (arg))
2636 		return EXACT_MATCH_BADNESS;
2637 	      else
2638 		return INTEGER_PROMOTION_BADNESS;
2639 	    }
2640 	  else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2641 	    return EXACT_MATCH_BADNESS;
2642 	  else
2643 	    return INTEGER_CONVERSION_BADNESS;
2644 	default:
2645 	  return INCOMPATIBLE_TYPE_BADNESS;
2646 	}
2647       break;
2648     case TYPE_CODE_RANGE:
2649       switch (TYPE_CODE (arg))
2650 	{
2651 	case TYPE_CODE_INT:
2652 	case TYPE_CODE_CHAR:
2653 	case TYPE_CODE_RANGE:
2654 	case TYPE_CODE_BOOL:
2655 	case TYPE_CODE_ENUM:
2656 	  return INTEGER_CONVERSION_BADNESS;
2657 	case TYPE_CODE_FLT:
2658 	  return INT_FLOAT_CONVERSION_BADNESS;
2659 	default:
2660 	  return INCOMPATIBLE_TYPE_BADNESS;
2661 	}
2662       break;
2663     case TYPE_CODE_BOOL:
2664       switch (TYPE_CODE (arg))
2665 	{
2666 	case TYPE_CODE_INT:
2667 	case TYPE_CODE_CHAR:
2668 	case TYPE_CODE_RANGE:
2669 	case TYPE_CODE_ENUM:
2670 	case TYPE_CODE_FLT:
2671 	  return INCOMPATIBLE_TYPE_BADNESS;
2672 	case TYPE_CODE_PTR:
2673 	  return BOOL_PTR_CONVERSION_BADNESS;
2674 	case TYPE_CODE_BOOL:
2675 	  return EXACT_MATCH_BADNESS;
2676 	default:
2677 	  return INCOMPATIBLE_TYPE_BADNESS;
2678 	}
2679       break;
2680     case TYPE_CODE_FLT:
2681       switch (TYPE_CODE (arg))
2682 	{
2683 	case TYPE_CODE_FLT:
2684 	  if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2685 	    return FLOAT_PROMOTION_BADNESS;
2686 	  else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2687 	    return EXACT_MATCH_BADNESS;
2688 	  else
2689 	    return FLOAT_CONVERSION_BADNESS;
2690 	case TYPE_CODE_INT:
2691 	case TYPE_CODE_BOOL:
2692 	case TYPE_CODE_ENUM:
2693 	case TYPE_CODE_RANGE:
2694 	case TYPE_CODE_CHAR:
2695 	  return INT_FLOAT_CONVERSION_BADNESS;
2696 	default:
2697 	  return INCOMPATIBLE_TYPE_BADNESS;
2698 	}
2699       break;
2700     case TYPE_CODE_COMPLEX:
2701       switch (TYPE_CODE (arg))
2702 	{		/* Strictly not needed for C++, but...  */
2703 	case TYPE_CODE_FLT:
2704 	  return FLOAT_PROMOTION_BADNESS;
2705 	case TYPE_CODE_COMPLEX:
2706 	  return EXACT_MATCH_BADNESS;
2707 	default:
2708 	  return INCOMPATIBLE_TYPE_BADNESS;
2709 	}
2710       break;
2711     case TYPE_CODE_STRUCT:
2712       /* currently same as TYPE_CODE_CLASS.  */
2713       switch (TYPE_CODE (arg))
2714 	{
2715 	case TYPE_CODE_STRUCT:
2716 	  /* Check for derivation */
2717 	  rank.subrank = distance_to_ancestor (parm, arg, 0);
2718 	  if (rank.subrank >= 0)
2719 	    return sum_ranks (BASE_CONVERSION_BADNESS, rank);
2720 	  /* else fall through */
2721 	default:
2722 	  return INCOMPATIBLE_TYPE_BADNESS;
2723 	}
2724       break;
2725     case TYPE_CODE_UNION:
2726       switch (TYPE_CODE (arg))
2727 	{
2728 	case TYPE_CODE_UNION:
2729 	default:
2730 	  return INCOMPATIBLE_TYPE_BADNESS;
2731 	}
2732       break;
2733     case TYPE_CODE_MEMBERPTR:
2734       switch (TYPE_CODE (arg))
2735 	{
2736 	default:
2737 	  return INCOMPATIBLE_TYPE_BADNESS;
2738 	}
2739       break;
2740     case TYPE_CODE_METHOD:
2741       switch (TYPE_CODE (arg))
2742 	{
2743 
2744 	default:
2745 	  return INCOMPATIBLE_TYPE_BADNESS;
2746 	}
2747       break;
2748     case TYPE_CODE_REF:
2749       switch (TYPE_CODE (arg))
2750 	{
2751 
2752 	default:
2753 	  return INCOMPATIBLE_TYPE_BADNESS;
2754 	}
2755 
2756       break;
2757     case TYPE_CODE_SET:
2758       switch (TYPE_CODE (arg))
2759 	{
2760 	  /* Not in C++ */
2761 	case TYPE_CODE_SET:
2762 	  return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2763 				TYPE_FIELD_TYPE (arg, 0), NULL);
2764 	default:
2765 	  return INCOMPATIBLE_TYPE_BADNESS;
2766 	}
2767       break;
2768     case TYPE_CODE_VOID:
2769     default:
2770       return INCOMPATIBLE_TYPE_BADNESS;
2771     }				/* switch (TYPE_CODE (arg)) */
2772 }
2773 
2774 
2775 /* End of functions for overload resolution.  */
2776 
2777 static void
2778 print_bit_vector (B_TYPE *bits, int nbits)
2779 {
2780   int bitno;
2781 
2782   for (bitno = 0; bitno < nbits; bitno++)
2783     {
2784       if ((bitno % 8) == 0)
2785 	{
2786 	  puts_filtered (" ");
2787 	}
2788       if (B_TST (bits, bitno))
2789 	printf_filtered (("1"));
2790       else
2791 	printf_filtered (("0"));
2792     }
2793 }
2794 
2795 /* Note the first arg should be the "this" pointer, we may not want to
2796    include it since we may get into a infinitely recursive
2797    situation.  */
2798 
2799 static void
2800 print_arg_types (struct field *args, int nargs, int spaces)
2801 {
2802   if (args != NULL)
2803     {
2804       int i;
2805 
2806       for (i = 0; i < nargs; i++)
2807 	recursive_dump_type (args[i].type, spaces + 2);
2808     }
2809 }
2810 
2811 int
2812 field_is_static (struct field *f)
2813 {
2814   /* "static" fields are the fields whose location is not relative
2815      to the address of the enclosing struct.  It would be nice to
2816      have a dedicated flag that would be set for static fields when
2817      the type is being created.  But in practice, checking the field
2818      loc_kind should give us an accurate answer.  */
2819   return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2820 	  || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2821 }
2822 
2823 static void
2824 dump_fn_fieldlists (struct type *type, int spaces)
2825 {
2826   int method_idx;
2827   int overload_idx;
2828   struct fn_field *f;
2829 
2830   printfi_filtered (spaces, "fn_fieldlists ");
2831   gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
2832   printf_filtered ("\n");
2833   for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2834     {
2835       f = TYPE_FN_FIELDLIST1 (type, method_idx);
2836       printfi_filtered (spaces + 2, "[%d] name '%s' (",
2837 			method_idx,
2838 			TYPE_FN_FIELDLIST_NAME (type, method_idx));
2839       gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2840 			      gdb_stdout);
2841       printf_filtered (_(") length %d\n"),
2842 		       TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2843       for (overload_idx = 0;
2844 	   overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2845 	   overload_idx++)
2846 	{
2847 	  printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2848 			    overload_idx,
2849 			    TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
2850 	  gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2851 				  gdb_stdout);
2852 	  printf_filtered (")\n");
2853 	  printfi_filtered (spaces + 8, "type ");
2854 	  gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2855 				  gdb_stdout);
2856 	  printf_filtered ("\n");
2857 
2858 	  recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2859 			       spaces + 8 + 2);
2860 
2861 	  printfi_filtered (spaces + 8, "args ");
2862 	  gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2863 				  gdb_stdout);
2864 	  printf_filtered ("\n");
2865 
2866 	  print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
2867 			   TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2868 							     overload_idx)),
2869 			   spaces);
2870 	  printfi_filtered (spaces + 8, "fcontext ");
2871 	  gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2872 				  gdb_stdout);
2873 	  printf_filtered ("\n");
2874 
2875 	  printfi_filtered (spaces + 8, "is_const %d\n",
2876 			    TYPE_FN_FIELD_CONST (f, overload_idx));
2877 	  printfi_filtered (spaces + 8, "is_volatile %d\n",
2878 			    TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2879 	  printfi_filtered (spaces + 8, "is_private %d\n",
2880 			    TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2881 	  printfi_filtered (spaces + 8, "is_protected %d\n",
2882 			    TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2883 	  printfi_filtered (spaces + 8, "is_stub %d\n",
2884 			    TYPE_FN_FIELD_STUB (f, overload_idx));
2885 	  printfi_filtered (spaces + 8, "voffset %u\n",
2886 			    TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2887 	}
2888     }
2889 }
2890 
2891 static void
2892 print_cplus_stuff (struct type *type, int spaces)
2893 {
2894   printfi_filtered (spaces, "n_baseclasses %d\n",
2895 		    TYPE_N_BASECLASSES (type));
2896   printfi_filtered (spaces, "nfn_fields %d\n",
2897 		    TYPE_NFN_FIELDS (type));
2898   printfi_filtered (spaces, "nfn_fields_total %d\n",
2899 		    TYPE_NFN_FIELDS_TOTAL (type));
2900   if (TYPE_N_BASECLASSES (type) > 0)
2901     {
2902       printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2903 			TYPE_N_BASECLASSES (type));
2904       gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2905 			      gdb_stdout);
2906       printf_filtered (")");
2907 
2908       print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2909 			TYPE_N_BASECLASSES (type));
2910       puts_filtered ("\n");
2911     }
2912   if (TYPE_NFIELDS (type) > 0)
2913     {
2914       if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2915 	{
2916 	  printfi_filtered (spaces,
2917 			    "private_field_bits (%d bits at *",
2918 			    TYPE_NFIELDS (type));
2919 	  gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2920 				  gdb_stdout);
2921 	  printf_filtered (")");
2922 	  print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2923 			    TYPE_NFIELDS (type));
2924 	  puts_filtered ("\n");
2925 	}
2926       if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2927 	{
2928 	  printfi_filtered (spaces,
2929 			    "protected_field_bits (%d bits at *",
2930 			    TYPE_NFIELDS (type));
2931 	  gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2932 				  gdb_stdout);
2933 	  printf_filtered (")");
2934 	  print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2935 			    TYPE_NFIELDS (type));
2936 	  puts_filtered ("\n");
2937 	}
2938     }
2939   if (TYPE_NFN_FIELDS (type) > 0)
2940     {
2941       dump_fn_fieldlists (type, spaces);
2942     }
2943 }
2944 
2945 /* Print the contents of the TYPE's type_specific union, assuming that
2946    its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF.  */
2947 
2948 static void
2949 print_gnat_stuff (struct type *type, int spaces)
2950 {
2951   struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
2952 
2953   recursive_dump_type (descriptive_type, spaces + 2);
2954 }
2955 
2956 static struct obstack dont_print_type_obstack;
2957 
2958 void
2959 recursive_dump_type (struct type *type, int spaces)
2960 {
2961   int idx;
2962 
2963   if (spaces == 0)
2964     obstack_begin (&dont_print_type_obstack, 0);
2965 
2966   if (TYPE_NFIELDS (type) > 0
2967       || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
2968     {
2969       struct type **first_dont_print
2970 	= (struct type **) obstack_base (&dont_print_type_obstack);
2971 
2972       int i = (struct type **)
2973 	obstack_next_free (&dont_print_type_obstack) - first_dont_print;
2974 
2975       while (--i >= 0)
2976 	{
2977 	  if (type == first_dont_print[i])
2978 	    {
2979 	      printfi_filtered (spaces, "type node ");
2980 	      gdb_print_host_address (type, gdb_stdout);
2981 	      printf_filtered (_(" <same as already seen type>\n"));
2982 	      return;
2983 	    }
2984 	}
2985 
2986       obstack_ptr_grow (&dont_print_type_obstack, type);
2987     }
2988 
2989   printfi_filtered (spaces, "type node ");
2990   gdb_print_host_address (type, gdb_stdout);
2991   printf_filtered ("\n");
2992   printfi_filtered (spaces, "name '%s' (",
2993 		    TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
2994   gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
2995   printf_filtered (")\n");
2996   printfi_filtered (spaces, "tagname '%s' (",
2997 		    TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2998   gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2999   printf_filtered (")\n");
3000   printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3001   switch (TYPE_CODE (type))
3002     {
3003     case TYPE_CODE_UNDEF:
3004       printf_filtered ("(TYPE_CODE_UNDEF)");
3005       break;
3006     case TYPE_CODE_PTR:
3007       printf_filtered ("(TYPE_CODE_PTR)");
3008       break;
3009     case TYPE_CODE_ARRAY:
3010       printf_filtered ("(TYPE_CODE_ARRAY)");
3011       break;
3012     case TYPE_CODE_STRUCT:
3013       printf_filtered ("(TYPE_CODE_STRUCT)");
3014       break;
3015     case TYPE_CODE_UNION:
3016       printf_filtered ("(TYPE_CODE_UNION)");
3017       break;
3018     case TYPE_CODE_ENUM:
3019       printf_filtered ("(TYPE_CODE_ENUM)");
3020       break;
3021     case TYPE_CODE_FLAGS:
3022       printf_filtered ("(TYPE_CODE_FLAGS)");
3023       break;
3024     case TYPE_CODE_FUNC:
3025       printf_filtered ("(TYPE_CODE_FUNC)");
3026       break;
3027     case TYPE_CODE_INT:
3028       printf_filtered ("(TYPE_CODE_INT)");
3029       break;
3030     case TYPE_CODE_FLT:
3031       printf_filtered ("(TYPE_CODE_FLT)");
3032       break;
3033     case TYPE_CODE_VOID:
3034       printf_filtered ("(TYPE_CODE_VOID)");
3035       break;
3036     case TYPE_CODE_SET:
3037       printf_filtered ("(TYPE_CODE_SET)");
3038       break;
3039     case TYPE_CODE_RANGE:
3040       printf_filtered ("(TYPE_CODE_RANGE)");
3041       break;
3042     case TYPE_CODE_STRING:
3043       printf_filtered ("(TYPE_CODE_STRING)");
3044       break;
3045     case TYPE_CODE_BITSTRING:
3046       printf_filtered ("(TYPE_CODE_BITSTRING)");
3047       break;
3048     case TYPE_CODE_ERROR:
3049       printf_filtered ("(TYPE_CODE_ERROR)");
3050       break;
3051     case TYPE_CODE_MEMBERPTR:
3052       printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3053       break;
3054     case TYPE_CODE_METHODPTR:
3055       printf_filtered ("(TYPE_CODE_METHODPTR)");
3056       break;
3057     case TYPE_CODE_METHOD:
3058       printf_filtered ("(TYPE_CODE_METHOD)");
3059       break;
3060     case TYPE_CODE_REF:
3061       printf_filtered ("(TYPE_CODE_REF)");
3062       break;
3063     case TYPE_CODE_CHAR:
3064       printf_filtered ("(TYPE_CODE_CHAR)");
3065       break;
3066     case TYPE_CODE_BOOL:
3067       printf_filtered ("(TYPE_CODE_BOOL)");
3068       break;
3069     case TYPE_CODE_COMPLEX:
3070       printf_filtered ("(TYPE_CODE_COMPLEX)");
3071       break;
3072     case TYPE_CODE_TYPEDEF:
3073       printf_filtered ("(TYPE_CODE_TYPEDEF)");
3074       break;
3075     case TYPE_CODE_NAMESPACE:
3076       printf_filtered ("(TYPE_CODE_NAMESPACE)");
3077       break;
3078     default:
3079       printf_filtered ("(UNKNOWN TYPE CODE)");
3080       break;
3081     }
3082   puts_filtered ("\n");
3083   printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3084   if (TYPE_OBJFILE_OWNED (type))
3085     {
3086       printfi_filtered (spaces, "objfile ");
3087       gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3088     }
3089   else
3090     {
3091       printfi_filtered (spaces, "gdbarch ");
3092       gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3093     }
3094   printf_filtered ("\n");
3095   printfi_filtered (spaces, "target_type ");
3096   gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3097   printf_filtered ("\n");
3098   if (TYPE_TARGET_TYPE (type) != NULL)
3099     {
3100       recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3101     }
3102   printfi_filtered (spaces, "pointer_type ");
3103   gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3104   printf_filtered ("\n");
3105   printfi_filtered (spaces, "reference_type ");
3106   gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3107   printf_filtered ("\n");
3108   printfi_filtered (spaces, "type_chain ");
3109   gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3110   printf_filtered ("\n");
3111   printfi_filtered (spaces, "instance_flags 0x%x",
3112 		    TYPE_INSTANCE_FLAGS (type));
3113   if (TYPE_CONST (type))
3114     {
3115       puts_filtered (" TYPE_FLAG_CONST");
3116     }
3117   if (TYPE_VOLATILE (type))
3118     {
3119       puts_filtered (" TYPE_FLAG_VOLATILE");
3120     }
3121   if (TYPE_CODE_SPACE (type))
3122     {
3123       puts_filtered (" TYPE_FLAG_CODE_SPACE");
3124     }
3125   if (TYPE_DATA_SPACE (type))
3126     {
3127       puts_filtered (" TYPE_FLAG_DATA_SPACE");
3128     }
3129   if (TYPE_ADDRESS_CLASS_1 (type))
3130     {
3131       puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3132     }
3133   if (TYPE_ADDRESS_CLASS_2 (type))
3134     {
3135       puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3136     }
3137   puts_filtered ("\n");
3138 
3139   printfi_filtered (spaces, "flags");
3140   if (TYPE_UNSIGNED (type))
3141     {
3142       puts_filtered (" TYPE_FLAG_UNSIGNED");
3143     }
3144   if (TYPE_NOSIGN (type))
3145     {
3146       puts_filtered (" TYPE_FLAG_NOSIGN");
3147     }
3148   if (TYPE_STUB (type))
3149     {
3150       puts_filtered (" TYPE_FLAG_STUB");
3151     }
3152   if (TYPE_TARGET_STUB (type))
3153     {
3154       puts_filtered (" TYPE_FLAG_TARGET_STUB");
3155     }
3156   if (TYPE_STATIC (type))
3157     {
3158       puts_filtered (" TYPE_FLAG_STATIC");
3159     }
3160   if (TYPE_PROTOTYPED (type))
3161     {
3162       puts_filtered (" TYPE_FLAG_PROTOTYPED");
3163     }
3164   if (TYPE_INCOMPLETE (type))
3165     {
3166       puts_filtered (" TYPE_FLAG_INCOMPLETE");
3167     }
3168   if (TYPE_VARARGS (type))
3169     {
3170       puts_filtered (" TYPE_FLAG_VARARGS");
3171     }
3172   /* This is used for things like AltiVec registers on ppc.  Gcc emits
3173      an attribute for the array type, which tells whether or not we
3174      have a vector, instead of a regular array.  */
3175   if (TYPE_VECTOR (type))
3176     {
3177       puts_filtered (" TYPE_FLAG_VECTOR");
3178     }
3179   if (TYPE_FIXED_INSTANCE (type))
3180     {
3181       puts_filtered (" TYPE_FIXED_INSTANCE");
3182     }
3183   if (TYPE_STUB_SUPPORTED (type))
3184     {
3185       puts_filtered (" TYPE_STUB_SUPPORTED");
3186     }
3187   if (TYPE_NOTTEXT (type))
3188     {
3189       puts_filtered (" TYPE_NOTTEXT");
3190     }
3191   puts_filtered ("\n");
3192   printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3193   gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3194   puts_filtered ("\n");
3195   for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3196     {
3197       printfi_filtered (spaces + 2,
3198 			"[%d] bitpos %d bitsize %d type ",
3199 			idx, TYPE_FIELD_BITPOS (type, idx),
3200 			TYPE_FIELD_BITSIZE (type, idx));
3201       gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3202       printf_filtered (" name '%s' (",
3203 		       TYPE_FIELD_NAME (type, idx) != NULL
3204 		       ? TYPE_FIELD_NAME (type, idx)
3205 		       : "<NULL>");
3206       gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3207       printf_filtered (")\n");
3208       if (TYPE_FIELD_TYPE (type, idx) != NULL)
3209 	{
3210 	  recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3211 	}
3212     }
3213   if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3214     {
3215       printfi_filtered (spaces, "low %s%s  high %s%s\n",
3216 			plongest (TYPE_LOW_BOUND (type)),
3217 			TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3218 			plongest (TYPE_HIGH_BOUND (type)),
3219 			TYPE_HIGH_BOUND_UNDEFINED (type)
3220 			? " (undefined)" : "");
3221     }
3222   printfi_filtered (spaces, "vptr_basetype ");
3223   gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3224   puts_filtered ("\n");
3225   if (TYPE_VPTR_BASETYPE (type) != NULL)
3226     {
3227       recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3228     }
3229   printfi_filtered (spaces, "vptr_fieldno %d\n",
3230 		    TYPE_VPTR_FIELDNO (type));
3231 
3232   switch (TYPE_SPECIFIC_FIELD (type))
3233     {
3234       case TYPE_SPECIFIC_CPLUS_STUFF:
3235 	printfi_filtered (spaces, "cplus_stuff ");
3236 	gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3237 				gdb_stdout);
3238 	puts_filtered ("\n");
3239 	print_cplus_stuff (type, spaces);
3240 	break;
3241 
3242       case TYPE_SPECIFIC_GNAT_STUFF:
3243 	printfi_filtered (spaces, "gnat_stuff ");
3244 	gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3245 	puts_filtered ("\n");
3246 	print_gnat_stuff (type, spaces);
3247 	break;
3248 
3249       case TYPE_SPECIFIC_FLOATFORMAT:
3250 	printfi_filtered (spaces, "floatformat ");
3251 	if (TYPE_FLOATFORMAT (type) == NULL)
3252 	  puts_filtered ("(null)");
3253 	else
3254 	  {
3255 	    puts_filtered ("{ ");
3256 	    if (TYPE_FLOATFORMAT (type)[0] == NULL
3257 		|| TYPE_FLOATFORMAT (type)[0]->name == NULL)
3258 	      puts_filtered ("(null)");
3259 	    else
3260 	      puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3261 
3262 	    puts_filtered (", ");
3263 	    if (TYPE_FLOATFORMAT (type)[1] == NULL
3264 		|| TYPE_FLOATFORMAT (type)[1]->name == NULL)
3265 	      puts_filtered ("(null)");
3266 	    else
3267 	      puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3268 
3269 	    puts_filtered (" }");
3270 	  }
3271 	puts_filtered ("\n");
3272 	break;
3273 
3274       case TYPE_SPECIFIC_FUNC:
3275 	printfi_filtered (spaces, "calling_convention %d\n",
3276                           TYPE_CALLING_CONVENTION (type));
3277 	/* tail_call_list is not printed.  */
3278 	break;
3279     }
3280 
3281   if (spaces == 0)
3282     obstack_free (&dont_print_type_obstack, NULL);
3283 }
3284 
3285 /* Trivial helpers for the libiberty hash table, for mapping one
3286    type to another.  */
3287 
3288 struct type_pair
3289 {
3290   struct type *old, *new;
3291 };
3292 
3293 static hashval_t
3294 type_pair_hash (const void *item)
3295 {
3296   const struct type_pair *pair = item;
3297 
3298   return htab_hash_pointer (pair->old);
3299 }
3300 
3301 static int
3302 type_pair_eq (const void *item_lhs, const void *item_rhs)
3303 {
3304   const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
3305 
3306   return lhs->old == rhs->old;
3307 }
3308 
3309 /* Allocate the hash table used by copy_type_recursive to walk
3310    types without duplicates.  We use OBJFILE's obstack, because
3311    OBJFILE is about to be deleted.  */
3312 
3313 htab_t
3314 create_copied_types_hash (struct objfile *objfile)
3315 {
3316   return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3317 			       NULL, &objfile->objfile_obstack,
3318 			       hashtab_obstack_allocate,
3319 			       dummy_obstack_deallocate);
3320 }
3321 
3322 /* Recursively copy (deep copy) TYPE, if it is associated with
3323    OBJFILE.  Return a new type allocated using malloc, a saved type if
3324    we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3325    not associated with OBJFILE.  */
3326 
3327 struct type *
3328 copy_type_recursive (struct objfile *objfile,
3329 		     struct type *type,
3330 		     htab_t copied_types)
3331 {
3332   struct type_pair *stored, pair;
3333   void **slot;
3334   struct type *new_type;
3335 
3336   if (! TYPE_OBJFILE_OWNED (type))
3337     return type;
3338 
3339   /* This type shouldn't be pointing to any types in other objfiles;
3340      if it did, the type might disappear unexpectedly.  */
3341   gdb_assert (TYPE_OBJFILE (type) == objfile);
3342 
3343   pair.old = type;
3344   slot = htab_find_slot (copied_types, &pair, INSERT);
3345   if (*slot != NULL)
3346     return ((struct type_pair *) *slot)->new;
3347 
3348   new_type = alloc_type_arch (get_type_arch (type));
3349 
3350   /* We must add the new type to the hash table immediately, in case
3351      we encounter this type again during a recursive call below.  */
3352   stored
3353     = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
3354   stored->old = type;
3355   stored->new = new_type;
3356   *slot = stored;
3357 
3358   /* Copy the common fields of types.  For the main type, we simply
3359      copy the entire thing and then update specific fields as needed.  */
3360   *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
3361   TYPE_OBJFILE_OWNED (new_type) = 0;
3362   TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
3363 
3364   if (TYPE_NAME (type))
3365     TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3366   if (TYPE_TAG_NAME (type))
3367     TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
3368 
3369   TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3370   TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3371 
3372   /* Copy the fields.  */
3373   if (TYPE_NFIELDS (type))
3374     {
3375       int i, nfields;
3376 
3377       nfields = TYPE_NFIELDS (type);
3378       TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
3379       for (i = 0; i < nfields; i++)
3380 	{
3381 	  TYPE_FIELD_ARTIFICIAL (new_type, i) =
3382 	    TYPE_FIELD_ARTIFICIAL (type, i);
3383 	  TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3384 	  if (TYPE_FIELD_TYPE (type, i))
3385 	    TYPE_FIELD_TYPE (new_type, i)
3386 	      = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3387 				     copied_types);
3388 	  if (TYPE_FIELD_NAME (type, i))
3389 	    TYPE_FIELD_NAME (new_type, i) =
3390 	      xstrdup (TYPE_FIELD_NAME (type, i));
3391 	  switch (TYPE_FIELD_LOC_KIND (type, i))
3392 	    {
3393 	    case FIELD_LOC_KIND_BITPOS:
3394 	      SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3395 				TYPE_FIELD_BITPOS (type, i));
3396 	      break;
3397 	    case FIELD_LOC_KIND_PHYSADDR:
3398 	      SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3399 				  TYPE_FIELD_STATIC_PHYSADDR (type, i));
3400 	      break;
3401 	    case FIELD_LOC_KIND_PHYSNAME:
3402 	      SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3403 				  xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3404 								       i)));
3405 	      break;
3406 	    default:
3407 	      internal_error (__FILE__, __LINE__,
3408 			      _("Unexpected type field location kind: %d"),
3409 			      TYPE_FIELD_LOC_KIND (type, i));
3410 	    }
3411 	}
3412     }
3413 
3414   /* For range types, copy the bounds information.  */
3415   if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3416     {
3417       TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3418       *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3419     }
3420 
3421   /* Copy pointers to other types.  */
3422   if (TYPE_TARGET_TYPE (type))
3423     TYPE_TARGET_TYPE (new_type) =
3424       copy_type_recursive (objfile,
3425 			   TYPE_TARGET_TYPE (type),
3426 			   copied_types);
3427   if (TYPE_VPTR_BASETYPE (type))
3428     TYPE_VPTR_BASETYPE (new_type) =
3429       copy_type_recursive (objfile,
3430 			   TYPE_VPTR_BASETYPE (type),
3431 			   copied_types);
3432   /* Maybe copy the type_specific bits.
3433 
3434      NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3435      base classes and methods.  There's no fundamental reason why we
3436      can't, but at the moment it is not needed.  */
3437 
3438   if (TYPE_CODE (type) == TYPE_CODE_FLT)
3439     TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3440   else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3441 	   || TYPE_CODE (type) == TYPE_CODE_UNION
3442 	   || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3443     INIT_CPLUS_SPECIFIC (new_type);
3444 
3445   return new_type;
3446 }
3447 
3448 /* Make a copy of the given TYPE, except that the pointer & reference
3449    types are not preserved.
3450 
3451    This function assumes that the given type has an associated objfile.
3452    This objfile is used to allocate the new type.  */
3453 
3454 struct type *
3455 copy_type (const struct type *type)
3456 {
3457   struct type *new_type;
3458 
3459   gdb_assert (TYPE_OBJFILE_OWNED (type));
3460 
3461   new_type = alloc_type_copy (type);
3462   TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3463   TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3464   memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3465 	  sizeof (struct main_type));
3466 
3467   return new_type;
3468 }
3469 
3470 
3471 /* Helper functions to initialize architecture-specific types.  */
3472 
3473 /* Allocate a type structure associated with GDBARCH and set its
3474    CODE, LENGTH, and NAME fields.  */
3475 struct type *
3476 arch_type (struct gdbarch *gdbarch,
3477 	   enum type_code code, int length, char *name)
3478 {
3479   struct type *type;
3480 
3481   type = alloc_type_arch (gdbarch);
3482   TYPE_CODE (type) = code;
3483   TYPE_LENGTH (type) = length;
3484 
3485   if (name)
3486     TYPE_NAME (type) = xstrdup (name);
3487 
3488   return type;
3489 }
3490 
3491 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3492    BIT is the type size in bits.  If UNSIGNED_P is non-zero, set
3493    the type's TYPE_UNSIGNED flag.  NAME is the type name.  */
3494 struct type *
3495 arch_integer_type (struct gdbarch *gdbarch,
3496 		   int bit, int unsigned_p, char *name)
3497 {
3498   struct type *t;
3499 
3500   t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3501   if (unsigned_p)
3502     TYPE_UNSIGNED (t) = 1;
3503   if (name && strcmp (name, "char") == 0)
3504     TYPE_NOSIGN (t) = 1;
3505 
3506   return t;
3507 }
3508 
3509 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3510    BIT is the type size in bits.  If UNSIGNED_P is non-zero, set
3511    the type's TYPE_UNSIGNED flag.  NAME is the type name.  */
3512 struct type *
3513 arch_character_type (struct gdbarch *gdbarch,
3514 		     int bit, int unsigned_p, char *name)
3515 {
3516   struct type *t;
3517 
3518   t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3519   if (unsigned_p)
3520     TYPE_UNSIGNED (t) = 1;
3521 
3522   return t;
3523 }
3524 
3525 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3526    BIT is the type size in bits.  If UNSIGNED_P is non-zero, set
3527    the type's TYPE_UNSIGNED flag.  NAME is the type name.  */
3528 struct type *
3529 arch_boolean_type (struct gdbarch *gdbarch,
3530 		   int bit, int unsigned_p, char *name)
3531 {
3532   struct type *t;
3533 
3534   t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3535   if (unsigned_p)
3536     TYPE_UNSIGNED (t) = 1;
3537 
3538   return t;
3539 }
3540 
3541 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3542    BIT is the type size in bits; if BIT equals -1, the size is
3543    determined by the floatformat.  NAME is the type name.  Set the
3544    TYPE_FLOATFORMAT from FLOATFORMATS.  */
3545 struct type *
3546 arch_float_type (struct gdbarch *gdbarch,
3547 		 int bit, char *name, const struct floatformat **floatformats)
3548 {
3549   struct type *t;
3550 
3551   if (bit == -1)
3552     {
3553       gdb_assert (floatformats != NULL);
3554       gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3555       bit = floatformats[0]->totalsize;
3556     }
3557   gdb_assert (bit >= 0);
3558 
3559   t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
3560   TYPE_FLOATFORMAT (t) = floatformats;
3561   return t;
3562 }
3563 
3564 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3565    NAME is the type name.  TARGET_TYPE is the component float type.  */
3566 struct type *
3567 arch_complex_type (struct gdbarch *gdbarch,
3568 		   char *name, struct type *target_type)
3569 {
3570   struct type *t;
3571 
3572   t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3573 		 2 * TYPE_LENGTH (target_type), name);
3574   TYPE_TARGET_TYPE (t) = target_type;
3575   return t;
3576 }
3577 
3578 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
3579    NAME is the type name.  LENGTH is the size of the flag word in bytes.  */
3580 struct type *
3581 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3582 {
3583   int nfields = length * TARGET_CHAR_BIT;
3584   struct type *type;
3585 
3586   type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3587   TYPE_UNSIGNED (type) = 1;
3588   TYPE_NFIELDS (type) = nfields;
3589   TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3590 
3591   return type;
3592 }
3593 
3594 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3595    position BITPOS is called NAME.  */
3596 void
3597 append_flags_type_flag (struct type *type, int bitpos, char *name)
3598 {
3599   gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3600   gdb_assert (bitpos < TYPE_NFIELDS (type));
3601   gdb_assert (bitpos >= 0);
3602 
3603   if (name)
3604     {
3605       TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3606       TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
3607     }
3608   else
3609     {
3610       /* Don't show this field to the user.  */
3611       TYPE_FIELD_BITPOS (type, bitpos) = -1;
3612     }
3613 }
3614 
3615 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3616    specified by CODE) associated with GDBARCH.  NAME is the type name.  */
3617 struct type *
3618 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3619 {
3620   struct type *t;
3621 
3622   gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3623   t = arch_type (gdbarch, code, 0, NULL);
3624   TYPE_TAG_NAME (t) = name;
3625   INIT_CPLUS_SPECIFIC (t);
3626   return t;
3627 }
3628 
3629 /* Add new field with name NAME and type FIELD to composite type T.
3630    Do not set the field's position or adjust the type's length;
3631    the caller should do so.  Return the new field.  */
3632 struct field *
3633 append_composite_type_field_raw (struct type *t, char *name,
3634 				 struct type *field)
3635 {
3636   struct field *f;
3637 
3638   TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3639   TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3640 			      sizeof (struct field) * TYPE_NFIELDS (t));
3641   f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3642   memset (f, 0, sizeof f[0]);
3643   FIELD_TYPE (f[0]) = field;
3644   FIELD_NAME (f[0]) = name;
3645   return f;
3646 }
3647 
3648 /* Add new field with name NAME and type FIELD to composite type T.
3649    ALIGNMENT (if non-zero) specifies the minimum field alignment.  */
3650 void
3651 append_composite_type_field_aligned (struct type *t, char *name,
3652 				     struct type *field, int alignment)
3653 {
3654   struct field *f = append_composite_type_field_raw (t, name, field);
3655 
3656   if (TYPE_CODE (t) == TYPE_CODE_UNION)
3657     {
3658       if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3659 	TYPE_LENGTH (t) = TYPE_LENGTH (field);
3660     }
3661   else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3662     {
3663       TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3664       if (TYPE_NFIELDS (t) > 1)
3665 	{
3666 	  FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
3667 				 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3668 				    * TARGET_CHAR_BIT));
3669 
3670 	  if (alignment)
3671 	    {
3672 	      int left;
3673 
3674 	      alignment *= TARGET_CHAR_BIT;
3675 	      left = FIELD_BITPOS (f[0]) % alignment;
3676 
3677 	      if (left)
3678 		{
3679 		  FIELD_BITPOS (f[0]) += (alignment - left);
3680 		  TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
3681 		}
3682 	    }
3683 	}
3684     }
3685 }
3686 
3687 /* Add new field with name NAME and type FIELD to composite type T.  */
3688 void
3689 append_composite_type_field (struct type *t, char *name,
3690 			     struct type *field)
3691 {
3692   append_composite_type_field_aligned (t, name, field, 0);
3693 }
3694 
3695 
3696 static struct gdbarch_data *gdbtypes_data;
3697 
3698 const struct builtin_type *
3699 builtin_type (struct gdbarch *gdbarch)
3700 {
3701   return gdbarch_data (gdbarch, gdbtypes_data);
3702 }
3703 
3704 static void *
3705 gdbtypes_post_init (struct gdbarch *gdbarch)
3706 {
3707   struct builtin_type *builtin_type
3708     = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3709 
3710   /* Basic types.  */
3711   builtin_type->builtin_void
3712     = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3713   builtin_type->builtin_char
3714     = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3715 			 !gdbarch_char_signed (gdbarch), "char");
3716   builtin_type->builtin_signed_char
3717     = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3718 			 0, "signed char");
3719   builtin_type->builtin_unsigned_char
3720     = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3721 			 1, "unsigned char");
3722   builtin_type->builtin_short
3723     = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3724 			 0, "short");
3725   builtin_type->builtin_unsigned_short
3726     = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3727 			 1, "unsigned short");
3728   builtin_type->builtin_int
3729     = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3730 			 0, "int");
3731   builtin_type->builtin_unsigned_int
3732     = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3733 			 1, "unsigned int");
3734   builtin_type->builtin_long
3735     = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3736 			 0, "long");
3737   builtin_type->builtin_unsigned_long
3738     = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3739 			 1, "unsigned long");
3740   builtin_type->builtin_long_long
3741     = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3742 			 0, "long long");
3743   builtin_type->builtin_unsigned_long_long
3744     = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3745 			 1, "unsigned long long");
3746   builtin_type->builtin_float
3747     = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
3748 		       "float", gdbarch_float_format (gdbarch));
3749   builtin_type->builtin_double
3750     = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
3751 		       "double", gdbarch_double_format (gdbarch));
3752   builtin_type->builtin_long_double
3753     = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
3754 		       "long double", gdbarch_long_double_format (gdbarch));
3755   builtin_type->builtin_complex
3756     = arch_complex_type (gdbarch, "complex",
3757 			 builtin_type->builtin_float);
3758   builtin_type->builtin_double_complex
3759     = arch_complex_type (gdbarch, "double complex",
3760 			 builtin_type->builtin_double);
3761   builtin_type->builtin_string
3762     = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3763   builtin_type->builtin_bool
3764     = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
3765 
3766   /* The following three are about decimal floating point types, which
3767      are 32-bits, 64-bits and 128-bits respectively.  */
3768   builtin_type->builtin_decfloat
3769     = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
3770   builtin_type->builtin_decdouble
3771     = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
3772   builtin_type->builtin_declong
3773     = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
3774 
3775   /* "True" character types.  */
3776   builtin_type->builtin_true_char
3777     = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3778   builtin_type->builtin_true_unsigned_char
3779     = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
3780 
3781   /* Fixed-size integer types.  */
3782   builtin_type->builtin_int0
3783     = arch_integer_type (gdbarch, 0, 0, "int0_t");
3784   builtin_type->builtin_int8
3785     = arch_integer_type (gdbarch, 8, 0, "int8_t");
3786   builtin_type->builtin_uint8
3787     = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3788   builtin_type->builtin_int16
3789     = arch_integer_type (gdbarch, 16, 0, "int16_t");
3790   builtin_type->builtin_uint16
3791     = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3792   builtin_type->builtin_int32
3793     = arch_integer_type (gdbarch, 32, 0, "int32_t");
3794   builtin_type->builtin_uint32
3795     = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3796   builtin_type->builtin_int64
3797     = arch_integer_type (gdbarch, 64, 0, "int64_t");
3798   builtin_type->builtin_uint64
3799     = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3800   builtin_type->builtin_int128
3801     = arch_integer_type (gdbarch, 128, 0, "int128_t");
3802   builtin_type->builtin_uint128
3803     = arch_integer_type (gdbarch, 128, 1, "uint128_t");
3804   TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
3805     TYPE_INSTANCE_FLAG_NOTTEXT;
3806   TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
3807     TYPE_INSTANCE_FLAG_NOTTEXT;
3808 
3809   /* Wide character types.  */
3810   builtin_type->builtin_char16
3811     = arch_integer_type (gdbarch, 16, 0, "char16_t");
3812   builtin_type->builtin_char32
3813     = arch_integer_type (gdbarch, 32, 0, "char32_t");
3814 
3815 
3816   /* Default data/code pointer types.  */
3817   builtin_type->builtin_data_ptr
3818     = lookup_pointer_type (builtin_type->builtin_void);
3819   builtin_type->builtin_func_ptr
3820     = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
3821   builtin_type->builtin_func_func
3822     = lookup_function_type (builtin_type->builtin_func_ptr);
3823 
3824   /* This type represents a GDB internal function.  */
3825   builtin_type->internal_fn
3826     = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3827 		 "<internal function>");
3828 
3829   return builtin_type;
3830 }
3831 
3832 
3833 /* This set of objfile-based types is intended to be used by symbol
3834    readers as basic types.  */
3835 
3836 static const struct objfile_data *objfile_type_data;
3837 
3838 const struct objfile_type *
3839 objfile_type (struct objfile *objfile)
3840 {
3841   struct gdbarch *gdbarch;
3842   struct objfile_type *objfile_type
3843     = objfile_data (objfile, objfile_type_data);
3844 
3845   if (objfile_type)
3846     return objfile_type;
3847 
3848   objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3849 				 1, struct objfile_type);
3850 
3851   /* Use the objfile architecture to determine basic type properties.  */
3852   gdbarch = get_objfile_arch (objfile);
3853 
3854   /* Basic types.  */
3855   objfile_type->builtin_void
3856     = init_type (TYPE_CODE_VOID, 1,
3857 		 0,
3858 		 "void", objfile);
3859 
3860   objfile_type->builtin_char
3861     = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3862 		 (TYPE_FLAG_NOSIGN
3863 		  | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3864 		 "char", objfile);
3865   objfile_type->builtin_signed_char
3866     = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3867 		 0,
3868 		 "signed char", objfile);
3869   objfile_type->builtin_unsigned_char
3870     = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3871 		 TYPE_FLAG_UNSIGNED,
3872 		 "unsigned char", objfile);
3873   objfile_type->builtin_short
3874     = init_type (TYPE_CODE_INT,
3875 		 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3876 		 0, "short", objfile);
3877   objfile_type->builtin_unsigned_short
3878     = init_type (TYPE_CODE_INT,
3879 		 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3880 		 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3881   objfile_type->builtin_int
3882     = init_type (TYPE_CODE_INT,
3883 		 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3884 		 0, "int", objfile);
3885   objfile_type->builtin_unsigned_int
3886     = init_type (TYPE_CODE_INT,
3887 		 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3888 		 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3889   objfile_type->builtin_long
3890     = init_type (TYPE_CODE_INT,
3891 		 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3892 		 0, "long", objfile);
3893   objfile_type->builtin_unsigned_long
3894     = init_type (TYPE_CODE_INT,
3895 		 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3896 		 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3897   objfile_type->builtin_long_long
3898     = init_type (TYPE_CODE_INT,
3899 		 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3900 		 0, "long long", objfile);
3901   objfile_type->builtin_unsigned_long_long
3902     = init_type (TYPE_CODE_INT,
3903 		 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3904 		 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3905 
3906   objfile_type->builtin_float
3907     = init_type (TYPE_CODE_FLT,
3908 		 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
3909 		 0, "float", objfile);
3910   TYPE_FLOATFORMAT (objfile_type->builtin_float)
3911     = gdbarch_float_format (gdbarch);
3912   objfile_type->builtin_double
3913     = init_type (TYPE_CODE_FLT,
3914 		 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
3915 		 0, "double", objfile);
3916   TYPE_FLOATFORMAT (objfile_type->builtin_double)
3917     = gdbarch_double_format (gdbarch);
3918   objfile_type->builtin_long_double
3919     = init_type (TYPE_CODE_FLT,
3920 		 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
3921 		 0, "long double", objfile);
3922   TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
3923     = gdbarch_long_double_format (gdbarch);
3924 
3925   /* This type represents a type that was unrecognized in symbol read-in.  */
3926   objfile_type->builtin_error
3927     = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
3928 
3929   /* The following set of types is used for symbols with no
3930      debug information.  */
3931   objfile_type->nodebug_text_symbol
3932     = init_type (TYPE_CODE_FUNC, 1, 0,
3933 		 "<text variable, no debug info>", objfile);
3934   TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
3935     = objfile_type->builtin_int;
3936   objfile_type->nodebug_text_gnu_ifunc_symbol
3937     = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
3938 		 "<text gnu-indirect-function variable, no debug info>",
3939 		 objfile);
3940   TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
3941     = objfile_type->nodebug_text_symbol;
3942   objfile_type->nodebug_got_plt_symbol
3943     = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
3944 		 "<text from jump slot in .got.plt, no debug info>",
3945 		 objfile);
3946   TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
3947     = objfile_type->nodebug_text_symbol;
3948   objfile_type->nodebug_data_symbol
3949     = init_type (TYPE_CODE_INT,
3950 		 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3951 		 "<data variable, no debug info>", objfile);
3952   objfile_type->nodebug_unknown_symbol
3953     = init_type (TYPE_CODE_INT, 1, 0,
3954 		 "<variable (not text or data), no debug info>", objfile);
3955   objfile_type->nodebug_tls_symbol
3956     = init_type (TYPE_CODE_INT,
3957 		 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3958 		 "<thread local variable, no debug info>", objfile);
3959 
3960   /* NOTE: on some targets, addresses and pointers are not necessarily
3961      the same --- for example, on the D10V, pointers are 16 bits long,
3962      but addresses are 32 bits long.  See doc/gdbint.texinfo,
3963      ``Pointers Are Not Always Addresses''.
3964 
3965      The upshot is:
3966      - gdb's `struct type' always describes the target's
3967        representation.
3968      - gdb's `struct value' objects should always hold values in
3969        target form.
3970      - gdb's CORE_ADDR values are addresses in the unified virtual
3971        address space that the assembler and linker work with.  Thus,
3972        since target_read_memory takes a CORE_ADDR as an argument, it
3973        can access any memory on the target, even if the processor has
3974        separate code and data address spaces.
3975 
3976      So, for example:
3977      - If v is a value holding a D10V code pointer, its contents are
3978        in target form: a big-endian address left-shifted two bits.
3979      - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3980        sizeof (void *) == 2 on the target.
3981 
3982      In this context, objfile_type->builtin_core_addr is a bit odd:
3983      it's a target type for a value the target will never see.  It's
3984      only used to hold the values of (typeless) linker symbols, which
3985      are indeed in the unified virtual address space.  */
3986 
3987   objfile_type->builtin_core_addr
3988     = init_type (TYPE_CODE_INT,
3989 		 gdbarch_addr_bit (gdbarch) / 8,
3990 		 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
3991 
3992   set_objfile_data (objfile, objfile_type_data, objfile_type);
3993   return objfile_type;
3994 }
3995 
3996 
3997 extern void _initialize_gdbtypes (void);
3998 void
3999 _initialize_gdbtypes (void)
4000 {
4001   gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
4002   objfile_type_data = register_objfile_data ();
4003 
4004   add_setshow_zinteger_cmd ("overload", no_class, &overload_debug,
4005 			    _("Set debugging of C++ overloading."),
4006 			    _("Show debugging of C++ overloading."),
4007 			    _("When enabled, ranking of the "
4008 			      "functions is displayed."),
4009 			    NULL,
4010 			    show_overload_debug,
4011 			    &setdebuglist, &showdebuglist);
4012 
4013   /* Add user knob for controlling resolution of opaque types.  */
4014   add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
4015 			   &opaque_type_resolution,
4016 			   _("Set resolution of opaque struct/class/union"
4017 			     " types (if set before loading symbols)."),
4018 			   _("Show resolution of opaque struct/class/union"
4019 			     " types (if set before loading symbols)."),
4020 			   NULL, NULL,
4021 			   show_opaque_type_resolution,
4022 			   &setlist, &showlist);
4023 }
4024