xref: /dragonfly/contrib/gdb-7/gdb/gdbtypes.c (revision e96fb831)
1 /* Support routines for manipulating internal types for GDB.
2 
3    Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
4    2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5    Free Software Foundation, Inc.
6 
7    Contributed by Cygnus Support, using pieces from other GDB modules.
8 
9    This file is part of GDB.
10 
11    This program is free software; you can redistribute it and/or modify
12    it under the terms of the GNU General Public License as published by
13    the Free Software Foundation; either version 3 of the License, or
14    (at your option) any later version.
15 
16    This program is distributed in the hope that it will be useful,
17    but WITHOUT ANY WARRANTY; without even the implied warranty of
18    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19    GNU General Public License for more details.
20 
21    You should have received a copy of the GNU General Public License
22    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
23 
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "bfd.h"
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbtypes.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "target.h"
34 #include "value.h"
35 #include "demangle.h"
36 #include "complaints.h"
37 #include "gdbcmd.h"
38 #include "wrapper.h"
39 #include "cp-abi.h"
40 #include "gdb_assert.h"
41 #include "hashtab.h"
42 
43 
44 /* Initialize BADNESS constants.  */
45 
46 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
47 
48 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
50 
51 const struct rank EXACT_MATCH_BADNESS = {0,0};
52 
53 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_PTR_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63 
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65 
66 /* Floatformat pairs.  */
67 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
68   &floatformat_ieee_half_big,
69   &floatformat_ieee_half_little
70 };
71 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
72   &floatformat_ieee_single_big,
73   &floatformat_ieee_single_little
74 };
75 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
76   &floatformat_ieee_double_big,
77   &floatformat_ieee_double_little
78 };
79 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
80   &floatformat_ieee_double_big,
81   &floatformat_ieee_double_littlebyte_bigword
82 };
83 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
84   &floatformat_i387_ext,
85   &floatformat_i387_ext
86 };
87 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
88   &floatformat_m68881_ext,
89   &floatformat_m68881_ext
90 };
91 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
92   &floatformat_arm_ext_big,
93   &floatformat_arm_ext_littlebyte_bigword
94 };
95 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
96   &floatformat_ia64_spill_big,
97   &floatformat_ia64_spill_little
98 };
99 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
100   &floatformat_ia64_quad_big,
101   &floatformat_ia64_quad_little
102 };
103 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
104   &floatformat_vax_f,
105   &floatformat_vax_f
106 };
107 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
108   &floatformat_vax_d,
109   &floatformat_vax_d
110 };
111 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
112   &floatformat_ibm_long_double,
113   &floatformat_ibm_long_double
114 };
115 
116 
117 int opaque_type_resolution = 1;
118 static void
119 show_opaque_type_resolution (struct ui_file *file, int from_tty,
120 			     struct cmd_list_element *c,
121 			     const char *value)
122 {
123   fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
124 			    "(if set before loading symbols) is %s.\n"),
125 		    value);
126 }
127 
128 int overload_debug = 0;
129 static void
130 show_overload_debug (struct ui_file *file, int from_tty,
131 		     struct cmd_list_element *c, const char *value)
132 {
133   fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
134 		    value);
135 }
136 
137 struct extra
138   {
139     char str[128];
140     int len;
141   };				/* Maximum extension is 128!  FIXME  */
142 
143 static void print_bit_vector (B_TYPE *, int);
144 static void print_arg_types (struct field *, int, int);
145 static void dump_fn_fieldlists (struct type *, int);
146 static void print_cplus_stuff (struct type *, int);
147 
148 
149 /* Allocate a new OBJFILE-associated type structure and fill it
150    with some defaults.  Space for the type structure is allocated
151    on the objfile's objfile_obstack.  */
152 
153 struct type *
154 alloc_type (struct objfile *objfile)
155 {
156   struct type *type;
157 
158   gdb_assert (objfile != NULL);
159 
160   /* Alloc the structure and start off with all fields zeroed.  */
161   type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
162   TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
163 					  struct main_type);
164   OBJSTAT (objfile, n_types++);
165 
166   TYPE_OBJFILE_OWNED (type) = 1;
167   TYPE_OWNER (type).objfile = objfile;
168 
169   /* Initialize the fields that might not be zero.  */
170 
171   TYPE_CODE (type) = TYPE_CODE_UNDEF;
172   TYPE_VPTR_FIELDNO (type) = -1;
173   TYPE_CHAIN (type) = type;	/* Chain back to itself.  */
174 
175   return type;
176 }
177 
178 /* Allocate a new GDBARCH-associated type structure and fill it
179    with some defaults.  Space for the type structure is allocated
180    on the heap.  */
181 
182 struct type *
183 alloc_type_arch (struct gdbarch *gdbarch)
184 {
185   struct type *type;
186 
187   gdb_assert (gdbarch != NULL);
188 
189   /* Alloc the structure and start off with all fields zeroed.  */
190 
191   type = XZALLOC (struct type);
192   TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
193 
194   TYPE_OBJFILE_OWNED (type) = 0;
195   TYPE_OWNER (type).gdbarch = gdbarch;
196 
197   /* Initialize the fields that might not be zero.  */
198 
199   TYPE_CODE (type) = TYPE_CODE_UNDEF;
200   TYPE_VPTR_FIELDNO (type) = -1;
201   TYPE_CHAIN (type) = type;	/* Chain back to itself.  */
202 
203   return type;
204 }
205 
206 /* If TYPE is objfile-associated, allocate a new type structure
207    associated with the same objfile.  If TYPE is gdbarch-associated,
208    allocate a new type structure associated with the same gdbarch.  */
209 
210 struct type *
211 alloc_type_copy (const struct type *type)
212 {
213   if (TYPE_OBJFILE_OWNED (type))
214     return alloc_type (TYPE_OWNER (type).objfile);
215   else
216     return alloc_type_arch (TYPE_OWNER (type).gdbarch);
217 }
218 
219 /* If TYPE is gdbarch-associated, return that architecture.
220    If TYPE is objfile-associated, return that objfile's architecture.  */
221 
222 struct gdbarch *
223 get_type_arch (const struct type *type)
224 {
225   if (TYPE_OBJFILE_OWNED (type))
226     return get_objfile_arch (TYPE_OWNER (type).objfile);
227   else
228     return TYPE_OWNER (type).gdbarch;
229 }
230 
231 
232 /* Alloc a new type instance structure, fill it with some defaults,
233    and point it at OLDTYPE.  Allocate the new type instance from the
234    same place as OLDTYPE.  */
235 
236 static struct type *
237 alloc_type_instance (struct type *oldtype)
238 {
239   struct type *type;
240 
241   /* Allocate the structure.  */
242 
243   if (! TYPE_OBJFILE_OWNED (oldtype))
244     type = XZALLOC (struct type);
245   else
246     type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
247 			   struct type);
248 
249   TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
250 
251   TYPE_CHAIN (type) = type;	/* Chain back to itself for now.  */
252 
253   return type;
254 }
255 
256 /* Clear all remnants of the previous type at TYPE, in preparation for
257    replacing it with something else.  Preserve owner information.  */
258 static void
259 smash_type (struct type *type)
260 {
261   int objfile_owned = TYPE_OBJFILE_OWNED (type);
262   union type_owner owner = TYPE_OWNER (type);
263 
264   memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
265 
266   /* Restore owner information.  */
267   TYPE_OBJFILE_OWNED (type) = objfile_owned;
268   TYPE_OWNER (type) = owner;
269 
270   /* For now, delete the rings.  */
271   TYPE_CHAIN (type) = type;
272 
273   /* For now, leave the pointer/reference types alone.  */
274 }
275 
276 /* Lookup a pointer to a type TYPE.  TYPEPTR, if nonzero, points
277    to a pointer to memory where the pointer type should be stored.
278    If *TYPEPTR is zero, update it to point to the pointer type we return.
279    We allocate new memory if needed.  */
280 
281 struct type *
282 make_pointer_type (struct type *type, struct type **typeptr)
283 {
284   struct type *ntype;	/* New type */
285   struct type *chain;
286 
287   ntype = TYPE_POINTER_TYPE (type);
288 
289   if (ntype)
290     {
291       if (typeptr == 0)
292 	return ntype;		/* Don't care about alloc,
293 				   and have new type.  */
294       else if (*typeptr == 0)
295 	{
296 	  *typeptr = ntype;	/* Tracking alloc, and have new type.  */
297 	  return ntype;
298 	}
299     }
300 
301   if (typeptr == 0 || *typeptr == 0)	/* We'll need to allocate one.  */
302     {
303       ntype = alloc_type_copy (type);
304       if (typeptr)
305 	*typeptr = ntype;
306     }
307   else			/* We have storage, but need to reset it.  */
308     {
309       ntype = *typeptr;
310       chain = TYPE_CHAIN (ntype);
311       smash_type (ntype);
312       TYPE_CHAIN (ntype) = chain;
313     }
314 
315   TYPE_TARGET_TYPE (ntype) = type;
316   TYPE_POINTER_TYPE (type) = ntype;
317 
318   /* FIXME!  Assume the machine has only one representation for
319      pointers!  */
320 
321   TYPE_LENGTH (ntype)
322     = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
323   TYPE_CODE (ntype) = TYPE_CODE_PTR;
324 
325   /* Mark pointers as unsigned.  The target converts between pointers
326      and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
327      gdbarch_address_to_pointer.  */
328   TYPE_UNSIGNED (ntype) = 1;
329 
330   if (!TYPE_POINTER_TYPE (type))	/* Remember it, if don't have one.  */
331     TYPE_POINTER_TYPE (type) = ntype;
332 
333   /* Update the length of all the other variants of this type.  */
334   chain = TYPE_CHAIN (ntype);
335   while (chain != ntype)
336     {
337       TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
338       chain = TYPE_CHAIN (chain);
339     }
340 
341   return ntype;
342 }
343 
344 /* Given a type TYPE, return a type of pointers to that type.
345    May need to construct such a type if this is the first use.  */
346 
347 struct type *
348 lookup_pointer_type (struct type *type)
349 {
350   return make_pointer_type (type, (struct type **) 0);
351 }
352 
353 /* Lookup a C++ `reference' to a type TYPE.  TYPEPTR, if nonzero,
354    points to a pointer to memory where the reference type should be
355    stored.  If *TYPEPTR is zero, update it to point to the reference
356    type we return.  We allocate new memory if needed.  */
357 
358 struct type *
359 make_reference_type (struct type *type, struct type **typeptr)
360 {
361   struct type *ntype;	/* New type */
362   struct type *chain;
363 
364   ntype = TYPE_REFERENCE_TYPE (type);
365 
366   if (ntype)
367     {
368       if (typeptr == 0)
369 	return ntype;		/* Don't care about alloc,
370 				   and have new type.  */
371       else if (*typeptr == 0)
372 	{
373 	  *typeptr = ntype;	/* Tracking alloc, and have new type.  */
374 	  return ntype;
375 	}
376     }
377 
378   if (typeptr == 0 || *typeptr == 0)	/* We'll need to allocate one.  */
379     {
380       ntype = alloc_type_copy (type);
381       if (typeptr)
382 	*typeptr = ntype;
383     }
384   else			/* We have storage, but need to reset it.  */
385     {
386       ntype = *typeptr;
387       chain = TYPE_CHAIN (ntype);
388       smash_type (ntype);
389       TYPE_CHAIN (ntype) = chain;
390     }
391 
392   TYPE_TARGET_TYPE (ntype) = type;
393   TYPE_REFERENCE_TYPE (type) = ntype;
394 
395   /* FIXME!  Assume the machine has only one representation for
396      references, and that it matches the (only) representation for
397      pointers!  */
398 
399   TYPE_LENGTH (ntype) =
400     gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
401   TYPE_CODE (ntype) = TYPE_CODE_REF;
402 
403   if (!TYPE_REFERENCE_TYPE (type))	/* Remember it, if don't have one.  */
404     TYPE_REFERENCE_TYPE (type) = ntype;
405 
406   /* Update the length of all the other variants of this type.  */
407   chain = TYPE_CHAIN (ntype);
408   while (chain != ntype)
409     {
410       TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
411       chain = TYPE_CHAIN (chain);
412     }
413 
414   return ntype;
415 }
416 
417 /* Same as above, but caller doesn't care about memory allocation
418    details.  */
419 
420 struct type *
421 lookup_reference_type (struct type *type)
422 {
423   return make_reference_type (type, (struct type **) 0);
424 }
425 
426 /* Lookup a function type that returns type TYPE.  TYPEPTR, if
427    nonzero, points to a pointer to memory where the function type
428    should be stored.  If *TYPEPTR is zero, update it to point to the
429    function type we return.  We allocate new memory if needed.  */
430 
431 struct type *
432 make_function_type (struct type *type, struct type **typeptr)
433 {
434   struct type *ntype;	/* New type */
435 
436   if (typeptr == 0 || *typeptr == 0)	/* We'll need to allocate one.  */
437     {
438       ntype = alloc_type_copy (type);
439       if (typeptr)
440 	*typeptr = ntype;
441     }
442   else			/* We have storage, but need to reset it.  */
443     {
444       ntype = *typeptr;
445       smash_type (ntype);
446     }
447 
448   TYPE_TARGET_TYPE (ntype) = type;
449 
450   TYPE_LENGTH (ntype) = 1;
451   TYPE_CODE (ntype) = TYPE_CODE_FUNC;
452 
453   return ntype;
454 }
455 
456 
457 /* Given a type TYPE, return a type of functions that return that type.
458    May need to construct such a type if this is the first use.  */
459 
460 struct type *
461 lookup_function_type (struct type *type)
462 {
463   return make_function_type (type, (struct type **) 0);
464 }
465 
466 /* Identify address space identifier by name --
467    return the integer flag defined in gdbtypes.h.  */
468 extern int
469 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
470 {
471   int type_flags;
472 
473   /* Check for known address space delimiters.  */
474   if (!strcmp (space_identifier, "code"))
475     return TYPE_INSTANCE_FLAG_CODE_SPACE;
476   else if (!strcmp (space_identifier, "data"))
477     return TYPE_INSTANCE_FLAG_DATA_SPACE;
478   else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
479            && gdbarch_address_class_name_to_type_flags (gdbarch,
480 							space_identifier,
481 							&type_flags))
482     return type_flags;
483   else
484     error (_("Unknown address space specifier: \"%s\""), space_identifier);
485 }
486 
487 /* Identify address space identifier by integer flag as defined in
488    gdbtypes.h -- return the string version of the adress space name.  */
489 
490 const char *
491 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
492 {
493   if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
494     return "code";
495   else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
496     return "data";
497   else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
498            && gdbarch_address_class_type_flags_to_name_p (gdbarch))
499     return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
500   else
501     return NULL;
502 }
503 
504 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
505 
506    If STORAGE is non-NULL, create the new type instance there.
507    STORAGE must be in the same obstack as TYPE.  */
508 
509 static struct type *
510 make_qualified_type (struct type *type, int new_flags,
511 		     struct type *storage)
512 {
513   struct type *ntype;
514 
515   ntype = type;
516   do
517     {
518       if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
519 	return ntype;
520       ntype = TYPE_CHAIN (ntype);
521     }
522   while (ntype != type);
523 
524   /* Create a new type instance.  */
525   if (storage == NULL)
526     ntype = alloc_type_instance (type);
527   else
528     {
529       /* If STORAGE was provided, it had better be in the same objfile
530 	 as TYPE.  Otherwise, we can't link it into TYPE's cv chain:
531 	 if one objfile is freed and the other kept, we'd have
532 	 dangling pointers.  */
533       gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
534 
535       ntype = storage;
536       TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
537       TYPE_CHAIN (ntype) = ntype;
538     }
539 
540   /* Pointers or references to the original type are not relevant to
541      the new type.  */
542   TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
543   TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
544 
545   /* Chain the new qualified type to the old type.  */
546   TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
547   TYPE_CHAIN (type) = ntype;
548 
549   /* Now set the instance flags and return the new type.  */
550   TYPE_INSTANCE_FLAGS (ntype) = new_flags;
551 
552   /* Set length of new type to that of the original type.  */
553   TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
554 
555   return ntype;
556 }
557 
558 /* Make an address-space-delimited variant of a type -- a type that
559    is identical to the one supplied except that it has an address
560    space attribute attached to it (such as "code" or "data").
561 
562    The space attributes "code" and "data" are for Harvard
563    architectures.  The address space attributes are for architectures
564    which have alternately sized pointers or pointers with alternate
565    representations.  */
566 
567 struct type *
568 make_type_with_address_space (struct type *type, int space_flag)
569 {
570   int new_flags = ((TYPE_INSTANCE_FLAGS (type)
571 		    & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
572 			| TYPE_INSTANCE_FLAG_DATA_SPACE
573 		        | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
574 		   | space_flag);
575 
576   return make_qualified_type (type, new_flags, NULL);
577 }
578 
579 /* Make a "c-v" variant of a type -- a type that is identical to the
580    one supplied except that it may have const or volatile attributes
581    CNST is a flag for setting the const attribute
582    VOLTL is a flag for setting the volatile attribute
583    TYPE is the base type whose variant we are creating.
584 
585    If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
586    storage to hold the new qualified type; *TYPEPTR and TYPE must be
587    in the same objfile.  Otherwise, allocate fresh memory for the new
588    type whereever TYPE lives.  If TYPEPTR is non-zero, set it to the
589    new type we construct.  */
590 struct type *
591 make_cv_type (int cnst, int voltl,
592 	      struct type *type,
593 	      struct type **typeptr)
594 {
595   struct type *ntype;	/* New type */
596 
597   int new_flags = (TYPE_INSTANCE_FLAGS (type)
598 		   & ~(TYPE_INSTANCE_FLAG_CONST
599 		       | TYPE_INSTANCE_FLAG_VOLATILE));
600 
601   if (cnst)
602     new_flags |= TYPE_INSTANCE_FLAG_CONST;
603 
604   if (voltl)
605     new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
606 
607   if (typeptr && *typeptr != NULL)
608     {
609       /* TYPE and *TYPEPTR must be in the same objfile.  We can't have
610 	 a C-V variant chain that threads across objfiles: if one
611 	 objfile gets freed, then the other has a broken C-V chain.
612 
613 	 This code used to try to copy over the main type from TYPE to
614 	 *TYPEPTR if they were in different objfiles, but that's
615 	 wrong, too: TYPE may have a field list or member function
616 	 lists, which refer to types of their own, etc. etc.  The
617 	 whole shebang would need to be copied over recursively; you
618 	 can't have inter-objfile pointers.  The only thing to do is
619 	 to leave stub types as stub types, and look them up afresh by
620 	 name each time you encounter them.  */
621       gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
622     }
623 
624   ntype = make_qualified_type (type, new_flags,
625 			       typeptr ? *typeptr : NULL);
626 
627   if (typeptr != NULL)
628     *typeptr = ntype;
629 
630   return ntype;
631 }
632 
633 /* Replace the contents of ntype with the type *type.  This changes the
634    contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
635    the changes are propogated to all types in the TYPE_CHAIN.
636 
637    In order to build recursive types, it's inevitable that we'll need
638    to update types in place --- but this sort of indiscriminate
639    smashing is ugly, and needs to be replaced with something more
640    controlled.  TYPE_MAIN_TYPE is a step in this direction; it's not
641    clear if more steps are needed.  */
642 void
643 replace_type (struct type *ntype, struct type *type)
644 {
645   struct type *chain;
646 
647   /* These two types had better be in the same objfile.  Otherwise,
648      the assignment of one type's main type structure to the other
649      will produce a type with references to objects (names; field
650      lists; etc.) allocated on an objfile other than its own.  */
651   gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
652 
653   *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
654 
655   /* The type length is not a part of the main type.  Update it for
656      each type on the variant chain.  */
657   chain = ntype;
658   do
659     {
660       /* Assert that this element of the chain has no address-class bits
661 	 set in its flags.  Such type variants might have type lengths
662 	 which are supposed to be different from the non-address-class
663 	 variants.  This assertion shouldn't ever be triggered because
664 	 symbol readers which do construct address-class variants don't
665 	 call replace_type().  */
666       gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
667 
668       TYPE_LENGTH (chain) = TYPE_LENGTH (type);
669       chain = TYPE_CHAIN (chain);
670     }
671   while (ntype != chain);
672 
673   /* Assert that the two types have equivalent instance qualifiers.
674      This should be true for at least all of our debug readers.  */
675   gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
676 }
677 
678 /* Implement direct support for MEMBER_TYPE in GNU C++.
679    May need to construct such a type if this is the first use.
680    The TYPE is the type of the member.  The DOMAIN is the type
681    of the aggregate that the member belongs to.  */
682 
683 struct type *
684 lookup_memberptr_type (struct type *type, struct type *domain)
685 {
686   struct type *mtype;
687 
688   mtype = alloc_type_copy (type);
689   smash_to_memberptr_type (mtype, domain, type);
690   return mtype;
691 }
692 
693 /* Return a pointer-to-method type, for a method of type TO_TYPE.  */
694 
695 struct type *
696 lookup_methodptr_type (struct type *to_type)
697 {
698   struct type *mtype;
699 
700   mtype = alloc_type_copy (to_type);
701   smash_to_methodptr_type (mtype, to_type);
702   return mtype;
703 }
704 
705 /* Allocate a stub method whose return type is TYPE.  This apparently
706    happens for speed of symbol reading, since parsing out the
707    arguments to the method is cpu-intensive, the way we are doing it.
708    So, we will fill in arguments later.  This always returns a fresh
709    type.  */
710 
711 struct type *
712 allocate_stub_method (struct type *type)
713 {
714   struct type *mtype;
715 
716   mtype = alloc_type_copy (type);
717   TYPE_CODE (mtype) = TYPE_CODE_METHOD;
718   TYPE_LENGTH (mtype) = 1;
719   TYPE_STUB (mtype) = 1;
720   TYPE_TARGET_TYPE (mtype) = type;
721   /*  _DOMAIN_TYPE (mtype) = unknown yet */
722   return mtype;
723 }
724 
725 /* Create a range type using either a blank type supplied in
726    RESULT_TYPE, or creating a new type, inheriting the objfile from
727    INDEX_TYPE.
728 
729    Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
730    to HIGH_BOUND, inclusive.
731 
732    FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
733    sure it is TYPE_CODE_UNDEF before we bash it into a range type?  */
734 
735 struct type *
736 create_range_type (struct type *result_type, struct type *index_type,
737 		   LONGEST low_bound, LONGEST high_bound)
738 {
739   if (result_type == NULL)
740     result_type = alloc_type_copy (index_type);
741   TYPE_CODE (result_type) = TYPE_CODE_RANGE;
742   TYPE_TARGET_TYPE (result_type) = index_type;
743   if (TYPE_STUB (index_type))
744     TYPE_TARGET_STUB (result_type) = 1;
745   else
746     TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
747   TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
748     TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
749   TYPE_LOW_BOUND (result_type) = low_bound;
750   TYPE_HIGH_BOUND (result_type) = high_bound;
751 
752   if (low_bound >= 0)
753     TYPE_UNSIGNED (result_type) = 1;
754 
755   return result_type;
756 }
757 
758 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
759    TYPE.  Return 1 if type is a range type, 0 if it is discrete (and
760    bounds will fit in LONGEST), or -1 otherwise.  */
761 
762 int
763 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
764 {
765   CHECK_TYPEDEF (type);
766   switch (TYPE_CODE (type))
767     {
768     case TYPE_CODE_RANGE:
769       *lowp = TYPE_LOW_BOUND (type);
770       *highp = TYPE_HIGH_BOUND (type);
771       return 1;
772     case TYPE_CODE_ENUM:
773       if (TYPE_NFIELDS (type) > 0)
774 	{
775 	  /* The enums may not be sorted by value, so search all
776 	     entries.  */
777 	  int i;
778 
779 	  *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
780 	  for (i = 0; i < TYPE_NFIELDS (type); i++)
781 	    {
782 	      if (TYPE_FIELD_BITPOS (type, i) < *lowp)
783 		*lowp = TYPE_FIELD_BITPOS (type, i);
784 	      if (TYPE_FIELD_BITPOS (type, i) > *highp)
785 		*highp = TYPE_FIELD_BITPOS (type, i);
786 	    }
787 
788 	  /* Set unsigned indicator if warranted.  */
789 	  if (*lowp >= 0)
790 	    {
791 	      TYPE_UNSIGNED (type) = 1;
792 	    }
793 	}
794       else
795 	{
796 	  *lowp = 0;
797 	  *highp = -1;
798 	}
799       return 0;
800     case TYPE_CODE_BOOL:
801       *lowp = 0;
802       *highp = 1;
803       return 0;
804     case TYPE_CODE_INT:
805       if (TYPE_LENGTH (type) > sizeof (LONGEST))	/* Too big */
806 	return -1;
807       if (!TYPE_UNSIGNED (type))
808 	{
809 	  *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
810 	  *highp = -*lowp - 1;
811 	  return 0;
812 	}
813       /* ... fall through for unsigned ints ...  */
814     case TYPE_CODE_CHAR:
815       *lowp = 0;
816       /* This round-about calculation is to avoid shifting by
817          TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
818          if TYPE_LENGTH (type) == sizeof (LONGEST).  */
819       *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
820       *highp = (*highp - 1) | *highp;
821       return 0;
822     default:
823       return -1;
824     }
825 }
826 
827 /* Assuming TYPE is a simple, non-empty array type, compute its upper
828    and lower bound.  Save the low bound into LOW_BOUND if not NULL.
829    Save the high bound into HIGH_BOUND if not NULL.
830 
831    Return 1 if the operation was successful.  Return zero otherwise,
832    in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
833 
834    We now simply use get_discrete_bounds call to get the values
835    of the low and high bounds.
836    get_discrete_bounds can return three values:
837    1, meaning that index is a range,
838    0, meaning that index is a discrete type,
839    or -1 for failure.  */
840 
841 int
842 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
843 {
844   struct type *index = TYPE_INDEX_TYPE (type);
845   LONGEST low = 0;
846   LONGEST high = 0;
847   int res;
848 
849   if (index == NULL)
850     return 0;
851 
852   res = get_discrete_bounds (index, &low, &high);
853   if (res == -1)
854     return 0;
855 
856   /* Check if the array bounds are undefined.  */
857   if (res == 1
858       && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
859 	  || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
860     return 0;
861 
862   if (low_bound)
863     *low_bound = low;
864 
865   if (high_bound)
866     *high_bound = high;
867 
868   return 1;
869 }
870 
871 /* Create an array type using either a blank type supplied in
872    RESULT_TYPE, or creating a new type, inheriting the objfile from
873    RANGE_TYPE.
874 
875    Elements will be of type ELEMENT_TYPE, the indices will be of type
876    RANGE_TYPE.
877 
878    FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
879    sure it is TYPE_CODE_UNDEF before we bash it into an array
880    type?  */
881 
882 struct type *
883 create_array_type (struct type *result_type,
884 		   struct type *element_type,
885 		   struct type *range_type)
886 {
887   LONGEST low_bound, high_bound;
888 
889   if (result_type == NULL)
890     result_type = alloc_type_copy (range_type);
891 
892   TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
893   TYPE_TARGET_TYPE (result_type) = element_type;
894   if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
895     low_bound = high_bound = 0;
896   CHECK_TYPEDEF (element_type);
897   /* Be careful when setting the array length.  Ada arrays can be
898      empty arrays with the high_bound being smaller than the low_bound.
899      In such cases, the array length should be zero.  */
900   if (high_bound < low_bound)
901     TYPE_LENGTH (result_type) = 0;
902   else
903     TYPE_LENGTH (result_type) =
904       TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
905   TYPE_NFIELDS (result_type) = 1;
906   TYPE_FIELDS (result_type) =
907     (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
908   TYPE_INDEX_TYPE (result_type) = range_type;
909   TYPE_VPTR_FIELDNO (result_type) = -1;
910 
911   /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays.  */
912   if (TYPE_LENGTH (result_type) == 0)
913     TYPE_TARGET_STUB (result_type) = 1;
914 
915   return result_type;
916 }
917 
918 struct type *
919 lookup_array_range_type (struct type *element_type,
920 			 int low_bound, int high_bound)
921 {
922   struct gdbarch *gdbarch = get_type_arch (element_type);
923   struct type *index_type = builtin_type (gdbarch)->builtin_int;
924   struct type *range_type
925     = create_range_type (NULL, index_type, low_bound, high_bound);
926 
927   return create_array_type (NULL, element_type, range_type);
928 }
929 
930 /* Create a string type using either a blank type supplied in
931    RESULT_TYPE, or creating a new type.  String types are similar
932    enough to array of char types that we can use create_array_type to
933    build the basic type and then bash it into a string type.
934 
935    For fixed length strings, the range type contains 0 as the lower
936    bound and the length of the string minus one as the upper bound.
937 
938    FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
939    sure it is TYPE_CODE_UNDEF before we bash it into a string
940    type?  */
941 
942 struct type *
943 create_string_type (struct type *result_type,
944 		    struct type *string_char_type,
945 		    struct type *range_type)
946 {
947   result_type = create_array_type (result_type,
948 				   string_char_type,
949 				   range_type);
950   TYPE_CODE (result_type) = TYPE_CODE_STRING;
951   return result_type;
952 }
953 
954 struct type *
955 lookup_string_range_type (struct type *string_char_type,
956 			  int low_bound, int high_bound)
957 {
958   struct type *result_type;
959 
960   result_type = lookup_array_range_type (string_char_type,
961 					 low_bound, high_bound);
962   TYPE_CODE (result_type) = TYPE_CODE_STRING;
963   return result_type;
964 }
965 
966 struct type *
967 create_set_type (struct type *result_type, struct type *domain_type)
968 {
969   if (result_type == NULL)
970     result_type = alloc_type_copy (domain_type);
971 
972   TYPE_CODE (result_type) = TYPE_CODE_SET;
973   TYPE_NFIELDS (result_type) = 1;
974   TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
975 
976   if (!TYPE_STUB (domain_type))
977     {
978       LONGEST low_bound, high_bound, bit_length;
979 
980       if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
981 	low_bound = high_bound = 0;
982       bit_length = high_bound - low_bound + 1;
983       TYPE_LENGTH (result_type)
984 	= (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
985       if (low_bound >= 0)
986 	TYPE_UNSIGNED (result_type) = 1;
987     }
988   TYPE_FIELD_TYPE (result_type, 0) = domain_type;
989 
990   return result_type;
991 }
992 
993 /* Convert ARRAY_TYPE to a vector type.  This may modify ARRAY_TYPE
994    and any array types nested inside it.  */
995 
996 void
997 make_vector_type (struct type *array_type)
998 {
999   struct type *inner_array, *elt_type;
1000   int flags;
1001 
1002   /* Find the innermost array type, in case the array is
1003      multi-dimensional.  */
1004   inner_array = array_type;
1005   while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1006     inner_array = TYPE_TARGET_TYPE (inner_array);
1007 
1008   elt_type = TYPE_TARGET_TYPE (inner_array);
1009   if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1010     {
1011       flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1012       elt_type = make_qualified_type (elt_type, flags, NULL);
1013       TYPE_TARGET_TYPE (inner_array) = elt_type;
1014     }
1015 
1016   TYPE_VECTOR (array_type) = 1;
1017 }
1018 
1019 struct type *
1020 init_vector_type (struct type *elt_type, int n)
1021 {
1022   struct type *array_type;
1023 
1024   array_type = lookup_array_range_type (elt_type, 0, n - 1);
1025   make_vector_type (array_type);
1026   return array_type;
1027 }
1028 
1029 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
1030    TO_TYPE.  A member pointer is a wierd thing -- it amounts to a
1031    typed offset into a struct, e.g. "an int at offset 8".  A MEMBER
1032    TYPE doesn't include the offset (that's the value of the MEMBER
1033    itself), but does include the structure type into which it points
1034    (for some reason).
1035 
1036    When "smashing" the type, we preserve the objfile that the old type
1037    pointed to, since we aren't changing where the type is actually
1038    allocated.  */
1039 
1040 void
1041 smash_to_memberptr_type (struct type *type, struct type *domain,
1042 			 struct type *to_type)
1043 {
1044   smash_type (type);
1045   TYPE_TARGET_TYPE (type) = to_type;
1046   TYPE_DOMAIN_TYPE (type) = domain;
1047   /* Assume that a data member pointer is the same size as a normal
1048      pointer.  */
1049   TYPE_LENGTH (type)
1050     = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1051   TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1052 }
1053 
1054 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1055 
1056    When "smashing" the type, we preserve the objfile that the old type
1057    pointed to, since we aren't changing where the type is actually
1058    allocated.  */
1059 
1060 void
1061 smash_to_methodptr_type (struct type *type, struct type *to_type)
1062 {
1063   smash_type (type);
1064   TYPE_TARGET_TYPE (type) = to_type;
1065   TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1066   TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1067   TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1068 }
1069 
1070 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1071    METHOD just means `function that gets an extra "this" argument'.
1072 
1073    When "smashing" the type, we preserve the objfile that the old type
1074    pointed to, since we aren't changing where the type is actually
1075    allocated.  */
1076 
1077 void
1078 smash_to_method_type (struct type *type, struct type *domain,
1079 		      struct type *to_type, struct field *args,
1080 		      int nargs, int varargs)
1081 {
1082   smash_type (type);
1083   TYPE_TARGET_TYPE (type) = to_type;
1084   TYPE_DOMAIN_TYPE (type) = domain;
1085   TYPE_FIELDS (type) = args;
1086   TYPE_NFIELDS (type) = nargs;
1087   if (varargs)
1088     TYPE_VARARGS (type) = 1;
1089   TYPE_LENGTH (type) = 1;	/* In practice, this is never needed.  */
1090   TYPE_CODE (type) = TYPE_CODE_METHOD;
1091 }
1092 
1093 /* Return a typename for a struct/union/enum type without "struct ",
1094    "union ", or "enum ".  If the type has a NULL name, return NULL.  */
1095 
1096 char *
1097 type_name_no_tag (const struct type *type)
1098 {
1099   if (TYPE_TAG_NAME (type) != NULL)
1100     return TYPE_TAG_NAME (type);
1101 
1102   /* Is there code which expects this to return the name if there is
1103      no tag name?  My guess is that this is mainly used for C++ in
1104      cases where the two will always be the same.  */
1105   return TYPE_NAME (type);
1106 }
1107 
1108 /* Lookup a typedef or primitive type named NAME, visible in lexical
1109    block BLOCK.  If NOERR is nonzero, return zero if NAME is not
1110    suitably defined.  */
1111 
1112 struct type *
1113 lookup_typename (const struct language_defn *language,
1114 		 struct gdbarch *gdbarch, char *name,
1115 		 const struct block *block, int noerr)
1116 {
1117   struct symbol *sym;
1118   struct type *tmp;
1119 
1120   sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1121   if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1122     {
1123       tmp = language_lookup_primitive_type_by_name (language, gdbarch, name);
1124       if (tmp)
1125 	{
1126 	  return tmp;
1127 	}
1128       else if (!tmp && noerr)
1129 	{
1130 	  return NULL;
1131 	}
1132       else
1133 	{
1134 	  error (_("No type named %s."), name);
1135 	}
1136     }
1137   return (SYMBOL_TYPE (sym));
1138 }
1139 
1140 struct type *
1141 lookup_unsigned_typename (const struct language_defn *language,
1142 			  struct gdbarch *gdbarch, char *name)
1143 {
1144   char *uns = alloca (strlen (name) + 10);
1145 
1146   strcpy (uns, "unsigned ");
1147   strcpy (uns + 9, name);
1148   return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1149 }
1150 
1151 struct type *
1152 lookup_signed_typename (const struct language_defn *language,
1153 			struct gdbarch *gdbarch, char *name)
1154 {
1155   struct type *t;
1156   char *uns = alloca (strlen (name) + 8);
1157 
1158   strcpy (uns, "signed ");
1159   strcpy (uns + 7, name);
1160   t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1161   /* If we don't find "signed FOO" just try again with plain "FOO".  */
1162   if (t != NULL)
1163     return t;
1164   return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1165 }
1166 
1167 /* Lookup a structure type named "struct NAME",
1168    visible in lexical block BLOCK.  */
1169 
1170 struct type *
1171 lookup_struct (char *name, struct block *block)
1172 {
1173   struct symbol *sym;
1174 
1175   sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1176 
1177   if (sym == NULL)
1178     {
1179       error (_("No struct type named %s."), name);
1180     }
1181   if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1182     {
1183       error (_("This context has class, union or enum %s, not a struct."),
1184 	     name);
1185     }
1186   return (SYMBOL_TYPE (sym));
1187 }
1188 
1189 /* Lookup a union type named "union NAME",
1190    visible in lexical block BLOCK.  */
1191 
1192 struct type *
1193 lookup_union (char *name, struct block *block)
1194 {
1195   struct symbol *sym;
1196   struct type *t;
1197 
1198   sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1199 
1200   if (sym == NULL)
1201     error (_("No union type named %s."), name);
1202 
1203   t = SYMBOL_TYPE (sym);
1204 
1205   if (TYPE_CODE (t) == TYPE_CODE_UNION)
1206     return t;
1207 
1208   /* If we get here, it's not a union.  */
1209   error (_("This context has class, struct or enum %s, not a union."),
1210 	 name);
1211 }
1212 
1213 
1214 /* Lookup an enum type named "enum NAME",
1215    visible in lexical block BLOCK.  */
1216 
1217 struct type *
1218 lookup_enum (char *name, struct block *block)
1219 {
1220   struct symbol *sym;
1221 
1222   sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1223   if (sym == NULL)
1224     {
1225       error (_("No enum type named %s."), name);
1226     }
1227   if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1228     {
1229       error (_("This context has class, struct or union %s, not an enum."),
1230 	     name);
1231     }
1232   return (SYMBOL_TYPE (sym));
1233 }
1234 
1235 /* Lookup a template type named "template NAME<TYPE>",
1236    visible in lexical block BLOCK.  */
1237 
1238 struct type *
1239 lookup_template_type (char *name, struct type *type,
1240 		      struct block *block)
1241 {
1242   struct symbol *sym;
1243   char *nam = (char *)
1244     alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1245 
1246   strcpy (nam, name);
1247   strcat (nam, "<");
1248   strcat (nam, TYPE_NAME (type));
1249   strcat (nam, " >");	/* FIXME, extra space still introduced in gcc?  */
1250 
1251   sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1252 
1253   if (sym == NULL)
1254     {
1255       error (_("No template type named %s."), name);
1256     }
1257   if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1258     {
1259       error (_("This context has class, union or enum %s, not a struct."),
1260 	     name);
1261     }
1262   return (SYMBOL_TYPE (sym));
1263 }
1264 
1265 /* Given a type TYPE, lookup the type of the component of type named
1266    NAME.
1267 
1268    TYPE can be either a struct or union, or a pointer or reference to
1269    a struct or union.  If it is a pointer or reference, its target
1270    type is automatically used.  Thus '.' and '->' are interchangable,
1271    as specified for the definitions of the expression element types
1272    STRUCTOP_STRUCT and STRUCTOP_PTR.
1273 
1274    If NOERR is nonzero, return zero if NAME is not suitably defined.
1275    If NAME is the name of a baseclass type, return that type.  */
1276 
1277 struct type *
1278 lookup_struct_elt_type (struct type *type, char *name, int noerr)
1279 {
1280   int i;
1281   char *typename;
1282 
1283   for (;;)
1284     {
1285       CHECK_TYPEDEF (type);
1286       if (TYPE_CODE (type) != TYPE_CODE_PTR
1287 	  && TYPE_CODE (type) != TYPE_CODE_REF)
1288 	break;
1289       type = TYPE_TARGET_TYPE (type);
1290     }
1291 
1292   if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1293       && TYPE_CODE (type) != TYPE_CODE_UNION)
1294     {
1295       typename = type_to_string (type);
1296       make_cleanup (xfree, typename);
1297       error (_("Type %s is not a structure or union type."), typename);
1298     }
1299 
1300 #if 0
1301   /* FIXME: This change put in by Michael seems incorrect for the case
1302      where the structure tag name is the same as the member name.
1303      I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1304      foo; } bell;" Disabled by fnf.  */
1305   {
1306     char *typename;
1307 
1308     typename = type_name_no_tag (type);
1309     if (typename != NULL && strcmp (typename, name) == 0)
1310       return type;
1311   }
1312 #endif
1313 
1314   for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1315     {
1316       char *t_field_name = TYPE_FIELD_NAME (type, i);
1317 
1318       if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1319 	{
1320 	  return TYPE_FIELD_TYPE (type, i);
1321 	}
1322      else if (!t_field_name || *t_field_name == '\0')
1323 	{
1324 	  struct type *subtype
1325 	    = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1326 
1327 	  if (subtype != NULL)
1328 	    return subtype;
1329 	}
1330     }
1331 
1332   /* OK, it's not in this class.  Recursively check the baseclasses.  */
1333   for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1334     {
1335       struct type *t;
1336 
1337       t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1338       if (t != NULL)
1339 	{
1340 	  return t;
1341 	}
1342     }
1343 
1344   if (noerr)
1345     {
1346       return NULL;
1347     }
1348 
1349   typename = type_to_string (type);
1350   make_cleanup (xfree, typename);
1351   error (_("Type %s has no component named %s."), typename, name);
1352 }
1353 
1354 /* Lookup the vptr basetype/fieldno values for TYPE.
1355    If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1356    vptr_fieldno.  Also, if found and basetype is from the same objfile,
1357    cache the results.
1358    If not found, return -1 and ignore BASETYPEP.
1359    Callers should be aware that in some cases (for example,
1360    the type or one of its baseclasses is a stub type and we are
1361    debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1362    this function will not be able to find the
1363    virtual function table pointer, and vptr_fieldno will remain -1 and
1364    vptr_basetype will remain NULL or incomplete.  */
1365 
1366 int
1367 get_vptr_fieldno (struct type *type, struct type **basetypep)
1368 {
1369   CHECK_TYPEDEF (type);
1370 
1371   if (TYPE_VPTR_FIELDNO (type) < 0)
1372     {
1373       int i;
1374 
1375       /* We must start at zero in case the first (and only) baseclass
1376          is virtual (and hence we cannot share the table pointer).  */
1377       for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1378 	{
1379 	  struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1380 	  int fieldno;
1381 	  struct type *basetype;
1382 
1383 	  fieldno = get_vptr_fieldno (baseclass, &basetype);
1384 	  if (fieldno >= 0)
1385 	    {
1386 	      /* If the type comes from a different objfile we can't cache
1387 		 it, it may have a different lifetime.  PR 2384 */
1388 	      if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1389 		{
1390 		  TYPE_VPTR_FIELDNO (type) = fieldno;
1391 		  TYPE_VPTR_BASETYPE (type) = basetype;
1392 		}
1393 	      if (basetypep)
1394 		*basetypep = basetype;
1395 	      return fieldno;
1396 	    }
1397 	}
1398 
1399       /* Not found.  */
1400       return -1;
1401     }
1402   else
1403     {
1404       if (basetypep)
1405 	*basetypep = TYPE_VPTR_BASETYPE (type);
1406       return TYPE_VPTR_FIELDNO (type);
1407     }
1408 }
1409 
1410 static void
1411 stub_noname_complaint (void)
1412 {
1413   complaint (&symfile_complaints, _("stub type has NULL name"));
1414 }
1415 
1416 /* Find the real type of TYPE.  This function returns the real type,
1417    after removing all layers of typedefs, and completing opaque or stub
1418    types.  Completion changes the TYPE argument, but stripping of
1419    typedefs does not.
1420 
1421    Instance flags (e.g. const/volatile) are preserved as typedefs are
1422    stripped.  If necessary a new qualified form of the underlying type
1423    is created.
1424 
1425    NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1426    not been computed and we're either in the middle of reading symbols, or
1427    there was no name for the typedef in the debug info.
1428 
1429    If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1430    the target type.
1431 
1432    If this is a stubbed struct (i.e. declared as struct foo *), see if
1433    we can find a full definition in some other file.  If so, copy this
1434    definition, so we can use it in future.  There used to be a comment
1435    (but not any code) that if we don't find a full definition, we'd
1436    set a flag so we don't spend time in the future checking the same
1437    type.  That would be a mistake, though--we might load in more
1438    symbols which contain a full definition for the type.  */
1439 
1440 struct type *
1441 check_typedef (struct type *type)
1442 {
1443   struct type *orig_type = type;
1444   /* While we're removing typedefs, we don't want to lose qualifiers.
1445      E.g., const/volatile.  */
1446   int instance_flags = TYPE_INSTANCE_FLAGS (type);
1447 
1448   gdb_assert (type);
1449 
1450   while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1451     {
1452       if (!TYPE_TARGET_TYPE (type))
1453 	{
1454 	  char *name;
1455 	  struct symbol *sym;
1456 
1457 	  /* It is dangerous to call lookup_symbol if we are currently
1458 	     reading a symtab.  Infinite recursion is one danger.  */
1459 	  if (currently_reading_symtab)
1460 	    return make_qualified_type (type, instance_flags, NULL);
1461 
1462 	  name = type_name_no_tag (type);
1463 	  /* FIXME: shouldn't we separately check the TYPE_NAME and
1464 	     the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1465 	     VAR_DOMAIN as appropriate?  (this code was written before
1466 	     TYPE_NAME and TYPE_TAG_NAME were separate).  */
1467 	  if (name == NULL)
1468 	    {
1469 	      stub_noname_complaint ();
1470 	      return make_qualified_type (type, instance_flags, NULL);
1471 	    }
1472 	  sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1473 	  if (sym)
1474 	    TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1475 	  else					/* TYPE_CODE_UNDEF */
1476 	    TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1477 	}
1478       type = TYPE_TARGET_TYPE (type);
1479 
1480       /* Preserve the instance flags as we traverse down the typedef chain.
1481 
1482 	 Handling address spaces/classes is nasty, what do we do if there's a
1483 	 conflict?
1484 	 E.g., what if an outer typedef marks the type as class_1 and an inner
1485 	 typedef marks the type as class_2?
1486 	 This is the wrong place to do such error checking.  We leave it to
1487 	 the code that created the typedef in the first place to flag the
1488 	 error.  We just pick the outer address space (akin to letting the
1489 	 outer cast in a chain of casting win), instead of assuming
1490 	 "it can't happen".  */
1491       {
1492 	const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1493 				| TYPE_INSTANCE_FLAG_DATA_SPACE);
1494 	const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1495 	int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1496 
1497 	/* Treat code vs data spaces and address classes separately.  */
1498 	if ((instance_flags & ALL_SPACES) != 0)
1499 	  new_instance_flags &= ~ALL_SPACES;
1500 	if ((instance_flags & ALL_CLASSES) != 0)
1501 	  new_instance_flags &= ~ALL_CLASSES;
1502 
1503 	instance_flags |= new_instance_flags;
1504       }
1505     }
1506 
1507   /* If this is a struct/class/union with no fields, then check
1508      whether a full definition exists somewhere else.  This is for
1509      systems where a type definition with no fields is issued for such
1510      types, instead of identifying them as stub types in the first
1511      place.  */
1512 
1513   if (TYPE_IS_OPAQUE (type)
1514       && opaque_type_resolution
1515       && !currently_reading_symtab)
1516     {
1517       char *name = type_name_no_tag (type);
1518       struct type *newtype;
1519 
1520       if (name == NULL)
1521 	{
1522 	  stub_noname_complaint ();
1523 	  return make_qualified_type (type, instance_flags, NULL);
1524 	}
1525       newtype = lookup_transparent_type (name);
1526 
1527       if (newtype)
1528 	{
1529 	  /* If the resolved type and the stub are in the same
1530 	     objfile, then replace the stub type with the real deal.
1531 	     But if they're in separate objfiles, leave the stub
1532 	     alone; we'll just look up the transparent type every time
1533 	     we call check_typedef.  We can't create pointers between
1534 	     types allocated to different objfiles, since they may
1535 	     have different lifetimes.  Trying to copy NEWTYPE over to
1536 	     TYPE's objfile is pointless, too, since you'll have to
1537 	     move over any other types NEWTYPE refers to, which could
1538 	     be an unbounded amount of stuff.  */
1539 	  if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1540 	    type = make_qualified_type (newtype,
1541 					TYPE_INSTANCE_FLAGS (type),
1542 					type);
1543 	  else
1544 	    type = newtype;
1545 	}
1546     }
1547   /* Otherwise, rely on the stub flag being set for opaque/stubbed
1548      types.  */
1549   else if (TYPE_STUB (type) && !currently_reading_symtab)
1550     {
1551       char *name = type_name_no_tag (type);
1552       /* FIXME: shouldn't we separately check the TYPE_NAME and the
1553          TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1554          as appropriate?  (this code was written before TYPE_NAME and
1555          TYPE_TAG_NAME were separate).  */
1556       struct symbol *sym;
1557 
1558       if (name == NULL)
1559 	{
1560 	  stub_noname_complaint ();
1561 	  return make_qualified_type (type, instance_flags, NULL);
1562 	}
1563       sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1564       if (sym)
1565         {
1566           /* Same as above for opaque types, we can replace the stub
1567              with the complete type only if they are in the same
1568              objfile.  */
1569 	  if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1570             type = make_qualified_type (SYMBOL_TYPE (sym),
1571 					TYPE_INSTANCE_FLAGS (type),
1572 					type);
1573 	  else
1574 	    type = SYMBOL_TYPE (sym);
1575         }
1576     }
1577 
1578   if (TYPE_TARGET_STUB (type))
1579     {
1580       struct type *range_type;
1581       struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1582 
1583       if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1584 	{
1585 	  /* Nothing we can do.  */
1586 	}
1587       else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1588 	       && TYPE_NFIELDS (type) == 1
1589 	       && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
1590 		   == TYPE_CODE_RANGE))
1591 	{
1592 	  /* Now recompute the length of the array type, based on its
1593 	     number of elements and the target type's length.
1594 	     Watch out for Ada null Ada arrays where the high bound
1595 	     is smaller than the low bound.  */
1596 	  const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1597 	  const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1598 	  ULONGEST len;
1599 
1600 	  if (high_bound < low_bound)
1601 	    len = 0;
1602 	  else
1603 	    {
1604 	      /* For now, we conservatively take the array length to be 0
1605 		 if its length exceeds UINT_MAX.  The code below assumes
1606 		 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1607 		 which is technically not guaranteed by C, but is usually true
1608 		 (because it would be true if x were unsigned with its
1609 		 high-order bit on).  It uses the fact that
1610 		 high_bound-low_bound is always representable in
1611 		 ULONGEST and that if high_bound-low_bound+1 overflows,
1612 		 it overflows to 0.  We must change these tests if we
1613 		 decide to increase the representation of TYPE_LENGTH
1614 		 from unsigned int to ULONGEST.  */
1615 	      ULONGEST ulow = low_bound, uhigh = high_bound;
1616 	      ULONGEST tlen = TYPE_LENGTH (target_type);
1617 
1618 	      len = tlen * (uhigh - ulow + 1);
1619 	      if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1620 		  || len > UINT_MAX)
1621 		len = 0;
1622 	    }
1623 	  TYPE_LENGTH (type) = len;
1624 	  TYPE_TARGET_STUB (type) = 0;
1625 	}
1626       else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1627 	{
1628 	  TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1629 	  TYPE_TARGET_STUB (type) = 0;
1630 	}
1631     }
1632 
1633   type = make_qualified_type (type, instance_flags, NULL);
1634 
1635   /* Cache TYPE_LENGTH for future use.  */
1636   TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1637 
1638   return type;
1639 }
1640 
1641 /* Parse a type expression in the string [P..P+LENGTH).  If an error
1642    occurs, silently return a void type.  */
1643 
1644 static struct type *
1645 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
1646 {
1647   struct ui_file *saved_gdb_stderr;
1648   struct type *type;
1649 
1650   /* Suppress error messages.  */
1651   saved_gdb_stderr = gdb_stderr;
1652   gdb_stderr = ui_file_new ();
1653 
1654   /* Call parse_and_eval_type() without fear of longjmp()s.  */
1655   if (!gdb_parse_and_eval_type (p, length, &type))
1656     type = builtin_type (gdbarch)->builtin_void;
1657 
1658   /* Stop suppressing error messages.  */
1659   ui_file_delete (gdb_stderr);
1660   gdb_stderr = saved_gdb_stderr;
1661 
1662   return type;
1663 }
1664 
1665 /* Ugly hack to convert method stubs into method types.
1666 
1667    He ain't kiddin'.  This demangles the name of the method into a
1668    string including argument types, parses out each argument type,
1669    generates a string casting a zero to that type, evaluates the
1670    string, and stuffs the resulting type into an argtype vector!!!
1671    Then it knows the type of the whole function (including argument
1672    types for overloading), which info used to be in the stab's but was
1673    removed to hack back the space required for them.  */
1674 
1675 static void
1676 check_stub_method (struct type *type, int method_id, int signature_id)
1677 {
1678   struct gdbarch *gdbarch = get_type_arch (type);
1679   struct fn_field *f;
1680   char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1681   char *demangled_name = cplus_demangle (mangled_name,
1682 					 DMGL_PARAMS | DMGL_ANSI);
1683   char *argtypetext, *p;
1684   int depth = 0, argcount = 1;
1685   struct field *argtypes;
1686   struct type *mtype;
1687 
1688   /* Make sure we got back a function string that we can use.  */
1689   if (demangled_name)
1690     p = strchr (demangled_name, '(');
1691   else
1692     p = NULL;
1693 
1694   if (demangled_name == NULL || p == NULL)
1695     error (_("Internal: Cannot demangle mangled name `%s'."),
1696 	   mangled_name);
1697 
1698   /* Now, read in the parameters that define this type.  */
1699   p += 1;
1700   argtypetext = p;
1701   while (*p)
1702     {
1703       if (*p == '(' || *p == '<')
1704 	{
1705 	  depth += 1;
1706 	}
1707       else if (*p == ')' || *p == '>')
1708 	{
1709 	  depth -= 1;
1710 	}
1711       else if (*p == ',' && depth == 0)
1712 	{
1713 	  argcount += 1;
1714 	}
1715 
1716       p += 1;
1717     }
1718 
1719   /* If we read one argument and it was ``void'', don't count it.  */
1720   if (strncmp (argtypetext, "(void)", 6) == 0)
1721     argcount -= 1;
1722 
1723   /* We need one extra slot, for the THIS pointer.  */
1724 
1725   argtypes = (struct field *)
1726     TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
1727   p = argtypetext;
1728 
1729   /* Add THIS pointer for non-static methods.  */
1730   f = TYPE_FN_FIELDLIST1 (type, method_id);
1731   if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1732     argcount = 0;
1733   else
1734     {
1735       argtypes[0].type = lookup_pointer_type (type);
1736       argcount = 1;
1737     }
1738 
1739   if (*p != ')')		/* () means no args, skip while.  */
1740     {
1741       depth = 0;
1742       while (*p)
1743 	{
1744 	  if (depth <= 0 && (*p == ',' || *p == ')'))
1745 	    {
1746 	      /* Avoid parsing of ellipsis, they will be handled below.
1747 	         Also avoid ``void'' as above.  */
1748 	      if (strncmp (argtypetext, "...", p - argtypetext) != 0
1749 		  && strncmp (argtypetext, "void", p - argtypetext) != 0)
1750 		{
1751 		  argtypes[argcount].type =
1752 		    safe_parse_type (gdbarch, argtypetext, p - argtypetext);
1753 		  argcount += 1;
1754 		}
1755 	      argtypetext = p + 1;
1756 	    }
1757 
1758 	  if (*p == '(' || *p == '<')
1759 	    {
1760 	      depth += 1;
1761 	    }
1762 	  else if (*p == ')' || *p == '>')
1763 	    {
1764 	      depth -= 1;
1765 	    }
1766 
1767 	  p += 1;
1768 	}
1769     }
1770 
1771   TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1772 
1773   /* Now update the old "stub" type into a real type.  */
1774   mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1775   TYPE_DOMAIN_TYPE (mtype) = type;
1776   TYPE_FIELDS (mtype) = argtypes;
1777   TYPE_NFIELDS (mtype) = argcount;
1778   TYPE_STUB (mtype) = 0;
1779   TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1780   if (p[-2] == '.')
1781     TYPE_VARARGS (mtype) = 1;
1782 
1783   xfree (demangled_name);
1784 }
1785 
1786 /* This is the external interface to check_stub_method, above.  This
1787    function unstubs all of the signatures for TYPE's METHOD_ID method
1788    name.  After calling this function TYPE_FN_FIELD_STUB will be
1789    cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1790    correct.
1791 
1792    This function unfortunately can not die until stabs do.  */
1793 
1794 void
1795 check_stub_method_group (struct type *type, int method_id)
1796 {
1797   int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1798   struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
1799   int j, found_stub = 0;
1800 
1801   for (j = 0; j < len; j++)
1802     if (TYPE_FN_FIELD_STUB (f, j))
1803       {
1804 	found_stub = 1;
1805 	check_stub_method (type, method_id, j);
1806       }
1807 
1808   /* GNU v3 methods with incorrect names were corrected when we read
1809      in type information, because it was cheaper to do it then.  The
1810      only GNU v2 methods with incorrect method names are operators and
1811      destructors; destructors were also corrected when we read in type
1812      information.
1813 
1814      Therefore the only thing we need to handle here are v2 operator
1815      names.  */
1816   if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1817     {
1818       int ret;
1819       char dem_opname[256];
1820 
1821       ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1822 							   method_id),
1823 				   dem_opname, DMGL_ANSI);
1824       if (!ret)
1825 	ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1826 							     method_id),
1827 				     dem_opname, 0);
1828       if (ret)
1829 	TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1830     }
1831 }
1832 
1833 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690.  */
1834 const struct cplus_struct_type cplus_struct_default = { };
1835 
1836 void
1837 allocate_cplus_struct_type (struct type *type)
1838 {
1839   if (HAVE_CPLUS_STRUCT (type))
1840     /* Structure was already allocated.  Nothing more to do.  */
1841     return;
1842 
1843   TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1844   TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1845     TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1846   *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1847 }
1848 
1849 const struct gnat_aux_type gnat_aux_default =
1850   { NULL };
1851 
1852 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1853    and allocate the associated gnat-specific data.  The gnat-specific
1854    data is also initialized to gnat_aux_default.  */
1855 void
1856 allocate_gnat_aux_type (struct type *type)
1857 {
1858   TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1859   TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1860     TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1861   *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1862 }
1863 
1864 
1865 /* Helper function to initialize the standard scalar types.
1866 
1867    If NAME is non-NULL, then we make a copy of the string pointed
1868    to by name in the objfile_obstack for that objfile, and initialize
1869    the type name to that copy.  There are places (mipsread.c in particular),
1870    where init_type is called with a NULL value for NAME).  */
1871 
1872 struct type *
1873 init_type (enum type_code code, int length, int flags,
1874 	   char *name, struct objfile *objfile)
1875 {
1876   struct type *type;
1877 
1878   type = alloc_type (objfile);
1879   TYPE_CODE (type) = code;
1880   TYPE_LENGTH (type) = length;
1881 
1882   gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1883   if (flags & TYPE_FLAG_UNSIGNED)
1884     TYPE_UNSIGNED (type) = 1;
1885   if (flags & TYPE_FLAG_NOSIGN)
1886     TYPE_NOSIGN (type) = 1;
1887   if (flags & TYPE_FLAG_STUB)
1888     TYPE_STUB (type) = 1;
1889   if (flags & TYPE_FLAG_TARGET_STUB)
1890     TYPE_TARGET_STUB (type) = 1;
1891   if (flags & TYPE_FLAG_STATIC)
1892     TYPE_STATIC (type) = 1;
1893   if (flags & TYPE_FLAG_PROTOTYPED)
1894     TYPE_PROTOTYPED (type) = 1;
1895   if (flags & TYPE_FLAG_INCOMPLETE)
1896     TYPE_INCOMPLETE (type) = 1;
1897   if (flags & TYPE_FLAG_VARARGS)
1898     TYPE_VARARGS (type) = 1;
1899   if (flags & TYPE_FLAG_VECTOR)
1900     TYPE_VECTOR (type) = 1;
1901   if (flags & TYPE_FLAG_STUB_SUPPORTED)
1902     TYPE_STUB_SUPPORTED (type) = 1;
1903   if (flags & TYPE_FLAG_FIXED_INSTANCE)
1904     TYPE_FIXED_INSTANCE (type) = 1;
1905   if (flags & TYPE_FLAG_GNU_IFUNC)
1906     TYPE_GNU_IFUNC (type) = 1;
1907 
1908   if (name)
1909     TYPE_NAME (type) = obsavestring (name, strlen (name),
1910 				     &objfile->objfile_obstack);
1911 
1912   /* C++ fancies.  */
1913 
1914   if (name && strcmp (name, "char") == 0)
1915     TYPE_NOSIGN (type) = 1;
1916 
1917   switch (code)
1918     {
1919       case TYPE_CODE_STRUCT:
1920       case TYPE_CODE_UNION:
1921       case TYPE_CODE_NAMESPACE:
1922         INIT_CPLUS_SPECIFIC (type);
1923         break;
1924       case TYPE_CODE_FLT:
1925         TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
1926         break;
1927       case TYPE_CODE_FUNC:
1928         TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CALLING_CONVENTION;
1929         break;
1930     }
1931   return type;
1932 }
1933 
1934 int
1935 can_dereference (struct type *t)
1936 {
1937   /* FIXME: Should we return true for references as well as
1938      pointers?  */
1939   CHECK_TYPEDEF (t);
1940   return
1941     (t != NULL
1942      && TYPE_CODE (t) == TYPE_CODE_PTR
1943      && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1944 }
1945 
1946 int
1947 is_integral_type (struct type *t)
1948 {
1949   CHECK_TYPEDEF (t);
1950   return
1951     ((t != NULL)
1952      && ((TYPE_CODE (t) == TYPE_CODE_INT)
1953 	 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
1954 	 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
1955 	 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1956 	 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1957 	 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
1958 }
1959 
1960 /* Return true if TYPE is scalar.  */
1961 
1962 static int
1963 is_scalar_type (struct type *type)
1964 {
1965   CHECK_TYPEDEF (type);
1966 
1967   switch (TYPE_CODE (type))
1968     {
1969     case TYPE_CODE_ARRAY:
1970     case TYPE_CODE_STRUCT:
1971     case TYPE_CODE_UNION:
1972     case TYPE_CODE_SET:
1973     case TYPE_CODE_STRING:
1974     case TYPE_CODE_BITSTRING:
1975       return 0;
1976     default:
1977       return 1;
1978     }
1979 }
1980 
1981 /* Return true if T is scalar, or a composite type which in practice has
1982    the memory layout of a scalar type.  E.g., an array or struct with only
1983    one scalar element inside it, or a union with only scalar elements.  */
1984 
1985 int
1986 is_scalar_type_recursive (struct type *t)
1987 {
1988   CHECK_TYPEDEF (t);
1989 
1990   if (is_scalar_type (t))
1991     return 1;
1992   /* Are we dealing with an array or string of known dimensions?  */
1993   else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
1994 	    || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
1995 	   && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
1996     {
1997       LONGEST low_bound, high_bound;
1998       struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
1999 
2000       get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2001 
2002       return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2003     }
2004   /* Are we dealing with a struct with one element?  */
2005   else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2006     return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2007   else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2008     {
2009       int i, n = TYPE_NFIELDS (t);
2010 
2011       /* If all elements of the union are scalar, then the union is scalar.  */
2012       for (i = 0; i < n; i++)
2013 	if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2014 	  return 0;
2015 
2016       return 1;
2017     }
2018 
2019   return 0;
2020 }
2021 
2022 /* A helper function which returns true if types A and B represent the
2023    "same" class type.  This is true if the types have the same main
2024    type, or the same name.  */
2025 
2026 int
2027 class_types_same_p (const struct type *a, const struct type *b)
2028 {
2029   return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2030 	  || (TYPE_NAME (a) && TYPE_NAME (b)
2031 	      && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2032 }
2033 
2034 /* If BASE is an ancestor of DCLASS return the distance between them.
2035    otherwise return -1;
2036    eg:
2037 
2038    class A {};
2039    class B: public A {};
2040    class C: public B {};
2041    class D: C {};
2042 
2043    distance_to_ancestor (A, A, 0) = 0
2044    distance_to_ancestor (A, B, 0) = 1
2045    distance_to_ancestor (A, C, 0) = 2
2046    distance_to_ancestor (A, D, 0) = 3
2047 
2048    If PUBLIC is 1 then only public ancestors are considered,
2049    and the function returns the distance only if BASE is a public ancestor
2050    of DCLASS.
2051    Eg:
2052 
2053    distance_to_ancestor (A, D, 1) = -1.  */
2054 
2055 static int
2056 distance_to_ancestor (struct type *base, struct type *dclass, int public)
2057 {
2058   int i;
2059   int d;
2060 
2061   CHECK_TYPEDEF (base);
2062   CHECK_TYPEDEF (dclass);
2063 
2064   if (class_types_same_p (base, dclass))
2065     return 0;
2066 
2067   for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2068     {
2069       if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2070 	continue;
2071 
2072       d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2073       if (d >= 0)
2074 	return 1 + d;
2075     }
2076 
2077   return -1;
2078 }
2079 
2080 /* Check whether BASE is an ancestor or base class or DCLASS
2081    Return 1 if so, and 0 if not.
2082    Note: If BASE and DCLASS are of the same type, this function
2083    will return 1. So for some class A, is_ancestor (A, A) will
2084    return 1.  */
2085 
2086 int
2087 is_ancestor (struct type *base, struct type *dclass)
2088 {
2089   return distance_to_ancestor (base, dclass, 0) >= 0;
2090 }
2091 
2092 /* Like is_ancestor, but only returns true when BASE is a public
2093    ancestor of DCLASS.  */
2094 
2095 int
2096 is_public_ancestor (struct type *base, struct type *dclass)
2097 {
2098   return distance_to_ancestor (base, dclass, 1) >= 0;
2099 }
2100 
2101 /* A helper function for is_unique_ancestor.  */
2102 
2103 static int
2104 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2105 			   int *offset,
2106 			   const gdb_byte *valaddr, int embedded_offset,
2107 			   CORE_ADDR address, struct value *val)
2108 {
2109   int i, count = 0;
2110 
2111   CHECK_TYPEDEF (base);
2112   CHECK_TYPEDEF (dclass);
2113 
2114   for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2115     {
2116       struct type *iter;
2117       int this_offset;
2118 
2119       iter = check_typedef (TYPE_BASECLASS (dclass, i));
2120 
2121       this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2122 				      address, val);
2123 
2124       if (class_types_same_p (base, iter))
2125 	{
2126 	  /* If this is the first subclass, set *OFFSET and set count
2127 	     to 1.  Otherwise, if this is at the same offset as
2128 	     previous instances, do nothing.  Otherwise, increment
2129 	     count.  */
2130 	  if (*offset == -1)
2131 	    {
2132 	      *offset = this_offset;
2133 	      count = 1;
2134 	    }
2135 	  else if (this_offset == *offset)
2136 	    {
2137 	      /* Nothing.  */
2138 	    }
2139 	  else
2140 	    ++count;
2141 	}
2142       else
2143 	count += is_unique_ancestor_worker (base, iter, offset,
2144 					    valaddr,
2145 					    embedded_offset + this_offset,
2146 					    address, val);
2147     }
2148 
2149   return count;
2150 }
2151 
2152 /* Like is_ancestor, but only returns true if BASE is a unique base
2153    class of the type of VAL.  */
2154 
2155 int
2156 is_unique_ancestor (struct type *base, struct value *val)
2157 {
2158   int offset = -1;
2159 
2160   return is_unique_ancestor_worker (base, value_type (val), &offset,
2161 				    value_contents_for_printing (val),
2162 				    value_embedded_offset (val),
2163 				    value_address (val), val) == 1;
2164 }
2165 
2166 
2167 
2168 /* Return the sum of the rank of A with the rank of B.  */
2169 
2170 struct rank
2171 sum_ranks (struct rank a, struct rank b)
2172 {
2173   struct rank c;
2174   c.rank = a.rank + b.rank;
2175   c.subrank = a.subrank + b.subrank;
2176   return c;
2177 }
2178 
2179 /* Compare rank A and B and return:
2180    0 if a = b
2181    1 if a is better than b
2182   -1 if b is better than a.  */
2183 
2184 int
2185 compare_ranks (struct rank a, struct rank b)
2186 {
2187   if (a.rank == b.rank)
2188     {
2189       if (a.subrank == b.subrank)
2190 	return 0;
2191       if (a.subrank < b.subrank)
2192 	return 1;
2193       if (a.subrank > b.subrank)
2194 	return -1;
2195     }
2196 
2197   if (a.rank < b.rank)
2198     return 1;
2199 
2200   /* a.rank > b.rank */
2201   return -1;
2202 }
2203 
2204 /* Functions for overload resolution begin here.  */
2205 
2206 /* Compare two badness vectors A and B and return the result.
2207    0 => A and B are identical
2208    1 => A and B are incomparable
2209    2 => A is better than B
2210    3 => A is worse than B  */
2211 
2212 int
2213 compare_badness (struct badness_vector *a, struct badness_vector *b)
2214 {
2215   int i;
2216   int tmp;
2217   short found_pos = 0;		/* any positives in c? */
2218   short found_neg = 0;		/* any negatives in c? */
2219 
2220   /* differing lengths => incomparable */
2221   if (a->length != b->length)
2222     return 1;
2223 
2224   /* Subtract b from a */
2225   for (i = 0; i < a->length; i++)
2226     {
2227       tmp = compare_ranks (b->rank[i], a->rank[i]);
2228       if (tmp > 0)
2229 	found_pos = 1;
2230       else if (tmp < 0)
2231 	found_neg = 1;
2232     }
2233 
2234   if (found_pos)
2235     {
2236       if (found_neg)
2237 	return 1;		/* incomparable */
2238       else
2239 	return 3;		/* A > B */
2240     }
2241   else
2242     /* no positives */
2243     {
2244       if (found_neg)
2245 	return 2;		/* A < B */
2246       else
2247 	return 0;		/* A == B */
2248     }
2249 }
2250 
2251 /* Rank a function by comparing its parameter types (PARMS, length
2252    NPARMS), to the types of an argument list (ARGS, length NARGS).
2253    Return a pointer to a badness vector.  This has NARGS + 1
2254    entries.  */
2255 
2256 struct badness_vector *
2257 rank_function (struct type **parms, int nparms,
2258 	       struct type **args, int nargs)
2259 {
2260   int i;
2261   struct badness_vector *bv;
2262   int min_len = nparms < nargs ? nparms : nargs;
2263 
2264   bv = xmalloc (sizeof (struct badness_vector));
2265   bv->length = nargs + 1;	/* add 1 for the length-match rank.  */
2266   bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2267 
2268   /* First compare the lengths of the supplied lists.
2269      If there is a mismatch, set it to a high value.  */
2270 
2271   /* pai/1997-06-03 FIXME: when we have debug info about default
2272      arguments and ellipsis parameter lists, we should consider those
2273      and rank the length-match more finely.  */
2274 
2275   LENGTH_MATCH (bv) = (nargs != nparms)
2276 		      ? LENGTH_MISMATCH_BADNESS
2277 		      : EXACT_MATCH_BADNESS;
2278 
2279   /* Now rank all the parameters of the candidate function.  */
2280   for (i = 1; i <= min_len; i++)
2281     bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
2282 
2283   /* If more arguments than parameters, add dummy entries.  */
2284   for (i = min_len + 1; i <= nargs; i++)
2285     bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2286 
2287   return bv;
2288 }
2289 
2290 /* Compare the names of two integer types, assuming that any sign
2291    qualifiers have been checked already.  We do it this way because
2292    there may be an "int" in the name of one of the types.  */
2293 
2294 static int
2295 integer_types_same_name_p (const char *first, const char *second)
2296 {
2297   int first_p, second_p;
2298 
2299   /* If both are shorts, return 1; if neither is a short, keep
2300      checking.  */
2301   first_p = (strstr (first, "short") != NULL);
2302   second_p = (strstr (second, "short") != NULL);
2303   if (first_p && second_p)
2304     return 1;
2305   if (first_p || second_p)
2306     return 0;
2307 
2308   /* Likewise for long.  */
2309   first_p = (strstr (first, "long") != NULL);
2310   second_p = (strstr (second, "long") != NULL);
2311   if (first_p && second_p)
2312     return 1;
2313   if (first_p || second_p)
2314     return 0;
2315 
2316   /* Likewise for char.  */
2317   first_p = (strstr (first, "char") != NULL);
2318   second_p = (strstr (second, "char") != NULL);
2319   if (first_p && second_p)
2320     return 1;
2321   if (first_p || second_p)
2322     return 0;
2323 
2324   /* They must both be ints.  */
2325   return 1;
2326 }
2327 
2328 /* Compares type A to type B returns 1 if the represent the same type
2329    0 otherwise.  */
2330 
2331 static int
2332 types_equal (struct type *a, struct type *b)
2333 {
2334   /* Identical type pointers.  */
2335   /* However, this still doesn't catch all cases of same type for b
2336      and a.  The reason is that builtin types are different from
2337      the same ones constructed from the object.  */
2338   if (a == b)
2339     return 1;
2340 
2341   /* Resolve typedefs */
2342   if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2343     a = check_typedef (a);
2344   if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2345     b = check_typedef (b);
2346 
2347   /* If after resolving typedefs a and b are not of the same type
2348      code then they are not equal.  */
2349   if (TYPE_CODE (a) != TYPE_CODE (b))
2350     return 0;
2351 
2352   /* If a and b are both pointers types or both reference types then
2353      they are equal of the same type iff the objects they refer to are
2354      of the same type.  */
2355   if (TYPE_CODE (a) == TYPE_CODE_PTR
2356       || TYPE_CODE (a) == TYPE_CODE_REF)
2357     return types_equal (TYPE_TARGET_TYPE (a),
2358                         TYPE_TARGET_TYPE (b));
2359 
2360   /* Well, damnit, if the names are exactly the same, I'll say they
2361      are exactly the same.  This happens when we generate method
2362      stubs.  The types won't point to the same address, but they
2363      really are the same.  */
2364 
2365   if (TYPE_NAME (a) && TYPE_NAME (b)
2366       && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2367     return 1;
2368 
2369   /* Check if identical after resolving typedefs.  */
2370   if (a == b)
2371     return 1;
2372 
2373   return 0;
2374 }
2375 
2376 /* Compare one type (PARM) for compatibility with another (ARG).
2377  * PARM is intended to be the parameter type of a function; and
2378  * ARG is the supplied argument's type.  This function tests if
2379  * the latter can be converted to the former.
2380  *
2381  * Return 0 if they are identical types;
2382  * Otherwise, return an integer which corresponds to how compatible
2383  * PARM is to ARG.  The higher the return value, the worse the match.
2384  * Generally the "bad" conversions are all uniformly assigned a 100.  */
2385 
2386 struct rank
2387 rank_one_type (struct type *parm, struct type *arg)
2388 {
2389   struct rank rank = {0,0};
2390 
2391   if (types_equal (parm, arg))
2392     return EXACT_MATCH_BADNESS;
2393 
2394   /* Resolve typedefs */
2395   if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2396     parm = check_typedef (parm);
2397   if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2398     arg = check_typedef (arg);
2399 
2400   /* See through references, since we can almost make non-references
2401      references.  */
2402   if (TYPE_CODE (arg) == TYPE_CODE_REF)
2403     return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg)),
2404                        REFERENCE_CONVERSION_BADNESS));
2405   if (TYPE_CODE (parm) == TYPE_CODE_REF)
2406     return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg),
2407                        REFERENCE_CONVERSION_BADNESS));
2408   if (overload_debug)
2409   /* Debugging only.  */
2410     fprintf_filtered (gdb_stderr,
2411 		      "------ Arg is %s [%d], parm is %s [%d]\n",
2412 		      TYPE_NAME (arg), TYPE_CODE (arg),
2413 		      TYPE_NAME (parm), TYPE_CODE (parm));
2414 
2415   /* x -> y means arg of type x being supplied for parameter of type y.  */
2416 
2417   switch (TYPE_CODE (parm))
2418     {
2419     case TYPE_CODE_PTR:
2420       switch (TYPE_CODE (arg))
2421 	{
2422 	case TYPE_CODE_PTR:
2423 
2424 	  /* Allowed pointer conversions are:
2425 	     (a) pointer to void-pointer conversion.  */
2426 	  if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2427 	    return VOID_PTR_CONVERSION_BADNESS;
2428 
2429 	  /* (b) pointer to ancestor-pointer conversion.  */
2430 	  rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
2431 	                                       TYPE_TARGET_TYPE (arg),
2432 	                                       0);
2433 	  if (rank.subrank >= 0)
2434 	    return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
2435 
2436 	  return INCOMPATIBLE_TYPE_BADNESS;
2437 	case TYPE_CODE_ARRAY:
2438 	  if (types_equal (TYPE_TARGET_TYPE (parm),
2439 	                   TYPE_TARGET_TYPE (arg)))
2440 	    return EXACT_MATCH_BADNESS;
2441 	  return INCOMPATIBLE_TYPE_BADNESS;
2442 	case TYPE_CODE_FUNC:
2443 	  return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2444 	case TYPE_CODE_INT:
2445 	case TYPE_CODE_ENUM:
2446 	case TYPE_CODE_FLAGS:
2447 	case TYPE_CODE_CHAR:
2448 	case TYPE_CODE_RANGE:
2449 	case TYPE_CODE_BOOL:
2450 	default:
2451 	  return INCOMPATIBLE_TYPE_BADNESS;
2452 	}
2453     case TYPE_CODE_ARRAY:
2454       switch (TYPE_CODE (arg))
2455 	{
2456 	case TYPE_CODE_PTR:
2457 	case TYPE_CODE_ARRAY:
2458 	  return rank_one_type (TYPE_TARGET_TYPE (parm),
2459 				TYPE_TARGET_TYPE (arg));
2460 	default:
2461 	  return INCOMPATIBLE_TYPE_BADNESS;
2462 	}
2463     case TYPE_CODE_FUNC:
2464       switch (TYPE_CODE (arg))
2465 	{
2466 	case TYPE_CODE_PTR:	/* funcptr -> func */
2467 	  return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2468 	default:
2469 	  return INCOMPATIBLE_TYPE_BADNESS;
2470 	}
2471     case TYPE_CODE_INT:
2472       switch (TYPE_CODE (arg))
2473 	{
2474 	case TYPE_CODE_INT:
2475 	  if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2476 	    {
2477 	      /* Deal with signed, unsigned, and plain chars and
2478 	         signed and unsigned ints.  */
2479 	      if (TYPE_NOSIGN (parm))
2480 		{
2481 		  /* This case only for character types.  */
2482 		  if (TYPE_NOSIGN (arg))
2483 		    return EXACT_MATCH_BADNESS;	/* plain char -> plain char */
2484 		  else		/* signed/unsigned char -> plain char */
2485 		    return INTEGER_CONVERSION_BADNESS;
2486 		}
2487 	      else if (TYPE_UNSIGNED (parm))
2488 		{
2489 		  if (TYPE_UNSIGNED (arg))
2490 		    {
2491 		      /* unsigned int -> unsigned int, or
2492 			 unsigned long -> unsigned long */
2493 		      if (integer_types_same_name_p (TYPE_NAME (parm),
2494 						     TYPE_NAME (arg)))
2495 			return EXACT_MATCH_BADNESS;
2496 		      else if (integer_types_same_name_p (TYPE_NAME (arg),
2497 							  "int")
2498 			       && integer_types_same_name_p (TYPE_NAME (parm),
2499 							     "long"))
2500 			/* unsigned int -> unsigned long */
2501 			return INTEGER_PROMOTION_BADNESS;
2502 		      else
2503 			/* unsigned long -> unsigned int */
2504 			return INTEGER_CONVERSION_BADNESS;
2505 		    }
2506 		  else
2507 		    {
2508 		      if (integer_types_same_name_p (TYPE_NAME (arg),
2509 						     "long")
2510 			  && integer_types_same_name_p (TYPE_NAME (parm),
2511 							"int"))
2512 			/* signed long -> unsigned int */
2513 			return INTEGER_CONVERSION_BADNESS;
2514 		      else
2515 			/* signed int/long -> unsigned int/long */
2516 			return INTEGER_CONVERSION_BADNESS;
2517 		    }
2518 		}
2519 	      else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2520 		{
2521 		  if (integer_types_same_name_p (TYPE_NAME (parm),
2522 						 TYPE_NAME (arg)))
2523 		    return EXACT_MATCH_BADNESS;
2524 		  else if (integer_types_same_name_p (TYPE_NAME (arg),
2525 						      "int")
2526 			   && integer_types_same_name_p (TYPE_NAME (parm),
2527 							 "long"))
2528 		    return INTEGER_PROMOTION_BADNESS;
2529 		  else
2530 		    return INTEGER_CONVERSION_BADNESS;
2531 		}
2532 	      else
2533 		return INTEGER_CONVERSION_BADNESS;
2534 	    }
2535 	  else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2536 	    return INTEGER_PROMOTION_BADNESS;
2537 	  else
2538 	    return INTEGER_CONVERSION_BADNESS;
2539 	case TYPE_CODE_ENUM:
2540 	case TYPE_CODE_FLAGS:
2541 	case TYPE_CODE_CHAR:
2542 	case TYPE_CODE_RANGE:
2543 	case TYPE_CODE_BOOL:
2544 	  return INTEGER_PROMOTION_BADNESS;
2545 	case TYPE_CODE_FLT:
2546 	  return INT_FLOAT_CONVERSION_BADNESS;
2547 	case TYPE_CODE_PTR:
2548 	  return NS_POINTER_CONVERSION_BADNESS;
2549 	default:
2550 	  return INCOMPATIBLE_TYPE_BADNESS;
2551 	}
2552       break;
2553     case TYPE_CODE_ENUM:
2554       switch (TYPE_CODE (arg))
2555 	{
2556 	case TYPE_CODE_INT:
2557 	case TYPE_CODE_CHAR:
2558 	case TYPE_CODE_RANGE:
2559 	case TYPE_CODE_BOOL:
2560 	case TYPE_CODE_ENUM:
2561 	  return INTEGER_CONVERSION_BADNESS;
2562 	case TYPE_CODE_FLT:
2563 	  return INT_FLOAT_CONVERSION_BADNESS;
2564 	default:
2565 	  return INCOMPATIBLE_TYPE_BADNESS;
2566 	}
2567       break;
2568     case TYPE_CODE_CHAR:
2569       switch (TYPE_CODE (arg))
2570 	{
2571 	case TYPE_CODE_RANGE:
2572 	case TYPE_CODE_BOOL:
2573 	case TYPE_CODE_ENUM:
2574 	  return INTEGER_CONVERSION_BADNESS;
2575 	case TYPE_CODE_FLT:
2576 	  return INT_FLOAT_CONVERSION_BADNESS;
2577 	case TYPE_CODE_INT:
2578 	  if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2579 	    return INTEGER_CONVERSION_BADNESS;
2580 	  else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2581 	    return INTEGER_PROMOTION_BADNESS;
2582 	  /* >>> !! else fall through !! <<< */
2583 	case TYPE_CODE_CHAR:
2584 	  /* Deal with signed, unsigned, and plain chars for C++ and
2585 	     with int cases falling through from previous case.  */
2586 	  if (TYPE_NOSIGN (parm))
2587 	    {
2588 	      if (TYPE_NOSIGN (arg))
2589 		return EXACT_MATCH_BADNESS;
2590 	      else
2591 		return INTEGER_CONVERSION_BADNESS;
2592 	    }
2593 	  else if (TYPE_UNSIGNED (parm))
2594 	    {
2595 	      if (TYPE_UNSIGNED (arg))
2596 		return EXACT_MATCH_BADNESS;
2597 	      else
2598 		return INTEGER_PROMOTION_BADNESS;
2599 	    }
2600 	  else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2601 	    return EXACT_MATCH_BADNESS;
2602 	  else
2603 	    return INTEGER_CONVERSION_BADNESS;
2604 	default:
2605 	  return INCOMPATIBLE_TYPE_BADNESS;
2606 	}
2607       break;
2608     case TYPE_CODE_RANGE:
2609       switch (TYPE_CODE (arg))
2610 	{
2611 	case TYPE_CODE_INT:
2612 	case TYPE_CODE_CHAR:
2613 	case TYPE_CODE_RANGE:
2614 	case TYPE_CODE_BOOL:
2615 	case TYPE_CODE_ENUM:
2616 	  return INTEGER_CONVERSION_BADNESS;
2617 	case TYPE_CODE_FLT:
2618 	  return INT_FLOAT_CONVERSION_BADNESS;
2619 	default:
2620 	  return INCOMPATIBLE_TYPE_BADNESS;
2621 	}
2622       break;
2623     case TYPE_CODE_BOOL:
2624       switch (TYPE_CODE (arg))
2625 	{
2626 	case TYPE_CODE_INT:
2627 	case TYPE_CODE_CHAR:
2628 	case TYPE_CODE_RANGE:
2629 	case TYPE_CODE_ENUM:
2630 	case TYPE_CODE_FLT:
2631 	  return INCOMPATIBLE_TYPE_BADNESS;
2632 	case TYPE_CODE_PTR:
2633 	  return BOOL_PTR_CONVERSION_BADNESS;
2634 	case TYPE_CODE_BOOL:
2635 	  return EXACT_MATCH_BADNESS;
2636 	default:
2637 	  return INCOMPATIBLE_TYPE_BADNESS;
2638 	}
2639       break;
2640     case TYPE_CODE_FLT:
2641       switch (TYPE_CODE (arg))
2642 	{
2643 	case TYPE_CODE_FLT:
2644 	  if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2645 	    return FLOAT_PROMOTION_BADNESS;
2646 	  else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2647 	    return EXACT_MATCH_BADNESS;
2648 	  else
2649 	    return FLOAT_CONVERSION_BADNESS;
2650 	case TYPE_CODE_INT:
2651 	case TYPE_CODE_BOOL:
2652 	case TYPE_CODE_ENUM:
2653 	case TYPE_CODE_RANGE:
2654 	case TYPE_CODE_CHAR:
2655 	  return INT_FLOAT_CONVERSION_BADNESS;
2656 	default:
2657 	  return INCOMPATIBLE_TYPE_BADNESS;
2658 	}
2659       break;
2660     case TYPE_CODE_COMPLEX:
2661       switch (TYPE_CODE (arg))
2662 	{		/* Strictly not needed for C++, but...  */
2663 	case TYPE_CODE_FLT:
2664 	  return FLOAT_PROMOTION_BADNESS;
2665 	case TYPE_CODE_COMPLEX:
2666 	  return EXACT_MATCH_BADNESS;
2667 	default:
2668 	  return INCOMPATIBLE_TYPE_BADNESS;
2669 	}
2670       break;
2671     case TYPE_CODE_STRUCT:
2672       /* currently same as TYPE_CODE_CLASS.  */
2673       switch (TYPE_CODE (arg))
2674 	{
2675 	case TYPE_CODE_STRUCT:
2676 	  /* Check for derivation */
2677 	  rank.subrank = distance_to_ancestor (parm, arg, 0);
2678 	  if (rank.subrank >= 0)
2679 	    return sum_ranks (BASE_CONVERSION_BADNESS, rank);
2680 	  /* else fall through */
2681 	default:
2682 	  return INCOMPATIBLE_TYPE_BADNESS;
2683 	}
2684       break;
2685     case TYPE_CODE_UNION:
2686       switch (TYPE_CODE (arg))
2687 	{
2688 	case TYPE_CODE_UNION:
2689 	default:
2690 	  return INCOMPATIBLE_TYPE_BADNESS;
2691 	}
2692       break;
2693     case TYPE_CODE_MEMBERPTR:
2694       switch (TYPE_CODE (arg))
2695 	{
2696 	default:
2697 	  return INCOMPATIBLE_TYPE_BADNESS;
2698 	}
2699       break;
2700     case TYPE_CODE_METHOD:
2701       switch (TYPE_CODE (arg))
2702 	{
2703 
2704 	default:
2705 	  return INCOMPATIBLE_TYPE_BADNESS;
2706 	}
2707       break;
2708     case TYPE_CODE_REF:
2709       switch (TYPE_CODE (arg))
2710 	{
2711 
2712 	default:
2713 	  return INCOMPATIBLE_TYPE_BADNESS;
2714 	}
2715 
2716       break;
2717     case TYPE_CODE_SET:
2718       switch (TYPE_CODE (arg))
2719 	{
2720 	  /* Not in C++ */
2721 	case TYPE_CODE_SET:
2722 	  return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2723 				TYPE_FIELD_TYPE (arg, 0));
2724 	default:
2725 	  return INCOMPATIBLE_TYPE_BADNESS;
2726 	}
2727       break;
2728     case TYPE_CODE_VOID:
2729     default:
2730       return INCOMPATIBLE_TYPE_BADNESS;
2731     }				/* switch (TYPE_CODE (arg)) */
2732 }
2733 
2734 
2735 /* End of functions for overload resolution.  */
2736 
2737 static void
2738 print_bit_vector (B_TYPE *bits, int nbits)
2739 {
2740   int bitno;
2741 
2742   for (bitno = 0; bitno < nbits; bitno++)
2743     {
2744       if ((bitno % 8) == 0)
2745 	{
2746 	  puts_filtered (" ");
2747 	}
2748       if (B_TST (bits, bitno))
2749 	printf_filtered (("1"));
2750       else
2751 	printf_filtered (("0"));
2752     }
2753 }
2754 
2755 /* Note the first arg should be the "this" pointer, we may not want to
2756    include it since we may get into a infinitely recursive
2757    situation.  */
2758 
2759 static void
2760 print_arg_types (struct field *args, int nargs, int spaces)
2761 {
2762   if (args != NULL)
2763     {
2764       int i;
2765 
2766       for (i = 0; i < nargs; i++)
2767 	recursive_dump_type (args[i].type, spaces + 2);
2768     }
2769 }
2770 
2771 int
2772 field_is_static (struct field *f)
2773 {
2774   /* "static" fields are the fields whose location is not relative
2775      to the address of the enclosing struct.  It would be nice to
2776      have a dedicated flag that would be set for static fields when
2777      the type is being created.  But in practice, checking the field
2778      loc_kind should give us an accurate answer.  */
2779   return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2780 	  || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2781 }
2782 
2783 static void
2784 dump_fn_fieldlists (struct type *type, int spaces)
2785 {
2786   int method_idx;
2787   int overload_idx;
2788   struct fn_field *f;
2789 
2790   printfi_filtered (spaces, "fn_fieldlists ");
2791   gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
2792   printf_filtered ("\n");
2793   for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2794     {
2795       f = TYPE_FN_FIELDLIST1 (type, method_idx);
2796       printfi_filtered (spaces + 2, "[%d] name '%s' (",
2797 			method_idx,
2798 			TYPE_FN_FIELDLIST_NAME (type, method_idx));
2799       gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2800 			      gdb_stdout);
2801       printf_filtered (_(") length %d\n"),
2802 		       TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2803       for (overload_idx = 0;
2804 	   overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2805 	   overload_idx++)
2806 	{
2807 	  printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2808 			    overload_idx,
2809 			    TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
2810 	  gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2811 				  gdb_stdout);
2812 	  printf_filtered (")\n");
2813 	  printfi_filtered (spaces + 8, "type ");
2814 	  gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2815 				  gdb_stdout);
2816 	  printf_filtered ("\n");
2817 
2818 	  recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2819 			       spaces + 8 + 2);
2820 
2821 	  printfi_filtered (spaces + 8, "args ");
2822 	  gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2823 				  gdb_stdout);
2824 	  printf_filtered ("\n");
2825 
2826 	  print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
2827 			   TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2828 							     overload_idx)),
2829 			   spaces);
2830 	  printfi_filtered (spaces + 8, "fcontext ");
2831 	  gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2832 				  gdb_stdout);
2833 	  printf_filtered ("\n");
2834 
2835 	  printfi_filtered (spaces + 8, "is_const %d\n",
2836 			    TYPE_FN_FIELD_CONST (f, overload_idx));
2837 	  printfi_filtered (spaces + 8, "is_volatile %d\n",
2838 			    TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2839 	  printfi_filtered (spaces + 8, "is_private %d\n",
2840 			    TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2841 	  printfi_filtered (spaces + 8, "is_protected %d\n",
2842 			    TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2843 	  printfi_filtered (spaces + 8, "is_stub %d\n",
2844 			    TYPE_FN_FIELD_STUB (f, overload_idx));
2845 	  printfi_filtered (spaces + 8, "voffset %u\n",
2846 			    TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2847 	}
2848     }
2849 }
2850 
2851 static void
2852 print_cplus_stuff (struct type *type, int spaces)
2853 {
2854   printfi_filtered (spaces, "n_baseclasses %d\n",
2855 		    TYPE_N_BASECLASSES (type));
2856   printfi_filtered (spaces, "nfn_fields %d\n",
2857 		    TYPE_NFN_FIELDS (type));
2858   printfi_filtered (spaces, "nfn_fields_total %d\n",
2859 		    TYPE_NFN_FIELDS_TOTAL (type));
2860   if (TYPE_N_BASECLASSES (type) > 0)
2861     {
2862       printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2863 			TYPE_N_BASECLASSES (type));
2864       gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2865 			      gdb_stdout);
2866       printf_filtered (")");
2867 
2868       print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2869 			TYPE_N_BASECLASSES (type));
2870       puts_filtered ("\n");
2871     }
2872   if (TYPE_NFIELDS (type) > 0)
2873     {
2874       if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2875 	{
2876 	  printfi_filtered (spaces,
2877 			    "private_field_bits (%d bits at *",
2878 			    TYPE_NFIELDS (type));
2879 	  gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2880 				  gdb_stdout);
2881 	  printf_filtered (")");
2882 	  print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2883 			    TYPE_NFIELDS (type));
2884 	  puts_filtered ("\n");
2885 	}
2886       if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2887 	{
2888 	  printfi_filtered (spaces,
2889 			    "protected_field_bits (%d bits at *",
2890 			    TYPE_NFIELDS (type));
2891 	  gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2892 				  gdb_stdout);
2893 	  printf_filtered (")");
2894 	  print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2895 			    TYPE_NFIELDS (type));
2896 	  puts_filtered ("\n");
2897 	}
2898     }
2899   if (TYPE_NFN_FIELDS (type) > 0)
2900     {
2901       dump_fn_fieldlists (type, spaces);
2902     }
2903 }
2904 
2905 /* Print the contents of the TYPE's type_specific union, assuming that
2906    its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF.  */
2907 
2908 static void
2909 print_gnat_stuff (struct type *type, int spaces)
2910 {
2911   struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
2912 
2913   recursive_dump_type (descriptive_type, spaces + 2);
2914 }
2915 
2916 static struct obstack dont_print_type_obstack;
2917 
2918 void
2919 recursive_dump_type (struct type *type, int spaces)
2920 {
2921   int idx;
2922 
2923   if (spaces == 0)
2924     obstack_begin (&dont_print_type_obstack, 0);
2925 
2926   if (TYPE_NFIELDS (type) > 0
2927       || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
2928     {
2929       struct type **first_dont_print
2930 	= (struct type **) obstack_base (&dont_print_type_obstack);
2931 
2932       int i = (struct type **)
2933 	obstack_next_free (&dont_print_type_obstack) - first_dont_print;
2934 
2935       while (--i >= 0)
2936 	{
2937 	  if (type == first_dont_print[i])
2938 	    {
2939 	      printfi_filtered (spaces, "type node ");
2940 	      gdb_print_host_address (type, gdb_stdout);
2941 	      printf_filtered (_(" <same as already seen type>\n"));
2942 	      return;
2943 	    }
2944 	}
2945 
2946       obstack_ptr_grow (&dont_print_type_obstack, type);
2947     }
2948 
2949   printfi_filtered (spaces, "type node ");
2950   gdb_print_host_address (type, gdb_stdout);
2951   printf_filtered ("\n");
2952   printfi_filtered (spaces, "name '%s' (",
2953 		    TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
2954   gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
2955   printf_filtered (")\n");
2956   printfi_filtered (spaces, "tagname '%s' (",
2957 		    TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2958   gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2959   printf_filtered (")\n");
2960   printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2961   switch (TYPE_CODE (type))
2962     {
2963     case TYPE_CODE_UNDEF:
2964       printf_filtered ("(TYPE_CODE_UNDEF)");
2965       break;
2966     case TYPE_CODE_PTR:
2967       printf_filtered ("(TYPE_CODE_PTR)");
2968       break;
2969     case TYPE_CODE_ARRAY:
2970       printf_filtered ("(TYPE_CODE_ARRAY)");
2971       break;
2972     case TYPE_CODE_STRUCT:
2973       printf_filtered ("(TYPE_CODE_STRUCT)");
2974       break;
2975     case TYPE_CODE_UNION:
2976       printf_filtered ("(TYPE_CODE_UNION)");
2977       break;
2978     case TYPE_CODE_ENUM:
2979       printf_filtered ("(TYPE_CODE_ENUM)");
2980       break;
2981     case TYPE_CODE_FLAGS:
2982       printf_filtered ("(TYPE_CODE_FLAGS)");
2983       break;
2984     case TYPE_CODE_FUNC:
2985       printf_filtered ("(TYPE_CODE_FUNC)");
2986       break;
2987     case TYPE_CODE_INT:
2988       printf_filtered ("(TYPE_CODE_INT)");
2989       break;
2990     case TYPE_CODE_FLT:
2991       printf_filtered ("(TYPE_CODE_FLT)");
2992       break;
2993     case TYPE_CODE_VOID:
2994       printf_filtered ("(TYPE_CODE_VOID)");
2995       break;
2996     case TYPE_CODE_SET:
2997       printf_filtered ("(TYPE_CODE_SET)");
2998       break;
2999     case TYPE_CODE_RANGE:
3000       printf_filtered ("(TYPE_CODE_RANGE)");
3001       break;
3002     case TYPE_CODE_STRING:
3003       printf_filtered ("(TYPE_CODE_STRING)");
3004       break;
3005     case TYPE_CODE_BITSTRING:
3006       printf_filtered ("(TYPE_CODE_BITSTRING)");
3007       break;
3008     case TYPE_CODE_ERROR:
3009       printf_filtered ("(TYPE_CODE_ERROR)");
3010       break;
3011     case TYPE_CODE_MEMBERPTR:
3012       printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3013       break;
3014     case TYPE_CODE_METHODPTR:
3015       printf_filtered ("(TYPE_CODE_METHODPTR)");
3016       break;
3017     case TYPE_CODE_METHOD:
3018       printf_filtered ("(TYPE_CODE_METHOD)");
3019       break;
3020     case TYPE_CODE_REF:
3021       printf_filtered ("(TYPE_CODE_REF)");
3022       break;
3023     case TYPE_CODE_CHAR:
3024       printf_filtered ("(TYPE_CODE_CHAR)");
3025       break;
3026     case TYPE_CODE_BOOL:
3027       printf_filtered ("(TYPE_CODE_BOOL)");
3028       break;
3029     case TYPE_CODE_COMPLEX:
3030       printf_filtered ("(TYPE_CODE_COMPLEX)");
3031       break;
3032     case TYPE_CODE_TYPEDEF:
3033       printf_filtered ("(TYPE_CODE_TYPEDEF)");
3034       break;
3035     case TYPE_CODE_NAMESPACE:
3036       printf_filtered ("(TYPE_CODE_NAMESPACE)");
3037       break;
3038     default:
3039       printf_filtered ("(UNKNOWN TYPE CODE)");
3040       break;
3041     }
3042   puts_filtered ("\n");
3043   printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3044   if (TYPE_OBJFILE_OWNED (type))
3045     {
3046       printfi_filtered (spaces, "objfile ");
3047       gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3048     }
3049   else
3050     {
3051       printfi_filtered (spaces, "gdbarch ");
3052       gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3053     }
3054   printf_filtered ("\n");
3055   printfi_filtered (spaces, "target_type ");
3056   gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3057   printf_filtered ("\n");
3058   if (TYPE_TARGET_TYPE (type) != NULL)
3059     {
3060       recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3061     }
3062   printfi_filtered (spaces, "pointer_type ");
3063   gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3064   printf_filtered ("\n");
3065   printfi_filtered (spaces, "reference_type ");
3066   gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3067   printf_filtered ("\n");
3068   printfi_filtered (spaces, "type_chain ");
3069   gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3070   printf_filtered ("\n");
3071   printfi_filtered (spaces, "instance_flags 0x%x",
3072 		    TYPE_INSTANCE_FLAGS (type));
3073   if (TYPE_CONST (type))
3074     {
3075       puts_filtered (" TYPE_FLAG_CONST");
3076     }
3077   if (TYPE_VOLATILE (type))
3078     {
3079       puts_filtered (" TYPE_FLAG_VOLATILE");
3080     }
3081   if (TYPE_CODE_SPACE (type))
3082     {
3083       puts_filtered (" TYPE_FLAG_CODE_SPACE");
3084     }
3085   if (TYPE_DATA_SPACE (type))
3086     {
3087       puts_filtered (" TYPE_FLAG_DATA_SPACE");
3088     }
3089   if (TYPE_ADDRESS_CLASS_1 (type))
3090     {
3091       puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3092     }
3093   if (TYPE_ADDRESS_CLASS_2 (type))
3094     {
3095       puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3096     }
3097   puts_filtered ("\n");
3098 
3099   printfi_filtered (spaces, "flags");
3100   if (TYPE_UNSIGNED (type))
3101     {
3102       puts_filtered (" TYPE_FLAG_UNSIGNED");
3103     }
3104   if (TYPE_NOSIGN (type))
3105     {
3106       puts_filtered (" TYPE_FLAG_NOSIGN");
3107     }
3108   if (TYPE_STUB (type))
3109     {
3110       puts_filtered (" TYPE_FLAG_STUB");
3111     }
3112   if (TYPE_TARGET_STUB (type))
3113     {
3114       puts_filtered (" TYPE_FLAG_TARGET_STUB");
3115     }
3116   if (TYPE_STATIC (type))
3117     {
3118       puts_filtered (" TYPE_FLAG_STATIC");
3119     }
3120   if (TYPE_PROTOTYPED (type))
3121     {
3122       puts_filtered (" TYPE_FLAG_PROTOTYPED");
3123     }
3124   if (TYPE_INCOMPLETE (type))
3125     {
3126       puts_filtered (" TYPE_FLAG_INCOMPLETE");
3127     }
3128   if (TYPE_VARARGS (type))
3129     {
3130       puts_filtered (" TYPE_FLAG_VARARGS");
3131     }
3132   /* This is used for things like AltiVec registers on ppc.  Gcc emits
3133      an attribute for the array type, which tells whether or not we
3134      have a vector, instead of a regular array.  */
3135   if (TYPE_VECTOR (type))
3136     {
3137       puts_filtered (" TYPE_FLAG_VECTOR");
3138     }
3139   if (TYPE_FIXED_INSTANCE (type))
3140     {
3141       puts_filtered (" TYPE_FIXED_INSTANCE");
3142     }
3143   if (TYPE_STUB_SUPPORTED (type))
3144     {
3145       puts_filtered (" TYPE_STUB_SUPPORTED");
3146     }
3147   if (TYPE_NOTTEXT (type))
3148     {
3149       puts_filtered (" TYPE_NOTTEXT");
3150     }
3151   puts_filtered ("\n");
3152   printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3153   gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3154   puts_filtered ("\n");
3155   for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3156     {
3157       printfi_filtered (spaces + 2,
3158 			"[%d] bitpos %d bitsize %d type ",
3159 			idx, TYPE_FIELD_BITPOS (type, idx),
3160 			TYPE_FIELD_BITSIZE (type, idx));
3161       gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3162       printf_filtered (" name '%s' (",
3163 		       TYPE_FIELD_NAME (type, idx) != NULL
3164 		       ? TYPE_FIELD_NAME (type, idx)
3165 		       : "<NULL>");
3166       gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3167       printf_filtered (")\n");
3168       if (TYPE_FIELD_TYPE (type, idx) != NULL)
3169 	{
3170 	  recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3171 	}
3172     }
3173   if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3174     {
3175       printfi_filtered (spaces, "low %s%s  high %s%s\n",
3176 			plongest (TYPE_LOW_BOUND (type)),
3177 			TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3178 			plongest (TYPE_HIGH_BOUND (type)),
3179 			TYPE_HIGH_BOUND_UNDEFINED (type)
3180 			? " (undefined)" : "");
3181     }
3182   printfi_filtered (spaces, "vptr_basetype ");
3183   gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3184   puts_filtered ("\n");
3185   if (TYPE_VPTR_BASETYPE (type) != NULL)
3186     {
3187       recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3188     }
3189   printfi_filtered (spaces, "vptr_fieldno %d\n",
3190 		    TYPE_VPTR_FIELDNO (type));
3191 
3192   switch (TYPE_SPECIFIC_FIELD (type))
3193     {
3194       case TYPE_SPECIFIC_CPLUS_STUFF:
3195 	printfi_filtered (spaces, "cplus_stuff ");
3196 	gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3197 				gdb_stdout);
3198 	puts_filtered ("\n");
3199 	print_cplus_stuff (type, spaces);
3200 	break;
3201 
3202       case TYPE_SPECIFIC_GNAT_STUFF:
3203 	printfi_filtered (spaces, "gnat_stuff ");
3204 	gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3205 	puts_filtered ("\n");
3206 	print_gnat_stuff (type, spaces);
3207 	break;
3208 
3209       case TYPE_SPECIFIC_FLOATFORMAT:
3210 	printfi_filtered (spaces, "floatformat ");
3211 	if (TYPE_FLOATFORMAT (type) == NULL)
3212 	  puts_filtered ("(null)");
3213 	else
3214 	  {
3215 	    puts_filtered ("{ ");
3216 	    if (TYPE_FLOATFORMAT (type)[0] == NULL
3217 		|| TYPE_FLOATFORMAT (type)[0]->name == NULL)
3218 	      puts_filtered ("(null)");
3219 	    else
3220 	      puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3221 
3222 	    puts_filtered (", ");
3223 	    if (TYPE_FLOATFORMAT (type)[1] == NULL
3224 		|| TYPE_FLOATFORMAT (type)[1]->name == NULL)
3225 	      puts_filtered ("(null)");
3226 	    else
3227 	      puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3228 
3229 	    puts_filtered (" }");
3230 	  }
3231 	puts_filtered ("\n");
3232 	break;
3233 
3234       case TYPE_SPECIFIC_CALLING_CONVENTION:
3235 	printfi_filtered (spaces, "calling_convention %d\n",
3236                           TYPE_CALLING_CONVENTION (type));
3237 	break;
3238     }
3239 
3240   if (spaces == 0)
3241     obstack_free (&dont_print_type_obstack, NULL);
3242 }
3243 
3244 /* Trivial helpers for the libiberty hash table, for mapping one
3245    type to another.  */
3246 
3247 struct type_pair
3248 {
3249   struct type *old, *new;
3250 };
3251 
3252 static hashval_t
3253 type_pair_hash (const void *item)
3254 {
3255   const struct type_pair *pair = item;
3256 
3257   return htab_hash_pointer (pair->old);
3258 }
3259 
3260 static int
3261 type_pair_eq (const void *item_lhs, const void *item_rhs)
3262 {
3263   const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
3264 
3265   return lhs->old == rhs->old;
3266 }
3267 
3268 /* Allocate the hash table used by copy_type_recursive to walk
3269    types without duplicates.  We use OBJFILE's obstack, because
3270    OBJFILE is about to be deleted.  */
3271 
3272 htab_t
3273 create_copied_types_hash (struct objfile *objfile)
3274 {
3275   return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3276 			       NULL, &objfile->objfile_obstack,
3277 			       hashtab_obstack_allocate,
3278 			       dummy_obstack_deallocate);
3279 }
3280 
3281 /* Recursively copy (deep copy) TYPE, if it is associated with
3282    OBJFILE.  Return a new type allocated using malloc, a saved type if
3283    we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3284    not associated with OBJFILE.  */
3285 
3286 struct type *
3287 copy_type_recursive (struct objfile *objfile,
3288 		     struct type *type,
3289 		     htab_t copied_types)
3290 {
3291   struct type_pair *stored, pair;
3292   void **slot;
3293   struct type *new_type;
3294 
3295   if (! TYPE_OBJFILE_OWNED (type))
3296     return type;
3297 
3298   /* This type shouldn't be pointing to any types in other objfiles;
3299      if it did, the type might disappear unexpectedly.  */
3300   gdb_assert (TYPE_OBJFILE (type) == objfile);
3301 
3302   pair.old = type;
3303   slot = htab_find_slot (copied_types, &pair, INSERT);
3304   if (*slot != NULL)
3305     return ((struct type_pair *) *slot)->new;
3306 
3307   new_type = alloc_type_arch (get_type_arch (type));
3308 
3309   /* We must add the new type to the hash table immediately, in case
3310      we encounter this type again during a recursive call below.  */
3311   stored
3312     = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
3313   stored->old = type;
3314   stored->new = new_type;
3315   *slot = stored;
3316 
3317   /* Copy the common fields of types.  For the main type, we simply
3318      copy the entire thing and then update specific fields as needed.  */
3319   *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
3320   TYPE_OBJFILE_OWNED (new_type) = 0;
3321   TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
3322 
3323   if (TYPE_NAME (type))
3324     TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3325   if (TYPE_TAG_NAME (type))
3326     TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
3327 
3328   TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3329   TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3330 
3331   /* Copy the fields.  */
3332   if (TYPE_NFIELDS (type))
3333     {
3334       int i, nfields;
3335 
3336       nfields = TYPE_NFIELDS (type);
3337       TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
3338       for (i = 0; i < nfields; i++)
3339 	{
3340 	  TYPE_FIELD_ARTIFICIAL (new_type, i) =
3341 	    TYPE_FIELD_ARTIFICIAL (type, i);
3342 	  TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3343 	  if (TYPE_FIELD_TYPE (type, i))
3344 	    TYPE_FIELD_TYPE (new_type, i)
3345 	      = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3346 				     copied_types);
3347 	  if (TYPE_FIELD_NAME (type, i))
3348 	    TYPE_FIELD_NAME (new_type, i) =
3349 	      xstrdup (TYPE_FIELD_NAME (type, i));
3350 	  switch (TYPE_FIELD_LOC_KIND (type, i))
3351 	    {
3352 	    case FIELD_LOC_KIND_BITPOS:
3353 	      SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3354 				TYPE_FIELD_BITPOS (type, i));
3355 	      break;
3356 	    case FIELD_LOC_KIND_PHYSADDR:
3357 	      SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3358 				  TYPE_FIELD_STATIC_PHYSADDR (type, i));
3359 	      break;
3360 	    case FIELD_LOC_KIND_PHYSNAME:
3361 	      SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3362 				  xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3363 								       i)));
3364 	      break;
3365 	    default:
3366 	      internal_error (__FILE__, __LINE__,
3367 			      _("Unexpected type field location kind: %d"),
3368 			      TYPE_FIELD_LOC_KIND (type, i));
3369 	    }
3370 	}
3371     }
3372 
3373   /* For range types, copy the bounds information.  */
3374   if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3375     {
3376       TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3377       *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3378     }
3379 
3380   /* Copy pointers to other types.  */
3381   if (TYPE_TARGET_TYPE (type))
3382     TYPE_TARGET_TYPE (new_type) =
3383       copy_type_recursive (objfile,
3384 			   TYPE_TARGET_TYPE (type),
3385 			   copied_types);
3386   if (TYPE_VPTR_BASETYPE (type))
3387     TYPE_VPTR_BASETYPE (new_type) =
3388       copy_type_recursive (objfile,
3389 			   TYPE_VPTR_BASETYPE (type),
3390 			   copied_types);
3391   /* Maybe copy the type_specific bits.
3392 
3393      NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3394      base classes and methods.  There's no fundamental reason why we
3395      can't, but at the moment it is not needed.  */
3396 
3397   if (TYPE_CODE (type) == TYPE_CODE_FLT)
3398     TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3399   else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3400 	   || TYPE_CODE (type) == TYPE_CODE_UNION
3401 	   || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3402     INIT_CPLUS_SPECIFIC (new_type);
3403 
3404   return new_type;
3405 }
3406 
3407 /* Make a copy of the given TYPE, except that the pointer & reference
3408    types are not preserved.
3409 
3410    This function assumes that the given type has an associated objfile.
3411    This objfile is used to allocate the new type.  */
3412 
3413 struct type *
3414 copy_type (const struct type *type)
3415 {
3416   struct type *new_type;
3417 
3418   gdb_assert (TYPE_OBJFILE_OWNED (type));
3419 
3420   new_type = alloc_type_copy (type);
3421   TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3422   TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3423   memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3424 	  sizeof (struct main_type));
3425 
3426   return new_type;
3427 }
3428 
3429 
3430 /* Helper functions to initialize architecture-specific types.  */
3431 
3432 /* Allocate a type structure associated with GDBARCH and set its
3433    CODE, LENGTH, and NAME fields.  */
3434 struct type *
3435 arch_type (struct gdbarch *gdbarch,
3436 	   enum type_code code, int length, char *name)
3437 {
3438   struct type *type;
3439 
3440   type = alloc_type_arch (gdbarch);
3441   TYPE_CODE (type) = code;
3442   TYPE_LENGTH (type) = length;
3443 
3444   if (name)
3445     TYPE_NAME (type) = xstrdup (name);
3446 
3447   return type;
3448 }
3449 
3450 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3451    BIT is the type size in bits.  If UNSIGNED_P is non-zero, set
3452    the type's TYPE_UNSIGNED flag.  NAME is the type name.  */
3453 struct type *
3454 arch_integer_type (struct gdbarch *gdbarch,
3455 		   int bit, int unsigned_p, char *name)
3456 {
3457   struct type *t;
3458 
3459   t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3460   if (unsigned_p)
3461     TYPE_UNSIGNED (t) = 1;
3462   if (name && strcmp (name, "char") == 0)
3463     TYPE_NOSIGN (t) = 1;
3464 
3465   return t;
3466 }
3467 
3468 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3469    BIT is the type size in bits.  If UNSIGNED_P is non-zero, set
3470    the type's TYPE_UNSIGNED flag.  NAME is the type name.  */
3471 struct type *
3472 arch_character_type (struct gdbarch *gdbarch,
3473 		     int bit, int unsigned_p, char *name)
3474 {
3475   struct type *t;
3476 
3477   t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3478   if (unsigned_p)
3479     TYPE_UNSIGNED (t) = 1;
3480 
3481   return t;
3482 }
3483 
3484 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3485    BIT is the type size in bits.  If UNSIGNED_P is non-zero, set
3486    the type's TYPE_UNSIGNED flag.  NAME is the type name.  */
3487 struct type *
3488 arch_boolean_type (struct gdbarch *gdbarch,
3489 		   int bit, int unsigned_p, char *name)
3490 {
3491   struct type *t;
3492 
3493   t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3494   if (unsigned_p)
3495     TYPE_UNSIGNED (t) = 1;
3496 
3497   return t;
3498 }
3499 
3500 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3501    BIT is the type size in bits; if BIT equals -1, the size is
3502    determined by the floatformat.  NAME is the type name.  Set the
3503    TYPE_FLOATFORMAT from FLOATFORMATS.  */
3504 struct type *
3505 arch_float_type (struct gdbarch *gdbarch,
3506 		 int bit, char *name, const struct floatformat **floatformats)
3507 {
3508   struct type *t;
3509 
3510   if (bit == -1)
3511     {
3512       gdb_assert (floatformats != NULL);
3513       gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3514       bit = floatformats[0]->totalsize;
3515     }
3516   gdb_assert (bit >= 0);
3517 
3518   t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
3519   TYPE_FLOATFORMAT (t) = floatformats;
3520   return t;
3521 }
3522 
3523 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3524    NAME is the type name.  TARGET_TYPE is the component float type.  */
3525 struct type *
3526 arch_complex_type (struct gdbarch *gdbarch,
3527 		   char *name, struct type *target_type)
3528 {
3529   struct type *t;
3530 
3531   t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3532 		 2 * TYPE_LENGTH (target_type), name);
3533   TYPE_TARGET_TYPE (t) = target_type;
3534   return t;
3535 }
3536 
3537 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
3538    NAME is the type name.  LENGTH is the size of the flag word in bytes.  */
3539 struct type *
3540 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3541 {
3542   int nfields = length * TARGET_CHAR_BIT;
3543   struct type *type;
3544 
3545   type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3546   TYPE_UNSIGNED (type) = 1;
3547   TYPE_NFIELDS (type) = nfields;
3548   TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3549 
3550   return type;
3551 }
3552 
3553 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3554    position BITPOS is called NAME.  */
3555 void
3556 append_flags_type_flag (struct type *type, int bitpos, char *name)
3557 {
3558   gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3559   gdb_assert (bitpos < TYPE_NFIELDS (type));
3560   gdb_assert (bitpos >= 0);
3561 
3562   if (name)
3563     {
3564       TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3565       TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
3566     }
3567   else
3568     {
3569       /* Don't show this field to the user.  */
3570       TYPE_FIELD_BITPOS (type, bitpos) = -1;
3571     }
3572 }
3573 
3574 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3575    specified by CODE) associated with GDBARCH.  NAME is the type name.  */
3576 struct type *
3577 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3578 {
3579   struct type *t;
3580 
3581   gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3582   t = arch_type (gdbarch, code, 0, NULL);
3583   TYPE_TAG_NAME (t) = name;
3584   INIT_CPLUS_SPECIFIC (t);
3585   return t;
3586 }
3587 
3588 /* Add new field with name NAME and type FIELD to composite type T.
3589    Do not set the field's position or adjust the type's length;
3590    the caller should do so.  Return the new field.  */
3591 struct field *
3592 append_composite_type_field_raw (struct type *t, char *name,
3593 				 struct type *field)
3594 {
3595   struct field *f;
3596 
3597   TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3598   TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3599 			      sizeof (struct field) * TYPE_NFIELDS (t));
3600   f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3601   memset (f, 0, sizeof f[0]);
3602   FIELD_TYPE (f[0]) = field;
3603   FIELD_NAME (f[0]) = name;
3604   return f;
3605 }
3606 
3607 /* Add new field with name NAME and type FIELD to composite type T.
3608    ALIGNMENT (if non-zero) specifies the minimum field alignment.  */
3609 void
3610 append_composite_type_field_aligned (struct type *t, char *name,
3611 				     struct type *field, int alignment)
3612 {
3613   struct field *f = append_composite_type_field_raw (t, name, field);
3614 
3615   if (TYPE_CODE (t) == TYPE_CODE_UNION)
3616     {
3617       if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3618 	TYPE_LENGTH (t) = TYPE_LENGTH (field);
3619     }
3620   else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3621     {
3622       TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3623       if (TYPE_NFIELDS (t) > 1)
3624 	{
3625 	  FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
3626 				 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3627 				    * TARGET_CHAR_BIT));
3628 
3629 	  if (alignment)
3630 	    {
3631 	      int left = FIELD_BITPOS (f[0]) % (alignment * TARGET_CHAR_BIT);
3632 
3633 	      if (left)
3634 		{
3635 		  FIELD_BITPOS (f[0]) += left;
3636 		  TYPE_LENGTH (t) += left / TARGET_CHAR_BIT;
3637 		}
3638 	    }
3639 	}
3640     }
3641 }
3642 
3643 /* Add new field with name NAME and type FIELD to composite type T.  */
3644 void
3645 append_composite_type_field (struct type *t, char *name,
3646 			     struct type *field)
3647 {
3648   append_composite_type_field_aligned (t, name, field, 0);
3649 }
3650 
3651 
3652 static struct gdbarch_data *gdbtypes_data;
3653 
3654 const struct builtin_type *
3655 builtin_type (struct gdbarch *gdbarch)
3656 {
3657   return gdbarch_data (gdbarch, gdbtypes_data);
3658 }
3659 
3660 static void *
3661 gdbtypes_post_init (struct gdbarch *gdbarch)
3662 {
3663   struct builtin_type *builtin_type
3664     = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3665 
3666   /* Basic types.  */
3667   builtin_type->builtin_void
3668     = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3669   builtin_type->builtin_char
3670     = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3671 			 !gdbarch_char_signed (gdbarch), "char");
3672   builtin_type->builtin_signed_char
3673     = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3674 			 0, "signed char");
3675   builtin_type->builtin_unsigned_char
3676     = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3677 			 1, "unsigned char");
3678   builtin_type->builtin_short
3679     = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3680 			 0, "short");
3681   builtin_type->builtin_unsigned_short
3682     = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3683 			 1, "unsigned short");
3684   builtin_type->builtin_int
3685     = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3686 			 0, "int");
3687   builtin_type->builtin_unsigned_int
3688     = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3689 			 1, "unsigned int");
3690   builtin_type->builtin_long
3691     = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3692 			 0, "long");
3693   builtin_type->builtin_unsigned_long
3694     = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3695 			 1, "unsigned long");
3696   builtin_type->builtin_long_long
3697     = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3698 			 0, "long long");
3699   builtin_type->builtin_unsigned_long_long
3700     = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3701 			 1, "unsigned long long");
3702   builtin_type->builtin_float
3703     = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
3704 		       "float", gdbarch_float_format (gdbarch));
3705   builtin_type->builtin_double
3706     = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
3707 		       "double", gdbarch_double_format (gdbarch));
3708   builtin_type->builtin_long_double
3709     = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
3710 		       "long double", gdbarch_long_double_format (gdbarch));
3711   builtin_type->builtin_complex
3712     = arch_complex_type (gdbarch, "complex",
3713 			 builtin_type->builtin_float);
3714   builtin_type->builtin_double_complex
3715     = arch_complex_type (gdbarch, "double complex",
3716 			 builtin_type->builtin_double);
3717   builtin_type->builtin_string
3718     = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3719   builtin_type->builtin_bool
3720     = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
3721 
3722   /* The following three are about decimal floating point types, which
3723      are 32-bits, 64-bits and 128-bits respectively.  */
3724   builtin_type->builtin_decfloat
3725     = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
3726   builtin_type->builtin_decdouble
3727     = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
3728   builtin_type->builtin_declong
3729     = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
3730 
3731   /* "True" character types.  */
3732   builtin_type->builtin_true_char
3733     = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3734   builtin_type->builtin_true_unsigned_char
3735     = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
3736 
3737   /* Fixed-size integer types.  */
3738   builtin_type->builtin_int0
3739     = arch_integer_type (gdbarch, 0, 0, "int0_t");
3740   builtin_type->builtin_int8
3741     = arch_integer_type (gdbarch, 8, 0, "int8_t");
3742   builtin_type->builtin_uint8
3743     = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3744   builtin_type->builtin_int16
3745     = arch_integer_type (gdbarch, 16, 0, "int16_t");
3746   builtin_type->builtin_uint16
3747     = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3748   builtin_type->builtin_int32
3749     = arch_integer_type (gdbarch, 32, 0, "int32_t");
3750   builtin_type->builtin_uint32
3751     = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3752   builtin_type->builtin_int64
3753     = arch_integer_type (gdbarch, 64, 0, "int64_t");
3754   builtin_type->builtin_uint64
3755     = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3756   builtin_type->builtin_int128
3757     = arch_integer_type (gdbarch, 128, 0, "int128_t");
3758   builtin_type->builtin_uint128
3759     = arch_integer_type (gdbarch, 128, 1, "uint128_t");
3760   TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
3761     TYPE_INSTANCE_FLAG_NOTTEXT;
3762   TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
3763     TYPE_INSTANCE_FLAG_NOTTEXT;
3764 
3765   /* Wide character types.  */
3766   builtin_type->builtin_char16
3767     = arch_integer_type (gdbarch, 16, 0, "char16_t");
3768   builtin_type->builtin_char32
3769     = arch_integer_type (gdbarch, 32, 0, "char32_t");
3770 
3771 
3772   /* Default data/code pointer types.  */
3773   builtin_type->builtin_data_ptr
3774     = lookup_pointer_type (builtin_type->builtin_void);
3775   builtin_type->builtin_func_ptr
3776     = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
3777   builtin_type->builtin_func_func
3778     = lookup_function_type (builtin_type->builtin_func_ptr);
3779 
3780   /* This type represents a GDB internal function.  */
3781   builtin_type->internal_fn
3782     = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3783 		 "<internal function>");
3784 
3785   return builtin_type;
3786 }
3787 
3788 
3789 /* This set of objfile-based types is intended to be used by symbol
3790    readers as basic types.  */
3791 
3792 static const struct objfile_data *objfile_type_data;
3793 
3794 const struct objfile_type *
3795 objfile_type (struct objfile *objfile)
3796 {
3797   struct gdbarch *gdbarch;
3798   struct objfile_type *objfile_type
3799     = objfile_data (objfile, objfile_type_data);
3800 
3801   if (objfile_type)
3802     return objfile_type;
3803 
3804   objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3805 				 1, struct objfile_type);
3806 
3807   /* Use the objfile architecture to determine basic type properties.  */
3808   gdbarch = get_objfile_arch (objfile);
3809 
3810   /* Basic types.  */
3811   objfile_type->builtin_void
3812     = init_type (TYPE_CODE_VOID, 1,
3813 		 0,
3814 		 "void", objfile);
3815 
3816   objfile_type->builtin_char
3817     = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3818 		 (TYPE_FLAG_NOSIGN
3819 		  | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3820 		 "char", objfile);
3821   objfile_type->builtin_signed_char
3822     = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3823 		 0,
3824 		 "signed char", objfile);
3825   objfile_type->builtin_unsigned_char
3826     = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3827 		 TYPE_FLAG_UNSIGNED,
3828 		 "unsigned char", objfile);
3829   objfile_type->builtin_short
3830     = init_type (TYPE_CODE_INT,
3831 		 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3832 		 0, "short", objfile);
3833   objfile_type->builtin_unsigned_short
3834     = init_type (TYPE_CODE_INT,
3835 		 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3836 		 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3837   objfile_type->builtin_int
3838     = init_type (TYPE_CODE_INT,
3839 		 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3840 		 0, "int", objfile);
3841   objfile_type->builtin_unsigned_int
3842     = init_type (TYPE_CODE_INT,
3843 		 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3844 		 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3845   objfile_type->builtin_long
3846     = init_type (TYPE_CODE_INT,
3847 		 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3848 		 0, "long", objfile);
3849   objfile_type->builtin_unsigned_long
3850     = init_type (TYPE_CODE_INT,
3851 		 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3852 		 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3853   objfile_type->builtin_long_long
3854     = init_type (TYPE_CODE_INT,
3855 		 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3856 		 0, "long long", objfile);
3857   objfile_type->builtin_unsigned_long_long
3858     = init_type (TYPE_CODE_INT,
3859 		 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3860 		 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3861 
3862   objfile_type->builtin_float
3863     = init_type (TYPE_CODE_FLT,
3864 		 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
3865 		 0, "float", objfile);
3866   TYPE_FLOATFORMAT (objfile_type->builtin_float)
3867     = gdbarch_float_format (gdbarch);
3868   objfile_type->builtin_double
3869     = init_type (TYPE_CODE_FLT,
3870 		 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
3871 		 0, "double", objfile);
3872   TYPE_FLOATFORMAT (objfile_type->builtin_double)
3873     = gdbarch_double_format (gdbarch);
3874   objfile_type->builtin_long_double
3875     = init_type (TYPE_CODE_FLT,
3876 		 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
3877 		 0, "long double", objfile);
3878   TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
3879     = gdbarch_long_double_format (gdbarch);
3880 
3881   /* This type represents a type that was unrecognized in symbol read-in.  */
3882   objfile_type->builtin_error
3883     = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
3884 
3885   /* The following set of types is used for symbols with no
3886      debug information.  */
3887   objfile_type->nodebug_text_symbol
3888     = init_type (TYPE_CODE_FUNC, 1, 0,
3889 		 "<text variable, no debug info>", objfile);
3890   TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
3891     = objfile_type->builtin_int;
3892   objfile_type->nodebug_text_gnu_ifunc_symbol
3893     = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
3894 		 "<text gnu-indirect-function variable, no debug info>",
3895 		 objfile);
3896   TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
3897     = objfile_type->nodebug_text_symbol;
3898   objfile_type->nodebug_got_plt_symbol
3899     = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
3900 		 "<text from jump slot in .got.plt, no debug info>",
3901 		 objfile);
3902   TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
3903     = objfile_type->nodebug_text_symbol;
3904   objfile_type->nodebug_data_symbol
3905     = init_type (TYPE_CODE_INT,
3906 		 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3907 		 "<data variable, no debug info>", objfile);
3908   objfile_type->nodebug_unknown_symbol
3909     = init_type (TYPE_CODE_INT, 1, 0,
3910 		 "<variable (not text or data), no debug info>", objfile);
3911   objfile_type->nodebug_tls_symbol
3912     = init_type (TYPE_CODE_INT,
3913 		 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3914 		 "<thread local variable, no debug info>", objfile);
3915 
3916   /* NOTE: on some targets, addresses and pointers are not necessarily
3917      the same --- for example, on the D10V, pointers are 16 bits long,
3918      but addresses are 32 bits long.  See doc/gdbint.texinfo,
3919      ``Pointers Are Not Always Addresses''.
3920 
3921      The upshot is:
3922      - gdb's `struct type' always describes the target's
3923        representation.
3924      - gdb's `struct value' objects should always hold values in
3925        target form.
3926      - gdb's CORE_ADDR values are addresses in the unified virtual
3927        address space that the assembler and linker work with.  Thus,
3928        since target_read_memory takes a CORE_ADDR as an argument, it
3929        can access any memory on the target, even if the processor has
3930        separate code and data address spaces.
3931 
3932      So, for example:
3933      - If v is a value holding a D10V code pointer, its contents are
3934        in target form: a big-endian address left-shifted two bits.
3935      - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3936        sizeof (void *) == 2 on the target.
3937 
3938      In this context, objfile_type->builtin_core_addr is a bit odd:
3939      it's a target type for a value the target will never see.  It's
3940      only used to hold the values of (typeless) linker symbols, which
3941      are indeed in the unified virtual address space.  */
3942 
3943   objfile_type->builtin_core_addr
3944     = init_type (TYPE_CODE_INT,
3945 		 gdbarch_addr_bit (gdbarch) / 8,
3946 		 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
3947 
3948   set_objfile_data (objfile, objfile_type_data, objfile_type);
3949   return objfile_type;
3950 }
3951 
3952 
3953 extern void _initialize_gdbtypes (void);
3954 void
3955 _initialize_gdbtypes (void)
3956 {
3957   gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
3958   objfile_type_data = register_objfile_data ();
3959 
3960   add_setshow_zinteger_cmd ("overload", no_class, &overload_debug,
3961 			    _("Set debugging of C++ overloading."),
3962 			    _("Show debugging of C++ overloading."),
3963 			    _("When enabled, ranking of the "
3964 			      "functions is displayed."),
3965 			    NULL,
3966 			    show_overload_debug,
3967 			    &setdebuglist, &showdebuglist);
3968 
3969   /* Add user knob for controlling resolution of opaque types.  */
3970   add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3971 			   &opaque_type_resolution,
3972 			   _("Set resolution of opaque struct/class/union"
3973 			     " types (if set before loading symbols)."),
3974 			   _("Show resolution of opaque struct/class/union"
3975 			     " types (if set before loading symbols)."),
3976 			   NULL, NULL,
3977 			   show_opaque_type_resolution,
3978 			   &setlist, &showlist);
3979 }
3980